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The Jones-Wenzl idempotents of the Temperley-Lieb algebra 
are celebrated elements defined over characteristic zero and for 
generic loop parameter. Given a pointed field (R, δ), we extend 
the existing results of Burrull, Libedinsky and Sentinelli to 
determine a recursive form for the idempotents describing the 
projective cover of the trivial TLR

n (δ)-module.
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open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

Introduction

The Temperley-Lieb algebra, TLn, defined over ring R with distinguished element δ
by the generators {ui}n−1

i=1 and relations

u2
i = δui (0.1)

uiuj = ujui |i− j| ≥ 2 (0.2)

uiui±1ui = ui 1 ≤ i± 1 < n, (0.3)

has recently been recast into the limelight.
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First studied over characteristic zero, as algebras of transfer operators in lattice mod-
els, these structures found extensive use in physics and, later, knot theory where Vaughan 
Jones famously used them to define the Jones polynomial invariant.

More recently, Temperley-Lieb algebras and their variants have become the sub-
ject of study by those seeking to understand Soergel bimodule theory [7]. Here they 
are intricately linked to the categorification of the Hecke algebra of type Ã1 by two-
colour Soergel bimodules. From this categorification arises interesting “canonical” bases 
of certain Hecke algebras, of which the Kazhdan-Lusztig basis is probably the most 
famed.

However, other interesting bases occur, particularly when the underlying ring has posi-
tive characteristic. Work by Jensen and Williamson [16] develops the so-called p-canonical 
basis or p-Kazhdan-Lusztig basis for crystallographic Coxeter types. The underlying cal-
culations in the two-colour case reduce to results in the representation theory of the 
Temperley-Lieb algebra.

In the language of Soergel bimodules, Jones-Wenzl idempotents describe the inde-
composable objects. Recently, Burrull, Libedinsky and Sentinelli [3] determined the 
corresponding elements of TLn defined over a field of characteristic p ≥ 2 for the param-
eter δ = 2. The results of Erdmann and Henke [5] implicitly describing the p-canonical 
bases are crucial.

Throughout these results, the role of the Temperley-Lieb algebra as the centralizer ring 
EndUq(sl2)(V ⊗n) has been key to understanding its modular representation theory (see 
[1,2], and the reliance on [5] in [4,3] for examples). The explicit nature of the tilting 
theory of Uq(sl2) has underpinned most of the results.

However, the algebras themselves admit a pleasing diagrammatic presentation stem-
ming from Eqs. (0.1) to (0.3). Most of the theory of the characteristic zero case was 
determined purely “combinatorially” from this [19,11]. In [13] the second author re-
derives many of the results known about the representation theory of TLn over positive 
characteristic without recourse to tilting theory of Uq(sl2).

This paper builds on [13] and [3] to construct (�, p)-Jones-Wenzl idempotents giving 
the indecomposable objects in the most general case of any field and any parameter. This 
answers one of the questions in [3, 1.3.5] by showing that the construction given extends 
quite simply to other (non-integral) realisations. That is, if the reflection representation 
of D2� of the form

s �→
(
−1 δ
0 1

)
t �→

(
1 0
δ −1

)

for adjacent reflection generators s and t of D2� is chosen for the Ã1 Hecke category, 
then the indecomposable objects are given by (�, p)-Jones-Wenzl idempotents. If the two 
generators have differing off-diagonal values so the realisation is not symmetric, minor 
changes to the result occur with quantum numbers replaced by two-coloured quantum 
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numbers [7, §A.1]. The exact modification is not complicated (it predominantly consists 
of in-place replacements), but the careful handling of even and odd cases is beyond the 
scope of this paper.

This paper is arranged as follows. We briefly recall some of the needed concepts and 
define our notation in Section 1. In Section 2 we recall the known theory of Jones-Wenzl 
idempotents over characteristic zero and make some observations in positive character-
istic. In Section 3 we recount the construction of p-Jones-Wenzl elements due to Burrull, 
Libedinsky and Sentinelli [3], with a slight modification to allow for generic parameter. 
Section 4 collects the properties of projective modules for TLn that will be needed in 
the result and we prove our main theorem in Section 5. Finally, Section 6 examines the 
action of the Markov trace on our new elements.

1. Notation and conventions

We will use the notation and conventions for TLR
n (δ) set out in [13]. Note that in this 

formulation, closed loops resolve to a factor of δ as opposed to −δ as is often found in 
the literature. Throughout, we will omit the δ from our notation for the algebra TLR

n , 
as every ring R discussed will be naturally unambiguously pointed.

The Temperley-Lieb category TL is simply the linear category on N with morphism 
spaces spanned by Temperley-Lieb diagrams. Objects in this category will be written as 
n.

Throughout we distinguish the diagram basis for TLn. This is a basis given by all 
(n, n) Temperley-Lieb diagrams. Since multiplication of elements in this basis has image 
in its Z[δ]-span, this will allow us to move between base rings.

The Temperley-Lieb algebras are all equipped with an anti-automorphism, denoted ι, 
which acts on diagrams by vertical reflection. This linear map satisfies ι(xy) = ι(y)ι(x)
and ι(ιx) = x for each pair of elements x, y ∈ TLn. This is known as the cellular 
involution.

Each Temperley-Lieb algebra admits a trivial module. This is a one-dimensional mod-
ule on which every diagram except the identity acts as zero. The identity diagram acts 
as one. Equivalently, if In is the maximal ideal generated by all non-identity diagrams, 
then the trivial module is TLn/In.

Of critical importance will be the standard modules of TLn also known as cell modules, 
denoted S(n, m) for m ≤ n of the same parity. These have basis given by diagrams from 
n to m with the natural left action of TLn, modulo diagrams with fewer than m through-
strands. The trivial module is thus S(n, n).

The quantum numbers [n] are polynomials in Z[δ] given by [0] = 0, [1] = 1 and [n +1] =
δ[n] − [n − 1]. We will often specialise these to a given ring, if δ is understood, by 
considering their image under the natural ring homomorphism. If δ ∈ R, we say that δ
satisfies [n] if this image of [n] is zero in R.
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If � and p are given, then the (�, p)-digits or the (�, p)-expansion of the natural number 
n are the numbers ni such that n =

∑b
i=0 nip

(i) where

p(i) =
{

1 i = 0
pi−1� i > 0

,

and 0 ≤ ni < p(i+1)

2. Jones-Wenzl idempotents

Here we discuss the Jones-Wenzl idempotents, their construction, and when they exist.

2.1. Semi-simple case

The Jones-Wenzl idempotent, denoted JWn, is a celebrated element of TLQ(δ)
n (where 

δ is indeterminate). It is the unique idempotent e such that TLn · e is isomorphic to the 
trivial module. As such it satisfies the relations

ui · JWn = 0 ∀ 1 ≤ i < n. (2.1)

It is clear that since JWn is idempotent, the coefficient of the identity diagram n → n

is 1.

Lemma 2.1. Let R be any pointed ring. Suppose e is an idempotent of TLR
n such that 

Eq. (2.1) holds. Then e is invariant under the cellular involution ι, and e · ui = 0 for all 
1 ≤ i < n. Thus e is the unique idempotent of TLR

n satisfying Eq. (2.1).

Proof. Write e = idn +f . Thus f lies in the ideal In, and in particular lies in the span 
of diagrams factoring through some ui. Hence fe = 0. However ι(f) is also in In so 
(ιf)e = 0. Thus

e = (idn +ιf) · e = (ιe)e,

which is fixed under ι. Thus 0 = ι(ui · e) = ιe · ιui = e · ui.
Finally, if e1 and e2 are two such idempotents, then both have unit coefficient for the 

identity diagram and so e1 = e1e2 = e2. �
We now argue that idempotents satisfying Eq. (2.1) exist. Indeed, the algebra TLQ(δ)

n

is semi-simple so the trivial module is projective. Thus the idempotent e such that 
TLQ(δ)

n · e is isomorphic to the trivial module suffices.
On the other hand, there is also a recursive formulation that explicitly constructs the 

idempotents:
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Lemma 2.2. Note that JW1 = id1. For n > 1,

JWn = JWn−1 ⊗ id1 −
[n]

[n + 1](JWn−1 ⊗ id1) ◦ un−1 ◦ (JWn−1 ⊗ id1). (2.2)

In diagrams,

JWn+1
...

... = JWn
...

... − [n]
[n + 1]

JWn JWn
...

...
... . (2.3)

For example,

JW3 = − [2]
[3]

(
+

)
+ 1

[3]

(
+

)
. (2.4)

An equivalent formulation is given by Morrison as follows:

Lemma 2.3. [10, 4.1] Suppose D is a diagram n + 1 → n + 1. Let D̂ be the diagram 
n + 2 → n formed by folding across the lowest target site of D. Let {i} be the set of 
positions of simple caps in D̂ and Di ∈ TLn the diagrams obtained by removing those 
caps. Then

coeff
∈JWn+1

(D) =
∑
{i}

[i]
[n + 1] coeff

∈JWn

(Di) (2.5)

There are other recursive relations both for the morphisms and their coefficients in 
various bases [12] and expansions involving more or fewer copies of JWn in the second 
term (so-called “single” and “triple” clasp formulae). The authors are not aware of any 
formula for the coefficients of diagrams in the Jones-Wenzl idempotents in the semi-
simple case that is not inherently recurrent.

2.2. Characteristic zero

If we now specialise to a characteristic zero pointed field (k, δ) where δ satisfies [�]
but no [m] for 0 < m < �, the Temperley-Lieb algebras are no longer semi-simple for 
all n. In this case the trivial module is not, in general, projective, which means that the 
Jones-Wenzl elements “do not exist”.

To be precise, let m(δ) ∈ Z[δ] be the minimal polynomial of δ over the integers and p
the prime ideal of Q[δ] generated by m(δ). The element JWn lies in TLQ(δ)

n . We construct 
both the “integer form” of TLn over Q[δ]p and the algebra of interest which is defined 
over the characteristic zero “target” field Q[δ]p/pp ⊆ k. We can summarise these rings 
as:
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Q[δ]p Q(δ)

Q[δ]p/pp k

i

If n ≥ � and n �≡� −1 then in the basis of diagrams, the Jones-Wenzl idempotent in 
TLQ(δ)

n does not lie in the image of i and thus cannot descend to an element of TLk
n. 

Indeed if it did, then the trivial module would be projective which is not the case [11, 
8.1].

We can rephrase as follows. If n ≥ � and n �≡� −1, then the Jones-Wenzl idempotent 
JWn written in terms of diagrams cannot be put over a denominator not divisible by 
m(δ).

For example, observe that Eq. (2.4) makes no sense if δ = ±1 so that [3] = 0. However, 
if n ≡3 −1 then indeed the equation makes sense. As an example, set � = 2 so δ = 0 and 
then Eq. (2.4) simplifies to the sum of three diagrams.

If we have the particular case n = � − 1 then Graham and Lehrer found an elegant 
“non-recursive” form for the coefficients of the diagrams in JWn. Recall from [13] the 
definition of the “candidate morphisms”

vr,s =
∑
x

hF (x)x (2.6)

and the subsequent proposition

Proposition 2.4. [9, 3.6] If s < r < s +2� and s +r ≡� −2 then the map S(n, r) → S(n, s)
given by x �→ x ◦ vr,s is a morphism of TLn modules for every n.

The immediate corollary (from setting s = 0 and r = 2� − 2) is that the Jones-Wenzl 
idempotent JW�−1 exists over k and it’s diagram coefficients can be found by “rotating 
the target sites” and then computing the hook-formula hF (x).

2.3. Positive characteristic

Let us now focus on the positive characteristic case. As before, if no quantum number 
vanishes, we are in a semi-simple case and Eq. (2.2) gives us all JWn. Thus assume that 
we are working over a pointed field (k, δ) of characteristic p and that � is the least non-
negative such that [�] is satisfied by δ̄ ∈ k. Thus we say that we are under (�, p)-torsion.

Let m(δ) ∈ Fp[δ] be the minimal polynomial satisfied by δ and let m(δ) be a preimage 
in Z[δ]. Then m = (p, m(δ)) is a maximal ideal in Z[δ]. Consider S = Z[δ]m, a local 
noetherian domain with maximal ideal mS. Now m(x) /∈ (p) so, (0) ⊂ (p) ⊂ m strictly 
and S is regular of Krull dimension 2. As such, its completion with respect to m, which 
we will call R is regular and hence a domain. Set F to be the field of fractions of R. This 
is a characteristic zero field containing Q(δ).
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R = Ẑ[δ]m F Q(δ)

R/mR k

What we have now is a “(�, p)-modular system” in that we have a triple (F, R, k) such 
that F is a characteristic zero field, which is the field of fractions of R, a complete local 
domain with residue field k. Thus, any idempotent in an algebra defined over k can be 
raised to an idempotent over R and then injected in to one defined over F .

We would like to know if this is reversible. That is, given an idempotent defined over 
Q(δ), we consider it as an idempotent over F and ask if it lies in the algebra over R. If 
so, we may reduce it modulo the maximal ideal to find an idempotent over k.

In plain terms, we wish to know if the coefficients of the diagrams in JWn can be 
written without denominators divisible by p or m(δ). If so, the idempotent “exists” in 
our field of positive characteristic.

Should an element e satisfying Eq. (2.1) exist over k, it is clear that TLk
n ·e is a trivial 

module and so the trivial module is projective. Thus we can raise the idempotent e to 
an element of TLR

n where action by ui sends the element to something divisible by mr

for every r and hence equal to zero. That is to say, it lifts to JWn.
Thus we may consider an alternative defining property of the Jones-Wenzl element 

that it is the idempotent that generates the trivial module’s cover, which is equal to the 
trivial module, whenever that is the case.

As such, the results of [13] (in particular Theorem 3.4 combined with 8.3) can be 
interpreted as follows:

Theorem 2.5. The Jones-Wenzl idempotent JWn in TLQ(δ)
n descends to an element of 

TLk
n iff n < � or n < �p and n ≡� −1 or n = a�pk − 1 for some k ≥ 1 and 1 ≤ a < p.

An equivalent statement is

Corollary 2.6. The Jones-Wenzl idempotent JWn descends to an element of TLk
n(δ) iff 

the quantum binomials 
[
n
r

]
are invertible in k for all 0 ≤ r ≤ n.

This has been shown by Webster in the appendix of [6]. However the proof there, and 
the alternative provided in [17] both construct linear maps of representations of Uq(sl2)
which are shown to be morphisms (and hence elements of TLn). This is the only proof 
not to use the Schur-Weyl duality of which the authors are aware.

Regrettably, the authors are not aware of any formula in the style of Eq. (2.6) giving 
the form of these idempotents in generality. However, we are able to illuminate one 
further case constructively.

Given � and p, we write p(i) = �pi−1 for all i > 0 and p(0) = 1. We will explicitly 
construct JW2p(r)−1. Key in the below is that the construction of JWp(r)−1 as an “un-
folding” of a trivial submodule of S(2p(r) − 2, 0) shows that the first trace vanishes (it 
corresponds by the action of up(r)−1 on that module).
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Proposition 2.7. The element JW2p(r)−1 exists in TLk
2p(r)−1 for each r ≥ 1.

Proof. We construct an element of TL2p(r)−1 for which the identity diagram appears 
with coefficient 1 and which is killed by all cups and caps. It is clear that this element 
then satisfies Eq. (2.1).

To do this, consider the “turn up” operator which takes a morphism n → m to a 
morphism n + 1 → m− 1 by “turning the top strand back”. Formally, this is the map

um,1 : x �→ (id⊗x) ◦ (∩ ⊗ idm−1). (2.7)

We can iterate this to turn multiple strands: set um,k = um−k+1,1 ◦ um,k−1.
Now, let Ji = ui(JWp(r)−1) and J−i = ι (Ji) for 0 ≤ i ≤ p(r)−1. Thus Ji is a morphism 

p(r) − 1 + i → p(r) − 1 − i. In diagrams,

Ji =
JWp(r)−1

...

p
(
r
)−

1
i ...

p
(
r
)−

1
−

i

...

0 ≤ i ≤ p(r) − 1 (2.8)

and

J−i =
JWp(r)−1

...

p
(
r
)−

1
i...

p
(
r
)−

1
−

i

...

0 ≤ i ≤ p(r) − 1 (2.9)

Recall that TL is equipped with an automorphism which flips all diagrams vertically. Let 
Ki be the image of Ji under this morphism.

The elements Ji and Ki have been chosen such that composition with any cup or cap 
results in the zero morphism. Key to this observation is that the idempotent JWp(r)−1
vanishes under the trace defined in Section 6.

Now we may define

e =
p(r)−1∑

i=−p(r)−1

(−1)iι(Ki) ⊗ id1 ⊗Ji. (2.10)

Diagrammatically, a typical term in the sum (where i ≥ 0) looks like
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(−1)i

JWp(r)−1
...

p
(
r
)−

1
i ...

p
(
r
)−

i−
1

...

JWp(r)−1 ...

p
(
r
)−

1
i...

p
(
r
)−

i−
1

...

(2.11)

The sign coefficient of the summand has been chosen such that the term for which i = 0
(i.e. the unique summand containing the identity diagram) has coefficient 1. It will thus 
suffice to show that e is killed by the (left) action of uj for each 1 ≤ j < p(r) − 1.

We know that ι(Ki) and Ji are killed by all cups on the left and so the only terms in 
Eq. (2.10) that do not vanish are those for which p(r) − i = j or p(r) − i = j + 1.

These terms are identical up to sign (in which they differ) and so cancel. They are both 
given (up to sign) by the diagram in Eq. (2.12) and can be written as (−1)iι(Kj) ⊗∩ ⊗Jj .

JWp(r)−1...

p
(
r
)−

1
p
(
r
)−

1
−

j

j

JWp(r)−1 ...

p
(
r
)−

1
p
(
r
)−

j

j
−

1

(2.12)

Since all the terms in the summand are sent to zero by all uj, and the coefficient of the 
identity diagram is an idempotent, we can invoke Lemma 2.1 to show that this is indeed 
JW2p(r)−1. �
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Readers familiar with the Dihedral Cathedral [7] may be familiar with the “circular” 
Jones-Wenzl notation. This stems from the observation that rotation of the Jones-Wenzl 
element, JWp(r)−1, by a single strand leaves it invariant. In the general case where JWn

is defined, this is no longer so.

3. p-Jones-Wenzl idempotents

We now turn to extending the work of Burrull, Libedinsky and Sentinelli [3] in gener-
alising the definition of the Jones-Wenzl idempotent to a sensible element of TLk

n for all 
n. The element constructed in [3] is in fact the idempotent defining the projective cover 
of the trivial module, although it is not explicitly stated as such. However, the construc-
tion present only covers the δ = 2 case where the situation is “over the integers”. In this 
paper we present a generalisation to all δ. Our results will specialise in the case δ = 2, 
which corresponds to � = p.

We briefly recount their methodology here for completeness and introduce terminology 
to indicate dependence on δ. The definition that follows is largely a rewrite of section 
2.3 in [3] and the reader is encouraged to peruse that paper for further information.

Recall the definition of supp(n) in [13]. If n + 1 =
∑b

i=a nip
(i) is the (�, p)-expansion 

of n + 1,

supp(n) = In = {nbp
(b) ± nb−1p

(b−1) ± · · · ± nap
(a) − 1} (3.1)

We use the notation In to keep parity with [3].
A number n is called (�, p)-Adam if In = {n} so a = b. Equivalently, n < �, or n < �p

and is congruent to −1 modulo � or of the form cp(r) − 1 for 1 ≤ c < p and r ≥ 1. That 
is to say, by Theorem 2.5, a number n is (�, p)-Adam iff JWn can be lifted to TLk

n.
If a number is not (�, p)-Adam, and a is minimal such that na �= 0, define f[n] =∑b
i=a+1 nip

(i) − 1. This is known as the (�, p)-“father” of n. It is then the case that

In = {i + nap
(a) : i ∈ If[n]} � {i− nap

(a) : i ∈ If[n]}. (3.2)

We inductively define elements p�JWQ(δ)
n ∈ TLQ(δ)

n as

p
�JWQ(δ)

n =
∑
j∈In

λj
n pjn · JWj · ιpjn (3.3)

where pjn are elements of HomTL(n, j) and λj
n ∈ Q(δ). In diagrams,

p
�JWQ(δ)

n
...

... =
∑

λj
n JWjpjn pjn

...
... (3.4)
j∈In
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These elements will, in fact, be defined over Z[δ]m which is to say that neither m(δ)
nor p will divide any denominators in the coefficients of the diagrams. As such they will 
descend to TLk

n and will be the idempotents of the projective cover of the trivial module.
To define p

�JWQ(δ)
n , we induct on the cardinality of In. When In = {n} we set 

p
�JWQ(δ)

n = JWn so that λn
n = 1 and pnn = idn.

Now suppose that n is not (�, p)-Adam, but all λj
n′ and pjn′ are known for n′ with 

smaller cardinality In′ . In particular, λj
f[n] and pjf[n] are all known. Let m = n − f[n] =

nap
(a). Then for each i ∈ If[n], set

λi−m
n = [i + 1 −m]

[i + 1] λi
f[n] , λi+m

n = λi
f[n] (3.5)

and

pi−m
n

...
... =

pif[n] JWi
...

...

...

...
, pi+m

n
...

... =
pif[n]

...
...

...

(3.6)

This concludes the definition of p�JWQ(δ)
n .

It is clear that in the case δ = 2, which implies � = p, this coincides1 with the definition 
given by Burrull, Libedinsky and Sentinelli. The only changes are to introduce quantum 
numbers in the fractions in Eq. (3.5) and to use our generalized sets In.

Letting U i
n = pin · JWi · ιpjn so that p�JWQ(δ)

n =
∑

i∈In
λi
nU

i
n, we have the following 

proposition. The proof carries over exactly from [3], but with the use of quantum numbers 
in all the fractions.

Proposition 3.1. [3, 3.2] The element p�JWQ(δ)
n ∈ TLQ(δ)

n is an idempotent. Moreover, 
{λi

nU
i
n}i+1∈In is a set of mutually orthogonal idempotents.

The result hinges on the equation (for each i, j ∈ In)

JWi · ιpin · pjn · JWj =
{

1
λi
n
JWi i = j

0 i �= j
(3.7)

which we may read as 〈pin, pin〉 = 1
λi
n

in S(n, i).

Lemma 3.2. Each TLQ(δ)
n · λi

nU
i
n is isomorphic to S(n, i).

1 Readers concerned with the lack of sign in Eq. (3.5) should recall that our convention is that loops 
resolve to δ, instead of −δ.
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Proof. Recall that we are in the semi-simple case and omit the superscripts. Consider 
the TLn-morphism φ : TLn · λi

nU
i
n → S(n, i) defined by

a · pinJWi ιp
i
n �→ a · pin (3.8)

This is surjective since any nonzero element of S(n, i) generates the entire module and 
is injective as if a · pin = 0 ∈ S(n, i), then the morphism a · pin ∈ HomTL(n, i) factors 
through some j for j < i and hence a · pinJWi = 0. �
Corollary 3.3. As TLQ(δ)

n -modules, TLQ(δ)
n · p�JWQ(δ)

n �
⊕

i+1∈In
S(n, i).

Similarly to Proposition 3.1, the proof of the following runs identically to that in [3].

Proposition 3.4. The idempotents p�JWQ(δ)
n satisfy the “absorption property”,

p
�JWQ(δ)

n

p
�JWQ(δ)

f[n]

idm

= p
�JWQ(δ)

n

p
�JWQ(δ)

f[n]

idm

= p
�JWQ(δ)

n . (3.9)

Corollary 3.3 and Proposition 3.4, along with knowledge of the composition factors 
of the projective cover of the trivial module will give us all the ingredients to show the 
following:

Proposition 3.5. The element p�JWQ(δ)
n can be lifted to Z[δ]m and therefore when written 

in the diagram basis, each coefficient can be written as a/b where b does not vanish in k.

The proof is deferred until Section 5. This allows us to define the (�, p)-Jones-Wenzl 
projector on n strands.

Definition 3.6. Let (R, δ) be a field with (�, p) torsion. The (�, p)-Jones-Wenzl idempotent 
in TLk

n(δ), denoted p�JWk
n, is that element obtained by replacing each coefficient a/b in 

p
�JWQ(δ)

n by its image in k.

To prove Proposition 3.5, we will need a further claim that will be shown simultane-
ously.

Theorem 3.7. As a left TLk
n-module, TLk

n · p�JWk
n is isomorphic to the projective cover of 

the trivial TLk
n-module.

As such, we obtain the corollary that the idempotent p�JWk
n is primitive.
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4. Induction and projective covers of the trivial module

4.1. Induction

In this section, R and δ will be arbitrary and therefore omitted from the notation.
Recall that TLn−1 ↪→ TLn naturally by the addition of a “through string” at the 

lowest sites. In this way, we may induce TLn−1-modules

M↑ = TLn ⊗TLn−1 M (4.1)

and restrict TLn-modules to TLn−1-modules, which we denote M↓.
The proof of the following proposition follows exactly as in the characteristic zero 

case.

Proposition 4.1. [11, 6.3] If δ �= 0 or (n, m) �= (2, 0),

S(n− 1,m)↑ ∼= S(n + 1,m)↓ (4.2)

as TLn-modules.

The power in this is that restriction is easily understood, and again the characteristic 
zero proof applies over arbitrary rings.

Proposition 4.2. [11, 4.1] There is a short exact sequence of TLn−1 modules,

0 → S(n− 1,m− 1) → S(n,m)↓ → S(n− 1,m + 1) → 0. (4.3)

We will be interested in inducing from TLm to TLn for m < n, which we will denote 
M↑nm and the corresponding restriction M↓nm. This is achieved by n − m iterations of 
the induction described above. A trivial consequence of Proposition 4.2 is that

Corollary 4.3. The module S(n, m)↑Nn has a filtration by standard modules, and the mul-
tiplicity of S(N, i) is given by

(
N − n

(m + N − n− i)/2

)
.

In particular, the only S(N, i) appearing are those for which m −N +n ≤ i ≤ m +N −n

and for i ∈ {m ± (N − n)} the factor S(N, i) appears exactly once.

4.2. Projective covers of the trivial module

Let us suppose that R has (�, p)-torsion (and that p = ∞ if R is characteristic zero and 
that � = ∞ if δ satisfies no quantum number). Recall that each projective module of TLn
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has a filtration by standard (cell) modules. For m ≡2 n, let P (n, m) be the projective 
cover of the simple head of S(n, m) as a TLn-module. A corollary of Theorems 3.4 and 
8.4 of [13] is

Corollary 4.4. The multiplicity of S(n, m) in a standard filtration of P (n, m′) is 1 iff 
m ∈ Im′ , otherwise it is 0.

Let ν(p)(x) = 0 if � � x and νp(x/�) + 1 otherwise, so that ν(p)(x) gives the position of 
the least significant nonzero (�, p)-digit of x. A trivial consequence of the above is that 
if S(n, m) appears in a standard filtration of P (n, m′), then ν(p)(m) = ν(p)(m′).

Suppose now that N > n and that m = N −n is such that m < p(ν(p)(n)) so ν(p)(n) >
ν(p)(m) = ν(p)(N). Consider the module P (n, n)↑Nn . This is a projective module. If we 
consider the filtration of P (n, n)↑Nn by cell modules, we see by Corollary 4.3 that the 
S(N, j) appearing in a filtration of P (n, n)↑Nn must all satisfy

i−N + n ≤ j ≤ i + N − n (4.4)

for some i + 1 ∈ In. In particular, the trivial module S(N, N) appears exactly once 
and careful examination of Proposition 4.2 shows that it must appear in the head of 
P (n, n)↑Nn . As such, there is a unique summand of P (n, n)↑Nn isomorphic to P (N, N). 
Additionally, from Eq. (3.2) and Corollary 4.3, where nap

(a) = m = N −n, we have fur-
ther that every module S(N, i) appearing in a filtration of both P (n, n)↑Nn and P (N, N)
does so in each exactly once.

To make these observations numerical, consider the Grothendieck group of TLn, de-
noted here by G0(TLn). This is a free abelian group with basis the isomorphism types 
of simple TLn modules. That is to say, its elements are given by (isomorphism classes 
of) finite-dimensional TLn-modules, modulo the relation that if there is a short exact 
sequence 0 → M1 → M2 → M3 → 0, then [M2] = [M1] + [M3], where [M ] is the class 
of TLn-module in G0(TLn). Similarly, we will consider K0(TLn), the free abelian group 
on (isomorphism classes of) indecomposable projective modules with the same relation.

A consequence of [8, 3.6] is that {[S(n, i)]}i∈Λ0
form a basis for G0(TLn). In G0(TLn), 

the above discussion can be rephrased as[
P (n, n)↑Nn

]
= [P (N,N)] +

∑
j∈J

[S(N, j)] (4.5)

where J is a multiset disjoint from In. Equation (4.5) should be read as a rephrasing of [3, 
Lemma 4.11], but without recourse to the p-Kazhdan-Lusztig basis, Soergel bimodule 
theory or Schur-Weyl duality.

5. Main result

Recall the cde-Triangle of [18, §9.5]:
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G0(TLF
n )

K0(TLk
n) G0(TLk

n)

de

c

Here, c simply takes the image of a module [M ] ∈ K0(TLk
n) to its image [M ] ∈ G0(TLk

n).
The map d is defined on the basis of G0(TLF

n ). Recall that this is a semi-simple 
algebra and the simple modules are exactly S(n, i) for i ≤ n and i ≡2 n. We define 
d([S(n, i)]) = [S(n, i)]. It is clear that d is the transpose of the decomposition matrix.

To define e, one uses idempotent lifting techniques. Let P be a projective module of 
TLk

n and suppose that P � TLk
n · e for some idempotent e defined in diagrams over k. 

Then lift e to an idempotent over F . This defines a projective TLF
n -module P̂ and the 

image e[P ] is [P̂ ].
It is classical theory that c = de.

We now have all the results required to prove Proposition 3.5 and Theorem 3.7.

Proof. We show the results by mathematical induction on |In|. When |In| = 1, we have 
that p�JWk

n = JWn exists in TLk
n by Theorem 2.5.

Otherwise, assume both Proposition 3.5 and Theorem 3.7 hold for all n′ with |In′ | <
|In|. In particular the results are known for f[n]. Thus p�JWQ(δ)

f[n] descends to an idempotent 
p
�JWk

f[n] in TLk
n which describes the projective module P (f[n], f[n]).

Now consider the module P (f[n], f[n])↑nf[n]. This is isomorphic to the module TLk
n · g

where g is the idempotent p�JWk
f[n] ⊗ idn−f[n] in TLk

n. The composition factors of this 
module are described in Eq. (4.5) and the discussion preceding it. In particular, if e is 
the unique idempotent of TLk

n describing the projective cover of the trivial module, then 
e · P (f[n], f[n])↑nf[n] is a non-zero module isomorphic to P (n, n).

As such e · g = g · e = e. If we lift both of these elements to F , say to ê and ĝ we 
obtain ê · ĝ = ĝ · ê = ê, so in particular

ê ∈ ĝ · TLF
n · ĝ ∼= EndTLF

n
(TLF

n · ĝ). (5.1)

But TLF
n · ĝ is exactly the lift of P (f[n], f[n])↑nf[n] to characteristic zero and so ĝ =

p
�JWQ(δ)

f[n] ⊗idn−f[n]. Thus Proposition 3.4 claims that p�JWQ(δ)
n ·ĝ = ĝ·p�JWQ(δ)

n = p
�JWQ(δ)

n . 
Thus too

p
�JWQ(δ)

n ∈ ĝ · TLF
n · ĝ ∼= EndTLF

n
(TLF

n · ĝ). (5.2)

However, recall that TLF
n is semi-simple and that e[P (f[n], f[n])↑nf[n]] = e[P (n, n)] +M

where M does not have support intersecting that of e[P (n, n)]. This is to say that there 

is a unique idempotent in EndTLF
n

(
P (f[n], f[n])↑nf[n]

)
with image having composition 

factors given by e[P (n, n)]. Clearly by construction ê is such an idempotent, and Corol-
lary 3.3 shows that p�JWQ(δ)

n is too. Hence they must be equal. �
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6. Traces

The trace map τ : HomTL(n, m) → HomTL(n− 1, m− 1) is defined diagrammatically 
as

τf = f
...

... (6.1)

By linear extension, this induces the trace τ : TLn → TLn−1 for each n ≥ 1 as well as the 
“full trace” τn : TLn → TL0 � k. These full traces were critical in the construction of the 
Jones polynomial invariant of knots. Computations of partial traces of generalized Jones-
Wenzl idempotents are necessary for computations of certain truncated categories [15,
14]. We can also compare the partial trace of generalized and traditional Jones-Wenzl 
idempotents to get a sense of how the mixed characteristic generalises the semi-simple 
case.

The action of the trace on Jones-Wenzl elements over characteristic zero is well un-
derstood and is almost folklore.

Lemma 6.1. [3, Lemma 3.1] In TLQ(δ)
n ,

τm (JWn) = [n + 1]
[n + 1 −m] JWn−m. (6.2)

However, this breaks down over positive characteristic. For example, the form of 
JW2p(r)−1 given in Proposition 2.7 makes clear that

τ
(
JW2p(r)−1

)
= 2 Jp(r)−1 ⊗ J−p(r)+1. (6.3)

This can be read as stating that [2p(r)]
[2p(r)−1]JW2p(r)−2 exists over k and has value given by 

Eq. (6.3). Notice that such a morphism has zero through-degree.
Recall from [13, Lemma 2.2] that [�m]/[�n] = m/n in k. The following is a trivial 

corollary of Lemma 6.1.

Corollary 6.2. Let 1 ≤ a ≤ p and r ≥ 1. Then as elements in TLk,

τp
(
JWk

ap(r)−1

)
= a

a− 1 JWk
(a−1)p(r)−1. (6.4)

We now ask how the trace acts on elements p�JWQ(δ)
n .
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Proposition 6.3. Recall that n + 1 =
∑b

i=a nip
(i) and let t = p(a).

τ t
(
p
�JWQ(δ)

n

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[na]
[na−1]

p
�JWQ(δ)

n−t na > 1 and a = 0
na

na−1
p
�JWQ(δ)

n−t na > 1 and a > 0

[2] p�JWQ(δ)
n−t na = 1 and a = 0

2 p
�JWQ(δ)

n−t na = 1 and a > 0

(6.5)

Proof. Let m = n − f[n] = nap
(a) > p(a) = t so that in particular f[n] = f[n− t] and

In =
(
If[n] + m

)
�
(
If[n] −m

)
; In−t =

(
If[n] + m− t

)
�
(
If[n] −m + t

)
(6.6)

Then notice that for i ∈ If[n],

τ t U i−m
n = U i−m+t

n−t (6.7)

τ t U i+m
n = [i + m + 1]

[i + m− t + 1]U
i+m−t
n−1 (6.8)

Recall from Eq. (3.5) that

p
�JWQ(δ)

n =
∑

i+1∈If[n]

(
[i + 1 −m]

[i + 1] λi
f[n]U

i−m
n + λi

f[n]U
i+m
n

)
(6.9)

and also

p
�JWQ(δ)

n−t =
∑

i+1∈If[n]

(
[i + 1 −m + t]

[i + 1] λi
f[n]U

i−m+t
n−t + λi

f[n]U
i+m−t
n−t

)
(6.10)

Then Eqs. (6.7) and (6.8) with Eq. (6.9) give

τ t
(
p
�JWQ(δ)

n

)
=

∑
i+1∈If[n]

(
[i + 1 −m]

[i + 1 − (m− t)]
[i + 1 + t−m]

[i + 1] λi
f[n]U

i−m+t
n−t

+ [i + 1 + m]
[i + 1 + (m− t)]λ

i
f[n]U

i+m−t
n−t

)
(6.11)

Now, for all i + 1 ∈ If[n] we have that � | i + 1 and so [i + 1 + m] = ±[m] (depending on 
if [i + 1] = ±1) and similarly for [i + 1 −m]. Hence we see that all the factors actually 
fall out and

τ t
(p
�JWk

n

)
= [m] p

�JWk
n−t, (6.12)
[m− t]
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recovering a form of Eq. (6.2) for (�, p)-Jones-Wenzl elements. However, if a > 0 then 
this simplifies to na/(na − 1) and if a = 0 this is simply [na]/[na − 1] as desired.

If, on the other hand, f[n] = n − t so that m = t = p(a), we get a slightly different 
behaviour (indeed, this is necessary to avoid a division by zero in Eq. (6.12)). Recall

[i][j − k] + [j][k − i] + [k][i− j] = 0, (6.13)

so that

[a + b] + [a− b] = [2b][a]
[b] . (6.14)

In particular

[i + 1 + p(a)] + [i + 1 − p(a)] = [2p(a)][i + 1]
[p(a)]

=
{

[2][i + 1] a = 0
2[i + 1] a > 0

. (6.15)

Thus if n is (�, p)-Adam, then

τ t
(p
�JWk

n

)
=

∑
i+1∈If[n]

(
[i + 1 − t]

[i + 1] λi
f[n]U

i
n−1 + [i + 1 + t]

[i + 1] λi
f[n]U

i
n−1

)

= [2]
∑

i+1∈If[n]

λi
f[n]U

i
f[n]

=
{

[2] p�JWk
n−t a = 0

2 p
�JWk

n−t a > 0
. � (6.16)

A result of the above computation is that τm
(p
�JWk

n

)
= [2][n0] p�JWk

f[n] if a = 0 and 

2na
p
�JWk

f[n] otherwise.
The question of tracing p�JWk

f[n] by amounts other than valid t is still not well under-
stood. For example, if we try trace a single strand when n is Adam, is clear that p�JWk

n

is the image of JWn and hence τ p
�JWk

n is the image of [n + 1]/[n] JWn. As such, since 
JWn is killed by the action of all ui, so too must τ p

�JWk
n be. By considering all diagrams 

of the form |x〉〈y| (see [13] for notation) where y is a fixed diagram of maximal degree 
d, we see that this implies the existence of a trivial submodule of S(n, d). Knowledge of 
where these modules could exist then give us restrictions on the valid values of d.

As a first attempt at understanding the trace we may simply ask if τ p
�JWk

n has 
maximal through degree. That is, does it have a non-zero coefficient of the identity 
diagram? Clearly this is always the case if n0 �= 0. If n is (�, p)-Adam, then Lemma 6.1
holds and τm(p�JWk

n) has maximal through degree iff ν(p)(n +1) = ν(p)(n +1 −m). Note 
that it is guaranteed that ν(p)(n + 1) ≥ ν(p)(n + 1 −m) as n is Adam.
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We can use the definition of p�JWQ(δ)
n as a sum of the U i

n to calculate the case when 
n has nonzero (�, p) valuation and we trace by an amount less than p(a) (as any larger 
can be covered by Corollary 6.2 first).

Proposition 6.4. Let n + 1 =
∑b

i=a nip
(i) for b > a > 0 and t < nap

(a). Then the 

coefficient of the identity diagram in τ t
(
p
�JWQ(δ)

n

)
is [2]t.

Proof. We use the definition p�JWQ(δ)
n =

∑
i+1∈In

λi
nU

i
n and evaluate τ tU i

n. Since n is 
not (�, p)-Adam, we can split In into If[n] + m and If[n] −m for m = n − f[n] > t.

Referring to Eq. (3.6), we see that for i ∈ If[n], τ tU i+m
n has the unit diagram with 

nonzero coefficient iff i = f[n]. The coefficient is [2]t as λf[n]
n = 1. On the other hand, the 

through degree of U i−m
n is i −m + t < n −m + t < n. �
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