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Abstract

Objective: Dementia with Lewy bodies (DLB) is a common cause of dementia, but
atrophy is mild compared to Alzheimer’s disease. We propose that DLB is associated
instead with severe synaptic loss, and we test this hypothesis in vivo using positron
emission tomography (PET) imaging of 11C-UCB-J, a ligand for presynaptic vesicle
protein 2A (SV2A), a vesicle membrane protein ubiquitously expressed in synapses.

Methods: We performed 11C-UCB-J PET in two DLB patients (an amyloid-negative
male and an amyloid-positive female in their 70s) and 10 similarly aged healthy
controls. The DLB subjects also underwent PET imaging of amyloid (11C-PiB) and tau
(18F-AV-1451). 11C-UCB-J binding was quantified using non-displaceable binding
potential (BPND) determined from dynamic imaging. Changes in 11C-UCB-J binding
were correlated with MRI regional brain volume, 11C-PiB uptake and 18F-AV-1451
binding.

Results: Compared to controls, both patients had decreased 11C-UCB-J binding,
especially in parietal and occipital regions (FDR-corrected p < 0.05). There were no
significant correlations across regions between 11C-UCB-J binding and grey matter,
tau (18F-AV1451) or amyloid (11C-PiB) in either patient.

Conclusions: Quantitative imaging of in vivo synaptic density in DLB is a promising
approach to understanding the mechanisms of DLB, over and above changes in grey
matter volume and concurrent amyloid/tau deposition.
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Introduction
Dementia with Lewy bodies (DLB) is a major cause of neurodegenerative dementia. It

is characterized by recurrent visual hallucinations, parkinsonism, cognitive fluctuations

and REM sleep behaviour disorder (McKeith et al., 2017). In contrast to clinical im-

pairments, atrophy is typically mild in DLB compared to Alzheimer’s disease (AD). In-

stead, the severity of disease may arise from a severe loss of synapses. Autopsy findings

in DLB include alpha-synuclein deposition in association with loss of synaptic proteins

(Bereczki et al., 2016; Bajic et al., 2012). Synaptic density can be estimated in vivo from

the synaptic vesicle protein 2A (SV2A, a vesicle membrane protein ubiquitously

expressed in synapses) using the radioligand 11C-UCB-J with positron emission
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tomography (PET) (Nabulsi et al., 2016). In other degenerative disorders including AD,

progressive supranuclear palsy and corticobasal degeneration, widespread reduction in
11C-UCB-J binding is observed, more so in disease-specific regions and in relation to

clinical severity (Chen et al., 2018; Mecca et al., 2020; Holland et al., 2020).

In this case study, 11C-UCB-J PET imaging was assessed in two patients with prob-

able DLB, with and without concurrent amyloid and tau deposition. We tested for dif-

ferences in 11C-UCB-J binding between DLB and controls and assessed regional

correlation of 11C-UCB-J binding with atrophy, PET imaging of amyloid (11C-Pitts-

burgh compound B (PiB)) and tau (18F-AV1451).

Material and methods
Patients inclusion

We included two patients with probable DLB: (1) a male presenting with a 5-year his-

tory of cognitive impairment (revised Addenbrooke’s Cognitive Evaluation (ACER)

score 81/100) interfering with daily activities, in association with cognitive fluctuations,

REM sleep behaviour disorder and parkinsonism (Movement Disorders Society – Uni-

fied Parkinson’s Disease Rating Scale (MDS-UPDRS) part III 27/132) and (2) a female

presenting with a 2-year cognitive impairment (ACER 50/100) associated with cognitive

fluctuations, visual hallucinations and parkinsonism (MDS-UPDRS III 13/132). Patients

were recruited from specialist memory clinics in and around Cambridgeshire, the De-

mentias and Neurodegeneration specialty of the UK Clinical Research Network (DeN-

DRoN) or the Join Dementia Research (JDR) platform (www.joindementiaresearch.nihr.

ac.uk). Probable DLB was defined by the 2017 consensus criteria (McKeith et al., 2017).

Both patients underwent PET imaging with 11C-UCB-J, 11C-PiB and 18F-AV1451, as

well as structural magnetic resonance imaging (MRI) (Bevan-Jones et al., 2017). They

were compared to ten similarly aged control subjects, who were recruited from the JDR

and local registers. Healthy controls had MMSE > 26, no cognitive symptoms, un-

stable/significant medical history or MRI contraindications.

PET and MRI imaging acquisition and preprocessing

All radioligands were prepared at the Wolfson Brain Imaging Centre, University of

Cambridge (Milicevic-Sephton et al., 2020). 11C-UCB-J PET imaging (mean injected ac-

tivity: 368MBq controls; 325MBq DLB cases) used dynamic scanning for 90 min on a

GE SIGNA PET/MR (GE Healthcare, Waukesha, USA), with attenuation correction in-

cluding the use of a multi-subject atlas method (Burgos et al., 2014; Wu & Carson,

2002). For the DLB patients only, additional static 11C-PiB (550MBq) and dynamic 18F-

AV-1451 (370MBq) PET scans were performed. Each emission image series was

aligned using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12) to ameliorate the

impact of patient motion during data acquisition and then rigidly registered to the corre-

sponding T1-weighted MRI image. The Hammersmith atlas (http://brain-development.org/

brain-atlases) regions of interest (ROIs) were non-rigidly registered to each T1-weighted

MRI image. Regional time-activity curves were corrected for cerebrospinal fluid partial vol-

ume using SPM12 tissue probability maps smoothed to PET spatial resolution. 11C-UCB-J

non-displaceable binding potential (BPND) was determined using a basis function imple-

mentation of the simplified reference tissue model (Wu & Carson, 2002), with the reference
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tissue defined in the centrum semiovale (Koole et al., 2019). Regional 11C-PiB standardized

uptake value ratio (SUVR) was determined using cerebellar grey matter as the reference tis-

sue, which was also used as the reference region for 18F-AV-1451 BPND quantified using a

basis function simplified reference tissue model.

MRI imaging used a 3T scanner (MAGNETOM Trio; Siemens Healthineers, Er-

langen, Germany) including a magnetization-prepared rapid gradient echo (MPRAGE)

T1-weighted sequence (repetition time = 2300ms, echo time = 2.98 ms, field of view =

240 × 256mm2, 176 slices, flip angle = 9°, isotropic 1 mm voxels). Grey matter volume

was assessed by volume-based morphometry (VBM) with Computational Anatomy

Toolbox 12 (CAT12) using the standard pipeline (http://www.neuro.uni-jena.de/cat)

(Dahnke et al., 2013). Images were smoothed with the recommended 8mm-full-width

at half maximum Gaussian kernel and regional values were extracted from the

Hammersmith atlas.

Statistical analysis

ROI-based comparison of 11C-UCB-J BPND and VBM data between the two DLB sub-

jects (1/2 (50%) male, mean age 73 years) and 10 similarly aged controls (5/10 (50%)

male, age mean ± SD 72.4 ± 3.4 years) was performed using a general linear model with

repeated measure ANCOVA using age, sex and years of education as covariates. As 33

cortical and subcortical ROIs were assessed, we used a false discovery rate (FDR)-cor-

rected p < 0.05 with Q = 0.15. Subsequently, regional Z-scores for 11C-UCB-J BPND,
11C-PiB SUVR, 18F-AV1451 BPND and VBM data were computed for the DLB subjects

by comparing them to the control group. Region-by-region correlations between the

different brain imaging modalities were performed for the DLB subjects using Spear-

man correlations.

Results
The first DLB patient (74-year-old male) was amyloid-negative (average neocor-

tical 11C-PiB SUVR = 1.3), while the second patient (72-year-old female) was

amyloid-positive (SUVR = 1.9). For 11C-UCB-J, there were significant group (p =

0.0012), region (p < 0.0001) and group × region interaction effects (p < 0.0001).

Pairwise regional comparisons revealed decreased 11C-UCB-J BPND for both DLB

patients compared to controls in extensive cortical regions (10/33 regions) and

thalamus, with more prominent changes in parieto-occipital, middle and superior

frontal cortices (FDR-corrected p < 0.05) (Fig. 1). Similar results were obtained

using non-partial-volume-effect corrected data. 11C-UCB-J time-activity curves in

the reference region (centrum semiovale) were similar among groups (Supp.

Figure 1). Of note, we did not observe any significant differences between DLB

and controls in the deep brain nuclei, except for the thalamus (FDR-corrected p

< 0.05).

VBM analysis of regional volumes showed a significant effect of region (p < 0.0001)

but no significant effect of group (p = 0.17) or group × region interaction (p = 0.20). In

addition, we observed that 11C-UCB-J BPND Z-scores for DLB subjects were lower

compared to VBM Z-scores. For example, in the superior frontal gyrus, 11C-UCB-J Z-
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score was − 1.7 while grey matter atrophy Z-score was − 0.4. Similarly, 11C-UCB-J BPND

Z-score in lingual gyrus was − 1.5 whereas VBM Z-score was − 0.7.

Region-by-region correlations for the DLB patients showed no significant correlation

between 11C-UCB-J BPND and grey matter volume (rho = 0.24, p = 0.17 for DLB pa-

tient 1 and rho = 0.27, p = 0.13 for DLB patient 2). No significant correlation was ob-

served between 11C-PiB SUVR and UCB-J BPND (both patients p > 0.3). 18F-AV1451

BPND and 11C-UCB-J BPND did not correlate in either patient (p > 0.10).

Discussion
The present study indicates marked synaptic loss in DLB using 11C-UCB-J PET. Re-

duced 11C-UCB-J binding was evident in posterior cortical regions after partial volume

effect correction and so represented a change beyond that of brain atrophy. This dem-

onstrates markedly reduced SV2a density in DLB. Further studies are needed at earlier

prodromal stage to understand the progression of synaptic loss in DLB.

Previous findings in MCI and early AD indicated synaptic loss restricted to the

hippocampus (Chen et al., 2018), while in AD decreases in 11C-UCB-J binding were

found in the hippocampus, amygdala, thalamus, cingulate and temporal lobe (Venka-

taraman, 2019). Recently, widespread synaptic loss was observed in cortical and subcor-

tical regions for 4-R tauopathies (Holland et al., 2020). Toyonaga et al. showed that in

an amyloid precursor protein and presenilin 1 double transgenic mice model of AD,
11C-UCB-J baseline PET exhibited decreased hippocampal synaptic density, while the

follow-up scan after treatment with saracatinib (a dual kinase inhibitor) revealed a sig-

nificant increase in hippocampal synaptic density (Toyonaga et al., 2019). These find-

ings suggest that 11C-UCB-J could be a valuable marker of disease severity and

treatment monitoring for future therapeutic trials in human.

Regarding Parkinson’s disease (PD), Matuskey et al. recently showed that a significant

(17–41%) reduction of 11C-UCB-J binding was observed for mild-moderate PD in deep

nuclei (substantia nigra, red nucleus, locus coeruleus) and parahippocampal gyrus

(Matuskey et al., 2020). For the present study, our DLB did not show any significant

changes in synaptic density in deep brain nuclei, except for the thalamus. However, it is

worth mentioning that we performed correction for multiple comparisons, which was

not the case for the study by Matuskey et al.

In our two cases, we did not observe correlations between regional 11C-UCB-J BPND

and regional atrophy, suggesting that our assay of synaptic loss is not merely an index

of volume loss. Regional synaptic density loss was also not associated with amyloid

(11C-PiB) or tau (18F-AV1451) in both DLB patients, suggesting that the synaptic ligand

is informative over synaptic aspects of pathogenesis over and above the information ob-

tained from amyloid and tau imaging.

Our study has limitations, including the inclusion of a case and replication rather

than a large cohort. In addition, the synaptic PET was obtained after the tau and amyl-

oid PET, and we cannot exclude progression of pathology even in the absence of a sig-

nificant progression of the clinical severity. Moreover, arterial input function was not

performed during the acquisition of PET imaging. We also rely on clinical diagnostic

criteria and do not have pathological confirmation of DLB pathology.
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Conclusions
In summary, we report that the binding of 11C-UCB-J—an in vivo marker of synaptic

density—was markedly decreased in two well-characterized DLB patients. Further stud-

ies are required to assess whether such changes are characteristic of DLB, to correlate

synaptic loss with key symptoms and to monitor change over time from prodromal

through to established dementia in order to improve our understanding of patho-

physiological processes involved in neurodegeneration.
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