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Vision-based excavator pose estimation using synthetically generated 

datasets with domain randomization 

 

Abstract  

The ability to monitor and track the interactions between construction equipment and workers can lead 

to creating a safer and more productive work environment. In recent years, many efforts have been 

made to utilize on-site cameras as a non-intrusive method for intelligent monitoring through equipment 

pose estimation. However, there are limited studies that estimate the pose of articulated equipment using 

monocular cameras. Most recent studies employ computer vision and deep learning techniques, which 

rely on the size and quality of the training datasets for optimal performance. However, preparation of 

large datasets with high quality annotations is a manual process, and due to the limited data availability 

in specialized fields such as construction, most previous studies have focused on taking a model-centric 

approaches to improving the performance of the proposed solution. 

To overcome this challenge, this study takes a data-centric approach and presents a framework for 

synthetically generating large and accurately annotated images, required for training deep convolutional 

neural networks. The study offers several contributions to the current literature. First, a method is 

developed using a game engine, which employs domain randomization (DR) to produce large labelled 

datasets for excavator pose estimation. Second, a state-of-the-art deep learning architecture based on 

high representation network (HRNet) is adapted and modified for excavator pose estimation. This 

model is trained on synthetically generated datasets and its performance is evaluated on two datasets, 

containing images of real excavators in the field. Finally, the quality of the synthetically generated 

datasets is evaluated, two training strategies are compared, and the impacts of various randomization 

parameters in the simulator are examined. The results reveal that the model trained solely on synthetic 

data can yield comparable results to the model trained on real images of excavators. This demonstrates 

the effectiveness of utilizing synthetic datasets for complex vision tasks such as equipment pose 

estimation. The study concludes by highlighting promising directions for further work in synthetic data 

studies in construction. 

 

 

1. Introduction 

Construction sites are one of the most hazardous work environments worldwide, with high rates of 

injuries and fatalities [1]. According to the U.S. Bureau of Labor, on average around one in every five 

fatal occupational injuries are attributed to the construction industry [2].  Struck-by accidents, in 

particular, have accounted for around 20% of all construction related accidents in the United States in 

2017 [2]. Operations involving heavy construction equipment such as excavators are a critical 

component of most construction projects. Heavy construction equipment, vehicles and workers are 

often required to work simultaneously in limited workspaces due to spatial limitations and tight 

schedules, which often leads to suboptimal performance both in terms of safety and productivity [3]. 

Equipment and workspace blind spots are one of the primary causes of collision accidents [4]. Workers’ 

exposure to noise, and fatigue also contribute to the risk by impairing workers and operators ability to 

recognize proximity hazards [5, 6]. To reduce the risk of such accidents, safety trainings are provided, 

and safety observations and inspections are carried out on site [7]. However, due to the dynamic, 

complex, and unique nature of construction workplaces, continuous monitoring of entire jobsites by 

safety personnel is impractical, costly, and ineffective [8]. Moreover, prevention of accidents through 

manual inspections relies on the reaction of inspectors which does not allow for prompt and accurate 
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response to emerging hazardous situations. It is anticipated that automation of the safety monitoring 

process can reduce the risk of struck-by accidents by enabling continuous monitoring, and timely 

response to hazards. 

Previous studies have proposed to employ real-time location systems (RTLS) and GPS sensors to track 

construction equipment and alert workers and operators in the case of a proximity hazard [9-11]. 

However, Radio frequency based RTLS methods suffer from signal attenuation, and GPS sensors are 

not suitable for indoor or dense urban environments [12]. Furthermore, these monitoring techniques 

require pre-installation of sensors on objects of interest, which is a cumbersome task in the busy 

construction environment, where multiple sub-contractors are involved. In contrast with sensor-based 

monitoring techniques, computer vision-based methods that utilize surveillance videos to identify and 

locate workers and equipment have the major advantage of being non-intrusive as they do not require 

sensor installations [13]. Previous research has studied identification and detection of construction 

equipment and workers using computer vision techniques [14-16]. While detection, localization and 

tracking of construction equipment can be beneficial for proximity hazard monitoring [17], heavy 

construction equipment such as excavators often do not change location during operations, but due to 

their high articulation, pose a high risk to the safety of the personnel that are working in their vicinity. 

Therefore, the ability to estimate the location of the individual parts of the equipment with a higher 

level of granularity is crucial to enable the development of safety monitoring applications. This problem 

is commonly known as pose estimation, in which the objective is to accurately determine the location 

of heavy equipment’s individual joints. Pose estimation serves as a pre-processing step for many 

applications that require an understanding of the relative position of the equipment parts or the 

interaction between various objects such as proximity and blind spot monitoring, activity recognition, 

and abnormal behaviour detection. 

Soltani et al. [18] proposed to estimate the excavator pose by fusing RTLS data and the data obtained 

from two cameras. However, the method requires sensor installation, camera calibration, and only 

performs well when the excavator parts are visible from both cameras. Methods that rely only on visual 

data from a single or multiple cameras have also been proposed [19]. In the earlier works, fiducial 

markers are mounted on the equipment’s points of interest [20-24]. This enables the ability to recognise 

the position and orientation of markers, thus estimating the pose of the articulated machinery. While 

these methods have shown to be capable of pose estimation with centimetre level accuracy, they require 

installation of markers on the equipment, and suffer from a number of other major drawbacks that 

prevent their practical deployment on construction sites, such as marker damage, occlusion and range 

limitations [23].  

Pose estimation using monocular cameras without relying on fiducial markers has also been explored. 

Direct visual pose estimation approaches can be categorized into methods that use traditional computer 

vision techniques [25-27], and more recently, methods that rely on machine learning models [7, 28, 29]. 

The former category typically requires manually designing feature extraction and decision-making 

criteria to achieve a desired output. For instance, Rezazadeh Azar and McCabe [25] employed a part-

based object recognition model based on histogram of oriented gradients (HOG) and proposed to 

impose spatial-temporal constraints to improve detection results. Yuan et al. [27] proposed a template 

matching approach based on geometrical shapes and kinematic constraints for detecting individual 

excavator components and estimating the equipment pose. These methods, however, are not robust to 

major viewpoint, shape, and illumination variations, and perform poorly in cluttered environments such 

as construction sites [26, 27]. 

On the other hand, machine learning methods, particularly, convolutional neural networks have been 

shown to outperform traditional computer vision techniques, while not relying on hand-crafted feature 

extraction steps [7, 29]. For instance, Luo et al. [29] prepared a dataset of manually annotated 

excavators, and compared the performance of Stacked Hourglass Network [30], Cascaded Pyramid 
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Network [31], and an ensemble model for excavator pose estimation. While convolutional neural 

networks have dramatically improved the state-of-the-art in visual object detection and pose estimation, 

they require a large number of labelled data for optimal performance [32]. One of the most prominent 

contributing factors to the substantial performance improvement of deep learning is the availability of 

large, accurately labelled, and diverse datasets [33]. For instance, datasets for human pose estimation 

such as MS COCO [34], and MPII [35] contain more than 250 thousand, and 40 thousand annotated 

instances, respectively. However, limited availability of data in the context of construction, and 

substantial time and effort required for preparing datasets with high quality annotations has been 

repeatedly mentioned in the literature [29, 36, 37]. 

To overcome the challenge of data availability in construction, a number of solutions have been 

proposed. For instance, Luo et al. [29] proposed to use data augmentation to increase the dataset size 

for excavator pose estimation. However, data augmentation can only be applied on an existing dataset, 

and is unable to overcome the data availability challenges. Liu and Golparvar-Fard [38] proposed a 

crowdsourcing solution to prepare annotated datasets for activity recognition. Similarly, Wang et al. 

[39] examined a crowdsourcing approach to prepare a dataset for identification of images with safety-

rule violations. In another study, Han and Golparvar-Fard [40] proposed to facilitate the preparation of 

a dataset of construction materials by guiding the annotation process with BIM overlays. Most recently, 

Kim et al. [41] proposed to use active learning, an approach that evaluates unlabelled data and identifies 

the most meaningful to learn instances to be annotated for object detection based on the uncertainty of 

detections. Although the methods discussed above are proposed to facilitate the manual and laborious 

process of dataset preparation, their process still involves manual annotation, they may suffer from poor 

annotation quality due to the manual and subjective nature of the labelling process, and they rely on 

availability of unlabelled data.  

In an attempt to address the data availability constraint, Liang et al. [7] proposed a method for 

automatically generating a labelled dataset for excavator pose estimation. The process involves an 

industrial robotic arm equipped with a bucket to resemble an excavator, and the grand-truth annotations 

are acquired by the robot’s built-in encoders. However, this method is unable to produce a dataset with 

sufficient variety, consequently, the network trained on the dataset has not been able to achieve high 

performance when applied to real excavators in the field [7].  

Synthetic data generation is another method employed for various computer vision problems to 

overcome the labelled data sparsity for specialised tasks [42, 43]. For instance, Dwibedi et al. [44] 

proposed a simple approach that adds segmented object instances on random backgrounds to generate 

large labelled training datasets. Johnson-Roberson et al. [45] developed a realistic data generation 

framework using a simulation engine that provides bounding box annotations for vehicle detection. 

Similarly, in the field of autonomous vehicles, Tsirikoglou et al. [46] proposed a method to generate 

realistic synthetic data with pixel-level accurate labels for object segmentation. In another study, Tobin 

et al. [47] proposed to use domain randomization (DR) to identify the location of objects in 3 

dimensions, given an RGB image for a robotic task. Domain randomization is a process that randomizes 

various aspects of the domain in creating the training dataset with sufficient variability, such that the 

model is able to generalize to real world with no further training [47]. Furthermore, Tremblay et al. [48] 

proposed a method based on synthetic data generation with DR to detect bounding boxes around cars 

for autonomous driving applications, and demonstrated the ability of DR-generated synthetic datasets 

to bridge the gap between synthetic and real datasets in training a neural network. 
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This study extends the work of Tremblay et al. [48], which is limited to bounding box detection around 

vehicles being observed from the perspective of the vehicle driving at the same level as the objects of 

interest, to pose estimation of highly articulated machinery such as excavators in the context of 

construction. This study makes several contributions to the literature. First, a method for synthetic 

dataset generation, developed using a game engine is proposed. The method utilizes DR to 

automatically produce large labelled datasets required for training deep neural networks. As depicted 

in Figure 1, the method removes the laborious and error-prone manual annotation process and enables 

large dataset generation. Second, a state-of-the-art deep learning architecture known as high 

representation network (HRNet) [49] is adapted for the problem of excavator pose estimation, the model 

is trained on synthetically generated datasets and its performance is evaluated on two datasets of real 

excavators in the field. Finally, an evaluation of the proposed method is conducted by answering the 

following questions: 

• To what extent can increasing the size of synthetically generated datasets improve model 

performance on real images?  

• Given the ability of the proposed method in producing pixel-level accurate annotations for 

occluded keypoints, does inclusion of keypoints that are not directly visible during model 

training improve performance?  

• How does training the model solely on synthetic datasets perform as compared to training on 

real images?  

• What DR parameters in the developed simulation have the highest impact on model 

performance when the model performance is evaluated on real images? 

The remainder of the study is organized as follows. Section 2 presents the proposed method of synthetic 

dataset generation, provides details of the adapted deep learning architecture and training details, and 

presents the two datasets of real excavators in the field that are used for evaluation, as well as the 

employed evaluation metrics. Section 3 presents the results of the experiments. Section 4 provides a 

discussion of the results, future directions, and limitations of the study. The conclusion is presented in 

Section 5 of the article. 

 

Fig.  1. Comparison of training dataset preparation methods; conventional vs. the proposed method. 
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2. Proposed method 

 

In this section, a framework for generating synthetic data to train a deep learning model for construction 

equipment pose estimation is presented. Section 3.1 describes the developed synthetic data generator. 

The details of the pose estimation network are discussed in Section 3.2, and the datasets of real 

excavators in the field, as well as the evaluation metrics employed are discussed in Section 3.3. 

2.1 Synthetic data generation with DR 

This section describes the proposed framework for automatic generation of labelled datasets for training 

deep neural networks. The synthetic dataset generator is developed using Unity, a cross-platform game 

engine capable of creating 3D games and simulations. The proposed synthetic dataset generator 

employs DR to produce datasets with pixel-level accurate annotations, and a large amount of variety. 

Figure 2 illustrates the various aspects of the DR, which include variable parameters of the scene and 

the equipment model. 

The randomized scene parameters include the viewpoint, field of view (FoV) of the virtual camera, 

lighting, floor textures, background textures, 3D occluding objects and dust simulator as depicted in 

Figure 2. The camera height and its horizontal offset from the location of the equipment ranges from 2 

to 20 meters, and 8 to 35 meters, respectively. The FoV of the camera is selected randomly from the 

range 20 to 60 degrees for standard lenses, and 60 to 90 degrees for wide angle lenses. The randomized 

parameters of the light source include its intensity, colour and location.  

The floor and background textures are randomly selected from a pool of images that contain both real 

landscapes and materials, as well as abstract patterns. Similar to Tremblay et al. [48], it is anticipated 

that by creating datasets that also include non-realistic images, the network will be forced to distinguish 

the most prominent features related to the shape of the equipment, and therefore, would be able to better 

generalize to real images. Furthermore, to include instances with occlusion and simulate the presence 

of dust, which are common occurrences on construction sites, random 3D occluding objects and 

simulated dusts are added to the scene.  

Fig.  2. The process of synthetic dataset generation with domain randomization. Various elements of the 

simulation are randomized and the rendered synthetic images along with the ground-truth annotations are used 

for training the pose estimation model. 
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The equipment randomized parameters include its pose with four degrees of freedom as illustrated in 

Figure 2, equipment texture, and its location on the scene. Similar to the textures used for the floor and 

background of the scene, the majority of excavator textures are purposefully created with patterns that 

do not necessarily resemble realistic equipment textures to avoid overfitting during model training. 

The developed synthetic data generator employs the Raycast functionality of Unity to determine 

whether a keypoint is visible or occluded. The visibility check also includes self-occlusion, which refers 

to the instances where a keypoint is occluded by other parts of the same equipment. Figure 3 illustrates 

some representative examples of synthetically generated images along with the keypoints, and their 

visibility status. Moreover, various lighting conditions, textures, presence of dust and occluding objects 

can be observed in Figure 3. To determine the visibility of each keypoint, an imaginary sphere around 

each keypoint is created and the keypoint is considered visible if a portion of this sphere is visible from 

the camera’s point of view. The visible and occluded keypoints can be viewed in Figure 3, marked by 

blue and red dots, respectively. 

To enable the comparability of this study with those in the existing literature, this study adopts the 

excavator keypoint definitions proposed by Luo et al. [29]. This definition considers 6 keypoints, 

consisting of Body_end, Cab_boom, Boom_arm, Bucket_end_left and Bucket_end_right as depicted in 

Figure 4. However, as the annotations are generated automatically by the synthetic data generator, the 

number of keypoints and their definition can be modified to suit specific applications if required.  

 

Fig.  3. Representative examples from synthetically generated datasets, showing various lighting conditions, 

texture patterns, simulated dust, occluding objects, and self-occluded keypoints. The blue dots represent visible 

keypoints and the occluded keypoints are represented by red dots.  

Fig.  4. The definition of keypoints used to describe the full body 

pose of an excavator in this study. 
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2.2 Pose estimation model 

This sub-section describes the architecture of the pose estimation model in this study, and it provides a 

summary of the training details adopted in the experiments. 

 

2.2.1 Model architecture 

This study adopts HRNet, a state-of-the-art deep learning architecture developed by Wang et al. [49]. 

HRNet is designed for computer vision problems that require spatially precise representations such as 

semantic segmentation, object detection and human pose estimation. HRNet connects multi-resolution 

convolutions in parallel, while repeatedly exchanging information across various resolutions using a 

number of proposed exchange blocks.  

The aim of pose estimation is to detect the location of 𝑘 keypoints from an input image of size 

𝑊 × 𝐻 × 3, where 𝑊 and 𝐻 indicate the width and height of the input image, and 3 represents the three 

colour channels (RGB). The method transforms the problem to estimation of 𝑘 heatmaps, 

{𝐻1, 𝐻2, … , 𝐻𝑘}, where each heatmap, 𝐻𝑘, indicates the location of the 𝑘𝑡ℎ keypoint.  

The model consists of three main components, the stem, main body and regressor. The stem consists of 

two convolutional layers with kernel size of 3 and stride of 2, each followed by a batch normalization 

and ReLU activation function. This reduces the resolution of the input image and feeds the feature maps 

into the main body of the network which adopts the HRNet [49] architecture. The resolution of the 

feature maps is maintained in the main body. Therefore, the output feature maps have the same 

resolution as the input feature maps is produced by the stem. The HRNet adopted in this study consists 

of four parallel subnetworks as detailed by Sun et al. [50]. The number of channels in the high-resolution 

subnetworks is 48, and the width of the other parallel subnetworks are 96, 192, and 384, respectively. 

The output features are then fed to a regressor, which is a convolutional layer with 48 input channels, 

and K output channels for each of the keypoint heatmaps. Figure 5 illustrates the architecture of the 

network employed in this study. 

 

2.2.2 Training details 

The model is implemented using PyTorch, and the network training is carried out using an NVIDIA 

Tesla K80. Given the equipment bounding boxes, the synthetic images containing the excavators are 

cropped and rescaled to a fixed size of 384×288 to be fed to the model. The network outputs the 

Fig.  5. The architecture of excavator pose estimation model. 
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predictions in the form of heatmaps of size 96×72. The loss function used for comparing the ground-

truth heatmaps with the predictions is defined as the mean squared error (MSE), as shown in Eq. (1): 

 
𝑀𝑆𝐸 =  ∑

∑ (𝑦𝑖,𝑘 − 𝑦𝑖,𝑘
𝑝 )2𝑘

1

𝑘

𝑛

𝑖=1

 (1) 

where 𝑦𝑖,𝑘 is the ground-truth coordinates of the 𝑘𝑡ℎ visible keypoint in the 𝑖𝑡ℎ sample, and 𝑦𝑖,𝑘
𝑝

 is the 

predicted keypoint coordinates. The ground-truth heatmaps are generated by applying a 2D Gaussian 

centred on the keypoint coordinates with a 1-pixel standard deviation. Adam [51] optimizer is used with 

a learning rate of 0.001, determined empirically. As the general features learned by deep convolutional 

networks trained on large datasets are transferable for various computer vision tasks, in this study, the 

network is initialized using a model pre-trained on the COCO dataset [34] to reduce the training time 

and number of data required. To avoid overfitting to the synthetic training datasets, early stopping is 

employed. Training is stopped where the validation loss stops improving for two consecutive epochs. 

The training is terminated within 20 epochs in all experiments. Figure 6 shows the learning curve of the 

model trained on a synthetic dataset with 9k training images as an example. 

 

 

2.3 Model evaluation 

2.3.1 Evaluation datasets 

The performance of the proposed pose estimation framework is evaluated on two datasets containing 

real images of excavators in the field. The first dataset used for evaluation (EvalSet1) is a subset of the 

dataset that has been made available by Luo et al. [29]. The dataset contains 1281 images in total. 

However, not all of the images contain annotations for all the keypoints, and thus only the fully 

annotated portion of the dataset, which contains 384 images with a variety of excavator types, is used 

in this study. The second evaluation dataset (EvalSet2) is based on a dataset, which contains video 

footage of a number of earthmoving operations and is made available by Roberts and Golparvar-Fard 

[52] for activity analysis of earthmoving equipment. As this dataset does not contain any pose 

information, 440 frames are extracted and annotated using an image annotation tool. 

Fig.  6. The learning curve of the model trained on a synthetic 

dataset with 9k training images generated with full domain 

randomization. 
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Both datasets contain the keypoints’ position in the image frame, as well as the visibility status of the 

keypoints. Therefore, each keypoint annotation is represented by (𝑥, 𝑦, 𝑣), where 𝑥 and 𝑦 represent the 

cartesian coordinates of the keypoints in the image frame, and 𝑣 represents the visibility status. The 

visibility status value can take 1, 0 and -1, indicating “visible”, “occluded”, and “out of frame” 

keypoints, respectively. Figure 7 illustrates some representative examples from the two datasets. 

EvalSet1 contains a variety of excavator types including mini-excavators, wheel excavators, long-reach, 

standard and heavy excavators, and close-up images. EvalSet2 only contains standard excavators, and 

the images are captured from a distance, containing a variety of poses. Figure  8 provides some 

statistics regarding the visibility status of the keypoints in the two datasets. 

 

2.3.2 Evaluation metrics 

Normalized error (NE), and percentage of correct keypoints (PCK) are two commonly used evaluation 

metrics for keypoint estimation problems [29, 53]. These metrics are adopted to evaluate the 

performance of the equipment pose estimation models in this study.  

Here, NE is defined as the average normalized Euclidean distance between the ground-truth keypoints 

and the predictions in pixels, normalized by the diagonal of the input image as shown in Eq. (2). 

 
𝑁𝐸 =

1

𝑛
∑

‖𝑦𝑖,𝑘 − 𝑦𝑖,𝑘
𝑝

‖

𝑑𝑖

𝑛

𝑖=1

 (2) 

Fig.  7. A set of example images from the two datasets (EvalSet1 and EvalSet2) used for evaluation, both 

containing real images of excavators in the field. 

Fig.  8. Statistics of the two evaluation datasets in terms of keypoint visibility status. 
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where ‖𝑦𝑖,𝑘 − 𝑦𝑖,𝑘
𝑝

‖ represents the Euclidean distance of the prediction to the ground-truth annotation, 

𝑘 represents the 𝑘𝑡ℎ keypoint in the 𝑖𝑡ℎ sample, 𝑑𝑖 denotes the diagonal of the 𝑖𝑡ℎ image before being 

rescaled to be fed to the network, and 𝑛 is the total number of visible keypoints. Only the visible 

keypoints are considered in the calculation of the NE. 

PCK measures the accuracy of keypoint localization by calculating the percentage of correctly 

identified keypoints for a given threshold, α. If the normalized distance between the prediction and the 

ground-truth keypoint is less than α, the keypoint is considered to be correctly located.  

 

3. Experimental results 

The following sub-sections describe the results of a number of pose estimation experiments. In all 

experiments, the model is trained solely on synthetically generated images of excavators and the 

evaluation is performed on the two datasets introduced in Section 3.3.1, both of which contain images 

of real excavators in construction fields. First, two training strategies are compared, in which the effect 

of inclusion or exclusion of occluded keypoints during training is investigated. This is followed by the 

evaluation of the influence of dataset size on model performance. Moreover, the performance of the 

model trained on the synthetic data is compared with that trained on real images. And finally, the impact 

of each DR parameter on model performance is explored. 

3.1 Training on synthetic data 

This sub-section presents the results of a number of experiments, conducted to evaluate the performance 

of the proposed framework for excavator pose estimation. In these experiments, the model is solely 

trained on synthetically generated datasets with no further fine-tuning on real annotated images in order 

to assess the extent of the proposed framework’s capability in generalizing on real images. Six synthetic 

datasets of various sizes are generated with full DR. It means that all parameters of the simulator, such 

as pose, camera height and distance, lighting, field of view, textures, occluding objects, and dust 

simulation are randomized. The smallest and largest generated datasets contain one and 15 thousand 

training images, respectively. The synthetically generated datasets are split into training and validation 

sets with an 80/20 ratio. All training parameters are kept constant as described in section 3.2.2. In 

addition, the performances of the models trained on each of the generated datasets are evaluated on two 

real datasets (EvalSet1 and EvalSet2) using NE values and PCK curves. 

3.1.1 Comparison of two training strategies 

The proposed framework allows for generating pixel-level accurate annotations for all keypoints 

whether they are visible or occluded (including self-occluded keypoints). Due to the difficulty of 

locating keypoints that are not visible, it is not feasible to produce accurate annotations for occluded 

keypoints in manual annotation processes. Therefore, previous studies have only included visible 

keypoints during model training [7, 29].  

As the synthetically generated datasets contain accurate annotations for both visible and occluded 

keypoints, the models are trained on each of the generated datasets twice to enable a comparison of two 

training strategies. The two training strategies are distinguished by inclusion or exclusion of occluded 

keypoints during training. Figure 9 shows the results of this experiment, where the dashed lines 

represent the results of the network trained only on visible keypoints, while the solid lines demonstrate 

the model performance when all keypoints are included during training. The results indicate that 

inclusion of occluded keypoints during training improves performance in terms of NE for both 

evaluation datasets (EvalSet1 and EvalSet2). As illustrated in Figure 9, the results point to a reduction 
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of approximately 23.3% on average when the model performance is evaluated on EvalSet1, and a 

reduction of about 15.3% is observed when it is evaluated on EvalSet2. 

3.1.2 The effect of dataset size 

The main advantage of synthetic dataset generation with DR is the ability to produce large datasets. 

Therefore, the ability of the simulation to produce datasets with high variety is of utmost importance. 

A high data variety makes it less likely for the models to overfit on the synthetically generated training 

datasets, which helps the models to learn the essential features of the equipment, and view the real 

images as just another variation of the synthetic data observed during training. 

Therefore, to evaluate the extent of data variability that the DR-based method can produce, the 

performance of the models trained on datasets of various sizes are compared. Figure 9 shows the result 

of the experiments on datasets of various sizes from 1k to 15k, for both training strategies. The results 

of the experiments when occluded keypoints were included during training, as shown in Figure 9, reveal 

that increasing the training dataset size from 1k to 3k, decreases the NE by 23.4% on average when the 

model performance is evaluated on the two evaluation datasets. Increasing the training dataset size from 

3k to 9k only improved the performance on evaluation datasets marginally. A further reduction in NE 

values was observed with the datasets of size 12k; however, further increasing the dataset size beyond 

Fig.  9. Comparison of NE for models trained on various dataset sizes with full domain randomization, as well 

as direct comparison between two training strategies. 
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this point led to a reduction in the accuracy, which may be an indication that the model has started to 

overfit to the training dataset. 

 

Table 1. The NE values for the model trained only on synthetic data and the model trained on real excavator images as 

evaluated on EvalSet2. 

Training 

dataset 
Body_end Cab_boom Boom_arm Arm_bucket Bucket_end_right Bucket_end_left Average 

Synthetic 0.0669 0.0317 0.0273 0.0282 0.0823 0.0916 0.0498 

Real 0.0314 0.0287 0.0208 0.0311 0.0992 0.0969 0.0478 

 

3.2 Comparison with training on real images 

To quantify the performance of the proposed framework, the results of training the HRNet-based pose 

estimation model on synthetically generated images are compared with the results of the same model 

trained on manually annotated images of real excavators. 

The dataset of real excavators, which contains 1281 annotated images of excavators in the field, is 

prepared using the annotated images made available by Luo et al. [29]. However, as the dataset is 

relatively small in size, four data augmentation techniques, i.e. horizontal flip, random rotation, random 

translation, and colour inversion are applied to enlarge the dataset, increasing the number of images to 

6405 in total. The dataset is split to 5,000, and 1,405 images for the training and validation sets, 

respectively. 

As opposed to preparing datasets of real excavators, which requires manual annotation, creating large 

synthetic datasets using the proposed method is performed automatically. The model trained on the 

synthetic dataset with 12,000 images in the training set, and 3,000 images in the validation set is selected 

for comparison with the model trained on real images. Both models are trained using the same 

hyperparameters as described in Section 3.2.2, and early stopping is employed. 

The evaluation is performed on EvalSet2, the details of which are described in Section 3.3.1. Table 1 

provides a comparison of the two models in terms of NE values. The results indicate that the model 

which is solely trained on synthetic data has achieved comparable performance to the model trained on 

real images. The NE values for the synthetic dataset are only slightly lower that the real dataset on 

average. On three keypoints, namely the arm_bucket, bucket_end_right and bucket_end_left, it 

outperformed the model trained on real images, despite the fact that no real images are used during 

training for this model. 

Furthermore, Figure 10 illustrates the PCK curves for the two models. The model trained only on the 

synthetic dataset is able to generalize considerably well to real images, even though no real images were 

seen by the network during training. However, accurate localization of the body_end keypoint, in 
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particular, appears to be challenging for the model trained on synthetic data as compared to the model 

trained on real images.  

Figure 11 shows a number of sample predictions for the two models. The examples include various 

viewpoints, including front and rear views of the excavator, which are more challenging compared to 

side views. The examples illustrate better performance of the model trained on real images in detecting 

the location of body_end keypoint. However, as for the estimation of the bucket keypoints, which is the 

most challenging for both models to localise, the model trained on synthetic data is able to estimate the 

location of bucket keypoints with a higher accuracy. 

3.3 Impact of DR parameters 

To study the impact of the individual DR parameters, a systematic experiment is carried out, in which 

one randomization parameter in synthetic dataset generation is enabled at a time. For this study, the 

same model as described in Section 3.2.1 is used, and the hyperparameters are set as described in 

Section 3.2.2. For each experiment, 7,500 synthetic images are generated, 6,000 images are used for 

training, and the remaining 1,500 are used for validation. The performance of the models trained on 

each dataset are reported in terms of NE. 

Fig.  10. The PCK curves for the model trained only on synthetic data (left) and the model trained on real images (right). Evaluation 

is performed on EvalSet2 dataset. 

Fig.  11. Sample predictions for the model trained on synthetic images (top) and the model trained on real images (bottom). 

The predicted keypoint locations are shown with blue dots, and the ground-truth location of visible keypoints are depicted 

with red crosses.  
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Figure 12 shows the result of enabling each DR parameter in generating the training dataset, showing 

the effect of each parameter on pose estimation performance on the two evaluation datasets. The effect 

of each parameter is compared with the baseline and full DR. The baseline synthetic data generation 

uses a single texture, for the excavator, floor and background of the scene, with no lighting variation, 

occluding objects or simulated dust. Only the excavator’s pose and the camera’s point of view is 

randomized. The field of view of the camera is only varied within a 20 to 60 degrees range, which is 

characteristic of standard cameras. On the other hand, the dataset using full DR was generated by 

enabling all DR parameters in the simulator, which includes lighting variation, addition of simulated 

dust and occluding objects. Furthermore, in the dataset generated with FDR, all textures are randomized, 

and the rendered images also include wide angle photos. 

The individual parameters studied in this section are: The background and the floor textures, which 

indicate the importance of context; the excavator textures, which are purposefully created unrealistically 

to induce the variety in the dataset and force the network to learn features related to the shape of the 

equipment rather than their colour or texture; randomly generated occluding objects that are added to 

make the networks more robust to occlusions, which is a challenging problem for vision-based systems 

in construction; and simulated dust is also added to create robustness to visual noise. Furthermore, the 

effect of randomizing the lighting conditions, and inclusion of images with a wide-angle field of view 

Fig.  12. Impact of enabling individual DR components in the process of synthetic data generation on NE as evaluated on 

two datasets of real excavators. 
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are also studied. In all of the generated datasets, the pose of the excavator, its location, and the location 

of the camera and its orientation are randomized.  

The results indicate that the inclusion of wide-angle field of view in data generation reduces the NE on 

EvalSet1 only by about 4%, whereas this reduction on EvalSet2 was more significant at about 18%. As 

compared to varying focal length of the camera in the simulation, the addition of lighting variations had 

a higher impact on model performance, where NE values on EvalSet1 and EvalSet2 were reduced by 

14.3% and 26.7%, respectively. Similarly, the addition of occluding objects to images reduced the NE 

on EvalSet1 and EvalSet2 by 14.5% and 23.4%, respectively, as compared to the performance of the 

model on the baseline synthetic dataset. As suggested by the results, the addition of simulated dust was 

the most impactful non-texture related DR parameter in the simulation. By creating visual noise through 

simulated dust, the NE values on EvalSet1 were reduced by 29.5%, and similar improvement was 

observed on EvalSet2 with a reduction of about 30% on average NE. 

To study the influence of textures on model performance, three scenarios where studied. The scenarios 

include 1) randomization of excavator textures while not varying the floor and background textures; 2) 

using a single excavator texture while randomizing the floor and background textures; and 3) 

randomizing all the textures applied to excavators, floor and background in the simulation. The results 

revealed that varying the excavator textures alone had a similar impact on the model performance as 

adding lighting variations and occluding objects, with 22.7% reduction in NE for EvalSet1, 26.1% for 

EvalSet2. The effect of randomizing floor and background textures with the use of a single excavator 

texture was slightly less significant, where the NE was reduced by 13.1% and 21.6% on EvalSet1 and 

EvalSet2, respectively. However, when all textures where randomized, the impact on model 

performance was the most significant compared to all DR-parameters on both of the evaluation datasets. 

Randomizing all textures reduced the NE on EvalSet1 by about 37%, while the improvement on 

EvalSet2 was more significant, where NE values dropped to almost half with a 48.8% decrease. Lastly, 

the best performance was achieved when all DR-parameters were enabled during synthetic data 

generation. However, the amount of improvement did not exceed 52% on both datasets, suggesting 

diminishing returns as more DR-parameters are enabled.  
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4. Discussion 

The findings of this study suggest that by using only synthetically generated datasets, deep 

convolutional neural networks can be successfully trained to estimate the pose of construction 

equipment in real-world images. The major values obtained by utilizing the proposed framework are 

trifold. First, as compared to traditional data preparation pipelines, the proposed method does not 

require any manual annotation, which is a labour-intensive and time-consuming process. Second, 

synthetically generated datasets are advantageous to manually labelled datasets as they can produce 

pixel-level accurate annotations for the keypoints of interest. In contrast, manually annotated datasets 

are susceptible to human error, and in many cases different annotators may annotate the same image 

differently which leads to noisy datasets. Indicated by the results, presented in Section 4.1, inclusion of 

accurately labelled occluded keypoints in the training process had a considerable impact on model 

performance. This is due to the ability of the proposed method in producing accurate annotations for 

occluded keypoints, which is not feasible in most cases for human annotators. Third, by utilizing the 

proposed method, it not necessary to gather and annotate large training datasets for a specific object, 

and large datasets can be prepared for various construction equipment by taking advantage of the CAD 

model of the object of interest. This is a major advantage, in particular, in specialized fields such as 

construction, where limited data are available. 

Using synthetic data for deep learning requires a precise understanding of the critical features that need 

to be present in the training dataset such that the model can generalize to real-world images. In the case 

of equipment pose estimation, the model must learn the features related to the shape of the equipment. 

Therefore, in the course of designing the simulator, rather than relying only on realistic textures, 

unrealistic textures are also purposefully included in order to force the network to learn shape related 

features, and therefore enable the model to view real images as just another variation of the synthetic 

data seen during training. In line with this presumption, the results of the experiment presented in 

Section 4.3 revealed the major impact of randomizing all textures in generating the synthesized images. 

Moreover, the addition of elements such as occluding objects, simulated dust and light variations during 

synthetic image generation also resulted in considerable performance gain when the model performance 

is evaluated on real images.  

Overall, the efficacy of the proposed DR approach to training a deep learning model for pose estimation 

was shown. However, as indicated by the results, localization of certain keypoints of the excavators 

remain a challenge. For instance, the bucket_end keypoints were the most difficult to localize accurately 

both for the model trained on synthetic datasets and the model trained on real images. It is important to 

note that the proposed synthetic data generator employed in this study has a number of limitations. For 

instance, only a single excavator model was used in the simulator. Including a variety of excavator types 

can create more variations in the generated dataset, and therefore, improve the generalizability of the 

models trained on the synthetic datasets. Moreover, the simulator does not account for the equipment 

interaction with various materials, as is the case in real construction operations. Simulating such 

equipment-material interactions may further reduce the gap between synthetic data and real-world 

images. Synthetic datasets can also be used to initialize a network when an insufficient number of 

annotated real images is available. Although this study only provides a direct comparison between the 

model performances of training only on synthetic data and that of training on real images, further studies 

can explore the benefits of initializing the networks with synthetic data, and further tuning the model 

with real images. 

 

  



18 

 

5. Conclusion 

 

The construction industry has continuously experienced lower than average safety and productivity 

enhancement as compared to other industries worldwide. Intelligent monitoring and data-driven 

decision making, powered by the recent advancements in computer vision and deep learning, offer 

promising non-intrusive solutions for process optimization and ensuring safety of operations. However, 

one of the key components for optimal performance of deep learning-based applications is the 

availability of large labelled training datasets, which is limited in specialized fields such as construction.  

To overcome the laborious and costly process of manual data collection and annotation, this study 

presents a synthetic image generator developed using a game engine, and it employs DR to produce 

large and accurately annotated datasets for excavator pose estimation. The proposed method randomizes 

various critical features of the scene, such as excavator pose and texture, scene texture and lighting, 

camera location and field of view, and adds other elements, such as simulated dust and occluding 

objects, to the scene. A state-of-the-art deep convolutional neural network known as HRNet is adapted 

in this study. The quality of the synthetically generated datasets is assessed by training the model solely 

on the synthetic datasets, and evaluating their performance on images of real excavators in the field. 

Furthermore, the effect of various randomized parameters of the proposed synthetic data generator on 

model performance are evaluated. The results demonstrate the effectiveness of synthetic data for 

training convolutional neural networks for complex vision tasks such as pose estimation. The proposed 

method is a promising approach to overcome the limited data availability in construction, and can be 

applied to other construction resources. 

While this study focused on the problem of pose estimation for excavators, the proposed framework is 

not limited to this equipment. Using the proposed synthetic data generation method, annotated datasets 

for a variety of construction equipment can be generated. Furthermore, while only six keypoints were 

used to define the full body pose of excavators, the automated annotation process allows easy expansion 

to dense pose estimation as no manual annotation is required in the preparation of the training datasets. 

The ability to generate complex and rich annotations enabled by synthetic data also paves the way to 

the design and implementation of simulators that can produce datasets, required for other computer 

vision tasks, such as semantic segmentation, depth estimation, and 3D pose estimation, in the context 

of construction. 
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Appendix 

 

Algorithm: Synthetic Dataset Generation for Excavator Pose Estimation 

Inputs:  

Excavator model 

// Texture sets 

𝒯𝑒: Excavator texture set,  𝒯𝑓: Floor texture set 

𝒯𝑏: Background texture set, 𝒯𝑜: Occluding objects texture set 

Outputs: 

Set of synthetically generated images 

Labels for each image, which includes 2D keypoint coordinates in the image frame, visibility status of 

the keypoints (visible vs occluded), excavator bounding box coordinates, and camera parameters 

 

Initialize resources // load excavator model, backgrounds, and textures 

for i = 1 to synthetic_dataset_size do 

 

procedure RandomizeFloorTexture(enable = True or False) 

  if enable = True 

   Randomly select floor texture, Tf, from set of floor textures, 𝒯𝑓  

 else  

Set default floor texture, Tf_default 

 end 

Apply floor texture 

end 

procedure RandomizeBackgroundTexture(enable = True or False) 

  if enable = True 

   Randomly select background texture, Tb, from set of background textures, 𝒯𝑏  

 else  

Set default floor texture, Tb_default 

  end 

  Apply background texture  

 end 
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 procedure RandomizeCamera(lens_type = “standard” or “wide”) 

 if lens_type = “standard” 

  Randomly set camera field of view from the range [20, 60] // units in degrees 

  Randomly set camera height (Z) from the range [2, 20]       // units in meters 

  Randomly set camera offset (X, Y) from the range [15, 35] // units in meters 

  Apply camera rotation to have the camera facing the center of the scene 

 elseif lens_type = “wide” 

  Randomly set camera field of view from the range [60, 90] // units in degrees 

  Randomly set camera height (Z) from the range [2, 10]       // units in meters 

  Randomly set camera offset (X, Y) from the range [8, 14]   // units in meters 

  Apply camera rotation to have the camera facing the center of the scene 

end 

Insert camera object 

end 

  

procedure LightingRandomization(enable = True or False) 

  if enable = True 

Randomly set light source position and orientation    

Randomly set light intensity 

Randomly set vary light source color with a probability, P1 = 0.2   

 else  

Set default lighting 

end 

  Insert light source object 

end 

 

procedure OccludingObjectRandomization(enable = True or False) 

  if enable = True 

Randomly select occluding object texture, To, from set of textures, 𝒯𝑜  

Randomly set occluding object scale 

Randomly set occluding object location 

Insert occluding objects    
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else  

Pass 

end 

 end  

 

procedure SmokeGeneratorObjectRandomization(enable = True or False) 

  if enable = True 

   Let P2 = 0.5 be the probability of creating a smoke generator object  

   Let x be a random number in the range [0, 1] 

   if  x <= P2  

    Let P3 = 0.1 be the probability of varying the smoke color 

    Let y be a random number in the range [0, 1] 

    if  y <= P3  

     Randomly set smoke object’s hue 

    else  

     Set default hue for the smoke generator object 

    end 

    Randomly set smoke intensity 

    Randomly set smoke object location 

end 

   Insert smoke generator object 

  else  

Pass 

end 

 end  

 

procedure ExcavatorGenerator(texture_randomization = True or False) 

 Let 𝜃1, 𝜃2, 𝜃3 and 𝜃4 be the four angles defining the pose of the excavator 

 Randomly set 𝜃1, 𝜃2, 𝜃3 and 𝜃4 from the operable range 

 if  texture_randomization = True  

Randomly select excavator texture, Te, from set of textures, 𝒯𝑒  
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  else 

   Set default excavator texture, Te_default 

end   

Randomly set excavator location and orientation 

  Insert excavator object  

 end 

  

procedure DatasetGenerator()   

Get 2D keypoints’ coordinates in the image frame, keypoints_coords 

  Get the visibility status of the keypoints (“visible” or “occluded”), keypoints_vis 

  Get the bounding box coordinates around the excavator in the image, bbox_coords 

  Get camera parameters, camera_params 

  Render image, Ii 

  Write the image, Ii to file   

  Append keypoints_coordsi to CSV file 

Append keypoints_visi to CSV file 

Append bbox_coordsi to CSV file 

Append camera_paramsi to CSV file 

 end 

end 

 

 


