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ABSTRACT  

 

Important tools in the study of prefrontal cortical-dependent executive functions are cross-spe-

cies behavioural tasks with translational validity. A widely used test of executive function and at-

tention in humans is the continuous performance task (CPT). Optimal performance in variations 

of this task is associated with activity along the medial wall of the prefrontal cortex, including the 

anterior cingulate cortex (ACC), for its essential components such as response control, target de-

tection and processing of false alarm errors. We assess the validity of a recently developed rodent 

touchscreen continuous performance task (rCPT) that is analogous to typical human CPT proce-

dures. Here we evaluate the performance of mice with quinolinic acid-induced lesions centred on 

the ACC in the rCPT following a range of task parameter manipulations designed to challenge 

attention and impulse control. Lesioned mice showed a disinhibited response profile expressed as 

a decreased response criterion and increased false alarm rates. ACC lesions also resulted in a 

milder increase in inter-trial interval responses (‘ITI touches’) and hit rate. Lesions did not affect 

discriminative sensitivity d’. The disinhibited behaviour of ACC lesioned animals was stable and 

not affected by the manipulation of variable task parameter manipulations designed to increase 

task difficulty. The results are in general agreement with human studies implicating the ACC in 

the processing of inappropriate responses. We conclude that the rCPT may be useful for studying 

prefrontal cortex function in mice and has the capability of providing meaningful links between 

animal and human cognitive tasks.   
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INTRODUCTION  

 

The prefrontal cortex is a functionally heterogeneous region supporting several interconnected 

‘executive’ cognitive processes that serve to monitor action-outcome associations and optimise 

goal-directed action (Dalley et al. 2004). It is widely acknowledged that such prefrontal cortical-

dependent functions comprise response control and attentional processes (Robbins et al. 1996; 

Sarter et al. 2001) that support performance in challenging situations. Deficits in these functions 

are detectable in individuals with neuropsychiatric disorders through highly standardised and au-

tomated tests of cognition (Barch et al. 2009), but the aetiology of these disorders remain incom-

pletely understood and the deficits are poorly treated (Millan et al. 2012; Insel et al. 2013). A 

standard assessment paradigm of attentional and response control in clinical and human experi-

mental studies has been the continuous performance task (CPT; Rosvold et al. 1956) combined 

with signal detection analysis (Green and Swets, 1966). In such tests, subjects are exposed to a 

stream of continuously presented complex non-spatial stimuli. Rapid stimulus processing and re-

sponse control are required to detect target and non-target stimuli, and to initiate and inhibit in-

appropriate responding accordingly. These tasks have been used successfully to identify genetic 

and neural mechanisms of relevance for cognitive function and approaches to cognitive enhance-

ment in humans (Carter et al. 1998; Rubia et al. 2001; Cornblatt et al. 2003; Seidman et al. 2015).  

 

Theoretical accounts postulate critical roles of the anterior cingulate in inhibitory and attentional 

control (Posner and Petersen 1990; Stuss et al. 1995; Corbetta and Shulman 2002). Human imag-

ing and electrophysiological studies identify roles for the anterior cingulate in diverse processes, 

including response inhibition and the monitoring of conflict and response errors, in order to sup-

port behavioural adaptation and sustaining performance under demanding conditions (Botvinick 
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et al. 2004). As assessed in CPTs and Go/no-Go tasks, the anterior cingulate supports the pro-

cessing of false alarm errors and response inhibition (Botvinick et al. 2004; Fallgatter et al. 2001; 

Casey et al. 2008). Disrupted anterior cingulate activity is also associated with disinhibited re-

sponding, increased false alarm error, and impaired discrimination in individuals with prefrontal 

cortical lesions (Salmaso and Denes 1982; Glosser and Goodglass 1990) or diagnosed with psy-

chiatric disorders (Fallgatter et al. 2003; Hester and Garavan 2004; Leland et al. 2008). 

 

Several rodent analogues of the human CPT, some amenable to signal detection analysis, have 

successfully been developed with the aim of identifying loci of executive functioning and targets 

with translational value (Carli et al. 1983; McGaughy and Sarter 1995; Young et al. 2009). In 

translational agreement with human studies, this work demonstrates that performances are re-

lated to activity along the medial wall of the prefrontal cortex in the rodent using localised lesions 

(Muir et al. 1996), site-specific pharmacological injections (Paine et al. 2011; Murphy et al. 2011; 

Pehrson et al. 2013; Pezze et al. 2014), electrophysiological measures (Totah et al. 2009; Totah et 

al. 2013), optogenetics (Kim et al. 2016),  chemogenetics (Koike et al. 2016) and neurochemical 

correlates (Barbelivien et al. 2001; Dalley et al. 2002; Jupp et al. 2013). In rodent operant assays, 

ACC activity appears particularly linked to motor impulsivity with manipulations affecting 

measures such as premature responses and/or response inhibition or approaches to non-target 

stimuli in detection and discrimination tasks (Muir et al. 1996; Bussey et al. 1997; Totah et al. 

2009; Jupp et al. 2013). Others have also found that ACC lesions in the rat can disrupt attention 

as measured by discriminative sensitivity (Passetti et al. 2002) and impair set-shifting as well as 

the processing of irrelevant stimuli (Ng et al. 2007).  

 

Yet while rodent behavioural analogues of human CPTs often employ detection of auditory or 

visual stimuli, human CPT paradigms generally employ visual discrimination tasks that include (i) 
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identification of (i) multiple complex luminance-matched visual stimuli, and (ii) multiple non-tar-

get stimuli, occurring at a single response location. Extant spatial, auditory or visuospatial rodent 

paradigms employ some, but not all, of these features. There is good evidence that different neu-

ral and perceptual/cognitive processes may be recruited because of such cross-species task differ-

ences (Lashley 1931; Pöppel et al. 1973; Stoerig et al. 1985; Petruno et al. 2013) that may contrib-

ute to decreased validity, translational difficulties and ultimately attrition of therapeutic candidates 

(Tricklebank and Garner 2012). 

 

The rodent touchscreen operant chamber provides an opportunity for the back-translation of 

standard human CPT procedures into highly analogous rodent testing protocol. In recent reports, 

we developed a novel rodent touchscreen version of the CPT (rodent CPT or rCPT – Kim et al., 

2015; Mar et al., 2017). C57BL/6J and DBA/2J mice were demonstrated to readily acquire the 

rCPT, with strain differences in task performance observed following manipulations of key task 

parameters and following donepezil administration (Kim et al. 2015). The rat mitotic neurotoxin 

methylazoxymethanol acetate model (MAM-E17) of schizophrenia has also been demonstrated 

to have robust and persistent impairments on measures of attentional control and executive func-

tion in the rCPT (Mar et al. 2017). This study, in parallel with ongoing studies assessing the func-

tional heterogeneity of the rat prefrontal cortex in the rCPT (Mar et al., unpublished; Fisher et al., 

unpublished), aims to further validate the rCPT by establishing the degree to which task perfor-

mance in the mouse depends on activity in the prefrontal cortex. As part of this work, the current 

study tested the hypothesis that the mouse anterior cingulate is important for rCPT performance. 

Here we evaluate the performance of mice with excitotoxic lesions centred on the anterior cingu-

late and sham lesioned controls in the rCPT. Animals were tested following several task parame-

ter manipulations designed to challenge performance further (Kim et al., 2015).    

 



6 

 

METHODS 

 

Animals 

Thirty-two male C57BL/6J mice (Charles River, UK) started behavioural testing at 7-9 weeks of 

age. Animals where group-housed under a 12h light/dark cycle (lights on at 7am) with stable 

temperature and humidity conditions with ad libitum access to food and water. Experiments 

were carried out during the dark phase of the light cycle. Prior to the start of testing, animals 

where food restricted and maintained at 85-90% of their free-feeding body weights. Neophobia 

to the test diet (14mg Bio-Serv purified rodent dustless precision pellets; Sandown Scientific, 

Middlesex, UK) was reduced by exposure in the home cage prior to operant training. This re-

search has been regulated under the Animals (Scientific Procedures) Act 1986 Amendment Regu-

lations 2012 following ethical review by the University of Cambridge Animal Welfare and Ethical 

Review Body (AWERB). Two animals unexpectedly died towards the end of the study, but were 

included in the analysis where their data was complete. Ten animals were omitted from the anal-

yses. This was due to failure to reach the performance criterion pre-surgery (n=2), complications 

following surgery (n=2), injury from post-surgery fighting (n=2), and unexpected death early in 

the study (n=4). The exact n numbers for each group is in Table 1. 

 

Apparatus 

Testing was conducted in modified Med Associates (Inc., St Albans, VT) touchscreen operant 

chambers for mice as described elsewhere (Horner et al. 2013; Mar et al. 2013) controlled by in-

house software (Visual Basic 2010 Express .NET, Microsoft 2010; developed by A.C.M.). In 

brief, the apparatus consisted of a rectangular chamber with an infrared touchscreen at one end 

and a reward magazine (with a photocell head entry detector) illuminated by a 3W light bulb at 
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the other end. A 3-aperture mask (Kim et al. 2015) covered the touchscreen. The walls were clear 

Perspex with a metal grid floor. The chamber was housed within a sound attenuating box fitted 

with a fan for ventilation and masking of external noise, a pellet dispenser delivering reward pel-

lets, and a tone generator.  

 

Procedure 

Pre-surgery training  

The training procedure is described elsewhere (Kim et al. 2015). In brief, animals were trained in 

four stages. In Stage 1, a trial started with the onset of a white square stimulus (3.5x3.5cm) within 

a centrally located white frame on the touch-sensitive screen. The stimulus duration (SD) was 

10s, with a 2s inter-trial-interval (ITI, initiated at reward collection) and a limited hold (LH) of 

10.5s (i.e., responses were recorded 0.5s after the removal of the stimulus from the screen to ac-

count for responses initiated late during the stimulus presentation). A response to the stimulus 

within the LH resulted in stimulus removal, a 1s tone, illumination of the magazine light and re-

ward delivery. A session either terminated after 45min or after 80 rewards had been collected. 

Throughout all testing, touches to the empty white frame during the ITI (‘ITI touch’) resulted in 

re-setting the ITI timer, thereby delaying the presentation of the next stimulus. When reaching 

the criterion of 60 responses to the stimulus (i.e. 60 rewards) in a 45min session, Stage 2 was in-

troduced. In Stage 2, the target stimulus (S+) was presented (horizontal lines or vertical lines; 

counterbalanced across animals) and the SD was reduced to 4s (LH=4.5s). After a response to 

the stimulus, a short extension of the ITI was introduced (‘ingestion delay’; 5s) to allow the ani-

mal to consume the reward. No other parameters were changed from Stage 1. The session lasted 

for 45min or 60 rewards, whichever occurred first. The criterion for progressing to Stage 3 was 

60 rewards in a single session. In Stage 3, animals were presented with the S+ on 50% of the trials 
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and a novel unrewarded stimulus (‘snowflake’, S-; see Kim et al. 2015) on 50% of the trials.  If 

the animal responded to the S-, the stimulus was removed, the ITI was initiated, and the next trial 

was a correction trial (in which the S- was presented repeatedly until the animal withheld a re-

sponse). Animals were trained for at least 8 sessions on Stage 3, and the performance criterion 

for moving on to the baseline rCPT procedure was a discriminative sensitivity (d’; see Data Anal-

yses) above 0.6. In the baseline rCPT, the ‘snowflake’ stimulus was replaced with four novel S- 

stimuli (see Kim et al. 2015). On a given trial, the probability of the S+ stimulus being presented 

was 50%, with one of the four S- stimuli being presented on the remaining 50% of trials (in addi-

tion to correction trials, which were exclusively S- trials). No other parameters were changed be-

tween stage 3 and the baseline rCPT. Animals were trained on the baseline rCPT for a minimum 

of 4 sessions and the criterion for progressing was a d’ above 0.6. When criterion had been 

achieved, animals were exposed to rCPR probes both before and after quinolinic acid-induced 

lesions. 

 

Pre-surgery probe testing  

Some experiments have emphasised a role for the prefrontal cortex and the ACC in novelty pro-

cessing (Zhu et al. 1995a; Berns et al. 1997; Weible et al. 2009). In order to reduce possible inter-

actions between test novelty and ACC lesioning on measures of attention and inhibitory control, 

mice had pre-surgery exposure to probe tests, run in a similar manner to the critical post-surgery 

tests, for one session per probe after reaching criterion on the baseline rCPT. These included re-

duction in SD, increased ITI, lowered target (S+) probability and the presence of flanking dis-

tractors.      

 

Surgery 
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Mice were placed in a stereotaxic frame (Kopf Instruments, Tujunga, CA, USA) under constant 

Isoflurane gas anaesthesia. Following a midline incision of the skin, a flat skull surface was en-

sured prior to the drilling burr holes above injection sites (AP +2.0, ML±0.3 and DV -2.5; from 

dura). For the lesion group, 0.4µl of 60mM quinolinic acid (2,3-Pyridinedicarboxylic acid, P3504-

10G; Sigma-Aldrich, UK) in 0.1M PBS was infused at a rate of 0.1 µl/min. Five minutes passed 

prior to raising the needle to ensure dispersion from the infusion site. For the sham surgery con-

trol group, the injector was lowered to the same coordinate as the lesion group, but nothing was 

infused. All animals were treated with a peripheral analgesic post-surgery (0.05mg meloxicam, i.p.; 

Boehringer Ingelheim, Bracknell, UK). Animals were returned to food restriction and behav-

ioural testing following full recovery from surgery.  

 

Post-surgery probe testing  

After surgery recovery, all mice were tested on the baseline rCPT parameters until reaching a d’ 

of 0.6 for one session. The animals were then tested on a series of probe tasks designed to create 

challenging task conditions. In these probe tests, we systemically varied single task parameter 

while other parameters remained constant. These task manipulations have previously been used 

to gauge attentional functions in human studies (Stroh 1971; Parasuraman 1979; Davies and Par-

asuraman 1982; Mass et al. 2000; Rose et al. 2001; Conners et al. 2003; Cattapan-Ludewig et al. 

2005; Berwid et al. 2005; Epstein et al. 2007). The probe tests were presented in the order they 

are listed in Table 2.  

 

Manipulating stimulus durations (SD). We introduced variable SDs based on the prediction that 

shorter stimulus durations place greater demand on attentional processes through limited detec-

tion times (Parasuraman and Davies 1984; Mass et al. 2000). We tested animals on four tests 
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where variable SDs (vSD) spanned different ranges. The different SDs were presented with an 

equal and random selection of each duration within each session. This included sessions using 

four different SDs (probe vSD#1: 1, 2, 3 and 4s; probe vSD#2: 0.25, 0.5, 0.75 and 1s) and ses-

sions using three different SDs (probe vSD#3: 1, 2 and 3s; probe vSD#4: 1, 3 and 5s). Animals 

were tested for 3 sessions on each of the four vSD probes and presented data represents the 

mean of these 3 sessions. Animals were also assessed using probe test where the SD was fixed 

and changed across session (probe fixed SD: 1, 5s; four sessions of each probe) to assess if the 

observed phenotype in the vSD probes were related to the unpredictability of the SDs. In all SD 

probes, the LH was 0.5s longer than the longest SD. All other task parameters remained constant 

and identical to the baseline rCPT procedure. 

 

Manipulating target probability. In this probe, the target probability was reduced from 50% to 30% 

between-sessions to increase the demand on behavioural inhibition and attention when the target 

stimulus is less frequently presented (Rose et al. 2001; Berwid et al. 2005). Animals were tested 

for 5 sessions with an SD of 2.5s.  

 

Manipulating inter-trial interval (ITI). In this probe the ITI was increased from 2s to 4s between-ses-

sions based on the prediction that longer ITIs challenges behavioural inhibition by extending the 

time period during which the withholding of responding is required (Rose et al. 2001; Conners et 

al. 2003; Hervey et al. 2006; Epstein et al. 2007). Animals were tested for 4 sessions with an SD 

of 2.5s. 

 

Manipulating session length. In this probe, the session length was extended from 45min to 90min. 

Animals were tested for 4 sessions with an SD of 1s.An extended session probe was administered 
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to assess whether ACC lesioned and sham mice differ in their ability to maintain CPT perfor-

mance when required to engage in the task for a longer period of time (Stroh 1971).  

 

Distractors. In this probe, the central test stimulus was flanked by two identical stimuli of an either 

congruent (the same reward contingency as the test stimulus) or incongruent (different reward 

contingency as the test stimulus) nature with the rational that distractors introduces noise and im-

pairs performance (Eriksen and Eriksen 1974; Kim et al. 2015). Responding to the distractor 

stimuli was without consequence. Within each session, 1/3rd of trials was presented with congru-

ent distractors, 1/3rd of trials was presented with incongruent distractors, and 1/3rd of trials was 

were within-session non-distractor control trials. The distractor probe was administered with 

three different SDs varied across sessions (Distractors#1: 4s SD, Distractors#2: 2.5s SD, Dis-

tractors#3: 1s SD). Each SD was presented for 3 sessions. All other task parameters remained 

constant to the baseline rCPT.  

 

Histology 

At completion of behavioural testing, animals were terminally anaesthetised with sodium pento-

barbital (Dolethal, Vetoquinol, UK) and perfused transcranially with 0.01M PBS followed by 4% 

paraformaldehyde (PFA) in PBS. Brains were post-fixed in 4% PFA, immersed in 30% sucrose, 

and frontal cortical sections where sliced in 60µm coronal sections. Slices were stained with Cre-

syl violet prior to immersion in descending concentrations of ethanol followed by xylene and 

mounting media. All sections were assessed and lesion extents where drawn according to a stand-

ard mouse brain atlas (Paxinos and Franklin 2008). 
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Data analysis and statistics 

In the rCPT, a response to the target stimulus (S+) was scored as a hit, failure to respond to the 

target stimulus was scored as a miss, withholding from responding to a non-target (S-) was scored 

as a correct rejection, and responding to a non-target was scored as a false alarm. For each animal, hit 

rate (HR) was calculated as the number of hits as the ratio of the total number of S+ presenta-

tions. False alarm rate (FAR) was calculated as the number of false alarms as the ratio of the total 

number of S- presentations. Performances was also evaluated by signal detection measures dis-

criminative sensitive (d’) and response bias (c) derived from FAR and HR. The discrimination 

sensitivity index d’ was calculated as in (Macmillan and Creelman 2004): 

 

𝑑′ =  𝑧(ℎ𝑖𝑡 𝑟𝑎𝑡𝑒) −  𝑧(𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒) 

 

with higher values showing a preference for responding to the target stimulus relative to 

non-target stimuli. The response criterion was calculated as 

 

𝑐 =  −0.5(𝑧(ℎ𝑖𝑡 𝑟𝑎𝑡𝑒) + (𝑧(𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒)) 

 

with larger c values indicating fewer responses to both the target and non-target stimuli. 

Correction trials (whereby a response to a non-target stimulus was always followed by another 

non-target stimulus trial) were included in all analysed data. Response latencies and reward re-

trieval latencies could not be analysed due to loss of data. Performances in the baseline rCPT was 

analysed by one-way ANOVAs with lesion group as the between-subject variable. Performances 

in the rCPT probe tests were analysed by two-way repeated measures ANOVAs with lesion 

group as the between-subject variable and probe manipulation (SD, target probability, ITI, ses-

sion length, or distractor condition) as the within-subject variable. For the probe tests of ITI and 

target probability, the mean performance during the four baseline sessions when 50% target 
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probability and 4s ITI was used as the control condition.  For the session length probe, the 1s 

fixed SD day was used as the control condition. All analyses where done using SPSS (v22.0, IBM 

Corp, Armonk, NY). 

 

RESULTS 

Histology 

See Fig. 1a-b for representative photomicrographs and schematic drawings of the lesioned group. 

No sham animals showed any damage beyond expected needle tracts. Damage in the lesioned 

group generally did not extend beyond two sequential 60µm thick sections (with 720µm distance 

between each collected section). The extent of damage along the anterior-posterior axis was re-

stricted to AP -2.20 and AP -0.98, and was centred on cingulate cortex area 1 (Cg1). In three ani-

mals, damage extended ventrally into the prelimbic cortex. All lesioned animals had some damage 

to overlaying cortex, mainly secondary motor cortex, with three lesioned mice showing limited 

damage to primary motor cortex.   

 

Post-surgery: baseline rCPT  

There were no differences between groups in pre-surgery performance (data not shown). Sham 

and lesioned mice did not differ in sessions taken to recover to pre-surgery performance levels in 

the baseline rCPT (F1,20=0.764, p=0.392; sham M:6.50, STDEV = 5.53; lesion M: 8.75, STDEV 

= 6.30). For the last two days of baseline rCPT testing using a 4s SD, performance between the 

lesion and sham group was equivalent for HR (F1,20=0.573, p=0.458), d’ (F1,20=0.617, p=0.441), c 

(F1,20=1.486, p=0.237) and FAR (F1,20=1.949, p=0.178). However, lesioned animals continued to 

make significantly more ITI touches than sham controls (Table 2; F1,20=7.612, p=0.012). 
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Post-surgery probe tests  

Variable SDs. Lesioned animals showed decreased values of the c parameter and increased FAR 

when variable SDs were introduced. When using variable SDs (1s. 3s, 5s), lesioned animals 

showed an SD-independent decrease in response criterion (Fig. 1a; group: F1,18=5.973, p = 0.025; 

group x SD: F(2,36)=0.204, p = 0.816) and increased FAR (Fig. 1b; group: F1,18=6.433, p = 

0.021; group x SD: F(2,36)=0.489, p = 0.617) relative to sham controls. Lesioned animals also 

made more ITI touches (Table 2; F2,36=5.141, p = 0.035). The lesion group showed no changes in  

d’ (Fig. 1a; group: F1,18=1.222, p = 0.284; group x SD: F2,36=0.371, p = 0.392) or HR (Fig. 1b; 

group: F1,18=0.529, p = 0.476; group x SD: F2,36=0.074, p = 0.929).  

Shorter SDs were associated with reduced d’ (F2,36=37.212, p < 0.0001), FAR 

(F2,36=7.871, p < 0.0001) and HR (F2,36=30.623, p<0.0001). There was no effect of SD on c 

(F2,36=1.6570, p=0.222). The lesioned group showed the same behavioural profile when using al-

ternative ranges of variable SDs, and lower fixed SD (2.5s), with the exception of short variable 

SDs (1-0.25s) which introduced floor effects in both groups (Table 1).  

 

Target probability. When reducing the target probability, lesioned animals showed a probability-in-

dependent decrease in response criterion (group: F1,20=6.501, p=0.019; group x probability: 

F1,20=0.778, p=0.388) and a probability-independent increase in FAR (group: F1,20=6.176, 

p=0.022; group x probability: F1,20=0.521, p=0.479). Lesions did not affect hit rate (group: 

F1,20=2.069, p=0.166; group x probability: F1,20=1.549, p=0.228) or d’ (group: F1,20=0.321, 

p=0.578; group x probability: F1,20=0.076, p=0.786).  Target probability had no effect on HR, 

FAR, c, d’ or ITI touches (all p  0.084). 

 

Inter-trial intervals (ITIs).  When the event rate of the session was slowed by prolonging the ITI 

from 2s to 4s, lesioned animals showed an ITI-independent decrease in response criterion 
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(group: F1,20=5.653, p=0.028; group x ITI: F1,20=1.016, p=0.325) and an ITI-independent increase 

in FAR (group: F1,20=4.576, p=0.045; group x ITI: F1,20=1.018, p=0.325). There was no effect of 

group on hit rate (group: F1,20=1.973, p=0.176; group x ITI: F1,20=0.845, p=0.369) or d’ (group: 

F1,20=0.119, p=0.734; group x ITI: F1,20=0.001, p=0.975). The longer ITI caused a decrease in c 

(F1,20=10.298, p=0.004) and increased FAR (F1,20=6.836, p=0.017) without affecting d’ 

(F1,20=2.945, p=0.102), HR (F1,20=1.139, p=0.299) or ITI touches (F1,20=0.387, p=0.541).  

 

Session length.  When comparing the 90 min session to the baseline 45 min session, there were 

near-significant main effects of lesion on c (group: F1,18=3.889, p=0.064; group x session length: 

F1,18=1.765, p=0.201) and FAR (group: F1,18=4.119, p=0.057; group x session length: F1,18=1.612, 

p=0.220). In the 90 min session, lesioned mice made more ITI touches than sham mice 

(F1,18=8.815, p=0.008). There was no effect on HR (group: F1,18=0.702, p=0.413; group x session 

length: F1,18=1.585, p=0.224) or d’ (group: F1,18=1.162, p=0.295; group x session length: 

F1,18=0.060, p=0.810).  

 

Flanking distractors. When introducing distractors (using a 4s SD), there were trends for a distrac-

tor-independent decrease in c (Fig. 3a; group: F1,20=4.288, p=0.052; group x trial type: 

F1,20=0.377, p=0.688) and distractor-independent increase in FAR (Fig 3b; group: F1,20=4.019, 

p=0.059; group x trial type: F1,20=0.018, p=0.982) in lesioned animals. Lesioned animals had sig-

nificantly higher hit rates than sham controls (Fig. 3d; group: F1,20=4.859, p=0.039; group x trial 

type: F1,20=0.327, p=0.723), but no effect on d’ (group: F1,20=0.605, p=0.446; group x trial type: 

F1,20=0.564, p=0.584). On trials that included distractors, animals showed decreased FAR 

(F2,40=21.241, p< 0.0001) and decreased HR (F2,40=10.372, p< 0.0001). Distractors did not affect 

d’ (F2,40=1.282, p=0.289). There were no significant differences in performance on congruent vs. 
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incongruent distractor trials. The data from distractor trials with 2.5s or 1s SD are summarised in 

Table 1.   

 

DISCUSSION 

We have assessed whether lesion disruption of the anterior cingulate cortex impacts on perfor-

mance in a recently-developed touchscreen rodent task that closely mimics widely used human 

CPT procedures We validate the task for cross-species translational studies by showing that dam-

age to the anterior cingulate cortex of the mouse prefrontal cortex produces a more liberal re-

sponse criterion resulting from increased false alarm rates together with modest increases in re-

sponding to target stimuli, as well as increased ITI responses. Lesions were without effect on at-

tentional function as measured by discriminative sensitivity d’. This behavioural phenotype was 

consistent throughout rCPT testing and was observed most robustly when task parameters were 

set to increase task difficulty. The data are in general agreement with studies implicating the ante-

rior cingulate in error detection and suppression of inappropriate responses and indicate that the 

rCPT may be useful as a translational measure of fronto-executive function. 

 

The anterior cingulate has been implicated in various supporting functions in executive control 

(Posner and Petersen 1990; Corbetta and Shulman 2002). In human experimental studies, such 

functions consistently consist of processing of error signals and response inhibition. In CPTs and 

Go/no-Go tasks, lesions encompassing anterior frontal regions are associated with a more liberal 

response criterion and increased false alarm rates (Salmaso and Denes 1982; Glosser and 

Goodglass 1990). Neuroimaging and electrophysiological studies show that false alarm errors 

consistently activate the anterior cingulate (Carter et al. 1998; Rubia et al. 2001). The false alarm-

related ACC activity is stronger than the activity following correct responses or following correct 
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inhibitions (Braver et al. 2001; Hester 2004) which may support adjustments such as speed/accu-

racy trade off and behavioural remedial actions following inappropriate responses (Scheffers et al. 

1996; Pailing et al. 2002; Gehring et al. 2016a). Furthermore, measures of event-related potentials 

using cued CPTs show increased ACC-activity prior to non-target trials relative to target trials 

(Fallgatter et al. 2002) implicating the region in response inhibition and the mediation of an inter-

nal representation of ‘don’t respond’ (Braver et al. 2001). Aberrant structural and error-related 

anterior cingulate activity may also contribute to impairments in response inhibition tasks in men-

tal health disorders such as ADHD (Rubia et al. 2001b), OCD (Fitzgerald et al. 2005; Gehring et 

al. 2016b), schizophrenia (Fallgatter et al. 2003; Salgado-Pineda et al. 2004), dementia (Sanchez-

Castaneda, 2009) and drug abuse (Hester and Garavan 2004; Leland et al. 2008; Forman et al. 

2004). The observation of lower response criterion and increased false alarm rates in ACC-le-

sioned animals is in broad agreement with such human studies and suggests some cross-species 

functional homology in the mouse. 

 

The response profile of ACC-lesioned animals is also in general agreement with data from 5- and 

3-CSRT tasks that demonstrate the importance of the integrity of, and balanced transmission in, 

the ACC for inhibitory response control and the processing of incorrect responses. In the 5-

CSRTT, consistent with the current data, anterior cingulate lesions in the rat can cause selective 

impulsive-like increases in premature responding without affecting discriminative sensitivity in 

the 5-CSRTT (Muir et al. 1996), although a chemogenetic silencing of the dorsal ACC in mice did 

not alter response control in the same task (Koike et al. 2016). High-impulsive rats also show in-

creased dopamine turnover (Dalley et al. 2002), decreased GABA binding (Jupp et al. 2013), and 

decreased metabolic activity in the anterior cingulate regions as measured by [14C]deoxyglucose 

(DG) uptake (Barbelivien et al. 2001) and intra-ACC GAD inhibition selectively increases prema-

ture responses in the 3-choice serial reaction time task (Pehrson et al. 2013). Electrophysiological 
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recordings in the rat show, like humans, increased ACC-activity prior to stimulus onset and fol-

lowing incorrect responses (Totah et al. 2009) as well as altered ACC-prelimbic synchrony prior 

to stimulus-onset (Totah et al. 2013). Notably, the behavioural profile of pharmacological animal 

models of psychiatric disorders includes comparable deficits in inhibitory response control. This 

includes rats subchronically  treated with PCP in the 5C-CPT procedure (Barnes et al. 2012), re-

peated amphetamine administration in the SAT (Deller and Sarter 1998), systemic NMDA antag-

onist treatment in the 5-CSRTT (Amitai et al. 2007; Paine and Carlezon 2009) and the MAM-E17 

model in the rCPT (Mar et al. 2017) which are all associated with increased false alarm errors. 

Here we demonstrate that disinhibitory behavioural effects of ACC lesioning are also detected in 

the rCPT, indicating that the task is a valid approach for studying prefrontal function in the 

mouse that is of psychiatric relevance.   

 

Yet ACC lesioning did not cause apparent effects on attention as defined as changed in discrimi-

nation sensitivity. The phenotype was characterised by a decrease in response criterion driven pri-

marily by a consistent, significant increase in the false alarm rate, with smaller increases in hit rate 

that were significant only on select probes (decreasing stimulus durations or with flanking distrac-

tors). The increase in ITI responses also points to a general disinhibitory effect of ACC dysfunc-

tion on the rCPT.  The lack of interactions between lesions and attentional difficulty of the probe 

tests also suggest that the phenotype is unrelated to attention. In a parallel effort to examine the 

functional heterogeneity of the rat mPFC on rCPT (Fisher et al. unpublished), ACC lesioned rats 

showed only a transient decrease in discrimination sensitivity, with no indication of impaired in-

hibitory control. Both rat and mouse ACC lesions leaving discrimination sensitivity largely un-

changed suggests that the ACC is not critical for attentional functioning as measured by rCPT. In 

the 5-CSRTT, a test of visuospatial stimulus detection and response inhibition, some rat studies 

have observed impairments in discriminatory sensitivity following ACC lesions (Chudasama et al. 
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2003; Passetti et al. 2002), but these lesions included dorsal prelimbic cortex, and an ACC-re-

stricted lesion failed to impair accuracy (Muir et al. 1996). Pharmacological, optogenetic and 

chemogenetic manipulations of the ACC have observed attentional disruptions on the 3- or 5-

CSRTT however, in mice and rats (Pehrson et al. 2013; Kim et al. 2015; Koike et al. 2016), sug-

gesting that the 5-CSRTT and the rCPT are sensitive to different deficits in performance follow-

ing ACC damage, and may offer a complimentary function when assessing attentional and re-

sponse control. This, in combination with the consistent way in which the current data supports 

the human literature on ACC and response control, highlights the importance of behavioural 

tasks with high cross-species translational value.  

 

In the rCPT, lesions of the rat medial prefrontal cortex, including prelimbic and infralimbic sub-

regions, impaired discrimination sensitivity (d’) on baseline rCPT (Mar et al. unpublished).  More 

specific prelimbic cortex lesions produced d’ reductions in probes where SD was reduced or the 

event rate was high (Fisher et al. unpublished). Together these results suggest that this area is 

more critical for attentional processing in this task than the ACC. In support of this, Granon 

(1998) found PL lesions in the rat to disrupt a brightness-discrimination based continuous per-

formance task in rats, but not impair 2-choice serial reaction time task performance, pointing to a 

distinct role for PL function in sustained attention. Passetti et al. (2002) found that, by manipulat-

ing ITIs, PL-ACC lesions disrupt the temporal sequencing of visuospatial responding and that 

this may also cause accuracy impairments in the 5-CSRTT. A further possibility is that ACC dys-

function can impair divided detection, which possibly could serve to leave focused attention in-

tact (Lashley 1931; Pöppel et al. 1973; Stoerig et al. 1985; Petruno et al. 2013). The anterior cingu-

late exhibits heterogeneity in its regional organisation, and hence possibly its functioning, in both 

humans (Kiehl et al. 2000; Menon et al. 2001; Braver et al. 2001) and rodents (Delatour and 
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Gisquet-Verrier 2001; Heidbreder and Groenewegen 2003) which may account for some of the 

inconsistent effects of ACC dysfunction on discriminative sensitivity. 

 

As well as response impulsivity, the functional heterogeneity of the ACC could support associa-

tive learning and coding unsigned prediction errors (Bussey et al. 1997; Cardinal et al. 2003; Hay-

den et al. 2011), memory (Cabeza et al. 1997; Petit et al. 1998; Frankland et al. 2004; Tang et al. 

2005), motor coordination (Paus et al. 1993; Procyk et al. 2000) and novelty detection (Clark et al. 

2000). However, there is little to suggest  that the response disinhibitory effects of the ACC le-

sion derive from impairments in domains such as motoric function, learning and memory or nov-

elty processing per se as (i) the lesion did not affect discrimination sensitivity- hence memory as 

well as attention is unaffected, and (ii) the deficits were not present on baseline, fixed SD trials, 

indicating that motoric functions and alertness, were not directly affected, and (iii) animals were 

well-trained on the task and pre-exposed to the probe tests before lesioning, which minimised 

any learning and novelty effects on performance. Lesions also did not affect re-learning of the 

task post-surgery.  

 

In addition to a role of the ACC in response impulsivity (inability to withhold a response), the 

area has been implicated in choice impulsivity (impulsive decision-making; Winstanley et al. 

2006). The ACC regulates the amount of effort rats are willing to invest in order to obtain a re-

ward (Rudebeck et al. 2006), with dorsal ACC lesioned rats preferring low-cost, low-reward op-

tions over the high-cost, high-reward alternative selected by shams (Walton et al. 2003).  Alt-

hough the rCPT is not specifically designed to assess choice impulsivity (e.g. there is no more 

physical effort associated with responding to a target than a non-target), it seems unlikely that an 
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impairment in choice impulsivity would result in the pattern of performance impairment ob-

served in the current study, most consistently being an increase in the false alarm rate, a response 

profile that is more in keeping with impulsive response than impulsive choice. The lowest cost 

option, no response, is not chosen more often by lesioned mice than shams. 

 

The secondary motor cortex (M2) has been shown to support performances in a temporal dis-

counting procedure, with localised GABA agonists introducing cross-trial variability in the capac-

ity to wait for large, delayed, rewards (Murakami et al. 2017). The ACC lesioned mice in the cur-

rent study all showed some damage to M2 (roughly a 6th of the total M2 volume on average), 

raising the possibility that the behavioural effects are produced by damage to ACC and/or M2. 

However, in the study by Murakami et al (2017), M2 inactivation was found introduce both in-

creased and decreased waiting times in rats - which is different from the consistently disinhibited 

profile observed in the current study. Moreover, M2 was shown to support delay discounting 

(Murakami et al. 2017) and the rCPT has no obvious discounting component; non-target trials in 

the rCPT represent no reward and responses to non-targets results in further delay in the oppor-

tunity to obtain any reward. Under these current conditions the ACC has repeatedly been found 

to be critical (e.g., Muir et al. 1996; Dalley et al. 2002; Jupp et al. 2013; Pehrson et al. 2013; Barbe-

liven et al. 2013).  

 

The introduction of flanking distractors disrupted the performance of both groups through gen-

eral reductions in responding; distractors increased the response criterion c through decreasing 

hit and false alarm rates. The higher hit rate of lesioned mice compared to sham mice in one dis-

tractor probe could, in the absence of other significant differences, be interpreted as an improve-

ment in attention. When seen in light of the pattern of results across the study, as well as the nu-

merically higher values of responding in lesioned mice in general, the increase in hit rate seems 
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more in line with a general disinhibited response profile. In agreement with a previous rCPT 

study with mice (Kim et al. 2015), there were no congruency effects, and the inclusion of distrac-

tors did not affect d’. This is in contrast to the pattern of responding of rats with mPFC lesions 

on rCPT, as well as several different pharmacological rat models, where congruent and incongru-

ent distractors numerically improved and impaired performance, respectively, in comparison to 

non-distractor trials, with no change in the overall level of responding (Mar et al., unpublished; 

Fisher et al., unpublished; Mar et al. 2017). The rat data is in line with human studies of sustained 

attention using flanker tasks (Eriksen 1995). The reductions in responding in mice may be due to 

animals interacting with the distractors themselves, rather than the responsive stimuli at the cen-

tre of the screen (Kim et al. 2015). In this view, the distractors work excessively well in mice in 

that animals are distracted from responding to the central stimulus altogether. Ongoing work is 

addressing this possibility with the aim of developing distractors that can disrupt attention and 

inhibitory control in mice. 

 

CONCLUSIONS 

Human performance on CPTs are reliant on activity in the anterior cingulate cortex for the detec-

tion of false alarm errors and response inhibition on non-target trials. In broad agreement with 

such studies, lesions centred on the anterior cingulate in the mouse produced impairments in in-

hibitory response control as assessed by the touchscreen rCPT.  This suggests that the rCPT has 

validity for assessing prefrontal cortical-dependent functions in the mouse and may have the ca-

pability of providing meaningful translationally relevant links between animal and human cogni-

tion.   
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FIGURE LEGENDS 

 

Figure 1. Schematic drawings (a) and representative photomicrographs (b) of the lesions and 

sham controls. (a) Light shading represent represents the largest damage observed at that coronal 

section (measured as distance in millimetre from bregma), black shading represents minimum 

damage and dark grey represents an animal with typical damage. Drawings adapted from Paxinos 

& Franklin (2001). B) Photographs of coronal sections of a representative lesion (left side) and 

sham animal (right side). The white arrows indicate lesions.  
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Figure 2. Performance of ACC lesioned and sham controls in the rCPT when challenged with 

tests of variable stimulus durations (a-b), target probabilities (c-d) inter-trial intervals (e-f) and 

session length (g-h). Data are presented as mean ± SEM values. ACC lesioned animals showed 

significantly reduced response criterion c and significant increased false alarm rates compared to 

sham mice in tests of variable SDs, target probabilities, and inter-trial intervals. ACC lesioned ani-

mals also tended to show reduced c and increased FAR in tests of session length. Asterisk denote 

significant main effect of group at p < 0.05.  

 

Figure 3. Performance of ACC lesioned and sham controls in the rCPT when challenged with 

flanking congruent or incongruent distractors. Data are presented as mean ± SEM values. ACC le-

sioned animals showed significantly higher hit rate and a general tendency for increased false 

alarm rate and lower response criterion compared to sham mice. The presence of distractors sig-

nificantly reduced the hit rate and false alarm rate in both groups. Asterisk denote significant 

main effect of group at p < 0.05.  
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TABLE 1 

 

 p <  

 0.05 Significant effect 
of lesion  0.025 

   

 

 c FAR HR d’ 

 sham lesion sham lesion sham lesion sham lesion 

Baseline (4s SD; n=10;14)  
 

0.46±0.05 0.35±0.10 

 

0.19±0.02 0.23±0.03 

 

0.50±0.02 0.53±0.04 

 

0.91±0.05 0.84±0.08 

 vSD#1 (s)         

(n=10;14)                          4 0.56±0.07 0.25±0.11 0.17±0.02 0.27±0.04 0.45±0.03 0.56±0.04 0.88±0.08 0.82±0.11 

3 0.60±0.05 0.36±0.10 0.19±0.02 0.27±0.04 0.40±0.02 0.48±0.04 0.64±0.07 0.59±0.09 

2 0.55±0.05 0.41±0.12 0.24±0.02 0.31±0.04 0.37±0.02 0.40±0.04 0.41±0.06 0.25±0.09 

1 0.64±0.04 0.34±0.12 0.24±0.02 0.35±0.04 0.31±0.02 0.41±0.04 0.20±0.07 0.17±0.05 

         vSD#2 (s)         

(n=10;14)                       1 0.63±0.05 0.57±0.18 0.26±0.02 0.30±0.05 0.29±0.02 0.33±0.06 0.11±0.05 0.08±0.09 

0.75 0.64±0.04 0.53±0.17 0.26±0.01 0.32±0.05 0.28±0.02 0.34±0.05 0.05±0.07 0.07±0.06 

0.5 0.62±0.05 0.64±0.19 0.27±0.02 0.29±0.05 0.28±0.02 0.30±0.05 -0.01±0.07 0.06±0.06 

0.25 0.61±0.04 0.60±0.20 0.28±0.01 0.34±0.05 0.27±0.02 0.28±0.05 -0.01±0.05 -0.16±0.10 

         vSD#3 (s)         

(n=7;14)                         3 0.66±0.05 0.49±0.06 0.17±0.03 0.23±0.03 0.39±0.03 0.42±0.04 0.74±0.15 0.55±0.17 

2 0.71±0.05 0.54±0.05 0.18±0.02 0.22±0.02 0.33±0.02 0.41±0.03 0.54±0.13 0.60±0.10 

1 0.74±0.05 0.55±0.09 0.20±0.02 0.26±0.03 0.28±0.02 0.34±0.03 0.29±0.11 0.24±0.11 

         vSD#4 (s)         

(n=6;14)                         5 0.45±0.04 0.27±0.09 0.23±0.02 0.30±0.04 0.50±0.06 0.47±0.03 0.71±0.13 0.59±0.23 

3 0.50±0.05 0.28±0.08 0.23±0.02 0.34±0.05 0.45±0.04 0.42±0.03 0.56±0.11 0.31±0.17 

1 0.53±0.06 0.35±0.08 0.29±0.02 0.39±0.05 0.35±0.03 0.32±0.02 0.11±0.07 -0.12±0.13 

         Fixed SD (s)         

(n=6;14)                         5 0.45±0.06 0.31±0.10 0.23±0.02 0.27±0.03 0.46±0.03 0.51±0.07 0.70±0.12 0.70±0.22 

1 1.11±0.04 1.02±0.07 0.08±0.01 0.11±0.01 0.22±0.01 0.23±0.04 0.68±0.07 0.54±0.11 

         S+ probability (%)         

(n=8;14)                          50 0.70±0.05 0.45±0.11 0.16±0.01 0.24±0.04 0.36±0.02 0.41±0.05 0.66±0.08 0.60±0.12 

                                     30 0.73±0.04 0.54±0.07 0.15±0.01 0.21±0.03 0.36±0.03 0.41±0.04 0.71±0.12 0.60±0.12 

         
ITI (s)         

(n=8;14)                         2 0.70±0.05 0.45±0.11 0.16±0.01 0.24±0.04 0.36±0.02 0.44±0.05 0.66±0.08 0.60±0.12 

                                       4 0.78±0.03 0.61±0.10 0.13±0.02 0.18±0.03 0.36±0.03 0.41±0.05 0.82±0.17 0.76±0.16 

         Length (min)         

(n=6;14)                       45 1.11±0.04 1.02±0.07 0.08±0.01 0.11±0.01 0.22±0.01 0.23±0.04 0.68±0.07 0.54±0.11 

                                    90 1.06±0.03 0.89±0.07 0.09±0.01 0.13±0.02 0.24±0.01 0.27±0.03 0.65±0.08 0.52±0.09 

         Distractors#1 (4s)          

(n=10;14)                  None 0.72±0.07 0.49±0.10 0.16±0.02 0.23±0.05 0.39±0.02 0.46±0.02 0.83±0.10 0.75±0.17 

Congruent 1.00±0.07 0.72±0.16 0.09±0.01 0.16±0.04 0.30±0.02 0.39±0.05 0.89±0.09 0.86±0.12 

Incongruent 0.98±0.07 0.69±0.13 0.09±0.01 0.16±0.04 0.32±0.02 0.40±0.05 1.00±0.07 0.82±0.11 

         Distractors#2 (2.5s)         

(n=9;14)                     None 0.56±0.05 0.42±0.09 0.20±0.02 0.27±0.03 0.41±0.02 0.43±0.04 0.64±0.09 0.46±0.06 

Congruent 0.80±0.06 0.67±0.07 0.14±0.01 0.17±0.01 0.33±0.02 0.37±0.04 0.73±0.07 0.64±0.11 

Incongruent 0.66±0.09 0.53±0.10 0.19±0.02 0.21±0.03 0.36±0.03 0.42±0.04 0.56±0.05 0.63±0.07 

         Distractors#3 (1s)         

(n=10;13)                  None 0.36±0.08 0.25±0.08 0.37±0.09 0.32±0.09 0.44±0.09 0.44±0.14 0.22±0.09 0.40±0.11 

Congruent 0.22±0.05 0.27±0.06 0.24±0.04 0.28±0.06 0.26±0.03 0.35±0.04 0.40±0.09 0.29±0.08 

Incongruent 0.56±0.08 0.31±0.11 0.39±0.07 0.30±0.12 0.40±0.07 0.35±0.07 0.35±0.08 0.30±0.09 

Table 1. Mean values ± SEM for sham and ACC lesioned mice in each probe and on two averaged baseline sessions immediately prior to the 
start of post-surgery probes.  c = response criterion, FAR = false alarm rate, HR = hit rate and d’= discrimination sensitivity. Significant main 
effects of lesion are in bold and red (see legend).  Interaction effects between group and probe are denoted in red only. N numbers are listed in 
the order “lesion”, followed by “sham”.  
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 Sham Lesion 

rCPT baseline 4s SD 265±19 393±51* 

vSD#1 267±27 389± 52* 

vSD#2 364±28 512±124 

Distractors#1 168±27 290± 67 

Distractors#2  353± 42 427± 63 

Distractors#3 443± 42 447± 49 

S+ probability 344±30 424±90 

ITI 337±37 389± 69 

vSD#3 272±35 381± 54 

vSD#4 279±21 396±93 

Fixed SD 1s 187±23 265± 27 

Fixed SD 5s 186±18 259± 41 

Session length (90min) 615±59 973±123** 

Table 2. ITI touches by lesioned animals and sham controls in rCPT testing 

 
Table 2. ITI touches by lesioned animals and sham controls in rCPT testing 

Note. Asterisk denotes significant main effect of group (*p <0.05, **p<0.01) 
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FIGURE 1 
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Representative (50 % of N) 

Maximum 

Lesion Sham 
+0.98 

+1.94 

+2.22 
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FIGURE 2 
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FIGURE 3 
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