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1 Introduction

Observables of strongly-coupled field theories may be related to semi-classical gravity on
spaces that are asymptotically anti-de Sitter following the AdS/CFT correspondence. In
order to further sharpen the dictionary between gauge theory and gravity, it is useful to look
at supersymmetric field theories that are amenable to localization, as in this case protected
observables may be computed exactly. We begin by formulating a supersymmetric field
theory on a Riemannian manifold (Md, g) and computing its partition function Z[Md]. We
then look for a gravitational dual: a solution (Yd+1, G) to an appropriate supergravity
theory which is asymptotically locally hyperbolic with conformal boundary (Md, g). That
is, we require the existence of a boundary isomorphic to Md and a coordinate z such that
near the boundary at z = 0, G ∼ dz2

z2 + 1
z2 g. The AdS/CFT prescription, in broad outline,

is that in an appropriate limit

Z[Md] =
∑

e−S[Yd+1] , (1.1)

where S is the holographically renormalized supergravity action.
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In addition to fixing the conformal class of the boundary metric, supersymmetry on a
curved background generically requires additional structures, which must also be matched
by the gravitational dual. For instance, focusing on d = 3, the minimum amount of
supersymmetry necessary for a localization computation is N = 2, which requires the
background to admit a transversely holomorphic foliation, that is, to be a Seifert man-
ifold (or torus bundles over a circle) [1]. As we increase the amount of supersymmetry
of the boundary theory, we can preserve supercharges on arbitrary curved spaces using
the (full) topological twist [2]. In this case, the partition function of the field theory is
a diffeomorphism invariant, as it does not depend on the background metric, and in fact
it may reproduce invariants studied elsewhere in mathematics: famously, Witten’s twist
of four-dimensional N = 2 SYM reproduces Donaldson’s invariants. It is natural to ask
ourselves what would the gravity dual be. The strategy employed in [3, 4] was to study
the supersymmetry structure of the supergravity solutions with boundary conditions cor-
responding to the (generalized) Killing spinors and bosonic fields required to perform the
topological twist of the field theory.1

The importance of studying holography in the context of topological field theories
stems from the fact that in these contexts the field theory is under better control, and so
it should allow us to improve our understanding of the right-hand side of (1.1), which is
the classical limit of the path integral for quantum gravity. For us, this means imposing
stringent conditions on the domain of the sum (e.g. should we include real or complex
solutions? Smooth or singular?). However, there have also been numerous exciting recent
developments on complementary approaches to the definition of a “topological” subsector of
supergravity, including attempts to twisting the supergravity/string theory itself (or sectors
thereof) [7–15], and twisting three-dimensional quantum gravity [16, 17]. Furthermore,
there have also been studies on the localization induced by supersymmetry in the form of
the supergravity path integral [18–23] and of the classical gravity on-shell action [24].

The additional control over the field theory provided by the full topological twist
also allows us to better study another issue in the AdS/CFT dictionary: the relevance of
boundary conditions on the gravity side. Namely, there are two issues that we will discuss.
Firstly, renormalizing the gravitational on-shell action requires a choice of regularization
scheme, and choosing a scheme that is not compatible with supersymmetry creates nu-
merous puzzling issues with the holographic dictionary [25–29]. Secondly, the extended
supersymmetry necessary to perform the twist requires the presence of scalars in the bulk.
Scalars fields in gauged supergravities may have different boundary conditions subtly de-
pendent on their masses and the spacetime dimension [30].2 A scalar with mass m on an
asymptotically locally AdS space of dimension d + 1 admits a unique boundary condition
compatible with the symmetries of AdSd+1 if

m2 > −d
2

4 + 1 , (1.2)

1An analogous strategy has also been applied to the hyperbolic dual of the four-dimensional N = 2 Ω
deformation [5, 6].

2A priori other fields could also have multiple boundary conditions [9, 30], the only relevant ones in this
paper are the scalars.
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but may have two different boundary conditions (and thus two quantizations) if

− d2

4 < m2 < −d
2

4 + 1 . (1.3)

In the context of the AdS/CFT correspondence, the scaling dimension ∆ of a field theory
operator O∆ dual to a bulk scalar with dimension m is given by

∆± = d±
√
d2 + 4m2

2 , (1.4)

and the allowed scaling dimensions should satisfy the unitarity bound ∆ > (d − 2)/2.
If (1.2) holds, then only ∆+ satisfies the unitarity bound and is allowed, so we can only
have an operator O∆+ . Near the boundary at z = 0, the leading term in the expansion
of the corresponding scalar is the coefficient of zd−∆+ , which we interpret as the source
for O∆+ , and we set as a boundary condition for the Dirichlet problem in supergravity.
However, if instead we are in the regime (1.3), both ∆± are allowed scaling dimensions
for the boundary operators, corresponding to the two quantizations allowed for the bulk
scalar, and the possibility of O∆− requires additional care. In this case, the source of
the boundary O∆− is not the leading term in the expansion of the bulk scalar near the
boundary, and the generating functional of the field theory cannot be identified with the
renormalized gravitational on-shell action, since we cannot set the appropriate boundary
conditions for the Dirichlet problem. In fact, the generating functional in this case is given
by the Legendre transform of the renormalized on-shell action [31].

Whilst it is true that in the range (1.3) there are two possible quantizations of the bulk
scalar fields, and correspondingly boundary operators with two different scaling dimensions
belonging to two different field theories with generating functional related by Legendre
transformation, it is not obvious that both of them are supersymmetric. For the N = 4
gauged supergravity relevant to this paper, d = 3 and there are two scalars with m2 =
−2 [32]. Since the mass of the scalars satisfies (1.3), there are two potential quantizations,
but only one of them is compatible with the bulk supersymmetry, namely one including
both boundary conditions set by ∆+ = 2 and ∆− = 1, sometimes referred to as alternate
boundary conditions [30]. Correspondingly, the supermultiplet of the stress-energy tensor
of three-dimensional local superconformal field theories with N = 4 contains two scalar
operators O∆+ ,O∆− with scaling dimensions 2 and 1 respectively.

In this paper we will study the gravity dual to the full topological twist of three-
dimensional N = 4 superconformal field theories, highlighting the importance of boundary
conditions preserving supersymmetry and studying the subtleties explained above. In
particular, we will show that we can only obtain a gravitational observable dual to the
field theory generating functional that is independent of the boundary metric if we in-
clude supersymmetry-preserving counterterms in the holographic renormalization and if
we perform the appropriate Legendre transformation on the renormalized on-shell action.
Furthermore, we will evaluate the on-shell action for smooth supergravity solutions, prov-
ing that it is only by including supersymmetric counterterms and Legendre transforming
that we obtain a topological invariant of the boundary.
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The same supergravity had been considered in [4], but with both scalars being dual
to boundary operators with scaling dimension ∆+ = 2. Several puzzling features were
alluded to there but not fully understood. Here, we investigate in more detail the sub-
tleties of the holographic renormalization in the presence of alternate boundary conditions.
However, the results of this paper do not modify the conclusions of [4]. We also show that
a supersymmetry-preserving holographic renormalization scheme, with twisted boundary
conditions, results in the gravitational observable appearing in (1.1) being zero for all
smooth supergravity solutions. Under the assumption that smooth real solutions dominate
the gravity saddle approximation, this leads to a conjectural behaviour of the large N limit
of the partition function for the topologically twisted ABJM theory on any Riemannian
three-manifold: it should be o(N3/2).3 Apart from the Vafa-Witten twisted theory on
K3 [33], no large N limit of a (fully) twisted partition function is known. If the conjecture
for the behaviour of the field theory were not to hold, we should infer that singular or
complex solutions dominate the quantum gravity path integral.

In section 2 we introduce the field theory side: first, we review from an abstract view-
point the topological twists of three-dimensional field theories with eight real supercharges,
then we describe the coupling of the superconformal field theories to off-shell conformal
supergravity and in particular the solution of the resulting Killing spinor equations on an
arbitrary three-manifold. In section 3 we move to the bulk supergravity theory, reviewing
its supersymmetry transformations and its equations of motion, and the results of their
Fefferman-Graham expansion. We then describe in some detail how to apply holographic
renormalization to this theory without spoiling supersymmetry. Finally, in section 4 we
look at the on-shell gravitational action when we fix twisted boundary conditions, showing
that it is independent of the boundary metric and it evaluates to a topological invariant.
In order to do so, we will highlight the importance of preserving supersymmetry, both in
the renormalization scheme and in the necessity of the Legendre transformation. We also
include three appendices, describing the reduction from maximal N = 8 gauged super-
gravity to the N = 4 model, and some considerations on the global supersymmetry of the
supergravity action.

2 Field theory

We begin this section by succinctly reviewing some aspects of the topological twists in
three dimensions. We will then describe how to obtain a twisted N = 4 superconformal
field theory by coupling to off-shell conformal supergravity.

2.1 Topological twists in three dimensions

In the approach to rigid supersymmetry of [34], we preserve supersymmetry on a curved
space by coupling a field theory supersymmetric on flat space to an off-shell formulation
of supergravity, then decoupling the dynamics of gravity while choosing a background
configuration corresponding to the required manifold. Concretely, this requires solving the

3Note that any spin M3 bounds a smooth Y4, so a smooth gravitational filling to the Dirichlet problem
always exists.
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(generalized) Killing spinor equations obtained from the vanishing of the supersymmetry
variations of the spinors in the gravity supermultiplet.

Performing a topological twist on a field theory means in particular being able to
preserve a supersymmetric charge on an arbitrary Riemannian manifold. Therefore, it
corresponds to finding a configuration of the bosonic background fields in the gravity su-
permultiplet such that the Killing spinor equation admits a solution on any manifold.
Geometrically, supersymmetry provides us with an R-symmetry gauge bundle PR with
associated vector bundle VR and connection AR. On the other hand, we have an SO(d)
structure on the Riemannian background. Twisting corresponds to finding a vector bundle
V associated to the SO(d) structure such that we can identify V with VR and ω, the con-
nection on V , with AR. This identification requires a sufficiently large R-symmetry group
and a correspondingly large amount of supersymmetry. In particular, in three dimensions
it requires at least eight real supercharges, or N = 4 in terms of the minimal spinor.

The SO(3) structure on any oriented Riemannian three-manifold can be lifted to a
Spin(3)E ∼= SU(2)E structure, as any oriented three-dimensional manifold is spin. On the
other hand, the three-dimensional N = 4 superalgebra has a Spin(4)R ∼= SU(2)+×SU(2)−
automorphism group. Thus, we see that there are at least two obvious twists, depending on
which SU(2) R-symmetry subbundle we choose to identify with the SU(2)E tangent bundle.
Even though in the algebra there is an additional Z2 automorphism exchanging SU(2)+ and
SU(2)−, the two twists are generically not equivalent, as the two SU(2) factors are subtly
different. For instance, if we construct 3d N = 4 SYM by reducing six-dimensional N =
(1, 0), the difference between the two subgroups arises because SU(2)− represents the R-
symmetry group of the higher-dimensional theory, whereas SU(2)+ represents the rotations
in the reduced three dimensions. More concretely, we may already see the difference in the
twists by considering the transformation of the vector multiplet. The three-dimensional
N = 4 vector multiplet comprises the gauge vector field Ai, gaugino λα and a triplet of
real scalars ~φ, all valued in the gauge algebra: under the group SU(2)E×SU(2)+×SU(2)−,
they transform as

Ai [3](1,1) , λα [2](2,2) , ~φ [1](3,1) , (2.1)

where the label between square brackets is the dimension of the SU(2)E representation,
and in the superscript are the dimensions of the representations under SU(2)+ × SU(2)−.
The scalars transform in the adjoint of SU(2)+ but are singlets under SU(2)− (which are
often labelled SU(2)C and SU(2)H to highlight their action on the Coulomb and Higgs
branches), so twisting with one or the other will result in a different field content. Namely,
twisting with SU(2)− leaves a symmetry group (SU(2)E × SU(2)−)diag × SU(2)+, under
which the fields transform as

[3](1,1) → [3]1 , [2](2,2) → [1]2 ⊕ [3]2 , [1](3,1) → [1]3 . (2.2)

This twist, referred to as the A-twist, is the reduction of the four-dimensional Wit-
ten twist [35]. Alternatively, one can twist with SU(2)+, leaving a symmetry group
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(SU(2)E × SU(2)+)diag × SU(2)−, under which the fields transform as

[3](1,1) → [3]1 , [2](2,2) → [1]2 ⊗ [3]2 , [1](3,1) → [3]1 . (2.3)

This second twist, the B-twist, is instead intrinsically three-dimensional [36].
Similarly, the difference between the two twists can be seen by applying them to the

other N = 4 supermultiplet, the hypermultiplet, containing two complex scalars q and two
spinors ψ transforming as

q [1](1,2) , ψα [2](2,1) . (2.4)

Parallel to both vector multiplets and hypermultiplets, there are also twisted vector multi-
plets and hypermultiplets, where the rôles of SU(2)+ and SU(2)− are exchanged (the name
is not connected to the topological twist).

In three dimensions, in addition to Yang-Mills theory, it is possible to preserve N =
4 supersymmetry in the presence of matter when the gauge field has a Chern-Simons
interaction [37], and it is also possible to twist the resulting theory [38, 39], obtaining A, B
and AB-twists (the latter only if the theory contains the same number of hypermultiplets
and twisted hypermultiplets).

In addition to the property of preserving supersymmetry on an arbitrary Rieman-
nian manifold, topologically twisted theories have the property that the supersymmetry-
protected partition function and other BPS observables do not depend on the background
metric. In the case of the four-dimensional Witten twist, this famously allows one to re-
cover the Donaldson invariants of the manifold [2], and its three-dimensional reduction,
the A-twist of 3d SYM, gives the Casson (or Casson-Lescop-Walker) invariant [35], and
via RG flow the Rozansky-Witten invariant [40]. It is clear that the protected observables
computed in the twisted Chern-Simons-matter models introduced above should also cor-
respond to topological invariants of the manifold. However, their mathematical content is
not yet fully clear.

2.2 Off-shell conformal supergravity and the topological twist

With our choice of supergravity, we will describe features of the dynamics of the stress-
energy tensor multiplet of superconformal field theories (with holographic duals), which we
now describe. The supermultiplet containing the stress-energy tensor is composed of [41]

Field O∆− λaα J I
i Ĵ I

i O∆+ Saiα Tij

[SU(2)E ](SU(2)+,SU(2)−)
U(1) [1](1,1)

1 [2](2,2)
3
2

[3](3,1)
2 [3](1,3)

2 [1](1,1)
2 [4](2,2)

5
2

[5](1,1)
3

(2.5)
Here the labels are the same as in (2.1), with the addition of the scaling dimension

written as a subscript, thus forming the full bosonic subalgebra of the N = 4 superconfor-
mal algebra. The indices i, j/α are vector/spinor spacetime indices, a = 1, . . . , 4 labels the
component of a vector in the fundamental of Spin(4)R, and I = 1, 2, 3 is an index for the
adjoint of SU(2). We see that there are two scalars with different scaling dimension, the
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Spin(4)R R-symmetry current composed of two SU(2) currents, each transforming in the
adjoint of one of the SU(2) subgroups, the supercurrent, and the stress-energy tensor.

The natural off-shell supergravity that couples to the stress-energy tensor supermulti-
plet of a SCFT is conformal supergravity. In order to define rigid supersymmetric curved
backgrounds for a theory, it is often preferable to use a non-conformal supergravity, even if
the theory is conformally invariant on flat space, because of the ultraviolet regularization
(see for instance [42]). However, it is conformal supergravity that appears as we take the
limit of gauged supergravity near the boundary of an asymptotically locally AdS solution.
Therefore, we review here an off-shell formulation of N = 4 conformal supergravity [43],
which we will reproduce from the bulk.

Three-dimensional N = 4 conformal supergravity has a Weyl multiplet consisting of
the fields4

Field S2 (χaα)3d S1 AIi ÂIi (ψaiα)3d gij

Weyl weight −2 −3
2 −1 0 0 1

2 2
(2.6)

These represent the metric, gravitino, gauge fields for the Spin(4) gauge group and
auxiliary fields. We couple the Weyl multiplet to the stress-energy tensor supermultiplet
using the Weyl weights assignment wΦ = rΦ−∆Φ for the fields in the stress-energy tensor
supermultiplet, where rΦ is the tensorial rank of the field. Thus, it is clear that, at least
at the linearized level, we preserve invariance under global Weyl transformations.

The spinor parameters for the Q and S supersymmetries are ζa and ϑa, both trans-
forming in the 4 of Spin(4)R.5 In order to have a rigid supersymmetric background, we
need to solve the (generalized) Killing spinor equations coming from setting the variations
of the gravitino and the auxiliary spinor to zero. After Wick rotation, these are

0 = δ(ψai )3d = ∇iζa + 1
2
√

2
ηIabA

I
i ζ
b − 1

2
√

2
ηIabÂ

I
i ζ
b + σi ϑ

a , (2.7)

0 = δ(χa)3d = ∂iS1 σ
iζa + 1

2S2ζ
a + 1

4
√

2

(
ηIabF

I
ij + ηIabF̂

I
ij

)
σijζa − 2S1ϑ

a , (2.8)

where σi are the Pauli matrices generating Cliff(3, 0), and the symbols ηIab, ηIab are the
self-dual and anti-self-dual ‘t Hooft matrices respectively. In the spirit of [34], a back-
ground preserving N = 4 rigid supersymmetry in three dimensions admits spinors ζa, ϑa

4Here we have gauge fixed to zero the gauge field for the dilatations bµ.
5The authors of [43] use the van der Waerden notation, writing the 4 of Spin(4) as (2,2). To transform

between the two we use the standard invariant symbols σAȦa = (σi, i12) and σaȦA = (σi,−i12). The left
and right chiral representations are generated by

(SLab)AB = 1
2 (σaσb − σbσa)AB , (SRab) Ḃ

Ȧ = 1
2 (σaσb − σbσa) Ḃ

Ȧ .

The bases of su(2) are then related by the ‘t Hooft symbols

(σI)AB = − i
4η

I
ab(S

L
ab)AB , (σI) Ḃ

Ȧ = − i
4η

I
ab(SRab) Ḃ

Ȧ .

Using these notions, it’s possible to transform the equations (3.1) of [43] into our notations (with an
appropriate rescaling of the gauge fields by

√
2 and redefinitions of the spinors).
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satisfying (2.7) and (2.8). There is one obvious way of solving them on arbitrary man-
ifold, corresponding to the topological twists described earlier. We set ÂIi to zero, and
then identify the remaining SU(2) bundle with the tangent Spin(3)E bundle, relating the
connections on the two as

AIi = 1√
2
εI
jk
ω jk
i , (2.9)

where the overline represents frame indices and ω jk
i is the spin connection for the frame.

It is then possible to find a spinor satisfying Diζa = 0 on an arbitrary manifold: in our
basis it is given by

ζa = iσa
(
w

iw

)
, (2.10)

where w is any complex number. The remaining fields are also immediately set by the
twist and the choice of spinor

ϑa = 0 , S2 = −1
2R , S1 = 0 , (2.11)

where R is the Ricci scalar of the metric g. In fact, the topological twist is consistent with
S1 being an arbitrary constant, which we set to zero. We will reproduce these conditions
from the bulk in section 4.1, clearing up a puzzle from [4].

2.3 Topological AdS/CFT for ABJM

In the following we shall discuss the gravity dual of any topologically twisted N = 4
SCFT (provided they admit such a dual). In order to focus on a particular field theory,
we should embed our computations in ten or eleven-dimensional supergravity by choosing
an uplift of the gravity solution. However, any solution of the supergravity theory we
consider may be uplifted on S7/Zk to a solution of eleven-dimensional supergravity [44].
This concretely means that we are describing the dual to topologically twisted ABJM on
an arbitrary manifold.6

The ABJM theory [46] is a Chern-Simons-matter theory with gauge group U(N)k ×
U(N)−k, together with hypermultiplet and twisted hypermultiplet in the bifundamental
representation (in the N = 4 notation described in [47]). Generically, it has N = 6
supersymmetry, but for k = 1, 2, this is enhanced to N = 8. For any N , it describes
the infrared dynamics on the worldvolume of N M2 branes at a C4/Zk singularity. Most
importantly, it is superconformal.

In the limit where N � k5, the ABJM theory on flat space has a dual description in
terms of eleven-dimensional supergravity on AdS4 × S7/Zk with N units of flux through
the S7. However, when the theory is defined on an arbitrary Riemannian three-manifold
(M3, g), it becomes cumbersome to study the dual in eleven-dimensional supergravity, so
we truncate eleven-dimensional supergravity on S7 down to a four-dimensional gauged
supergravity. In particular, in light of the discussion in the previous section, we consider
the minimal supergravity necessary for the twist, which is the N = 4 four-dimensional

6Topological twists of the BLG model have appeared in [45].
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supergravity with gauge group Spin(4) constructed in [32]. Since the truncation on S7 from
eleven to four dimensions is consistent, any solution of the Spin(4) supergravity uplifts on
S7/Zk to a solution to the eleven-dimensional equations of motion [44]. Therefore, any
asymptotically locally AdS solution (Y4, G) uplifts to a gravity dual to the large N limit of
ABJM theory on (M3, g), where (M3, g) is a representative of the conformal boundary of
(Y4, G), and the four-dimensional Newton constant is related to the field theory data by

1
2κ2

4
= k1/2

12
√

2π
N3/2 . (2.12)

3 Dual supergravity theory

In this section we describe the relevant N = 4 Spin(4) supergravity, then review the
Fefferman-Graham expansion of the equations of motion, and finally discuss the holographic
renormalization of the theory, including subtleties related to the presence of scalars.

3.1 Action

The supergravity we consider is the four-dimensional N = 4 gauged supergravity with
gauge group Spin(4) constructed by Das-Fischler-Roček [32]. The fields in the bosonic
sector are the metric Gµν , a scalar φ and a pseudoscalar ϕ, and two SU(2) gauge fields
AIµ, ÂIµ with associated field strengths

FI = dAI + 1
2g ε

IJKAJ ∧ AK , F̂I = dÂI + 1
2g ε

IJKÂJ ∧ ÂK . (3.1)

Our main focus will be the bosonic part of the action in Euclidean signature:

I = − 1
2κ2

4

∫ [
R ∗ 1− 2X−2dX ∧ ∗dX − 1

2X
4dϕ ∧ ∗dϕ+ g2(8 + 2X2 + 2X̃2) ∗ 1

− 1
2X
−2(FI ∧ ∗F I + iϕX2FI ∧ F I

)
− 1

2X̃
−2(F̂I ∧ ∗F̂I − iϕX2F̂I ∧ F̂I

)]
,

(3.2)

where
X ≡ eφ/2 , X̃2 ≡ X−2 + ϕ2X2 . (3.3)

The equations of motion derived from this action are

0 = d
(
X−1 ∗ dX

)
− 1

2X
4dϕ ∧ ∗dϕ+ g2

(
X2 −X−2

(
1− ϕ2X4

))
∗ 1

+ 1
4X
−2FI ∧ ∗F I − 1

4X
2
(
1− ϕ2X4

)
q−4F̂I ∧ ∗F̂I + i

2ϕX̃
−4F̂I ∧ F̂I ,

(3.4)

0 = d
(
X4 ∗ dϕ

)
+ 4g2X2ϕ ∗ 1− i

2F
I ∧ F I

+ ϕX2X̃−4F̂I ∧ ∗F̂I + i
2(1− ϕ2X4)X̃−4F̂I ∧ F̂I ,

(3.5)

0 = D
(
X−2 ∗ FI

)
+ idϕ ∧ F I , (3.6)
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0 = D̂
(
X̃−2 ∗ F̂I

)
− id

(
ϕX2X̃−2

)
∧ F̂I , (3.7)

0 = Rµν + g2Gµν
(
4 +X2 + X̃2

)
− 2X−2∂µX∂νX −

1
2X

4∂µϕ∂νϕ

− 1
2X
−2
(
FIµρFIν ρ −

1
4Gµν

(
FI
)2
)
− 1

2X̃
−2
(
F̂IµρF̂Iν ρ −

1
4Gµν

(
F̂I
)2
)
,

(3.8)

where
DFI ≡ dFI + gεIJKAJ ∧ FK , D̂F̂I ≡ dF̂I + gεIJKÂJ ∧ F̂K . (3.9)

This theory can be obtained by truncating the four-dimensional maximal N = 8 gauged
supergravity, as we describe in appendix A. In the same appendix, we also elaborate on
the supersymmetry of the theory. For the purposes of the bulk of the paper, it is only
necessary to know that for supersymmetric solutions we can construct a Dirac spinor εa,
transforming in the fundamental of Spin(4), satisfying the following equations

0 = Dµεa −
1

8
√

2
ηIabX

−1FIνλΓνλΓµεb + 1
8
√

2
ηIabX

−1X̃−2F̂IνλΓνλΓµ
[
1 + iϕX2Γ5

]
εb

+ i
4X

2∂µϕΓ5ε
a − 1

2
√

2
g

[ (
X +X−1

)
− iϕXΓ5

]
Γµεa ,

(3.10)

0 = 1
8η

I
abX

−1FIνλΓνλεb + 1
8η

I
abX

−1X̃−2F̂Iνλ
[
1− iϕX2Γ5

]
Γνλεb

+ 1√
2

[
X−1∂νX + i

2X
2∂νϕΓ5

]
Γνεa + 1

2g
[ (
X −X−1

)
+ iϕXΓ5

]
εa .

(3.11)

Here, Γµ generate Cliff(4, 0), Γ5 ≡ −Γ1234, and the covariant derivative on the spinors is

Dµεa = ∇µεa −
1
2gη

I
abA

I
µε
b + 1

2gη
I
abÂ

I
µε
b . (3.12)

There is a supersymmetric H4 vacuum solution with vanishing gauge fields and scalars
φ = ϕ = 0. Expanding the scalar terms around this vacuum, we realise that both the
scalars have mass m2 = −4g2. This will be crucial in the following analysis.

3.2 Fefferman-Graham expansion

We now restrict our attention to asymptotically locally AdS solutions to the supergravity
theory and review the Fefferman-Graham expansion of the bosonic fields. We will be brief
— the interested reader may find the analysis done in full generality in [4].

In a neighbourhood of the conformal boundary, an asymptotically locally AdS metric
can be written as [48]

Gµνdxµdxν = 1
z2 dz2 + 1

z2 gijdxidxj = 1
z2 dz2 + hijdxidxj , (3.13)

and in turn
gij = g0

ij + z2g2
ij + z3g3

ij + o(z3) , (3.14)
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where g0
ij = gij is the metric on the conformal boundary (M3, g) at z = 0. The volume of

g may also be expanded as

√
det g =

√
det g0

[
1 + z2

2 t
(2) + z3

2 t
(3)
]

+ o(z3) , (3.15)

where we have denoted t(n) ≡ Tr
[
(g0)−1gn

]
and indices are always raised with g0. Just as

with the metric, we assume that the other bosonic fields have an analytic expansion near
the boundary

X = 1 + zX1 + z2X2 + z3X3 + o(z3) , (3.16)

ϕ = zϕ1 + z2ϕ2 + z3ϕ3 + o(z3) , (3.17)

AI = AI + zaI1 + z2aI2 + o(z2) , (3.18)

ÂI = ÂI + zâI1 + z2âI2 + o(z2) , (3.19)

and we use gauge redundancy to remove the components along dz in the gauge fields.
Assuming the perturbative expansions for the bosonic fields, we may then substitute

them in the corresponding equations of motion (3.4)–(3.8) and order by order find relations
between the coefficients. The results (up to the relevant order) are summarized here:

g2 = 1
2 , (3.20)

∇2ϕ1 = ϕ1
(
t(2) + 2X2

1 + 4X2
)

+ 4X1ϕ2 + 2ϕ3 , (3.21)

∇2X1 = 2X3 +X1
(
t(2) + 2X2

1 − 2X2 + ϕ2
1

)
+ ϕ1ϕ2 − 2ϕ1 (X1ϕ1 + ϕ2) , (3.22)

0 = D ∗g0 aI1 , aI2 = X1aI1 + 1
2 ∗g0 D ∗g0 F I −

i
2ϕ1 ∗g0 F I , (3.23)

0 = D̂ ∗g0 âI1 , âI2 = −X1âI1 + 1
2 ∗g0 D̂ ∗g0 F̂ I + i

2ϕ1 ∗g0 F̂ I , (3.24)

g2
ij = −

[
Rij(g0)− 1

4g0
ijR(g0)

]
− g0

ij

(1
2X

2
1 + 1

8ϕ
2
1

)
, (3.25)

t(3) = 4
3X

3
1 −

2
3X1

(
4X2 + ϕ2

1

)
− 2

3ϕ1ϕ2 , (3.26)

3
2∇

ig3
ij = −ϕ2

1∇jX1 −
1
2ϕ1∇jϕ2 + 2X2

1∇jX1 − 2X1∇jX2 + 1
2F

I
ji

(
aI1
)i

+ 1
2 F̂

I
ji

(
âI1
)i
.

(3.27)

The curvatures appearing are

F I ≡ dAI + 1
2g ε

IJKAJ ∧AK , F̂ I ≡ dÂI + 1
2g ε

IJKÂJ ∧ ÂK . (3.28)

Taking the trace of (3.25), we immediately find

t(2) =− 1
4R(g0)− 3

2X
2
1 −

3
8ϕ

2
1 . (3.29)
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3.3 Holographic renormalization

Our aim is to compare a gravity observable with its CFT boundary dual, and more specif-
ically we want to compute the dual to the CFT effective action. However, due to the
presence of scalar fields in the bulk, the problem may present two subtleties: one related to
the renormalization scheme, and the second one related to the AdS/CFT dictionary itself.

First, we begin by renormalizing the on-shell action for an arbitrary asymptotically
locally AdS solution (Y4, G) using holographic renormalization [49–51]. To do so, we cutoff
Y4 at a small radial distance z = δ from the (conformal) boundary, obtaining a space Yδ
with a boundary Mδ

∼= M3 with induced metric h (compare with (3.13)). As required
by the presence of a boundary, we need to add a Gibbons-Hawking-York term in order to
obtain the correct equations of motion. Therefore, the value of the on-shell action for the
cutoff space is

Io−s + IGHY = 1
2κ2

4

∫
Yδ

[
−
(
4 +X2 + X̃2

)
volG −

1
2X
−2
(
FI ∧ ∗F I + iϕX2FI ∧ F I

)
− 1

2X̃
−2
(
F̂I ∧ ∗F̂I − iϕX2F̂I ∧ F̂I

) ]
− 1
κ2

4

∫
Mδ

K volh .

(3.30)

This quantity diverges as we take the cutoff δ → 0. In order to cancel the divergences, we
can include divergent counterterms constructed out of the induced geometry on Mδ. The
simplest such counterterms are [4]

Ict,g = 1
κ2

4

∫
Mδ

1
2R(h) volh , (3.31)

Ict,s = 1
κ2

4

∫
Mδ

(
2 + (X − 1)2 + 1

4ϕ
2
)

volh . (3.32)

Adding these counterterms guarantees that the limit

S = lim
δ→0

[Io−s + IGHY + Ict,g + Ict,s] , (3.33)

is finite.
However, it is not possible to uniquely fix the functional form of the scalar counterterm

Ict,s using only its divergent behaviour. There are potentially infinitely many counterterms
that make (3.33) finite, each differing by finite terms, corresponding to different regulariza-
tion schemes. In our case, we would like to find a regularization scheme that preserves the
rigid supersymmetry of the boundary, making the resulting SSUSY invariant under super-
symmetry provided the appropriate transformation of the sources. The correct counterterm
that achieves this is

ISUSY
ct,s = 1

κ2
4

∫
Mδ

2W volh = 1
κ2

4

∫
Mδ

√
2 +X2 + X̃2 volh , (3.34)

where W is the N = 1 (Lorentzian) superpotential discussed in appendix A. The necessity
of this counterterm has been argued for in similar models in [25, 26, 28, 29, 52–55]. We
provide arguments for the N = 4 supergravity in appendices A and B.
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Our discussion gives us an on-shell action holographically renormalized preserving
supersymmetry:

SSUSY = lim
δ→0

[
Io−s + IGHY + Ict,g + ISUSY

ct,s

]
. (3.35)

This leaves us with the second subtlety. As we mentioned, both bulk scalars φ, ϕ have
mass m2 = −2. The AdS/CFT relation between the mass of a bulk scalar and the scaling
dimension of the dual CFT operator (1.4) then gives the two possibilities ∆+ = 2,∆− = 1.
As long as the bulk scalars are dual to boundary operators with scaling dimension ∆+ = 2,
we could go on with the “standard” application of the AdS/CFT dictionary, and identify the
gravitational free energy in (1.1) with SSUSY, so that the we can interpret the gravitational
on-shell action as the generator of connected diagrams for the (deformed) CFT as a function
of the sources.

Here instead we are working with a boundary SCFT containing a scalar with dimension
∆− = 1, and this behaviour is generic in three dimensions with N ≥ 4 supersymmetry. In
this case, as explained in section 1, we cannot interpret the on-shell action as the SCFT
generating functional, but rather its Legendre transform with respect to the bulk scalar
dual to the dimension 1 operator [31].

Concretely, the bulk field corresponding to the dimension 2 operator in the stress-
energy tensor multiplet (2.5) is the pseudoscalar ϕ. Looking at its Fefferman-Graham
expansion (3.17), we interpret ϕ1 as a source for the dual operator. The bulk equations
of motion are solved with Dirichlet boundary conditions for ϕ, and the on-shell action is
interpreted as a functional of ϕ1.

The bulk field corresponding to the dimension 1 operator, which has to be the scalar
X, should instead obey alternate boundary conditions. Already from its expansion (3.16),
we see that on the boundary we cannot construct a scale-invariant deformation of the
usual form ∫

M3
X1O∆− volg . (3.36)

Instead, we should view the source for O∆− as the variable canonically conjugate to the
leading coefficient X1

X = 1
√
g

δSSUSY

δX1
= 1
κ2

4

(
X2

1 − 2X2 + 1
2ϕ

2
1

)
, (3.37)

which is the sub-leading term in the expansion with non-linear corrections due to super-
symmetry. We then perform a Legendre transformation on SSUSY

S̃ = SSUSY −
∫
M3
XX1 volg , (3.38)

viewed as a functional of X instead of X1, and obtained after extremization of the right-
hand side with respect to X1.

It is S̃ that should be interpreted as the generating functional for the connected dia-
grams in the dual SCFT: a functional of the sources represented by the boundary conditions
for the bulk fields (gij ,X , ϕ1, A

I
i , Â

I
i ). We may then compute the VEVs for the boundary
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dual operators holographically

〈Tij〉 = 2
√
g

δS̃
δgij

= 1
κ2

4

[3
2g3

ij −
1
2gij

(
3t(3) + 8X1X2 − 4X3

1 + ϕ1ϕ2
)]
, (3.39)

〈O∆−〉 = 1
√
g

δS̃
δX

= −X1 , (3.40)

〈O∆+〉 = 1
√
g

δS̃
δϕ1

= − 1
κ2

4

(
X1ϕ1 + 1

2ϕ2

)
, (3.41)

〈J I
i 〉 = 1

√
g

δS̃
δAIi

= − 1
2κ2

4

(
aI1
)
i
, (3.42)

〈Ĵ I
i 〉 = 1

√
g

δS̃
δÂij

= − 1
2κ2

4

(
âI1
)
i
. (3.43)

Note that each of these expressions contains terms which are not expressible as boundary
quantities via the Fefferman-Graham expansion of the previous section. Nevertheless,
relations between them can be found by deriving boundary Ward identities from the bulk.
This will provide some consistency checks.

Under a variation of the boundary data, S̃ varies as

δS̃ =
∫
M3

[1
2〈Tij〉δg

ij + 〈O∆−〉δX + 〈O∆+〉δϕ1 + 〈J I
i 〉δAIi + 〈Ĵ I

i 〉δÂIi
]

volg . (3.44)

Choosing a boundary Weyl rescaling, under which

δgij = −2σgij , δAIi = δÂIi = 0 ,
δX = −(3−∆−)σX , δϕ1 = −(3−∆+)σϕ1 ,

(3.45)

compatibly with (2.5), we find that the expressions (3.39)–(3.41) satisfy the following re-
lation

〈T ii〉 = −2〈O∆−〉X − 〈O∆+〉ϕ1 , (3.46)

corresponding to the vanishing of the Weyl anomaly in three dimensions and the standard
deformation of the trace of the stress-energy tensor by operators in a CFT. This confirms
the consistency of the scaling of the operators and the necessity of the Legendre transform;
the other choice of quantization and scalings (namely both scalar and pseudoscalar hav-
ing scaling dimension 2) gives a vanishing conformal anomaly when derived using just S
(without supersymmetry-preserving counterterms and Legendre transformation) [4].

A boundary gauge transformation of the form δAIi = Diθ
I gives the conservation

equations for the boundary R-symmetry currents

0 = ∗D ∗J I = ∗D ∗ Ĵ I , (3.47)

which are equivalent to the constraints (3.23) and (3.24). Similarly, invariance of S̃ under
a generic boundary diffeomorphism generated by the vector field ξi gives the conservation
equation for the stress-energy tensor

∇j〈Tji〉 = −〈O∆−〉∇iX − 〈O∆+〉∇iϕ1 − F Iij〈J Ij〉 − F̂ Iij〈Ĵ Ij〉 , (3.48)
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which is equivalent to the equation (3.27) obtained from the expansion of the zi component
of the Einstein equation of motion (3.8). Perhaps less standard is the Ward identity
corresponding to a boundary supersymmetry variation of S̃: we consider it in appendix C.

4 The twist in the bulk

In this section, we examine of the consequences of the topological twist in the bulk. We be-
gin by applying the Fefferman-Graham expansion to the supersymmetry equations, showing
that at the boundary we indeed recover the equations of off-shell 3d conformal supergravity.
With the knowledge obtained from the Fefferman-Graham expansion, we then show that
for any supersymmetric asymptotically locally AdS solution, the functional S̃ is indepen-
dent of the boundary metric provided we apply the boundary conditions of the topological
twist. Finally, we compute the value of the topological invariant for smooth solutions, show-
ing once more the importance of the supersymmetric counterterms and of the Legendre
transformation.

4.1 Expansion of the supersymmetry equations

The same Fefferman-Graham expansion applied in the previous section to the bosonic fields
may also be done for the Killing spinor

εa = z−1/2 εa + z1/2 ξa + o(z1/2) . (4.1)

The expansion of the gravitino equation (3.10) along z direction gives, at the two lead-
ing orders

0 = z−1/2
(
Γz+
√

2g1
)
εa+z1/2

[1
2
(
1−
√

2gΓz
)
ξa+ i

4ϕ1Γ5
(
1+
√

2gΓz
)
εa
]
+o(z1/2) .

(4.2)
We can solve these constraints by imposing that εa and ξa have definite chirality under Γz.
Appealing to the Z2 symmetry of the equations of motion and supersymmetry variations
that sends g → −g, (AIµ, ÂIµ) → (−AIµ,−ÂIµ), Γµ → −Γµ, we can choose g = − 1√

2 and
then εa (ξa) has positive (negative) chirality under Γz.

In order to describe the boundary structure of the supersymmetry, we need to decom-
pose four-dimensional spinors and Clifford algebra into their three-dimensional counter-
parts. To do so, we introduce the basis

Γ1 = Γz =
(
12 0
0 −12

)
, Γi+1 =

(
0 σi
σi 0

)
, Γ5 =

(
0 −i12

i12 0

)
, (4.3)

and we can write
εa = z−1/2

(
εaL
0

)
+ z1/2

(
0
ξaR

)
+ o(z1/2) , (4.4)

where L and R indicate the chirality with respect to Γz
Using these results, the gravitino equation (3.10) along the directions tangent to M3

becomes
0 = ∇iεaL + 1

2
√

2
ηIabA

I
i ε

b
L −

1
2
√

2
ηIabÂ

I
i ε

b
L −

1
4ϕ1 σiε

a
L + σiξ

a
R , (4.5)
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whereas the dilatino equation (3.11) gives two different equations on the two subspaces
corresponding to the two chiralities of Γz:

0 = − 1
2
√

2

(
X2

1 − 2X2
)
εaL −

1√
2
ϕ1 ξ

a
R + 1

2
√

2
∂iϕ1 σ

iεaL + 1
8
(
ηIabF

I
ij + ηIabF̂

I
ij

)
σijεbL ,

(4.6)

0 = − 1
2
√

2
(ϕ2 +X1ϕ1) εaL −

√
2X1ξ

a
R + 1√

2
∂iX1σ

iεaL −
1
4
(
ηIab(aI1)i + ηIab(âI1)i

)
σiεbL .

(4.7)

It’s clear that (4.5) reproduces the gravitino variation of the three-dimensional off-shell
conformal supergravity (2.7) provided we identify

(ψai )3d = ψa0iL , εaL = ζa , ξaR = ϑa + 1
4ϕ1ζ

a . (4.8)

When we substitute this into the equations coming from the dilatino, and use the relations
obtained from holographic renormalization (3.39)–(3.43), we have

0 = ∂iϕ1 σ
iζa − κ2

4X ζa + 1
2
√

2

(
ηIabF

I
ij + ηIabF̂

I
ij

)
σijζb + ϕ1ϑ

a , (4.9)

δχa0R = 1√
2

[
κ2

4〈O∆+〉ζ
a − ∂i〈O∆−〉σ

iζa + 2〈O∆−〉ϑ
a

+ κ2
4√
2

(
〈J I

i 〉ηIab + 〈Ĵ I
i 〉ηIab

)
σiζb

]
.

(4.10)

Again, we see that (4.9) corresponds to (2.8) upon identifying

(χa)3d =
√

2χa0L , X = − 1
κ2

4
S2 , ϕ1 = 2S1 , (4.11)

which is consistent with the fact that ϕ1 should be interpreted as the source for the operator
O∆+ and X as the source for the operator O∆− . The second equation (4.10) has the same
structure as the first one, but with sources and VEVs exchanged (notice that σij can be
dualized together with the R-symmetry currents, and ∗J I is closed, as a curvature should
be). It represents a BPS condition among the VEVs of the operators of the SCFT coupled
to the 3d off-shell supergravity. As such, we can reproduce it by considering the holographic
Ward identity corresponding to the supersymmetry of the boundary theory, as discussed
in appendix C. Thus, at the boundary of an asymptotically locally AdS solution of Spin(4)
supergravity we find off-shell conformal supergravity, and we will present further evidence
in appendix B. This is consistent with the usual lore, and provides additional support to
the expectations that had been used in [56] in order to construct N = 8 off-shell conformal
supergravity.

We may now solve (4.5) and (4.9) on an arbitrary three-manifold by setting the topo-
logical twist conditions (2.9) and (2.11), which we rephrase now in terms of the gravity fields

AIi = 1√
2
εI
jk
ω jk
i , ϕ1 = 0 , X = 1

2κ2
4
R , (4.12)
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where ω jk
i and R refer to the boundary metric g, and we consistently truncate the theory to

the sector with ÂIi ≡ 0. Furthermore, the additional constrain (4.10) provides the following
non-trivial relation between the sub-leading terms in the expansions of the bosonic fields
(or, equivalently, between the VEVs of the dual operators)

δiI〈J I
i
〉 = −

√
2i
κ2

4
〈O∆+〉 ⇔ δiI

(
aI1
)
i

= −i
√

2ϕ2 ,

εijI〈J
Ij〉 =

√
2

κ2
4
∂i〈O∆−〉 ⇔ εijI

(
aI1
)j

= 2
√

2 ∂iX1 .

(4.13)

At first sight it may seem that these assignments violate reality conditions. However, as
discussed in [4], in the truncated sector of the theory where ÂI ≡ 0, it is consistent to
impose that the bulk Killing spinor εa is symplectic Majorana, and all the fields are real
except for ϕ which is imaginary.

Having set the boundary conditions using the topological twist, we continue to expand
the bulk gravitino and dilatino equations to higher orders in order to obtain further condi-
tions imposed by supersymmetry on the fields not fixed by the boundary data. The result
relevant to our purposes is the expression for the subleading metric

g3
ij

= 2
3∇i∇jX1 + 2

3X1Rij + 1
6
√

2
(F1(i)

klεj)kl −
1

3
√

2
(F k1 )l(iεj)kl , (4.14)

where
F I1 = DaI1 ≡ daI1 −

1√
2
εIJKAJ ∧ aK1 . (4.15)

4.2 Variation of the action

In this short section we consider the (Legendre transform of the) action of asymptotically
locally AdS solutions with boundary conditions given by the topological twist, and we show
that it does not depend on the boundary metric. We start from the variation (3.44), but
now we observe that the twist boundary conditions (4.12), (4.13) mean that the variations
of the boundary data (gij ,X , ϕ1, A

I
i ) can all be related to δgij , since all the boundary data

are fixed in terms of gij .
Using standard formulae from Riemannian geometry (reviewed in [4]), and dropping

total derivatives which vanish for the closed manifolds M3 that we consider, we find that
we can write

δS̃ = 1
2κ2

4

∫
M3

1
2Tijδg

ij volg (4.16)

with the effective stress-energy tensor

Tij = 3g3
ij + 2

(
−X1Rij +∇i∇jX1 −∇2X1 gij

)
+
√

2∇k
(
εIk(i(a

I
1)j)

)
. (4.17)

The (Legendre transform of the) on-shell gravitational action is invariant under changes
in the boundary metric, as we expect from field theory, if the effective stress-energy tensor
vanishes, Tij ≡ 0 for any Riemannian three-manifold.
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Substituting the expression for g3
ij found from the expansion of the supersymmetry

variations, we have

Tij = 4∇i∇jX1−2∇2X1 gij+
1

2
√

2
(F1(i)klεj)kl−

1√
2

(F k1 )l(iεj)kl+
√

2∇k
(
εIk(i(a

I
1)j)

)
,

(4.18)

and we already observe that the terms linear in X1 have simplified. In order to continue,
it is useful to observe the following fact. As we have already stressed, to perform the
topological twist we identify the R-symmetry bundle with the tangent bundle of the three-
manifold, further equating their connections as in (4.12). This means that (aI1)i, rather
than being a one-form (connection) valued in the adjoint of the gauge algebra should really
be viewed as a (1, 1) tensor on M3. Therefore, the covariant derivative in (4.18) acts on
all the indices of the tensor, and we should also review the definition of (F I1 )ij : because of
the identification of the connections (4.12), from its definition (4.15), we see that it really
is the antisymmetrization of two indices of the full covariant derivative of (aI1)i

F I
1 ij = 2∇[ia I

1 j] . (4.19)

In fact, more is true because the topological twist fixes the antisymmetric part of a1 as
written in (4.13), so

F I
1 ij = 2∇[ia1(j]I) − 2

√
2εIk[i∇j]∇kX1 . (4.20)

Thus, (4.18) ends up containing only terms with covariant derivatives of the symmetric
part of a1 and double derivatives acting on X1. After a careful expansion, we ultimately
find that Tij = 0. Notice that this holds for any boundary data (M3, g), independently
of the precise expression of a1 and X1, which are only fixed by the regularity of the bulk
solution and not by the Fefferman-Graham expansion.

It is important to spell out some of the subtler assumptions in our derivation. This
is based on the validity of the expression (3.44) for the variation δS̃ (which in turn de-
termines the effective stress-energy tensor in (4.16)). Generically, varying the boundary
data results in a change of the bulk fields. However, we are evaluating S̃ on a solution to
the equations of motion, which means that by definition the bulk variation vanishes and
the only contribution can come from the boundary (M3, g). Should there be any addi-
tional internal boundaries or singularities in the solution, these would contribute to the
variation (4.16). If one does not require smoothness of the solution, then we can interpret
the computation in this section as providing constraints on the allowed singularities and
boundary conditions in the interior: they should not contribute to (4.16), or else S̃ would
not be a topological invariant.

We should also emphasise the importance of the choice of supersymmetry-preserving
renormalization scheme. The boundary supersymmetry guarantees that the field theory
partition function only depends on a subset of the geometric data specifying the rigid
supersymmetric background; in this case it should be independent of the metric. However,
this statement relies on the absence of “supersymmetry anomalies.” In the four-dimensional
case, this problem is solved from the start, because Witten’s topologically twisted N = 2
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theory reproduces the Donaldson invariants of the background manifold [2], which are
proved to only depend on its diffeomorphism class. This is paralleled in the dual gravity
computation by the fact that the invariance of the on-shell action follows in the minimal
holographic renormalization scheme [3]. However, the minimal holographic renormalization
scheme is not supersymmetry-preserving for the duals to four-dimensional N = 1 theories,
as shown by a computation analogous to the one presented here [27, 57].7

In the three-dimensional case considered here, the dual supergravity theory has scalars
that can be quantized in two ways. Choosing the dual operators to both have scaling di-
mension 2 is not consistent with the boundary supersymmetry, which instead dictates the
choice of alternate quantization for the bulk scalars, and thus requires the bulk observ-
ables to be regulated in a way that is consistent with supersymmetry, forcing us to add
the counterterm (3.34). This guarantees that the gravitational free energy, the Legendre
transform of the renormalized on-shell action, is independent of the boundary metric.

4.3 On-shell action

Finally, we compute the value of S̃ with twisted boundary conditions for any smooth super-
gravity solution. We will be succinct, and we refer the reader to [4] for additional details.

In the truncated sector of the supergravity theory where ÂIi ≡ 0 (which is the one
relevant for the twist), it is consistent to impose that the bulk Killing spinor εa is symplectic
Majorana, and further project onto a space of definite chirality with respect to the action
of (Γ5)ab on the R-symmetry indices. Effectively, each of the four components of the bulk
spinor may be related to a single Dirac spinor ζ.

A single Dirac spinor in four dimensions defines a local identity structure, that is,
a local orthonormal frame {E1, . . . ,E4} and two scalar functions S, θ, constructed out of
spinor bilinears. The frame {E1, . . . ,E4} degenerates where the spinor vanishes and where
it becomes chiral, so we define Y (0)

4 to be the subset of Y4 where this does not happen. We
should then ask ourselves about the global definition of the frame on Y (0)

4 .
Globally, εa is (formally) a section of Spin(Y4) ⊗ E, where E is a real rank-4 vector

bundle associated to the principal R-symmetry SU(2)R bundle. The most generic back-
ground admitting a globally well-defined bulk Killing spinor εa is Y (0)

4 with a SpinSU(2)(4)
structure, where8

SpinSU(2)(4) ≡ Spin(4)× SU(2)
Z2

. (4.21)

7The field-theoretic statement, based on supersymmetry, is that the partition function depends holo-
morphically on the complex structure of the underlying complex four-manifold [58]. In fact, this statement
is scheme dependent, as it depends on the absence of ‘t Hooft anomalies for the flavor symmetries [59].
This also shows that “supersymmetry anomalies” in the field theory formulated on a curved background
first pointed out in [60, 61] can be removed by local counterterms [59, 62].

8These structures were originally defined in [63, 64].
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From the bulk Killing spinor equations (3.10) and (3.11) follows a set of spinor equa-
tions for ζ, and from those we can use standard spinor bilinears to find a set of differential
equations for the frame {E1, . . . ,E4} and the functions X,S, ϕ, θ. Importantly, having a
differential system of global quantities simplifies the computation of the on-shell action. In
particular, studying the system of equations implies that in the sector with ÂI ≡ 0, the
on-shell action is exact

Io−s = − 1
κ2

4

∫
Y4

d
(
− sin θ X−1 ∗ E4 +X−1 ∗ dX − 1

2ϕX
4 ∗ dϕ

)
. (4.22)

Thanks to the previous arguments, the three-form whose exterior derivative is being inte-
grated is globally well-defined on Y

(0)
4 . In order to evaluate Io−s, we first cutoff Y4 near

the boundary to Yδ (see section 3.3), and then surround the loci Y4 \ Y (0)
4 where the frame

degenerates with tubular neighbourhoods of radius ε.9 Therefore, we write Io−s as an inte-
gral on a space with boundaries of the exterior derivative of a well-defined three-form, and
we can apply Stokes’ theorem, finding that all the contributions come from the boundaries.

The contributions from the loci where the frame degenerates vanish for a smooth
solution as we take the radii of the surrounding tubular neighbourhoods to zero. The
analysis necessary to reach this conclusion was carried out in [4], but concretely only
requires us to study the behaviour of the first term in (4.22).

More subtle in this case is the contribution from the UV, where the conformal boundary
is. The on-shell action together with the Gibbons-Hawking-York term near the UV reads

IUV
o−s + IGHY = 1

κ2
4

∫
M3

[
− 2
δ2 + 1

δ

(
−1

4R+ 1
2X

2
1

)
+∇2X1 + 1

3RX1 + o(1)
]
volg . (4.23)

Now we may see the importance of the supersymmetric renormalization scheme (3.34)
and of the Legendre transformation (3.38). Adding the naive minimal counterterms (3.31)
and (3.32) gives

Ict,g + Ict,s = 1
κ2

4

∫
M3

[ 2
δ3 + 1

δ

(1
4R−

1
2X

2
1

)
+X1

(
X2

1 + 1
6R
)

+ o(1)
]
volg . (4.24)

Therefore, ignoring total derivatives, we would conclude that

S = 1
κ2

∫
M3

X1

(
X2

1 + 1
2R
)

volg , (4.25)

which, for generic X1, is not a topological invariant! On the other hand, using the
supersymmetry-preserving counterterms (3.31) and (3.34) leads to

Ict,g + ISUSY
ct,s = 1

κ2
4

∫
M3

[ 2
δ3 + 1

δ

(1
4R−

1
2X

2
1

)
+ 1

6RX1 + o(1)
]
volg , (4.26)

9We assume that these loci have measure zero in Y4.
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and
SSUSY = 1

κ2

∫
M3

1
2RX1 volg . (4.27)

Again, this is not a topological invariant, showing very concretely that it cannot be the
correct gravitational quantity to be compared with the dual CFT generating functional.
On the other hand, inserting the boundary condition (4.12) in the Legendre transforma-
tion (3.38) immediately gives that

S̃ = 0 , (4.28)

which is indeed a topological invariant, as we expected. Without any further assumptions
on the boundary manifold M3, we conclude that the (Legendre transform of the) on-shell
action of any smooth supergravity solution vanishes provided it is renormalized in a way
that preserves global supersymmetry.
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A Reduction from N = 8 supergravity

In this appendix we show how to obtain the N = 4 Spin(4) gauged supergravity discussed
in the bulk of the paper [32] from the maximal N = 8 Spin(8) gauged supergravity [65], by
extending the ansatz of [44, 52] to include fermions and gauge fields. This guarantees that
we can appeal to the results of [26] for the supersymmetry-preserving counterterm, and
provides us with the full set of supersymmetry variations, which will be used in the following
appendices to study the global supersymmetry of the gravitational free energy. For these
purposes it is convenient to work in Lorentzian signature with anticommuting spinors.

In four dimensions, the maximal gauged supergravity is N = 8 Spin(8) gauged su-
pergravity. The bosonic fields of this theory are the metric Gµν , 28 gauge fields AIJµ in
the adjoint (antisymmetric) representation, and 35 complex scalars. It is convenient to
represent the scalars by introducing the 56-bein

V ≡
(
u IJ
ij vijKL
vklIJ uklKL

)
, (A.1)

where both sets of indices i, j and I, J run from 1 to 8, and each pair is antisymmetric.
Raising and lowering indices corresponds to taking the complex conjugate. In the fermionic
sector, there are eight gravitini (ψiµ)N=8 and 56 dilatini (χijk)N=8 in the relevant spinor
representations. Whilst in [65] the spinors are Weyl spinors and the chirality is linked with
their representation of the gauge group, we use Majorana spinors in order to match to the
bulk of the paper. To be concrete, the Γ matrices Γµ generate Cliff(1, 3), Γ5 ≡ iΓ0123,
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and the Majorana conjugate is defined by λ ≡ λTC where C is the charge conjugation
matrix satisfying

ΓTµ = −C ΓµC−1 . (A.2)

A spinor λ is Majorana if λ = λC ≡ iΓ0C−1λ∗.
The reduction consists in looking for a sector invariant under Spin(4) × Spin(4), and

then further truncating. Concretely, we split both lowercase and capital indices i, I into
two sets a, b = 1, . . . , 4 and a, b = 1, . . . 4 corresponding to two Spin(4) subgroups. Then,
we write the following ansatz for the non-vanishing fields

Aabµ = 1
2η

I
abAIµ −

1
2η

I
abÂIµ , (A.3)

u cd
ab = 1

2
(
X +X−1 + iϕX

)
eiθ δcdab ,

u cd
ab

= 1
2
(
X +X−1 + iϕX

)
eiθ δcd

ab
,

u cd
ab

= 1
2δ

c
aδ
d
b
,

(A.4)

vabcd = 1
4
(
X −X−1 − iϕX

)
eiθ εabcd ,

vabcd = 1
4
(
X −X−1 + iϕX

)
e−iθ εabcd ,

(A.5)

(ψaµ)N=8 = exp
[
− i

2 (θ + π) Γ5

]
ψaµ , (A.6)

(χabc)N=8 = exp
[
− i

2 (3θ + π) Γ5

]
εabcdχd . (A.7)

Every other field is set to zero. Here

e2iθ = X +X−1 − iϕX
X +X−1 + iϕX (A.8)

is required in order to perform the reduction of the spinors (see also [66]). This truncation
sends the bosonic part of the Lagrangian of the N = 8 theory into the Lorentzian action
of the Spin(4) model

SB = 1
2κ2

4

∫ [
R∗1−2X−2dX∧∗dX− 1

2X
4dϕ∧∗dϕ+g2(8+2X2+2X̃2)∗1 (A.9)

− 1
2X
−2(FI∧∗FI+ϕX2FI∧FI

)
− 1

2X̃
−2(F̂I∧∗F̂I−ϕX2F̂I∧F̂I

)]
.

In the fermionic sector, we have four gravitini ψaµ and four dilatini χa, both transforming
in the fundamental representation of Spin(4). The fermionic action, which can be recon-
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structed from the supersymmetry variations and the bosonic action is, to lowest order in
the fermions

SF = − 1
2κ2

4

∫ [
ψ
a
µΓµνρDνψaρ −

1
4
√

2
ηIabX

−1FIαβ ψ
a
µΓ[µ|ΓαβΓ|ν]ψbν (A.10)

+ 1
4
√

2
ηIabX

−1X̃−2F̂Iαβ ψ
a
µ

(
1 + iϕX2Γ5

)
Γ[µ|ΓαβΓ|ν]ψbν

+ i
4X

2∂νϕψ
a
µΓµνρΓ5ψ

a
ρ + 1√

2
gψ

a
µ

[ (
X +X−1

)
+ iϕX Γ5

]
Γµνψaν

+ χaΓµDµχa + 3i
4 X

2∂µϕχ
aΓµΓ5χ

a

−
√

2X−1∂νX ψ
a
µΓνΓµχa + i√

2
X2∂νϕψ

a
µΓ5ΓνΓµχa

+ 1
4η

I
abX

−1FIνρ ψ
a
µΓνρΓµχb + 1

4η
I
abX

−1X̃−2F̂Iνρ ψ
a
µ

(
1− iϕX2Γ5

)
ΓνρΓµχb

+ gψ
a
µ

[ (
X −X−1

)
+ iϕX Γ5

]
Γµχa

]
volG .

The action is invariant under the following supersymmetry transformations with Majorana
spinor parameter εa:

δeµµ = 1
2ε

aΓµψaµ , (A.11)

δX = 1
2
√

2
Xεaχa , (A.12)

δϕ = − i√
2
X−2εaΓ5χ

a , (A.13)

δAIµ = 1√
2
XηIab

(
εaψbµ −

1√
2
εaΓµχb

)
, (A.14)

δÂIµ = − 1√
2
XηIab

[
εa
(
X−2 + iϕΓ5

)
ψbµ + 1√

2
εaΓµ

(
X−2 + iϕΓ5

)
χb
]
, (A.15)

δψaµ =Dµεa −
1

8
√

2
ηIabX

−1FIνλΓνλΓµεb + 1
8
√

2
ηIabX

−1X̃−2F̂IνλΓνλΓµ
[
1 + iϕX2Γ5

]
εb

+ i
4X

2∂µϕΓ5ε
a − 1

2
√

2
g

[ (
X +X−1

)
− iϕXΓ5

]
Γµεa ,

(A.16)

δχa = 1
8η

I
abX

−1FIνλΓνλεb + 1
8η

I
abX

−1X̃−2F̂Iνλ
[
1− iϕX2Γ5

]
Γνλεb

+ 1√
2

[
X−1∂νX + i

2X
2∂νϕΓ5

]
Γνεa + 1

2g
[ (
X −X−1

)
+ iϕXΓ5

]
εa .

(A.17)

These can be obtained from the N = 8 supersymmetry variations [65, (3.1)–(3.5),
(5.18), (5.19)] using (A.3)–(A.7) together with the transformation of the N = 8 supersym-
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metry parameter
(εa)N=8 = 1

2 exp
[
− i

2 (θ + π) Γ5

]
εa . (A.18)

For completeness, we record the equations of motion for the fermions. For the gravitino,
we find

0 = ΓσµνD̂µψaν −
1√
2

(
X−1∂µX −

i
2X

2∂µϕΓ5

)
ΓµΓσχa (A.19)

+ 1
8X
−1
(
ηIabFIνρ + X̃−2ηIabF̂Iνρ

(
1− iϕX2Γ5

))
ΓνρΓσχb

+ 1
2g
[ (
X −X−1

)
+ iϕXΓ5

]
Γσχa ,

where the supercovariant derivative is

ΓσµνD̂µψaν = ΓσµνDµψaν −
1

2
√

2
ηIabX

−1FIρλ
(1

2Γσµρλ +GσρGµλ
)
ψbµ (A.20)

+ 1
2
√

2
ηIabX

−1X̃−2F̂Iρλ
(
1 + iϕX2Γ5

)(1
2Γσµρλ +GσρGµλ

)
ψbµ

− i
4X

2∂νϕΓσµνΓ5ψ
a
µ + 1√

2
g

[ (
X +X−1

)
+ iϕXΓ5

]
Γσµψaµ .

For the dilatino, instead, we have

0 = ΓµD̂µχa + 3i
4 X

2∂µϕΓµΓ5χ
a , (A.21)

with supercovariant derivative

ΓµDµχa = ΓµDµχa −
1
8Γµ

(
ηIabX

−1FIνλΓνλ +X−1X̃−2ηIabF̂IνλΓνλ
[
1− iϕX2Γ5

])
ψbµ

− Γµ
( 1√

2
X−1∂νXΓν − i

2
√

2
X2∂νϕΓνΓ5 + 1

2g
[
(X −X−1) + iϕXΓ5

])
ψaµ .

(A.22)

Focusing on the scalar sector, we could choose to combine X and ϕ into a complex
field by introducing τ ≡ ϕ+ iX−2 and

z ≡ 1 + iτ
1− iτ . (A.23)

Then, the part of the action (A.9) involving the scalar fields becomes

Iscalar = 1
κ2

4

∫ − 1(
1− |z|2

)2∂µz∂
µz + 2g2 3− |z|2

1− |z|2

 ∗ 1 . (A.24)

In this formulation, it is easier to highlight features of the model expressed in N = 1
language. The action for the scalar in a single N = 1 chiral multiplet has the form

Ichiral = 1
κ2

4

∫ [
−∂∂K ∂µz∂µz − V

]
∗ 1 , (A.25)
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where K(z, z) is the Kähler potential for the metric in the non-linear σ model with metric
u ≡ ∂∂K, and V(z, z) is the scalar potential, which can be obtained from the Kähler
potential and the holomorphic superpotential W (z) via the relation

V = 4u−1 ∂W∂W − 3W2 , W ≡ eK/2 |W | . (A.26)

Indeed, we immediately see that in our case z parametrizes the Poincaré disc and the scalar
kinetic term is derived as the σ-model with Kähler potential

K(z, z) = − log
(
1− |z|2

)
, (A.27)

and the holomorphic superpotentialW (z) is just a constant, |W |2 = 2g2. For completeness,
we write down the expression for the superpotential in terms of the X, X̃ variables:

W =

√
g2

2

√
2 +X2 + X̃2 , (A.28)

which appears in section 3.3, when we perform the holographic renormalization.
In Wick rotating to Riemannian signature, we cannot define Majorana spinors and

impose reality conditions on the fields. Thus, we relax the constraint and we consider Dirac
spinors and complex scalar fields. In section 4.3 we impose additional reality conditions
for a truncated subsector of the theory.

The first upshot of reducing from N = 8 supergravity is the possibility of appealing
to the results of [26] to justify the supersymmetry-preserving counterterm (3.34). In order
to match their conventions, we write the supersymmetries of the N = 4 model as εi with
i = 1, . . . , 8, constrained by

Πi
jε
j = εi , Πi

jΠ
j
k = Πi

k , Πi
i = 4 , (A.29)

where the non-vanishing components are Πa
b = δab . As we showed, the reduction outlined

in (A.3)–(A.7) is compatible with the equations of motion of the gravitini, sending those
of the N = 8 model to those of the N = 4 model. Furthermore, taking the definition of
the symmetric tensor Aij1 from [65]

Aij1 ≡
4
21
(
ukjIJ + vkjIJ

) (
u JK
km uimKI − vkmJKvimKI

)
(A.30)

and applying (A.4), (A.5) gives

Aab1 = 1
2
(
X +X−1 + iϕX

)
eiθ δab , Aab1 = 1

2
(
X +X−1 + iϕX

)
eiθ δab . (A.31)

In appendix C of [26] it is then shown that for a truncation of N = 8 obtained analogously
to ours, the supersymmetry-preserving counterterm has the form

SSUSY
ct,s = −2

√
2g
p

1
κ2

4

∫
Mδ

Tr
√

ΠA1A
†
1 volh

= −
√

2g 1
κ2

4

∫
Mδ

√
(X +X−1)2 + ϕ2X2 volh ,

(A.32)

which matches our (3.34).
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These results are based on the requirement that the on-shell action for the “kink
Ansatz” metric has a vanishing contribution from the conformal boundary, as required by
supersymmetry. We have also separately verified this by applying the arguments in section
6 of [26] to our theory (A.9) (setting the gauge fields to zero): write the on-shell action as a
sum of squares of objects implementing the BPS conditions, and then impose the vanishing
of the boundary contribution.

B Boundary supersymmetry

The gravitational free energy, corresponding in our case to the Legendre transform of the
renormalized gravitational on-shell action (3.38), should be interpreted as a functional of
the boundary data representing sources of the field theory. As such, it is only supersymmet-
ric provided that these are transformed into each other under a supersymmetry variation.
This point has been stressed in e.g. [25, 26, 67]. In this appendix, we show that this holds
by expanding the bulk supersymmetry transformations (A.11)–(A.14) and showing that
we match the supersymmetry variations of the three-dimensional off-shell conformal su-
pergravity of [43]. These supplement the considerations in section 4.1 to provide a more
complete picture. Being interested in the global limit of the supersymmetry, we consider
backgrounds in which the variation of the gravitino (3.10) has been set to zero and we
consistently set the bulk gravitino itself to zero.

We choose the basis (in Lorentzian signature)

Γ0 =
(

0 iσ1
iσ1 0

)
, Γ1 =

(
0 σ2
σ2 0

)
, Γ2 = Γz =

(
12 0
0 −12

)
,

Γ3 =
(

0 σ3
σ3 0

)
, Γ5 =

(
0 −i12

i12 0

)
, C4 =

(
0 iσ2

iσ2 0

)
,

(B.1)

and decompose them as

Γ0 = σ1 ⊗ γ0 , Γ1 = σ1 ⊗ γ1 , Γ3 = σ1 ⊗ γ2 , C4 = σ1 ⊗ C3 , (B.2)

where γi is a basis of Cliff(2, 1) and C3 is the three-dimensional charge conjugation matrix.
Notice that the Majorana condition in four dimensions reduces to the Majorana condition
in three dimensions. As in the bulk of the text, we use L and R to indicate the chirality
with respect to Γz.

Near the boundary, the bulk bosonic fields can be expanded as (3.16)–(3.19), and the
bulk supersymmetry parameter has the form

εa = z−1/2
(
εaL
0

)
+ z1/2

(
0
ξaR

)
+ o(z) . (B.3)

For the dilatino, expanding (A.21) near the boundary gives

χa = z3/2 χa0 + z5/2 χa1 + o(z2) , (B.4)
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with
χa1L = − /Dχa0R −

3
4ϕ1 χ

a
0R , χa1R = /Dχa0L + 3

4ϕ1 χ
a
0L . (B.5)

These expansions leads to the following supersymmetry variations of the scalars and gauge
fields

δX1 = 1
2
√

2
εaLχ

a
0R , δX2 = 1

2
√

2

(
εaLχ

a
1R + ξ

a
Rχ

a
0L +X1ε

a
Lχ

a
0R

)
,

δϕ1 = 1√
2
εaLχ

a
0L , δϕ2 = 1√

2

(
εaLχ

a
1L − ξ

a
Rχ

a
0R − 2X1ε

a
Lχ

a
0L

)
,

δAi = −1
2ε

a
Lγiχ

a
0L , δÂi = −1

2ε
aγiχ

a
0L .

(B.6)

Recall that in section 4.1 we identified the leading order gravitino χa0L with the gravitino at
the boundary, so ϕ1 is indeed transformed by supersymmetry into another source. However,
this is not true for X1, and indeed we know that this should not hold. Since the dual
operator to X has scaling dimension 1, its source cannot be X1, and we identified it
in (4.11) with X . In fact

−κ2
4δX = − (2X1δX1 − 2δX2 + ϕ1δϕ1)

= 1√
2

(
εaL /Dχ

a
0L + ξ

a
Rχ

a
0L −

1
4ϕ1 ε

a
Lχ

a
0L

)
,

(B.7)

and using (4.8) and (4.11) we find

− κ2
4δX = 1

2
(
ζ
a /D(χa)3d + ϑ

a(χa)3d
)
. (B.8)

Notice that not only does δX only contain the fermionic source, but it also corresponds —
as it should — to the supersymmetry variation of the corresponding boundary scalar in 3d
off-shell conformal supergravity, as do the variations of ϕ1 and the gauge fields [43]

δS1 = 1
4ζ

a(χa)3d , δS2 = 1
2ζ

a /D(χa)3d + 1
2ϑ

a(χa)3d ,

δAIi = − 1
2
√

2
ηIabζ

a
γi(χa)3d , δÂIi = − 1

2
√

2
ηIabζ

a
γi(χa)3d .

(B.9)

Showing that the bulk supersymmetry variations match those of the expected boundary
conformal supergravity, provided we identify correctly the sources for the dual boundary
operators, provides additional evidence to the holographic renormalization procedure de-
scribed in section 3.3, including the necessity of the supersymmetry-preserving counterterm
and the Legendre transformation.

C Holographic supersymmetric Ward identity

In section 3.3 we looked at the holographic Ward identities corresponding to boundary
Weyl symmetry, R-symmetry, and diffeomorphism invariance. However, when we include
non-vanishing fermionic fields, we may also consider the Ward identities corresponding to
the boundary Q and S supersymmetry of the background conformal supergravity. Here,
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we focus on a specific one that appears as the constraint (4.10) in the bulk supersymme-
try equations.

Generically, a variation of the gravitational on-shell action under a change of the
boundary data can be written as

δS̃ =
∫
M3

[
δeii 〈T ii 〉+ δψ

a
i 〈Sai〉+ δϕ1〈O∆+〉+ δAIi 〈J Ii〉+ δÂIi 〈Ĵ Ii〉

+ δχa〈λa〉+ δX〈O∆−〉
]
volg

(C.1)

which generalizes (3.44) to include the fermionic boundary sources and VEV written in (2.6)
and (2.5). Here, we focus on the supersymmetric Ward identity in a supersymmetric
classical background with vanishing gravitino using the supersymmetry transformations
described in appendix B. The gravitational free energy is supersymmetric provided

0 = 1
2κ2

4

{
∂i〈O∆−〉ζaγ

i(χa)3d + κ2
4〈O∆+〉ζa(χ

a)3d + 2〈O∆−〉ϑ
a(χa)3d (C.2)

− κ2
4√
2

(
ηIab〈J I

i 〉+ ηIab〈Ĵ I
i 〉
)
ζ
a
γi(χb)3d

}
or equivalently

0 = 1
2κ2

4
(χa)3d

{
κ2

4〈O∆+〉ζ
a − ∂i〈O∆−〉γ

iζa + 2〈O∆−〉ϑ
a (C.3)

+ κ2
4√
2

(
ηIab〈J I

i 〉+ ηIab〈Ĵ I
i 〉
)
γiζb

}
,

which by the arbitrariness in the choice of the gravitino gives (4.10).
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