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Abstract

A recurring theme in the study of society is the concentration of influence and power

that is driven through unequal membership of groups and associations. In some instances

these bodies constitute a small world while in others they are fragmented into distinct

cliques. This paper presents a new model of clubs and networks to understand the

sources of individual marginalization and the origins of different club networks.

In our model, individuals seek to become members of clubs while clubs wish to have

members. Club value is increasing in its size and in the strength of ties with other clubs.

We show that a stable membership profile exhibits marginalization of individuals and

that this is generally not welfare maximizing. Our second result shows that if returns

from strength of ties are convex (concave) then stable memberships support fragmented

networks with strong ties (small worlds held together by weak ties).

We illustrate the value of these theoretical results through case studies of inter-locking

directorates, boards of editors of journals, and defence and R&D alliances.

∗Ding: School of Economics, Nankai University; sihuading@outlook.com. Dziubiński: Institute of Informat-
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1 Introduction

Economists study group formation using the theory of coalitions/clubs and the theory of

network formation. In the coalitions approach individual payoffs are defined on the partition

of players into mutually exclusive groups and in the networks literature individuals can join

any number of groups but each of the groups is of size 2. However, in some important

instances – examples include inter-locking directorates, R&D alliances, boards of editors of

journals, and defence alliances – groups have size larger than 2 and individuals typically join

multiple groups. Importantly, the productivity of a group depends on both its size and how

it is connected to other groups through overlapping memberships. In these contexts, a major

concern is that a few individuals take up most memberships while everyone else is left out

thereby giving rise to a very unequal distribution of payoffs.1 A second and related concern

is that groups may be fragmented into cliques when a few individuals join them and that this

may undermine openness and the performance of the system as a whole. Our paper proposes

a new model of clubs and networks to examine these concerns.2

In our model, individuals seek to become members of clubs while clubs wish to have

members. Clubs have capacity constraints (due to congestion effects) and individuals can

only join up to a certain number of clubs (due to time limitations). Links between two clubs

arise when an individual joins both clubs. The value of joining a club is increasing in the

number of members (until the capacity is reached) and it may be increasing or decreasing

in the strength of ties with other clubs. Individual utility is increasing in the sum of the

productivity of the clubs they join. We define a notion of stable memberships that takes into

account the incentives of individuals and clubs. Our interest is in understanding patterns of

individual memberships and on the network of connections across clubs.

The main body of the analysis focuses on a setting where club value is increasing in

link strength: in this case, a club prefers individuals who are members of more clubs and

an individual prefers a club that links with more clubs. We show that stable outcomes

exhibit a strong marginalization property: when club capacity is the binding constraint, a few

individuals exhaust their membership capacity, while all others join no clubs; when individual

availability is the binding constraint, a few clubs are fully occupied while all others go empty.3

1 Durlauf and Young (2004) present an influential account of the groups based perspective on inequality
and poverty. In section 6 we present case studies on a number of empirical contexts.

2 There is a small set of papers that allow for membership of multiple groups, e.g. Page and Wooders
(2010) and Fershtman and Persitz (2021); we discuss these papers in detail later in the introduction after
presenting our model and results.

3 For concreteness suppose that the number of individuals is 8, the number of clubs is 4, every individual
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We next show that this marginalization is not always in line with efficiency: when individual

utility is strongly concave, this marginalization is inefficient. Similarly, when club productivity

is a concave function of membership size, the marginalization of clubs is inefficient. Thus,

incentives of individuals and clubs and the collective interest is generally not aligned.

We then study the network of connections among the clubs. When the returns to link

strength are linear, the distribution of link strength across clubs is not important for the

productivity of clubs: as a result, a variety of club networks are stable. In applications,

however, the marginal returns from link strength are likely to be non-linear. For instance, in

case club links are used for information sharing, we would expect marginal returns to decline

with link strength. On the other hand, if links help members coordinate activities of the clubs

then the marginal returns may be increasing in link strength. We show that if the marginal

returns from link strength are increasing, i.e., they are convex, then incentives of clubs and

individuals push towards disconnected cliques of clubs with full strength links. If, on the other

hand, the marginal returns from link strength are decreasing, i.e., they are concave, then the

club network entails larger components that are held together by weak links.4

We also consider a setting where club value is decreasing in link strength with other clubs:

a club prefers individuals who are not members of other clubs. In this setting, when club

capacity is the binding constraint, stable outcomes entail isolated clubs. On the other hand, if

individual availability is the binding constraint then clubs may be obliged to accept individuals

who are also members of other clubs.

The paper closes with brief case studies on inter-locking directorates, defence alliances,

R&D alliances and editorial boards of journals. There is a large and distinguished body

of work on inter-locking directorates, see e.g., Brandeis (1915), Brandeis (2009), Mizruchi

(1996), Levine (1977), Useem (1984), and Davis, Yoo and Baker (2003); for a recent networks

perspective on this literature see Kogut (2012). This literature argues that a major function

of boards is to encourage best practices and that this is facilitated when a board member also

can join up to 4 clubs and every club has capacity 4. The total club capacity is 16, so in principle every
individual could belong to 2 clubs each. We will say that a membership profile exhibits marginalization
when 4 individuals become members of 4 clubs each while the other four individuals are completely left
out.

4 For concreteness suppose that number of individuals is 16, number of clubs is 6, every individual can
join up to 2 clubs and every club has capacity 5. If returns are convex in link strength then the unique
club-efficient and stable outcome is three cliques of two clubs each, and the links have maximal strength
with 5 common members. If returns are concave in link strength then the unique club-efficient and stable
membership profile is a connected network where every club has a link with one common member with
every other club. These networks of clubs are illustrated in Figure 4 in section 4 below).
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has ties with other firms’ boards. If information sharing is important then it is reasonable to

suppose that the marginal returns from the strength of links is declining. In this setting the

theory predicts that the stable (and efficient) club network will contain weak ties and exhibit

high connectivity. This is in line with the empirical evidence: Baker, Davis and Yoo (2001)

and Kogut (2012) show that inter-locking directorates exhibit a small-world property – weak

ties form the basis for a large connected network.5

In the context of defence alliances, a general presumption is that memberships bring ad-

ditional resources but that overlaps in memberships could be detrimental for the security

of an alliance, as a member may share valuable information with potentially adversarial al-

liances; for overviews of the literature on defence alliances see Bloch and Dutta (2012), Bloch,

Sánchez-Pagés and Soubeyran (2006), and Jackson and Nei (2015). The potential negative

impact of common memberships leads us to a model in which the value of a club is falling in

link strength. Our model then predicts that defence alliances will have exclusive membership:

this prediction is in line with the empirical evidence.

R&D alliances among firms have become increasingly common since the 1980’s (Hagedoorn

(2002) and Gulati (2007)). The empirical research suggests that there is great inequality in

the number of alliances firms participate in, the degree distribution has a power law (Powell

et al. (2005) and König et al. (2019)). This unequal degree distribution is consistent with our

marginalization results and the connectivity of the network of alliances is consistent with the

prediction of our model in case of concave returns from links.

Our final application pertains to editorial boards of journals. We draw on the work of

Ductor and Visser (2021) to study the membership of authors in these boards and the con-

nections between boards defined by common editors. There exists very significant inequality

in editorial memberships: a very small fraction of authors become editors. Moreover, most

editors serve only on one or two boards, but there exists a core group of editors who serve

on 4 or more journals. The network of the editorial boards is connected that is held together

5 The work on inter-locking directorates is also related to a more general study of elites and power structures
in sociology. In the nineteenth century, the Italian school of sociology proposed a theory of elites defined in
terms of the membership of the top echelons of different – government and non-government – organizations
(Pakulski (2018)). Building on this tradition, in his well-known study of mid-twentieth-century American
society, Wright Mills (1956) argued that the power to make major decisions was highly concentrated: a
very small group of individuals moved between the top levels of the Federal government, a few hundred
largest corporations, and the military. He referred to these individuals as the power Elite. Similar claims
have been made about the concentration of power and influence in other societies. For an overview of the
theory of elites, see Bottomore (1993), and for a critique of theories of elite power and control, see Dahl
(1958). Our model and case studies draw attention to economic forces that push toward concentration of
power in modern society.
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with (mostly) weak links. These patterns are consistent with our theoretical predictions on

marginalization and on club networks (in the presence of concave returns from link strength).

There is a voluminous literature on coalitions and networks; for surveys of this work see

e.g., Demange and Wooders (2005), Bloch and Dutta (2012), Bramoullé, Galeotti and Rogers

(2016) and Goyal (2022). Our model draws on the theory of clubs and the theory of networks

to explain phenomena such as marginalization, the small world of interlocking directorates,

and power elites. Specifically, we combine the ideas of congestion and capacity constraints

from club theory (Buchanan, 1965; Cornes, 1996; Demange and Wooders, 2005) with the ideas

of multiple memberships and returns from links from the theory of networks (Bala and Goyal,

2000; Jackson and Wolinsky, 1996; Bloch and Dutta, 2012). We now discuss two earlier papers

that seek in different ways to combine networks and clubs.

In an early paper Page and Wooders (2010) study a setting of bipartite networks in which

individuals decide on which clubs to join. Individual utility depends on own choices as well as

the choices of others. Page and Wooders (2010) focus on the conditions under which the game

of club memberships has a potential function (and this allows them to study the existence of

Nash equilibrium). In our approach the clubs are owned by players who can choose to admit

and expel members; these owners seek to maximize club productivity. The interaction between

players and club owners gives rise to different incentives and strategic effects and hence to

a different solution concept. Moreover, the focus of the paper is on the characterization of

stable membership profiles. In particular we derive a marginalization result and a mapping

between marginal returns to link strength and club networks. While we consider more specific

functional forms and pay-off structures these results go beyond the Page and Wooders (2010)

paper.

A recent paper by Fershtman and Persitz (2021) also studies a model of clubs and networks.

At a general level, there are similarities – both papers study a memberships model. But the

motivation of the two papers is different and so the models and the main insights are also

different. For Fershtman and Persitz (2021) the principal object of interest is the social

network among individuals; by contrast, our interest is in understanding the membership

profile of individuals in clubs. We explore questions such as who joins which club and what is

the network of clubs that arises. This gives rise to very different types of results. Fershtman

and Persitz (2021) highlight a trade-off between the size of clubs, the depreciation of indirect

connections, and the membership fee. By contrast, we develop a marginalization property of

stable outcomes and show why this is socially inefficient. We also draw attention to how the

marginal returns from link strength – whether they are increasing or decreasing – determine
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the architecture of club networks.

To clarify the relation between our approach and the coalitions and networks approaches it

is instructive to lay out the basic notation and then work through an example. In our model,

there are n individuals and m clubs, each individual can join up to D clubs and every club

can admit up to S members. It is assumed that club productivity is increasing in club size

and in strength of links with other clubs. In our approach we allow D and S to take arbitrary

values. In a coalitions model, the outcome is a partition, so individuals can join only one club,

so D = 1. Similarly, networks constitute a special case where every club can have exactly 2

members, roughly this means S = 2 and the payoff to the club from a single member is 0.

Example 1. Suppose there are 8 individuals and 4 clubs, with individuals able to join 4 clubs

and a club having a capacity of 4. In our model (so long as utilities are not too concave) the

stable and welfare maximizing membership profile involves 4 clubs that are occupied by the

same 4 members. This means that 4 individuals are marginalized. In the coalition framework,

the efficient and stable partition involves every individual joining one club each (thus two clubs

are occupied by 8 members), while the remaining 2 clubs remain unoccupied.6 In contrast

to our result there is no marginalization and the network of clubs is empty. In the networks

framework, a relation is bilateral; so clubs consist of exactly 2 members. An efficient and stable

network involves all 4 clubs being occupied by the same 2 members. Thus six individuals are

left out of clubs and marginalization is even greater than in our model and clubs are smaller

(less connected and hence less productive). �

We close the introduction with a few words on the relation with the matching literature.

A key underlying motivation for the matching literature is that individuals (or firms) have

preferences over the individuals that are matched (see Roth and Sotomayor (1992)). This is

the driving force for the original one-to-one matching models and remains a central feature of

many-to-many matching models (see e.g., Hatfield and Kominers (2015), Rostek and Yoder

(2019), Bando and Hirai (2021), Echenique and Oviedo (2006), Klaus and Walzl (2009)). By

contrast, the focus in our paper is on the size of memberships (both for individuals and clubs)

and on the structure of connections between the clubs. The methods of analysis and the results

(on marginalization and on the structure of club networks) are therefore quite different.7

6 For our definitions of stability and efficiency see section 2 below.
7 We have also extended our model to a setting where individuals have preference for same-type club mates.

Our methods of analysis can be extended in a straightforward manner to cover this case: indeed a small
inclination for homophily leads to a strong division of individuals into distinct groups, and this further
exacerbate payoffs inequality and undermine overall efficiency.
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(a) Stable and efficient membership profile

(b) Stable and efficient coalition (c) Stable and efficient network

Figure 1: Comparison of our approach with coalitions and networks

Section 2 presents the model, section 3 presents an analysis of the marginalization and

section 4 presents our results on network structure of clubs. We show how research alliances

among competing firms can be studied using similar methods in section 5. Section 6 presents

case studies on defence alliances, inter-locking directorates, R&D alliances and boards of

editors of journals. All the proofs are presented in the Online Appendix.

2 The Model

There is a set of individuals I = {i1, . . . , in} and a set of clubs C = {c1, . . . , cm}. We use i

to denote a typical individual and c to denote a typical club. Individuals join clubs to become

members. A membership profile is represented by a matrix a = (aic)i∈I,c∈C where aic ∈ {0, 1}
indicates whether individual i is a member of club c.

We define a few notions based on a membership profile a. The degree of individual i, given

a membership profile a, is the number of clubs joined by i:

di(a) =
∑
c∈C

aic.

The membership size of club c, given a membership profile a, is the number of individuals

6



who join c:

sc(a) =
∑
i∈I

aic.

There is a link between two clubs if they share common members. The link strength between

clubs c and c′, given a membership profile a, is the number of common members they share:

gcc′(a) =
∑
i∈I

aicaic′ .

Following the large literature in club theory, we shall assume that there are strong con-

gestion effects that set limits to club capacity (see Buchanan (1965) and Page and Wooders

(2010)). Similarly, we assume that individuals can only join a certain number of clubs; this

is because they have a fixed amount of time and participating in a club has a minimum time

commitment. Formally, we assume that di(a) ≤ D, for all i ∈ I, and sc(a) ≤ S, for all

c ∈ C, where D and S are two positive integers. The set of feasible membership profiles

is A = {a ∈ {0, 1}n×m : di(a) ≤ D, sc(a) ≤ S}. We also assume that 2 ≤ S ≤ n and

2 ≤ D ≤ m: this ensures that at least one club can be fully occupied and at least one person

can join the maximum number of clubs.

A club provides goods and services to its members. The productivity of a club depends

on its size and on the links it has with other clubs. We assume that until the capacity is

reached, club productivity increases in the number of its members. And we assume that the

productivity of a club is increasing in the strength of the ties it maintains with other clubs.8

In different contexts, we can interpret clubs as different institutions. For example, a club can

be a board of a firm: links between boards, created by overlapping directors, may help the

transmission of best practices and the coordination of corporate strategies. A club can also be

a research alliance between firms: links between alliances, generated by shared participating

firms, can facilitate knowledge spillovers. Depending on the roles links serve, the marginal

returns from link strength vary. If the link helps to convey factual information then the

marginal returns from link strength may be declining. On the other hand, if the information

concerns complex issues such as new technologies or standards then marginal returns to link

8 In some contexts, club productivity may be falling in links with other clubs. This happens for instance if
the clubs are in a competitive setting and when individuals belong to many clubs, they allocate limited
time to each of their clubs and that lowers their productivity. The analysis of clubs and networks with
negative spillovers can be carried out using the same methods as we develop for the case of positive
spillovers across clubs. We comment on the implications of negative spillovers after presenting the results
for positive spillovers.
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strength may be increasing. Similarly, if we are in a context of developing common standards

(technological or social) then there may be value in significant overlap of membership.

With these ideas in mind, let us define the productivity of club c ∈ C in profile a as

πc(a) = f(sc(a)) +
∑
c′ 6=c

h (gcc′(a)) , (1)

where returns from membership size, f , are strictly increasing with f(0) = 0, and the exter-

nality from links, h, is increasing with h(0) = 0. The next section studies the benchmark case

of linear increasing returns case: h(x) = αx, with α ≥ 0. We take up the case of convex and

concave returns in Section 4.

Turning to individual utility, we assume that an individual enjoys benefits from the pro-

ductivity of clubs she joins. Given a profile a, the utility of individual i ∈ I is

ui(a) = v

(∑
c∈C

aicπc(a)

)
, (2)

where v is strictly increasing with v(0) = 0. In situations where individuals are directors

of boards, it is natural to assume that their utility increases at a decreasing rate with the

aggregate productivity of clubs they are in, so v′′(·) ≤ 0. When individuals are firms that

participate in research alliances, their utility (profit) increases at an increasing rate with the

aggregate clubs they join. To see how, assume that firms reduce production costs by joining

research alliances; let the cost of firm i under membership profile a be γ0 − γ
∑

c∈C aicπc(a),

where γ0 and γ are two positive real numbers. Suppose firms are monopolies that operate

in markets with an inverse demand function p = β − qi, where β > γ0, then the equilibrium

output of firm i is (β − γ0 + γ
∑

c∈C aicπc(a))/2 and the equilibrium profit of firm i is (β −
γ0 + γ

∑
c∈C aicπc(a))2/4, which is a convex function of

∑
c∈C aicπc(a).9

We study efficient and stable memberships. We consider two standards for a membership

profile to be efficient: maximizing the utilitarian welfare of individuals and maximizing the

aggregate productivity of clubs.

9 We also study the case where firms engage in Cournot competition. In that case, the profit of a firm
depends not only on the aggregate productivity of research alliances it joins, but also on the productivity
of alliances joined by other firms. We demonstrate, in Section 5, that our key results can be extended to
cover this case.
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Definition 1. A membership profile a ∈ A is the utilitarian optimum if for all a′ ∈ A,∑
i∈I

ui(a) ≥
∑
i∈I

ui(a
′).

A membership profile a ∈ A is clubs-efficient if for all a′ ∈ A,∑
c∈C

πc(a) ≥
∑
c∈C

πc(a
′).

Turning to strategic stability, it seems reasonable to require that individuals should be

able to quit clubs if that increases their utility and clubs should be able to expel members if

that raises their productivity. In addition, it seems reasonable to require that an individual

and a club cannot coordinate on a deviation that makes them both strictly better off. i.e., no

pair of individual i and club c can both benefit from a joint deviation where i is allowed to

quit any clubs she is in, c is allowed to exile any members it has, and i joins c. We propose a

notion of stability that reflects these ideas.

Formally, let ai = (aic)c∈C and ac = (aic)i∈I be the vectors recording the clubs i joins and

the members c has, and let a−i = (ai′c)i′ 6=i,c∈C and a−c = (aic′)i∈I,c′ 6=c denote the club joining

of individuals other than i and member admission of clubs other than c. Moreover, we use

a−i,c = (ai′c′)i′ 6=i,c′ 6=c to represent the membership profile excluding individual i and club c,

and we use a−ic = (ai′c′)i′c′ 6=ic to represent the membership profile excluding the relationship

between individual i and club c. We write a ≥ a′ if a is element-wise greater than or equal to

a′.

Definition 2. A membership profile a ∈ A is stable if

1. ∀i ∈ I, c ∈ C: there is no a′ ∈ A with a′i ≤ ai and a′−i = a−i such that ui(a
′) > ui(a),

or a′c ≤ ac and a′−c = a−c such that πc(a
′) > πc(a), and

2. ∀i ∈ I, c ∈ C: there is no a′ ∈ A with a′ic = 1, a′−ic ≤ a−ic, and a′−i,c = a−i,c such that

ui(a
′) > ui(a) and πc(a

′) > πc(a).

3 Marginalization

This section presents an analysis of a benchmark model in which returns from links take a

linear form, h(x) = αx, where α ≥ 0. So, there is a positive externality from links with other

9



clubs when α > 0.

We first investigate stable membership profiles. Substituting the linear functional form

for h(·) in the club productivity function in (1), we see that the productivity of a club c ∈ C
under a membership profile a is

Πc(a) = f(sc(a)) + α
∑
i∈C

aic(di(a)− 1). (3)

Observe that a club prefers an individual who is also a member of other clubs. Similarly,

given their utility in (2), individuals prefer clubs with higher productivity. These two incen-

tives press in the same direction: clubs like well-connected individuals and individuals prefer

well-connected clubs. Thus, in this model, the incentives of clubs and individuals press toward

marginalizing poorly connected clubs and poorly connected individuals.

To make this precise, let us define a partition of individuals and clubs. Let π∗ be the

highest productivity a club can achieve and u∗ be the highest utility an individual can enjoy.

Observe that in our benchmark model,

π∗ = f(S) + αS(D − 1) and u∗ = v(Dπ∗). (4)

Next note that for a membership profile a, the set of individuals I can be partitioned into

four parts: a first group I1(a) that consists of individuals who join D clubs and obtain utility

u∗; a second group I2(a) that consists of individuals who join D clubs but do not obtain

utility u∗; a third group, I3(a), who join some but not D clubs; and a fourth group, I4(a),

that consists of individuals who join no clubs.

I1(a) = {i ∈ I : di(a) = D, ui(a) = u∗}

I2(a) = {i ∈ I : di(a) = D, ui(a) < u∗}

I3(a) = {i ∈ I : 0 < di(a) < D}

I4(a) = {i ∈ I : di(a) = 0}

Similarly, the set of clubs can be partitioned into three parts. The first group, C1(a), consists

of clubs with productivity π∗; the second group, C2(a), consists of clubs with positive pro-
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ductivity less than π∗; and a third group, C3(a), that consists of clubs with zero productivity.

C1(a) = {c ∈ C : πc(a) = π∗}

C2(a) = {c ∈ C : 0 < πc(a) < π∗}

C3(a) = {c ∈ C : πc(a) = 0}

Let us say that a membership profile exhibits marginalization of individuals if some

individuals become members of D clubs while all other individuals are excluded from clubs

altogether. In other words, I1(a) ∪ I2(a) ∪ I4(a) = I. Our initial remarks suggest that if

there are enough individuals around as compared to club capacity, then a stable membership

profile must exhibit this marginalization of individuals. Let us work through some examples

to develop a feel for the different issues at work in this model.

The first point to note is that integer constraints may come in the way of this marginal-

ization. This is easily seen in the following example: suppose that n = 8, m = 4, D = 3 and

S = 4. A membership profile in which five individuals exhaust their membership availability

while a sixth individual joins one club is stable. The following example shows that even in

the absence of integer constraints – i.e., even if mS/D is an integer – the pure marginalization

property may fail to hold.

Example 2. Suppose that n ≥ 12, m ≥ 10, and D = S = 6. In this case, mS/D is an

integer. We show that there exists a stable club membership profile with individuals joining

some but less than D clubs. Consider the following membership profile. Let ix, iy and iz be

three individuals who join 4 clubs. For other individuals, let m− 2 of them, which we denote

with i1,...,im−2, join D = 6 clubs and the rest of them join no clubs. Allocate ix, iy, iz, i1, i2,

i3 and i4 to four clubs c1, c2, c3 and c4 in the way depicted in Figure 2. Also, let individuals

i1 to i4 join any three other clubs and let individuals i5 to im−2 join any six other clubs. This

membership profile, with 3 individuals joining some but less than D clubs, is stable. To see

how, under this memberhip profile, all clubs are full and clubs other than c1 to c4 reach the

highest productivity possible and would not want any deviations. For clubs c1 to c4, they wish

to make deviations. For example, c1 wants to admit i4 instead of ix, iy or iz. If i4 joins c1, the

productivity of c1 would raise by 2α and be higher than that of c2, c3 and c4 she is currently

in. With this logic, it seems that i4 would want to quit c2, c3 or c4 and join c1. However, note

that with the deviation, the degree of ix, iy or iz drops by 1, making the productivity of c2,

c3 and c4 drop by α. Although i4 leaves one of c2, c3 and c4, she is still in two of them. The
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aggregate productivity i4 enjoys from clubs drops by 2α, which cancels out the productivity

gain from c1. Hence, i4 has no incentive to make the deviation. Using the same logic, we can

show that c2, c3 and c4 cannot attract a higher-degree individual to replace ix, iy or iz as well

and the membership profile is stable. �

Figure 2: Coordination problem.

This example draws attention to a coordination problem among individuals and clubs: note

that the m clubs and individuals i1 to im−2, ix and iy would be better off in the membership

profile where the clubs are exactly filled by those individuals so that all those individuals have

degree D.

The combination of integer constraints and coordination problems gives rise to a number of

complications that inform the characterization of stable membership profiles that is presented

below.

Proposition 1. Assume that h(x) = αx, where α ≥ 0. There exists a stable membership

profile. A membership profile a ∈ A is stable if and only if

(i) for every individual i ∈ I and club c ∈ C, if i is not a member of c, then either di(a) = D

or sc(a) = S,

(ii) for every club c with fewer than S members, every individual i, and every club c′ that i

12



joins, if i is not a member of c, then

πc(a) + f(sc(a) + 1)− f(sc(a)) + α(D − 1) ≤ πc′(a),

In addition, if α > 0, then

(iii) for every individual i who joins fewer than D clubs, every club c that i does not join,

every individual i′ in club c must have with di′(a) > di(a), and

(iv) for every individual i who joins D clubs, every club c that i does not join and every

individual i′ that is a member of c, if d′i < D, then

πc(a) + α(D − di′(a))− α
∑
c′′ 6=c′

aic′′ai′c′′ ≤ πc′(a), for all c′ that i joins.

The proof is presented in the Online Appendix. Let us briefly elaborate on the content of

the conditions so that we can appreciate some of the arguments that are involved. The four

conditions ensure that there is no profitable deviation for a pair of individual i and a club c

in four different cases that together exhaust all possible situations.

Point (i) considers deviation where di < D and sc < S. We require that there does not

exist such a pair as otherwise i can join c and both are better off. Point (ii) considers deviation

where di = D and sc < S. We require that i does not want to quit an existing club to join

c. The condition states that the productivity of c, taking into account the change resulting

from i’s joining, must not be greater than that of any club c’ that i is currently a member of.

In points (i) and (ii) we assume sc < S. So, they are not about c replacing a low-degree

individual with a higher-degree one, but concern i joining a higher-productivity club. Hence,

the two conditions are needed both when α = 0 and when α > 0. For the next two situations

we look at, sc = S. They are only needed when α > 0.

Point (iii) considers deviation where di < D and sc = S. We require that c does not want

to replace an existing member with i. The requirements leads to the characterization that for

i, i’ with degree less than D, if di ≥ di′ , then the set of clubs i joins is a superset of clubs i’

joins.

Point (iv) considers deviation where di = D and sc = S. Now, for i to join c, i needs

to quit a club c’ and c needs to expel a member i’. A profitable deviation does not exist if

either (1) di ≤ di′ , so that the club has no replacement incentive, or (2) the individual has no

wish to switch clubs. Note, however, the condition for i to not want to change does not only
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require that the productivity of c, taking into account the change resulting from i’s joining,

is not greater than that of c’, as in the case of (ii). There is an additional consideration that

i hopes c’s exiling of i’ does not hurt her utility (this is key to the stability of non-marginal

membership profile in Example 2). This is captured by the term α
∑

c′′ 6=c′ aic′′ai′c′′ .

Equipped with this characterization, we can provide a fairly complete description of the

partition of individuals and clubs in a stable membership profile. This will allow us to answer

the question of whether or not stability implies marginalization of individuals and clubs. It

is helpful to define egalitarian and unequal membership profiles. A membership profile is

egalitarian if there is minimal difference in the degrees between individuals. As opposed to

an egalitarian membership profile, a membership profile marginalizes individuals if almost all

individuals join D clubs or no clubs at all. Similarly, a membership profile marginalizes clubs

if all clubs have either S members or 0 members. Define a measure of marginalization for

individuals as

MI =
|I1(a)|+ |I2(a)|+ |I3(a)| −mS/D

mS −mS/D
. (5)

Observe that MI ∈ [0, 1]; it takes on value 0 when the number of individuals who join

clubs is equal to mS/D and it is equal to 1 when the number of individuals who join clubs is

equal to the aggregate club capacity, mS.

Likewise we may define marginalization of clubs with the measure

MC =
|C1(a)|+ |C2(a)| − nD/S

nD − nD/S
. (6)

Definition 3. A membership profile a ∈ A is egalitarian if there is minimal difference between

the membership level of individuals: |di(a)− dj(a)| ≤ 1 for any pair i, j ∈ I.

A membership profile a ∈ A marginalizes individuals if MI is close to 0.

A membership profile a ∈ A is said to marginalize clubs if MC is close to 0.

Proposition 2. Assume that h(x) = αx, where α ≥ 0. When α = 0, an egalitarian member-

ship profile is stable. When α > 0, for a stable a,

• if nD ≥ mS, then

mS

D
− S(D + 3)

2
≤ |I1(a)| ≤ |I1(a) ∪ I2(a)| ≤ mS

D
and

n− mS

D
− S ≤ |I4(a)| ≤ n− mS

D
.
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Therefore, MI ≤ D
(D−1)m : every stable membership marginalizes individuals for large m.

• if nD < mS, then

nD

S
−D ≤ |C1(a)| ≤ nD

S
and

m− nD

S
−D ≤ |C3(a)| ≤ m− nD

S
.

Therefore, MC ≤ S
(S−1)n : every stable membership profile marginalizes clubs for large n.

The proof is presented in the Online Appendix.

In the absence of network externalities, it is fairly straightforward to see that an egalitarian

club profile is stable. Given nD > mS, assign the mS club slots to distinct individuals, this is

clearly stable as there is no advantage of having common membership in clubs (the difference

in degree between the maximally connected and minimally connected individual is 1). Given

nD < mS, assign the nD membership capacity across the nD/S clubs. Everyone has an equal

number of memberships equal to D.10

Turning to the setting with positive externalities, let us comment on the expressions for

the bounds. Clearly, mS/D is the maximal number of individuals who can be a member of

D clubs each. So the upper bound on |I1(a) ∪ I2(a)| is fairly immediate. Let us comment on

the lower bound for |I1(a)|. To do this we derive an upper bound on |I2(a)| and |I3(a)|. To

derive a bound on the number of individuals in |I2(a)|, note that all of them must join a club

in C2(a). The number of clubs in C2(a) is limited by D because the member who has the

highest degree in the least productive club of C2(a) must join all clubs in C2(a), otherwise,

she would deviate to join another C2(a) club and the club is willing to take her. Therefore,

the number of available slots for I2(a) individuals from C2(a) clubs is (weakly) smaller than

(S − 1)D. In the proof we show that the number of I2(a) individuals who only join one

C2(a) club is limited by S − 1: putting together these numbers we arrive at the bound of

S − 1 + [(S − 1)D − (S − 1)]/2 = (S − 1)(D + 1)/2 for the number of individuals in I2(a).

Turning to |I3(a)|, observe that for individuals in I3(a), if an individual i’s degree is greater

than or equal to the degree of another individual i’, then the set of clubs i joins must be a

superset of the set of clubs i’ joins. Otherwise, i can crowd out i’ and join one more club.

10 Matters are slightly more complicated when nD/S is not an integer: in that case, let bnD/Sc clubs have
S members and one club have (nD) mod S members. The structure is stable and every individual has
degree D.
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Thus, for a club that hosts the individual with the lowest degree in I3(a), it must be the case

that it hosts all individuals in I3(a). Since a club can host at most S members, |I3(a)| ≤ S.

The expression in the Proposition follow by noting that S(D + 3)/2 > S + (S − 1)(D + 1)/2.

We now turn to the marginalization results. Note that, when nD > mS, we can derive

an upper bound on |I3(a)|: this set is at most of size S. Fixing D and S, for large n our

measure MI approximates 0: in other words, if nD > mS, and n is large, then every stable

membership profile marginalizes individuals. Similarly, if nD < mS, and m is large, then

every stable membership profile marginalizes clubs.

We next turn to welfare properties of membership profiles. We have shown that in the

presence of a connection externality, a stable membership profile always marginalizes individ-

uals or clubs. Are such membership profiles desirable? We show that the answer depends on

whether we look at clubs-efficiency or at the utilitarian optimum. In our study of utilitarian

optimum, we will make use of the following condition on the concavity of the utility function.

v (f(S))− v(0) > (n− 1)

(
v

(
f(S) +

2αS(D − 1)

n− 1

)
− v (f(S))

)
. (7)

Proposition 3. Suppose α > 0. Assume nD ≥ mS and that mS/D is an integer.11

• A membership profile is clubs-efficient if and only if mS/D individuals join D clubs and

the remaining individuals join no clubs (MI = 0).

• If v′′(·) ≥ 0, then a membership profile is an utilitarian optimum if and only if it is

clubs-efficient. If v′′(·) < 0 and satisfies condition (7), then in any utilitarian optimum

membership profile, either di(a) ≤ 1 for all i ∈ I or di(a) ≥ 1 for all i ∈ I (MI = 1).

Assume nD < mS and that nD/S is an integer.

• If f ′′(·) > 0, then a membership profile is clubs-efficient if and only if nD/S clubs

admit S members and the remaining clubs admit no members (MC = 0). If f ′′(·) < 0,

then a membership profile is clubs-efficient if and only if (nD) mod m clubs admit dnD
m
e

members and the remaining clubs admit bnD
m
c members (MC = 1).

• A membership profile is an utilitarian optimum if and only if nD/S clubs admit S

members and the remaining clubs admit no members (MC = 0).12

11 In the Online Appendix, we provide characterizations of clubs-efficient and utilitarian optimal membership
profiles without the integer condition.

12 If the integer condition (S divides nD) does not hold, then the utilitarian optimum characterization for
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The proof is presented in the Online Appendix.

Consider first the case where nD > mS. Proposition 3 tells us that a membership profile

that maximizes the aggregate output of the clubs features a strong form of marginalization:

(modulo integer restrictions) club-efficient profile allocates exactly mS/D individuals into

memberships, all other individuals join no clubs. This is because this marginalization ensures

maximal overlap of members between clubs.

Turning to the utilitarian optimum, if the utility of individuals rises at an increasing or

constant rate with the productivity of clubs they join, i.e., if v′′(·) ≥ 0, then the profile that is

utility-maximizing is the same as the profile that is productivity-maximizing. This is because

when v′′(·) = 0, the aggregate utility of individuals is simply the number of individuals club can

admit, S, times the aggregate productivity of clubs, and when v′′(·) > 0, utilitarian optimality

pushes toward marginalization of individuals, which coincides with the outcome generated by

clubs-efficiency. If, on the other hand, the marginal utility is decreasing, i.e., v′′(·) < 0, then

that opens up a potential trade-off: although a concentration of memberships maximizes the

total output of clubs, it comes at the expense of entirely excluding n−mS/D individuals from

memberships. If the utility function is sufficiently concave – the marginal utility is declining

sufficiently rapidly (a condition that is formalized in inequality condition (7), then the welfare

benefit from picking more members outweighs the loss to aggregate productivity. We present

an example that brings out the difference between clubs-efficiency and utilitarian optimum

when we move from a convex/linear to a concave utility function.

Example 3. Suppose n = 16, D = 4, m = 8 and S = 4. Figure 3a depicts a membership

profile that is clubs-efficient and utilitarian optimum when v(·) is linear. Notice that in this

membership profile, 8 individuals (i1 to i8) exhaust their membership availability while the

other 8 individuals (i9 to i16) join no clubs. To appreciate the role of concave v(·) is concave,

set

v(x) =

10x when x ≤ 2f(4) + 8α,

10 (2f(4) + 8α) + 0.1 (x− 2f(4)− 8α) when x > 2f(4) + 8α.

In this case, the clubs-efficient outcomes remains unchanged and is as in Figure 3a, while the

utilitarian optimal profile, which features all 16 individuals joining 2 clubs, is given in Figure

3b. �

when v′′(·) ≥ 0 and when v′′(·) < 0 could be different. When v′′(·) ≥ 0, there is one club that hosts
some but less than S members. When v′′(·) < 0, the number of clubs that admit some but less than S
members ranges from 1 to S − 1.
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(a) clubs-efficient and utilitarian optimal profile: convex or linear v(·)

(b) utilitarian optimal profile: highly concave v(·)

Figure 3: Efficient membership profiles.
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Let us next take up the case where nD < mS. On club efficiency, note that there are

enough club capacity to cover the individuals, so every person will join D clubs: keeping

anyone out of clubs is clearly dominated for clubs. Moreover, as spillovers are linear, there

is a constant spillover irrespective of how the individuals are allocated across clubs. So the

issue of how to allocate individuals turns on the f function. If f is convex, then it is better

to allocate individuals to few clubs, i.e., nD/S clubs; if on the other hand, f is concave then

you allocate as evenly as possible across clubs, subject to integer constraints.

Regarding utilitarian optimum profiles, no matter what the f function, the optimal profile

entails marginalization of clubs. This is because to maximize the aggregate utility of indi-

viduals, it is clearly better to allocate more individuals to high-productivity clubs and fewer

individuals to low-productivity clubs. This taken in tandem with the assumption that the

productivity of a club rises with its size implies the marginalization of clubs.

When we compare Propositions 2 with 3, we see that there exists a tension between the

incentives toward marginalization (created by the increasing club productivity from member-

ship and from the strength of links with other clubs) and the demands of inclusiveness (created

by the concave utility function and concave club production function).

We conclude our study of the benchmark model with a brief remark on stable and efficient

membership profiles when spillovers across clubs are negative. This happens when α < 0

in the benchmark model. Observe that when spillovers are negative, a club would like to

only admit members who have no other memberships. So in a world with many individuals

relative to club capacity, i.e., n > mS, any stable membership profile must involve exactly mS

individuals filling the aggregate club capacity, i.e., every person joins at most one club and the

resulting club network is an empty network. However, when the number of individuals is small

the clubs face a trade-off: on the one hand, their productivity grows with membership (up to

their capacity size). On the other hand, expanding membership may necessitate bringing in

individuals who are already members of other clubs, and this lowers their productivity. We

can apply methods developed above to show that whatever the outcome of the tradeoff is,

a stable profile and an aggregate productivity maximizing profile both feature an egalitarian

membership profile, i.e., there does not exist two individuals i and i′ with |di(a)−di′(a)| > 1.

The argument goes as follows: suppose there exist two individuals i and i′ where di′(a) ≥
di(a) + 2. If so, then there exists a club c which i′ joins but not i. Clearly, this club c would

want to expel i′ and recruit i. We show that i is also willing to join c. By joining an additional

club, the productivity of the clubs i currently joins drops by α. Nevertheless, the productivity

of c, after i’s joining must be greater than di(a)α, as otherwise, c would not want to admit
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i. There is therefore a profitable deviation for the club-individual pair i and c. Turning to

maximizing the aggregate productivity of clubs, note that the same deviation also improves

the situation: it reduces the productivity of clubs i joins by α and raises the productivity of

clubs i′ joins by at least α. The result then follows given that i′ is in more clubs than i does.

4 Small worlds, fragmented cliques, and strength of ties

In this section, we examine the network of clubs and the strength of ties that support

this network.13 In our study of membership profiles so far, we have assumed that returns

were linear in link strength. We start by showing that in this case, a variety of club networks

are stable. In some prominent instances, however, the returns from link strength are likely

to be non-linear. For example, in case club links are used for information sharing then we

would expect marginal returns to decline with link strength. On the other hand, if links help

members coordinate activities of the clubs, then the marginal returns may be increasing in link

strength. With these observations in mind, we examine the implications of non-linear returns

from link strength. We show that if the marginal return from link strength is increasing, then

incentives of clubs and individuals push toward disconnected cliques of clubs with full strength

links. If, on the other hand, the marginal return from link strength is decreasing then the

club network entails larger components that are connected through weak links.

Example 4. Suppose that n > 15, m = 6, D = 2 and S = 5. Figure 4 depicts two clubs-

efficiency and stable membership profiles when returns from links rise linearly. Note that the

two profiles lead to the same degree distribution of individuals (the first 15 individuals all

join two clubs while the others join no clubs) and the same aggregate link strength clubs have

(each club shares five membership overlaps with other clubs). However, the resulting club

networks take very different forms: one consists of three separate cliques where all links are

of strength 5 while the other is a complete network where all links are of strength 1. This

indicates that linear spillovers from links always lead to marginalization of individuals/clubs

but the resulting club networks can be very different.

13 A membership profile can be projected both into a network of clubs and a network of individuals. In
this section, we focus on the club network. Nevertheless, the individual network, since originated from
the same membership profiles as the club network, shares some important properties with the latter. For
example, there exists a strong link (link with strength greater than 1) in the club network if and only if
there exists a strong link in the individual network, and the club network is connected iff the individual
network is connected. Therefore, we can infer properties of the individual network with analysis on the
club network.
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(a) Convex return from link strength: h′′(·) > 0

(b) Concave returns from link strength: h′′(·) < 0

Figure 4: Clubs-efficient and stable membership profiles.

21



When h(·) is convex, there is a unique clubs-efficient membership profile which is depicted

in Figure 4a. We know that when h(·) is convex, the productivity of a club is maximized if

the number of membership overlaps it has with other clubs is maximized and concentrated

in as few clubs as possible. This can only be achieved when the club network takes the form

depicted in Figure 4a.

On the other hand, when h(·) is concave, Figure 4b depicts the unique club-efficient net-

work. When h(·) is concave, clubs want to maximize their membership overlaps with other

clubs and spread them as evenly as possible. In this example, for this to be the case, the club

network has to be complete with all links being weak.

Turning to stability, the structure depicted in Figure 4a is stable when h(·) is convex, since

all clubs have reached the highest productivity possible and have no incentives to deviate. It

is not stable when h(·) is concave: there is a profitable deviation for individual i6 and club c1

where c1 exiles i1 to admit i6 and i6 leaves c3 to join c1.

Similarly, the structure depicted in Figure 4b is stable when h(·) is concave but not so

when h(·) is convex. Stability under a concave h(·) is obvious since all clubs have reached

the highest productivity possible; instability under a convex h(·) can be verified by again

considering the deviation by individual i6 and club c1 where c1 exiles i2 to admit i6 and i6

leaves c3 to join c1. �

The above example shows that the curvature of the returns from links has a significant

influence on the structure of club networks. A convex h(·) function results in fragmented club

networks with strong links while a concave h(·) function leads to connected club networks with

weak links. Proposition 4 generalizes this example to cover a broader range of group size and

capacity configurations. Formally, we say a club network g = g(a) is clubs-efficient/utilitarian

optimum/stable if it is created with a clubs-efficient/utilitarian optimum/stable membership

profile a. Additionally, we define a k-clique as a subnetwork that has k mutually linked clubs

and a k-regular network as a network where all clubs have k links. The complete network is

a special kind of regular network where all clubs are linked to each other (k = m− 1).

Proposition 4. Assume nD ≥ mS, D = 2, m is even, and 2 ≤ S ≤ m− 1.

• When h(·) is convex, the clubs-efficient club network consists of m/D separate 2-cliques

where all links are of strength S. This network is stable when h(·) is convex and unstable

when h(·) is concave.

• When h(·) is concave, the clubs-efficient club network is an S-regular network (a complete
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network when S = m− 1) where all links are of strength 1. This network is stable when

h(·) is concave and unstable when h(·) is convex.

Assume nD < mS, D = 2, S divides n, and 2 ≤ S ≤ 2n/S − 1.

• When h(·) is convex, the utilitarian optimum club network consists of n/S separate 2-

cliques where all links are of strength S. This network is stable when h(·) is convex and

unstable when h(·) is concave.

• When h(·) is concave, the utilitarian optimum club network is an S-regular network (a

complete network when S = 2n/S − 1) where all links are of strength 1. This network

is stable when h(·) is concave and unstable when h(·) is convex.

The proof is presented in the Online Appendix.

As mentioned earlier, the club network and the individual network generated by a mem-

bership profile share some important properties. The club network mentioned in Proposition

4 can be mapped into individual networks. When h(·) is convex, our characterization involves

2-cliques with strength S links for the club network; the corresponding individual network

consists of S-cliques with strength 2 links. When h(·) is concave, our characterization fea-

tures a S-regular club network with strength 1 links; the corresponding individual network is

a D(S − 1)-regular network with strength 1 links.

5 Variation on the model: alliances among competing

firms

In Section 2 we showed that our model can be used to study the formation of research

alliances of monopolies. We now turn to the study of research alliances between competing

firms. The difference is that when firms compete in the same market they care not only about

their own costs but also the costs of other firms, which is influenced by their club (research

alliance) joining choices. In this section, we modify our model to address this complication

and show that our arguments can be extended to this setting and that our main results are

robust.

We assume that firms engage in Cournot competition and the demand of the market follows

a linear inverse demand function p = β−
∑

i∈I qi. The cost of firm i under membership profile
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a, as in the monopoly case, is γ0 − γ
∑

c∈C aicπc(a). Given a project profile a, the Cournot

equilibrium output can be written as

qi(a) =
(β − γ0) + γn

∑
c∈C aicπc(a)− γ

∑
i′ 6=i

∑
c∈C ai′cπc(a)

n+ 1
, (8)

and the Cournot profit of firm i is given by qi(a)2. In the language of our model, by treating

a firm as an individual, the utility of individual i, given membership profile a, is

ui(a) = v

(∑
c∈C

aicπc(a),
∑
i′ 6=i

∑
c∈C

ai′cπc(a)

)
= qi(a)2.

From (8), we can see that the objective of a firm is rising in the productivity of research

alliances it joins and decreasing in the productivity of research alliances other firms join.

Nevertheless, note that the term aicπc(a), which captures the aggregate productivity of clubs

i joins, is multiplied by γn, while the term
∑

c∈C ai′cπc(a), which is the aggregate productivity

of clubs other firms join, is multiplied only by γ. So, the incentive of a firm to maximize the

aggregate productivity of clubs it joins dominates other considerations. The structure of stable

membership profiles in this extended setup is thus analogous to those characterized for the

standard model.

To be more specific, let us first consider the case where the productivity of a research

alliance rises linearly with the strength of links it has with other alliances (h(x) = αx, where

α ≥ 0). We partition firms (individuals) and research alliances (clubs) in a similar way as

done in Section 3, so that I1(a) is the set of firms that join D alliances and have the highest

profit among all firms, I2(a) is the set of firms that join D alliances but have lower profit than

those in I1(a), I3(a) is the set of firms that join some but not D alliances, I4(a) is the set of

firms that join no alliances, C1(a) is the set of alliances that reach the highest productivity

possible, C2(a) is the set of alliances that have positive productivity that is lower than those

achieved by alliances in C1(a), and C3(a) is the set of alliances with zero productivity. We

show that we arrive at the same marginalization results as characterization in Proposition 2.

Proposition 5. Assume that firms engage in Cournot competition and that h(x) = αx, where

α ≥ 0. When α = 0, an egalitarian membership profile is stable. When α > 0, for a stable a,
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• if nD ≥ mS, then

mS

D
− S(D + 3)

2
≤ |I1(a)| ≤ |I1(a) ∪ I2(a)| ≤ mS

D
and

n− mS

D
− S ≤ |I4(a)| ≤ n− mS

D
.

Therefore, MI ≤ D
(D−1)m : every stable membership marginalizes firms for large m.

• if nD < mS, then

nD

S
−D ≤ |C1(a)| ≤ nD

S
and

m− nD

S
−D ≤ |C3(a)| ≤ m− nD

S
.

Therefore,MC ≤ S
(S−1)n : every stable membership profile marginalizes research alliances

for large n.

The proof is presented in the Online Appendix.

Turning to the effect of having increasing/decreasing marginal returns from links, we show

that, as in the standard model, increasing marginal returns leads to an R&D network that

consists of strongly linked fragmented cliques while decreasing marginal returns leads to a

weakly linked connected network.

Proposition 6. Let x = min{m,nD/S} so that x equals m if nD ≥ mS and nD/S if

nD < mS. Assume D = 2, x is even, and 2 ≤ S ≤ x− 1.

• There exists a membership profile a where the resulting alliance network consists of

separate 2-cliques with strength S links and the resulting firm network consists of separate

S-cliques with strength 2 links. This membership profile is stable when h(·) is convex

and unstable when h(·) is concave.

• There exists a membership profile a where the resulting alliance network is an S-regular

network (a complete network when S = x−1) with strength 1 links and the resulting firm

network is a D(S − 1)-regular network with strength 1 links. This membership profile is

stable when h(·) is concave and unstable when h(·) is convex.

The proof is presented in the Online Appendix.
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6 Case Studies

In this section we present four case studies that map our theory onto empirical context of

defence alliances, inter-locking directorates, R&D alliances and editorial boards of directors.

Defence Alliances: In terms of the terminology of our model, we may think of a defence

alliance as a club and countries as individuals. This is a reasonable application for our model

as members of the defence alliances decide on whether to let in new countries (and they may

sometimes expel a member). A country can also choose to leave an alliance or to ask to join

a new alliance. Links between alliances generate negative spillovers: a defence alliance will

be very reluctant to admit a member from a competing defence alliance, as admitting such a

member may compromise the security of the entire alliance. The empirical evidence presented

here is taken from Jackson and Nei (2015).

Figures 5a and 5b present the club network of strategic and defence alliances in the years

1960 and 2000. Observe that in 1960, the network of alliances exhibits clear fragmentation

along lines of geography and ideology. Indeed, there are few common members across the clubs

(other than the USA and Canada). Turning to 2000, the major change that happened is the

dissolution of the Warsaw Pact, but the club network remains fragmented. This fragmentation

of the network matches with the prediction of our model with negative spillovers across clubs.

Interlocking Directorates: It is widely recognized that the board-to-board ties serve as

a mechanism for the diffusion of corporate practices, strategies, and structures (Mizruchi

(1996)). We may consider boards as clubs and directors as individuals; links between clubs

raise productivity. In what follows, we discuss empirical studies on interlocking directorates

and explain how our model sheds light on the understandings of the empirical findings.

Consider first the degree distribution of board directors. Conyon and Muldoon (2006)

study the affiliations of board directors who hold positions in 1,733 firms in the United States

in 2003. They find that 80.37% of the directors sit only on one board, 13.02% of them sit on

two boards, and the remaining 6.61% of the directors sit on 8.6 boards on average. Thus most

directors hold only one or two positions, but there are a small fraction of directors who occupy

many positions. The authors show that similar patterns hold in Germany and the UK. This

inequality in degrees of directors is in line with the marginalization result (Proposition 2)

Consider next the structure of board networks. Mizruchi (1982) provides a historical anal-

ysis of the US board network among 167 firms at seven points from 1904 to 1974, finding that
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Organization of Amercian States


Argentina, Bolivia, Brazil, Chile,
Colombia, Costa Rica, Cuba,

Dominican Republic, Ecuador, El
Salvador, Guatemala, Haiti,

Honduras, Mexico, Nicaragua,
Panama, Paraguay, Peru, United
States, Uruguay, and Venezuela

NATO


Belgium, Canada, Denmark, France,
Greece, Iceland, Italy, Luxembourg,
the Netherlands, Norway, Portugal,

Turkey, United Kingdom, United
States, and West Germany

Warsaw Pact


Soviet Union, Albania,
Bulgaria, Czechoslovakia,
East Germany, Hungary,

Poland, and Romania

French Equatorial
Africa


Congo, Chad, Central
African Republic, and

France

SEATO


Australia, France, New
Zealand, Pakistan,

Bangladesh, the Philippines,
Thailand, United Kingdom,

and United States

CENTO


Iran, Iraq, Pakistan,
Turkey, and United

Kingdom

Arab League


Egypt, Iraq, Jordan,
Lebanon, Libya, Morocco,

Saudi Arabia, Sudan,
Syrian Arab Republic,
Tunisia, and Yemen

(a) Alliances in 1960

Organization of Amercian States


Antigua and Barbuda, Argentina, Bahamas,
Barbados, Belize, Bolivia, Brazil, Canada,

Chile, Colombia, Costa Rica, Cuba, Dominica,
Dominican Republic, Ecuador, El Salvador,

Grenada, Guatemala, Guyana, Haiti,
Honduras, Jamaica, Mexico, Nicaragua,
Panama, Paraguay, Peru, Saint Kitts and
Nevis, Saint Lucia, Saint Vincent and the

Grenadines, Suriname, Trinidad and Tobago,
United States, Uruguay, and Venezuela

ECCAS


Angola, Burundi, Cameroon,
Central African Republic, Chad,

Republic of the Congo ,
Democratic Republic of the
Congo , Equatorial Guinea,

Gabon, São Tomé and Príncipe,
and Rwanda

NATO


Belgium, Canada, Czech, Denmark,
France, Greece, Hungary, Iceland,
Italy, Luxembourg, the Netherlands,

Norway, Poland, Portugal, Spain,
Turkey, United Kingdom, United

States, and West Germany

ECOWAS


Benin, Burkina Faso, Cabo
Verde, Cote d’Ivoire, The
Gambia, Ghana, Guinea,

Guinea-Bissau, Liberia, Mali,
Mauritania, Niger, Nigeria,

Senegal, Sierra Leone, and
Togo

Arab League


Egypt, Algeria, Bahrain, Comoros,
Djibouti, Iraq, Jordan, Kuwait,

Lebanon, Libya, Mauritania, Morocco,
Oman, Qatar, Saudi Arabia, Somalia,

State of Palestine, Sudan, Syrian
Arab Republic, Tunisia, United Arab

Emirates, and Yemen

CSTO


Armenia, Azerbaijan,
Belarus, Georgia, Kazakhstan,

Kyrgyzstan, Russia, 

Tajikistan, and Uzbekistan

(b) Alliances in 2000

Figure 5: Club network of defence alliances.
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almost all nodes were within distance 4. More recently, with the increased availability in data

and advancement in analyzing techniques, Davis et al. (2003) study the largest manufacturing

and service firms in the US over the period 1982 to 1999. They show that despite the major

changes in the nature of economic activities, the structure of the board network remained

relatively unchanged: the average geodesic distance between boards was 3.38, 3.46, and 3.46

in 1982, 1991 and 2001.

Turning finally to the strength of ties among boards: Battiston and Catanzaro (2004)

investigate the board networks of the Fortune 1000 firms in 1999 and show that they consist

mostly of weak links (the number of strength 1 links is about 10 times that the number of

stronger links) and that they have a small world feature (the largest connected component

includes 87% of all firms). Given that links between boards serve as information diffusion

channels, the marginal returns from board-to-board ties are likely to be decreasing. Propo-

sition 4 shows that in this case the club network is likely to be held together by weak links.

The empirical patterns are consistent with our theoretical analysis.

Heath Care Organizations: Willems and Jegers (2011) study the interlocking boards of

92 Belgian health-care organizations. One of their main findings is that the board network is

fragmented with strong links: the 92 organizations are divided into 23 components; 24 pairs

of organizations share exactly the same set of board members and the heaviest link in the

network is of strength 10.

Woo (2017) and Hansson et al. (2018) suggest that health care organizations often need to

collaborate with each other to treat multi-diseased and vulnerable patients. To achieve smooth

coordination, it is more efficient for organizations to have multiple shared directors with their

partners. In the language of our model, this suggests that marginal returns from links are

increasing in overlaps. In this case, the theory predicts that the resulting board network is

fragmented with strong links. This is consistent with the empirical finding of Willems and

Jegers (2011).

R&D Alliances: Research agreements among firms that involve technology development

and sharing have become increasingly common since the 1980’s (Hagedoorn (2002)). These

arrangements have profound effects on the firms and on the functioning of the markets they

operate in (Gulati (2007)). Here we very briefly summarize some of the empirical patterns on

collaboration.

First, there appears to exist a great disparity in the participation of alliances among firms.

Powell et al. (2005) and König et al. (2019) show that the distribution of the number of
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alliances a firm joins has a power-law degree distribution. In a similar vein, Rosenkopf and

Schilling (2007) and Kitsak et al. (2010) show that R&D networks have a core-periphery struc-

ture. This unequal degree distribution is consistent with our marginalization characterization.

Next, let us consider the network of clubs (where a club is an alliance). A number of

studies show that across most industries the network is connected (Owen-Smith and Powell,

2004; Roijakkers and Hagedoorn, 2006; Hanaki et al., 2010; Schilling and Phelps, 2007). Our

view is that there are positive spillovers from shared memberships but as these are generally

information sharing arrangements the marginal returns from strength of ties is falling. Propo-

sition 4 suggests that in this case the stable network will exhibit high connectivity. This is

consistent with the empirical evidence.

The empirical research also shows that the network of alliances is fragmented in the case of

chemical and petroleum refining. Our view is that this may be due to the relative importance

of information and competitive elements involved. If strategic and competitive elements are

dominant then our analysis of negative spillovers across clubs may be more relevant. Our

discussion of that setting suggests that the network will be fragmented. This may help explain

the pattern in these industries.

Boards of Editors of Journals: The editorial board of a journal along with its set of referees

shapes the research papers that are published in it. The collection of prestigious journals in a

discipline taken together therefore can have a profound influence on the directions of research

in that discipline. In economics, there has existed a concern for some time now that the

leading journals are dominated by members from a few economics departments based in the

United States. This concentration of editors has some to suggest that the discipline may be

a risk of becoming too conformist and losing its innovativeness. This question has become

more pressing over the last few decades as the profession has grown greatly and there has

been a massive increase in the number of journals: this has resulted in a massive increase in

the relative prestige of publishing in a few core journals. A leading economist has termed this

phenomenon ‘Top5ites’ (see Serrano (2018) and ?) and in a recent paper the emphasis on

top few journals in the career prospects of economists has been referred to as the ‘Curse of

the top-5’ (Heckman and Moktan (2020)). We may view authors as individuals and boards of

journals as clubs. In this case study we draw on a recent paper by Ductor and Visser (2021)

to document some facts about editorships and the relationship between the boards of leading

journals and then relate them to our theoretical predictions.

Ductor and Visser (2021) study a set of 106 leading economics and finance journals over
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the period 1990-2011. They find that there were 79533 authors publishing in these journals

but that only 6069 became editors, i.e. only 7.63%. Moreover, within the set of editors, over

75% were editors of just one journal but over 1.6% of these editors were editors at 4 or more

journals. We recognize that the model assumes individuals are ex-ante homogenous while

economics authors clearly differ in their abilities and productivity and their suitability for

editorial roles. But, at a high level, these two facts are broadly consistent with the model’s

prediction on the marginalization of individuals (that can arise even if all individuals are

similar).

Turning next to the links between the boards of different journals, for concreteness let us

discuss the empirical situation in 2010. The network contains the 106 journals as nodes; a

link between two journals reflects common editors. An inspection of this network reveals a

number of interesting facts. The largest component contains 101 nodes, suggesting that it is

more or less connected. The network is sparse with roughly 11% of all possible links being

present. These links have uneven strength but the vast majority of the links are weak – over

82% have only one or two common editors. These facts suggest that the network is a small

world that is held together with mostly weakly ties.

To illustrate these patterns, we present the network of editorial boards of leading eco-

nomics journals from the year 2010 in Figure 6. The network covers 28 leading economics

journals.14 We see that the network is connected and that most of the links are relatively

weak. Interestingly the network is held together through a hierarchical structure – the general

interest journals share common editors with field journals; there are relatively few ties among

the general interest journals and the field journals, respectively.

14 These journals are Journal of Health Economics (JHE), Review of Economics and Statistics (REStat), Re-
view of Economic Studies (REStud), Econometric Theory (ET), Journal of Monetary Economics (JME),
Quarterly Journal of Economics (QJE), Journal of Economic Literature (JEL), Journal of Business and
Economic Statistics (JBES), Econometrica (ECMA), Review of Financial Studies (RFS), RAND Journal
of Economics (RAND), Economic Journal (EJ), Journal of Environmental Economics and Management
(JEEM), Journal of Finance (JoF), Journal of Econometrics (JoE), Journal of International Economics
(JIE), European Economic Review (EER), World Bank Economic Review (WBER), International Eco-
nomic Review (IER), American Economic Review (AER), Journal of Human Resources (JHR), Journal
of Labor Economics (JLE), Journal of Political Economy (JPolE) Journal of Public Economics (JPubE),
Games and Economic Behavior (GEB), Journal of Economic Theory (JET), Journal of Economic Per-
spectives (JEP), Journal of Financial Economics (JFE).
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Figure 6: The editorial boards of economic journals 2010. Node size reflects number of editors;
link thickness indicates number of common editors. Courtesy of Lorenzo Ductor and Bauke
Visser
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7 Appendix: For Online Publication

Proofs

Proof of Proposition 1

We first take up the characterization – the sufficient and necessary conditions – for stability.

We then prove existence.

From the production function of clubs and the utility function of individuals, we know

that there cannot be any i ∈ I, c ∈ C and a′ ∈ A with a′i ≤ ai and a′−i = a−i such that

ui(a
′) > ui(a), or a′c ≤ ac and a′−c = a−c such that πc(a

′) > πc(a). Hence, the deviations

we need to consider are joint deviation by i and c such that both of them are better off.

Such deviation can be divided into four types: individual i joins club c and nothing else is

changed; individual i quits some clubs and joins club c; club c dismisses some members and

admits individual i; and individual i quits some clubs, club c dismisses some members, and i

joins c. Notice that for the last three kinds of deviations, if quitting two or more clubs and

dropping two or more members is profitable, then quitting only one club and dropping only

one member is also profitable given our utility and productivity specification. So, we only

consider deviations with one quitting and (or) one dropping. We show that conditions (i)–(iii)

are necessary and sufficient for the four kinds of deviations not to be jointly profitable.

For the necessity of condition (i), suppose it does not hold and there exists an individual

i ∈ I with di(a) < D and a club c ∈ C with sc(a) < S, such that i is not a member of c. But

then i joining c is strictly improving for both parties, which contradicts stability of a.

We also show that if condition (i) holds, then there is no jointly profitable deviation for i

and c where i joins c and nothing else changes since such deviation is not feasible.

For the necessity of condition (ii), suppose, to the contrary, that there exists a club c with

sc(a) < S, an individual i ∈ I who is not a member of c, and a club c′ ∈ C that i joins, such

that

πc(a) > πc′(a)− f(sc(a) + 1) + f(sc(a))− α(D − 1). (9)

Notice that, by condition (i), di(a) = D. Let a′ be a membership profile obtained from a

by i leaving c′ and joining c and c accepting i. First, it is obvious that πc(a
′) > πc(a). The

difference in productivity of c between a′ and a is equal to

πc(a
′)− πc(a) = f(sc(a) + 1)− f(sc(a)) + α(D − 1), (10)
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so the difference in utility of i between a′ and a is equal to

ui(a
′)− ui(a) =v(πc(a) + f(sc(a) + 1)− f(sc(a)) + α(D − 1) +

∑
c′′ 6=c,c′

aic′′πc′′(a))

−v(πc′(a) +
∑

c′′ 6=c,c′

aic′′πc′′(a)), (11)

which has the same sign as

πc(a)− πc′(a) + f(sc(a) + 1)− f(sc(a)) + α(D − 1), (12)

which is positive since v is increasing. The deviation by individual i and club c from a to a′

makes them both better off. A contradiction with stability of a.

We also show that if conditions (i) and (ii) hold, then there is no jointly profitable deviation

for i and c where i quits a club to join c and nothing else changes. If there is such a deviation,

it must be that sc(a) < S. Since i is not a member of c so, by condition (i), di(a) = D. Let

c′ be the club that i leaves when joining c. Then, by (11) and (12) and condition (ii), utility

of i does not increase and so the deviation is not profitable to i.

For the necessity of condition (iii), suppose, to the contrary, that there exist individuals

i ∈ I and i′ ∈ I such D > di(a) ≥ di′(a) and a club c ∈ C such that i′ is a member of and i

is not. Let a′ be a membership profile obtained from a by i joining c and c accepting i and

dropping i′. The difference in productivity of c between a′ and a is equal to

πc(a
′)− πc(a) = α(di(a)− di′(a) + 1), (13)

which is positive if and only if α > 0. Also, since v is increasing, both individual i and club c

and strictly benefit deviating from a to a′ when α > 0. A contradiction with stability of a.

We also show that if conditions (i) and (iii) hold, then there is no jointly profitable deviation

for i and c where c drops a member to admit i and nothing else changes. If there is such a

deviation, it must be that di(a) < D. Then from condition (i), it mush be sc(a) = S. Let i′

be the individual that club c drops. Then, by (13) and condition (iii), productivity of club c

does not increase and so the deviation is not profitable to c.

For the necessity of condition (iv), suppose that α > 0 and suppose, to the contrary, that

there exists two individuals i, i′ ∈ I with di(a) = D and di′(a) < D, a club c ∈ C that has
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member i′ but not i, and a club c′ that i joins, such that

πc(a) > πc′(a)− α

(
D − di′(a)−

∑
c′′ 6=c′

aic′′ai′c′′

)
. (14)

Let a′ be a membership profile obtained from a by i joining c and leaving c′, and c accepting

i and dropping i′. The difference in productivity of c between a′ and a is equal to

πc(a
′)− πc(a) = α(D − di′(a)), (15)

which is positive if and only if α > 0. The difference in utility of i between a′ and a is equal

to

ui(a
′)− ui(a) =v(πc(a

′) +
∑

c′′ 6=c,c′

aic′′πc′′(a))− v(πc′(a) +
∑

c′′ 6=c,c′

aic′′πc′′(a))

=v(πc(a) + α (D − di′(a))− α
∑
c′′ 6=c′

aic′′ai′c′′ +
∑

c′′ 6=c,c′

aic′′πc′′(a))

− v(πc′(a) +
∑

c′′ 6=c,c′

aic′′πc′′(a)), (16)

which has the same sign as

πc(a)− πc′(a) + α

(
D − di′(a)−

∑
c′′ 6=c′

aic′′ai′c′′

)
, (17)

which is positive since v is increasing. The deviation by individual i and club c from a to a′

makes them both better off. A contradiction with stability of a.

We also show that if conditions (i)–(iv) hold, then there is no jointly profitable deviation

for i and c where i leaves a club, c drops a member, and i joins c. Suppose there is such a

deviation, if di(a) < D or sc(a) < S, since the deviation is profitable with i quitting a club

and c dismissing a member, it is also profitable if i does not quit the club and c does not

dismiss the member. We know conditions (i)–(iii) guarantee that there is no such mutually

beneficial deviation. So, here we consider the deviations of i and c when di(a) = D and

sc(a) = S. In this case, by (16) and (17) and condition (iv), utility of i does not increase and

so the deviation is not profitable to i.

We finally turn to the existence of stable membership profile. We provide a proof by
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construction.

Suppose nD ≥ mS. Let m′ ≤ m and n′ ≤ n be the largest integers such that m′S = n′D.

Notice that since m ≥ D and n ≥ S so m′ ≥ D and n′ ≥ S. Construct a membership profile

a as follows. First, select n′ individuals and m′ clubs, let all selected individuals join D clubs

we select so that all m′ clubs have S members. This profile can be obtained by letting clubs

admit individuals in sequence: make each club admit S individuals that have the smallest

degree in its turn before moving to the next club. If n−n′ ≥ S, take S out of n−n′ remaining

individuals and put each of them in each of m−m′ remaining clubs. Otherwise, put each of

n − n′ remaining individuals in each of m −m′ clubs. It is easy to verify that this profile is

stable.

Suppose mS > nD: consider a membership profile a where all individuals join D clubs,

and bnD
S
c clubs have S members, one club has (nD) mod S members, and the remaining

clubs have 0 members. This profile can be obtained by letting clubs admit individuals in

sequence. Make each club admit S individuals that has the smallest degree in its turn before

moving to the next club. Stop when all individuals have degree D. This profile is always

stable as it satisfies all four conditions in Proposition 1. Condition (i) is satisfied obviously.

Conditions (iv) and (iii) are automatically satisfied as no individual joins less than D clubs.

For condition (ii), if a club c has less than S members, then either it is the one club with

(nD) mod S members or it has 0 members. In both cases, for an individual i that is not in c

and for any club that i is in, c′ must have more members than c does and all members of c′

join D clubs, making condition (ii) satisfied. �

Proof of Proposition 2

We first take up the egalitarian outcome result in the absence of network effects. When

α = 0, the membership profile generated with the following algorithm is stable. Let clubs

admit individuals sequentially. Fill a club with S individuals that currently have the lowest

degrees and then move to the next club. Stop until all clubs are full or all individuals have

joined D clubs. Since n ≥ S, this algorithm is feasible. If the algorithm terminates when all

clubs have S members, then all clubs have productivity f(S) which is the highest productivity

a club can get. Hence the membership profile is stable. If the algorithm terminates when all

individuals are in D clubs, then there are bmS
D
c clubs that have productivity f(S), one club

that has productivity f((mS) mod D), and the rest clubs have productivity 0. The only

possible profitable deviation from one individual is to quit the club with productivity f((mS)

mod D) and join a club with productivity f(S), but no club with productivity f(S) want to
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deviate. Hence the membership profile is stable. Given the way we construct the membership

profile, we have |di(a)− di′(a)| ≤ 1 for all i, i′ ∈ I.

When α > 0, we develop the conditions for the sizes of the different groups. For the

cardinality of I3(a), take any individual i ∈ I3(a) with minimal di(a) and let c ∈ C be any

club that i members. By condition (iii) of Proposition 1, all individuals in I3(a) are members

of c and, by condition (i) of Proposition 1, sc(a) ≤ S. Hence |I3(a)| ≤ S.

For cardinality of C2(a), suppose that C2(a) 6= ∅, we will show that there exists an

individual i that is a member of all clubs in C2(a). We consider the cases of I3(a) = ∅ and

I3(a) 6= ∅ separately. If I3(a) = ∅, then members of the clubs in C2(a) are of degree D and,

for any c ∈ C2(a), sc(a) < S (as c does not achieve maximal productivity). Take any c′ ∈
C2(a) with minimal productivity, πc′(a), and any member i of c′. Take any c ∈ C2(a) \ {c′}.
Since sc(a) < S and since πc(a) ≥ πc′(a) so, by condition (ii) of Proposition 1, i is a member

of c. Hence i is a member of all clubs in C2(a). If I3(a) 6= ∅ then take any i ∈ I3(a) with

maximal degree. Take any club c ∈ C2(a). Since c does not achieve the highest productivity

so either sc(a) < S or c has a member in I3(a). In the first case, i is a member of c by

condition (i) of Proposition 1. In the second case, i is a member of c by condition (iii) of

Proposition 1. Hence i is a member of all clubs in C2(a). By condition (i) of Proposition 1,

di(a) ≤ D. Hence |C2(a)| ≤ D.

For cardinality of I2(a), notice first that, by definition, every individual in I2(a) members

at least one club in C2(a). Thus the aggregate membership of individuals in I2(a) in the

clubs in C2(a) is at least x+ 2(|I2(a)| − x), where x is the number of individuals from I2(a)

who member exactly one club from C2(a). On the other hand, since |C2(a)| ≤ D and, for all

c ∈ C2(a), either sc(a) ≤ S − 1 or c has a member in I3(a), so aggregate club capacity of the

clubs in C2(a) for individuals in I2(a) is at most (S − 1)D. Hence

x+ 2(|I2(a)| − x) = 2|I2(a)| − x ≤ (S − 1)D. (18)

The number of individuals in I2(a) who member exactly one club in C2(a) is at most S − 1.

To see that, suppose that an individual i ∈ I2(a) members exactly one club c′ ∈ C2(a). Let

c ∈ C2(a) \ {c′} be another club in C2(a). Since i is not a member of c so, by condition (ii)

of Proposition 1, πc(a) < πc′(a). Hence c′ must achieve the highest productivity of all clubs

in C2(a) and must be unique such. Since all individuals in C2(a) who member exactly one

club in C2(a) must be members of the same club from C2(a) and since, as we observed above,

this club can host at most S − 1 members from I2(a), so there can be at most S − 1 such
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individuals. This shows that x ≤ S−1 and from (18) it follows that |I2(a)| ≤ (S−1)(D+1)/2.

We now use these derivations on the size of the different groups to derive bounds on the

size of I1(a) and I2(a) and I4(a).

We begin with the case nD ≥ mS: Suppose that in a stable membership profile a, all clubs

are full, then we have |I1(a) ∪ I2(a)|D +
∑

i∈I3(a) di(a) = mS, and hence |I1(a) ∪ I2(a)|D +

|I3(a)|D > mS. Since |I3(a)| ≤ S,

|I1(a) ∪ I2(a)| > mS

D
− S.

Suppose that in a stable membership profile a, not all clubs are full, then we know |I4(a)| = 0

as otherwise there is a jointly profitable deviation for an individual in I4(a) and a club that

is not full where the individual joins the club. Therefore,

|I1(a) ∪ I2(a)|+ |I3(a)| = n ≥ mS

D
,

and so |I1(a) ∪ I2(a)| ≥ mS
D
− S given |I3(a)| ≤ S.

Now, since |I1(a)∪I2(a)| ≥ mS
D
−S and |I2(a)| ≤ (S−1)(D+1)

2
, we have |I1(a)| ≥ mS

D
− S(D+3)

2
.

For the upper bound of |I1(a)|, since aggregate club capacity is mS, we must have |I1(a)|D ≤
mS, and so |I1(a)| ≤ mS

D
.

Regarding the bounds for |I4(a)|. Since |I1(a) ∪ I2(a)| + |I3(a)| + |I4(a)| = n, |I1(a) ∪
I2(a)| ≤ mS

D
, and |I3(a)| ≤ S, so |I4(a)| ≥ n − mS

D
− S. Moreover, if |I4(a)| > n − mS

D
, then

|I1(a)∪ I2(a)|+ |I3(a)| < mS
D

. The club capacity is not exhausted and there must exist a club

c that is not full. There is a jointly profitable deviation for an individual i in I4(a) and club

c where i joins c. A contradiction.

Next consider the case when nD < mS: We first show the lower bound for |C1(a)| is

nD/S − D. Suppose that in a stable membership profile a, all individuals exhaust their

membership availability, then we have |C1(a)|S+
∑

c∈C2(a)
sc(a) = nD, and hence |C1(a)|S+

|CW (a)|S ≥ nD. Since |C2(a)| ≤ D, |C1(a)| ≥ nD
S
−D. Suppose that in a a stable membership

profile a, not all individuals exhaust their membership availability, then we know |C3(a)| = 0

as otherwise there is a jointly profitable deviation for the individual who joins less than D

clubs and a club in C3(a) where the individual joins the club. Therefore,

|C1(a)|+ |C2(a)| = m ≥ nD

S
,
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and so |C1(a)| ≥ nD
S
−D given |C2(a)| ≤ D.

For the upper bound of |C1(a)|, since aggregate membership availability is nD, we must

have |C1(a)|S ≤ nD, and so |C1(a)| ≤ nD
S

.

Regarding the bounds for |C3(a)|. Since |C1(a)| + |C2(a)| + |C3(a)| = m, |C1(a)| ≤
nD
S

, and |c2(a)| ≤ D, so |C3(a)| ≥ m − nD
S
− D. Moreover, if |C3(a)| > m − nD

S
, then

|C1(a)| + |C2(a)| < nD
S

. The aggregate membership availability is not exhausted and there

must exist an individual i that joins less than D clubs. There is a jointly profitable deviation

for i and a club c in C3(a) and club c where i joins c. A contradiction. �

Proof of Proposition 3

We prove a more general characterization of efficient membership profiles, without the

parity conditions in Proposition 3.

Lemma 1. Suppose α > 0. Assume nD ≥ mS.

• A membership profile is clubs-efficient if and only if there are bmS
D
c individuals that join

D clubs, one individual that joins (mS) mod D clubs, and the remaining individuals join

no clubs.

• If v′′(·) ≥ 0, then a membership profile is utilitarian optimum if and only if it is clubs-

efficient. If v′′(·) < 0 and satisfies condition (7), then in any utilitarian optimum mem-

bership profile, either di(a) ≤ 1 for all i ∈ I or di(a) ≥ 1 for all i ∈ I.

Assume nD < mS.

• If f ′′(·) > 0, then a membership profile is clubs-efficient if and only if bnD
S
c clubs admit

S members, one club that admits (nD) mod S members, and the remaining clubs admit

no members. If f ′′(·) = 0, then a membership profile is clubs-efficient if and only if each

individual join D clubs. If f ′′(·) < 0, then a membership profile is clubs-efficient if and

only if (nD) mod m admit dnD
m
e members and the remaining clubs admit bnD

m
c members.

• If v′′(·) ≥ 0, then a membership profile is utilitarian optimum if and only if bnD
S
c clubs

admit S members, one club that admits (nD) mod S members, and the remaining clubs

admit no members. If v′′(·) < 0 and (nD) mod S = 0, then membership profile is

utilitarian optimum if and only if nD/S clubs admit S members and the remaining clubs

admit no members. If v′′(·) < 0 and (nD) mod S > 0, then in any utilitarian optimum

membership profile, the number of clubs that admit some but less than S members is not

more than S − 1.
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For the case when nD ≥ mD. First, given a membership profile a, the aggregate produc-

tivity of clubs is ∑
c∈C

πc(a) =
∑
c∈C

f(sc(a)) + α
∑
c∈C

∑
i∈I

aic(di(a)− 1)

≤ mf(S) + α
∑
i∈I

di(a)(di(a)− 1),

where the equality is obtained only when sc(a) = S for all c ∈ C. Now we solve the following

maximization problem:

max
∑
i∈I

di(a)(di(a)− 1) s.t. di(a) ∈ {0, 1, ..., D} for all i ∈ I and
∑
i∈I

di(a) ≤ mS.

Since g(x) = x(x − 1) is superadditive on the set of non-negative integers and this is strict

on positive integers, the solution to the maximization problem is a vector (d∗i (a))i∈I such

that d∗i (a) = D for all i ∈ I ′ where I ′ ⊂ I and |I ′| = bmS
D
c, d∗i (a) = (mS) mod D for some

i = k ∈ I\I ′ (in the case of (mS) mod D ≥ 1) and d∗i (a) = 0 for all i ∈ I\(I ′ ∪ {k}).
We now show that when nD ≥ mS, there always exists a club membership structure where

there are bmS
D
c individuals that join D clubs, one individual that joins (mS) mod D clubs,

and the remaining individuals join no clubs (which makes sc(a) = S for all c ∈ C), so that a

structure a ∈ A is clubs-efficient if and only if it satisfies such a club joining pattern. Construct

a membership structure as follows. Consider bmS/Dc individuals first, in a sequence. Make

each such i join D clubs that have the smallest membership size at her turn before moving to

the next individual. If (mS) mod D ≥ 1 so that there are clubs that do not have S members

at the end of the process, take one more individual and make him join those (mS) mod D

clubs. Since bmS/DcD + (mS) mod D = mS, the construction is valid and results in the

desired membership structure.

For utilitarian optimal structures, given a membership profile a, the aggregate utility of

individuals is ∑
i∈I

ui(a) =
∑
i∈I

v(
∑
c∈C

aicπc(a)).

We know that
∑

c∈C aicπc(a) ≤ D(f(S) + S(D − 1)) for all i ∈ I and
∑

i∈I
∑

c∈C aicπc(a) =∑
c∈C sc(a)πc(a) ≤ S

∑
c∈C πc(a), where the equality is obtained only when sc(a) = S for all

c ∈ C. Given that a clubs-efficient structure that maximizes
∑

c∈C πc(a) features sc(a) = S

for all c ∈ C,
∑

i∈I
∑

c∈C aicπc(a) is maximized if and only if a is clubs-efficient. We also know
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that a clubs-efficient structure makes bmS
D
c individuals have utility v(D(f(S) + S(D − 1))),

at most one individual have positive but less than v(D(f(S) +S(D− 1))) utility, and the rest

individuals have zero utility. Hence, when v′′(·) ≥ 0, the clubs-efficient membership profile is

the solution to the maximization profile of maxa∈A ui(a). We have shown that when v′′(·) ≥ 0,

a membership profile is utilitarian optimum if and only if it is clubs-efficient.

Turning to when v′′(·) < 0 and satisfies

v(f(S))− v(0) > (n− 1)

(
v

(
f(S) +

2αS(D − 1)

n− 1

)
− v (f(S))

)
,

we show that suppose in a club membership structure a ∈ A, there exists two individuals

i, i′ ∈ I such that di(a) > 1 and di′(a) = 0, then a cannot be utilitarian optimum. Suppose

such a structure a is utilitarian optimum. Note first that it must be sc(a) = S for all c ∈ C,

as otherwise making individual i′ join a club that is not full strictly raises aggregate welfare.

Let c ∈ C be a club where aic = 1. Consider another club membership structure a′ where c

drops i and admits i′. The difference of aggregate utility between the two structures is∑
i∈I

(ui(a
′)− ui(a)) ≥ v(f(S))− v(0) +

∑
i 6=i′

(ui(a
′)− ui(a)),

since ui′(a
′) ≥ v(f(S)) and ui′(a) = v(0). Given that i′ replaces i in club c, the productivity

of club c and clubs that i members decreases:

πc(a)− πc(a′) = α(di(a)− 1), and

πc′(a)− πc′(a′) = α for all c′ 6= c with aic′ = 1.

So, the aggregate productivity drop is at most 2α(D− 1), which is obtained when di(a) = D.

Since v′′(·) < 0 and the minimal utility an individual obtains when he is in a club is v(f(S)),

∑
i 6=i′

(ui(a)− ui(a′)) ≤
∑
i 6=i′

[
v

(
f(S) +

∑
c∈C

aic(πc(a)− πc(a′))

)
− v(f(S))

]

≤ (n− 1)

[
v

(
f(S) +

2α(D − 1)S

n− 1

)
− v(f(S))

]
.
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Hence,

∑
i∈I

(ui(a
′)− ui(a)) ≥ v(f(S))− v(0)− (n− 1)

[
v

(
f(S) +

2α(D − 1)S

n− 1

)
− v(f(S))

]
> 0,

contradicting structure a being utilitarian optimum. This completes the proof.

For the case when nD < mS, given a membership profile a, the aggregate productivity of

clubs is ∑
c∈C

πc(a) =
∑
c∈C

f(sc(a)) + α
∑
c∈C

∑
i∈I

aic(di(a)− 1)

≤
∑
c∈C

f(sc(a)) + αnD(D − 1),

where the equality is obtained only when di(a) = D for all i ∈ I. Now we look at the problem

of max
∑

c∈C f(sc(a)), s.t. sc(a) ∈ {0, 1, ..., S} for all c ∈ C and
∑

c∈C sc(a) ≤ nD. When f(·)
is convex, the solution to the maximization problem is a vector (s∗c(a))c∈C such that s∗c(a) = S

for all c ∈ C ′ where C ′ ⊂ C and |C ′| = bnD
S
c, s∗c(a) = (nD) mod S for some c = k ∈ C\C ′

(in the case of (nD) mod S ≥ 1) and s∗c(a) = 0 for all c ∈ C\(C ′ ∪ {k}). When f(·) is linear,

the solution to the maximization problem is any (s∗c(a))c∈C where sc(a) ∈ {0, 1, ..., S} for

all c ∈ C and
∑

c∈C sc(a) = nD. When f(·) is concave, the solution to the maximization

problem is a vector (s∗c(a))c∈C such that s∗c(a) = dnD
m
e for all c ∈ C ′ where C ′ ⊂ C and

|C ′| = (nD) mod m, and s∗c(a) = bnD
m
c for all c ∈ C\C ′. This proves the characterization for

clubs-efficient membership profiles.

For utilitarian optimum membership profiles, given a membership profile a, we know the

aggregate utility of individuals is
∑

i∈I ui(a) =
∑

i∈I v(
∑

c∈C aicπc(a)) where
∑

c∈C aicπc(a) ≤
D(f(S) + S(D − 1)) for all i ∈ I and∑

i∈I

∑
c∈C

aicπc(a) =
∑
c∈C

sc(a)f(sc(a)) + α
∑
c∈C

sc(a)
∑
i∈I

aic(di(a)− 1)

≤
∑
c∈C

sc(a)f(sc(a)) + α(D − 1)sc(a)2,

where the equality is obtained only when di(a) = D for all i ∈ I. Since g(x) = xf(x) +

α(D − 1)x2 is superadditive on non-negative integers and strictly superadditive on positive

integers, for any α ≥ 0, D ≥ 1, and strictly increasing f with f(0) = 0,
∑

i∈I
∑

c∈C aicπc(a)

is maximized if and only if bnD
S
c clubs admit S members, one club that admits (nD) mod S
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members, and the remaining clubs admit no members. When v′′(·) ≥ 0, it is easy to see that

this membership profile is also the solution to the maximization problem of maxa∈A ui(a). We

have shown that when v′′(·) ≥ 0, a membership profile is utilitarian optimum if and only if

bnD
S
c clubs admit S members, one club that admits (nD) mod S members, and the remaining

clubs admit no members.

Turning to when v′′(·) < 0, consider the utilitarian optimum structure where v′′(·) ≥ 0.

Under this structure, the utility of (nD) mod S individuals is

v[(D − 1)(f(S) + αS(D − 1)) + f ((nD) mod S) + α ((nD) mod S) (D − 1)], (19)

while the utility of all other individuals is v[(D)(f(S) + αS(D − 1))]. If this structure is

utilitarian optimum, we have finished the proof. If the structure is not utilitarian optimum,

then (nD) mod S 6= 0 and in a utilitarian optimum club membership profile, the lowest

utility of an individual is greater than (19), implying that the smallest size of a club is

greater than (nD) mod S. Suppose the smallest club size is sc(a) = (nD) mod S + k where

k ∈ {1, ..., S − (nD) mod S − 1}. For the structure to be utilitarian optimal, the number of

unfull clubs is at most k, where the bound k is reached when we reduce the club size of k

clubs by 1 to increase the size of the smallest club. So, the number of clubs with size greater

than 0 and lower than S is at most 1 + k ≤ S − (nD) mod S ≤ S − 1.

�

Proof of Proposition 4

First, we consider when nD ≥ mS.

When h(·) is convex, for any membership profile a ∈ A, the productivity of a club πc(a)

satisfies

πc(a) ≤ f(S) + h(S(D − 1)) = f(S) + h(S),

where the equality is obtained only when the club has one strength-S link with another club.

For every club to reach this highest level of productivity, the club network consists of m/D

separate 2-cliques where all links are of strength S. We now show such a structure exists by

construction: Allocate the first S individuals to clubs c1 and c2, the next S individuals to

clubs c3 and c4,..., and the m
2
th group of S individuals (individuals imS/2−S+1 to imS/2) to clubs

cm−1 and cm.

Since all clubs have reached the highest productivity with the membership profile when

h(·) is convex, it is also stable when h(·) is convex. To show the profile is not stable when
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h(·) is concave, consider a deviation by club c1 and individual iS+1 where c1 exiles i1 to admit

iS+1 and iS+1 leaves c3 to join c1. It is straight-forward to verify that the deviation benefits

both c1 and iS+1.

When h(·) is concave, for any membership profile a ∈ A, the productivity of a club πc(a)

satisfies

πc(a) ≤ f(S) + S(D − 1)h(1) = f(S) + S · h(1),

where the equality is obtained only when the club has S strength-1 links with other clubs. For

every club to reach this highest level of productivity, the club network is an S-regular network

where all links are of strength 1. We now show such a structure exists by construction with

the following algorithm: At each step, pick the club with the maximum number of empty

slots, fill the slots with different individuals, and then allocate each of those individuals to a

different club with the maximum number of empty slots. Stop when all clubs are full.

Since all clubs have reached the highest productivity with the membership profile when

h(·) is concave, it is also stable when h(·) is concave. Now we show the profile is not stable

when h(·) is convex. In this profile, for each club c, it must has at least 2 strength-1 links

with c′ and c′′. Let i1 be the common member of c and c′ and i′′ be the common member of c

and c′′. There must also exist an indiviual, call him i3, who is in c′ and c′′′ 6= c. Consider the

deviation by club c and individual i3 where c exiles i2 to admit i3 and i3 leaves c′′′ to join c.

This deviation benefits both c and i3.

Turning to when nD < mS, let π∗ be the highest productivity a club can obtain, note

that for any membership profile a ∈ A, the utility of an individual ui(a) satisfies

ui(a) ≤ v(D · π∗),

where the equality is obtained only when all clubs i joins has productivity π∗. For any

individual to reach this highest level of utility, the subnetwork of clubs that contains all non-

empty clubs must consist of n/S separate 2-cliques where all links are of strength S when

h(·) is convex and be an S-regular network (a complete network when S = 2n/S − 1) where

all links are of strength 1 when h(·) is concave. Such subnetworks can be constructed in the

same way we construct we construct the clubs-efficieny networks when nD ≥ mS.

For the statements on stability, since all individuals have reached the highest level of utility,

they have no incentives to deviate. We consider the same deviations examined for the case

when nD ≥ mS to show that the utilitarian optimum club network under a convex (concave)
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h(·) is unstable when h(·) is concave (convex).

�

Proof for Proposition 5

Let us use the terms ‘individuals’ and ‘clubs’ interchangeably.

When α = 0, we can always construct an egalitarian membership profile with the same

algorithm mentioned in the proof of Proposition 2. It is straight-forward to verify that this

membership profile is stable.

When α > 0, we first show that for a membership profile a to be stable, it must satisfy:

(i) for any pair of i and c, if i is not in c, then either di(a) = D or sc(a) = S,

(ii) for any two individuals i and i′ with D > di(a) ≥ di′(a) > 0, i must join all clubs i′

does,

(iii) for an individual i with degree D, there cannot exist two clubs c, c′ ∈ C2(a) where

πc(a) ≥ πc′(a), sc(a) < S, and i is in c′ but not c,

(iv) for an individual i with degree D, if i joins one and only one club in C2(a), c′, then

πc′(a) > πc(a) for all c ∈ C2(a)\{c′}.
Suppose condition (i) is not satisfied, consider the deviation by i and c where i joins c.

With that deviation, the productivity of c and all the clubs i is in increase; the production

costs of i and all the firms in club c and clubs that have i decrease. The aggregate cost

reduction of firms other than i is not greater than

di(a)(S − 1)α + (S − 1) (f(sc(a) + 1)− f(sc(a)) + αdi(a)) ,

while the cost reduction of i is not less than

di(a)α + f(sc(a) + 1)− f(sc(a)) + αdi(a).

The utility of firm i is

ui(a) =

(
(β − γ0) + γn

∑
c∈C aicπc(a)− γ

∑
i′ 6=i

∑
c∈C ai′cπc(a)

n+ 1

)2

.

Since n ≥ S, the utility of i rises as a result of the deviation. Both i and c are strictly better

off.

Suppose condition (ii) is not satisfied, let c be a club that has i′ but not i, consider a

deviation by i and c where c exiles i′ to admit i. With the deviation, the productivity of c
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and all the clubs i joins increase; the costs of i and all the firms in club c and clubs that have

i decrease. The aggregate cost reduction of firms other than i is not greater than

di(a)(S − 1)α + (S − 1)α (di(a + 1− di′(a))) ,

while the cost reduction of i is not less than

di(a)α + α (di(a + 1− di′(a))) .

Since n ≥ S, the utility of i rises as a result of the deviation. Both i and c are strictly better

off.

Suppose condition (iii) does not hold, consider a deviation by i and c where i quits c′ to

join c. With the deviation, the output of c increases; the costs of i and all the firms in club c

decrease. The aggregate cost reduction of firms other than i is not greater than

(S − 1) (f(sc(a) + 1)− f(sc(a)) + α(D − 1)) ,

while the cost reduction of i is not less than

f(sc(a) + 1)− f(sc(a)) + α(D − 1).

Since n ≥ S, the utility of i rises as a result of the deviation. Both i and c are strictly better

off.

Suppose condition (iv) does not hold. Since c ∈ C2(a), either sc(a) < S or there exists

an i′ ∈ I3(a) who is in c. Condition (iii) shows that it cannot be sc(a) < S, so there exists

an i′ ∈ I3(a) who is in c. Consider a deviation by i and c where i quits c′, c exiles i′ and i

joins c. With the deviation, the productivity of c increases; the costs of i and all the firms

tin club c decrease. The aggregate cost reduction of firms other than i is not greater than

(S − 1)α (D − di′(a)), while the cost reduction of i is not less than α (D − di′(a)). Since

n ≥ S, the utility of i rises as a result of the deviation. Both i and c are strictly better off.

We can then prove Proposition 5 in the same way we prove Proposition 2.

First, we show |I3(a)| ≤ S. Take any i ∈ I3(a) with the minimal degree and let c ∈ C
be any club that i joins. By condition (ii), all firms in I3(a) are in c. Since sc(a) ≤ S,

|I3(a)| ≤ S.

Second, we show |C2(a)| ≤ D. We consider the cases of I3(a) = ∅ and I3(a) 6= ∅
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separately. If I3(a) = ∅, then all individuals who member clubs in C2(a) are of degree D

and, for any c ∈ C2(a), sc(a) < S (as c does not achieve maximal productivity). Take any

c′ ∈ C2(a) with minimal productivity and any member i of c′. Take any c ∈ C2(a) \ {c′},
by condition (iii), i is a member of c. Hence i is in all clubs in C2(a). Since di(a) ≤ D,

|C2(a)| ≤ D. If I3(a) 6= ∅, then take any i ∈ I3(a) with maximal degree and any c ∈ C2(a).

Since c does not achieve maximal productivity, either sc(a) < S or c has a member in I3(a).

In the first case, i is in c by condition (i). In the second case, i is a member of c by condition

(ii). Hence, i is a member of all clubs in C2(a). Since di(a) ≤ D, |C2(a)| ≤ D.

Third, we show |I2(a)| ≤ (S − 1)(D + 1)/2. Notice first that, by definition, every firm in

I2(a) joins at least one club in C2(a). Thus, the aggregate membership of firms in I2(a) in

the clubs in C2(a) is at least x+2(|I2(a)|−x), where x is the number of firms from I2(a) that

join exactly one club in C2(a). On the other hand, since |C2(a)| ≤ D and, for all c ∈ C2(a),

either sc(a) ≤ S − 1 or c has a member in I3(a), so aggregate club capacity of the clubs in

C2(a) for firms in I2(a) is at most (S − 1)D. Hence

x+ 2(|I2(a)| − x) = 2|I2(a)| − x ≤ (S − 1)D.

The number of firms in I2(a) that are in exactly one club in C2(a) is at most S − 1. To see

that, suppose that an i ∈ I2(a) joins exactly one c′ ∈ C2(a). Let c ∈ C2(a) \ {c′} be another

club in C2(a). Since i is not in c so, by condition (iv), πc(a) < πc′(a). Hence c′ must achieve

the highest productivity of all clubs in C2(a) and must be unique such. Since all individuals

in C2(a) who member exactly one club in C2(a) must be members of the same club from

C2(a) and since, this club can host at most S − 1 members from I2(a), x ≤ S − 1. From the

equation above, it follows that |I2(a)| ≤ (S − 1)(D + 1)/2.

We then use these derivations on the size of the different groups to derive bounds on the

size of I1(a) and I2(a) and I4(a).

�

Proof for Proposition 6

We first show by construction that there exists a membership profile a where the resulting

alliance network consists of separate 2-cliques with strength S links and the resulting firm

network consists of separate S-cliques with strength 2 links. Allocate the first S firms to clubs

c1 and c2, the next S firms to c3 and c4, etc. Stop when all clubs are full (this happens when

x = m) or all firms join D = 2 clubs (this happens when x = nD/S).
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When h(·) is convex, with this constructed membership profile, all clubs that have members

reach the highest productivity possible, which is f(S)+h(S(D−1)). Thus, clubs with members

have no incentive to deviate. For the clubs with no members, no firm is willing to quit its

club to join such a club, since then the production cost of the firm rises by

[f(S) + h(S)− f(1)− h(1)] + [h(S)− h(S − 1)− h(1)],

while the aggregate cost of other firms rise by

(S − 1)[f(S)− f(S − 1) + h(S)− h(S − 1)] + (S − 1)[h(S)− h(S − 1)− h(1)].

With this deviation, given that n ≥ S, f(1) ≤ f(S− 1) and h(1) ≤ h(S− 1), the profit of the

firm drops. Therefore, the constructed membership profile is stable when h(·) is convex.

When h(·) is concave, consider a deviation by club c1 and individual iS+1 where c1 exiles

i1 to admit iS+1 and iS+1 quits c3 to join c1. It is straightforward to verify that the deviation

benefits both c1 and iS+1. Therefore, the constructed membership profile is not stable when

h(·) is concave.

Now we show, by construction, that there exists a membership profile a where the resulting

alliance network is an S-regular network with strength 1 links and the resulting firm network

is a D(S−1)-regular network with strength 1 links. Consider the following algorithm: at each

step, pick a club with the maximum number of empty slots, fill the slots with different firms,

and then allocate each of those firms to a different club with the maximum number of empty

slots. Stop when all the clubs are full or all the firms join D = 2 clubs.

When h(·) is concave, with this constructed membership profile, all clubs that have mem-

bers reach the highest productivity possible, which is f(S) + S(D− 1)h(1). Thus, clubs with

members have no incentive to deviate. For the clubs with no members, no firm is willing to

quit its club to join any of them, because then the production cost of the firm rises by

f(S) + Sh(1)− f(1)− h(1),

while the aggregate costs of other firms rise by

(S − 1)[f(S)− f(S − 1) + Sh(1)− (S − 1)h(1)].

With this deviation, given that n ≥ S, f(1) ≤ f(S− 1) and h(1) ≤ h(S− 1), the profit of the
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firm drops. Therefore, the constructed membership profile is stable when h(·) is concave.

When h(·) is convex, in the constructed profile, for each c, it must has at least 2 strength 1

links with c′ and c′′. Let i1 be the common member of c and c′ and i′′ be the common member

of c and c′′. There must also exist a firm, call it i3, that is in c′ and c′′′ 6= c. Consider the

deviation by c and i3 where c exiles i2 to admit i3 and i3 quits c′′′ to join c. This deviation

benefits both c and i3. Therefore, the constructed membership profile is not stable when h(·)
is convex. �
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