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Abstract

Evolution is an ubiquitous feature of living systems. The genetic composition of a population
changes in response to the primary evolutionary forces: mutation, selection and genetic drift.
Organisms undergoing rapid adaptation acquire multiple mutations that are physically linked
in the genome, so their fates are mutually dependent and selection only acts on these loci in
their entirety. This aspect has been largely overlooked in the study of asexual or somatic
evolution and plays a major role in the evolution of bacterial and viral infections and cancer.

In this thesis, we put forward a theoretical description for a minimal model of evolution-
ary dynamics to identify driver mutations, which carry a large positive fitness effect, among
passenger mutations that hitchhike on successful genomes. We examine the effect this mode
of selection has on genomic patterns of variation to infer the location of driver mutations and
estimate their selection coefficient from time series of mutation frequencies. We then present
a probabilistic model to reconstruct genotypically distinct lineages in mixed cell populations
from DNA sequencing. This method uses Hidden Markov Models for the deconvolution of
genetically diverse populations and can be applied to clonal admixtures of genomes in any
asexual population, from evolving pathogens to the somatic evolution of cancer.

To understand the effects of selection on rapidly adapting populations, we constructed
sequence ensembles in a recombinant library of budding yeast (S. cerevisiae). Using DNA
sequencing, we characterised the directed evolution of these populations under selective in-
hibition of rate-limiting steps of the cell cycle. We observed recurrent patterns of adaptive
mutations and characterised commonmutational processes, but the spectrum of mutations at
the molecular level remained stochastic. Finally, we investigated the effect of genetic varia-
tion on the fate of new mutations, which gives rise to complex evolutionary dynamics. We
demonstrate that the fitness variance of the population can set a selective threshold on new
mutations, setting a limit to the efficiency of selection.

In summary, we combined statistical analyses of genomic sequences, mathematical mod-
els of evolutionary dynamics and experiments in molecular evolution to advance our under-
standing of rapid adaptation. Our results open new avenues in our understanding of popula-
tion dynamics that can be translated to a range of biological systems.
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Glossary

Allele One of two or more alternative forms of a gene or DNA sequence.

Amino acid One of the building blocks of proteins. Twenty different amino acids are com-
monly found in proteins (e.g., arginine, serine, leucine, etc.).

Base The alphabet used by DNA molecules as their building block. The bases in DNA are
adenine (A), cytosine (C), guanine (G) and thymine (T).

Beneficial mutation An advantageous or beneficial mutation increases fitness. It would
therefore be subject to positive selection.

Codon Three adjacent bases in DNA and messenger RNA that encode an amino acid in a
protein.

Deleterious mutation Adeleterious mutation decreases fitness. It would therefore be under
negative selection.

Diploid A cell or an organism having two copies of the genome.

Driver mutation A mutation that gives a fitness advantage to the cells that carry it, via the
modifications in phenotype that it causes.

Epistasis Context-dependent fitness effects due to genetic interactions between mutations
at different sites in the genome.

Fitness The relative ability of an individual (or genome) to produce surviving offspring in
a population.

Fixation A process whereby one variant becomes more frequent in a population until all
other variants go extinct. Once this variant fixes, it is found in all individuals of a
population.



xx Glossary

Frameshift mutation A mutation in a coding region that adds or subtracts a number of
bases that is not a multiple of three, causing the triplet reading frame to be shifted.

Gene Part of a DNA sequence that encodes a functional RNA molecule or a protein.

Genetic code A near-universal code to convert a set of three adjacent nucleotides (or codon)
to one of the amino acids. Three these codons are also devoted to starting or stopping
the process of translation. The code is redundant, with 43 = 64 possible codons spec-
ifying only 20 amino acids plus the start and stop signals.

Genetic drift Stochastic change of allele frequencies through generations, with character-
istic time 𝑁 .

Genotype Combination of allelic states across one or more chromosomes at a polymorphic
site in the genome.

Germline mutation A heritable mutation present in the cells that are responsible for pass-
ing genetic information from one generation to the next.

Haploid A cell or an organism that has one copy of the genome.

Haplotype Combination of allelic states in the same chromosome.

Heterozygous Cell or organism carrying different alleles in each chromosome copy.

Homozygous Cell or organism carrying the same allele in each chromosome copy.

Linkage (dis)equilibrium Absence (presence) of correlations betweenmutations in the genome,
which determines how likely two alleles are to be co-inherited.

Locus An entity of the genome which can be a single base, a gene or a chromosomal region.

Meiosis A type of cell division in which one cell goes through stages of DNA replication
followed by two consecutive rounds of cell division, to produce four potential daugh-
ter cell. It is this last step that assures the generation of genetic diversity in sexual
reproduction. Meiosis reduces the chromosome number per cell by half.

Mitosis A type of cell division in which one cell duplicates and divides the genetic mate-
rial, creating two identical daughter cells with the same number of chromosomes as
the parent. Mitosis plays a role in cellular reproduction, growth, repair and asexual
reproduction.



Glossary xxi

Mutation The process by which random nucleotide changes are introduced in individuals,
with characteristic time 1

𝜇 . These changes in DNA can be single-base substitutions,
insertions, deletions, or large-scale rearrangements.

Neutral mutation A neutral mutation is one that does not change the fitness.

Non-synonymous mutation Mutations which lead to a change in the amino acid sequence.
They include missense and nonsense mutations. Missense mutations can introduce
amino acids with similar chemical properties (e.g., hydrophobicity or charge) which
may have little effect; or they may introduce amino acids with different properties that
are likely to be deleterious. Nonsense mutations result in a stop codon and are likely
to be deleterious.

Nucleotide Monomers that conform the DNA and RNA polymers.

Open reading frame Reading frames correspond to one of three possible ways that a DNA
sequence can be divided into consecutive triplets. An open-reading frame (ORF) is a
reading frame with a start codon.

Passenger mutation A mutation assumed to have neutral impact on cell phenotype.

Polymorphism The existence of two or more genetic variants (e.g. DNA sequences, pro-
teins, chromosomes) or two or more phenotypic variants in a population. A polymor-
phic variant is found in a fraction of individuals within a population.

Recombination Exchange of DNA between the two copies in a chromosomal pair. This is
the process by which multi-allelic genomes are mixed during meiosis.

Selection Deterministic frequency changes of alleles with fitness difference Δ𝐹 .

Somatic mutation A non-heritable mutation arising in cells that are not passed on to the
next generation.

Subclone Maximal set of cells carrying the same arbitrary set of mutations.

Synonymous mutation A nucleotide change with no effect on the protein sequence, due to
the degeneracy of the genetic code. Synonymous mutations are often assumed to be
neutral.



xxii Glossary

Transition Interchanges of two-ring purines (A<>G) or of one-ring pyrimidines (C<>T).

Transversion Interchanges of purine (C, T) for pyrimidine bases (A, G), which therefore
involve exchange of one-ring and two-ring structures.



Chapter 1
Introduction

‘El tiempo es la materia de la que he sido creado.’

— Jorge Luis Borges,
‘Nueva refutación del tiempo’ (1946)

1.1 Information processing in the cell
Living matter has the capacity to self-replicate, which sets it apart from its inanimate coun-
terpart. Omne vivum ex vivo – the notion that ‘all life comes from life’ – was promulgated
by Louis Pasteur when he experimentally disproved the spontaneous generation of life [11],
a view that had been widely held since Ancient Greece. Cells, which are the elementary
constituents of living matter, contain a complete instruction set to make a quasi identical
copy of themselves. Deoxyribonucleic acid (DNA) is the informational molecule in a cell’s
genome that stores and copies this information to build a new organism. The instructions
contained in the genome are passed on in an unbroken thread that stretches for billions of
years, from primordial cells to us and every other organism on Earth.

This thesis will focus on the study of the evolutionary dynamics of rapid adaptation at
the molecular level. It will combine statistical analyses of genomic sequences, mathemati-
cal models of evolutionary dynamics and experiments in molecular evolution. We will first
introduce the main constituents that process information in the cell, with a particular empha-
sis on DNA as our main molecule of interest. We will then present the evolutionary forces
that can alter the information content in DNA. We shall then discuss molecular genetic tech-
niques that can be used to study these processes, followed by an introduction to population



2 Introduction

genetic inference from DNA sequences. Finally, we summarise each of the chapters and
briefly outline their inter-relationships.

1.1.1 Genetic basis of inheritance
The study of genetics deals with the basic principles that govern how information in the
genome is interpreted to make the components of a cell, and how it provides the means to
transmit this information. Genetics began as an investigation into the transmission of varia-
tion between individuals, such as differences in the colour of pea seeds and fly eyes [22]. In do-
ing so it was able to successfully identify the factors of heredity, or how information is passed
on from generation to generation. From these studies, geneticists inferred the existence of
genes and many of their properties [33, 44]. But genes remained mathematical abstractions
and the apparently unchanging character of heritable traits was taken as fact. Yet this posed
a problem for any molecular description of the inheritance of traits, as the inherently proba-
bilistic nature of the fundamental laws of physics and chemistry would violate their stability
and invariance of traits. Erwin Schrödinger noted this in relation to the protruding ‘Habsburg
lip’, a dominant trait that had been passed down through generations in this royal family [55].
He speculated that inheritance must be based on an ‘aperiodic solid’, a suggestion that antici-
pated DNA as the carrier of genetic information. This prescient view was proven right by the
demonstration that genetic information for virulence could be transferred between bacteria,
which prompted the identification of DNA as the information-carrying molecule [66, 77]. The
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field of molecular biology then rapidly developed with Francis Crick and James Watson’s
discovery of the double-helix structure of DNA [88], which explained crucial observations
of crystallographic X-ray diffraction patterns from DNA fibres that Rosalind Franklin and
Maurice Wilkins had acquired (Fig. 1.11.1A). The structure of DNA itself had extraordinary
explanatory power, as it told us how genetic information is copied within a cell and trans-
mitted from generation to generation. This led to the discovery of a near-universal genetic
code, which links the sequence of DNA to the structure of proteins [99], and ultimately to the
realisation that DNA encodes ribonucleic acids (RNA), which in turn encode proteins [1010,
1111].

1.1.2 Biophysical properties of the genome
The structure of DNA consists of two complementary chains twisted around each other,
forming a double helix. Genetic information resides in the linear order of nucleotides along
a strand of DNA, divided into genes. The four-base DNA code specifying the amino acid
sequence of a protein is copied, or transcribed, into RNA. During translation, the four-base
code of messenger RNA (mRNA) is decoded into the 20-amino acid alphabet of proteins by
reading three bases at a time. The genetic code assigns meanings to an unbounded number
of nucleotide sequences, mapping each triplet of bases to a codon. A specific protein is then
produced by the transcription of DNA into mRNA and the subsequent translation of mRNA
in the ribosome. Finally, for DNA to copy itself as the cell is preparing to divide, it must
undergo accurate replication through DNA polymerase-mediated complementary pairing of
adenine (A) with thymine (T) and of guanine (G) with cystosine (C) as shown in Figure 1.11.1B.

DNA sequences contain a complete description of the organism and provide insights into
the conservation and variation in proteins known to have important functional roles in the
cell. We share thousands of individual proteins with other eukaryotes, hundreds of protein
complexes and the majority of cellular organelles [1212]. The essential genes and networks
needed for cell division have revealed the conservation of the transcription, translation and
replication machinery across the tree of life [1212].

1.2 Evolutionary forces
Molecular biology has supplied a large number of novel tools that, together with genetics,
have enabled researchers to address questions regarding the nature of how information is
transmitted, retained and modified [1313]. We have begun to elucidate how organisms devel-
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oped by exploring the evolution of genomes and the origins of diversity at the molecular
level. However, the state of biology from today’s vantage point may appear comparable to
chemistry before the periodic table. Even though we have read most human genes and some
regularities have been found, there is a major lack of unifying principles.

Is there room for any such principles in modern biology? To answer this, we will briefly
review the main processes that can modify the information content of DNA: mutation, selec-
tion, recombination and genetic drift. We will discuss the need for a quantitative description
of how evolutionary forces alter a population through changes in allele and genotype fre-
quencies. In particular, we will put this in the context of mathematical models in population
genetics, which should give us a sense of the evolutionary changes that can occur on different
timescales, of what is common and what is extremely unlikely.

1.2.1 Sources of genetic variation: mutation and recombination
The stable biophysical and chemical properties of DNA make it an ideal carrier of genetic
information. Howmany errors are made each time a genome is copied? DNAmust replicate
itself with extreme fidelity, and the reliability of the copying process is limited by ther-
mal noise. We know that the dominant energetic contribution towards the stability of DNA
comes from hydrogen bonds between bases in complementary base pairs, which is of the
order Δ𝐸∼10𝑘𝐵𝑇 [1414]. Therefore, the probability of an incorrect base pairing should be,
according to the Boltzmann distribution, 𝑒−Δ𝐸/𝑘𝐵𝑇 ∼10−4. Considering that a typical gene
is a thousand nucleotides long, then replication of the DNA would introduce roughly one
mutation in every tenth protein [1515]. However, genomes can be copied with almost no mis-
takes and most organisms have per-genome mutation rates in the range of 10−8 − 10−12 [1616,
1717]. We saw that the flow of genomic information from DNA into functional proteins by
transcription results in the synthesis of mRNA, and the subsequent process of translation of
that mRNA into the string of amino acids that make up a protein. Organisms can withstand
errors in transcription (10−5 − 10−4) [1818, 1919] and translation (10−4 − 10−3) [2020], but the
archival copy in DNA has to remain very stable in comparison. The accuracy in DNA repli-
cation can only be explained by a process known as proofreading, whereby the polymerase
checks the newly added base before adding the next one [1212]. There are also additional safe-
guards that fix incorrect bases after replication, like the base excision repair system which
repairs T⋅G mismatches and damaged bases, mismatch excision repair that corrects other
mismatches and small insertions and deletions, or nucleotide excision which repairs chem-
ical adducts that distort normal DNA shape [1212]. Other DNA lesions that are not repaired
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by these mechanisms (e.g., double-strand breaks) can be corrected by two systems, namely
homologous recombination and non-homologous end-joining [1212].

Recombination itself is the other evolutionary force that introduces new genetic varia-
tion. Homologous recombination takes place in sexual reproduction during meiosis, and
enables the exploration of completely new regions of the genotype space by bringing to-
gether the genomes of different individuals. While alleles located on different chromosomes
randomly segregate in every meiosis, those linked on the same chromosome do not. In most
species there are one to two crossover events per chromosome per replication [2121]. Two
genes on a chromosome that have a 1% probability of crossover per generation are defined
to be at a distance of one centimorgan, or cM. In humans, the average rate of recombination
is about 1 cM per 1Mb [2121]. The distribution of recombination events in the genome is
far from uniform, with hot spots near chromosome telomeres and cold spots towards their
centromeres [2222, 2323]. Recombination events can disrupt the co-inheritance of alleles in the
genome. The association between alleles at different loci can be estimated by a quantity
known as ‘linkage disequilibrium’. Over time, a haplotype block will begin to be broken
down by recombination and the haplotype frequency will decrease, which translates as a
decay in linkage disequilibrium.

1.2.2 Eliminating diversity: genetic drift
Genetic variation arises stochastically by mutation and can have idiosyncratic effects: the
order and timing of mutations can be different in different individuals, setting populations off
on different futures. Reproductive fluctuations – also known as genetic drift – are a stochastic
evolutionary force that influences whether a mutation will be kept or lost in the population.
Logically, themagnitude of genetic drift is related to the size of the population. When genetic
drift plays a dominant role in the fixation of new mutations, it can be shown that the rate of
substitution is then equal to the rate of mutation. This is the underlying principle behind
the ‘molecular clock’ hypothesis, which states that the number of substitutions between two
organisms should scale linearly with time [2424]. A noteworthy example of its exactitude is
the 𝛼-globin protein – one of the amino acid chains that make up haemoglobin – which
accumulates one amino acid change every 6 million years [2424]. We will see now that genetic
drift stands as a noisy background of neutral (or nearly neutral) mutations that can obscure
the effects of natural selection.
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1.2.3 Shaping genetic variation: natural selection
Most mutations in a genemisspell the protein it encodes. Very few of these changes are bene-
ficial to the organism. Themajority of changes are innocuous or mildly harmful, some lethal.
Selection is a deterministic evolutionary force that acts on these changes in a characteristic
timescale which is inversely proportional to their effect on fitness. Without the knowledge at
the time that genes exist or how they bring change, Charles Darwin and Alfred Wallace de-
scribed that the selection of whole organisms will direct changes in any self-replicating unit
of living matter [2525]. As a result, we now know that mutations that are passed on through
generations will define the genetic makeup of the population. In turn, whilst not affecting
long-term evolution, selection will also be at play all the way down to individuals, to cells and
molecules [2626]. We will now explore which new possibilities can be directed by selection
on different timescales and organisational levels.

Within populations, differential reproductive success alters the structure of gene pools
which gives rise to evolution. It has typically been thought that selection only acts over very
long timescales: if the selective pressure is very weak, such as the effect of translational op-
timisation on codon usage bias, it can take billions of years [2727]. However, recent findings
suggest it can also occur on very short timescales: for instance, major changes in the evolu-
tion of the seasonal influenza virus can take place within just a few years and be selected for,
resulting in vaccines needing frequent updates (Fig. 1.21.2B) [2828]. What is yet more extraor-
dinary, the sequence diversity of influenza viruses pales in comparison to certain pathogens
like HIV [2929]. In a single individual who has been infected for 6 years, the turnover rate of
the HIV genome is equivalent to all influenza viruses around the globe in one entire season,
and to many millions of years in humans.

At the cellular level, clonal evolution can take place when some cells with faster rate
of replication can be selected for in a cell population or tissue. This process takes place
throughout our lifetimes. Cancer, which is the end-state of development and ageing, also pro-
gresses under Darwinian evolution driven by somatic mutations and clonal expansions [3030–
3232]. In the interim process, malignant cells can evolve major genomic aberrations (e.g.,
whole-genome duplications) up to 20 years before a cancer is detected [3333]. This suggests
that there is much room left to explore with regards to how the genomes in our cells, and the
genetic makeup of all organisms, evolve throughout their lifetime [3434].

Natural selection is also operating within cells. For example, it plays a role on timescales
of milliseconds in directing different unfolded copies of the same protein through multiple
paths from a denatured state to a unique folded structure [3939]. Similarly, receptor molecules
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of the immune system undergo random processes of mutation and recombination to main-
tain a very diverse repertoire – each specialised in recognising specific pathogens – and are
directed by clonal selection to mount a response within hours, e.g., to vaccination [3636, 4040–
4242].
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1.2.4 Genetic interactions and genetic linkage
How many mutations typically contribute to adaptive dynamics? A biological function can
rarely be attributed to a single gene. One of the rare cases is haemoglobin, which is the sole
carrier of gas molecules into the bloodstream [4343]. Mutations in haemoglobin can convert a
glutamic acid codon (GAG) to a valine codon (GTG), leading to a malformation of blood cells
that causes sickle-cell anaemia [4444]. On the other hand, if a biological function can be at-
tributed tomany genes, the effects of mutations in different genes can be context-independent
(additive) and all mutational paths will lead to the same functional genotype. In other words,
if the topology of the fitness landscape is smooth, there will not be any historical contingency
or ‘memory’ of intermediate states in the mutational path. Conversely, when the effects of
mutations are context-dependent (epistatic), evolutionary outcomes may also become path-
dependent. If a combination of mutations is beneficial, but intermediate mutants are dele-
terious compared to the wild-type, epistasis will cause the rate of evolution to slow down.
This scenario often arises, for example, in the emergence of bacterial or viral resistance to
drugs [4545, 4646]. To determine which scenario is at play, it is clear that with a genome of
size 𝐿, characterising additive and epistatic interactions in all 2𝐿 combinations of mutations
is unattainable: this figure exceeds the number of atoms in our Universe by many orders of
magnitude. Rather than characterising the effect of every possible mutation, following the
genetic and phenotypic trajectories of population ensembles can reveal the statistical prop-
erties of the underlying fitness landscape, e.g., its ‘ruggedness’. It may then be within reach
to have a theoretical description of the statistical structure of typical population trajectories.

1.3 Molecular genetic techniques
In this thesis, we hope to bridge what the biophysical constraints are on these basic molecular
processes at the molecular level (the microscopic dynamics of the genome) and their bio-
logical relevance (the macroscopic contribution to the organism’s fitness). Many attempts
to do this thus far have been saddled with unrealistic expectations limited by technologi-
cal advances, but we have reasons to be optimistic with our current abilities to ‘read’ and
more recently ‘write’ information in the genome. Recent advances in experimental technolo-
gies give us great insight into the functioning of biological systems both at the molecular and
intra-cellular levels, as well as the level of large scale functional systems in the organism [1313].
We will now discuss these developments, focusing on the ability to make quantitative mea-
surements of the constitutive elements of cells and populations, and establish links to their
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function. We will also highlight opportunities to measure and modify population genetic
parameters like the population size, mutation rate, selective constraints, or recombination
rate.

1.3.1 DNA, RNA and protein sequencing
The recent development of genome sequencing techniques has enabled a revolution in the
study of biological systems [4747]. While the current state-of-the-art reflects otherwise, the
ability to sequence proteins and RNAprecededDNA sequencing. Fred Sanger was the first to
determine the ordered amino acid sequence of the protein insulin in 1952, by fragmenting the
protein into polypeptide chains, separating the pieces by chromatography and electrophore-
sis, and completing the sequence by comparing overlaps between fragments [4848]. RNA came
next, and in 1965 Robert Holley and colleagues deciphered the nucleotide sequence of ala-
nine transfer RNA (tRNA) by a similar process [4949]. Researchers then steadily added to the
number of ribosomal and tRNA sequences, which led to the first complete protein-coding
gene – the coat protein of bacteriophage virus MS2 – being sequenced, followed by its com-
plete RNA genome [5050, 5151]. Researchers began to adapt these methods in order to sequence
DNA. Two methods subsequently transformed the field in 1977, independently showing that
one could determine the nucleotide order in a DNA sequence by measuring distances from a
radioactive label to positions of specific bases in the DNA molecule. These were the ‘chem-
ical cleavage’ method developed by Maxam and Gilbert [5252], and the ‘chain termination’
method by Sanger, Nicklen and Coulson [5353], which demonstrated that DNA fragments
could be separated on the basis of size using electrophoresis, and the order of bases inferred.
The ‘chain-termination’ method, commonly known as Sanger sequencing, enabled the first
DNA genome to be sequenced: the 5 kb-long genome of bacteriophage virus 𝜙𝑋174 [5454].
Sanger sequencing continues to be used to date, generating read-lengths of up to ∼1 kb, and
per-base error rates as low as 1 × 10−5 [5555].

This method for DNA sequencing was put to immediate use with a strategy known as
shotgun sequencing, which is based on sequencing random clones and hierarchically assem-
bling them using the overlaps between DNA fragments [5656]. A number of improvements to
Sanger sequencing were made which involved replacing radiolabelling with fluorescence-
based detection and automation through capillary-based electrophoresis [5757]. The automa-
tion of laboratory protocols and computational methods for sequence analysis optimised
sequencing to read ∼1 kb per day, and the generation of sequence data began growing expo-
nentially. With a yearly doubling in capacity in the 1990s, several genomes could be suc-
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cessfully completed including the first free-living organism (H. influenzae, 2Mb) and several
model organisms (E. coli, 4.6Mb; S. cerevisiae, 12Mb; C. elegans, 100Mb; A. thaliana,
135Mb) which were among the first to be sequenced [5858–6262]. A vision to sequence the hu-
man genome – which is ∼3.2Gb long – came to fruition by integrating automated Sanger
sequencing with a strategy to clone large fragments of the human genome into bacterial arti-
ficial chromosomes. This monumental undertaking culminated in the sequencing of the first
human genome in 2001 [6363, 6464]. However, it still demanded onerous colony picking and
plasmid preparation.

Breakthroughs in scale only came with alternative sequencing techniques that had been
explored in parallel and did not involve electrophoresis. Rather than using in vivo bac-
terial cloning, these new high-throughput approaches amplified the DNA templates to be
sequenced in vitro. They roughly fall into two categories: sequencing by ligation and se-
quencing by synthesis. In sequencing by ligation, a DNA fragment of interest is hybridised
to a probe sequence that is bound to a fluorescent label, and is then ligated to an adjacent
oligonucleotide for imaging [5555]. The emission spectrum of the fluorescent label indicates
the identity of the base complementary to specific positions in the probe. In sequencing
by synthesis, an enzyme drives the synthesis (e.g., a polymerase or a ligase) and a sig-
nal, such as fluorescence or a change in ionic concentration, identifies the incorporation
of a nucleotide into an elongating strand [5555]. These high-throughput sequencing meth-
ods have eventually superseded Sanger sequencing in most applications. Massive paralleli-
sation is facilitated by the creation of many millions of individual sequencing-by-ligation
or sequencing-by-synthesis reaction centres, thus reading millions of molecules in parallel.
This has ultimately enabled order-of-magnitude improvements in scale, progressing from
sequencing 250 bp to 250Gb per day [6565]. The genomes of a large number of organisms
have been sequenced, including ourselves [6666] and our near cousins [6767], going all the way
back to unicellular organisms. More widely, high-throughput DNA sequencing is enabling
a wide range of applications to quantify different biological phenomena (e.g., genetic vari-
ation, RNA transcription, protein-DNA interactions and chromosome conformation) [4747].
In recent years, new single-molecule sequencing technologies are surpassing the limitations
of previous short-read high-throughput techniques, enabling long read lengths and real-time
sequencing [6868].
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1.3.2 Genome engineering and directed evolution
Once we have characterised sequence variants in the genome, a principal aim is their func-
tional analysis in order to establish genotype-phenotype relationships (e.g., which variants
affect gene regulation or protein function). Generating a library of mutants that uniformly
represents all possible nucleotide or amino acid substitutions should reveal the distribution
of effect sizes of mutations within the space of all possible sequence variants, but doing this
efficiently remains challenging [6969]. Cells can be randomly mutagenised by chemical and
physical agents (e.g., alkylating agents or ionising radiation), which are nonspecific and can
introduce substitutions at single bases, or small insertions or deletions. Random mutagene-
sis has been commonly used in traditional genetic screens. On the other hand, site-directed
mutagenesis was developed to alter DNA in a non-random, targeted fashion by synthesising
a short DNA primer which contains the desired mutation and can hybridise with the DNA
in the gene of interest, using phage- or polymerase chain reaction (PCR)-mediated meth-
ods [7070]. In recent years, a panoply of newmethods have been developed that use engineered
nucleases for genome editing with greater efficiency and precision, e.g., CRISPR/Cas9 [7171–
7373].

In addition, recombination can enable access to distant parts of genotype space, and it
can be used to randomise entire genomes of organisms with sufficient sequence homology.
In vitro recombination methods such as DNA shuffling have been very successful at reas-
sorting mutations in individual proteins to access beneficial combinations of mutants [7474],
but they can only sample local regions of a fitness landscape. To study the global picture, in
vivo recombination is an approach to generate libraries of genetically and phenotypically dis-
tinct segregants by crossing divergent organisms that maintain sequence homology [7575, 7676].
Knowledge of phylogenetic information is thus essential to generate a diverse, genome-wide
library that samples a functionally enriched space of the fitness landscape [7777].

1.3.3 Screening and selection strategies
How can we measure the distribution of effect sizes on fitness within the space of sequence
variants? Functional analysis of variants in regulatory elements and proteins encoded in the
genome provide details into sequence-function relationships [7878]. Isolating functional vari-
ants by selection has long been used in the study of single-gene function, making it possible
to characterise the local neighbourhood of a given point in genome space. Genetic screens
on single-gene evolution are typically carried out directly on gene products in vitro, and
aim to determine the spectrum of effect sizes of individual protein residues [7979]. To apply
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functional selections directly to populations of molecules, genotype and phenotype must be
linked [7777]. For example, selection for binding affinity can be achieved by capturing protein
library members with desired binding properties to an immobilised target [8080]. An alterna-
tive approach that can only be used for proteins with enzymatic activity links protein activity
to organismal survival as a basis for selection [8181–8383]. This method has successfully been
used to evolve enzymes that neutralise or export antibiotics [8484], or increase viral infectiv-
ity [8585, 8686]. New paradigms, such as continuous evolution, are going beyond the generation
and screening of mutant libraries in a single cycle, and repeatedly performing evolution cy-
cles of mutation and selection without manual intervention [8787, 8888]. Continuous evolution
can markedly increase the number of steps in the sequence space that can be explored in the
search for optimal variants.

However, at the genomic scale, carrying out saturationmutagenesis of the genotype space
or combinatorial reconstruction based on reconstructed intermediates is not easily feasible.
The number of possible sequences for a nucleotide sequence of length 𝐿 will grow expo-
nentially as 4𝐿. Thus already at the scale of single genes, a complete combinatorial library
of each possible 25-mer would contain roughly 1015 unique molecules. Constructing and
screening a complete library at this scale is therefore out of reach, and it is no surprise that
the global structure of fitness landscapes remains elusive. To address this, we would like to
map the relationship between genotype and fitness at the level of the genome in an unbiased
manner, by screening for successful clones in libraries with vast genetic diversity created
by recombination. We will try to address this question of repeatability of evolutionary tra-
jectories under conditions of strong selection and rapid adaptation (e.g., with antimicrobial
drugs), which is rarely asked about biological systems since natural populations can hardly
be replicated with well-defined initial conditions. Given the sources of randomness inherent
to biological systems, it will be necessary to study the outcomes for replicate evolutions of
the same population and repetitions of the same experiment. In terms of genotype and phe-
notype dynamics, it will also be key to identify the relevant degrees of freedom to measure.

1.4 Population genetic inference and modelling
Can we gain an understanding about evolutionary processes from reading the genome? Can
we understand molecular evolution as a dynamical process in terms of quantitative princi-
ples? These questions have been theoretically addressed in the field of population genetics
for the past century. Population genetic theory gives us an intuition for the relative contribu-
tions to the diversity in a population of evolutionary forces like mutation, selection, recom-
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bination and genetic drift. More generally, population genetics has been able to reconcile the
macroevolutionary changes described by Darwinian evolution with mounting evidence from
molecular genetics for cumulative microevolutionary effects. The prevailing assumption in
population genetic inference has been that beneficial mutations occur seldom enough that
they can be modelled independently. This picture – developed by Fisher, Haldane, Wright
and others [8989, 9090] – is the foundation of our current inference methods for genomic data.
In conventional statistical inference, we normally record many independent data points to
sample a space of low dimensions, and analytical formulations for the inference using all
available information are often possible. With population genetic data, typically we only
observe a single draw from the evolutionary process in a high-dimensional space. More-
over, analytical formulations of the inference usually cannot be derived from all available
data.

Population genetic inference was initially motivated by the first techniques of protein se-
quencing which enabled biologists to glimpse the extent of protein-level variation [9191, 9292],
spurring the development of the neutral [9393, 9494] and quasi-neutral theories of molecular evo-
lution [9595]. Later, the introduction of DNA sequencing technology allowed for inferences
to be drawn from nucleotide-level variation [9696]. These theories simulate the evolution of
haplotypes forward in time and have enabled the pursuit of two related goals: (i) to de-
scribe the distribution of genetic diversity that enables comparisons between populations,
and (ii) to infer how current genetic diversity evolved. Another class of methods premised
on the neutral assumption, known as coalescent theory, aims to describe backward in time
how variants sampled from a population may have originated from a common ancestor [9797,
9898]. Coalescent theory focuses on genealogical descriptions of the ancestry of a certain
haplotype. Based on these methods, we can begin to reconstruct events that happened in
the past, for example, estimating when two organisms diverged and the rate at which they
did so [9999, 100100]. The action of selection can also be inferred according to the neutral the-
ory: site-specific amino acid preferences can be learned from sequencing data by comparing
patterns of synonymous and non-synonymous mutations at the codon level [9696, 101101, 102102].
Other selection tests are based on the frequency of variant sites, since selective forces cause
appreciable changes in allele frequencies over many generations [103103, 104104].

All inference considered so far assumes that all polymorphic sites in the population are
the result of a single segregating mutation. This framework in population genetics gener-
ally holds true in small populations, where the fixation or extinction of a mutation is on
its own merits. Nevertheless, with the availability of DNA sequences we are now learn-
ing that rare, large-effect mutations are the exception rather than the rule [105105]. Multiple
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mutations are normally present in large populations, so that the fate of each mutation de-
pends on every other mutation in the genome [106106]. This is particularly true for rapidly
adapting populations, such as microbial populations, immune cells, or cancer cells. Models
must therefore account for the fact that population dynamics will depend on many interact-
ing components of the genome and is thus a complex many-body problem. Based on this
observation, mathematical models of microbial evolution from population genetics and epi-
demiological theory are starting to describe within- and between-host evolution of bacterial
and viral pathogens [107107–109109], as well as the emergence of drug-resistance mutations [4646].
Carcinogenesis has also been regarded as an evolutionary process driven by stepwise somatic
mutations and clonal expansions [3030] involving as many as ten new traits [3131]. Although tu-
mour evolution is commonly understood as a sequential process of activation of oncogenes,
which stimulate cell proliferation, and deactivation of tumour suppressor genes, which limit
proliferation, recent evidence suggests that most of these events are often not successive but
simultaneous [3333, 110110]. With the availability of sequence data of cancer cells, population
genetic models of asexual evolution have been applied to tumour initiation [111111], progres-
sion [112112] and drug resistance [113113, 114114]. These models of evolutionary dynamics can be
deterministic or stochastic, and assume either well-mixed or structured populations [115115].
Plenty of work remains to be done in this area, where a solid foundation for these mod-
els should contain a general description of the dynamics of natural selection in genetically
diverse populations that replaces the neutral theory as the null model [106106].

Rapid evolution and adaptation pose major challenges to public health on many fronts,
and being able to forecast the course of evolution is critical to anticipate the emergence of
new microbial pathogens, improve our response to pandemics and forestall antimicrobial
and chemotherapy resistance [4646, 116116]. Population genetic inferences are already helping
us to retrospectively understand how evolution has shaped the genomes of present-day or-
ganisms, for example by revealing genetic mechanisms for antibiotic production and resis-
tance that already existed before there was multicellular life [117117], or by explaining why
penicillin-resistant dysentery existed 10 years before the discovery of penicillin [118118]. The
evolutionary principles that generate these (and not other) genomes constrain the space of
possibilities in a practical sense, which may help us predict the evolution of a population
forward in time [119119]. Evolutionary forecasting has already been demonstrated to work in
certain contexts, such as predicting the evolution of the seasonal influenza virus within a
time horizon of several months, up to a year [2828, 120120]. To formulate theories that can be
applied to microbial evolution, cancer evolution or drug resistance, the challenge before us
is to take the study of evolution from its largely retrospective and qualitative state to a field
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with understanding built up from observations, controlled experiments, phenomenology, and
quantitative theory [121121].

1.5 Thesis outline
As an orientation for the reader, we provide a brief thesis roadmap. We begin, in Chap-
ter 22, by giving a first-principles introduction to minimal models of evolutionary dynamics.
We present the challenge of discerning ‘driver’ mutations under selection from hitchhik-
ing ‘passengers’. From the perspective of theoretical population genetics, a problem that
must be addressed to make headway is formalising how the complex dynamics of the sys-
tem at large emerge from the laws describing individual mutations and their interactions. We
show using a minimal multi-locus model of sequence evolution that we can discern scenarios
where changes in allele frequency are caused by natural selection at specified (or at linked)
loci. This inference method utilises time-resolved polymorphism data to obtain maximum-
likelihood estimates of the locus under selection and its selective advantage.

In Chapter 33, we lay the foundation to characterise populations that consist of multiple,
genotypically distinct cell populations by genome sequencing. We formulate this as an in-
verse problem where one would like to computationally reconstruct the genomic structure
of the population from the observed set of sequence reads. We introduce Hidden Markov
Models (HMMs) and show how they can be used to model sequences of a mixed population
of related cells. We show how this approach is powerful to reconstruct subclonal copy-
number profiles, genotypes and population frequencies, and how it can be applied to clonal
admixtures of genomes in any asexual population, from evolving pathogens to the somatic
evolution of tumours.

In Chapter 44, we present an experimental test for different sequence ensembles with
minimal-to-maximal genetic diversity in a long-term selection experiment with budding
yeast (S. cerevisiae). The objective is to characterise a complex fitness landscape carrying
out unbiased sampling of the genotype space with an ensemble of genetically homogeneous
and heterogeneous populations, observing their evolutionary trajectories by DNA sequenc-
ing as an approach to deduce the selective constraints to adaptation. The operating principle
is that biologically relevant states of genomes will be enriched in the mutation neighbour-
hood accessible around the local fitness peaks. Thus, the kinds of selective constraints we
impose on growth-limiting processes (e.g. with antimicrobial drugs) should bias and expose
these states.
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In Chapter 55, we test how genetic variation can affect the fate of new mutations. The
broad goal is to record time histories of mutations throughout a population by DNA se-
quencing as an approach to deduce the effect of extant genetic backgrounds on new muta-
tions. Coupled with time-resolved phenotyping, this experiment permits both the detection
of functionally relevant mutations that rapidly confer antimicrobial resistance, and the dy-
namic observation of adapting populations with appropriate temporal resolution. Here, we
show that selection can indeed drive changes to the fitness distribution within a population,
that we can observe the mutations affecting the fitness distribution, and that we can decom-
pose the contribution of pre-existing and de novo genetic variation to fitness.

InChapter 66, we present the analysis of mutational processes under selective constraints
which affect the fidelity of genome replication. We characterise the spectrum of mutational
processes that are active in the experiment presented in Chapter 44. We apply an expectation-
maximisation (EM) algorithm to identify distinct mutational processes that are caused by
endogenous and exogenous DNA damage.

This thesis contains work that has been reported or will appear in the following peer-
reviewed publications and pre-prints:

• I. Vázquez-García, F. Salinas, J. Li, A. Fischer, B. Barré, J. Hallin, A. Bergström, E. Alonso-Perez,
J. Warringer, V. Mustonen*, and G. Liti*, Clonal heterogeneity influences the fate of new adaptive
mutations, Cell Reports 21, no. 3 (2017), pp. 732–744. [*equal contribution]

• I. Vázquez-García, V. Mustonen, and G. Liti, Principles of systems biology, no. 22, Cell Systems 5, no.
4 (2017), pp. 305–309.

• J. Li, I. Vázquez-García, K. Persson, A. González-Seviné, J.-X. Yue, B. Barré, M. N. Hall, A. D. Long,
J. Warringer, V. Mustonen, and G. Liti, Patterns of selection reveal shared mutational targets over short
and long evolutionary timescales, bioRxiv 229419 (2017), under review.

• A. Fischer, I. Vázquez-García, and V. Mustonen, The value of monitoring to control evolving popula-
tions, Proc. Natl. Acad. Sci. U.S.A. 112, no. 4 (2015), pp. 1007–1012.

• A. Fischer, I. Vázquez-García, C. J. Illingworth, and V. Mustonen, High-definition reconstruction of
clonal composition in cancer, Cell Reports 7, no. 5 (2014), pp. 1740–1752.

• I. Vázquez-García, E. Alonso-Perez, J. Li, J. Hallin, M. C. Reis, G. Liti, J. Warringer, and V. Mustonen,
Clonal diversity accelerates the evolution of antimicrobial resistance, in preparation.

• I. Vázquez-García, F. Puddu, S. P. Jackson, and V. Mustonen, Mutational processes caused by genome
replication stress, in preparation.

Part of this thesis has been devoted to apply these concepts and methods to the Pan-
Cancer Analysis of Whole Genomes (PCAWG) project, as part of the International Cancer
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Genome Consortium (ICGC).11 This consortium has generated a dataset which comprises
whole-genome sequencing of tumour-normal pairs from 2,663 donors and covers 38 cancer
types [122122]. In this context, we have studied mutational processes in the cancer genome,
related to work reported in Chapter 66. We have also applied methods described in Chap-
ter 33 to study selection and subclonal heterogeneity on a pan-cancer scale. Finally, we have
taken part in a benchmark exercise for subclonal reconstruction methods,22 and we use these
datasets as proof-of-principle in Chapter 33.

• P. Campbell, G. Getz, J. M. Stuart, J. O. Korbel, and L. Stein for the ICGC PCAWG Initiative, Pan-
cancer analysis of whole genomes, bioRxiv 162784 (2017), under review.

• M. Gerstung*, C. Jolly*, I. Leshchiner*, S. C. Dentro*, [10 auth.], I. Vázquez-García, [27 auth.],
P. T. Spellman*, D. C. Wedge*, P. Van Loo* for the Evolution and Heterogeneity Working Group
– ICGC PCAWG Initiative, The evolutionary history of 2,658 cancers, bioRxiv 161562 (2017), under
review. [*equal contribution]

• S. C. Dentro*, I. Leshchiner*, K. Haase*, M. Tarabichi*, J. Wintersinger*, A. Deshwar*, K. Yu*,
Y. Rubanova*, G. Mcintyre*, I. Vázquez-García, [28 auth.], W. Wang*, Q. D. Morris*, D. C. Wedge*,
P. Van Loo* for the Evolution andHeterogeneityWorkingGroup – ICGCPCAWG Initiative, Portraits of
genetic intra-tumour heterogeneity and subclonal selection across cancer types, bioRxiv 312041 (2018),
under review. [*equal contribution]

• A. Salcedo*,M. Tarabichi*, S.M. Espiritu*, A.G.Deshwar*, [17 auth.], DREAM SMC-Het Participants,
[5 auth.], K. Ellrott*, D. C. Wedge*, Q. D. Morris*, P. Van Loo*, P. C. Boutros*. Creating standards
for evaluating tumour subclonal reconstruction, bioRxiv 310425 (2018), under review. [*equal contri-
bution]

1ICGC Pan-Cancer Analysis of Whole Genomes (PCAWG) project [https://dcc.icgc.orghttps://dcc.icgc.org].
2ICGC-TCGA-DREAM Somatic Mutation Calling Challenge for Tumour Heterogeneity (SMC-Het)

[https://www.synapse.org/#!Synapse:syn2813581https://www.synapse.org/#!Synapse:syn2813581].

https://dcc.icgc.org
https://www.synapse.org/#!Synapse:syn2813581




Chapter 2
Minimal models of evolutionary dynamics

2.1 Introduction
The interplay of deterministic and stochastic evolutionary forces on population dynamics can
be understood mathematically. In this chapter, we will first introduce a minimal model with
mutation, selection and genetic drift. Although these are not the only evolutionary forces,
the three of them suffice to gain a heuristic understanding of the probability of fixation or
extinction of a mutation. We work up to it with a set of reduced models, starting with the
‘single-locus’ model (Section 2.32.3). Section 2.42.4 argues that the main feature neglected by the
single-locus model is linkage between multiple sites in the genome, which is key to describe
the dynamics of rapidly adapting populations. To redress this shortcoming, Section 2.42.4 in-
troduces a ‘multi-locus’ model, which we extend to formulate a deterministic description of
driver-passenger dynamics. We use this model to discern drivers from hitchhiking passen-
gers and to estimate their fitness effect.11 All throughout this chapter, we will develop some
intuitions for the rate at which a population can adapt or decline; and for which mutations
will fix and which will go extinct. This will help us determine what should or should not
surprise us and what ought to be able to happen in a given evolutionary timescale.

This work was carried out in collaboration with V. Mustonen (V.M.) at the Wellcome
Trust Sanger Institute (Cambridge, UK).22

1The computational methods reported in this chapter are available from the GitHub code repository
[https://github.com/ivazquez/PhD-thesis/tree/master/Chapter2https://github.com/ivazquez/PhD-thesis/tree/master/Chapter2].

2I.V.-G. and V.M. formulated the minimal model of driver-passenger dynamics; I.V.-G. implemented the
simulations; I.V.-G. and V.M. interpreted the results.

https://github.com/ivazquez/PhD-thesis/tree/master/Chapter2
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2.2 Population genetics of rapid adaptation
Wefirst focus on relating the state of the genome to ‘quantitative traits’, which are phenotypic
characteristics of individuals. We will focus on fitness as a general quantitative trait which
describes the reproductive success of an individual, but our exposition is directly applicable
to any quantitative phenotype. Suppose that the state of the genome of each individual – its
genotype – can be represented by a vector 𝑔 = (𝑔1, 𝑔2, … , 𝑔𝐿) of length 𝐿, where 𝑔𝑖 ∈ {0, 1}.
We can define a function of the genotype 𝑔, which may describe a quantity like fitness, or
any other quantitative trait. A fitness landscape is a useful metaphor for a map from the
high-dimensional space of genotypes to a low-dimensional space of reproductive success.
Following the notation by Neher and Shraiman [123123], we can decompose the fitness function
𝐹 (𝑔) by summing the contributions from single sites in the genome, pairs of sites and higher-
order terms,

𝐹 (𝑔) = ⟨𝐹 ⟩ +
𝐿

∑
𝑖=1

𝜎𝑖𝑔𝑖 +
𝐿

∑
𝑖<𝑗

𝜎𝑖𝑗𝑔𝑖𝑔𝑗 +
𝐿

∑
𝑖<𝑗<𝑘

𝜎𝑖𝑗𝑘𝑔𝑖𝑔𝑗𝑔𝑘 + … (2.1)

We will focus on the simplest models of evolution that are solely additive, i.e., they only
include contributions up to the first term of the sum. Equation (2.12.1) is then simplified as an
additive fitness function:

𝐹 (𝑔) = ⟨𝐹 ⟩ +
𝐿

∑
𝑖=1

𝜎𝑖𝑔𝑖 (2.2)

A mutation conferring a fitness difference Δ𝐹𝑔 = 𝐹𝑔 − ⟨𝐹 ⟩ with respect to the mean fitness
of the population will be subject to selection. Therefore, the genetic contributions of a mu-
tation to fitness will set the timescales of evolutionary changes in the genome. As shown in
Figure 2.12.1, strong-effect mutations will confer a large selective advantage or disadvantage
and will behave largely deterministically, dominated by selection. Such genotype changes
can be studied experimentally (e.g., in a genetic screen). On the other hand, weak-effect
mutations will be dominated by drift which can only be observed in timescales of the order
O (𝑁) generations. In this thesis, we will focus on strong-effect mutations that are directly
accessible experimentally.

Most often we can only observe the distribution of quantitative traits 𝑃 (𝐹𝑔, 𝑡) (or fitness
distribution) of the population at time 𝑡, not the distribution of genotypes 𝑃 (𝑔, 𝑡). Changes to
the fitness distribution can be described by considering the probability of finding an individ-
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ual with fitness in the interval [𝐹 , 𝐹 + 𝛿𝐹 ]. By projecting from an individual’s genotype to
the related fitness interval, it can be easily shown that the dynamics of the fitness distribution
are given by the rate of change in fitness of genotype 𝑔 with respect to the average fitness of
the population [123123]. In the simplest case with selection but no mutation or recombination,
this is described by

𝜕
𝜕𝑡𝑃 (𝐹𝑔, 𝑡) = (𝐹𝑔 − ⟨𝐹 ⟩) 𝑃 (𝐹𝑔, 𝑡) (2.3)

Integrating over the fitness 𝐹 gives us that the change in the average fitness (or rate of adap-
tation) is directly proportional to the fitness variance, first derived by Fisher [8989]

d
d𝑡 ⟨𝐹 ⟩ = ⟨(𝐹𝑔 − ⟨𝐹 ⟩)2

⟩ = 𝜎2
𝐹 (2.4)

where 𝜎2
𝐹 is the fitness variance of the population. Equation (2.32.3) has a Gaussian travelling

wave solution, indicating that the abundance of fitter individuals will rise since theywill grow
more rapidly, and the less fit individuals will go extinct [124124, 125125]. As a result, the mean of
this fitness distribution ⟨𝐹 ⟩ shifts and the variance 𝜎2

𝐹 decreases. This is commonly known
as Fisher’s fundamental theorem of natural selection [8989], which describes the asexual case
with selection. To prevent adaptation from stalling during asexual evolution, new variation
has to be constantly introduced by mutation, for which case it was recently shown that the

Deleterious BeneficialNear-neutral
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Deterministic DeterministicStochastic
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Fig. 2.1The fitness effects of mutations, Δ𝐹 , set the timescale for selection. The dynamics of strongly
beneficial or deleterious alleles are typically dominated by the deterministic forces of selection, which
can be measured experimentally over short timescales. Mutations with weak or neutral fitness effects
of orderO(± 1

𝑁 ) are dominated by genetic drift and can be studied using genetic polymorphism data
over long timescales.
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fitness distribution will be driven by the stochastic tip of new mutations [125125]. This theorem
can also be extended to the sexual case [123123], which demonstrates that recombination limits
the effects of selection to the additive component of the fitness variance, as non-additive
fitness components are lost due to the disruption of beneficial combinations of alleles which
are reshuffled by recombination. Note that we also assume that the fitness function 𝐹 (𝑔)
remains constant over time. This formalism has also been generalised elsewhere to account
for time-dependent fitness landscapes (see Mustonen and Lässig [126126]).

2.3 Single-locus dynamics
From one generation to the next, different evolutionary forces modify the distribution of
genotypes 𝑃 (𝑔, 𝑡) in the population. To bridge between the dynamics of the genotype distri-
bution and the coarse-grained dynamics of traits like fitness, we would like to start with the
most basic evolutionary model that includes the effects of mutation, selection and genetic
drift.11 This is commonly known as a single-locusmodel, since it approximates the evolution
of a genome of length 𝐿 = 1. This model assumes a haploid population of finite size with 𝑁
individuals, each of which has a genotype 𝑔 that can have one of several states (or alleles).

The two best knownmodels of stochastic evolutionary dynamics that describe the changes
to the distribution of genotypes 𝑃 (𝑔, 𝑡) are the Wright-Fisher and Moran models [8989, 127127].
The Moran model, which describes a birth-death process for a population of infinite size, is
analytically tractable but difficult to simulate. On the other hand, the Wright-Fisher model
describes a population of constant size 𝑁 as a discrete Markov process that is evolved by
sampling the previous generation with replacement. We will focus on the Wright-Fisher
model but we should not worry about the specific details of each, as the two can be shown
to be equivalent if they are recasted using a system-size expansion (see Van Kampen [128128]
and Gardiner [129129]).

Suppose we have 𝑛𝑔 individuals with genotype 𝑔 in a population of size 𝑁 = ∑𝑔 𝑛𝑔. The
number of individuals 𝑛𝑔 is fully specified by 𝑃 (𝑛𝑔, 𝑡) at each time 𝑡. In other words, 𝑃 (𝑛𝑔, 𝑡)
is a probability distribution which describes the changes to the number of individuals over

1The terms diffusion and drift are used to describe two opposite forces in population genetics and in the
physics literature on stochastic processes. To avoid any confusion, we make use of the population genetics
convention: drift refers to stochastic fluctuations in offspring number that follow an unbiased random walk in
the space of mutation frequencies.
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time. If time is measured in discrete generations, the master equation is then

𝜕
𝜕𝑡𝑃 (𝑛𝑔, 𝑡) = ∑

𝑛′
𝑔

𝑊 (𝑛𝑔 | 𝑛′
𝑔 ) 𝑃 (𝑛′

𝑔, 𝑡) − 𝑊 (𝑛′
𝑔 | 𝑛𝑔 ) 𝑃 (𝑛𝑔, 𝑡) (2.5)

where 𝑛𝑔 = 1, … , 𝑁 . The first term on the right hand side is the probability to transition
from 𝑛𝑔 individuals with genotype 𝑔 in the previous generation to 𝑛′

𝑔 individuals in the current
generation, and the second term is the probability to go from 𝑛′

𝑔 in the current generation
to 𝑛𝑔 in the previous generation. If there are any changes to the genotype of individuals
between generations s.t. 𝑛𝑔 → 𝑛′

𝑔, then for the total population size 𝑁 to remain constant
there must be an equivalent flux between 𝑛′

𝑔 → 𝑛𝑔.
For Wright-Fisher evolution, the distribution of genotypes in the current generation is

going to depend on the distribution of genotypes in the previous generation. Therefore, the
transition probability between 𝑛𝑔 and 𝑛′

𝑔 is going to depend on the number of ways 𝑁 individ-
uals can be partitioned into sets of genotypes. For any partition, the probability of drawing
a number of individuals 𝑛𝑔 with a certain genotype will depend on the frequency of that
genotype in the previous generation, 𝑥𝑔 = 𝑛𝑔

𝑁 . For simplicity, we will limit ourselves to the
single-locus, two-allele case, so that the genotype can only correspond to one of two alleles
(𝑔 = 0 and 𝑔 = 1). The transition matrix 𝑊 can then be expressed as the probability under
binomial sampling to draw 𝑛′

𝑔 = 𝑁𝑥′
𝑔 individuals with genotype 𝑔 in the current generation

from the previous generation,

𝑊 (𝑛′
𝑔 | 𝑛𝑔 ) = (

𝑁
𝑛′

𝑔) [𝑥𝑔 + 1
𝑁 𝑓(𝑥𝑔)]

𝑛′
𝑔

[1 − 𝑥𝑔 − 1
𝑁 𝑓(𝑥𝑔)]

𝑁−𝑛′
𝑔 . (2.6)

The basic formulation with 𝑓(𝑥𝑔) = 0 only describes the process of neutral evolution under
random genetic drift, with binomial resampling of the population in each generation out of
a population of fixed size 𝑁 = 𝑛0 + 𝑛1. The function 𝑓(𝑥𝑔) can incorporate the action
of other evolutionary forces like mutation or selection. Mutations can be incorporated in
𝑓(𝑥𝑔) by introducing a probability that an individual with genotype 𝑔 = 0 gives rise to
an offspring with genotype 𝑔 = 1 at a rate 𝜇 (and vice versa). The effects of selection
can be incorporated into the Wright-Fisher model by changing the transition probabilities
𝑊 (𝑛′

𝑔 | 𝑛𝑔 ) with a weighted function 𝑓(𝑥𝑔) ∝ 𝑒𝐹𝑔−⟨𝐹 ⟩, such that frequency changes will be
biased by the fitness differential. Instead of each new generation being created by random
sampling of alleles from the previous generation, we use weighted sampling of alleles from
the previous generation to reflect the selective differences between alleles.
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We can then rewrite the transition matrix by defining the frequency of either of the two
alleles in the population, 𝑥0 = 𝑛0

𝑁 or 𝑥1 = 𝑛1
𝑁 . It suffices to keep track of the frequency 𝑥 of

one of the two alleles (e.g., 𝑔 = 1), as the sum of the number of individuals with each allele
is constrained by the total population size, s.t. 𝑥1 = 1 − 𝑥0. The changes in frequency 𝛿𝑥
between consecutive generations cannot be very large, so that the transition matrix can be
recasted as 𝑊 (𝑛 | 𝑛′ ) → 𝑊 (𝑥 + 𝛿𝑥 | 𝑥′ ). With this change of variables, it can be shown
that this transition probability is a Gaussian [123123, 130130], such that the first moment of this
distribution is given by the mean number ⟨𝑛′⟩ = 𝑁𝑥. The second moment is the variance
⟨𝑛′2⟩ − ⟨𝑛′⟩2 = 𝑁𝑥(1 − 𝑥), so the noise will scale as 𝑥(1−𝑥)

𝑁 and will vanish in an infinite
population as 𝑁 → ∞.

From the master equation in Equation (2.52.5), we are interested in the large-𝑁 limit in
order to understand the qualitatively different behaviours of the system. In this limit, we
arrive at a diffusion approximation of the master equation [131131]:

𝜕
𝜕𝑡𝑃 (𝑥, 𝑡) = [

𝜕
𝜕𝑥𝜇 (1 − 2𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

mutation

+ 𝜕
𝜕𝑥𝜎𝑥(1 − 𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟

selection

+ 1
2𝑁

𝜕2

𝜕𝑥2 𝑥(1 − 𝑥)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

genetic drift

] 𝑃 (𝑥, 𝑡) (2.7)

where 𝑃 (𝑥, 𝑡) is the probability of finding 𝑛 copies of genotype 𝑔 = 1 at time 𝑡. The first term
describes the influx of new mutations at rate 𝜇. The second term is the deterministic effect
of selection shifting the probability distribution according to the selection coefficient 𝜎. The
third term accounts for number fluctuations in reproduction between generations and is often
referred to as genetic drift. The fact that fluctuations scale as 1

√𝑁
indicates that the smaller

the population, the more pronounced the role of fluctuations is. In the physics literature,
this is commonly known as the Fokker-Planck equation, and it is the continuum limit of
well-known classes of models like the Wright-Fisher model or the Moran model. There is
no closed-form solution for the time evolution of 𝑃 (𝑥, 𝑡), but we can find results for the
equilibrium distribution.

Ignoring the mutation terms in Equation (2.72.7), we focus on the selection and genetic drift
terms which perform a biased random walk. In the limit of 𝑡 → ∞, Kimura showed that the
probability of fixation is [132132],

𝑃fix = 1 − 𝑒−2𝑁𝜎𝑥

1 − 𝑒−2𝑁𝜎 . (2.8)

It becomes clear then that the fixation probability 𝑃fix increases as a function of 𝑁𝜎 and will
tend to 0 or 1 at frequencies 𝑥 = 0 and 𝑥 = 1, respectively.
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2.3.1 Dynamics of neutral mutations
Now we can study the dynamics of the probability distribution of genotypes. Suppose that
at some initial time we have a sharply peaked distribution 𝑃 (𝑥, 0) = 𝛿(𝑥 − 𝑥0), where 𝛿(𝑥)
is the Dirac delta function. What is the probability of finding that mutation at frequency 𝑥
later? The frequency 𝑥(𝑡) performs a randomwalk due to the fluctuations in offspring number
caused by genetic drift. We notice that the genetic drift term vanishes when 𝑥 = 0 or 𝑥 = 1.
This just tells us that, in the absence of newmutations, themutation will be either lost (𝑥 = 0)
or it will have taken over the entire population (𝑥 = 1). Both of these are absorbing states, so
once the mutation is lost it cannot be regained. If we start with a sharp distribution of alleles
at frequency 𝑥, either the wild-type or the mutant allele will eventually disappear from the
population. So the asymptotic states have to be either extinct or fixed, and the probability
associated with both of these cases is described by the Kimura formula in Equation (2.82.8).

2.3.2 Dynamics of mutations under selection
How do the effects of selection alter the prospects of a mutation? Suppose that mutants with
genotype 𝑔 = 1 have a factor 1 + 𝜎 more offspring per generation than the wild-type, with
genotype 𝑔 = 0. For simplicity, we will assume that all mutations have the same fitness
effect 𝜎. In the 𝑁 → ∞ limit, we drop the genetic drift term completely for now (i.e., make
a deterministic approximation). The frequency 𝑥 of genotype 𝑔 will then evolve as

𝑑𝑥
𝑑𝑡 = 𝜎𝑥(1 − 𝑥) . (2.9)

If we solve this ordinary differential equation for a time interval Δ𝑡, the solution is a logistic
function

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) 𝑒𝜎Δ𝑡

1 − 𝑥(𝑡) + 𝑥(𝑡) 𝑒𝜎Δ𝑡 , (2.10)

Therefore, it takes roughly 𝜏 = 1
𝜎 generations for selection to change the frequency of a

mutation. This is effectively the only regime that can be accessed to study strong-effect
mutations by current-day sequencing technologies, which can typically resolve a mutation
frequency down to 𝑥 = 0.01, still in the deterministic regime.

Nevertheless, number fluctuations can still dramatically alter the evolutionary dynamics
in the deterministic scenario. As with the neutral case, either allele 0 or 1 will eventually
become fixed in this model. In the limit of 𝑡 → ∞, we already mentioned that the probability
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of fixation 𝑃fix goes to either 0 or 1 at the boundaries according to Equation (2.82.8). We can
divide the solutions into three regimes, with the following piecewise form given by Durrett
[133133]:

(i) While the beneficial allele 1 is rare, the number of 1’s can be approximated to take 𝜏1
generations to establish:

𝜏1 = 1
𝜎 (2.11)

To fix, the allele needs to reach size 𝑁 , and below frequency 𝑥 = 1
𝜎 it is just neutral.

(ii) While the frequency of allele 1 is in the range 𝑥 ∈ { 1
𝑁 , 1 − 1

𝑁 }, there is very little
randomness and it follows the logistic solution of the differential equation we showed
above in Equation (2.102.10). It will then take

𝜏2 = 1
𝜎 log(𝑁𝜎) (2.12)

generations for the favourable allele 1 to transit from its entry into the population
(𝑥 = 1

𝑁 ) to near fixation (𝑥 = 1 − 1
𝑁 ).

(iii) While the beneficial allele 1 is nearing fixation – or, equally – the deleterious allele 0
is rare, the number of 0’s can be approximated to take 𝜏3 generations to go extinct and
consequently for the allele 1 to fix:

𝜏3 = 1
𝜎 (2.13)

Adding up all the contributions, amutation under selectionwill normally take 𝜏fix ∼ 1
𝜎 ln(𝑁𝜎)

generations to fix in the population.
If mutations are rare – suppose that a mutation occurs in a single individual – we will

first wait 1
𝑁𝜇 generations for the mutations to happen, and then most of the time the mutation

will go to extinct. The probability that the mutation will not go extinct is proportional to the
selective advantage of the mutation, 𝜎. The relative strength of selection and genetic drift
will therefore depend on the typical fixation time of mutations by drift (𝑁) and the typical
timescale of selection ( 1

𝜎 ). All in all, we can summarise the expected fixation probabilities
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we have discussed for the cases of beneficial and deleterious mutations:

Beneficial mutations: 𝑃fix(𝜎, 𝑥) ∼
⎧⎪
⎨
⎪⎩

1 for 𝑥 ≳ 1
𝑁𝜎

𝑁𝜎 for 𝑥 ≲ 1
𝑁𝜎

Deleterious mutations: 𝑃fix(𝜎, 𝑥) ∼
⎧⎪
⎨
⎪⎩

0 for 1 − 𝑥 ≳ 1
𝑁𝜎

𝑁𝜎(1 − 𝑥) for 1 − 𝑥 ≲ 1
𝑁𝜎

Finally, in the single-locus scenario one can extend this analysis to accelerate or delay
the loss of a mutation in a population. In a published work outside the scope of this the-
sis [114114], we have introduced a control 𝑢 in the selection term, s.t. 𝜎 → 𝜎 + 𝑢. This control
can be modified to keep a finite population polymorphic under Wright-Fisher evolution by
influencing the selective difference between two alleles. We have derived the optimal strat-
egy for the didactic example of a control task of maintaining an initial polymorphism in the
frequency range 0 < 𝑥 < 1 for as long as possible by linearly changing the selection coef-
ficient instantaneously, in response to and as a function of 𝑥(𝑡). We refer the reader to this
study for further details [114114].

2.4 Multi-locus dynamics
So far, we discussed the single-locus model as an instructive scenario with many exact ana-
lytical solutions. However, genomes almost always contain more than one variable locus so
we must account for the presence of other mutations. Rather than deriving a generalisation
of the single-locus dynamics for 𝐿 loci, we focus on the simplest case for amulti-locusmodel
of the genome. The 𝐿 = 2 case is more complex than the 𝐿 = 1 case. Mathematically, the
frequency 𝑥 itself is a vector and we now have three degrees of freedom instead of one. We
will first restrict our attention to asexual evolution and then come back to address the effects
of recombination during sexual evolution.

We consider the simplest possible model involving multiple loci: a two-locus model with
two possible alleles at each locus, in which the driver mutation at locus 𝑖 is significantly more
advantageous than any passenger at locus 𝑗, i.e., 𝜎𝑖 ≫ 𝜎𝑗 for all 𝑗. We refer to the two alleles
at one locus as 𝑎 ∈ {0, 1}, and the alleles at the other locus as 𝑏 ∈ {0, 1}. There are four
quantities of interest, namely the frequencies of these four combinations which must add
to 1. Therefore, only three of these quantities are independent: the frequency 𝑥1

𝑖 of allele 1𝑎
(with the frequency 𝑥0

𝑖 of allele 0𝑎 given by 𝑥0
𝑖 = 1 − 𝑥1

𝑖 ), the frequency 𝑥1
𝑗 of allele 1𝑏 (with
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𝑥0
𝑗 = 1 − 𝑥1

𝑗 ), and the correlations between pairs of loci, 𝐶𝑖𝑗 = ⟨𝑥𝑖𝑥𝑗⟩ − ⟨𝑥𝑖⟩ ⟨𝑥𝑗⟩, also
known as ‘linkage disequilibrium’.

According to our model, the dynamics of passenger mutations are then fully specified
by the strength of the local driver, with no need to specify the exact pairwise interactions
between every possible pair. The effect of the driver locus on all passenger loci 𝑗 is therefore
given by:

𝑥𝑏
𝑗 (𝑡) = ∑

𝑎∈{0,1}
𝑥𝑎

𝑖 (𝑡)
𝑥𝑎𝑏

𝑖𝑗 (𝑡0)
𝑥𝑎

𝑖 (𝑡0) for 𝑗 ≠ 𝑖 (2.14)

where the two-locus haplotype frequency is 𝑥𝑎𝑏
𝑖𝑗 (𝑡0) = 𝑥𝑎

𝑖 (𝑡0)𝑥𝑏
𝑗 (𝑡0) + (−1)𝑎+𝑏𝐶𝑖𝑗 .

We will now relax the condition that mutations are physically linked in the genome. In
addition to the basic elements we already saw, recombination will be an additional evolu-
tionary force that becomes especially important when there are many variable loci in a pop-
ulation. To incorporate recombination, we must account for the pairwise linkage structure
in a population. We define 𝑟 as the probability of recombination between two loci, or equiv-
alently 𝑟 = 𝜌Δ𝑖𝑗 as a function of the distance Δ𝑖𝑗 between them in base pairs (bp) and the
recombination rate 𝜌 in units of bp−1gen−1. Adding a superscript to indicate the generation
number, the two-locus haplotype frequency evolves as

𝑥𝑔
𝑖𝑗 = (1 − 𝜌Δ𝑖𝑗)𝑥𝑔−1

𝑖𝑗 + 𝜌Δ𝑖𝑗𝑥𝑔−1
𝑖 𝑥𝑔−1

𝑗 (2.15)

During asexual evolution, when a driver mutation arises on a locus 𝑖 it will be linked to
all other passenger loci 𝑗 in the genome as part of the same haplotype. Over several gen-
erations of sexual recombination, the frequency of the driver mutation may increase but
recombination will introduce this allele into other haplotypes. As a result, linkage disequi-
librium 𝐶𝑖𝑗 will decay as a function of time [134134]. We can parameterise 𝐶𝑖𝑗 in terms of the
recombination rate, so for 𝑁𝑐 generations of sexual recombination we can track the decay
of linkage disequilibrium by relating the current value 𝐶𝑖𝑗(𝑡) to the initial value 𝐶𝑖𝑗(𝑡0), s.t.
𝐶𝑖𝑗(𝑡) = (1 − 𝜌)𝑁𝑐 𝐶𝑖𝑗(𝑡0).

2.5 Inference of selection from sequence data
Suppose that we sample a population history at multiple sites in the genome by sequencing,
which is given by a vector 𝑛𝑖 = (𝑛1, 𝑛2, … , 𝑛𝐿) with loci defined at 𝑖 ∈ {1 < … < 𝐿}. Tak-
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ing measurements at several time points, 𝑡 ∈ {𝑡0 < … < 𝑇 }, we find that 𝑛𝑖(𝑡) individuals
carry allele 1 at locus 𝑖 at time 𝑡, out of a total of 𝑁𝑖(𝑡) individuals in the population. Thus, we
observe a time series of allele frequencies 𝑥𝑖(𝑡) = (

𝑛1
𝑁1

, 𝑛2
𝑁2

,…, 𝑛𝐿
𝑁𝐿 )𝑡

. For example, for locus
𝑖 = 7 in this time series we may observe changes in allele frequency over time: 𝑥7(𝑡0) = 17

40 ,
𝑥7(𝑡1) = 21

37 , 𝑥7(𝑡2) = 29
44 , and so on. At time 𝑡0 we detect 17 out of 40 reads reporting al-

lele 1 and the remaining 23 reads report allele 0, and the prevalence of allele 1 increases
thereafter. Can temporal fluctuations in the observed frequency of this allele be explained
by sampling noise, or did they arise due to selection either at a specified or at another, fully
linked, locus? Under the neutral hypothesis, changes in allele frequency are caused only by
genetic drift and sampling, i.e., the selection coefficient 𝜎 acting on allele 1 is fixed to be
zero. Under the alternative hypothesis, our model explains the frequency trajectories with a
non-zero selection coefficient 𝜎.

2.5.1 Maximum likelihood estimation
Given we have observed a population history 𝑛𝑖(𝑡), we can model a sequence of draws of the
mutant allele at locus 𝑖 according to a binomial distribution at each time point 𝑡. Then, we
can define a probability for the time series between time 𝑡0 and 𝑇 as

𝑃 (𝑛𝑖 | 𝜃 ) =
𝑇

∏𝑡=𝑡0
Bin (𝑛𝑖(𝑡) | 𝑁𝑖(𝑡), 𝜃 ) =

𝑇

∏𝑡=𝑡0
(

𝑁𝑖(𝑡)
𝑛𝑖(𝑡) ) [1 − 𝑥𝑖(𝑡)]𝑁𝑖(𝑡) 𝑥𝑁𝑖(𝑡)−𝑛𝑖(𝑡)

𝑖 , (2.16)

where 𝑁𝑖(𝑡) denotes the total number of draws, i.e., the sequence read depth at locus 𝑖 at
time 𝑡.

To obtain the total probability of these observations given an explicit evolutionarymodel,
we consider a state-space model defined in Equations 2.42.4 and 2.102.10 with a set of model pa-
rameters 𝜃,

log𝑃 (𝑛1∶𝐿 | 𝜃 ) = log𝑃 (𝑛𝑖 | 𝜃dri.
𝑖 ) + ∑

𝑗≠𝑖
log𝑃 (𝑛𝑗 | 𝜃dri.

𝑖 , 𝜃pass.
𝑗 ) (2.17)

We showed in the previous section that the set of frequencies of all possible allelic combi-
nations at two loci is well described by the frequency of one of the alleles at both loci and
their two-point correlation (i.e., linkage disequilibrium), so that the model is fully specified
by 𝜃 ∈ {𝜃dri.

𝑖 , 𝜃pass.}, where 𝜃dri.
𝑖 ∈ {𝜎𝑖, 𝜌𝑖, 𝑥𝑎

𝑖 (𝑡0)} and 𝜃pass.
𝑗 ∈ {𝑥𝑏

𝑗 (𝑡0)}.
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From this we can write down the log-likelihood L of model 𝜃 given the full trajectory,

L(𝜃|𝑛1∶𝐿) = ∑
1≤𝑖<𝑗≤𝐿

log𝑃 (𝜃dri.
𝑖 , 𝜃pass.

𝑗 | 𝑛𝑗 )

= log𝑃 (𝜃dri.
𝑖 | 𝑛𝑖 ) + ∑

1≤𝑖<𝑗≤𝐿
log𝑃 (𝜃dri.

𝑖 , 𝜃pass.
𝑗 | 𝑛𝑗 )

Since we only consider one driver mutation 𝑖 that influences every passenger trajectory 𝑗,
the log-likelihood has a clean factorisation into two terms. Given the driver trajectory, one
can independently maximise likelihoods of the passenger trajectories, which only have their
initial conditions and their linkage to the driver as free parameters. We canworkwith the log-
likelihood function which is now a function of four variables, i.e., 𝜃 = {𝜎𝑖, 𝜌, 𝑥𝑎

𝑖 (𝑡0), 𝑥𝑏
𝑖 (𝑡0)}

(we will refer to this as the ‘unconstrained’ objective function). Critically, if the recombina-
tion rate 𝜌 is known, then we could simply weight the terms in the log-likelihood function
by the linkage disequilibrium 𝐶𝑖𝑗 at each sampled generation. We incorporate this knowl-
edge of the pairwise linkage structure for the case in which the recombination rate is known
at 𝑡0. In this ‘constrained’ case, one can then treat recombination analogously to other fixed
parameters, such that the objective function becomes 𝜃 = {𝜎𝑖, 𝑥𝑎

𝑖 (𝑡0), 𝑥𝑏
𝑖 (𝑡0)}.

As a result, the model parameters 𝜃 of the model can be found by choosing a value ̂𝜃 that
maximises the log-likelihood, i.e., ̂𝜃 = argmax𝜃 L(𝜃|𝑛1∶𝐿). The maximisation is not ana-
lytically tractable as the log-likelihood gradient cannot be computed and setting it to zero
does not result in a closed-form solution. For a low-dimensional vector, doing an exhaustive
search over a region of ̂𝜃 would produce the largest likelihood. However, we do not know
if ̂𝜃 lies in a subspace, thus it is not practical in most cases and becomes very computation-
ally expensive for multidimensional optimisation. Instead, local optima can be computed
efficiently using the Nelder-Mead simplex algorithm. For this we need the numerical allele
frequencies to be smooth functions of the parameters for a given set of realizations of the
noise. We therefore use the GSL library to find maximum-likelihood estimates of the model
parameters ̂𝜃 using the simplex [135135].

2.5.2 Simulation
We use the Wright-Fisher model to create a simulation ensemble that can be used to test
the inference method. The expected genotype frequencies are calculated every generation
after mutation, selection, and recombination, and then the population is resampled from this
genotype distribution. We carry out simulations with a fixed population size of 𝑁 = 104
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individuals. Every individual in the population has a genotype 𝑔 = {𝑔1, … , 𝑔𝐿} composed
of 𝐿 = 104 sites. We outline the steps required to update the population.

The update rule when and individual acquires a mutation at locus 𝑖 is defined by

𝑃 (𝑔) ←
⎛
⎜
⎜
⎝
1 −

𝐿−1

∑
𝑖=0

𝜇
⎞
⎟
⎟
⎠

𝑃 (𝑔) +
𝐿−1

∑
𝑖=0

𝜇𝑃 ∗(𝑔) (2.18)

where 𝜇 denotes the mutation rate. The first term introduces the loss of mutations to a
neighbouring genotype by modifying one locus 𝑖 at a time. The second term represents the
gain of a mutation at locus 𝑖, keeping the state of other unmutated loci unchanged. This
modified distribution of genotypes with a mutation at locus 𝑖 is indicated by 𝑃 ∗(𝑔).

We assume that there is selection on a single site, which we call a driver. We also assume
all other mutations to be neutral and refer to those as passengers. Each generation of 𝑁
individuals is sampled with replacement from the previous generation, where genotypes at
the driver locus 𝑖 are weighted according to their fitness and sampled with probability

𝑃 (𝑔) ← 𝑒𝐹 (𝑔)

1
𝑁 ∑𝑁

𝑖=1 𝑒𝐹 (𝑔𝑖)
𝑃 (𝑔) (2.19)

We will assume that selection is constant across time, i.e., 𝐹 (𝑔) = const.
We explore the effect of variation in the recombination rate by randomly sampling a set of

chromosomes from individuals in the previous generation. Assuming that some individuals
undergo mating and recombination (with probability 𝑟) and others do not (with probability
1 − 𝑟), the update rule for one recombination event to occur in one generation is

𝑃 (𝑔) ← (1 − 𝑟)𝑃 (𝑔) + 𝑟𝑃 ∗(𝑔) (2.20)

where the first term describes the distribution of non-recombined genomes, 𝑃 (𝑔). The sec-
ond term includes the distribution of recombinants, 𝑃 ∗(𝑔), specifying the set of recombined
genomes drawn from the previous generation. This includes the contribution from maternal
and paternal genomes inherited by the progeny, 𝑃 ∗(𝑔𝑚) and 𝑃 ∗(𝑔𝑝). This is weighted by the
probability 𝑅(𝛾) of a certain inheritance pattern 𝛾 specifying which of the loci are maternally
or paternally inherited, such that the distribution of recombinants is

𝑃 ∗(𝑔) ≡ ∑𝛾 ∑𝑔
𝑅(𝛾)𝑃 ∗(𝑔𝑚)𝑃 ∗(𝑔𝑝) (2.21)



32 Minimal models of evolutionary dynamics

This update step can be generalised to multiple generations by pairing up individuals with
this mating scheme to produce recombinant offspring. However, if we were to track the com-
plete genotype distribution 𝑃 (𝑔) we would need to consider all possible pairs of parents and
all possible arrangements to combine their genetic information. Although we will not need
to track the full distribution, Zanini and Neher [136136] have proposed a method for efficient
simulation of changes to the genotype distribution with arbitrary recombination patterns in
large populations, exploiting redundancies in the recombination step using Fourier decom-
position.

In our simulations, to create the founder population we first generated two random geno-
types which diverge at 𝐿 = 104 loci by using mutation update rules for 200 generations,
with a mutation rate 𝜇 = 1 × 10−10 bp−1gen−1. We then applied the recombination update
rules starting with the two random genotypes, allowing for linkage between the alleles with
a uniform recombination rate 𝜌 = 1 × 10−6 bp−1gen−1. Between generations, we draw the
number of recombination events in each pair of genomes from a Poisson distribution with
rate 𝜌 such that events are randomly distributed across the chromosomes. The resulting hap-
loid recombinant genomes form two new individuals in the next generation. As a result,
mutations stemming from each of the diverged founders are normally distributed, with a
mean frequency 𝑥 = 𝑁

2 in the population. A simulation ensemble is then built by evolving
a population of size 𝑁 = 104 with selection update rules for 27 generations. We set one
driver mutation to be under selection and assume all other mutations are passengers. To
incorporate the effects of noisy sampling in sequencing, allele frequencies are estimated at
each time point by sampling a limited number of individuals. We draw binomial random
variables for each locus with an uniform sample size of 100 reads, reflecting the sequencing
coverage. The simulation parameters are summarised in Table 2.12.1.

Table 2.1 Simulation parameters for driver-passenger inference.

Variable Symbol Value

population size 𝑁 104

number of sites 𝐿 104

mutation rate 𝜇 1 × 10−10 bp−1gen−1

selection coefficient 𝜎 {±0.05, ±0.1, ±0.2, ±0.3}
recombination rate 𝜌 1 × 10−6 bp−1gen−1

Given these simulated observations, we then solve the time evolution for frequencies
under this scenario in Equation (2.102.10). Figure 2.22.2 shows typical frequency trajectories of
driver-passenger dynamics during a selective sweep, for drivers of different strength and a
range of selection coefficients. The driver mutation increases in frequencywith time, at a rate
which is proportional to its selection coefficient. Based on these frequency trajectories we
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can extract maximum-likelihood estimates of the unknown driver location and the selection
coefficient. To test the unconstrained and constrained driver-passenger models, we will now
examine the performance of the inference procedure in simulations under the Wright-Fisher
model.

2.5.3 Localisation of drivers under selection
Firstly, we investigated the effect of changing the selective advantage of the favoured allele
while the recombination rate was kept fixed (Fig. 2.32.3A). As expected, the error decreases
when we use our knowledge of the recombination map, although for low 𝜎, the expected
error remains more or less similar (Fig. 2.32.3A). For large 𝜎, the estimator begins to perform
poorly because the variance of 𝜎̂ and the bias both increase. This is partly due to the finite
resolution of sampling, as drivers with large 𝜎 become rapidly fixed and may not be captured
by intermediate times. It is the observations at intermediate allele frequencies that give us
precision in our estimates. For instance, changing the sampling frequency for 𝜎 = 0.05 from
every 9 generations to every generation would make virtually no difference to the error.
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Fig. 2.2 Frequency trajectories described by the driver-passenger model. Time series of allele fre-
quencies 𝑥𝑖(𝑡) are shown along the 𝑦-axis for locus positions with index 𝑖 along the 𝑥-axis. In each
panel, colours denote time points of each time series 𝑡 = (𝑡1, 𝑡2, 𝑡3, 𝑡4). Solid lines indicate the true
allele frequency 𝑥𝑖 and dashed lines indicate the inferred allele frequency 𝑥̂𝑖. Panels (A-D) show a
range of scenarios with different selection coefficients of the driver, 𝜎 ∈ {+0.05, +0.1, +0.2, +0.3}.
Vertical lines show the location of the driver.



34 Minimal models of evolutionary dynamics

Selection coefficient, σ (gen-1)

BA

Selection coefficient, σ (gen-1)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.350.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.025

0.020

0.015

0.010

0.005

0.000

M
e

a
n

 a
b

s
o

lu
te

 d
e

v
ia

ti
o

n
 

C
o

u
n

ts

150

100

50

0

Fig. 2.3 Maximum likelihood estimates of the selection coefficient 𝜎̂𝑖. Solid (dashed) lines indi-
cate datasets where the recombination rate was fixed (learned) using the constrained (unconstrained)
driver-passenger model. (A) Histograms of the inferred selection coefficients 𝜎̂ for 160 simulations
with true selection coefficients 𝜎 ∈ {±0.05, ±0.1, ±0.2, ±0.3}. Dotted vertical lines show the true
values. We combined the results across simulations with the same absolute value, |𝜎|, so each of
histogram shows 40 simulations. (B) Mean absolute error of estimates of 𝜎̂𝑖. Each point is the mean
of 40 independent simulations.
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Fig. 2.4Maximum likelihood estimates of the driver location ̂𝑑𝑖. The maximum likelihood estimates
̂𝑑𝑖(𝑛𝑖) of 𝑑𝑖 is shown asΔ = ̂𝑑𝑖−𝑑𝑖. Solid (dashed) lines indicate datasets where the recombination rate

was fixed (learned) using the constrained (unconstrained) driver-passenger model. (A) Histograms
of the results of 160 simulations varying the selection coefficient 𝜎 ∈ {±0.05, ±0.1, ±0.2, ±0.3}.
(B)Mean absolute error of estimates of ̂𝑑𝑖 as a function of 𝜎. Each point is the mean of 40 independent
simulations.
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Secondly, we also examined the effect that genomic correlations caused by linkage have
on the error of maximum likelihood estimates of the driver location ̂𝑑𝑖 (Fig. 2.42.4A). As 𝜎 in-
creases, the estimates of the driver location become sharply peaked around the true value and
the expected error in ̂𝑑𝑖 decreases (Fig. 2.42.4B). As we expected, the driver mutation affects
neighbouring sites up to a characteristic distance, and the effect of uniform recombination on
multiple passengers in the same region is self-averaging over short distances. We have also
observed in additional simulations that given a linkage structure with non-uniform recom-
bination, the effect of drivers on the frequency of neutral passengers becomes asymmetric
to each side of the driver locus during hitchhiking. Without knowledge of the correlation
structure in the inference, there is a resulting bias in the error estimate of driver locations
due to a trade-off in the frequency of passenger alleles if linkage is kept fixed.

Overall, the local correlation structure is one of the main determinants of the accuracy
of the maximum-likelihood estimates. Provided we have a sufficiently large population for
the deterministic approximation to hold and informative observations at intermediate allele
frequencies, we can significantly improve our predictions with knowledge of the fine-scale
linkage map, which will help us correctly decide whether a marker changed in frequency
hitchhiking with a nearby driver or just due to statistical noise.

2.6 Summary
In this chapter we introduced minimal models of evolutionary dynamics to understand qual-
itatively different scenarios of population dynamics that arise due to evolutionary forces like
mutation, selection, genetic drift and recombination. Here, special attention has been paid
to the deterministic regimes in the single- and multi-locus cases to obtain insights into the
temporal evolution of mutation frequencies through a population. We have implemented a
model for driver and passenger mutations on the basis of a deterministic approximation for
the growth of the driver allele during a selective sweep. This enables us to quantify the selec-
tive dynamics of multiple mutations in the genome despite the mathematical difficulties that
arise from the microscopic details of multi-loci statistics. This model for the inference of
fitness parameters compares the statistics of mutation histories to neutral expectations. We
showed that this approach can discern driver mutations directly under selection from hitch-
hiking passengers using simulations. We will test the validity of our model in Chapter 44 as
a means to estimate the selective effects of mutations and localise drivers under selection in
a controlled evolution experiment.
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Following from this work, extensions which relax certain assumptions of the driver-
passenger model would be useful to improve our understanding of rapidly adapting popula-
tions. Firstly, mutations in different parts the genome do not have identical fitness effects and
thus selective forces should be parameterised by a distribution of fitness effects. This should
allow better interpretation of co-occurring drivers at different loci which are associated with
a common quantitative trait. Secondly, the driver-passenger model currently only predicts
fixation events for mutations under selection, but it does not address that many adaptive
mutations will only sweep to intermediate frequencies. Incomplete sweeps and co-existing
subpopulations are not only common in our laboratory evolution experiments (see Chap-
ter 55) but have also been reported for chemotherapy-resistant tumour subpopulations [137137]
or artemisinin-resistant malaria strains [138138]. Future work should aim to accommodate in-
complete sweeps by extending the driver-passenger model beyond additive fitness effects
and incorporating epistatic interactions between multiple loci.



Chapter 3
Probabilistic reconstruction of subclonal heterogeneity

3.1 Introduction
As we saw in earlier chapters, mutations are physically linked in the genome during asexual
or somatic evolution. Their fates are therefore mutually dependent and selection can only act
on these sets of loci in their entirety. At the genomic level, these correlations leave a large
imprint on the data. Although this may be a curse when trying to distinguish driver muta-
tions from passengers, correlations can be exploited to reconstruct the clonal lineages in a
population. In this chapter, we introduce a probabilistic inference method to infer the clonal
composition of a population when selection is sufficiently strong to amplify fit genotypes.
We first review the molecular technologies that can be used to characterise the composition
of genotypes in a population. We focus on high-throughput DNA sequencing of a mixed-cell
population, where one can formulate the computational reconstruction of the genomic struc-
ture of the population as an inverse problem. Hidden Markov Models (HMM) are presented
as powerful tools for probabilistic modelling, and specifically to model ‘hidden’ subclonal
states belonging to different lineages in a mixed population. We first develop a general-
purpose HMM for filtering and noise reduction of discrete observations fromDNA sequence
reads. We then discuss how state estimation with HMMs can combine correlated informa-
tion from different sources of genetic variation to identify the number of subclones and their
populations fractions, and to identify regions with subclone-specific mutations and copy-
number aberrations.11 The algorithmic performance is tested on simulated and real datasets.
Finally, we discuss how this method can help understand temporally- or spatially-resolved
genetic heterogeneity in a range of systems.

1The computational methods reported in this chapter are available from the GitHub code repository
[https://github.com/ivazquez/PhD-thesis/tree/master/Chapter3https://github.com/ivazquez/PhD-thesis/tree/master/Chapter3].

https://github.com/ivazquez/PhD-thesis/tree/master/Chapter3
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The work reported in this chapter was carried out in collaboration with A. Fischer (A.F.),
C. Illingworth (C.I.), V. Mustonen (V.M.) and S. Dentro (S.D.) at theWellcome Trust Sanger
Institute (Cambridge, UK), M. Tarabichi (M.T.) at the Francis Crick Institute (London, UK)
and I. Leshchiner at the Broad Institute (Cambridge, MA).11

3.2 Molecular technologies for subclonal reconstruction
Mapping the lineage relations among the cells of an organism has been the holy grail of
many fields of biology: from stem cell research, to developmental biology, cancer biology,
or immunology [139139]. Cell lineages can reveal the sequences of events like cell division,
migration, or apoptosis that lead from the zygote to an adult organism. Nevertheless, com-
plete cell lineage trees have only been reconstructed for simple organisms such as the model
worm, C. elegans [140140].

The accumulation of germlinemutations in the genomes of individualsmaintains a record
of our shared evolutionary history over millions of years. Just as well, somatic genetic varia-
tion can mark and identify subpopulations of cells, and it can potentially be used to map the
cell lineage of a complete organism [141141]. Similarly, cells can also accumulate epigenetic
changes – such as DNA methylation or histone modifications – that also serve as a record of
the evolutionary history of different subpopulations [142142].

Over time, subpopulations of cells may arise and expand driven by new beneficial mu-
tations, depleting the pool of genetic diversity. Or they may decay and be outcompeted by
other subpopulations. As shown in Figure 3.13.1A, these subpopulations can be reconstructed
from whole-population, whole-genome sequencing data based on their private and shared
genetic variants and their prevalence in a population [7676, 143143]. Recently, the advent of
whole-genome, single-cell sequencing is offering the possibility to measure clonal geno-
types and prevalences directly [144144–147147]. Nevertheless, several technical sources of noise
still result in missing data, mostly caused by unintended measurements of doublets of cells
and the failure to detect both alleles at heterozygous loci [148148]. Furthermore, even if we had
‘perfect’, noise-free methods to sequence DNA from every single cell, we may still be unable
to recover the complete lineage tree of all cells from naturally occurring somatic mutations.
Unlike species, which have had sufficient time to accumulate many informative mutations,

1A.F., I.V.-G., C.I. and V.M. formulated the models; A.F. led the implementation of the software, with
contributions from I.V.-G. and V.M; I.V.-G., C.I. and V.M. extended this algorithm to reconstruct subclonal-
ity in populations of microbes, parasites or viruses; I.V.-G. and V.M. applied this method to simulated data
(generated by A.F., I.V.-G. and V.M.) and real data (generated by S.D., M.T. and I.L.).
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individual cells accumulate mutations rarely and randomly, and thus do not guarantee that
using mutations as lineage markers can distinguish every cell.

The crux to solving this problem may be complemented in the future by prospective
approaches that can carry out lineage tracing forward in time [141141]. For instance, lineage
tracing using inducible genetic labelling has been a common approach in transgenic models,
e.g., with the Cre-Lox system [149149, 150150]. In this system, a transient drug pulse can control
the Cre recombinase to be sequestered into the nucleus of the cell, ultimately leading to the
transcription of a fluorescent reporter. As a result, one can confer the expression of a hered-
itary label on targeted cells. A very promising alternative is lineage tracing by molecular
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Fig. 3.1 Reconstruction of clonal evolution using genome sequencing. (A) Whole-genome, whole-
populationDNA sequencing of cells inmatchedwild-type/mutant samples. Copy-number aberrations
(CNA), single-nucleotide variants (SNV) and other mutations can be identified from the sequence
data, by aligning the sequence reads to a reference genome. (B) Schematic view of subclonal di-
versification. In this example, mutations in daughter cells of a single founder cell (left) diverge into
subclones (reflected by different colours). A point mutation occurs early on with a subsequent gain of
a chromosome arm and a short deletion at a later stage, each followed by clonal expansion (subclones
1, 2, and 4). A short-lived lineage arises independently and goes extinct (subclone 3).
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recording, which relies on the continuous and controlled generation of stochastic variation
at fixed locations in the genome [151151–154154]. This can be achieved by arrays of CRISPR/Cas9
target sites which are progressively edited over many cell divisions, each of which acts as a
barcode. Lineage trees can then be reconstructed, since edited barcode sequences are related
to one another by shared mutations and can be read by sequencing. Hypothetically, if we
wanted to trace the full development of a human embryo from 1 to ∼3.7 × 1013 cells in an
adult, we can estimate the minimum number of barcodes that would yield useful informa-
tion on the complete cell lineage tree. These recent approaches have experimentally shown
to be capable of storing ∼5 bits of information per locus, which is sufficient to distinguish 25

different cells [155155, 156156]. To uniquely identify the ∼3.7 × 1013 cells in a human will require
at least 10 such barcodes per cell, such that (25)10 > 3.7 × 1013. This is very promising
compared to the complexity of clonal tree partitions that can be currently recovered from
whole-population, whole-genome sequencing, As we will see in this chapter, with the cur-
rent state-of-the-art we are only able to reconstruct up to 2 or 3 subpopulations of cells. By
comparison, encoding the cellular identity of such few subpopulations corresponds to an
information content of only 2 bits.

3.3 Reconstruction of subclonal heterogeneity
Our aim will be to characterise subclones using whole-population, whole-genome sequenc-
ing, which does not yield direct information on long-range haplotypes when applied to mixed
cell populations. Here and throughout this thesis, we employ the term ‘subclone’ to refer to
subpopulations which comprise a group of cells carrying the same set of mutations. Only few
of these subclones expand in a population thus becoming detectable by whole-population,
whole-genome sequencing. We now discuss approaches to analyse data produced by this
experimental technique and to infer the clonal composition of a population. We will focus
on the following question: given a mixed sample of the genomes of cells that have accrued
mutations, can we reconstruct their evolutionary history? This problem consists of three
parts: (i) identification of subclones, (ii) reconstruction of subclone-specific profiles, and
(iii) inference of evolutionary relationships between subclones.

To keep a broad scope, we adopt a general terminology that defines two compartments
in a population: a mutant compartment (used interchangeably to refer to tumour cells under-
going somatic evolution, mutant cells that are drug-resistant, etc.); and a wild-type compart-
ment (to refer to the normal tissue surrounding tumour cells, or to the ancestral population
that is drug-sensitive, etc.). Our working definition of a subpopulation – or subclone – will



3.3 Reconstruction of subclonal heterogeneity 41

be the maximal set of cells carrying the same arbitrary set of mutations in the mutant com-
partment. The standard convention is to refer to a mutation as clonal or fixed if it appears in
all cells of a population. If it only appears in a fraction of the cells, it is typically referred to
as subclonal or polymorphic.

To reconstruct the subclone dynamics in a cell population from sequence data, we would
like to formulate the problem under the following assumptions:

(i) Cells evolve somatically or asexually by evolutionary forces like mutation, selection
or genetic drift and, crucially, without recombination. This ensures that there are long-
range correlations along their genome, which can, in principle, be reconstructed from
short DNA sequences.

(ii) The population consists of a mixture of subclones, i.e., groups of genetically identical
cells. The total number of subclones 𝑁𝑐 is unknown. The relative subclone frequency
𝑓 𝑠

𝑗 of subclone 𝑗 in sample 𝑠 of the population is also unknown. The number of ‘macro-
scopic’ subclones – those which can be reconstructed from real data – is small.

(iii) Each subclone carries a unique genotype and a unique copy-number profile, both of
which are unknown.

(iv) There is a distinct wild-type compartment of the population which differs from the
macroscopic subclones, e.g., by having a different set of genotypes. The fraction of
the wild-type compartment is also unknown.

(v) When several samples are jointly analysed, the same subclonal populations are as-
sumed to be present in all samples. However, their frequencies in some of the samples
can be zero.

3.3.1 Data types
The clonal composition of a population sample can be inferred from whole-genome se-
quencing data using two different kinds of information. Firstly, the profile of copy-number
changes, if subclones are indeed defined by their copy-number profiles. Secondly, the num-
ber of reads reporting mutations, which can distinguish between subclones even if there are
no copy-number changes in the mutant compartment of the population. On this basis, we can
distinguish three different data types: copy-number aberrations (CNA), B-allele frequencies
(BAF) and single-nucleotide variants (SNV).
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Copy-number aberrations (CNA) are gains or losses of chromosomes that are acquired
de novo by the mutant compartment. A deletion in the genome will translate as a drop in
read depth in the mutant cells compared to the wild-type, with fewer reads or no reads in
the deleted region. Conversely, duplications or amplifications of the genome equate to more
aligned sequences in the mutant with respect to the wild-type.

B-allele frequencies (BAF) report the abundance of pre-existing single-nucleotide vari-
ants which are heterozygous in the wild-type sample (e.g., germline variants in humans) and
display allelic imbalances in the mutant sample (e.g., loss of the only remaining wild-type
copy of a tumour suppressor gene). The loss of one of the chromosome copies can be due
to de novo copy-number changes or copy-neutral loss-of-heterozygosity (LOH).

Single-nucleotide variants (SNV) are de novo point mutations, small insertions or dele-
tions which can arise at any time in the evolution between the wild-type and the mutant sub-
populations (e.g., somatic mutations from the fertilised egg to the development of a tumour).

We would like to perform the inferences jointly across all data types, which can greatly
improve the evidence for one of several competing solutions. However, the resulting clonal
decompositions need not be the same given different data types. As Figure 3.23.2 shows, two
subclones with identical de novo mutations can still have different copy-number profiles
(orange and red subclones). Hence, we would like to perform an integrative analysis to
attain a clonal decomposition jointly at the level of CNAs, BAFs, and SNVs. The method
should provide inferences of the number of subclones detected in the sample, their population
frequencies across time and/or space, and subclone-specific posterior probabilities of copy-
number profiles as well as pre-existing and de novo variant genotypes.

3.3.2 Computational methods
Several computational methods have been developed to reconstruct clonal composition from
whole-population, whole-genome sequencing data. Thesemethodsmostly focus on inferring
the clonal composition of a cancer cell population, and they vary according to type of input
data and their assumptions about phylogenetic processes. Regarding the integration of data
layers, some methods aim at clustering SNVs (e.g., PyClone, PhyloSub) [157157, 158158], while
others incorporate CNA data in their inference (e.g., ABSOLUTE, THetA, TITAN) [159159–
161161].

Sequencing a cell population enables the detection of SNVs and their allele frequencies,
which can be used for subclonal reconstruction. In order to estimate the frequency of mu-
tant cells carrying the SNV, these allele frequencies need to be corrected if they occur in
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regions with CNA or LOH, and also must be corrected for the presence of wild-type cells.
Because the genome in which a certain SNV arose is unknown, SNVs are clustered into sets
of mutations according to their estimated allele frequency. Bayesian mixture models have
been commonly used to cluster SNVs based on a tree stick-breaking process, estimating the
number of mixture clusters together with their frequencies and densities [157157, 162162]. To infer
a tree phylogeny between SNV clusters, most methods make two simplifying assumptions:
(i) nomutation occurs twice in the course of evolution (‘infinite sites’ assumption), and (ii) no
mutation is lost (no back mutations) [163163]. Computational methods have implemented these
assumptions to infer tree phylogenies. However, most of these methods have limitations, fo-
cusing exclusively on SNV variants in regions of the genome which are copy-number neutral
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and free from allelic imbalances. Even methods which can incorporate local copy-number
information into the SNV inference assume that all copy-number events are clonal [157157].

Patterns of CNA and BAF are also informative for subclonal reconstruction. They can
also be identified by sequencing a cell population, based on segmentation of the genome-
wide read depth profile (CNA) in the mutant sample, and the allele counts in the mutant
sample of loci that are heterozygous in the wild-type sample (BAF). CNA segmentation is
typically obtained from normalised read counts, which are defined as the ratio between the
local DNA copy number in a mixture of mutant and wild-type cells. BAF segmentation is
derived from the ratio between the minor allele and the total allele count. However, most
CNA-based algorithms work for the limit case of a fully clonal population [160160], or consider
all loci independently rather than modelling the actual CNA events, an assumption which is
ill-suited as multiple loci are affected by CNA and are not independent. These events can
span megabases, and computational methods have addressed this by aggregating statistical
strength across adjacent genomic loci induced by segmental CNA and LOH [159159–161161].

While several methods have used probabilistic approaches in this context [161161], these
have tried to account for noisy data but they do not jointly infer individual subclonal fractions,
subclone genotypes and subclone copy-number profiles, often using only one of the available
data types. SNV frequency data only weakly constrain the set of possible clonal structures.
Equally, CNA data alone can be consistent with multiple clonal compositions, which can
only be disambiguated by BAF or SNV data. To solve this identifiability issue, we will aim
to integrate all these data types in a joint probabilistic inference.

3.4 Hidden Markov Models
To tackle this problem, we first introduce probabilistic modelling and inference. Consider
the state 𝑥𝑖 of a genome of length 𝐿 that can be described by a Markov chain shown in
Figure 3.33.3A. The state of the Markov chain is directly visible to us observers, and thus the
only unknown parameters are the state transition probabilities, 𝑃 (𝑥𝑖 | 𝑥𝑖−1 ). However, we
normally do not observe a sequence of states 𝑥1∶𝐿 directly in the real world. Instead, we
observe an indicator of the true state when we measure a set of observations 𝑋1∶𝐿. Markov
chains are not able to account for what our belief of the true state of the genome is, given
these observations. Furthermore, Markov chains cannot by themselves easily account for
long correlations in the data. Figure 3.33.3A is a first-order Markov chain, which assumes that
𝑥𝑖−1 contains everything we need to know about the entire previous history, 𝑥1∶𝑖−2. We
can add a dependency from 𝑥𝑖−2 to 𝑥𝑖 in a second-order Markov chain, but this will still
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be inadequate to describe long-range correlations in the observations (e.g., in read depth).
Building ever higher order Markov chains is not feasible, as the number of parameters will
blow up. As a result, Markov chains can only accommodate short-range correlations in the
genome.

An alternative probabilisticmodel that addresses these shortcomings is theHiddenMarkov
Model (HMM), which assumes there is an underlying process with a hidden state 𝑥𝑖 that can
be modelled by a first-order Markov chain, but we only get noisy observations 𝑋𝑖 of this
process (Fig. 3.33.3B). HMMs are a widely used probabilistic model for sequential and time-
series data [164164, 165165]. This is a probabilistic approach, which has the advantages that it
will provide us with uncertainty estimates of our inference and it will enable us to integrate
observations from related samples and from multiple data layers.

A HMM consists of two components: an emission model and a transition model (or
propagator). The observations 𝑋𝑖 are described by an emission probability, 𝑃 (𝑋𝑖 | 𝑥𝑖, 𝜃 ),
that takes the current hidden state 𝑥𝑖 as a parameter and also depends on global parame-
ters 𝜃. This emission probability describes the noise in our observations. The hidden states
may take discrete or continuous values. Changes to the hidden state along the genome are
fully determined by the transition probability (or propagator), 𝑃 (𝑥𝑖+1 | 𝑥𝑖, 𝜃 ), which usu-
ally will also depend on global model parameters 𝜃. The transition model describes what

A CMarkov chain

B Hidden Markov Model (HMM)

Hidden state inference with HMMs

x1 x3x2

. . .

xL

States

Observations

States

x1 x3x2

X1 X3X2

xL

XL

. . .

X1

S
ta

te
s

Observations

X4X3X2 XL. . .

x1 . . .

x2 . . .

x3 . . .

xN . . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 3.3 Schematic diagrams of a Markov chain and a Hidden Markov Model. The arrows in the
diagrams indicate conditional dependencies. Based on Rabiner and Juang [164164]. (A) First-order
Markov chain along a genome of length 𝐿. The states of the chain 𝑥𝑖 are shown by white circles.
(B) First-order HMM. The observations 𝑋𝑖 are shown by white circles, and the hidden states of the
chain 𝑥𝑖 are shown by grey circles. (C) For hidden state inference, the trellis of hidden states can take
values 𝑥𝑖 corresponding to observation 𝑋𝑖 at genomic position 𝑖 (𝑖 = 1, … , 𝐿).
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the probability of our current state 𝑥𝑖 is, given the previous state 𝑥𝑖−1. The joint probability
distribution over all states is then

𝑃 (𝑥, 𝑋) = 𝑃 (𝑥1)
𝐿−1

∏
𝑖=1

𝑃 (𝑥𝑖+1 | 𝑥𝑖 )
𝐿

∏
𝑖′=1

𝑃 (𝑋𝑖′ | 𝑥𝑖′ ) . (3.1)

The first product term denotes the state transitions of theMarkov model. The second product
term denotes the probability of the observations given the states. The equivalent graphical
model is shown in Figure 3.33.3B.

Now consider the problem of reconstructing the hidden Markov chain 𝑥1∶𝐿 ∈ R from a
sequence of randomly generated emissions 𝑋1∶𝐿 (Fig. 3.33.3C). To do this, we would ideally
like to estimate the joint distribution 𝑃 (𝑥 | 𝑋 ) given all the observations 𝑋 throughout our
current history. Normally, however, it is sufficient to determine the probability for the current
state given all observations, 𝑃 (𝑥𝑖 | 𝑋 ), which is simpler. We will define two quantities:
firstly, 𝛼𝑖(𝑥𝑖) which is the joint probability of the current state and all previous observations;
and secondly, 𝛽𝑖(𝑥𝑖), which is the conditional probability of all future observations along the
sequence. These will be a key part of our inference procedure, since the product of these
two quantities is proportional to the conditional probability 𝑃 (𝑥𝑖 | 𝑋 ) after normalising,
i.e., 𝛼𝑖(𝑥𝑖) 𝛽𝑖(𝑥𝑖) ∝ 𝑃 (𝑥𝑖 | 𝑋 ).

Firstly, we will use HMMs for data filtering and state estimation. This consists of fil-
tering observations 𝑋, which are typically discrete and very noisy. We would like to calcu-
late the posterior probability distribution 𝑃 (𝑥𝑖 = 𝑥 | 𝑋1∶𝐿, 𝜃 ) of the system to be at hidden
state 𝑥 at locus 𝑖 in the genome, given all the observations. Once we know the posterior, we
will estimate the global parameters 𝜃, which are unknown. We refer to this step as ‘filterHD’,
and it is presented in Section 3.53.5.

Secondly, we will define HMMs for subclonal reconstruction. The aim will be to relate
the filtered data signal to the subclonal properties of genomes by assuming there is a hidden
state 𝑥 that is a property of the subclone (e.g., the number of chromosome copies or the
number of mutated copies in a subclone). The hidden state is not directly accessible and
must be inferred from filtered measurements of observables 𝑋, while accounting for errors
in the measurement process. We present the subclonal reconstruction step in Section 3.63.6,
which we call ‘cloneHD’.
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3.5 Continuous state-space HMM for data filtering
Wewill work through a toy example of asexual or somatic evolution to present the algorithm.
Figure 3.43.4 shows a simulated example for two subclones (𝑁𝑐 = 2) of size 𝑓 𝑠

𝑗 ∈ {0.54, 0.16}.
At first glance, the three data layers we consider – CNA, BAF and SNV profiles – seem very
hard to interpret. The noise makes it even harder, so can we somehow remove the noise?
Our first task is to reduce the noise in the raw signals of mutation counts and read depth
counts. We will then combine these filtered estimates in Section 3.63.6 to build the best overall
model of the clonal composition, integrating relevant information from related samples or
from sources of variation coming from multiple data layers. In order to estimate the hidden
state given a set of measurements of a raw observable we will use a HMM design similar
to a Kalman filter [166166]. Unlike the Kalman filter, HMMs do not necessarily assume know-
ing how to compute the transition probabilities, and they will also give us the probability
distribution for the hidden state [167167, 168168].

3.5.1 Emission models
To deal with the filtering problem, we need a generative emission model that accounts for
noise in the observed data which is tractable enough to solve the inference. The emission
models that we will consider here are the binomial model, the Poisson model, and their
overdispersed counterparts, the beta-binomial and negative binomial model, respectively.
These emission models must be able to simulate datasets of mutation counts or read depth
signal which are comparable to real data.

Binomial model

Firstly, we consider a binomial emissionmodel which can describe de novo single-nucleotide
variants (see Figure 3.43.4C). For the binomial model, our observations 𝑋 = {𝑛𝑖, 𝑁𝑖}𝑖=1…𝐿
are the number of reads reporting the variant allele 𝑛1∶𝐿 out of 𝑁1∶𝐿 reads, such that 𝑛𝑖 ∈
{0, … , 𝑁𝑖}. The sequence of sample depths 𝑁1∶𝐿 can be the same for all 𝑖, or they can
follow their own Markov chain. Given these observations, the emission model describes the
success probability 𝑥𝑖 ∈ [0, 1] of observing 𝑛𝑖 out of 𝑁𝑖 reads reporting the variant allele at
locus 𝑖 (i.e., the number of successful binomial trials), which follows the binomial probability
mass function:

𝑛𝑖 ∼ Bin (𝑛𝑖 | 𝑁𝑖, 𝑥𝑖 ) = (
𝑁𝑖
𝑛𝑖 ) 𝑥𝑛𝑖

𝑖 (1 − 𝑥𝑖)𝑁𝑖−𝑛𝑖 . (3.2)
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The observations can often be overdispersed in real data due to measurement noise. We can
account for overdispersion using the beta-binomial distribution:

𝑛𝑖 ∼ Beta-Bin (𝑛𝑖 | 𝑁𝑖, 𝑥𝑖, 𝐶 ) = (
𝑁𝑖
𝑛𝑖 )

Beta (𝑛𝑖 + 𝐶 𝑥𝑖, 𝑁𝑖 − 𝑛𝑖 + 𝐶 (1 − 𝑥𝑖))
Beta (𝐶 𝑥𝑖, 𝐶 (1 − 𝑥𝑖))

(3.3)

where Beta(𝑥,𝑦) = Γ(𝑥)Γ(𝑦)
Γ(𝑥+𝑦) and Γ(𝑧) = ∫∞

0 d𝑡 𝑡𝑧−1 𝑒−𝑡 is the gamma function. The shape pa-
rameter 𝐶 > 0 has the property that in the limit 𝐶 → ∞ we recover the binomial distribution,
since the beta distribution is a conjugate of the binomial distribution.

To account for random errors in SNV detection against a reference, we can incorporate
an error term in the emission model in Equation (3.23.2). For the binomial model (also beta-
binomial), random emissions with rate 𝜀 are drawn from the uniform distribution in the
range [0, 𝑁𝑖]:

𝑛𝑖 ∼ (1 − 𝜀)Bin (𝑛𝑖 | 𝑁𝑖, 𝑥𝑖 ) + 𝜀Unif[0,𝑁𝑖]. (3.4)

Each of the mutant allele observations can either be a true positive mutation as described by
the first term, or a false positive emitted by the second term. Depending on the data source
it may be necessary to include this random noise emission channel.

Poisson model

The second layer of information is given by copy-number aberrations. Given a set of read
depth observations 𝑋 = {𝑁𝑖}𝑖=1…𝐿, where each observation corresponds to the median
sequencing depth in a window 𝑖, we assume that they follow a Poisson process (see Fig-
ure 3.43.4A). Then for each window, the number of events 𝑁𝑖 can be described by a Poisson
rate 𝑥𝑖 ∈ R+. The variation in the number of DNA sequences aligning in a region of the
genome is not exactly Poisson, but the approximation is very good. The probability that we
obtain 𝑁𝑖 counts in window 𝑖 is given by the Poisson distribution, so that the emission model
is:

𝑁𝑖 ∼ Pois (𝑁𝑖 | 𝑥𝑖 ) =
𝑥𝑁𝑖

𝑖 𝑒−𝑥𝑖

𝑁𝑖!
. (3.5)

The read depth observations may be overdispersed due to measurement noise, or resulting
from the product of random variables as sequencing read depth results fromDNA replication,
which is the product of randomly fluctuating rate constants. To account for overdispersion,
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we can use the negative binomial distribution:

𝑁𝑖 ∼ NB (𝑁𝑖 | 𝑥𝑖, 𝐶 ) = Γ(𝑁𝑖 + 𝐶)
Γ(𝐶) Γ(𝑁𝑖 + 1) (

𝐶
𝑥𝑖 + 𝐶 )

𝐶

(
𝑥𝑖

𝑥𝑖 + 𝐶 )
𝑁𝑖

(3.6)

where Γ is the gamma function defined above. In the limit 𝐶 → ∞, the negative binomial
distribution approaches the Poisson distribution.
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Fig. 3.4 Simulated example of CNA,BAF and SNVprofiles in the presence of two subclones (𝑁𝑐 = 2)
of size 𝑓 𝑠

𝑗 ∈ {0.54, 0.16}. A full breakdown of the simulation parameters is given in Table 3.13.1.
Left panels show the raw data counts. The posterior mean emission rates are shown as solid black
lines. Right panels show the density distribution for each track. (A) CNA: Read-depth track from a
mixture of a wild-type subpopulation plus two mutant subclones that can be used to infer subclone-
specific copy-number profiles. Here the mean number of reads per chromosome copy (or mass 𝑀𝑠)
is 𝑀𝑠 = 15 (see Section 3.6.13.6.1). (B) BAF: B-allele counts for pre-existing mutations in the mixture
help to decide between balanced and unbalanced copy-number changes. (C) SNV: De novomutation
counts.
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Symmetric binomial model

Finally, heterozygous single-nucleotide variants that are pre-existing in all cells (e.g., in the
germline) may be affected by de novo copy-number aberrations (see Figure 3.43.4B). Gains or
losses of chromosomes or chromosomal regions that are imbalanced will split the observed
frequencies, commonly referred to as B-allele frequencies. B-allele frequency observations,
𝑋 = {𝑛𝑖, 𝑁𝑖}𝑖=1…𝐿, correspond to the sequence of sample depths 𝑁1∶𝐿 and the number
of reads reporting the minor variant allele 𝑛1∶𝐿 out of 𝑁1∶𝐿 reads, where 𝑛𝑖 and (𝑁𝑖 − 𝑛𝑖)
are considered identical observations. These integer observations can be described by a
symmetric binomial emission model with success probability 𝑥𝑖 ∈ [0, 1],

𝑛𝑖 ∼ Bin (𝑛𝑖 | 𝑁𝑖, 𝑥𝑖 ) + Bin (𝑁𝑖 − 𝑛𝑖 | 𝑁𝑖, 𝑥𝑖 ) . (3.7)

If the data is overdispersed, the probability can take the form of a symmetric beta-binomial
distribution

𝑛𝑖 ∼ Beta-Bin (𝑛𝑖 | 𝑁𝑖, 𝑥𝑖 ) + Beta-Bin (𝑁𝑖 − 𝑛𝑖 | 𝑁𝑖, 𝑥𝑖 ) , (3.8)

with shape parameter 𝐶 (Equation (3.33.3)).

To summarise, our observations for SNV data are the number of reads reporting a de
novo variant allele 𝑛𝑖 out of a total of 𝑁𝑖 reads, s.t. 𝑋 = {𝑛𝑖, 𝑁𝑖}𝑖=1…𝐿. The SNV emission
models are the binomial and beta-binomial processes, defined by the success probability
𝑥𝑖 ∈ [0, 1] which will be the hidden state of our HMM. For CNA data, our observations are
the total number of reads per window, s.t. 𝑋 = {𝑁𝑖}𝑖=1…𝐿. The CNA emission models are
Poisson and negative binomial processes, which are defined for hidden rates 𝑥𝑖 ∈ R+. For
BAF, our observations are the number of reads reporting a pre-existing variant allele 𝑛𝑖 out
of a total of 𝑁𝑖 reads, s.t. 𝑋 = {𝑛𝑖, 𝑁𝑖}𝑖=1…𝐿. The BAF emission models are symmetric
binomial or symmetric beta-binomial, both defined by success probability 𝑥𝑖 ∈ [0, 1].

3.5.2 Transition models
The transitionmodels are used to model correlated processes and segment the CNA and BAF
data in a probabilistic fashion, allowing the HMMs to make state transitions only at potential
jump sites that are informative about the subclonal structure of the population.

A transition model is used to determine, given current state 𝑥𝑖, what the probability of the
next state 𝑥𝑖+1 is. Having observed typical CNA and BAF datasets, there is one desideratum
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for a suitable transition propagator: it must be able to model phenomena where the state
does not change for a certain stretch of the genome, and can also eventually transition to
other states. This transition model between states 𝑥𝑖 and 𝑥𝑖+1 will have the form

𝑥𝑖 → 𝑥𝑖+1 ∼ (1 − 𝜋𝑖,𝑖+1) × stay + 𝜋𝑖,𝑖+1 × jump . (3.9)

Here, 𝜋𝑖,𝑖+1 is the conditional probability of a jump between two loci 𝑖 and 𝑖 + 1. At a given
position 𝑖, there is a probability 𝑝 (per base) to ‘jump’ to a new state, or a probability (1 − 𝑝)
to ‘stay’ in the current state of the genome.

Piecewise-constant propagator

One possible transitionmodel is a piecewise-constant propagator, which is able to account for
jumps in the observations that separate regions with long-range correlations. A piecewise-
constant state sequence can be generated by

𝑃 (𝑥𝑖+1 | 𝑥𝑖, 𝜃 ) = (1 − 𝜋𝑖,𝑖+1) 𝛿 (𝑥𝑖+1 − 𝑥𝑖) + 𝜋𝑖,𝑖+1 𝑃0(𝑥𝑖 ∣ 𝜃), (3.10)

where 𝜋𝑖,𝑖+1 is the probability that the system has jumped between positions 𝑖 and 𝑖 + 1. This
probability is defined as 𝜋𝑖,𝑖+1 ≡ 1 − (1 − 𝑝)Δ𝑖,𝑖+1 , where Δ𝑖,𝑖+1 is the distance between loci 𝑖
and 𝑖 + 1 (in bases). The Markov chain can perform two types of transitions between states:
jumping to a new state drawn randomly from a given proposal distribution 𝑃0 with probabil-
ity 𝑝 (per base), or otherwise remaining in its current state with probability (1 − 𝑝) according
to 𝛿(𝑥𝑖+1 − 𝑥𝑖), which is the Dirac delta function. In this scenario, the only parameter 𝜃 that
needs to be learned is the jump probability 𝑝.

Jump-diffusion propagator

We can generalise the propagator of the piecewise-constant process with a jump-diffusion
propagator. The ‘jump’ component can account for abrupt changes, while the ‘diffusion’
component can accommodate smooth, short-range correlations in the signal that may arise
due to sequence biases

𝑃 (𝑥𝑖+1 | 𝑥𝑖, 𝜃 ) = (1 − 𝜋𝑖,𝑖+1) N (𝑥𝑖+1 − 𝑥𝑖, 𝜎 √Δ𝑖,𝑖+1) + 𝜋𝑖,𝑖+1 𝑃0 (𝑥𝑖 ∣ 𝜃) (3.11)

where the first term is a normal distribution with mean 𝑥𝑖+1 − 𝑥𝑖 and standard deviation
𝜎√Δ𝑖,𝑖+1, and allows the hidden state 𝑥 to diffuse with diffusion constant 𝜎, with probability
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(1 − 𝑝). According to the second term, the hidden state can jump to a new value randomly
drawn from 𝑃0 with jump probability 𝑝 (per base). The uniform distribution can be used
as our proposal distribution 𝑃0 (𝑥 ∣ 𝜃). The two parameters 𝜃 = (𝑝, 𝜎) need to be learned
simultaneously, and both 𝑝 and 𝜎 relate to the stiffness of the hidden state, with 𝑝 = 0
corresponding to a pure diffusion process and 𝜎 = 0 to a pure jump process.

3.5.3 Forward-backward algorithm
For correlated data, such as CNA and BAF, the total data likelihood can be efficiently com-
puted via the forward-backward algorithm for HMMs [164164]. A generalisation of this algo-
rithm is needed if the hidden variable 𝑥𝑖 is a continuous rather than a discrete state label.
Then the current information about 𝑥𝑖 is encoded in a continuous probability distribution,
instead of a finite vector. The forward algorithm takes then the form of a Bayesian online-
learning iteration, where new observations 𝑋𝑖 are incorporated online (as they ‘arrive’) into
a posterior distribution for 𝑥𝑖. The forward iteration is described in two steps to be performed
for each locus in turn [164164].

Predict: 𝑃 (𝑥𝑖 | 𝑋1∶𝑖−1 ) = ∫ d𝑥𝑖−1 𝑃 (𝑥𝑖 | 𝑥𝑖−1, 𝜃 ) 𝑃 (𝑥𝑖−1 | 𝑋1∶𝑖−1 ) (3.12)

Update: 𝑃 (𝑥𝑖 | 𝑋1∶𝑖 ) =
𝑃 (𝑋𝑖 | 𝑥𝑖 ) 𝑃 (𝑥𝑖 | 𝑋1∶𝑖−1 )

∫ d𝑥 𝑃 (𝑋𝑖 | 𝑥) 𝑃 (𝑥 | 𝑋1∶𝑖−1 )
(3.13)

The result of the ‘predict’ step can be interpreted as a prior distribution for the locus 𝑖.
For 𝑖 = 1, we can use the proposal distribution 𝑃0(𝑥). The ‘update’ step is a Bayesian
computation of the posterior distribution, given the current observation 𝑋𝑖. The backward
form of this iteration is performed analogously.

The forward conditional distribution is computed in the forward ‘update’ step (for 𝛼).
This step involves computing 𝛼 one step ahead to act as the new prior for locus 𝑖, and then
absorbing the observed data from locus 𝑖 using Bayes’ rule [164164]. Subsequently, the back-
ward conditional distribution is computed in the backward ‘predict’ step (for 𝛽). If we have
already computed 𝛽𝑖(𝑥), it can be shown that 𝛽𝑖−1(𝑥) follows by recursion [169169] and we get
the marginals

𝛼𝑖(𝑥) ≡ 𝑃 (𝑥𝑖 = 𝑥 | 𝑋1∶𝑖 ) and 𝛽𝑖(𝑥) ≡ 𝑃 (𝑥𝑖 = 𝑥 | 𝑋𝑖+1∶𝐿 ) . (3.14)

Having computed the forward and backward calculations, we can combine them to get the
posterior distribution 𝛾𝑖(𝑥) ∝ 𝛼𝑖(𝑥)𝛽𝑖(𝑥). The final result of the forward-backward algorithm
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is the posterior distribution 𝛾𝑖(𝑥) after normalising,

𝛾𝑖(𝑥) ≡ 𝑃 (𝑥𝑖 = 𝑥 | 𝑋1∶𝐿 ) = 𝛼𝑖(𝑥) 𝛽𝑖(𝑥)
∫ d𝑦 𝛼𝑖(𝑦)𝛽𝑖(𝑦)

. (3.15)

The forward-backward step can be calculated by a O(𝑁2𝐿) pass through the data, as it
involves a 𝑁 × 𝑁 multiplication at every step [169169]. Once this is done the resulting distri-
butions can be used to iteratively update the transition probabilities and observables to then
estimate the hidden state and vice versa. Going back and forth iteratively, this design is just
the expectation-maximisation (EM) algorithm which we will also encounter in Chapter 66.

Once we have computed the posterior probability 𝛾𝑖(𝑥), there is a range of possibilities.
For example, we can do inference to detect changes in the hidden state with any of the transi-
tion models we proposed earlier. With the piecewise-constant or the jump-diffusion models,
we can calculate the posterior probability ̂𝜋𝑖,𝑖+1 ≡ 𝑃 (𝑥𝑖 ≠ 𝑥𝑖+1 | 𝑋 ) that at least one jump
has actually occurred between loci 𝑖 and 𝑖 + 1. To this end, we compare the two transition
probabilities to go from 𝑥𝑖 to 𝑥𝑖+1 either by diffusion or by a jump:

̂𝜋𝑖,𝑖+1 =
∫ d𝑥𝑖 ∫ d𝑥𝑖+1 𝛼(𝑥𝑖)

𝜋𝑖,𝑖+1
𝑏−𝑎 𝑃 (𝑋𝑖+1 | 𝑥𝑖+1 ) 𝛽(𝑥𝑖+1)

∫ d𝑥𝑖 ∫ d𝑥𝑖+1 𝛼(𝑥𝑖) [
𝜋𝑖,𝑖+1
𝑏−𝑎 + (1 − 𝜋𝑖,𝑖+1)N (𝑥𝑖+1 − 𝑥𝑖, 𝜎√Δ)] 𝑃 (𝑋𝑖+1 | 𝑥𝑖+1 ) 𝛽(𝑥𝑖+1)

.

(3.16)

Here, 𝑎 and 𝑏 are the lower and upper boundary conditions of the propagator, respectively.
These need to be chosen carefully to approximate the continuous distribution 𝑃 (𝑥 | 𝑋 ) on
a finite grid.

3.5.4 Total data likelihood and parameter learning
The global parameters 𝜃 need to be estimated jointly. We can learn the parameters nu-
merically by maximising the total log-likelihood of the model given the data, s.t. ̂𝜃 ≡
argmax𝜃 L(𝑋|𝜃). These global parameters 𝜃 include the jump probability 𝑝, the diffusion
constant 𝜎, the error rate 𝜀 and the shape parameter 𝐶 .

As is standard in HMM calculations, we need to aggregate the log-transformed normal-
isation terms in each forward ‘update’ step,

L(𝑋|𝜃) =
𝐿

∑
𝑖=1

log∫ d𝑥𝑖 𝑃 (𝑋𝑖 | 𝑥𝑖, 𝜃 ) 𝑃 (𝑥𝑖 | 𝑋1∶𝑖−1, 𝜃 ) . (3.17)
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For correlated models, this total log-likelihood is obtained automatically during the forward
algorithm. This form of the log-likelihood function becomes simpler for uncorrelated pro-
cess, where the prior distribution for 𝑥 is the same at all loci.

This data filtering step is going to help efficiently carrying out the subclonal reconstruc-
tion. Setting a minimum jump probability, we can determine the loci where transitions be-
tween subclonal states are supported by the data. If this threshold is set too high some true
transitions might be missed, leading to incorrect reconstructions. If it is set too low, too
many segments will be introduced, slowing the algorithm down. A minimum jump prob-
ability of 1% or greater is typically a good compromise, as shown by Figure 3.53.5 for CNA
and BAF profiles. Practically, this entails first filtering the wild-type and mutant CNA and
BAF datasets independently, with 𝑝 > 0 and 𝜎 > 0. This yields the posterior mean 𝑥̂𝑖 of
the wild-type emission rate, and the total log-likelihood and global parameters for the mu-
tant. Assuming that the bias field 𝜒𝑖 for the wild-type is shared by the mutant sample, the
segmentation can then be re-run for the mutant CNA or BAF datasets together with the bias
field.

10-5

10-4

10-3

10-2

10-1

100

Ju
m

p 
pr

ob
ab

ilit
y, 
p CNA

500 1000 1500
Coordinate (kb)

10-5

10-4

10-3

10-2

10-1

100

Ju
m

p 
pr

ob
ab

ilit
y, 
p BAF

Fig. 3.5 Global parameters of the Hidden Markov Model for data filtering. The jump probability 𝑝
per base (𝑦-axis) is shown in logarithmic scale by genomic position (𝑥-axis). CNA jumps are shown
on the top panel and BAF jumps on the bottom panel. Loci with jump probability 𝑝 > 0.01, which
are indicated by pins, coincide with the location of the jumps.

To sum up, we have used continuous state-space HMMs to: (i) learn the global param-
eters (𝑝, 𝜎, 𝜀, 𝐶); (ii) get the posterior distribution 𝛾𝑖(𝑥) = 𝑃 (𝑥𝑖 | 𝑋 ) at each locus; and
(iii) determine the posterior jump probability for each transition. But the hidden state 𝑥 in
the data filtering step has told us nothing so far about subclonality.
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3.6 Discrete state-spaceHMMfor subclonal reconstruction
Wewill now define a new HMM to carry out the subclonal reconstruction. The properties of
each subclone’s genome (copy-number state, genotype) can be encoded in hidden variables
𝑥 = {𝑥𝑖}𝑖=1…𝐿 defined at loci 𝑖 along the genome of length 𝐿. The hidden variables are
properties of each of the subclones and can be either correlated along their genome – con-
stituting a Markov chain – or uncorrelated – representing a point process. Typically, hidden
variables are real or integer, and usually positive. These hidden variables are directly related
to the set of directly observed data 𝑋 = {𝑋𝑖}𝑖=1…𝐿, where 𝑋𝑖 is usually an integer (e.g.,
read depth for CNA data or number of variant alleles for SNV data).

3.6.1 State space
So what is the connection between the data emission rate defined in our HMM for data fil-
tering and subclonal genomes? What is the hidden state in the new HMM for subclonal
reconstruction? We now give formal definitions of the hidden states and the global parame-
ters of our model for subclonal population structure.

The hidden states for each of the subclones include their total and minor copy numbers
and their SNV genotype:

• Total copy number. The number of chromosome copies 𝑐𝑖 across 𝑁𝑐 subclones is:

𝑐𝑖 = {𝑐𝑖𝑗}𝑗=1…𝑁𝑐
= (𝑐𝑖1, 𝑐𝑖2 … , 𝑐𝑖𝑁𝑐 ) where 𝑖 = 1, … , 𝐿

Increasing the state space by increasing the maximum number of copies 𝑐max substan-
tially scales up model complexity. For 𝑁𝑐 subclones, the number of copy-number
states is (𝑐max + 1)𝑁𝑐 . However, gains of 5 or more copies are rare, hence we will
typically limit the state space to a small copy-number spectrum, e.g., 𝑐max = 5.

• Minor copy number. The number of copies of the minor allele 𝑏𝑖 across 𝑁𝑐 subclones,
defined at heterozygous loci, is:

𝑏𝑖 = {𝑏𝑖𝑗}𝑗=1…𝑁𝑐
= (𝑏𝑖1, 𝑏𝑖2 … , 𝑏𝑖𝑁𝑐 ) where 𝑏𝑖𝑗 ≤ 𝑐𝑖𝑗

The number of mutated copies 𝑏𝑖𝑗 in subclone 𝑗 is therefore bounded by the total copy
number 𝑐𝑖𝑗 at each locus 𝑖.
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• Genotype. The SNV genotypes of the subclones 𝑔𝑖𝑗 represent how many copies of a
mutation are present in locus 𝑖 of subclone 𝑗. The maximum number of mutated copies
for each 𝑔𝑖𝑗 is the total copy number 𝑐𝑖𝑗 .

𝑔𝑖 = {𝑔𝑖𝑗}𝑗=1…𝑁𝑐
= (𝑔𝑖1, 𝑔𝑖2 … , 𝑔𝑖𝑁𝑐 ) where 𝑔𝑖𝑗 ∈ {0, … , 𝑐𝑖𝑗}

We note that the maximum copy number limit does not have to be the same as the
𝑐𝑖𝑗 described earlier (see Section 3.73.7 for a discussion on CNA-based and SNV-based
subclone reconstruction and copy number).

The global parameters {𝑀𝑠,𝑓 𝑠} are jointly inferred:

• Mass. The mass 𝑀𝑠, or sequencing yield per chromosome copy, is the gauge that
relates copy number to the mean sequencing depth.

• Subclonal fraction. Evolutionary changes in population composition across samples
(e.g., in time or space) are indicated by different fractions of subclonal cells 𝑓 𝑠

𝑗 , which
are defined as:

𝑓 𝑠 = (𝑓 𝑠
1 … , 𝑓 𝑠

𝑁𝑐 ) where 𝑠 = 1, … , 𝑁𝑠

The total fraction of subclonal cells in sample 𝑠, also referred to as purity, is then
𝐹 𝑠 = ∑𝑛

𝑗=1 𝑓 𝑠
𝑗 ≤ 1. We will use the notation 𝑓 𝑠

𝑗 to denote the subclone fractions,
but depending on the data layers used, the partition of different subpopulations need
not coincide (see Figure 3.23.2). We will return to discuss the self-consistency issue of
CNA-based and SNV-based subclone fractions in Section 3.73.7.

We note that the joint inference of both mass 𝑀𝑠 and subclonal fractions 𝑓 𝑠
𝑗 can give rise to

degenerate solutions using only CNA data. This is especially critical if not all copy-number
states are occupied in a subclone. As an example, assume a fully clonal population (𝑁𝑐 = 1)
with 𝐹 𝑠 = 0.7 and a copy-number profile visiting states 𝑐𝑖1 ∈ (1, 2, 3). There is also an alter-
native explanation for this scenario with a purity of 𝐹 𝑠 = 0.35 and 𝑐𝑖1 ∈ (0, 2, 4), resulting
in exactly the same likelihood. In general, there can be several degenerate explanations of
the CNA data that trade higher mass for smaller subclone fractions at different copy num-
bers or vice versa. In the presence of these degeneracies, the mass 𝑀𝑠 is a critical gauging
parameter that needs to be reliably estimated.
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3.6.2 Inference of clonal composition from copy number
As a first step, the read depth data of mutant samples can be analysed with a jump-diffusion
Poisson filter (or negative binomial), defined in Section 3.53.5. This accomplishes two tasks:
firstly, the global parameters 𝑝 (jump probability), 𝐶 (shape parameter) and 𝜀 (random error
rate) can be estimated and fixed hereafter; secondly, if a matched wild-type sample without a
mutant component is available, the mean sequencing depth of the wild-type sample will not
be constant along the genome, but will show modulations due to sequencing and mapping
effects. This can be incorporated into a non-trivial weight function 𝜒𝑖, which we refer to as
the bias field (with ⟨𝜒𝑖⟩ = 1).

Suppose the reads come from a mixture of wild-type cells and cells from 𝑁𝑐 subclones
with fractions {𝑓 𝑠

𝑗 }𝑗=1…𝑁𝑐
, such that 𝐹 𝑠 ≡ ∑𝑁𝑐

𝑗=1 𝑓 𝑠
𝑗 ≤ 1 is the clonal purity of the sam-

ple. We denote with 𝑁𝑖 the average number of reads at locus 𝑖. A locus needs to be large
enough such that 𝑁𝑖 and 𝑁𝑖+1 can be considered statistically independent (e.g., 1 kb for read
lengths of 125 bases). An emission model that describes our observations 𝑁𝑖 and explicitly
incorporates the clonal composition takes the following form:

𝑁𝑠
𝑖 ∼ Pois (𝑁𝑠

𝑖 | 𝜒𝑖 𝑀𝑠 ⟨𝑐⟩𝑠
𝑖 ) with ⟨𝑐⟩𝑠

𝑖 ≡ 𝑐0 (1 − 𝐹 𝑠) +
𝑁𝑐

∑
𝑗=1

𝑐𝑖𝑗 𝑓 𝑠
𝑗 (3.18)

Here, the parameter 𝑀𝑠 is the mean mass – or sequencing yield – per chromosome copy of
DNA, and is a function of sequencing depth. The hidden variables {𝑐𝑖𝑗} ∈ N𝑁𝑐

0 are discrete,
and they correspond to the copy-number states of each of the 𝑁𝑐 subclones. Each follows
a pure jump process along the genome, with jump probability 𝑝 per base. The function 𝜒𝑖
captures themodulation of the read depth profile that affects wild-type andmutant DNA alike
and reflects mappability issues, biases due to origins of replication or other effects across
the genome. We denote with ⟨𝑐⟩𝑠

𝑖 the mean copy number of locus 𝑖, which is a weighted
average between the fraction of wild-type cells with copy number 𝑐0 and the fraction of
mutant subclones with their respective copy-number profiles 𝑐𝑖𝑗 . The normal copy number
for human DNA is diploid (𝑐0 = 2) for the autosomes and female sex chromosomes, or
haploid (𝑐0 = 1) for male sex chromosomes X and Y. For yeast DNA, normal copy number
is typically haploid (𝑐0 = 1) or diploid (𝑐0 = 2).

As wementioned earlier, CNA and BAF data are probabilistically segmented during data
filtering, allowing the subclonal inference HMMs to make state transitions only at potential
jump sites. At segmented sites with jump probability ̂𝜋𝑖, the transition probability between
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states 𝑐 and 𝑐′ is:

𝑃 (𝑐′
𝑖 | 𝑐𝑖−1 ) = ̂𝜋𝑖𝑊𝑐′,𝑐 + (1 − ̂𝜋𝑖)𝐼 (3.19)

where 𝑊𝑐′,𝑐 is the transition matrix between states 𝑐 and 𝑐′, and 𝐼 is the identity matrix. In
the construction of the transition matrix 𝑊𝑐′,𝑐 we limit the transitions between states 𝑐 and
𝑐′ to a single state change, allowing both nested and independent events to occur in multiple
subclones and avoiding compensatory copy-number changes. For example, in a population
with 𝑁𝑐 = 3 subclones, if the copy-number state of the subclones is 𝑐 = (2, 2, 1) at position
𝑖, then a transition to a new copy-number state at 𝑖 + 1 may only take values 𝑐′ = (2, 3, 1),
𝑐′ = (3, 2, 1) or 𝑐′ = (3, 3, 1). This constraint forces the Markov chain, represented in
the transition matrix 𝑊𝑐′,𝑐 , to be restricted to diagonal matrix entries and to one banded
diagonal.

Does it work for simulated data? This is a minimum requirement for any model inference
algorithm. With simulated data, we know the hidden state to compare against, and in the
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Fig. 3.6 Subclone-specific total copy number. This example shows the reconstruction of total copy
number in a simulated example with two subclones (see Figure 3.43.4). (A) True subclonal total copy
number states, 𝑐𝑖𝑗 . (B) The posterior probability 𝛾𝑖(𝑐𝑖) for each subclone 𝑖 is shown, with subclone 1
(top) and subclone 2 (bottom). The inferred copy number states closely match the true profiles.
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limit of infinite data size we should be able to recover the true state. Figure 3.63.6 shows the
true and inferred total copy number states for our simulated example with 𝑁𝑐 = 2 subclones.
The inferred subclone-specific profiles closely follow the true profiles.

3.6.3 Inference of clonal composition from minor allele imbalances
The second piece of information used to infer clonal composition comes from heterozygous
SNVs in diploid (or more generally polyploid) chromosomes (𝑐0 > 1). The emission model
for observations (𝑛𝑠

𝑖 , 𝑁𝑠
𝑖 ) is

𝑛𝑠
𝑖 ∼ Bin (𝑛𝑠

𝑖 | 𝑁𝑠
𝑖 , 𝑥𝑠

𝑖 ) + Bin (𝑁𝑠
𝑖 − 𝑛𝑠

𝑖 | 𝑁𝑠
𝑖 , 𝑥𝑠

𝑖 ) (3.20)

where 𝑥𝑠
𝑖 ≡

⟨𝑏⟩𝑠
𝑖

⟨𝑐⟩𝑠
𝑖
, and ⟨𝑏⟩𝑠

𝑖 ≡ (1 − 𝐹 𝑠) 𝑏0 +
𝑁𝑐

∑
𝑗=1

𝑏𝑖𝑗 𝑓 𝑠
𝑗 (3.21)
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Fig. 3.7 Subclone-specific minor copy number. This example shows the reconstruction of minor
copy number in a simulated example with two subclones (see Figure 3.43.4). (A) True subclonal minor
copy number states, 𝑏𝑖𝑗 . Copies inherited from each parent are shown as either solid or dashed lines.
(B) The posterior probability 𝛾𝑖(𝑏𝑖) for each subclone 𝑖 is shown, with subclone 1 (top) and subclone 2
(bottom). The inferred copy number states closely match the true profiles.
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where 𝑛𝑖 out of 𝑁𝑖 reads reporting a variant allele at locus 𝑖 stem either from the maternal or
the paternal chromosome. The mean number of copies of the minor allele at locus 𝑖 is ⟨𝑏⟩𝑠

𝑖 .
If there are no aberrations, both the maternal and paternal copies are kept (𝑏0 = 1).

The transition model is defined by the propagator:

𝑃 (𝑏′
𝑖 | 𝑏𝑖−1 ) = ̂𝜋𝑖𝑊𝑏′,𝑏 + (1 − ̂𝜋𝑖)𝐼 (3.22)

where 𝑊𝑏′,𝑏 is the transition matrix between states 𝑏 and 𝑏′, and 𝐼 is the identity matrix.
Unlike with CNA data, the transition matrix 𝑊𝑏′,𝑏 is not restricted and thus the Markov
chain is fully mixing.

We now compare the subclone-specific posterior probability of the minor copy number
reconstruction to the true states in our simulated example (Fig. 3.73.7). The true minor copy
number is drawn in Figure 3.73.7A as a solid line, showing that the inferred estimates of the
minor copy number states are almost equal to the true values. We can recapitulate the correct
number of breakpoints and their location.

3.6.4 Inference of clonal composition from point mutations
A third, orthogonal piece of information to be used for the subclone inference are the point
mutations found across the genome and their frequencies in the population. Most of the
mutations are near-neutral ‘passengers’, but all these passengers carry information about the
‘drivers’ that cause the clonal compositions to change. Harnessing that information can help
identify likely ‘drivers’ as mutations whose trajectory is most compatible with the change in
clonal composition inferred globally.

Uncorrelated genotypes

Consider observations that report a mutation found in 𝑛𝑖 out of 𝑁𝑖 reads. This set of mutated
loci indexed by 𝑖 is detected with respect to a reference genome used for alignment. The
sequencing reads originate again from a mixture of wild-type cells and mutant cells. We
assume that the number of alternate reads 𝑛𝑖 at locus 𝑖 is described by the following emission
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model:

𝑥𝑠
𝑖 ≈

𝑛𝑠
𝑖

𝑁𝑠
𝑖

, with 𝑛𝑠
𝑖 ∼ Bin (𝑛𝑠

𝑖 |𝑁𝑠
𝑖 , 𝑥𝑠

𝑖 ) (3.23)

where 𝑥𝑠
𝑖 ≡

⟨𝑔⟩𝑠
𝑖

⟨𝑐⟩𝑠
𝑖

, with ⟨𝑔⟩𝑠
𝑖 ≡ (1 − 𝐹 𝑠)𝑔0 +

𝑁𝑐

∑
𝑗=1

𝑔𝑖𝑗 𝑓 𝑠
𝑗 (3.24)

where each mutation 𝑖 has a true variant allele frequency 𝑥𝑖. Here, the subclone genotypes
𝑔𝑖𝑗 ∈ {0, … , 𝑐𝑖𝑗} specify how many copies of the mutation are present in each subclone,
and they are unknown. The maximum number of allele for each 𝑔𝑖𝑗 is the copy number 𝑐𝑖𝑗 of
locus 𝑖 in subclone 𝑗. On the numerator of our definition of 𝑥𝑠

𝑖 , the mean subclone genotype
⟨𝑔⟩𝑠

𝑖 is the average number of mutated copies at locus 𝑖 in sample 𝑠, averaged over all sub-
clones. By definition, the wild-type compartment has no SNVs (𝑔0 = 0) and this fraction of
the population does not contribute to ⟨𝑔⟩𝑠

𝑖 . This term can therefore be interpreted as the mean
allele frequency of false-positive de novo SNVs. Each of the mutant subclone genotypes 𝑔𝑖𝑗
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Fig. 3.8 Subclone-specific single-nucleotide variants. This example shows the reconstruction of sub-
clonal genotypes in a simulated example with two subclones (see Figure 3.43.4). (A) True subclonal
genotypes, 𝑔𝑖𝑗 . (B) The posterior probability 𝛾𝑖(𝑔𝑖) for each subclone 𝑖 is shown, with subclone 1
(top) and subclone 2 (bottom).
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contributes to ⟨𝑔⟩𝑠
𝑖 , weighted by their frequency 𝑓 𝑠

𝑗 in the population. On the denominator,
the mean total copy number ⟨𝑐⟩𝑠

𝑖 is the number of chromosome copies, averaged over all
subclones.

For the simulated example, Figure 3.83.8 shows the subclone-specific posterior probability
of SNV genotypes. The largest subclone of size 𝑓 𝑠

𝑗 = 0.52 offers the least challenge, as
expected, and the majority of genotypes are correctly assigned. A greater challenge is posed
by the small subclone of size 𝑓 𝑠

𝑗 = 0.07, where the assignment of subclonal SNVs is more
uncertain as indicated by the spread of the posterior distribution. The algorithm yields cor-
rect maximum likelihood estimates ̂𝑓 𝑠

𝑗 in at least 90% of cases of the 20 optimisation trials
obtained for each series, irrespective of starting position.

Correlated genotypes

For the sake of generality, we consider the case where mutations in the genome of a cell are
physically linked and take place as a correlated process. This scenario may arise in organ-
isms that can reproduce both sexually and asexually (e.g., yeast in the laboratory, or malaria
parasites in the wild). During asexual evolution, each lineage can independently accumulate
uncorrelated SNVs along the genome, and in the sexual phase long SNV haplotypes from
different individuals can be brought together. This will translate into long-range correlations
and sudden jumps in the SNV allele frequency. In this scenario, we can assume that the num-
ber of mutant reads 𝑛𝑠

𝑖 still follows a binomial distribution. The only substantial difference
to the uncorrelated case is that here the genotype of a particular subclone is persistent across
large regions of the genome, reflecting the haplotype structure of the population. Altogether,
SNV data can then be modelled with persistence along the genome with a transition model

𝑃 (𝑔′
𝑖 | 𝑔𝑖−1 ) = ̂𝜋𝑖𝑊𝑔′,𝑔 + (1 − ̂𝜋𝑖)𝐼 (3.25)

where 𝑊𝑔′,𝑔 is the transition matrix between states 𝑔 and 𝑔′, and 𝐼 is the identity matrix. If
the genotypes 𝑔 are correlated along the genome, the total log-likelihood is again computed
via the forward algorithm with respect to an independent jump process for each of the clonal
genotypes.

3.7 Complexity and model selection
To integrate the data across multiple layers in a single sample, we must obtain the total
log-likelihood of all observations. The iterative forward-algorithm provides the total log-
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likelihood function of a set of observations. For correlated variables, such as CNA

LCNA(𝑋,𝑓 ,𝑀) =
𝐿

∑
𝑖=1

log∑𝑐𝑖

⎡⎢⎢⎣

𝑁𝑠

∏
𝑠=1

𝑃 (𝑁𝑠
𝑖 | 𝑐𝑖,𝑓 𝑠, 𝑀𝑠 )

⎤⎥⎥⎦
𝑃 (𝑐𝑖 | 𝑋1∶𝑖−1,𝑓 ,𝑀 ) (3.26)

with 𝑓 ≡ {𝑓 𝑠
𝑗 }𝑗=1…𝑁𝑐

, 𝑀 ≡ {𝑀𝑠} , 𝑋 ≡ {𝑁𝑠
𝑖 }𝑖=1…𝐿 , 𝑐𝑖 ≡ {𝑐𝑖𝑗}𝑗=1…𝑁𝑐

(3.27)

where the log-likelihood aggregates the evidence from samples 𝑠 = 1, … , 𝑁𝑠. The BAF
log-likelihood LBAF takes a similar form. In contrast, the last term in the sum of the SNV
log-likelihood LSNV – without persistence along the genome – is just the prior expectation
for the genotype distribution 𝑃 (𝑔𝑖 | 𝑋1∶𝑖−1 ) = 𝑃0(𝑔). We note that SNV-based frequencies
of subclones, which we define as 𝑓 𝑠

SNV, reflect subclones that are defined by SNV allele
frequencies only. These are to be distinguished fromCNA-based subclone frequencies 𝑓 𝑠

CNA
that describe subclones defined by their copy-number profile. In general, the 𝑓 𝑠

SNV and 𝑓 𝑠
CNA

fractions do not have to be identical. A single CNA-subclone might consist of two or more
SNV-subclones and vice versa. It all depends on which mutations are drivers and which are
passengers, and whether they are SNVs, CNAs or both, that will define the dynamic changes
to the subclone fractions.

In a HMM, the main issue for model selection is the number of states. In our case, the
total number of HMM states grows as (𝑐max + 1)𝑁𝑐 . By Occam’s razor, we must choose
the number of subclones 𝑁𝑐 and the maximum total copy number 𝑐max conservatively: as
small as possible, but as large as necessary. The total log-likelihood is the objective function
that we use to find the set of 𝑓 𝑠 with the highest statistical support, i.e., start with 𝑓 𝑠 = {},
then find the best solutions ̂𝑓 𝑠 for 𝑓 𝑠 = {𝑓 𝑠

1 }, 𝑓 𝑠 = {𝑓 𝑠
1 , 𝑓 𝑠

2 } and so on. There are standard
heuristics to find 𝑁𝑐 and 𝑐max systematically, e.g., the Bayesian Information Criterion (BIC),
that compare goodness-of-fit with model complexity

BIC = 2 (LCNA + LBAF + LSNV) − 𝑘 log (𝐿CNA + 𝐿BAF + 𝐿SNV) , (3.28)

where 𝑘 introduces a penalty term for model complexity, s.t. 𝑘 ≡ (𝑐max +1)𝑁𝑐 +𝑁𝑠(𝑁𝑐 +1),
and 𝐿 is the number of observations in each dataset (CNA, BAF, SNV). The first term in 𝑘
penalises for the maximum number of copy-number states available, 𝑐max. The second term
penalises for an increasing number of global parameters to be learned with the introduction
of new subclones across 𝑁𝑠 samples. As a guiding principle for model selection, BIC is
a metric which tends to penalise complex models more heavily as the size of the genotype
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space rapidly scales with the number of subclones, giving preference to simpler models.
Using grid search to determine the number of subclones 𝑁𝑐 , we have derived a heuristic
value that requires an improvement of 50 log-likelihood units in BIC for the introduction of
a new subclone.

We may also analyse multiple time-resolved or spatially-resolved samples 𝑁𝑠, which
share the same 𝑁𝑐 subclonal populations, albeit at possibly different frequencies 𝑓 𝑠 and
maybe sampled at different sequencing depths so that masses 𝑀𝑠 differ. The basic assump-
tion is that the samples share subclones with the same copy-number profile {𝑐𝑖𝑗} or SNV
genotype {𝑔𝑖𝑗}, but with different (𝑓 𝑠, 𝑀𝑠), leading to different observations (𝑛𝑠

𝑖 , 𝑁𝑠
𝑖 ).

The likelihood above is then the product over all 𝑁𝑠 samples. In the context of cancer, these
samples can originate from different focal points of a solid tumour or from primary and
metastatic tumour or even from time-resolved samples. In the context of a drug-resistant
microbial population, samples may be spatially distributed around the colony or may also
be time-resolved. In general, joint analysis of several related samples helps with the clonal
inference as we will demonstrate in Section 3.8.13.8.1.

3.7.1 Prior distributions
If we have some a priori knowledge into the system, it is straightforward to build this into
HMMs. Certain subclonal genome states may be inter-dependent, such that posterior es-
timates of one HMM can be used as an informative prior for another HMM. Specifically,
the CNA posterior distribution can capture long correlations in the total number of available
genotype states and is an informative prior to the two other HMMs (BAF and SNV). The
CNA posterior distribution can therefore be incorporated as a geometric prior to BAF and
SNV.

TheBAF genotype prior is informed by the posterior for the total copy number state 𝛾𝑖(𝑐𝑖),
which ensures consistency across different data types:

𝑃 (𝑏𝑖𝑗 | 𝛾𝑖(𝑐𝑖)) =
𝑐max

∑
𝑐𝑖𝑗=0

𝑃 (𝑏𝑖𝑗 | 𝑐𝑖𝑗 ) 𝛾𝑖𝑗(𝑐𝑖𝑗)

where 𝑃 (𝑏 | 𝑐 ) ≡
⎧⎪
⎨
⎪⎩

𝑝|𝑏− 𝑐
2 | for 0 < 𝑝 ≤ 1; 𝑏 ≤ 𝑐

0 otherwise

This prior assumes that not every genotype 𝑏 is equally likely. Certain combinations of
aberrant chromosome numbers derived from the wild-type require a greater number of in-
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termediate steps than others. For instance, with a maternal and a paternal copy of each chro-
mosome in humans, the normal 1:1 configuration can give rise to 2:1 in a single duplication,
whereas 0:3 would require one loss and two gains. The total prior probability for genotype
combinations 𝑏𝑖 = {𝑏𝑖𝑗}𝑗=1…𝑁𝑐

is then the product of above priors across subclones.
If the SNV genotypes 𝑔 are uncorrelated along the genome, we can maximise the total

log-likelihood in Equation (3.173.17) with a suitable SNV genotype prior. This prior can be
uniform or it can favour particular genotypes, e.g., mutations in one copy only (𝑔𝑖𝑗 = 1).
The SNV inference can be informed by the posterior for the total copy number state 𝛾𝑖(𝑐𝑖) at
each locus.

𝑃 (𝑔𝑖𝑗 | 𝛾𝑖(𝑐𝑖)) =
𝑐max

∑
𝑐𝑖𝑗=0

𝑃 (𝑔𝑖𝑗 | 𝑐𝑖𝑗 ) 𝛾𝑖𝑗(𝑐𝑖𝑗)

where 𝑃 (𝑔 | 𝑐 ) ∝
⎧⎪
⎨
⎪⎩

𝑝𝑔 for 𝑔 ≤ 𝑐
0 otherwise

The zero genotype state 𝑔 = 000 …, where no single subclone has a mutation, corresponds
to the SNV prior probability 𝑃 (𝑔𝑖 = 0 | 𝛾𝑖(𝑐𝑖)) that a subclonal mutation is a false positive.

To build an informative SNV genotype prior we must take into account the lineage re-
lations between subclones. Therefore, we treat the relation between subclones as a rooted
tree, where the wild-type clone is taken as the root, from which the clonal mutations of the
mutants are derived (Fig. 3.93.9). Each node in the tree represents a cluster of mutations. On
the way from this root to the terminal nodes, we assume that a cell may acquire a new mu-
tation exactly once. Each of the connecting edges then represents mutations that distinguish
the child from the parent node. In the subtree below this state switch, the genotype always
remains mutated. This is commonly referred to as the ‘infinite sites’ assumption, because
mutations are assumed to only occur once.

Given the underlying tree phylogeny, we would like to determine the prior probability for
a SNV to belong to one of the tree clusters. The aforementioned constraints on the tree phy-
logeny restrict the SNV genotype prior and thus the family of lineage trees that are possible.
We can describe the SNV genotype prior 𝑃 (𝑔𝑖𝑗 | 𝛾𝑖(𝑐𝑖)) as the adjacency matrix of the tree.
A tree phylogeny that complies with the ‘infinite sites’ assumption requires, firstly, that for
each child subclone 𝑖 there exists a subclone 𝑗, such that 𝑔𝑗 ⊆ 𝑔𝑖 and ∑𝑁𝑐

𝑘=1(𝑔𝑖𝑘 − 𝑔𝑗𝑘) = 1.
Secondly, the diagonal of the adjacency matrix must be equal to 1, i.e., 𝑔𝑖𝑖 = 1 for all 𝑖 ∈ 𝑁𝑐 .
Independently of these constraints on subclonal genotype transitions, the SNV inference can
still be informed by the mean total copy number for any value of 𝑔 ≤ 𝑐. We implemented
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Fig. 3.9 Mapping between subclone SNV genotypes and SNV clusters. For each combination of
𝑁𝑐 subclones, there is an equivalent number of unique SNV genotype clusters 𝑁𝑔. Each node in
a tree is a cluster, and mutations are acquired along the edges of the tree, from the root (top) to
the leaves (bottom). Each node is labelled by the cluster genotype. The ancestral node linking to
the clonal cluster is also shown. SNV genotype priors that are compliant with the ‘infinite sites’
assumption constrain the set of tree topologies. The examples show families of trees compliant with
this assumption relating (A) 𝑁𝑐 = 1, (B) 𝑁𝑐 = 2, and (C) 𝑁𝑐 = 3 subclones, each of which contains
one or several mutation clusters. 𝑁𝑐 = 1 corresponds to a scenario where there are no subclones
in the sample, so all mutations belong to the clonal cluster denoted as a grey node. The 𝑁𝑐 = 2
scenario has a single subclone corresponding to one clonal and one or several subclonal clusters.
The 𝑁𝑐 = 3 scenario has two subclones corresponding to either one or two subclonal clusters (red
and blue) describing linear or branched evolution. For example, with 𝑁𝑐 = 2 subclones, genotype
𝑔 = 00 denotes all clonal mutations, 𝑔 = 10 mutations that are private to the blue cluster and 𝑔 = 01
mutations that are private to the red cluster.

the set of SNV genotype priors shown in Figure 3.93.9. Resolving the complete space of tree
topologies is currently limited by the resolution of the data, but it may be possible to imple-
ment a generative model of tree structures in the future, instead of constraints on the prior,
which would require an integration over all possible trees.

3.8 Reconstruction performance on simulated and real data
We would like to evaluate the performance of our algorithm in reconstructing three features:
(i) the total number of subclones, (ii) their subclonal frequency, and (iii) the accuracy of pos-
terior estimates of subclonal genotypes. The benchmark will consist of a simulated dataset
that incorporates multiple data layers and sampling, and a real dataset which covers a broad
range of subclonal population structures. We consider two main performance measures for
the simulated dataset: normalised error in subclone copy number and SNV genotypes, and
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absolute error in subclone frequencies per sample. We defined the normalised error as the
amount of posterior probability per locus not assigned to its true state. For instance, nor-
malised errors close to zero mean that the algorithm has correctly reconstructed the copy-
number profile or SNV genotypes for a subclone. For the real dataset, we will use the root
mean squared error as our metric, as we will only be comparing assigned SNV genotype
states rather than the full posterior distribution.

3.8.1 Benchmark with multiple data layers and sampling
We assessed the ability of our algorithm to recover these features of interest from simulated
datasets over a range of plausible parameters. We first generated subclone genotypes by start-
ing from a wild-type diploid founder that contains a random set of loci mutated in one copy,
serving as pre-existing heterozygous variants (for B-allele counts). The second set of mu-
tations, the de novo mutations (SNVs), were randomly distributed across both chromosome
copies. Thirdly, the genome of the mutant subclone probabilistically acquired copy-number
gains and losses of chromosomes (CNAs) chosen randomly. This subclone was then repli-
cated to seed two subclones that independently underwent four cycles of similar dynamics
of mutation and copy-number changes. The dynamics resulted in datasets where between
7-27 breakpoints across the genome had a total copy number change, ∼2, 500 loci contained
somatic SNVs and ∼2, 300 loci contained B-allele variants (Table 3.13.1).

Table 3.1 Simulated benchmark dataset for subclonal reconstruction. This benchmark dataset com-
prises 100 samples, each with a wild-type and two mutant subclones. The notation used here is
extensively explained in Section 3.63.6. Similar parameter values are used in the simulated examples in
this chapter.

Data Variable Symbol Value

number of subclones 𝑁𝑐 2
mass 𝑀𝑠 {15, 30, 120}
purity 𝐹 𝑠 0.7
subclonal fractions 𝑓 𝑠

𝑗 {0.54, 0.16}
random error rate 𝜀 0

CNA number of segments 𝐿CNA 7 − 27
copy number (wild-type) 𝑐0 2
copy number (mutant) 𝑐𝑖𝑗 0 − 4
shape parameter 𝐶 100
jump probability (or stiffness) 𝑝 1 × 10−5

BAF number of sites 𝐿BAF ∼2, 300
shape parameter 𝐶 900
diffusion constant 𝜎 5 × 10−4

jump probability (or stiffness) 𝑝 1 × 10−6

SNV number of sites 𝐿SNV ∼2, 500
shape parameter 𝐶 200
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For each parameter set, we simulated a 1Mb region with 𝐿 = 20, 000 observations and
mass 𝑀𝑠 = {15, 30, 120} which are the average number of reads per locus, per chromosome
copy (Table 3.13.1). We drew Poisson random numbers with the rate being the sequencing
depth multiplied by the locus-specific copy number of the cell mixture. This read depth was
used to draw a variant allele (B-allele or de novo SNV) count with the true variant fraction
from a binomial distribution at that locus. We compute maximum likelihood estimates using
different numbers of subclones. Our choice of jump probability for simulated data is set to
𝑝 = 4 × 10−5 per base.

In Figures 3.103.10A and 3.103.10B, we show that the subclone copy-number states and somatic
SNV genotypes are successfully reconstructed from the simulated data, with errors in the
inferred states close to the minimum achievable given the noise level. As expected, the
performance increases when more samples are used (time points in the simulations). Sim-
ilarly, inferring the clonal composition according to multiple data layers (e.g., CNA+BAF,
CNA+BAF+SNV) consistently outperforms single data layers (CNA or SNV only). Al-
though the normalised error in the copy number and SNV genotype posterior probabilities
is a useful indicator for the overall performance of subclonal reconstruction, it has some
limitations. For example, even when subclone frequencies are given, substantial uncertainty
about the hidden state remains at low sequencing depths or given a small number of sam-
ples. This is especially the case for the de novo SNV genotype state, which in general has
no persistence along the genome.

Figure 3.103.10C shows that the mean absolute error per sample between the true frequencies
and the inferred ones is small and decreases as a function of the number of samples and
with the addition of data types. This result exemplifies how closely the underlying subclonal
dynamics can be learned, e.g., in time or space. Inferences where themass was not accurately
captured often show poor accuracy because the solution differs from the correct copy-number
profile by an overall shift, typically by one copy.

3.8.2 Benchmark with diverse subclonal structures
Our benchmark on simulated data shows that cloneHD can successfully incorporate infor-
mation across multiple data types and across correlated samples. However, it may not reflect
the idiosyncratic features of real data. Furthermore, we would like to evaluate the robustness
and fidelity of the algorithm as a function of parameters like the number of subclones 𝑁𝑐 ,
the sample mass 𝑀𝑠, the sample purity 𝐹 𝑠 or the composition of subclonal frequencies 𝑓 𝑠

𝑗 .
We assessed the performance of the algorithm on an ensemble of synthetically-derived sam-
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Fig. 3.10 Benchmark of reconstruction fidelity with simulated data. Subclonal inference of 100 sim-
ulated samples with 𝑁𝑐 = 2 subclones and a purity 𝐹 𝑠 = 0.7 demonstrate a strong performance in the
reconstruction of subclonal copy-number profiles, genotypes, and frequencies. Parameter values of
this benchmark dataset are listed in Table 3.13.1. In the boxplots, horizontal black lines denote median
values, areas show upper and lower quartiles and whiskers denote data within 1.5× of the interquar-
tile range. Outlier points outside this range are not shown for clarity. (A, B) Normalised error in
(A) copy-number state and (B) SNV genotype as a function of the number of samples (𝑡1, 𝑡1 − 𝑡2,
𝑡1 − 𝑡3) and the data types used in the inference (CNA, CNA+BAF, CNA+BAF+SNV), including
the case where the true frequencies are given (denoted 𝑓given) and inferred (denoted 𝑓infer). Using
more data types (e.g., CNA+BAF instead of CNA only) and using more samples each help achieve a
higher performance. (C) Error between true and inferred subclone frequencies 𝑓 𝑠

𝑗 , averaged over time
points. The inference of subclone frequencies is increasingly more accurate with increasing number
of samples.
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ples with real mutation profiles, copy-number profiles, subclonal structures and evolutionary
history reflecting situations in real biological tumours across various cancer types. A dataset
generated as part of the ICGC Pan-Cancer Analysis of Whole Genomes (PCAWG) project
is used, consisting of 965 tumour-normal pairs simulated by S. Dentro (Wellcome Trust
Sanger Institute, Cambridge, UK), M. Tarabichi (Francis Crick Institute, London, UK) and
I. Leshchiner (Broad Institute, Cambridge, MA). This dataset has been created as a blind test
and has a ground truth, so it can be used to identify shortfalls in subclonal reconstruction
algorithms and determine the conditions that affect their performance. These samples con-
tain sequencing data from normal and tumour samples, with spiked-in germline and somatic
variants, representing both clonal and subclonal single-nucleotide substitutions, small inser-
tions, deletions, structural variants and copy-number changes (Table 3.23.2). A range of tumour
purity and ploidy values are featured, as well as a range of mutational burdens and mutation
types. We will briefly summarise how the samples have been simulated, having discussed
this with the organisers of this benchmark after analysing these samples and evaluating our
performance.

Firstly, the SNV cluster frequencies and the number ofmutations per cluster are randomly
generated. A clonal cluster was included in each simulated sample. The number of subclones
in each sample is chosen randomly from the set 𝑁𝑐 ∈ {0, 1, 2, 3, 4} for samples with linear
evolution, and 𝑁𝑐 ∈ {2, 3, 4} for samples with branched evolution. Cluster frequencies were
chosen to be at least 𝑓 𝑠

𝑗 > 0.1, at a distance of 0.1 away from the nearest cluster. The number
of mutations 𝐿SNV in each sample was chosen from a uniform distribution, then drawing the
fraction of mutations per cluster from this distribution and randomly assigning mutations to
clusters according to these fractions (see Table 3.23.2). Secondly, CNA profiles were chosen
from samples in the ICGC PCAWG dataset. Segments with subclonal copy-number state
were rounded to the nearest clonal copy-number state. These segments were then assigned

Table 3.2 Real benchmark dataset for subclonal reconstruction. The dataset includes 965 samples.
The notation used here is extensively explained in Section 3.63.6. Each sample has a wild-type subpop-
ulation and one or several mutant subpopulations.

Data Variable Symbol Value

number of subclones 𝑁𝑐 0 − 4
number of genotype clusters 𝑁𝑔 0 − 7
mass 𝑀𝑠 3.8 − 24.2
purity 𝐹 𝑠 0.16 − 1.00
subclonal fractions 𝑓 𝑠

𝑗 0.10 − 1.00
CNA number of segments 𝐿CNA 4 × 103 − 5 × 104

copy number (wild-type) 𝑐0 2
copy number (mutant) 𝑐𝑖𝑗 0 − 6

SNV number of sites 𝐿SNV 1 × 102 − 1 × 105
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randomly to subclones in the same frequency space as the SNV clusters. For each sample,
purity was drawn from the distribution of consensus purities across all samples in the ICGC
PCAWG dataset.

Secondly, a beta-binomial model was used to simulate read depth profiles for each sam-
ple. To do this, all normal coverage profiles from the ICGC PCAWG dataset were fitted to
a beta-binomial distribution. For each simulated sample, a mean read depth was chosen by
sampling from the distribution of mean depths of all tumour samples in the ICGC PCAWG
dataset. Read depth at each site 𝑁𝑖 in the simulation was then randomly sampled from a beta-
binomial distribution using the fitted parameters, and scaled accordingly to account for local
copy-number changes. The true SNV frequency, SNV subclone genotype, and copy-number
state at the site of the mutation were used to calculate the expected SNV frequency. Finally,
the measured mutation count 𝑛𝑖 for each SNV site was chosen from a binomial distribution
according to the read depth 𝑁𝑖 and the expected SNV frequency 𝑥𝑖 at the locus.

This simulated dataset is designed to test the subclonal reconstruction performance on
SNV clustering. Given that themajority ofmethods use SNV data with a fixed CNA segmen-
tation, we used the consensus copy number and consensus purity as priors for cloneHD SNV
clustering. We used the mean total copy number ⟨𝑐⟩𝑠

𝑖 and the available copy number 𝑐max per

Fig. 3.11 Benchmark of reconstruction fidelity with real data. Subclonal inference of 965
synthetically-derived real samples. Each panel shows the root mean squared error between the true
and inferred SNV genotype assignments in logarithmic scale (𝑦-axis) as a function of (A) the number
of subclones 𝑁𝑐 , (B) the fraction of clonal SNVs 𝐿clonal

SNV
𝐿clonal

SNV +𝐿subclonal
SNV

, (C) the sample purity 𝐹 𝑠 and (D) the
sample mass 𝑀𝑠 (𝑥-axis). Continuous parameters in panels (B-D) are split by quantiles (shown by
colours). Parameter values of this benchmark dataset are listed in Table 3.23.2.
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locus as informative priors to the HMM. We mapped our solutions from a representation of
subclone genotypes to clusters. To remove clusters that are not supported by sufficient high-
confidence SNVs, we required that the sum over the SNV posterior probability of clusters at
0.9 or higher probability corresponded to a minimum of 10 high-confidence SNVs assigned
to each cluster. Similarly, other methods participated in this benchmarking exercise, includ-
ing: BayClone [170170], CCube, CliP, CTPsingle [171171], DPclust, Phylogic, PhyloWGS [172172],
PyClone [157157], Sclust, and SVclone [173173]. Unpublished methods are described in our ICGC
PCAWG manuscript [110110].

To evaluate how well the different methods perform at assigning SNVs to individual
clusters, we compared the number of SNVs assigned to each cluster in a sample by individ-
ual methods to the true SNV cluster assignment, using the root mean squared error between
the true and inferred number of SNVs per cluster. A total of 965 samples have been scored,
which we report for cloneHD in Figure 3.123.12. Several properties of each sample reflect the
complexity of the population structure: the number of subclones 𝑁𝑐 , the sample purity 𝐹 𝑠

and the fraction of clonal SNVs 𝐿clonal
SNV

𝐿clonal
SNV +𝐿subclonal

SNV
. The sample mass 𝑀𝑠 reflects the resolution

of the data. cloneHD performs well across a wide range of samples. As shown in Fig-
ure 3.113.11A, we are able to correctly assign up to 3 distinct subclone SNV genotype clusters.
However, the accuracy drops for 4 or more clusters. These clusters cannot be distinguished
since the frequency spectrum becomes denser as the number of subclone genotype states
increases. The fraction of clonal SNVs in a population reflects the extent of subclonal het-
erogeneitywithin a sample (Fig. 3.113.11B), showing that SNVs are correctly assigned to clusters
in samples that are mostly clonal. Those samples where the algorithm was too conservative
and missed small subclones show poor scores because the solution wrongly assigns those
SNV genotypes to a different subclone. Figures 3.113.11C and 3.113.11D show how the assignment
of clonal and subclonal SNVs to clusters depends on the sample purity 𝐹 𝑠 and the sample
mass 𝑀𝑠. Reconstructions are accurate when the sample purity and mass are high since
SNVs have a higher representation in the data signal, although there is a wide variance in
the accuracy which reflects the Poisson noise for coverage. However, samples with low pu-
rity and mass exhibit a monotonic error decrease, which is due to the fact that SNV callers
do not detect variants supported by few reads (e.g., >3 reads). As a result, the lower end
of the binomial distribution is undersampled, which causes all SNVs to be biased towards
higher frequencies, thus resulting in SNV genotype clusters shifting up in frequency.

To determine the parameter range where methods provide robust estimates, we must
identify when they begin to fail with increasing population complexity and lower resolution
in the data. In Figure 3.123.12A, we show the normalised error between the true and inferred
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Fig. 3.12 Performance comparison of subclonal reconstruction methods on the real data benchmark
(965 samples). Comparison between inferred SNV genotype assignments of individual methods and
the true SNV genotype, as a function of the fraction of the number of SNV genotype clusters 𝑁𝑔
and the mass 𝑀𝑠, measured relative to the ground truth. The comparison is shown for cloneHD
and 10 methods developed by other research groups. Parameter values of this benchmark dataset are
listed in Table 3.23.2. (A, B) Normalised difference between the true and inferred number of subclones
and the true and inferred fraction of clonal SNVs. The normalised error is indicated by the colour
maps. (A) Each matrix element shows the average of the normalised difference between true and
inferred number of SNV genotype clusters across sets of samples, grouped by the true number of SNV
genotype clusters of each sample (𝑥-axis), and the true mass binned by quantiles (𝑦-axis). (B) Each
matrix element shows the average of the normalised difference between true and inferred fraction
of clonal SNVs across sets of samples, grouped by the true fraction of clonal SNVs of each sample
binned by quantiles (𝑥-axis), and the true mass binned by quantiles (𝑦-axis). Combinations with
missing values are indicated by grey matrix elements. (C, D) In each panel, the methods are shown
along the 𝑥-axis and normalised metrics of inferred parameters are plotted on the 𝑦-axis. Colours
indicate true parameters. In the boxplots, horizontal black lines denote median values, areas show
upper and lower quartiles and whiskers denote data within 1.5× of the interquartile range. Outlier
points outside this range are not shown for clarity. (C) Comparison of the normalised error in the
inferred number of SNV genotype clusters (𝑦-axis), as a function of the true number of SNV genotype
clusters (shown by colours). (D) Comparison of the normalised error in the inferred fraction of clonal
SNVs (𝑦-axis), measured relative to the true fraction of clonal SNVs, split by quantiles (shown by
colours).
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number of SNV genotype clusters for cloneHD as a function of these parameters. Errors in-
ferring the correct number of SNV genotype clusters increase with greater population com-
plexity and lower sample mass, which suggests a minimum sample mass of 𝑀𝑠 = 10 and a
maximum of 𝑁𝑔 = 4 clusters that can be resolved with this data. In Figure 3.123.12B, the frac-
tion of clonal SNVs reflects the ability of cloneHD to correctly group SNVs into clusters.
There are typically no errors in identifying the clonal cluster and only few errors in correctly
assigning SNVs to subclonal clusters in samples with >50% clonal SNVs and a sample mass
of 𝑀𝑠 > 10. However, cloneHD fails to identify the clonal cluster in samples with fewer
clonal SNVs and lower resolution.

Overall, cloneHD is representative of the performance of other individual methods on
this dataset. When looking at the absolute performance of all methods, most can resolve up
to three clusters, and the precision drops for four or more as overlapping clusters with SNVs
of similar frequency are difficult to resolve (Fig. 3.123.12C). Methods like cloneHD or DPclust
are typically conservative in introducing new clusters, compared to other methods which
consistently overfit the number of SNV genotype clusters (e.g., Phylogic). Samples with
fully clonal or a large majority of clonal SNVs can be correctly reconstructed by most meth-
ods. Several of thesemethods have highest agreements when correlating the inferred fraction
of clonal SNVs, including cloneHD, DPclust, PyClone or Sclust. In samples with fewer than
∼30% clonal SNVs, most methods assign mutations to the wrong cluster (Fig. 3.123.12D).

3.9 Summary
This chapter presented a probabilistic algorithm for modelling clonal admixtures of genomes
in any asexually or somatically evolving population. First, we introduced Hidden Markov
Models followed by a presentation of their use for data filtering and inference with DNA
sequence data of mixed cell populations. We have shown the great benefit of performing a
simultaneous analysis using several available data types (i.e., read depths, B-allele counts
and SNV counts). This integrative approach resolves potential degeneracies in subclonal
solutions that would otherwise be equivalent. This is further alleviated by observing the
subclones at various correlated points in time or space, when subclonal frequencies differ.
We showed that this framework can be used to identify and reconstruct subclonal genome
states from single samples, and systematically track how populations respond to selection
using time-series data. Our simulated examples provide robust estimates of the subclone
fractions and subclonal copy-number and genotype states. Real benchmark datasets also
highlighted common challenges that the subclonal reconstruction problem poses. Sequenc-
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ing of engineered cell-line mixtures may also serve as a good benchmark in future studies
(see e.g. Farahani et al. [174174]). While we have identified many interesting signatures of
subclonal heterogeneity and set a precedent for methods that have since incorporated CNAs
and SNVs in a joint inference (see e.g., Deshwar et al. [172172]), there are several important
limitations to our method. Firstly, the algorithmmust strike a balance between a model com-
plexity that explains all the signal visible in the data, while not overfitting with a model that
is too flexible and may find spurious solutions. Secondly, phylogenetic relations between
subclones are not jointly inferred with the clonal composition, but determined a posteriori.

This algorithm opens many avenues for future work. Now that we move towards a new
paradigm of ascribing quantitative fitness attributes to genotypes under selection, a neces-
sary first step is to accurately measure the abundance of genetically distinct lineages. Much
research remains to be done in understanding clonal dynamics in microbial evolution (e.g.,
immune evasion, therapy resistance) or cancer evolution (e.g., initiation, progression, local-
isation of origins of metastasis or prevention of drug resistance). In this respect, we have
applied this method to whole-population, whole-genome sequencing data of 2,655 tumour-
normal pairs corresponding to 38 cancer types, generated by the ICGC Pan-Cancer Analysis
of Whole Genomes project [3333, 110110, 122122]. Given the primordial role of positive selection in
the evolution of clonal and subclonal drivers that we have observed in this dataset, further
work is needed to characterise the full spectrum of subclones and their lineage relations,
which will reveal the fitness distribution within tumours. Resolving the majority of small
subclones that comprise the tail of the clone size distribution in any complex population
will probably require alternative approaches that enable frequency measurements close to
single-cell resolution, e.g., direct isolation and sequencing of single cells, targeted sequenc-
ing, or continuous barcode integration and sequencing to track individual lineages. As we
will see in Chapter 55, the fitness distribution will ultimately set the stage for the evolution-
ary dynamics that ensue. Therefore, future work should incorporate integrative analyses of
clonal genotype and fitness to build a unified view of the selective constraints on asexually
or somatically evolving genomes.





Chapter 4
Population diversity and the rate of clonal evolution

4.1 Introduction
Earlier in this thesis, we investigated minimal models of evolutionary dynamics, with and
without noise, and in small and large populations. Despite their differences, these systems
share generic properties. We also demonstrated that DNA sequencing technologies are ca-
pable of detecting multiple genotypically distinct subclones in a population of cells. These
observations suggest that testable quantitative theory is ideally complemented by targeted ex-
periments. In this chapter, we investigate the evolutionary dynamics of populations adapting
to antimicrobial drugs as a model system of rapid adaptation, to determine if they acquire
mutations of independent effects (additive), or are constrained by the path-dependent effects
of interactions with other mutations (epistatic). We used directed evolution in budding yeast
(S. cerevisiae) to quantify the contingency of evolutionary trajectories, by finding differences
in the adaptability of genetically heterogeneous and homogeneous populations created from a
recombinant library of randomised genomes. We focus on finding the genomic determinants
of evolutionary processes, particularly focusing on the action of selection in this chapter, and
on mutational processes in Chapter 66. We will aim to determine whether genetic diversity
enables or hinders our ability to predict which mutations will fix and to predict outcomes
like the fitness increase.11

This work has been carried out in collaboration with V. Mustonen (V.M.) at the Well-
come Trust Sanger Institute (Cambridge, UK), E. Alonso-Pérez (E.A.-P.), J. Hallin (J.H.)

1Data analyses related to this chapter are available from the GitHub code repository
[https://github.com/ivazquez/PhD-thesis/tree/master/Chapter4https://github.com/ivazquez/PhD-thesis/tree/master/Chapter4].

https://github.com/ivazquez/PhD-thesis/tree/master/Chapter4
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and J. Warringer (J.W.) at the University of Gothenburg (Sweden), and J. Li (J.L.) at the
Institute for Research on Cancer and Aging of Nice (France).11

4.2 Genomic constraints on adaptation
Probing the dynamics of genome evolution in cellular communities, such as pathogenic in-
fections, the gut microbiome, and cancer, is starting to improve our understanding of the
role of genetic diversity in disease progression [2929, 175175] and drug resistance [116116]. Within
populations, extant genetic diversity is known to negatively impact viral pathogenesis [176176]
and recrudesce the severity of bacterial infections [177177, 178178], and plays an important and
quantitatively predictable role in treatment failures for HIV [179179, 180180]. Genetic heterogene-
ity is also known to be of prognostic value for cancer progression [181181] and cancer drug
resistance [182182]. At the phenotypic level, these systems share in common that their rate of
adaptation is expected to be proportional to the fitness variability in the population, which
is described by population genetic theory we discussed in Chapter 22. At the genetic level,
the evolutionary success of a new beneficial mutation in a heterogeneous population will
be influenced by the net fitness effect of all mutations in a cell where it randomly occurs.
Cell-to-cell genetic and phenotypic heterogeneity may thus impede accurate predictions of
the impact of a driver mutation before occurring in a specific cell. To understand the pre-
dictability of evolutionary outcomes at the genetic and phenotypic levels, we will first recap
our current knowledge of biological systems under ongoing clonal selection.

Regularities between adapting populations have been commonly observed at the pheno-
typic level [183183], but the underlying genotypic process differs as a function of the spectrum
of escape mutations and can depend strongly on history. At the level of individual genes,
the stepwise acquisition of single mutations has proven to be effective at improving a func-
tion that already exists and is accessible through a set of intermediate genotypes [8383]. For
example, mutations in the TEM-1 𝛽-lactamase gene confer a wide spectrum of resistance to
antibiotics used in the clinic, like penicillins, cephamycins and cephalosporins. Combinato-
rial libraries are enabling the synthetic construction of all mutational trajectories of TEM-1
and other genes, to assess their complete fitness landscapes [4545, 184184]. These studies have

1I.V.-G. designed the experiments, I.V.-G., E.A.-P. and J.H. carried out the experiments, E.A.-P. and J.H.
maintained the populations by high-throughput pinning, I.V.-G. monitored population growth using transmis-
sive scanning, E.A.-P. and I.V.-G. stored the sample record, J.L. extractedDNA for sequencing, I.V.-G. prepared
sequencing libraries in collaboration with the sequencing pipeline at the Wellcome Trust Sanger Institute; I.V.-
G. developed theory, implemented computational methods and analysed data; and I.V.-G. and V.M. interpreted
the results.
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drawn attention to the seemingly general property that only few mutational paths within a
protein are accessible. This entrenchment and repeatability of mutational trajectories paints
a promising picture, since it suggests they may be predictable. Indeed, by evolving single
enzymes in the laboratory, numerous studies have shown it possible to predict TEM-1 evo-
lutionary trajectories observed in the wild or in a clinical setting [8181, 8282]. Most mutational
hotspots found in clinical isolates can be independently identified in the laboratory using
directed evolution, which also correctly predicts mutant combinations in subsequent evolu-
tionary paths [8282].

Nonetheless, most functions involve many genes and pathways and require longer mu-
tational jumps, with intermediate states that are neutral or deleterious. To pave the way to-
wards a predictive theory of adaptation at the genomic scale, we must begin to characterise
the properties of mutational networks beyond single genes, connecting the genomes of cells
in a population. At the phenotype level, coarse-grained models try to describe the adap-
tive dynamics based on observations which suggest that phenotype-fitness maps are smooth,
governed by ‘macroscopic’ epistasis [183183]. These models suggest a relation of diminishing
returns when new mutations arise, whereby a partially resistant genetic background will re-
quire few mutations to confer complete resistance to a drug and its mutational path will be
short, while a sensitive genetic background will need to traverse a longer mutational path.
In contrast, genotype-fitness maps are high-dimensional and their structure is typically very
rugged, dominated by ‘microscopic’ epistasis [8383]. The systematic interrogation of conver-
gent genotypes allows us to probe microscopic interactions in these fitness landscapes [185185].
The statistical properties of these mutational paths will be informative in modelling evolu-
tionary outcomes [186186].

Controlled time course experiments provide the means to study the balance between
evolutionary forces like mutation, selection and genetic drift at the genome scale [187187–189189]
and test the predictability of evolutionary outcomes [119119]. In general, stochastic events limit
predictability. For instance, a low mutation supply limits the time horizon for prediction,
as waiting times to the next mutation are highly stochastic. However, neither the supply of
driver mutations nor elimination by drift are limiting factors in rapidly adapting populations.
Deterministic processes like selection prune the space of evolutionary paths, giving rise to
recurrent mutational patterns and revealing a preferential order for interacting mutations [4545,
190190]. Despite the occurrence of genetic heterogeneity, only a small fraction of possible
resistance genotypes appears to be frequently accessed, implying a degree of evolutionary
predictability. Fluctuations in the strength of selection occur over time and space, such as
during antibiotic dosing schedules [191191, 192192] or in spatial drug gradients [3535, 193193–195195].
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We would like to determine which of these characteristics work to the advantage of pre-
dicting adaptive genotypes, whichmay permitmore effective pre-emptive interventions [196196].
The simultaneous emergence of multiple beneficial mutations has been repeatedly observed
in laboratory evolution of microbial and viral populations, suggesting that the systems un-
der study most likely evolve under clonal interference [2929, 188188]. Therefore, we hypothesise
that two factors play a key role in predictably accelerating resistance evolution: (i) the co-
existence of genetic diversity in a population, which reduces the number of intermediate
genotypes to reach a fitness peak; and (ii) the rise of clones driven by temporal and spatial
gradients, which can accelerate the selection of resistant mutants by evading competition
in higher concentrations and leveraging dosage increases for new mutants to enter the next
selective window.

4.3 Experimental design
To examine the role of genetic diversity in clonal evolution, we combined experimental tech-
niques of recombinant crossing, high-throughput robotic pinning, directed evolution and
DNA sequencing to simultaneously adapt genetically heterogeneous and genetically homo-
geneous populations to multiple environments, and measure the genotypes of an ensemble of
populations before and after selection (Fig. 4.14.1). In our experiment, we will aim to generate
diversity between divergent genotypes in order to uniformly sample a fitness landscape that
can be explored by directed evolution. We will focus on selective constraints imposed by
antimicrobial drugs at several rate-limiting steps in the cell cycle.

Combinatorial library design

To generate the progenitor populations, we begin with two strains of budding yeast which
have diverged over millions of years (divergence phase), that are randomly mated by meiotic
recombination to generate a large pool of recombinant mosaic haplotypes (crossing phase),
followed by isolation of single-haplotype clones (isolation phase). All founder populations
are then evolved by selecting a fraction of the population under stress without severe bottle-
necks (selection phase).

In the divergence phase, parental strains are derived from a West African strain (DB-
VPG6044; MAT𝛼, ura3::KanMX, lys2::URA3, ho::HphMX) isolated from palm wine and
a North American strain (YPS128; MATa, ura3::KanMX, ho::HphMX) isolated from oak
tree. Hereafter we refer to these strains as WA and NA, respectively. These strains are se-
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lected from two distant lineages and feature 52,466 single-nucleotide differences uniformly
distributed across the genome (Fig. 4.14.1A, left panel). Since naturally occurring deleteri-
ous mutations have been selected against over long evolutionary timescales, the parental
genotypes are enriched for functional diversity which is not readily accessible using other
techniques, such as random or site-directed mutagenesis.

During the crossing phase, our collaborators carried out 12 rounds of random mating
and sporulation (meiosis) between WA and NA. The cross population (WAxNA) consists of
107 − 108 unique haplotypes, with a pre-existing variant segregating every 230 bp on aver-
age (Fig. 4.14.1A, centre panel). This design results in the frequency spectrum of background
mutations to be normally distributed, so that pre-existing variants are established and do not
need to overcome genetic drift. We refer to the parental genotype of each individual in the
cross as its genetic background.

In the isolation phase, a subset of segregants are randomly selected from theWAxNAF12
cross using single-cell bottlenecks (Fig. 4.14.1A, right panel). These segregants span a range
of fitness in multiple environments (Fig. 4.14.1B, right panel).

To investigate the repeatability of mutational paths and test for path-dependent effects
of selection we evolved replicate populations of the three aforementioned types of founders,
shown in Figure 4.14.1B: divergent genotypes, a recombinant cross derived by random mating
between these two divergent genotypes, and segregant isolates from this cross. To distinguish
between replicates of founder populations, we label each population by founder genotype 𝑓 ,
by the wild-type ploidy 𝑐0, mating type 𝑚, and indexed by biological replicate 𝑟. Each of
the founders is characterised by different degrees of within-population diversity – measured
by the average Hamming distance between any two cells in the population, Δ̄ – and by the
number of unique genomes (or subclones) in the population, 𝑁𝑐 . According to these two
metrics, we distinguish the following properties in the three types of founder populations:

(i) Divergent genotypes (Δ̄ = 0, 𝑁𝑐 = 1): Two wild, diverged strains of budding yeast
(S. cerevisiae), whose genotypes differ at 𝐿 sites. They comprise and ensemble of
populations that are each labelled by 𝑓 ∈ {WA,NA,WA/NA}, 𝑐0 ∈ {1, 2}, 𝑚 ∈
{𝑎, 𝛼, 𝑎/𝛼} and 𝑟 ∈ {1, … , 𝑟𝑖, 𝑛𝑟 = 10}.

(ii) Recombinant cross (Δ̄ ≃ 3.1 × 104, 𝑁𝑐 = 107): A recombinant cross of the two
diverged strains (i), where the genotypes in the population are assembled from the
available alleles more or less at random such that any two individuals differ at ap-
proximately 2 ∑𝐿

𝑖=1 𝑥𝑖(1 − 𝑥𝑖) sites (𝑥𝑖 being the allele frequency at locus 𝑖). Each
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Fig. 4.1 Schematic outline of the combinatorial library design in budding yeast (S. cerevisiae).
(A) The founder genotypes are derived in three different stages: divergence, crossing and isolation.
Left panel: Two wild strains of budding yeast – West African (WA) and North American (NA) –
have diverged for millions of years and differ at 1/230 bp in the genome. Haploid (WA, NA) and
diploid versions (WA/WA, NA/NA) are used, as well as their hybrid (WA/NA). Centre panel: A re-
combinant cross of these two diverged genotypes, WAxNA, consists of 107–108 unique haplotypes.
Right panel: We randomly selected 192 segregants from the WAxNA cross (96 × MATa and 96 ×
MAT𝛼). (B) Fitness distribution of the founder populations in an archetypal environment. Left panel:
Diverged parental genotypes display extreme fitness differences. Haploid strains are typically fitter
than diploid strains. Centre panel: Individuals from the recombinant cross inherit a phenotypic con-
tinuum that is normally distributed. Right panel: Isolate segregants from the recombinant library are
chosen to span a range of fitness and start at different locations in the fitness landscape. (C) Schematic
projection of evolutionary trajectories on sequence space. The colour gradient and the contour lines
depict a fitness landscape with one local maximum (light grey) and one global maximum (dark grey).
Large circles indicate the projection of founder genotypes before selection and small circles show an
ensemble of replicate trajectories after selection. Strains are coloured according to their background
genotype (WA: , NA: , WAxNA: ). Left panel: Diverged genotypes that are close to a global
fitness peak will require few mutations to adapt (e.g., NA), whereas those further down the slope will
need to acquire more mutations (e.g., WA). Centre panel: The maximal diversity of the recombinant
cross enables a fast search of sequence space towards a fitness optimum, with the fittest backgrounds
requiring few intermediate genotypes. Right panel: Those same genotypes evolved independently
(e.g., 7, 23, 51, 81, 192) will carry out a slower search towards a fitness optimum.
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population is labelled by 𝑓 ∈ {WAxNA}; 𝑐0 ∈ {2}, 𝑚 ∈ {𝑎/𝛼} and 𝑟 ∈ {1, … , 𝑟𝑖,
𝑛𝑟 = 192}.

(iii) Segregants (Δ̄ = 0, 𝑁𝑐 = 1): Segregants from the recombinant cross (ii), where
each population condenses into a single genotype identical to each other individual in
the population, and different at 2 ∑𝐿

𝑖=1 𝑥𝑖(1 − 𝑥𝑖) sites compared to other segregants
of the recombinant cross. Each population can take values 𝑓 ∈ {WAxNA-1, … ,
WAxNA-192}, 𝑐0 ∈ {1, 2}, 𝑚 ∈ {𝑎, 𝛼} and 𝑟 ∈ {1, … , 𝑟𝑖, 𝑛𝑟 = 7}.

When we project the genotype or genotypes in these populations on a schematic fitness land-
scape, we expect that divergent genotypes should be close to either peaks or troughs of the
landscape (Fig. 4.14.1A). Populations with maximal founder diversity should have greater ac-
cessibility to fitness peaks and will require shorter paths to adapt (Fig. 4.14.1B). Conversely,
populations with minimal founder diversity may become committed to a genotypic fate early
on and thus could become entrenched at local fitness maxima (Fig. 4.14.1C). Qualitative fea-
tures of the topography of the fitness landscape – such as its ruggedness – will influence these
outcomes, which we will aim to infer from the parallel evolution of individual evolutionary
trajectories. Since the number of genotypes grows exponentially with the number of loci 𝐿,
we will always have 𝑁𝑐 ≪ 2𝐿, even when 𝑁𝑐 itself is large. The large majority of genotypes
in this space will therefore be unoccupied, but the coverage of the genotype space should be
uniform.

Parallelised high-throughput pinning and selection

During the selection phase, we carry out perturbation protocols on 5,760 replicate popula-
tions of the three types of founders mentioned above, with 𝑁 = 1, 152 populations in each
of five environments. We designed a randomised plate layout in 1,536-pin plate format,
which is constructed from twelve 96-well plates using the Singer Instruments RoToR HDA
robot (Fig. 4.24.2A). We maintained one in every four positions empty in each plate to control
for cross-contamination (Fig. 4.24.2B). All populations were grown in 1,536-pin polystyrene
plates (Singer Instruments, SBS-format PlusPlates). Each cycle lasted for 72 h (∼30 genera-
tions) after which the populations were transferred to new plates using transfer pads (Singer
Instruments, RePads 1536 Short). Population sizes oscillate between 105 and 107 individuals
in boom-bust growth cycles, so new mutations are expected every cycle.

All founders were evolved for 31 cycles (∼930 generations) subject to constant and fluc-
tuating environments, imposed by inhibition of nucleotide synthesis (with hydroxyurea –
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HU) and cellular growth (with rapamycin – RM). Hydroxyurea (also referred to as hydrox-
ycarbamide) inhibits DNA synthesis (Fig. 4.24.2B). Rapamycin (also known as everolimus or
sirolimus) decreases the rate of protein synthesis and the production of ribosomes, tRNAs
and translation factors, halting cell growth. Each of these chemical inhibitors imposes fun-
damental growth trade-offs: with hydroxyurea, the cell will have to compromise polymeri-
sation and excision of errors during DNA replication; with rapamycin, we expect a trade-off
between the cell extending its replicative lifespan on the one hand, and immediate growth
and cell division on the other. In addition to targeting rate-limiting steps of the cell cycle,
these chemical inhibitors cover two of the most common modes of action of antibiotics and
chemotherapy drugs.

In the constant environments, the concentration of selective inhibitors was maintained
over time (Fig. 4.24.2A), both in hydroxyurea (HU-C: 2.5mgml−1) and rapamycin (RM-C:
0.1 μgml−1). The dynamic environments impose temporal selection gradients that define
different environmental epochs, with two-fold additive increments in hydroxyurea (HU-D:
2.5, 5.0, 7.5, 10, 12.5 and 15mgml−1) and two-fold multiplicative increments in rapamycin
(RM-D: 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 μgml−1). Each epoch lasts 5 cycles, or ∼150 gen-
erations. The control environment is composed of yeast nitrogen base (YNB) at 6.7 g l−1

(0.67%), glucose at 2%, agar at 2% and complete supplemented media (CSM) at 790mg l−1

(0.079%), which is a ready-mademixture of all essential amino acids. Wewill generally refer
to this base medium in the control environment as SC, and any stress environments contain
the same mixture and the corresponding drug. Environments were maintained in 5 indepen-
dent plates, with 1,152 populations per environment propagated in parallel. We carried out
two independent runs of the experiment, each lasting for 31 cycles (93 days). The drug con-
centrations were chosen based on the dose response of the WA and NA divergent genotypes.
We selected concentrations that maximised the differential growth between the two strains
in each environment, resulting in a 10-fold difference between them. The solutions are kept
at room temperature in glass bottles, wrapped with aluminium foil to avoid light-induced
degradation. Temperature is kept constant at 30 ± 0.5∘C using a thermostat. To maintain pH
constant, we used a buffer solution of succinic acid, ammonium sulphate ((NH4)2SO4) and
sodium hydroxide (NaOH). This buffer solution maintains pH 5.8 throughout each cycle.

To maintain a record of the experiment that can be recalled, we stored a record of popu-
lations in glycerol. We kept complete records of cycles 0, 5, 10, 15, 20, 25, and 30 in 96-well
format, as well as partial records of targeted populations of interest in every cycle. Each of
the 1,536-pin experimental plates was separated into twelve 96-well plates, by pinning from
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agar to liquid medium using the Singer RoToR HDA robot. After 2 days of incubation at
30 ∘C, we added 100 μl of 30% glycerol solution and samples were stored at −40 ∘C.

Genome sequencing

In order to make statistical inferences about the fitness landscape, we selected an ensemble
of populations to carry out whole-genome, whole-population sequencing for comprehensive
detection of many relevant classes of mutations, including base substitutions, small inser-
tions and deletions, and copy-number aberrations. Out of 1,152 populations in each envi-
ronment, we targeted the ancestral (or ‘wild-type’) populations and evolved (or ‘mutant’)
populations for sequencing in cycles 0 and 30, respectively. The sequence data encompass
all five environments evenly, as summarised in Table 4.14.1. This dataset includes 7 out of 7
replicates for the divergent genotypes (WA, NA, WA/WA, NA/NA and WA/NA), 96 out 96
replicates for two independent WAxNA recombinant crosses, and 5 out of 5 replicates for
25 out of 192 isolate segregants from the cross. In all, 1,178 out of 5,760 ancestral-evolved
pairs had their whole genome sequenced. To avoid systematic biases, all population repli-
cates taken for sequencing were matched across environments and sampled from the same
plate positions. This minimises systematic biases due to spatial gradients and nutrient avail-
ability. On average, 5.2% of populations went extinct, the majority of them in the HU-D
environment (Fig. 4.24.2A). This translated in fewer replicate populations of certain genetic
backgrounds being sampled (WA and WA/WA in HU-D: 23.6% extinct).

Table 4.1 Summary of populations analysed by whole-genome sequencing. All founder populations
at 𝑡 = 0 days were sequenced before deriving replicate lines (labelled by §). Out of the total number
of replicates in our experiment (‘total’), we aimed to sequence a number of populations at 𝑡 = 93 days
(‘seq.’). This included 7 out of 7 replicates for each of the divergent genotypes (WA, NA, WA/WA,
NA/NA and WA/NA), 96 out 96 replicates for two independent recombinant crosses, and 5 out of 5
replicates for 25 out of 192 segregants from these crosses.

Cycle 0 (0 days) Cycle 30 (93 days)

All environments HU-C HU-D RM-C RM-D SC
Type Founder Ploidy Total Seq. Total Seq. Total Seq. Total Seq. Total Seq. Total Seq.

Divergent WA haploid 140 140§ 28 11 28 1 28 11 28 11 28 11
diploid 70 70§ 13 5 13 1 13 5 13 5 13 5

NA haploid 140 140§ 28 8 28 9 28 10 28 10 28 10
diploid 65 65§ 13 5 13 5 13 5 13 5 13 5

WA/NA diploid 65 65§ 13 5 13 4 13 5 13 5 13 5
Recombinant WAxNA (cross) diploid 480 480§ 96 96 96 93 96 96 96 96 96 96

Segregant WAxNA (seg.) haploid 4325 4325§ 865 115 865 65 865 120 865 120 865 120
diploid 475 475§ 95 0 95 0 95 0 95 0 95 0

Total 5760 5760 1152 245 1152 178 1152 252 1152 252 1152 252



86 Population diversity and the rate of clonal evolution

Storage (cycle 0)
100%

Storage (cycle 5)
100%

Storage (cycle 10)
100%

Storage (cycle 15)
100%

Storage (cycle 20)
100%

Storage (cycle 25)
100%

SequencingSequencing

A

B

0

HU-C

HU-D

RM-C

RM-D

SC

Cycle

Time (days)
0

5

15

10

30

15

45

20

60

30

90

25

75

HU-C

RM-C

RM-D

HU-D

SC

3
2

 r
o

w
s

48 columns

Rapamycin
(RM-C, RM-D)

Hydroxyurea
(HU-C, HU-D)

Singer HDA RoToR pinning robot

Control
(SC)

Extinction

(cycle 15, 0.8%)

Storage (cycle 30)
100%

Extinction

(cycle 20, 2.3%)

Extinction

(cycle 25, 3.5%)

Extinction

(cycle 30, 5.2%)

Extinction

(cycle 10, 0.2%)

Extinction

(cycle 5, 0.1%)

Extinction

(cycle 0, 0.0%)

Cycle 0 Cycle 30

Yeast nitrogen base (YNB)

All amino acids

T = 30oC; pH 5.5

48 columns

2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

1 14 15 16 17 18 19 20 21 22 23 2413 26 27 28 29 30 31 32 33 34 35 3625 38 39 40 41 42 43 44 45 46 47 4837

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Control

ExperimentA

C

D

31 2 4

B

2.3% extinct0.1% extinct 9.5% extinct 15.2% extinct 23.6% extinct

7.5 mg ml-1 10 mg ml-15.0 mg ml-12.5 mg ml-1

0.1 μg ml-1

2.5 mg ml-1

0.1 μg ml-1

0.2 μg ml-1 0.4 μg ml-1 0.8 μg ml-1

12.5 mg ml-1

1.6 μg ml-1 3.2 μg ml-1

15 mg ml-1

Fig. 4.2 Schematic outline of the experiment. (A) Timeline of the experiment: 5,760 replicate pop-
ulations of budding yeast (S. cerevisiae) were grown in parallel for 93 days (31 cycles). Replicate
populations of the founder genotypes were arranged in a master plate layout and propagated in five
environments: hydroxyurea – constant (HU-C: ), hydroxyurea – dynamic (HU-D: ), rapamycin –
constant (RM-C: ), rapamycin – dynamic (RM-D: ), and control (SC: ). In the constant environ-
ments, the concentration of selective inhibitors was maintained over time, at 2.5mgml−1 for HU-C
and 0.1 μgml−1 for RM-C. In dynamic environments the concentration was increased in each envi-
ronmental epoch, each one lasting for 5 cycles (black arrow). Cycles are delimited by thin vertical
lines and environmental epochs by thick lines. Contamination tests were carried out every epoch, and
a complete record of all populations was also kept every epoch, freezing all populations in glycerol
and storing them at −40 ∘C (white squares). Whole-population, whole-genome sequencing was car-
ried out in cycles 0 and 30 for an ensemble of populations (grey circles). (B) A Singer RoToR HDA
pinning robot was used to maintain colonies growing on solid agar in 3-day cycles (top). The master
plate layout is arranged in 1,536-pin format (bottom), with populations in 3 out of 4 colony positions
(1,152 per plate) and the fourth colony kept as a spatial control (384 per plate). Time-lapse images
of the 1,536-pin experimental plates before and after selection (left: cycle 0; right: cycle 30).
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Genomic DNA was extracted from the samples using the ‘Yeast MasterPure’ kit (Epi-
centre, USA). Sequencing libraries were made starting from 50–500 ng of DNA using the
Nextera XT library preparation kit, without selection by fragment size. The Illumina HiSeq
2500 instrument was used to sequence the DNA libraries with 2×125 bp reads. The samples
were sequenced using Illumina TruSeq SBS v4 chemistry at the Wellcome Trust Sanger In-
stitute.11 The median number of reads per population, per base was 54× (quartiles 50×–59×,
maximum 170×). The median insert size between pairs of reads was 250 bp.

4.4 Sequence analysis
To create the alignment and detect sequence variants, the pipeline works as follows: (i) se-
quence readswere aligned to the yeast reference genomeR64-1-1 using theBurrows-Wheeler
aligner [197197]; (ii) PCR duplicates were removed; (iii) pre-existing single-nucleotide vari-
ants and de novo single-nucleotide variants, small insertions and deletions were called in
ancestral-evolved pairs using MuTect2 [198198]; and (iv) de novo copy-number gains or losses
were detected in ancestral-evolved pairs (see methods in Chapter 33).

4.4.1 Single-nucleotide variants, insertions and deletions
To detect single-nucleotide variants (SNVs), and short insertions and deletions (indels), we
analysed genome sequences of the founder samples and derived filters discriminating be-
tween pre-existing and de novo mutations.

To classify mutations as pre-existent, we identified sites where the WA and NA geno-
types differ, which should therefore comprise a complete set of variants segregating in the
cross. We limited the set of sites to single-base differences between WA and NA. For every
segregating nucleotide position in the aligned sequences of a given population, we deter-
mined the number of times each base occurred at that position and the total number of reads
at these loci, (𝑛𝑡

𝑖, 𝑁 𝑡
𝑖 ) at 𝑡 = 0 days. The counts were polarised to report the WA allele at

each locus, as neither theWA nor the NA strains are the reference genome. We will study the
role of extant genetic variation on new mutations in Chapter 55 and we will focus on newly
acquired mutations for the rest of this chapter.

We identified a high-confidence set of de novo SNVs and indels across all populations.
To evaluate directly whether the events were acquired or were present in the founder pop-

1The sequence data are available from the European Nucleotide Archive, with study accession
no. PRJEB4645PRJEB4645.

http://www.ebi.ac.uk/ena/data/view/PRJEB4645


88 Population diversity and the rate of clonal evolution

ulations, we determined the mutation counts and the total number of reads covering these
loci, (𝑛𝑡

𝑖, 𝑁 𝑡
𝑖 ), at 𝑡 = 0 and 𝑡 = 93 days. To avoid false positive variant calls due to sequenc-

ing errors or mutations that should be classified as pre-existent instead, we excluded sites
fulfilling the following criteria: (i) variants that were monomorphic in both of the parents,
(ii) heterozygous loci in either parental haploid strain, which would indicate copy-number
variation, and (iii) variants with a mutation frequency 𝑥 ≤ 0.1.

These variants define datasets of mutation counts {𝑔𝑖𝑗}𝑗=1…𝑁𝑝 for a set of 𝑁𝑝 populations
at multiple loci in the genome, s.t. 𝑖 = 1 … 𝐿. A total of 𝐿 = 52, 466 pre-existing base
substitutions and 𝐿 = 11, 601 de novo mutations were observed in 𝑁𝑝 = 1, 178 ancestral-
evolved pairs. Over 84% of de novo mutations detected were supported by at least 5 mutant
reads and over 92% by at least 20 reads in total. We estimated the mutation frequency at
time 𝑡, 𝑥𝑡

𝑖 = 𝑛𝑖
∑𝑗 𝑛𝑗

, where 𝑛𝑖 is the number of mutated sequences with mutation 𝑖 present
in the population, divided by the total number of sequences aligned at this position, 𝑁𝑖 =
∑𝑗 𝑛𝑗 . We must remember that the true and observed frequencies of a mutation can differ
because only a limited subset of cells is sequenced at every position. This is particularly
important at low frequencies, where the error in our estimates is much larger. Assuming that
sampling is the only source of noise, we saw in Chapter 22 that the variance associated with
a mutation with frequency 𝑥𝑖 is Δ𝑥2

𝑖 = 𝑥𝑖(1−𝑥𝑖)
𝑁𝑖

where 𝑁𝑖 is the coverage at position 𝑖. We
therefore expect frequency errors to scale as 𝑥−1/2 and will be particularly pronounced at low
frequencies, where every additional read can significantly impact the reported frequency. In
addition to this, sequencing errors are estimated at 1% per base pair. We have therefore
limited our observations to mutations at frequencies above 𝑥 > 0.1.

4.4.2 Copy-number aberrations
We detected copy-number aberrations (CNAs) by segmenting the read depth as a function
of genomic position. As we described in Chapter 33, we modelled the average number of
reads 𝑁𝑖 at locus 𝑖 using Poisson emissions. We define a locus large enough such that 𝑁𝑖
and 𝑁𝑖+1 can be considered statistically independent (e.g., 1 kb for read lengths of 125 bp).
We learned the global parameters using the Hidden Markov Model for fuzzy segmentation
and data filtering defined in Section 3.43.4, learning a bias field 𝜒𝑖 and estimating the jump
probability per unit length (𝑝 = 1 × 10−8) and the diffusion constant (𝜎 = 1.0 × 10−4). This
takes into account persistence and correlations along the genome and allows for jumps if
there are emerging subclones in the populations. We carried out bias correction between the
wild-type and mutant populations by: (i) filtering wild-type and mutant CNA without bias
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field, but with full jump-diffusion, i.e., finite jump probability (𝑝 > 0) and diffusion constant
(𝜎 > 0), and (ii) filteringwild-type andmutant with bias field (namely thewild-type posterior
mean) and no diffusion (𝜎 = 0). If the total log-likelihoods of these two steps are comparable
then the bias field is shared, which normally held true for most populations. However, we
observed biological variability in read depth near origins of replication in HU-C and HU-
D, due to the fact that this inhibitor can arrest the cell cycle and cause cells to become
synchronised at G1 or S phase. We therefore distinguished between ‘asynchronous’ and
‘synchronous’ CNA bias fields by clustering the mean bias field ⟨𝜒⟩𝑖 between populations.

We then performed the cloneHD inference to learn the subclonal structure in CNAmode,
incrementally adding subclones from 0 to 4, with up to 𝑐max = 5 chromosome copies and
accounting for the bias field. To avoid multiple local optima in the numerical optimisation,
we provided initial values of the parameters and ran 20 trials and 10 restarts. We require
a total log-likelihood gain greater than 20,000 units as a cut-off for the inclusion of an ad-
ditional subclone. Subclone-specific copy numbers can then be estimated from the mean
of the posterior probability for total copy number, 𝛾(𝑐𝑖𝑗). The total copy number in sub-
clone 𝑖 can take values 𝑐𝑖𝑗 ∈ {0, 1, … , 𝑐max}. We obtained a set of copy-number profiles
{𝑐𝑖𝑗}𝑗=1…𝑁𝑝 , where 𝑖 = 1, … , 𝐿 indexes a set of 𝐿 segments with normal (𝑐𝑖 = 𝑐0) or aber-
rant copy number (𝑐𝑖 ≠ 𝑐0). To maximise the fidelity of our copy-number reconstruction we
only considered the major subclone in each population. Dropping the subclone index, the
set of copy-number profiles of 𝑁𝑝 populations is then also labelled by 𝑗 = 1, … , 𝑁𝑝. To
find chromosome-level aberrations, we determined the total copy number difference between
evolved and ancestral populations and calculated the mean total copy number, ⟨𝑐𝑖 − 𝑐0⟩𝑖∈𝐶 ,
for each chromosome 𝐶 , rounding to the nearest integer. Copy-number aberrations that are
part of a subclone are considered to be fixed in the population according to their subclone
fraction (𝐹 𝑠 > 0.99), otherwise they are considered polymorphic.

4.5 Variability in clonal evolution across populations
We first set out to investigate the influence of founder genotypes on the mutation rate and
on clonal diversity, as we expect these to play a major role in the variation of mutation rates
and hence on the acquisition of drug resistance. By counting differences of a population
with respect to the reference, we can devise a way to score individual populations. For
each of the 𝑁𝑝 = 1, 178 populations, the genome sequence of population 𝑝 is denoted by
𝑔𝑝 = {𝑔𝑝

1, … , 𝑔𝑝
𝐿},where 𝐿 is the length of the genome, i.e., the total number of loci. We
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can therefore define the pairwise mismatch between any two populations as:

𝑠𝑛 (𝑔𝑝1 , 𝑔𝑝2) =
𝐿

∑
𝑖,𝑗=1

[𝑔𝑝1
𝑖𝑗 (1 − 𝑔𝑝2

𝑖𝑗 ) + (1 − 𝑔𝑝1
𝑖𝑗 )𝑔𝑝2

𝑖𝑗 ] (4.1)

which is the Hamming distance between two genotype vectors 𝑔𝑝1 and 𝑔𝑝2 (i.e., the sum of
pairwise allele differences across all loci). The mismatch is 0 if 𝑔𝑝1 and 𝑔𝑝2 are equal, and
is positive otherwise.

The sequence of each population 𝑝 can then be assigned a distance 𝑠𝑛 (𝑔𝑝, 𝑔ref) away from
the wild-type reference genome 𝑔ref. As we described in Section 4.44.4 on sequence analysis,
this is a ‘consensus’ reference that includes all segregating sites in the recombinant cross,

Fig. 4.3 Variation in mutation rate observed across populations. Each dot corresponds to one repli-
cate population in one of five environments (HU-C: , HU-D: , RM-C: , RM-D: and SC: ). The
vertical position indicates the total number of mutations per population (circles) and the mean mu-
tation count per founder (diamonds). Note that the 𝑦-axis is limited and does not show the mutation
count of one outlier population (WAxNA-28 in HU-D: 100 mutations). Top panel: From left to right,
the distribution of founder-specific mutation counts is shown for the divergent genotypes (WA, NA,
WA/WA, NA/NA, WA/NA), the recombinant cross and segregant founders (see Figure 4.14.1 for a de-
scription). The counts are displayed with jitter along the horizontal axis for clarity. Bottom panel:
Zoomed inset of mutations in the segregant isolates, broken down by individual founder genotypes.
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such that any variation acquired before the selection phase is factored out. We therefore
have a way to estimate the total number of mutations 𝑋𝑝 acquired by a population after 30
cycles, which is given by the number of mismatches with respect to its ancestral reference,
𝑋𝑝 = 𝑠𝑛 (𝑔𝑝, 𝑔ref). This distance metric can be equally be used for copy-number gains
or losses by replacing 𝑔𝑝 → 𝑐𝑝, where distances are measured according to the number
of chromosome-level copy-number aberrations, and gains or losses of a chromosome are
considered as different alleles. We will make use of both metrics in the next sections.

Analysis of the founder genotypes reveals that the mean mutation rate varied by more
than 2-fold across founders. There is a strong dependence between the identity of the founder
and the number of mutations acquired by replicate populations derived from that founder
(Fig. 4.34.3). The least and most mutated founders were all segregant isolates, ranging from 10
to 23mutations per population (WAxNA-69 andWAxNA-129, respectively), which suggests
that there may be heritable differences between segregants in the efficiency of endogenous
repair processes.

4.5.1 Functional impact of mutations
To assess the functional relevance of mutations, we recall that the majority of mutations are
expected to be, on average, neutral or mildly deleterious. We can distinguish adaptive muta-
tions from neutral or deleterious mutations, as non-beneficial mutations should not arise and
fix independently as frequently as adaptive mutations. Single-base substitutions are 10 times
more frequent than insertions and deletions (see Section 4.5.24.5.2), and there is an enrichment of
base substitutions in HU-C and HU-D. On average, populations acquired three times as many
non-synonymous mutations (changing an amino acid) compared to synonymous mutations
(not changing an amino acid), shown in Figure 4.44.4B. The functional impact of mutations can
be estimated by combining evolutionary conservation and protein-domain information and
may help us distinguish driver from passenger mutations, particularly since it will highlight
substitutions that disrupt evolutionarily conserved residues in proteins (Fig. 4.44.4C).

In Equation (4.14.1) we defined a metric for the number of pairwise mismatches between
the genomes of two populations, 𝑠𝑛 (𝑔𝑝1 , 𝑔𝑝2). Measuring the mismatches of population 𝑝
with respect to the reference genome, we can define a score 𝑆(𝑔) over populations. This
score can be defined at the level of individual nucleotides 𝑆𝑛(𝑔), genes 𝑆𝑔(𝑔), or pathways
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𝑆𝑝(𝑔). At the nucleotide level,

𝑆𝑛(𝑔) ≡
𝐿𝑛

∑
𝑖=1

𝑁𝑝

∑
𝑗=1

𝑠𝑛
𝑖 (𝑔𝑖𝑗). (4.2)

where 𝐿𝑛 is the number of uniquely mutated bases, 𝑁𝑝 is the number of population genomes,
and 𝑔𝑖𝑗 indicates the variant genotype of locus 𝑖 in population 𝑗. We can form a distribution of
scores 𝑃 (𝑆(𝑔)) over population sequences 𝑔 = {𝑔1, … , 𝑔𝑁𝑝}, i.e., 𝑔𝑖 denotes the nucleotide
at position 𝑖 in a given population and it maps to a coordinate in the alignment.

Each mutation can change the coding sequence of a gene 𝑔 ∈ {1, … , 𝐿}, where 𝐿 =
5, 148 is the total number of coding genes in yeast. The nucleotide position for a mutated
base maps to the corresponding gene coordinates. This enables us to define gene-level ob-
servables by adding the nucleotide-level counts per gene

𝑆𝑔(𝑔) ≡
𝐿𝑔

∑
𝑖=1

𝑁𝑝

∑
𝑗=1

𝑠𝑔
𝑖 (𝑔𝑖𝑗) =

𝑁𝑝

∑
𝑗=1

1
𝑙𝑔
𝑗

∑
𝑖∈𝑔

𝑠𝑛
𝑖 (𝑔𝑖𝑗) (4.3)

where 𝐿𝑔 is the number of uniquely mutated genes, and 𝑗 = 1, … , 𝑁𝑝. We must scale the
score by the gene length, 𝑙𝑔, measured in nucleotides. This will enable us to compare genes
of varying length.
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Fig. 4.4 Functional impact of mutations. (A)Average number of SNVs, small insertions and deletions
per population. (B) Number of synonymous and non-synonymous mutations in coding regions, and
mutations in non-coding regions, averaged per population. (C) The functional effect of mutations is
estimated by combining evolutionary conservation and protein-domain information.
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At higher levels of biological coarse graining, we can also define pathway-level observ-
ables by aggregating the gene-level counts. The mutated base is aligned in a gene sequence
associated with a certain pathway

𝑆𝑝(𝑔) ≡
𝐿𝑝

∑
𝑖=1

𝑁𝑝

∑
𝑗=1

𝑠𝑝
𝑖 (𝑔𝑖𝑗) =

𝑁𝑝

∑
𝑗=1

1
𝑙𝑝
𝑗

∑
𝑖∈𝑝

𝑠𝑔
𝑖 (𝑔𝑖𝑗) (4.4)

where 𝐿𝑝 is the number of uniquely mutated pathways, and 𝑗 = 1, … , 𝑁𝑝. In the same
vein as gene-level observables, the score needs to be scaled by the mutable target size of the
pathway, defined by the total mutable gene lengths of the pathway members, 𝑙𝑝 = ∑𝑔∈𝑝 𝑙𝑔,
found in the Gene Ontology database [199199, 200200].

This is an additive scoring system, which corresponds to the assumption that mutations
at different sites have occurred independently. With the count scores in place, we would like
to know what the level of functional convergence is. We can form a null sequence set 𝑔∗

assuming that a nucleotide occurs at random with probability 𝑝(𝑔∗
𝑖 ), so the probability of the

whole sequence is 𝑃 (𝑆(𝑔)) = ∏𝐿
𝑖=1 𝑝(𝑔∗

𝑖 ). We can permute the index of the individuals 𝑗
by randomising 𝑔 at every position 𝑖, 𝑔𝑖𝑗 → 𝑔𝑖𝑝[𝑗], where 𝑝[𝑗] is a random permutation of
indices 𝑗 ∈ [1, 𝑁𝑝]. Finally, we can project the set 𝑔∗ to form a distribution 𝑃 ∗(𝑆(𝑔)).

The cumulative distribution of scores provides evidence for parallel evolution, with pop-
ulations accumulating similar mutations in parallel (Fig. 4.54.5). This trend is occurring primar-
ily at the gene and pathway levels, but not at the nucleotide level. By comparing the cumula-
tive difference of the bins 𝐶(𝑆) = ∑𝑆

𝑆0
𝑃 (𝑆(𝑔))−𝑃 ∗(𝑆(𝑔)), we can identify measurable dif-

ferences between the observed and the expected distribution of count scores (Kolmogorov-
Smirnov test, 𝑃 < 0.05). In Figure 4.54.5B, we can observe a significant deviation of the
observed gene-level count score away from the null distribution. Clearly, mutations are not
randomwith regards to the count score at the gene level. As expected, mutations with a large
negative effect and likely strongly deleterious are suppressed. If the score were uncorrelated
to the true fitness contribution of the mutation, then the data would be on a vertical line.
At the pathway level, the target space of our scoring model increases very rapidly with the
number of mutated genes. Unlike the nucleotide-to-gene map which is one-to-one, gene-
to-pathway assignments are many-to-many. This makes any conclusions about the degree
of parallelism across pathways conditional on the number of members of each pathway that
determine the null probability distribution.
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Fig. 4.5 (A) Probability distribution function of count scores for nucleotide-, gene- and pathway-
level observables by environment (HU-C: , HU-D: , RM-C: , RM-D: and SC: ). The ver-
tical lines show the mean of each distribution. (B) The ranked count score, 𝑆(𝑔), (𝑥-axis) is
shown against the empirical cumulative distribution of the difference between the observed and
null count scores, 𝐶(𝑆(𝑔)) (𝑦-axis). From left to right, the cumulative distribution of the bins,
𝐶(𝑆(𝑔)) = ∑𝑆

𝑆0
𝑃 (𝑆(𝑔)) − 𝑃 ∗(𝑆(𝑔)), is shown at the nucleotide, gene and pathway levels. This

statistic compares the distribution of scores, 𝑃 (𝑆(𝑔)), to the null distribution expected by chance,
𝑃 ∗(𝑆(𝑔)), obtained by permuting the populations. If the score is uncorrelated to the true recurrence
of mutations, then the data will be on the flat vertical line.

4.5.2 Recurrence of mutations
Our scoring system suggests that gene-level observables are a useful ‘atomic’ unit to under-
stand the repeatability of molecular changes. Of the 11,601 mutations we identified, 7,484
fall within coding regions. Amongst them, we can hope to distinguish driver mutations from
neutral or deleterious passenger mutations by their recurrence, as non-beneficial mutations
should not independently arise and fix at the same loci as frequently as driver mutations. We
shall, however, keep a sceptic eye on such a gene-centric view that may lead us to ascribe
intrinsic functions to a gene solely based on recurrence. We will postpone characterising po-
tential interactions between genes to Section 4.6.24.6.2. We expect that a large number of replicate
populations will increase our statistical power both to detect true driver genes under selec-
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tion (sensitivity) and to distinguish them from the background of hitchhiking passengers
(specificity).

If we count the number of times each gene is recurrently hit, 1,246 genes are mutated in
more than one population and there is a clear excess of parallel mutations: 886 are present
in two populations, 243 are present in three populations and 117 in four or more popula-
tions. We would like to test these observations against the null hypothesis that those genes
recurrently mutated happen by chance. This model is equivalent to the case of comparing
biased and unbiased multinomial sampling of balls of different colour from an urn. Out of 𝑘
possible genes, we draw 𝑛 mutations with replacement according to the multinomial distri-
bution, where 𝑛 is the number of observed coding mutations in each population. Figure 4.64.6
compares the observed and expected number of genes mutated 𝑘 times. If these mutations
are distributed over the 5,148 coding genes in yeast, we would expect only 57 genes mutated
four or more populations and 15 genes mutated in five populations or above.
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Fig. 4.6 Statistics of mutations in coding regions, showing the number of genes independently mu-
tated in each environment (HU-C: , HU-D: , RM-C: , RM-D: and SC: ). (A, B) The bar counts
indicate the number of genes that are mutated 𝑘 times in independent populations. Null expectations
are generated under a multinomial distribution, distributing the total number of mutations per envi-
ronment among all yeast open-reading frames. (C) Observed vs. expected on the basis of the null
distribution. Circle size indicates the number of genes mutated 𝑘 times in independent populations.

Multi-hit point mutations

We focus on multi-hit genes which are independently mutated in several populations and are
putatively beneficial. Figure 4.74.7 shows the number of mutation hits observed in recurrently
mutated genes. In total, there were 481 coding mutations across 117 genes independently
mutated in four or more populations.



96 Population diversity and the rate of clonal evolution

S
CFig.4.7

Sequence-levelevolution
in

constantand
tim

e-dependentfitnesslandscapes,showing
m
ulti-hitgenesrecurrently

m
utated

in
≥4

popula-
tions.M

iddle:Thedatam
atrix

showsthecountscore𝑠 𝑔𝑖 (𝑔𝑖𝑗 ),with
thenum

berofm
utation

hitsfound
in

population𝑝
ateach

recurrently
m
utated

gene.Thecolourspectrum
correspondsto

theestim
ated

m
utantfrequency.Rowsareordered

along
theleftaxisby

thenum
berofrecurrentm

u-
tationsobserved

in
each

gene,asrepresented
by

theverticalscalewhich
isdelim

ited
by

environm
ent(dashed

lines;HU-C:
,HU-D:

,RM
-C:

,
RM

-D:
and

SC:
).Colum

nsareordered
along

thebottom
axis,delim

ited
by

thetypeofpopulation
(solid

lines;W
A:

,NA:
,W

AxNA:
)and

thefoundergenotype(dashed
lines).Thewild-typecopy

num
berofthefounderisshown

on
thebottom

labels(𝑐0
=

1,solid;𝑐0
=

2,hatched).
Boxed

elem
entsindicate

a
fixed

m
utation

in
a
given

population
( 𝑥

>
0.49

in
haploidsand

𝑥
>

0.99
in

diploids).Top:The
stacked

barsabove
thedatam

atrix
show

thetotalnum
berofm

utationsperpopulation,broken
down

by
fixed

and
polym

orphicm
utations,and

coloured
by

environ-
m
ent.

Right:The
barsto

the
rightofthe

data
m
atrix

reportthe
totalnum

berofsynonym
ous(green)and

non-synonym
ousm

utations(blue)in
genesrecurrently

m
utated

in
each

environm
ent.Thedistribution

and
consequencesofm

utationsin
theserecurrently

m
utated

genesareshown
in

Figure4.8
4.8.



4.5 Variability in clonal evolution across populations 97

Firstly, we observed 362 coding mutations across 74 recurrently hit genes under inhibi-
tion of nucleotide synthesis by hydroxyurea. Overall, mutations in HU-C and HU-D appear
to be generally good at delaying the cell cycle, slowing growth and allowing enough time
for DNA repair before replication. We give a brief overview, as the spectrum of recurrent
mutations is vast. Two of the most commonly mutated genes were DCK1 and PRP8. DCK1
is a guanine nucleotide exchange factor which is mutated in 12 populations. Each of these
mutations were highly penetrant, going to fixation in 8 out of 12 cases, and typically af-
fected both the conserved catalytic region of Dck1p and other domains. We also observed
11 missense variants in the protein kinase Tra1p, which is an essential gene involved in
DNA repair. Two of these mutations occurred in the C-terminal region that is related to
phosphatidylinositol 3-kinases [201201]. Missense variants in ARE2 were also recurrent and
much more common in HU-D than HU-C (11 vs. 2 mutations). Finally, recurrent missense
variantss in the AMN1 gene may affect the exit of mitosis. Similar amino acid changes to
one of the mutated residues we observe (D377H) have been reported to cause widespread
gene expression changes in naturally occurring variants [202202, 203203].

Secondly, there were 97 coding mutations in RM-C and RM-D that were recurrently
found across 15 genes, particularly targeting components of the target-of-rapamycin (TOR)
pathway. SNVs introduced stop codons or frameshift deletions in FPR1, which is a binding
partner of rapamycin that together in a complex inhibits the TOR pathway. There were 5
loss-of-function mutations of the nutrient-responsive kinase Tor1p that have been shown to
increase replicative lifespan [204204]. In Chapter 55, we will report validations of FPR1 and
TOR1 performed by F. Salinas (Institute for Research on Cancer and Aging of Nice, France)
that confirm their role as driver genes. Putative loss-of-function mutations in PMR1 were
the most frequent, introducing stop codons or frameshifts in the cation-transporting AT-
Pase domain (Fig. 4.84.8B). PMR1 is part of the TOR pathway and is a negative regulator of
TORC1 [205205]. Therefore, mutations in PMR1 most likely decrease or abolish the activity of
the gene, and do so in a dose-dependent fashion as they were more prevalent in RM-D than
RM-C (12 vs. 4 mutations). This protein is required for calcium and magnesium transport,
and 13 out of 16 mutations disrupted either the Ca2+ or Mn2+-transporting domains [206206].
The Gln3p phosphatase, which is phosphorylated by the TOR kinases Tor1p and Tor2p,
was mutated in 5 populations, and is known to induce rapamycin resistance [207207]. Other
serine/threonine protein kinases that play a role in sensing amino acid deficiency were re-
currently mutated (Gcn1p, Gcn2p). Notably, mutations in these protein kinases may delay
protein synthesis, as they phosphorylate the necessary factor to initiate protein translation
(elF2). Finally, both members of the Rpd3-Sin3 histone deacetylase complex – which is
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required for adaptation to nutrient limitation – had recurrent loss-of-function mutations that
have been shown to yield them unable to carry out rapamycin-induced repression of ribo-
somal protein genes [208208]. This may be an alternative adaptive strategy to changes in TOR
signalling.

Certain genes were ubiquitously mutated in all environments, even in the absence of
stress (IRA1, IRA2 and RAS2), all of which are part of the Ras/PKA pathway and are known
to regulate cell growth in response to glucose availability [7575, 188188, 209209]. These genes are
also recurrently mutated in RM-C and RM-D as inhibition of the TOR proteins by rapamycin
leads to a transcriptional response similar to nutrient deprivation.

The set of recurrent mutations differs between pairs of founders (Fig. 4.74.7, top panel).
Divergent genotypes typically follow different paths, with WA having on average 0.5 fixed

Control (SC)

Fig. 4.8 Distribution and consequences of mutations in recurrently mutated genes. We observed 481
coding mutations across 89 genes recurrently hit in ≥5 populations in (A) hydroxyurea (HU-C, HU-
D), (B) rapamycin (RM-C, RM-D) and (C) the control environment (SC). The bar height indicates the
number of substitutions observed per codon, which is also shown in brackets. Red colours indicate
non-synonymous changes; blue colours indicate synonymous changes. Fixed mutations are high-
lighted by white dots. The gene diagrams show the location of encoded protein domains from start
to stop codon. The domain locations are annotated from Pfam release 30.0 [http://pfam.xfam.orghttp://pfam.xfam.org].

http://pfam.xfam.org
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mutations per population involving 8 distinct genes, while NA have on average 1.2 fixed
mutations in 4 distinct genes that do not overlap with recurrent mutations in WA. Replicates
of the recombinant cross are similar amongst themselves, having on average 1.1-1.5 drivers
per sample distributed over 33 distinct genes. This suggests that the vast number of unique
founder sequences covering the fitness landscape yield many paths accessible to adapt. Seg-
regants however are quite variable, with the least mutated founder (WAxNA-69) having on
average 0.4 fixed mutations per population involving 3 distinct multi-hit genes, while the
most mutated founder (WAxNA-129) has on average 1.2 fixed mutations across 16 distinct
multi-hit genes. Certain segregant genotypes show a degree of entrenchment in genotype
space. Two replicates of WAxNA-117 in HU-C each acquired two missense variants in the
same gene: GCN1 (P582L, D1018Y) and GLN4 (R375P, T492), respectively. This was
even more frequent in HU-D, suggesting that dynamic regimes may limit the number of
positively selected paths available: e.g., two non-synonymous ARE2 mutations in WAxNA-
52 (G525S, W625C), and similarly for TRA1 in WAxNA-33 (K1475, S3228F), STV1 in NA
(L230*, D502H), DOP1 in WAxNA-28 (2 × G1681V) and YAL064W-B in WAxNA-124
(V77, P78S).

Multi-hit copy-number aberrations

To determine the role of copy-number aberrations, we reconstructed the subclone-specific
total copy number (see Section 4.4.24.4.2) and calculated the mean copy-number difference per
chromosome, ⟨𝑐𝑖 − 𝑐0⟩𝑖∈𝐶 , rounded to the nearest integer. We observed recurrent copy-
number aberrations across replicate populations. Figure 4.94.9 shows the number of copy-
number gains and losses observed in each chromosome. There were chromosomal gains in
401 out of 632 haploids (64%) and 381 out of 547 diploids (67%). Bias correction success-
fully accounted for the technical variation in read depth of more than 90% of populations,
most of which divide asynchronously. However, the biological variation in read depth in
synchronous populations have characteristic biases near origins of replication, which to-
gether with the technical noise compromised the subclonal copy-number reconstruction. As
a result, some copy-number losses may be false positives, particularly in HU-C and SC.

Gains of chromosomes VI and X were particularly prevalent in HU-C and HU-D (n>2n,
n>3n, 2n>3n and 2n>4n). In addition, there were frequent gains in chromosomes VIII and
XII in RM-C and RM-D (n>2n and 2n>3n). These aneuploidies can provide a simultaneous
increase in the number of copies of putative driver genes (and thus their expression dosage).
Chromosomal losses were rarer, never found in haploids and only observed in 202 out of
547 diploids (37%).
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The set of recurrent copy-number aberrations also differs between pairs of founders, just
like we saw it was the case with mutations (Fig. 4.94.9, top panel). Divergent genotypes typi-
cally follow starkly different paths. Copy-number gains of chromosomes VIII and XII appear
to bemutually exclusive and specific toWA andNA backgrounds, respectively. The genomic
structure may therefore constrain the mutational patterns that a population can acquire, thus
limiting or opening new evolutionary paths that it can follow.

4.5.3 Fixation of mutations and genetic hitchhiking
To analyse the role of natural selection in shaping the global mutation frequencies, we can
examine the consequences of a selective process acting differentially on genes across the
genome using an evolutionary model. The frequency of mutations in a population is still a
‘static’ measure, so we will use this to show how we can extract information on the fate of
mutations from ensembles of subclones across populations.

To quantify the extent to which the evolutionary dynamics is dominated by selective
sweeps, we can divide mutations between those acquired before the last selective sweep,
which are shared by all cells within the population (fixed), and new variants that occurred
after the emergence of the common ancestor (polymorphic). Fixed mutations are expected
to occur in ∼100% of sequences in haploid individuals, and in ∼50% of diploid individuals.
Overall, we identified 2,325 mutations that fixed in any one population (13% of all detected
mutations), with an average of 3.4±2.9 fixed mutations and 8.1±6.9 polymorphic mutations
per population. Fixed mutations were likely acquired either before or during the most recent
complete selective sweep. This suggests that there is massive hitchhiking of multiple muta-
tions in one or several lineages (Fig. 4.104.10A). A population acquires a driver, then acquires
passengers in the meantime before the next driver arrives. Given the extent of clustering of
mutation fixations, however, beneficial mutations may often co-hitchhike with other drivers,
particularly in HU-C (3.6 ± 2.6 fixations) and HU-D (6.0 ± 3.7 fixations). Conversely, only
1 to 2 mutations are simultaneously fixed in most populations in RM-C (2.0 ± 1.2), RM-D
(2.0 ± 1.5) and SC (1.7 ± 1.4). These rare drivers reside in genomes alongside 4.5 passen-
ger mutations on average. The number of fixation events per population is non-Poisson in
HU-C and HU-D, which suggests that clonal interference is playing a major role and many
beneficial mutations will be wasted to competition with other lineages (see e.g., Strelkowa
and Lässig [210210] for a similar observation).

Non-synonymous mutations in multi-hit genes are more likely to fix in the population
(118/401, 29%) compared to other non-synonymous mutations (1,346/7,003, 19%). Syn-
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onymous variants also fix more often than expected under neutrality, suggesting that many
neutral mutations hitchhike with driver mutations that eventually fix. Paradoxically, popu-
lations which appear to be adapting faster in HU-C and HU-D based on the number of non-
synonymous nucleotide fixations may also be accumulating significant deleterious loads of
hitchhiking passengers. To quantify the overrepresentation of non-synonymous mutations
among diverse positions where mutations are under strong positive selection, we binned
the fraction of mutated reads in bins of size [𝑥 − 𝛿𝑥, 𝑥 + 𝛿𝑥], where 𝛿𝑥 = 0.1. The con-
trasting behaviour of non-synonymous mutations compared to synonymous and non-coding
mutations can be observed from the histogram of mutation abundance – also known as the
frequency spectrum – shown in Figure 4.114.11 for all replicate populations of a given ploidy
in each environment. Most mutant clones detected in our study are relatively small, with a
median frequency of 29%. However, the range of clone sizes is wide, spanning from one
hundred thousand (𝑥 ≃ 0.2) up to several million cells (𝑥 ≃ 1.0). Figure 4.114.11A shows that
the clone size distribution is heavy tailed, although our data provides a distorted picture ow-
ing to low sensitivity to small clones. While the spectra agree for frequencies below 20%,
non-synonymous mutations are strongly overrepresented at higher frequencies, especially in
RM-C and RM-D (Fisher’s exact test at 𝑥 = 0.5, 𝑃 < 10−4). This corroborates the inter-
pretation that sweeping non-synonymous mutations more often ‘drag’ linked synonymous
mutations to fixation in hydroxyurea than in rapamycin.

Idiosyncratic, population-specific mutations can have stronger effects in hydroxyurea
than recurrentlymutated genes, of which there are less than 10 that reach fixation (Fig. 4.114.11B).

SC

Fig. 4.10 Number of fixed and polymorphic mutations per population, broken down by (A) environ-
ment, (B) founder ploidy and (C) founder genotype (see Figure 4.14.1). Mutations found at frequency
𝑥 > 0.99 in haploids and 𝑥 > 0.49 in diploids are considered to be fixed ( ), otherwise they are
considered polymorphic ( ). The counts are displayed with jitter along the horizontal axis for clar-
ity. Mean and 25%/75% percentiles are shown, with means as thick horizontal black lines and the
inter-quartile range delimited by thin lines.
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BA

SC

Control (SC)

SC

Fig. 4.11 Frequency spectrum of classes of mutations according to their variant allele frequency,
broken down by environment and the ploidy of the founder. The analysis is limited to mutant clones
above frequency 𝑥 > 0.1. (A)Mutations are binned by their variant allele frequency 𝑥 in bins of size
𝛿𝑥 = 0.1 (𝑥-axis), shown against the normalised fraction of mutations per bin (𝑦-axis). The binned
counts are coloured by the mutation effect (non-synonymous: , non-coding: , synonymous: ).
(B) Frequency of recurrent coding mutations in genes mutated in ≥4 populations (described in Fig-
ure 4.74.7). The frequency 𝑥 is shown for replicate populations that acquired a mutant variant of a gene
(𝑥-axis); mutated genes are grouped together by environment and sorted by the median mutation fre-
quency (𝑦-axis), which is indicated by grey markers. Mutations in haploid founders are expected to
fix at frequency 𝑥 = 1.0 (circles) and at 𝑥 = 0.5 in diploid founders (diamonds). The mutation counts
are aggregated on the right margin, coloured by fixation status (fixed: , polymorphic: ).
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This suggests that there is no simple relationship between the frequency of mutations and
their selective advantage in conditions of nucleotide deprivation. In contrast, many fewer
genes are recurrently mutated in rapamycin, yet the probability of fixation is much higher.
Members of the TOR pathway, viz., FPR1, TOR1 or PMR1, are part of a reduced group of
8 genes that reach fixation more than 50% of times (Fig. 4.114.11B).

4.6 Parallelism and co-occurrence of mutations
Thus far, our scoring for putatively selected mutations assumed the simplest additive model
that a single mutation confers a fitness advantage by itself across founder genotypes. Genes
do not act on their own, so the alternative hypotheses are that multiple mutations interact
epistatically. Correlated behaviour in mutations at different positions in the genome carries
information about functional and structural constraints acting at these positions.

4.6.1 Divergence of populations
Understanding the correlation structure between populations is crucial to capture the prop-
erties of the fitness landscape. To begin with a naïve examination of the genotype space,
we compute a matrix (Π) of similarity between pairs of populations, such that Π𝑝1,𝑝2 gives
the fraction of amino acids that are common between the populations 𝑝1 and 𝑝2. This in-
formation can be extracted by calculating the number of similar mutations found between
each pair (𝑝1, 𝑝2) of populations. The number of shared mutations in a subset of populations
is counted based on the gene-level sequences. Given a set 𝑃 of populations, we define a
correlation matrix between pairs of populations (𝑝1, 𝑝2) as

Π(𝑃 )
𝑝1𝑝2 = ⟨𝑋𝑝1,𝑔𝑋𝑝2,𝑔⟩𝑔∈𝐺

− ⟨𝑋𝑝1,𝑔⟩𝑔∈𝐺 ⟨𝑋𝑝2,𝑔⟩𝑔∈𝐺
. (4.5)

The histogram shows a monotonically decreasing distribution with groups of populations
showing mean pairwise identities at recurrently hit loci ranging from 0.1 to greater than
0.5 (Fig. 4.144.14A). This pattern suggests that the majority of founders are distant in genotype
space, but certain genotypes in rapamycin form multifarious clusters. We can further ex-
amine this assertion by direct visualisation of the sequence correlation matrix averaged by
founder, Π(𝐹 )

𝑓1𝑓2
(Fig. 4.144.14B). Several unique mutations are shared between different popula-

tions, suggesting that theymay occur by convergent evolution. For instance, WAxNA-16 and
WAxNA-112 acquired similar SNVs and indels in rapamycin (Fig. 4.124.12B). These mutations
do not stem from a common source, as we are only considering newly acquired mutations.
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However, it is also possible that these mutations may be statistically more frequent and likely
to arise in two populations independently. On the contrary, divergent genotypes WA and NA
were less likely to converge upon the same solution, as evidenced by the sparse off-diagonal
elements in Figure 4.124.12B.

Given two populations 𝑝1 and 𝑝2, each with a genome with 𝐿 sites, we defined Π(𝑃 )
𝑝1𝑝2 as

the number of pairwise similarities between them. For 𝑁𝑝 populations, the average number
of pairwise mutations is

Π(𝑃 ) = (
𝑁
2 )

−1
∑

{𝑝1,𝑝2}

Π(𝑃 )
𝑝1𝑝2

= 2
𝑁(𝑁 − 1) ∑𝑝1

∑𝑝2>𝑝1

Π(𝑃 )
𝑝1𝑝2

where the sum is over all pairs (𝑝1, 𝑝2) ∈ {1, 2, … , 𝑁𝑝} evaluated over the upper triangular
matrix of Π(𝑃 )

𝑝1𝑝2 , the diagonal should be ignored (𝑝1 ≠ 𝑝2) and the sum normalised by the
total number of pairwise combinations.

Fig. 4.12 Pairwise similarity Π(𝐹 )
𝑓1𝑓2

between any two founder genotypes at recurrently mutated loci
found in ≥4 populations. (A) Marginal count of the average number of multi-hit genes mutated in
populations derived from any two founders, grouped by environment. (B) The heatmap shows the
average number of mutations shared by two populations descended from the founders indicated in
the row and column headers. The colour gradient represents the mean number of shared mutations in
multi-hit genes. The upper triangular matrix shows convergence for populations in hydroxyurea (HU-
C and HU-D: ) and the lower triangular matrix in rapamycin (RM-C and RM-D: ). Convergence in
the control environment is not shown, as only 17 pairs of founders shared patterns of mutated genes.
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We would like to know whether two populations derived from the same founder are
more likely to follow the same evolutionary path than two populations coming from differ-
ent founders. From our definition of Π(𝑃 )

𝑝1𝑝2 , the average number of pairwise similarities in
mutated genes between any two populations descended from the same founder is

Π(𝐹 ) = ∑
𝑓1

(
𝑁𝑓1

2 )
−1

∑
{𝑓1,𝑓2}

Π(𝐹 )
𝑓1𝑓2

= ∑
𝑓1

2
𝑁𝑓1(𝑁𝑓1 − 1) ∑

𝑓1>𝑓2
∑

{𝑝1,𝑝2}∈𝐹
Π(𝑃 )

𝑝1𝑝2

where we sum over the block-diagonal elements of the upper triangular matrix that corre-
spond to populations (𝑝1, 𝑝2) derived from the same founder 𝐹 . The normalisation factor is
limited to the total number of pairwise combinations for each founder 𝐹 .

We calculated the null distribution of Π(𝑃 ) by randomly distributing the total number
of putatively functional mutations found in each population across all yeast open-reading
frames using the multinomial distribution. Since we want to compare the degree of conver-
gence between and within founders, the null distribution of Π(𝐹 ) can be obtained by random
permutation of the founder labels.

There is a significant degree of convergence between replicate populations at the gene
level (Fig. 4.134.13A). Across founders, populations have more mutations in common than is
expected by chance, especially in hydroxyurea (Π(𝑃 ) = 3.01 × 10−1) and rapamycin (Π(𝑃 ) =
8.28 × 10−2), and less so in the control environment (Π(𝑃 ) = 3.19 × 10−2). In contrast, the
null distribution for founder-specific convergence depends on the degree of overall conver-
gence and is dominated by the large number of replicates of the recombinant cross. These
founders form a ‘genotype cloud’ in sequence space and we only detect a small set of clones
that eventually sweep in the population, without an evident influence of founder identity. It
will be necessary to assess founder-specific convergence excluding these populations. As
it stands, founder-specific convergence is low and most replicate populations derived from
the same founder appear to take largely independent paths with only few exceptions that we
noted earlier (Fig. 4.134.13B).

4.6.2 Correlations between mutations
Finally, we compare mutation patterns across different genes. We build a correlation matrix
such that Π(𝐺)

𝑔1𝑔2 contains the number of times gene 𝑔1 has been found mutated in the same
population as gene 𝑔2. Given a set of genes 𝐺, we define a correlation matrix between pairs
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Hydroxyurea

(HU-C, HU-D)

Rapamycin

(RM-C, RM-D)

Control

(SC)

Fig. 4.13 Degree of parallelism and convergence at the gene level as measured by (A) the average
number of similar genes mutated between populations, Π(𝑃 ), and (B) the average number of similar
genes mutated between populations derived from the same founder, Π(𝐹 ). Vertical lines indicate the
observed values of Π(𝑃 ) and Π(𝐹 ) in our dataset across environments (HU: , RM: , SC: ). The
histograms show the null distributions for these metrics, estimated from 104 randomisations. Note
that the Π(𝐹 ) null distributions are conditional on the observed degree of overall convergence.

of genes (𝑔1, 𝑔2) as

Γ(𝐺)
𝑔1𝑔2 = ⟨𝑋𝑝,𝑔1𝑋𝑝,𝑔2⟩𝑝∈𝑃

− ⟨𝑋𝑝,𝑔1⟩𝑝∈𝑃 ⟨𝑋𝑝,𝑔2⟩𝑝∈𝑃
, (4.6)

where the first term represents the joint frequency of having mutant alleles in genes 𝑔1 and
𝑔2. The second term is the product of the average mutation frequency of each gene inde-
pendently. Averages are made over all genes 𝑔 in the set 𝐺 under consideration. We do not
want to count the same gene pair twice, s.t. Γ𝑔1𝑔2 = Γ𝑔2𝑔1 so we build a triangular matrix
under the constraint that 𝑔1 > 𝑔2. Ideally, we would like to discover pathways solely by
analysing gene groups and use the topology of gene interactions given enough samples, but
we cannot attempt this without prior information. Considering that 3% of genes (117/3,594)
are hit four times or more, only few genes will be informative to detect genetic interactions,
so 𝐺 is taken to be the set of environment-specific multi-hit genes in ≥4 populations rather
than all mutated genes.
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Similarly, to build a correlation matrix of copy-number aberrations, Π(𝐶)
𝑐1𝑐2 contains the

number of times chromosome 𝑐1 has been found aberrated in the same population as chro-
mosome 𝑐2. Given a set of chromosomes 𝐶 , we define a correlation matrix between pairs of
chromosomes (𝑐1, 𝑐2) as

Γ(𝐶)
𝑐1𝑐2 = ⟨𝑋𝑝,𝑐1𝑋𝑝,𝑐2⟩𝑝∈𝑃

− ⟨𝑋𝑝,𝑐1⟩𝑝∈𝑃 ⟨𝑋𝑝,𝑐2⟩𝑝∈𝑃
, (4.7)

with similar properties as the gene correlation matrix. To detect co-occurring copy-number
aberrations, we consider all pairwise interactions between chromosomes in set 𝐶 .

Inspection of the correlation matrix clearly indicates that few positions show significant
correlation to other loci elsewhere in the genome (Fig. 4.144.14B). Amongst them, we expect
that pairs of genes that tend to be co-mutated most likely operate in different pathways.
Conversely, pairs of genes exhibiting mutual exclusivity may be functionally redundant, po-
tentially because they act in the same pathway. We therefore compared, for each pair of
driver mutations, the extent to which their sets of target genes overlapped. The number of
mutations acquired per population is scarce to determine the complete spectrum of adap-

SC

Hydroxyurea

(HU-C, HU-D)

Fig. 4.14 Pairwise sequence similarity between (A, B) any two recurrently mutated genes. Correla-
tions between any two recurrently mutated genes – mutated in ≥4 populations – are measured by the
correlation matrix, Γ(𝐺)

𝑔1𝑔2 (Equation (4.64.6)). (A) Total number of co-mutated pairs observed 𝑘 times
(𝑥-axis) and the frequency of each in the dataset (𝑦-axis), grouped by environment (HU: , RM: ,
SC: ). (B) The heatmap shows the total number of pairwise mutations between two multi-hit genes
in hydroxyurea, indicated by the discrete scale on the colour bar. The triangular matrix shows con-
vergence for populations in hydroxyurea (HU-C and HU-D: ). Convergence of multi-hit genes in
rapamycin is not shown.
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tive double mutants. However, a small subset of genes indicate preferential co-mutation,
while no patterns of mutual exclusivity can be resolved (Fig. 4.144.14A). Six gene pairs are
independently co-mutated three or more times in HU-C and HU-D: ARE2-ARO1, ARE2-
TAO3, BBC1-TRA1, DCK1-GLN4, MCM2-TRA1, PRP8-SIN3 and PRP8-YOL057W. For
chromosome-level copy-number changes, we observed chromosomes VIII and XII to be
frequently co-amplified in rapamycin (data not shown). These pervasive chromosomal gains
may act as transient responses to stress [211211]. It remains to be shown whether these corre-
lation patterns are functionally significant, and whether we can distinguish them from cor-
relations that could arise due to limited sampling of populations or due to kinship between
founder genotypes.

4.7 Summary
In this chapter, we have presented a comprehensive portrait of evolutionary dynamics of the
genome by directed evolution and selection, using budding yeast as a model organism. We
focused on understanding the selective constraints under inhibition with antimicrobial drugs
which impose trade-offs at several rate-limiting steps in the cell cycle. To explore a broad
spectrum of evolutionary outcomes, selection starts with a pool of sequences derived from
two diverged genotypes that are random at one in every 230 bp. This allows for a maximally
unbiased sampling of genotype space. We can sample over 107 genome sequences, and after
several cycles of selection, one can recover the descendant clones of one or several functional
genomes from the founder population. The ‘swarm’ of genotypes in each of the founders is
designed so the coverage of genotype space ranges from uniformly sampled (𝑁𝑐 = 107) to
vanishingly small (𝑁𝑐 = 1).

We observed recurrent mutation patterns across populations by characterising genetic
variants and tracking the fate and dynamics of mutations over a period of 93 days. To iden-
tify driver mutations under selection from hitchhiking passengers, we compared independent
realisations that followed parallel adaptive paths to a given selection pressure. Parallel geno-
typic paths showed convergence at the level of genes, suggesting that gene-level observables
act as functional units of the genome and providing a sensible sequencemodel. The spectrum
of parallel adaptive mutations in hydroxyurea was highly variable between replicate popu-
lations, comparable to the substantial variability observed with other antimicrobial drugs
(e.g., chloramphenicol and doxycycline) [192192]. Conversely, rapamycin resistance repro-
ducibly arose by repeatable mutational paths, similar to other drugs with a narrow spectrum
of escape mutations (e.g., trimethoprim and ciprofloxacin) [192192].



110 Population diversity and the rate of clonal evolution

Replicate populations derived from the same founder systematically acquired parallel
mutations in similar genes, suggesting that they explore a neighbouring genotype space com-
mon to all of them. The rate at which they explore the genotype space differs based on the
ensemble diversity. On average, the length of mutational paths required by genetically di-
verse populations to adapt was shorter than in genetically homogeneous populations, though
very unpredictable between replicate populations. Conversely, those same genotypes in iso-
lation typically became entrenched in a local fitness maximum and required similar numbers
of mutations to adapt, which demarcates the limits to the predictability of outcomes at the
sequence level. This suggests that co-existing genotypes in a mixed population, rather than
isolated genotypes, accelerate the search for adaptive mutations in a fitness landscape.

In summary, we present the first comprehensive characterisation of the role of clonal
heterogeneity in the acquisition of antimicrobial resistance, and of the influence of drug-
dosing schedules on the evolutionary dynamics of escape mutations. Understanding the
ramifications of genetic heterogeneity is one of the most pressing issues in the treatment
with antimicrobial and chemotherapy drugs. We have shown that controlled evolutionary
experiments in model systems are an important way to build a coarse-grained quantitative
description of complex systems that otherwise may not be tractable experimentally. Methods
that can track the evolution of macroscopic subclones and estimate their fitness advantage are
already being used to understand microbial and cancer evolution [212212, 213213]. For instance,
profiling tumours for pre-existing drug-resistant subclones which have been correlated with
worse outcomes is already improving estimates of survival times before anti-EGFR ther-
apy [214214, 215215]. Future studies should strive to make accurate and falsifiable predictions of
evolutionary dynamics over short timeframes in a range of rapidly adapting populations.



Chapter 5
Dynamics of selective sweeps and the fate of new mutations

5.1 Introduction
The presence of genetic variation conditions the fate of new mutations. In this chapter we
analyse how the interaction between existing and acquired mutations gives rise to com-
plex evolutionary dynamics from experimental tests on directed evolution in budding yeast
(S. cerevisiae). We first quantify the time evolution of pre-existing and new mutations and
measure the changes to the fitness distribution. We use the results to parameterise the char-
acteristic timescale of selection and to distinguish driver and passenger mutations based on
the theory presented in Chapter 22. We discuss the emergence of macroscopic subclones
driven by new mutations and the role that genomic instability plays in accelerating sequence
evolution and broadening the fitness distribution. We then compare the candidate driver mu-
tations predicted by the driver-passenger model with the fitness effects of genetic constructs
engineered by our collaborators. We end the chapter on the development of an experimen-
tal test to decompose the fitness contributions of pre-existing and de novo mutations using
a recombinant sequence ensemble. Based on the decomposition of fitness components we
demonstrate that the underlying fitness variance can set a selective threshold on new muta-
tions, confirming recent results from population genetic theory.11

This work has been done in collaboration with V. Mustonen (V.M.) and A. Fischer (A.F.)
at the Wellcome Trust Sanger Institute (Cambridge, UK), F. Salinas (F.S.), J. Li (J.L.) and
G. Liti (G.L.) from the Institute for Research in Cancer and Aging of Nice (France), and

1Data analyses related to this chapter are available from the GitHub code repository
[https://github.com/ivazquez/PhD-thesis/tree/master/Chapter5https://github.com/ivazquez/PhD-thesis/tree/master/Chapter5].

https://github.com/ivazquez/PhD-thesis/tree/master/Chapter5
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E. Alonso-Perez (E.A.-P.) and J. Warringer (J.W.) from the University of Gothenburg (Swe-
den).11

5.2 Maintenance and loss of genetic variation
Consider the prototypical scenario that arises when individuals in a population acquire her-
itable genetic or non-genetic changes to adapt and thrive in a new environment. Since the
seminal findings by Salvador Luria and Max Delbrück that phage-resistant bacteria can ac-
quire adaptive mutations prior to selection [216216], measuring the fitness effects and dynamics
of mutations has been key to map the principles of evolutionary adaptation. The focus has
typically been on characterising few mutations at a time under the implicit assumption that
beneficial mutations are rare, treating pre-existing and acquired mutations separately. How-
ever, manymutations are often simultaneously present in a population, which result in fitness
differences between individuals that selection can act upon.

Given that mutations in asexual populations are physically linked in the genome, the fates
of pre-existing and de novo mutations are mutually dependent and selection can only act on
these sets of variants in their entirety. Genome evolution experiments on isogenic popula-
tions have revealed both adaptive sweeps and pervasive clonal competition in large popula-
tions where the mutation supply is high. This phenomenon, known as clonal interference,
takes place as mutations in different individuals cannot recombine via sexual reproduction
and is now relatively well understood both experimentally and theoretically [188188, 217217, 218218].
Experiments on populations with extensive genetic variation have demonstrated that bene-
ficial mutations expand in a repeatable way [7575]. However, the role of de novo mutations
has been negligible in these experiments, either because they were too short or related to the
selective constraints used. As we showed in Chapter 44, it is becoming clear from experi-
mental studies that extant genetic variants are sufficient to steer the fate of populations into
different evolutionary paths. A study which was able to anticipate new mutations found that
one or few genetic variants were sufficient to affect the fate of subsequent beneficial muta-
tions, hinting that the joint dynamics of new mutations have to be considered in the light of
pre-existing variation [105105].

1I.V.-G., V.M. and G.L. designed research; F.S. and J.L. maintained the cell culture and extracted DNA
for sequencing, F.S. engineered the genetic constructs for validation, J.H. and I.V.-G. constructed the recom-
binant library, J.L. carried out the Luria-Delbrück fluctuation assay, E.A.-P. and I.V.-G. recorded phenotypic
measurements, I.V.-G., V.M. and A.F. developed theory, implemented computational methods and analysed
data.
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The ensuing interaction between existing and subsequent mutations has been theoreti-
cally considered under different population genetic scenarios which we discussed in Chap-
ter 22. A key theoretical prediction is that a new beneficial mutation will only establish if it
has a selective advantage greater than a characteristic value that depends on the underlying
fitness distribution [219219, 220220]. However, this is an important hypothesis that remains to be
tested: namely, whether genetic diversity can change the evolutionary fate of new adaptive
mutations by limiting the number of backgrounds where they can still outcompete the fittest
extant individuals. Understanding the impact of genetic heterogeneity on adaptive dynamics
is particularly urgent as recent findings indicate that it can play a major role in the develop-
ment of resistant bacterial infections [177177] and in cancer recurrence [3838, 137137].

We can delineate two lines of enquiry into this hypothesis: (i) To what extent can the
adaptive response be attributed to genetic variation already present in a population and how
much to acquired? (ii) How do the aggregate effects of pre-existing variation influence the
fate of new mutations?

5.3 Experimental design
To address these questions, we investigated the interaction between pre-existing (or back-
ground) genetic variation and new mutations in a population of diploid cells with unique
combinations of alleles under selection for antimicrobial resistance. The cells originate
from two diverged S. cerevisiae strains (WA andNA) and their recombinant cross (WAxNA),
which were already introduced in Section 4.34.3. Starting fromWA, NA andWAxNA founders,
we asexually evolved populations of ∼107 cells in serial batch culture with inhibitors of nu-
cleotide synthesis (hydroxyurea) and of cellular growth (rapamycin) at concentrations im-
peding, but not ending, cell proliferation (Fig. 5.15.1). We derived replicate lines of WA, NA
(2 each in hydroxyurea and rapamycin) and WAxNA (6 in hydroxyurea, 8 in rapamycin and
4 in a control environment), propagating them for 32 days in 48-hour cycles (∼200 gener-
ations). We monitored evolutionary changes by whole-genome sequencing of populations
after 2, 4, 8, 16 and 32 days, as well as clonal isolates at 0 and 32 days. Finally, we measured
the rate of growth at the initial and final time point for a subset of populations, and quantified
the relative fitness contributions of background and de novo variation using a genetic cross.
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Fig. 5.1 Schematic diagram of the divergence, crossing and selection phases of the experiment. Two
diverged budding yeast (S. cerevisiae) lines (WA and NA) were crossed for twelve rounds, generating
a large ancestral population of unique haplotypes (see Figure 4.14.1 for a full description). These diploid
cells were asexually evolved for 32 days in stress and control environments and their adaptation was
studied by whole-population sequencing, isolate sequencing and phenotyping. Populations evolved
resistant macroscopic subclones driven by individual cells with beneficial genetic backgrounds (i.e.,
parental allele configurations) and by beneficial de novo mutations that provided a resistance pheno-
type.

Genome sequencing

We followed the evolution of these populations over the course of the experiment using
whole-genome sequencing. Whole-population sequencing was performed after 𝑡 = (0, 2, 4,
8, 16, 32) days, and single-cell derived clones were also sequenced at 𝑡 = 0 days and 𝑡 = 32
days (Table 5.15.1). Genomic DNA was extracted from the samples using the ‘Yeast Mas-
terPure’ kit (Epicentre, USA). The samples were sequenced with Illumina TruSeq SBS v4
chemistry, using paired-end sequencing on Illumina HiSeq 2000/2500 at theWellcome Trust
Sanger Institute.11 WA and NA populations are labelled by their background, the environ-
ment in the selection phase and the selection replicate, e.g., NA RM 1. WAxNA populations
are labelled by background, number of crossing rounds, cross replicate, selection environ-
ment and selection replicate, e.g., WAxNA F12 2 HU 1. Time series samples are labelled
from T0 to T32 and isolate clones carry a suffix, e.g., C1, C2, etc. Read alignment and
detection of pre-existing and de novo variation were carried out as described in Section 4.44.4.

1Sequence data are available from the European Nucleotide Archive, under study accession
no. PRJEB2608PRJEB2608 for the parental strains and the ancestral individuals, and study accession no. PRJEB4645PRJEB4645
for the time-resolved populations. Mutation calls for the two aforementioned datasets are available under study
accession no. PRJEB13491PRJEB13491. Instructions to download the data and sample labels are available on the GitHub
code repository [https://github.com/ivazquez/PhD-thesis/tree/master/Chapter5https://github.com/ivazquez/PhD-thesis/tree/master/Chapter5].

http://www.ebi.ac.uk/ena/data/view/PRJEB2608
http://www.ebi.ac.uk/ena/data/view/PRJEB4645
https://www.ebi.ac.uk/ena/data/view/PRJEB13491
https://github.com/ivazquez/PhD-thesis/tree/master/Chapter5
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Table 5.1 Summary of populations and clonal isolates analysed by whole-genome sequencing. The
best-fit number of subclones 𝑁𝑐 are shown together with the total clonal fraction, 𝐹 𝑡 = ∑𝑛

𝑗=1 𝑓 𝑡
𝑗 , after

32 days of selection. Per population, the union set of driver mutations found by whole-population
and clone genome sequencing is shown. The genotypes of driver mutations found in clonal isolates
were validated by Sanger sequencing (labelled by §). WA/WA populations in hydroxyurea did not
survive beyond 4 days of selection (labelled by †).

Time Background Cross Selection Clonality Drivers
Gen. Rep. Environment Rep. Isolates 𝑁𝑐 𝐹 𝑡

0 days WA/WA – – YPD – – – –
NA/NA – – YPD – – – –
WAxNA F12 1 YPD – C1–C96 – –

2 YPD – C1–C96 – –
2–32 days WA/WA – – YPD+HU 1† – – –

2† – – –
YPD+RM 1 – – – TOR1 W2038L§

2 – – – TOR1 F2045L§

NA/NA – – YPD+HU 1 – – – RNR4 R34I§, K114M§

2 – – – RNR4 R34I§, K114M§

YPD+RM 1 – – – FPR1 K11fs§; TOR1 S1972R, W2038L§

2 – – – FPR1 M1I§; TOR1 S1972I§
WAxNA F2 1 YPD+RM 1 – 2 0.74 TOR1 W2038L

2 – 1 0.10
YPD 1 – 0 –

F12 1 YPD+HU 1 C1–C2 2 0.58 RNR4 R34G§, R34I§
2 C1–C2 1 0.20 RNR4 R34I§
3 C1–C6 2 0.65 RNR2 Y169H§; chr. II LOH

YPD+RM 1 C1–C3 3 0.85 CTF8NA; FPR1 W66*§, W66S
2 C1–C6 2 0.20 CTF8NA; FPR1 W66S; TOR1 W2038L§

3 C1–C3 2 0.72 CTF8NA; FPR1 W66*§; TOR1 S1972I
4 – 2 0.81 CTF8NA; FPR1 W66*§

YPD 1 – 0 –
2 – 0 –

2 YPD+HU 1 C1–C2 2 0.63 RNR4 R34G§, R34I§
2 C1–C4 2 0.32 RNR2 N151H, T206I§; RNR4 R34I§
3 C1–C6 2 0.34 RNR2 E154G§; RNR4 R34I§

YPD+RM 1 C1–C3 4 0.93 CTF8NA; FPR1 W66S, W66*§
2 C1–C6 1 0.10 CTF8NA; TOR1 W2038C§

3 C1 1 0.10 CTF8NA; FPR1 S102R
4 – 1 0.11 CTF8NA; FPR1 S102R

YPD 1 – 0 –
2 – 0 –

Fitness measurements

We carried out phenotyping for a series of experiments: (i) to follow the evolution of the fit-
ness distribution, (ii) to reconstruct the fitness components using a genetic cross, and (iii) to
validate the fitness effects of driver mutations with engineered genetic constructs.11 We used
a high-resolution scanning platform to carry out the measurements, monitoring growth in a
1,536-colony design on solid agar medium [221221]. Solid media plates designed for use with

1Phenotype data are available from the GitHub code repository, including instructions to download the
data and sample labels [https://github.com/ivazquez/PhD-thesis/tree/master/Chapter5https://github.com/ivazquez/PhD-thesis/tree/master/Chapter5].

https://github.com/ivazquez/PhD-thesis/tree/master/Chapter5
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the Singer RoToR HDA robot (Singer Ltd) were used throughout the experiment. Casting
was performed on a levelled surface, drying for ∼1 day. We distributed samples over 1,152
positions across each plate in a randomised layout, keeping every fourth position for 384
controls used for removal of spatial bias. We performed transmissive scanning at 600 dpi
using an 8-bit grey scale, capturing four plates per image. Plates were fixed by custom-made
acrylic glass fixtures. Pixel intensities were normalised and standardised across instruments
using transmissive scale calibration targets (Kodak Professional Q-60 Color Input Target,
Kodak Company, USA). We maintained a high-humidity environment at 30 ∘C during mea-
surements, keeping scanners covered in custom-made boxes to avoid light influx and min-
imise evaporation.

Experiments were run for 3 days and scans were continuously performed every 20 min-
utes. Each image stack is then processed in a two-pass analysis: (i) during image acquisition,
positions in each image are matched to the fixed calibration model using the fixture orienta-
tion markers, allowing detection and annotation of plates and transmissive scale calibration
strips; and (ii) after image acquisition, the entire image stack is segmented to identify the
location of the plate, the transmissive scale calibration strip, and the colony positions based
on pinning format. Differences in pixel intensity are converted to population size estimates
𝑁(𝑡) by calibration to independent cell number estimates (spectrometer and flow cytometry).
Based on these, we obtained growth curves in physical units.

Raw measurements of population size were smoothed in a two-step procedure: (i) a
median filter identified and removed local spikes in each curve; and (ii) a Gaussian filter
reduced the influence of any local noise remaining. Since we expect a population to double
in size during the average time taken to progress through the cell cycle, we use an exponential
growth model defined as 𝑁(𝑡) = 𝑁(0) 𝑒𝜆𝑡, where 𝜆 is the absolute growth rate. If the time
that has passed is exactly the doubling time 𝜏, it is trivial to show that within this time span
the growth rate can be rewritten as 𝜆 = ln 2

𝜏 . It follows that 𝜆 can then be estimated from the
linear fit of any two log-transformed measurements of 𝑁(𝑡) in exponential phase, according
to 𝜆 = 1

𝑡𝑓 −𝑡𝑖 ln
𝑛(𝑡𝑓 )
𝑛(𝑡𝑖)

. To account for systematic errors caused by spatial variation within plates,
the absolute growth rate was rescaled by taking the log-transformed difference between the
observed estimate and the neighbouring control populations, i.e., the relative growth rate at
position (𝑖, 𝑗) is then 𝜆𝑖𝑗 → log 𝜆𝑖𝑗

𝜆norm
𝑖𝑗

.
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5.4 Timescales of selection
Two regimes of selection became readily apparent in both sequence and phenotype. Initially,
there were local changes in the frequency of parental alleles under selection (Fig. 5.25.2). Over
time, macroscopic subclonal populations arose and expanded, depleting the pool of genetic
diversity. These successful genotypes persisted in time, manifested by broad jumps in the
allele frequency visible across the genome (Fig. 5.25.2). But what drives these clonal expan-
sions? Is it the founder haplotypes themselves, de novo mutations relegating the parental
variation to the role of passengers, or their combined action?

5.4.1 Selective effects on pre-existing variation
To determine the adaptive value of background variation, we identified regions where local
allele frequencies changed over the time course of the selection experiments. We observed
patterns of selective sweeps when a ‘driver’ allele with a significant fitness advantage starts
to gain in frequency due to the selective pressure (Fig. 5.25.2). Therefore, frequency changes
over time indicate that positive (negative) selection is acting on beneficial (deleterious) back-
ground alleles. This movement also causes allele frequency changes at nearby loci contain-
ing ‘passenger’ alleles that are genetically linked with the driver, in a process called genetic
hitchhiking (see Section 2.42.4).

To discern drivers and passengers, we consider a model of a population evolving in a
regime of strong selection, where there is a favoured allele (driver) at locus 𝑖, and a set of
linked passengers. We have presented the formulation of this model of multi-locus evolution
in Section 2.42.4, which can be be used to analyse selection acting on pre-existing genetic vari-
ation generated by the recombinant cross in this experiment. Genetic drift plays a negligible
role for allele frequency changes in the selection phase as the population size (∼107 cells)
is much larger than its duration (∼200 generations). Furthermore, the frequency spectrum
of background mutations is normally distributed, so that pre-existing variants are already
established and do not need to overcome genetic drift. Therefore, we can assume that the
allele frequencies evolve deterministically and the remaining noise is due to sampling caused
by finite sequencing depth. A selective sweep is then well approximated by a model of the
frequency 𝑥WA

𝑖 of the WA allele at locus 𝑖 which satisfies the logistic equation (see Equa-
tion (2.102.10)). For a given driver locus and a set of passengers the model is fully specified by
the strength of selection, the pairwise linkage structure, and allele frequencies at both driver
and passenger loci at 𝑡 = 0 days. We learn the free parameters of the model using maximum
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likelihood with a binomial noise model accounting for sequencing noise. Furthermore, the
scan can be performed systematically across loci by fixing pairwise linkage according to a
recombination map of the cross (see Illingworth et al. [222222]) and the initial allele frequencies
at 𝑡 = 0 days.

We performed a systematic driver scan including passengers within variable window
sizes {±2 kb, 5 kb, 10 kb, 30 kb, 50 kb}. Emerging subclones result in global allele frequency
changes that supersede the local signal, which is the hallmark of selection acting on pre-
existing variation. In consequence, we only considered time points when populations had
not yet become clonal, up to 𝑡 = 4 days. For each scan we selected the top 200 loci (out of
52,466) and then required that a given window was identified to be among the top scoring

WA

NA

WA

NA

133 aa

CTF8 NA

G57VT22A

Fig. 5.2 Genome-wide allele frequency of pre-existing parental variants after 𝑡 = (0, 2, 4, 8, 16, 32)
days, measured by whole-population sequencing for a representative population in rapamycin. Top
panel: Chromosomes are shown on the 𝑥-axis; the frequency of the WA allele at locus 𝑖, 𝑥WA

𝑖 , is
shown on the 𝑦-axis. The reciprocal frequency of the NA allele is equivalent since 𝑥NA

𝑖 = 1 − 𝑥WA
𝑖 .

Bottom left panel: Zoomed inset of the shaded region shows allele frequency changes in chromosome
VIII during selection in rapamycin. Early time points 2, 4 and 8 show localised allele frequency
changes at 460–490 kb due to a beneficial NA allele sweeping with hitchhiking passengers. Late
time points 16 and 32 show abrupt jumps between successive loci that reflect the parental haplotype
of emerging subclone(s). These long-range correlations can alter the frequency of parental alleles
independently of their fitness value. In case of a fully clonal population, allele frequencies at 0, 0.5
and 1.0 would correspond to the background genotypes NA/NA, WA/NA, and WA/WA of a diploid
clone that reached fixation. Bottom right panel: We tested a model where each allele is proposed
to be a driver under selection, with linked passenger alleles also changing in frequency by genetic
hitchhiking. Top log-likelihood scores are shown for all populations in this region of interest. We
validated the CTF8NA allele to be strongly beneficial for rapamycin resistance (Fig. 5.105.10).
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ones in at least two populations. The remaining windows were merged if their passenger
loci overlapped. Finally, we required that the region was not identified among those scoring
highly in the control environment.

The scan identified a region of interest for rapamycin resistance, found in chromosome
VIII (460–490 kb). The signal is visible in all rapamycin populations but not in the control.
However, we were not able to localise it fully due to a low recombination rate in this region
and possibly also caused by the presence ofmultiple drivers. The region as awhole has strong
support across populations to contain one or several beneficial NA allele(s) in rapamycin,
albeit we cannot statistically map the signal more finely. Our collaborators followed up
two candidate genes in the region (CTF8 and KOG1), and we validated CTF8 to have a
resistance phenotype (see Section 5.5.25.5.2). Carrying the CTF8NA allele confers a 36% growth
rate advantage over the CTF8WA allele. KOG1, which falls within the same region and is a
subunit of the TORC1 complex, differs by seven missense mutations between the parents.
However, reciprocal hemizygous deletions only revealed a modest fitness difference between
WA andNA sequences ofKOG1. We did not find events that replicated across all populations
in hydroxyurea.

5.4.2 Diversity and clonal selection
To reconstruct clonal expansions in the WAxNA populations we used background genetic
variants as markers. Using the probabilistic reconstruction algorithm we presented in Chap-
ter 33, we inferred the subclonal genotypes and their frequency in the populations, both of
which are unknown a priori. We identified jumps in correlated genotypes using the data fil-
teringmethod on ancestral and evolved SNVdata, using the posteriormean allele frequencies
of the ancestral population to act as a bulk component for the inference (see Section 3.53.5).
We then carried out subclonal reconstruction with cloneHD in SNV mode, as visual inspec-
tion did not reveal copy-number aberrations from whole-population sequencing. For each
population, we systematically tried 0–4 subclones and determined the total data likelihoods
under each model. The number of subclones per population are summarised in Table 5.15.1,
together with the time evolution of subclone frequencies (see Figure 5.35.3 for a set of repre-
sentative populations). We required a log-likelihood gain greater than 20,000 units for the
inclusion of an additional subclone. This is necessary as the bulk component of the pop-
ulation can also change throughout the experiment. This conservative cut-off only allows
genome-wide signals to be associated with a subclone. It prevents other solutions being
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Fig. 5.3 Reconstruction of subclonal dynamics. Competing subclones evolved in hydroxyurea and
rapamycin experienced a variety of fates. (A, C) Time is on the 𝑥-axis, starting after crossing when
the population has no macroscopic subclones. Cumulative haplotype frequency of subclones (bars)
and allele frequency of de novo mutants (lines) are on the 𝑦-axis. Most commonly, selective sweeps
were observed where a spontaneous mutation arose and increased in frequency. Driver mutations
are solid lines and passenger mutations are dashed lines, coloured by subclone assignment; circles
and squares denote non-synonymous and synonymous mutations, respectively. (B, D) Variability in
intra-population growth rate, 𝜆, estimated by random sampling of 96 individuals at initial (𝑡 = 0
days, ) and final (𝑡 = 32 days, ) time points (𝑛 = 32 technical replicates per individual). Mean
growth rates by individual are shown at the foot of the histogram (Fig. 5.45.4). The posterior means of
the distribution modes fitted by a Gaussian mixture model are indicated as dashed lines. The fitter
individuals (pins) carry driver mutations, detected by targeted sampling and sequencing. The insets
on the right-hand side depict a schematic of the fitness distribution in two limit cases: if there are
many mutations of similar effect, the fitness wave will be smooth and unimodal; if only fewmutations
of large effect exist, the fitness distribution will become multimodal.
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favoured that would introduce artifactual subclones with suitable genotypes to improve fits
in regions where selection acts on the bulk (see Section 3.73.7).

We found at least one subclone under selection in all WAxNA populations, but none
in the control environment (Fig. 5.35.3). Clonal competition was prevalent with two or more
expanding subclones in 12 out of 16 WAxNA populations. No population became fully
clonal during the experiment, with subclone frequencies stabilising after 16 days in several
rapamycin populations. To ascertain the expansion of subclones throughout the experiment,
we determined the allele frequency of de novo mutations in WA, NA and WAxNA popu-
lations during the selection phase from whole-population sequencing. We found that these
mutations typically did not reach detectable frequency (i.e., between 1–5%) until more than
8 days had passed, with steady increases thereafter (Fig. 5.35.3).

5.4.3 Fitness distribution and population averaging
To characterise the fitness of cells in a heterogeneous population with multiple subclones,
i.e., where several haplotypes may be present, we must measure the growth properties of
an ensemble of cells. With an ensemble method, we will typically measure the population
average. However, sincewe found subclones co-existing, thesemay be found in states that are
far from the population mean. Hence, we determined the intra-population growth rate of the
populations at the start and the end of the selection phase (Figs. 5.35.3 and 5.45.4). We established
this by phenotyping 96 randomly isolated individuals from 3 populations per environment
at 0 and 32 days, as well as the 44 sequenced individuals at 32 days. For each population
where we sampled 𝑛𝑘 isogenic individuals, we estimated the probability distribution 𝑃 (𝜆(𝑡))
of the growth rate 𝜆 at time 𝑡. With an ensemble of 𝑛𝑘 = 96 individuals per time point we
took 𝑛 = 32 replicate measurements per individual. The replicates were measured in two
independent runs, evenly distributed over 16 experimental plates which were initiated from
a single pre-culture plate and run in 4 scanners, all in parallel.

We modelled the time-dependent probability distribution of the data, {𝜆𝑛(𝑡)}𝑛𝑘
𝑛=1, as a

mixture model of normal distributions for each time point 𝑡,

𝑃 (𝜆(𝑡)) =
𝐾

∑
𝑘=1

𝜋𝑘N (𝜆(𝑡)|𝜇𝑘, 𝜎2
𝑘) (5.1)

where 𝐾 is the number of components. We can interpret the mixing coefficients, 𝜋𝑘, as the
bulk and multiple clonal components. We determined the fraction of cells in the fitter, faster
clonal state(s) and the slower, bulk component by fitting a mixture of normal distributions
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with 𝐾 ∈ {1, 2, 3} components. There are 2𝐾 + 1 fitting parameters, which are learned
by maximising the likelihood function 𝑃 (𝜆(𝑡)): the component means {𝜇𝑘} and variances
{𝜎2

𝑘}, and the relative weights between them. In multimodal populations, the weights are in
good agreement with the average of two consecutive inflection points surrounding the trough
between the bulk and the clonal subpopulations (Fig. 5.45.4).

Ancestral (t = 0d)

Evolved (t = 32d)

Ancestral (t = 0d)

Evolved (t = 32d)

Ancestral (t = 0d)

Evolved (t = 32d)

Ancestral (t = 0d)

Evolved (t = 32d)

Ancestral (t = 0d)

Evolved (t = 32d)

Ancestral (t = 0d)

Evolved (t = 32d)

Fig. 5.4 Variability in intra-population growth rate and fitness correlations. Fitness correlations of
ancestral and evolved populations across environments, estimated by random sampling of individ-
uals at initial (𝑡 = 0 days, ) and final time points (𝑡 = 32 days, ), before and after selection in
(A) hydroxyurea and (B) rapamycin. The mean growth rate 𝜆 per individual 𝑘 is shown, averaging
over 𝑛 = 32 technical replicates per individual (see Figure 5.35.3B and D). Mean growth rate 𝜆𝑘 in the
stress environment (𝑥-axis) compared to the control environment (𝑦-axis). Using a Gaussian mix-
ture model, we found the posterior probability of the mixture modes of the the best-fit mixture (solid
lines). The posterior means of the distribution modes are indicated as dashed lines. The fitter indi-
viduals carry driver mutations, as determined by targeted sampling and sequencing. Spearman’s rank
correlation, 𝜌, between the growth rate of isolates in the stress and control environments are shown
on the top right of each panel. Positive rank correlations between stress and control environments are
the most common. Negative rank correlations indicate an average fitness cost of driver mutations in
the absence of the drug, e.g., in FPR1.



5.5 Driver mutations and ongoing diversification 123

Clonal expansions were evident from changes to the fitness distribution of cells. In ra-
pamycin selection, the phenotype distribution became multimodal after 32 days, reflecting
the fitness of subclones substantially improving with respect to the mean fitness of the bulk
population (Fig. 5.35.3D). The clonal subpopulations divided on average twice as fast as the an-
cestral population. Sequenced isolates with driver mutations in FPR1 and TOR1were on the
leading edge of the phenotype distribution, far ahead of the bulk. Furthermore, the bulk com-
ponent showed a 10% average improvement, possibly due to selection of beneficial genetic
backgrounds. Conversely, bimodality was only detected in one population in hydroxyurea
selection (WAxNA F12 1 HU 3), where the clonal peak grew 25% faster on average com-
pared to the ancestral, and the bulk 7% faster on average across all populations (Fig. 5.35.3B).
Isolates with RNR2 driver mutations fell onto the leading edge of the fitness distribution.
These six isolates originated from the same expanding subclone and two of them had 13%
faster growth rate than the remaining four, although they all shared the same heterozygous
RNR2 driver mutation. In both of these clones, we found a large region in chromosome II
to have undergone loss-of-heterozygosity (LOH), offering a putative genetic cause for their
growth advantage (Fig. 5.65.6A). Finally, to understand how the fitness of a typical popula-
tion changes across environments we characterised the fitness correlations of ancestral and
evolved clones, with and without stress (Fig. 5.45.4). The rank order in clone fitness did not
change significantly in the absence of stress, except for a strong average fitness cost of driver
mutations in FPR1.

5.5 Driver mutations and ongoing diversification
To genetically characterise the subclonal variation before and after selection, we isolated and
sequenced 192 clones drawn fromWAxNA populations at 𝑡 = 0 days (Fig. 5.55.5) and 44 clones
at 𝑡 = 32 days (Fig. 5.65.6). Overall, we identified 91 SNVs and indels in 173 ancestral hap-
loid isolates and 140 point mutations in 44 evolved diploid isolates. We detected 82 SNVs
and 1 insertion across 22 evolved isolates in hydroxyurea (range 1–8 per isolate), containing
10 adaptive mutations in RNR2 and 12 in RNR4 (Fig. 5.65.6A). There were 56 SNVs and 1
deletion across 22 evolved isolates in rapamycin (range 0–6 per isolate), which contained
8 adaptive mutations in FPR1 and 5 in TOR1 (Fig. 5.65.6B). 33 out of 36 mutations detected
in WAxNA populations by whole-population sequencing could also be found in clonal iso-
lates. All de novo driver mutations found by clone sequencing were confirmed by targeted
Sanger sequencing. Assuming the ancestral genomes to have passed through ∼150 genera-
tions during the crossing phase, we estimated a point mutation rate 𝜇SNV+indel = 2.89×10−10
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per base per generation; and similarly for evolved genomes going through ∼200 generations
in the selection phase (𝜇SNV+indel = 1.33 × 10−9 bp−1gen−1). We detected two instances
of cross-contamination between populations, so the derived events in clones isolated from
these populations are valid to estimate the mutation rate but should not be counted to have
arisen independently.

From population and isolate sequence data, we observed 19 recurrent de novomutations
in the ribonucleotide reductase subunits RNR2 and RNR4 during hydroxyurea selection and
in the rapamycin targets FPR1 and TOR1 during rapamycin selection (Fig. 5.65.6). Each of

mut.

Fig. 5.5Genetic heterogeneity in sequences of ancestral clones. Sequences of ancestral haploid clones
sampled from the WAxNA F12 founder populations, which were obtained by bulk crossing between
the WA and NA parents. Pre-existing and de novo SNVs and indels were detected by whole-genome
sequencing in single-cell clones derived from ancestral populations at 𝑡 = 0 days. Chromosomes
are shown on the 𝑥-axis; clone isolates are listed on the left. WA ( ) and NA ( ) represent hap-
loid genotypes. Individual cells with unique background genotypes carry private de novo SNVs and
indels (circles). A copy-number gain of chromosome IX (n>2n) was also found in clone C50 of
WAxNA F12 2 YPD T0 (not shown).
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A B

Fig. 5.6 Genomic instability in sequences of evolved clones. Sequences of evolved diploid clones
sampled from WAxNA F12 populations. SNVs, indels and chromosome-level aberrations were de-
tected by whole-genome sequencing in single-cell clones derived from evolved populations, after
𝑡 = 32 days in (A) hydroxurea or (B) rapamycin (Table 5.15.1). Chromosomes are shown on the 𝑥-axis;
clone isolates are listed on the left, coloured by lineage (see Figure 5.35.3). The consensus shows the
majority genotype across population isolates with sequence identity greater than 80%. WA/WA ( )
and NA/NA ( ) represent homozygous diploid genotypes and WA/NA ( ) represents a heterozygous
genotype. Individual cells with shared background genotype carry de novo SNVs and indels (circles),
de novomis-segregations with loss-of-heterozygosity (solid segments) and de novo gains or losses in
copy number (hatched segments). Driver and passenger mutations are listed along the bottom (drivers
are in boldface). Populations marked by ⊗ indicate cross-contamination during the selection phase,
but any derived events are independent.
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these driver mutations had a drug-resistant growth rate phenotype (Figs. 5.85.8, 5.95.9 and 5.105.10)
and carried a private background of ∼31, 000 passenger mutations on average, compared
to other sequenced isolates. All FPR1 mutations were homozygous and likely to inactivate
the gene or inhibit its expression. In contrast, TOR1 mutations were heterozygous while we
found RNR2 and RNR4 mutations in both heterozygous and homozygous state. The variant
allele fractions of these mutations mirrored the inferred subclonal dynamics (Fig. 5.35.3A and
C). All driver mutations occurred in highly conserved functional domains: 3 out of 4 unique
variants in RNR2 (N151H, E154G and Y169H) and 2 out of 3 unique variants in RNR4
(R34G/I) mapped to a conserved domain of the ribonucleotide reductase small chain. FPR1
mutations occurred at codonW66, either introducing a premature stop codon – truncating the
residue required for rapamycin binding (Y89) – or changing to serine. All five driver SNVs
in TOR1 (S1972I/R, W2038L/C and F2045L) mapped to the FKBP12-rapamycin-binding
(FRB) domain, which is ∼100 aa long, so they most likely disrupt drug binding (Fig. 5.65.6B).

To identify copy-number aberrations from clone sequencing, we segmented the coverage
depth as a function of genomic position (see Sections 3.43.4 and 4.4.24.4.2). We found one copy-
number gain (n>2n) of chromosome IX in ancestral haploid isolates. Evolved diploid isolates
accrued copy-number gains (2n>3n) in chromosomes VIII, IX and X in hydroxyurea and
chromosome IX in rapamycin, as well as a whole-genome copy loss (2n>n) in rapamycin
(Fig. 5.65.6). In contrast to the recurrent point mutations, this evidence is inconclusive about
whether they are adaptive, but we found that several of these gains are repeatedly acquired
across a large ensemble of replicate populations in Chapter 44.

Using heterozygous genetic variants asmarkers, we could detect mis-segregation of chro-
mosomes leading to loss-of-heterozygosity (LOH). The presence or absence of the WA or
the NA allele provides a robust signal of heterozygosity or LOH that is not affected by sam-
pling noise in coverage. We used the Hidden Markov Model for correlated SNVs introduced
in Section 3.6.43.6.4 to genotype the sequenced isolate samples at segregating sites. Firstly, we
used the sequences of haploid individuals from the ancestral population, drawn before the
last round of crossing, to create in silico diploid genomes and calculate the length distribu-
tion of homozygous segments. Similarly, we measured the length distribution of homozy-
gous segments from evolved isolate genomes. We observed a significant increase of long
homozygosity tracts in the evolved clones – a hallmark of LOH (Fig. 5.75.7A). Secondly, we
directly counted LOH events in populations using multiple sequenced isolates from the same
expanding subclone. We grouped isolate sequences by subclone lineage, requiring at least
80% genotype similarity to belong to the same lineage. In hydroxyurea, this resulted in 22
isolates stemming from 8 clonal lineages, with more than a single isolate each. In rapamycin,
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22 isolates were assigned to 4 clonal lineages, with more than a single isolate each. For each
clonal lineage, we inferred its ancestral genotype. In case of a locus with a unique genotype
across all isolates we assigned this to be the ancestral state. In all other cases we inferred
the ancestral state to be heterozygous, as lost alleles cannot be regained. We then annotated
all the isolates from each clone for LOH events. Figure 5.65.6 shows the inferred ancestral
genotypes and the derived SNVs, indels, LOH events and copy-number variants, grouped
by population and clonal background. To determine the rate of LOH events, we counted the
number of independent events within a chromosome that have led to the gain or loss of the
ancestral allele in the evolved isolate sequences. This estimate is challenging given the an-
cestral states contain both homozygous and heterozygous loci, so that the precise end points
of individual LOH events are uncertain. To obtain a lower bound, we counted whether any
isolate had undergone LOH affecting ≥10 consecutive background variants, for each chro-
mosome in each clone. We found 48 events in hydroxyurea and 24 events in rapamycin (6
per genome per clone). We excluded two haploid individuals from this counting as well as
from the length distribution of homozygosity tracts in Figure 5.75.7A.

To exemplify the interaction of genomic instability with pre-existing and de novo vari-
ation, inspection of de novo mutations in the WAxNA F12 1 HU 3 population shows that
one RNR2 mutation spans six isolates, being part of an expanding subclone (Fig. 5.65.6A).
These isolates have further diversified by acquiring passenger mutations and undergoing
LOH. Clones C5 and C6 grow faster than the other four and share a large LOH event in
chromosome II that is not present in the other isolates, possibly providing the growth advan-
tage and broadening the fitness distribution (Fig. 5.35.3B). An alternative route to homozygosity
was observed in a single clone found to be haploid (clone C1 in WAxNA F12 2 RM 1) and
therefore homozygous genome-wide. This haploid clone is closely related to a diploid clone
(C3) from the same population and both clones share the same FPR1W66* de novomutation
(Fig. 5.65.6B). These data are consistent with the appearance of the FPR1 heterozygous muta-
tion in an ancestral diploid clone that took two independent routes – focal LOH or meiosis
– to unveil the recessive driver mutation.

5.5.1 Luria-Delbrück fluctuation assay
We compared our genome-wide estimates of the point mutation and LOH rates based on
the mutation counts in clone genome sequences to locus-specific measurements of the LOH
rate using a fluctuation test. Our collaborators performed a fluctuation assay to determine
the LOH rate by following the loss of a heterozygous URA3 marker that results in 5-FOA-
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resistant colonies. In all strains tested the URA3 gene was deleted from its native location
in chromosome V and inserted in the lys2 locus (lys2::URA3) in chromosome II (∼470 kb).
The strains were first plated in URA dropout medium and then streaked for single colonies
in stress and control environments. Colonies were grown for 3 days at 30 ∘C. Cells were
resuspended in water and cell concentration was measured by flow cytometry to obtain a
correct dilution factor in the subsequent plating. Cells from each replicate were plated in
YPDA to determine total number of colony-forming units and 5-FOA plates (1 g l−1) to count
colonies that areURA3-defective. The loss of theURA3marker was confirmed by diagnostic
PCR. Four replicates per experiment were used to determine the rate.

We fitted the fluctuation data to a model of the Luria-Delbrück distribution. Based on the
fluctuation test, LOH rate can be estimated by 𝜇LOH = 𝑚

𝑁 , where 𝑁 is the average number of
cells per culture. To determine the mean number of LOH events 𝑚, we used the probability
generating function of the Luria-Delbrück distribution defined by Hamon and Ycart [223223].

LYS2

LYS2

LYS2

URA3
5-FOA+

5-FOA-

LOH

Fig. 5.7 Pervasive genomic instability. (A) The length distribution of homozygous segments, in
bins corresponding to 50-kb increments, shows an excess of long homozygosity tracts above 300 kb
in hydroxyurea and rapamycin (Kolmogorov-Smirnov test, 𝑃 < 0.01). Ancestral haploid isolates
are used to compare a set of in silico diploid genomes to evolved diploid isolates. Only unrelated
isolate backgrounds were included. (B) Background- and environment-dependent rates of loss-of-
heterozygosity were measured in a fluctuation assay by loss of the URA3 marker. Resistant colonies
growing in 5-fluororotic acid (5-FOA+) indicate loss of the marker. Based on the number of 5-FOA+
colony-forming units (c.f.u.), the mean number of LOH events are estimated using the empirical
probability-generating function of the Luria-Delbrück distribution (Section 5.5.15.5.1). The locus-specific
LOH rates are shown, given by the mean number of LOH events divided by the total number of cells
in YPD. Error bars denote the upper and lower 95% confidence intervals. LOH rates were elevated in
hydroxyurea compared with the control environment and manifested background-dependent effects
between the parents and their hybrid.
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In the control environment, we observed a rate of 𝜇LOH = 2.59 × 10−5 per generation in
the NA background, consistent with previous reports [224224]. We observed an intermediate
rate in the WA background (𝜇LOH = 8.01 × 10−6 gen−1) and the WAxNA F1 hybrid had
an approximately ten-fold lower rate (𝜇LOH = 4.01 × 10−6 gen−1). These data indicate that
LOH rates can vary between genetic backgrounds. The stress environments themselves also
have an active role in accelerating genome evolution by genomic instability. There was a
sharp increase of LOH rates when colonies were grown in hydroxyurea, irrespective of the
background tested. This finding is consistent with previous studies in the laboratory strain
S288C reporting that replication stress promotes recombinogenic DNA damage [224224]. We
also observed a background-dependent increase in LOH rate in the presence of rapamycin,
especially in the NA founder. Our estimates of the point mutation rate based on the mutation
counts in ancestral and evolved clones (∼10−10 bp−1 gen−1) and of the LOH rate based on the
fluctuation assay (∼10−5 gen−1), suggest that any recessive genes will be likely to lose the
wild-type allele by LOH. Given that the LOH rate is much higher than the point mutation rate
and it typically affects large regions (100-1,000 kb, see Figure 5.75.7A), recessive mutations
can feasibly be ‘rescued’ by LOH.

5.5.2 Validation of candidate driver mutations
To test candidate driver mutations, our collaborators engineered hemizygous strains to com-
pare allelic differences in driver geneswith pre-existing and newly acquiredmutations (Fig. 5.85.8).
They also engineered gene deletions of driver genes to confirm whether their knockouts are
beneficial. We performed 𝑛 = 64 replicate measurements of each construct in two indepen-
dent runs, which were initiated from a single pre-culture plate, evenly distributed over 16
experimental plates and simultaneously run in 4 scanners. The growth rate of each of these
strains 𝜆 is shown in Figures 5.95.9 and 5.105.10, labelled by genetic background 𝑏 and genotype 𝑔.

Reciprocal hemizygosity tests in ancestral hybrids confirmed background-dependent ef-
fects in CTF8, with strong positive selection on the NA allele as predicted by our model of
driver-passenger dynamics (Fig. 5.105.10). KOG1, which is a component of the TOR signalling
pathway, did not show any allelic differences, but deleting either copy caused haploinsuffi-
ciency in rapamycin. No allelic differences were observed for DEP1, INP54 and YNR066C,
which are confirmed as passengers. Our collaborators also deleted either the wild-type or the
mutated allele of evolved mutant clones, generating pairs of clones identical throughout the
genome except for the candidate driver mutation. The four genes harbouring de novo driver
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mutations do not appear to show allelic differences between the two parental backgrounds
as shown by the reciprocal hemizygosity test (Fig. 5.105.10).

Deleting one copy of RNR2 in WA and NA diploids and sporulating these strains re-
sulted in tetrads with two viable spores and two unviable rnr2Δ mutants, indicating that this
gene is essential in both backgrounds. RNR2 is also essential in the laboratory S288C back-
ground, consistent with its key role in catalysing the rate-limiting step of dNTP synthesis.
Furthermore, the heterozygous deletions of RNR2 diploids show strong haploinsufficiency
for hydroxyurea resistance (Fig. 5.95.9). In contrast to its interaction partner, RNR4 is not es-
sential in the laboratory background. However, deletion of this gene in diploid WA and NA

DB

Haploid transformation

Diploid transformation

Hybrid transformation

x

NA
TARGET

NA
target Δ

x

WA
target Δ

NA
TARGET

WA
TARGET

WA
target Δ

x

x

WA
TARGET

NA
target Δ

A C

WA

chromosome

homologous 

recombination

PCR

fragment

WA chromosome
(target Δ)

NA

chromosome

homologous 

recombination

PCR

fragment

NA chromosome
(target Δ)

URA3

URA3

TARGET TARGET

URA3

URA3

WA/WA

chromosome

homologous 

recombination

PCR

fragment

WA/WA chromosome
(target Δ/TARGET)

NA/NA

chromosome

homologous 

recombination

PCR

fragment

NA/NA chromosome
(target Δ/TARGET)

TARGET

URA3

URA3

TARGET

TARGET

URA3

TARGET

URA3

TARGET

TARGET

WA/NA

chromosome

homologous 

recombination

PCR

fragment

segregant
(target*/TARGET Δ)

segregant
(target* Δ/TARGET)

target*

TARGET

URA3

URA3 URA3

targetTARGET

Fig. 5.8 Strategy for engineered genetic constructs. Gene deletions were introduced by homologous
recombination between the terminals of the PCR product and the corresponding genomic sequence
where the gene to be deleted (‘target’) is encoded. Blue and red lines indicate WA and NA chromo-
somes, respectively. Flanking regions in green indicate two different homologous sequences targeted
for recombination, which are 30-40 bp long in budding yeast. (A)Genes of interest were individually
deleted in both WA and NA haploids, resulting in rnr4Δ, fpr1Δ and tor1Δ strains in both parental
backgrounds. (B) A similar strategy was used to delete genes in WA and NA homozygous diploids.
RNR2 and RNR4 were only deleted in one allele while there is the wild-type gene remaining in the
other allele. (C) Evolved segregants with de novo mutations were isolated from the WAxNA F12
populations. Using the same strategy, RNR2 or TOR1 mutants could be rid of either the wild-type
allele or the mutated allele. (D) The strain constructed in (A) was crossed with the parental strain
with wild-type gene to obtain strains with deleted genes in WA and NA homozygous diploids and
WA/NA hybrid.
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backgrounds proved it to be essential in the WA background. The NA strain is viable after
deletion, though with severe growth defects. Diploid hemizygous strains for RNR4 deletions
in both backgrounds show increased sensitivity due to dosage effects (Fig. 5.95.9). FPR1 and
TOR1 are not essential genes and our collaborators could perform deletions in both haploids
and diploids. FPR1 directly binds rapamycin, inhibiting the TOR pathway, and its deletion
is highly penetrant (Fig. 5.105.10). Deletion of one copy of FPR1 does not increase the growth
rate in rapamycin, confirming that this gene is recessive. This is consistent with our obser-
vations that all FPR1mutations observed in this experiment are homozygous, and we found
most of them typically reach fixation in the experiments with a large ensemble of replicate
populations reported in Chapter 44 (see Figure 4.104.10). In contrast, TOR1 deletion results in

Fig. 5.9 Validation tests for driver mutations in hydroxyurea, measured in SC+HU (left panel) and
SC (right panel). The relative growth rate, 𝜆𝑏𝑔, of each construct is shown for 𝑛𝑟 = 64 measurement
replicates. Genetic constructs are grouped by candidate gene and by background of the construct,
where the background 𝑏 can be WA, NA (haploid); WA/WA, NA/NA (diploid); WA/NA (hybrid),
and the genotype 𝑔 can be wild-type for the gene, deleted or hemizygous. Relative growth rates are
normalised with respect to the mean population growth rate ⟨𝜆𝑘⟩𝑡=0 at 𝑡 = 0 days (see Figures 5.35.3B
and 5.45.4A). Medians and 25%/75% percentiles are shown for each genetic construct, with medians as
horizontal lines and outliers highlighted. The colour of each of the boxes reflects the background (WA
and WA/WA, ; NA and NA/NA, ; WA/NA, ). Lighter shades indicate a wild-type (WT) control
for a specific background and darker shades are the candidate strains. For a given background, we
compared deletion strains against their respectiveWT control (e.g., rnr4Δ vsWT inWA background)
and hemizygous strains against the equivalent hemizygous strain where the opposite copy has been
deleted (e.g., rnr4Δ WA/RNR4 NA vs RNR4 WA/rnr4Δ NA in WA/NA background). To test sta-
tistical significance we used a non-parametric Wilcoxon rank-sum test. Significance tests between
two strains with 𝑃 < 10−4 are highlighted with an asterisk. RNR2 and RNR4 are confirmed as driver
genes for hydroxyurea resistance.
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Fig. 5.10Validation tests for driver and passenger mutations in rapamycin, measured in SC+RM (left
panel) and SC (right panel). The relative growth rate, 𝜆𝑏𝑔, of each construct is shown for 𝑛𝑟 = 64 mea-
surement replicates. Genetic constructs are grouped by candidate gene and by background of the con-
struct, where the background 𝑏 can be WA, NA (haploid); WA/WA, NA/NA (diploid); WA/NA (hy-
brid), and the genotype 𝑔 can be wild-type for the gene, deleted or hemizygous. Relative growth rates
are normalised with respect to the mean population growth rate ⟨𝜆𝑘⟩𝑡=0 at 𝑡 = 0 days (see Figures 5.35.3D
and 5.45.4B). Medians and 25%/75% percentiles are shown for each genetic construct, with medians as
horizontal lines and outliers highlighted. The colour of each of the boxes reflects the background
(WA andWA/WA, ; NA and NA/NA, ; WA/NA, ). Lighter shades indicate a wild-type (WT) con-
trol for a specific background and darker shades are the candidate strains. For a given background,
we compared deletion strains against their respective WT control (e.g., fpr1Δ vs WT in WA back-
ground) and hemizygous strains against the equivalent hemizygous strain where the opposite copy
has been deleted (e.g., fpr1Δ WA/FPR1NA vs FPR1WA/fpr1Δ NA inWA/NA background). To test
statistical significance we used a non-parametric Wilcoxon rank-sum test. Significance tests between
two strains with 𝑃 < 10−4 are highlighted with an asterisk. FPR1 and TOR1 are confirmed as driver
genes for rapamycin resistance.
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high sensitivity to rapamycin and a single deleted copy does not alter the drug response
(Fig. 5.105.10).

5.6 Ensemble measurements of fitness effects
Finally, we sought to partition and quantify the individual fitness contributions of pre-existing
and de novo genetic variation. The genotype space is extremely vast, but we can uniformly
sample a representative ensemble to reconstruct a fraction of the genetic backgrounds where
beneficial mutations could have arisen. To this end, we designed a genetic cross where
background and de novo variants are re-shuffled to create new combinations (Fig. 5.115.11A).
We randomly isolated diploids from both ancestral and evolved populations, sporulated these
and determined whether the derived haploids contained wild-type or mutated RNR2, RNR4,
FPR1 and TOR1 alleles. We then crossed haploids to create a large array of diploid hy-
brids where all genotypes (+/+, +/–, –/–) for each of these genes exist in an ensemble of
backgrounds, thus recreating a large fraction of the genotype space conditioned on the pres-
ence or absence of driver mutations. By measuring the growth rates of both haploid spores
and diploid hybrids, we can estimate and partition the variation in fitness contributed by the
background genotype and de novo genotypes using a linear mixed model (Figs. 5.125.12 and
5.155.15).
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Fig. 5.11 Experimental outline of ensemble fitness measurements using a recombinant library. To de-
termine fitness effects of background variation and de novomutations in hydroxyurea (RNR2, RNR4)
and rapamycin (FPR1, TOR1), we isolated individuals from ancestral and evolved populations. From
these diploid cells, we sporulated and selected haploid segregants of each mating type. Spores with
mutations in RNR2, RNR4 and TOR1were genotyped to test if they carry the wild-type or mutated al-
lele. We crossed theMATa andMAT𝛼 versions to create hybrids (48×48 in hydroxyurea and 56×56
in rapamycin). Independent segregants were used to measure biological variability of ancestral and
evolved backgrounds.
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Fig. 5.12 Fitness contribution of genetic background and de novo mutations. Given an ensemble
of 𝑛𝑏 unique genetic backgrounds (𝑛𝑏 = 48 in hydroxyurea and 𝑛𝑏 = 56 in rapamycin), we constructed
a matrix of size 𝑛𝑏 × 𝑛𝑏 where every unique haploid background is crossed against itself and all other
haploid backgrounds, and the two must be of opposite mating type (MATa or MAT𝛼). Each matrix
element is labelled by background genotype, 𝑏; de novo genotype, 𝑑; time, 𝑡; and auxotrophy, 𝑥.
Measurements of relative growth rates of spores 𝜆𝑏𝑡𝑑

{𝑎,𝛼} and hybrids 𝜆𝑏𝑡𝑑
𝑎𝛼 are shown, normalised with

respect to the ancestral WAxNA crosses. Measurements are taken in (A) SC+HU 10mgml−1 and
(B) SC; (C) SC+RM 0.025 μgml−1 and (D) SC, respectively. The colour scale for all matrices to the
right of each panel indicates the relative fold-change with respect to the ancestral WAxNA crosses.
White boxes indicate missing data due to mating inefficiency and slow growth. All panels follow the
legend in Figure 5.115.11.
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5.6.1 Genetic cross
The genetic cross included the parents, ancestral and evolved isolates. Our collaborators
derived haploid lines by sporulation on KAc medium from the ancestral and evolved clones.
Only tetrads with four viable spores were chosen for continuation in the experiment. Spores
were genotyped for mating type (MATa, MAT𝛼) using tester strains and for auxotrophies
(ura3, lys2) by plating on dropout medium. We chose spores from tetrad configurations
with the mating marker co-segregating asMATa, ura3 orMAT𝛼, lys2, allowing a systematic
cross between all strains of opposite mating type. Therefore, theWA and NA haploid parents
were used inMATa, ura3 andMAT𝛼, lys2 configurations. Eight ancestral haploid segregants
(4 MAT𝛼, lys2 and 4 MATa, ura3) were randomly isolated from the ancestral population.
For the hydroxyurea environment, we probed individually beneficial de novo mutations in
RNR2 (Y169H) and RNR4 (R34I). The RNR2mutant was isolated fromWAxNA F12 1 HU 3
(clone C3) and the RNR4 mutant from WAxNA F12 2 HU 1 (clone C1) at 𝑡 = 32 days.
For rapamycin, three evolved clones isolated at 𝑡 = 32 days were used: one clone with
no identifiable driver from WAxNA F12 2 RM 2 (clone C1), a homozygous FPR1 mutant
(W66*) fromWAxNA F12 2 RM 1 (clone C3); and a heterozygous TOR1mutant (W2038L)
from WAxNA F12 1 RM 2 (clone C3). Our collaborators then determined whether each
spore inherited the wild-type or the mutated allele by Sanger sequencing of the candidate
gene.

A genetic cross of size 48 × 48 in hydroxyurea yielded 2,304 hybrids, and 56 × 56 in
rapamycin, giving 3,136 hybrids. Our collaborators performed the genetic cross using the
Singer RoToR HDA robot on YPDA plates. Subsequently, the hybrid populations were
grown for two rounds on minimal medium to ensure colonies of solely diploid cells and
avoid haploid leakage. A small number of crosses were not successful due to mating inef-
ficiency or slow growth (56 in hydroxyurea and 654 in rapamycin), leaving a total of 2,248
and 2,482 hybrids, respectively. This was due to mistyping of the mating locus in one FPR1
spore and three TOR1 spores, which were excluded together with their derived hybrids. Phe-
notypic measurements of the crosses were carried out using the high-throughput method of
yeast colony growth described in Section 5.35.3.

5.6.2 Fitness effects of pre-existing and de novo variation
We obtained a set of measurements for the growth rate 𝜆 of individuals, each of which has
a unique combination of background genotype 𝑏, de novo genotype 𝑑, sampling time 𝑡 and
auxotrophy 𝑥. Every haploid genome being crossed is an independent background indexed
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by 𝑏{𝑎,𝛼} = {1, 2, … , 𝑛𝑏} (𝑛𝑏 = 48 in HU and 𝑛𝑏 = 56 in RM, either a or 𝛼), such that re-
shuffled diploid hybrids are parameterised by 𝑏𝑎𝛼. Genetic backgrounds are sampled before
the cross (parents), before selection starts at 𝑡 = 0 (ancestral) or after 𝑡 = 32 days (evolved),
and are labelled by 𝑡{𝑎,𝛼} = {1, 2, … , 𝑛𝑡} (𝑛𝑡 = 2 for the parents; 𝑛𝑡 = 4 at 𝑡 = 0; 𝑛𝑡 = 42 in
HU and 𝑛𝑡 = 46 in RM at 𝑡 = 32). We denote de novo genotypes by 𝑑{𝑎,𝛼} = {1, 2, … , 𝑛𝑑}
(𝑛𝑑 = 12 for RNR2; 𝑛𝑑 = 9 for RNR4; 𝑛𝑑 = 1 without driver; 𝑛𝑑 = 4 for FPR1, 𝑛𝑑 = 20
for TOR1). Haploid spores are auxotroph and segregate with the mating locus, such that
𝑥{𝑎,𝛼} ∈{ura3-, lys2-}, whereas diploid hybrids do not have amino acid deficiencies. To
estimate the measurement error, we carried out 𝑛𝑟 replicate measurements of each unique
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Fig. 5.13Ensemble-averaged fitness effects of genetic background and de novomutations. (A, C)Rel-
ative growth rate, 𝜆, measured with respect to the ancestral population for multiple combinations
(background genotype, 𝑏; de novo genotype, 𝑑; time of sampling during the selection phase, 𝑡; aux-
otrophy, 𝑥) and averaged over measurement replicates. Medians and 25%/75% percentiles across
groups are shown, with medians as horizontal black lines and coloured by de novo genotype [wild-
type +/+ ( ); heterozygote +/– ( ); homozygote –/– ( )]. Outliers (circles) and isolated, selected
clones with matching genotypes (diamonds) are highlighted. (B, D) Ensemble average of the relative
growth rate of spores, ⟨𝜆⟩𝑡𝑑

{𝑎,𝛼}, and hybrids, ⟨𝜆⟩𝑡𝑑
𝑎𝛼, measured in (B) hydroxyurea and (D) rapamycin.

The colour scale for all matrices is shown at the right and indicates the difference in the ensemble
average with respect to the ancestral WAxNA crosses. All panels follow the legend in Figure 5.115.11.
An extended version of the figure with all combinations can be found in Figure 5.125.12.
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spore (𝑛𝑟 = 12 in HU and 𝑛𝑟 = 6 in RM) and of each hybrid genotype combination (𝑛𝑟 = 3).
Replicates were initiated from the same pre-culture plate, evenly distributed over 32 plates
and run in 4 scanners, all in parallel.

The datamatrix shows the fitness effect of every de novo genotype 𝑑 at each background 𝑏
sampled at time 𝑡, averaged over measurement replicates and measured relative to the an-
cestral population (Fig. 5.125.12). Based on these measurements, we observed that de novo
mutations are beneficial, yet their associations to genetic backgrounds have idiosyncratic ef-
fects. The effects of de novo mutations are mediated by background fitness as evidenced
by the large phenotypic variance. Genetic crosses between different backgrounds need not
give rise to a ‘symmetric’ phenotype, as we only enforce 2:2 segregation for the mating lo-
cus MATa/𝛼. Whilst background variants will co-segregate with the mating locus, de novo
mutations need not.

To examine the average fitness effects of functional genotypes in hydroxyurea (RNR2,
RNR4) or rapamycin (FPR1, TOR1), we calculated an ensemble average of the growth rate 𝜆.
The ensemble average ⟨𝜆⟩ is either taken over single spore backgrounds 𝑏{𝑎,𝛼} or pairs of
hybrid backgrounds 𝑏𝑎𝛼 with different degrees of relatedness,

⟨𝜆⟩𝑡𝑑
{𝑎,𝛼} = 1

𝑛𝑏

𝑛𝑏

∑
𝑏=1

𝜆𝑏𝑡𝑑
{𝑎,𝛼} and ⟨𝜆⟩𝑡𝑑

𝑎𝛼 = 1
𝑛𝑏

𝑛𝑏

∑
𝑏=1

𝜆𝑏𝑡𝑑
𝑎𝛼 , (5.2)

where ⟨⋯⟩ denotes the mean over genetic backgrounds. The ensemble average over back-
grounds shows that the mean effect of RNR2, RNR4 and TOR1 mutations is fully dominant
and highly penetrant regardless of the background (Fig. 5.135.13B and D). In contrast and as
we already observed, FPR1 mutants are recessive and only increase growth rate when ho-
mozygous, again irrespective of the background (Fig. 5.135.13D). Recombinants with RNR2 and
RNR4 mutations show epistatic interactions, consistent with the products encoded by these
genes which are known to interact as subunits of the same protein complex (Fig. 5.135.13A). Af-
ter conditioning for RNR2, RNR4, FPR1 and TOR1 driver mutation status, a large fraction
of the phenotypic variance still remained, reflecting the effect of the genetic backgrounds in
which they emerged (Fig. 5.135.13A and C).

5.6.3 Variance decomposition
We would like to partition the variation in fitness contributed by background and de novo
driver mutations using linear mixed models. To model genetic backgrounds containing ben-
eficial mutations we need to describe how likely a phenotype is in the presence or absence
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of any mutation. We restrict our model to pairs of individuals that are not closely related to
avoid spurious correlations by population structure, so we retain ancestral and evolved indi-
viduals and exclude the parents. We are interested in the aggregate effect across all mutations
within a spore or hybrid rather than the effects of individual variants. As the data represents
a finite sample from the distribution of all possible genetic backgrounds, the background
contribution to the phenotype is naturally modelled as a random-effect term (i.e., individual
genetic backgrounds are drawn at random from a population, and the variance of the un-
derlying distribution is to be inferred). In addition, other systematic effects that potentially
contribute to fitness are modelled as fixed-effect terms: (i) time 𝑡 when the individual was
sampled, i.e., at 𝑡 = 0 (ancestral) or 𝑡 = 32 days (evolved); (ii) de novo driver mutation status
𝑑 of the individual, e.g., FPR1 driver mutation in homozygous state; and (iii) auxotrophy,
denoted by 𝑥, e.g., ura3- or lys2-. We implemented four nested linear mixed models outlined
below.

Model 1

Wefirst considered amodel where we only account for the background, without other effects.
This means that the observed growth rate 𝜆𝑏 for a background 𝑏 conditioned on the random
effect taking a value 𝛽𝑏 is distributed as

𝜆𝑏|B=𝛽𝑏
∼ N (𝛽0 + 𝛽𝑏𝑥𝑏, 𝜎2

𝜖 ) , (5.3)

where 𝛽0 is a shared constant baseline per background that must be inferred, 𝜎2
𝜀 represents

measurement noise, 𝑥𝑏 is an element from the model design matrix (here 1 for each 𝑏 as they
all are assigned a value). Finally, the background growth rate is distributed asB ∼ N (0, Σ2)
and its variance Σ2 is a model parameter to be inferred. We note that for each background
𝑏 we have multiple measurement replicates of 𝜆𝑏. Altogether, Model 1 has three modelling
parameters, 𝛽0, Σ2 and 𝜎2

𝜀 .

Models 2, 3 and 4

Model 2 includes the same factors as Model 1, but the time of sampling 𝑡 is nested as a fixed
effect. Model 3 also accounts for de novo driver mutation status denoted by 𝑑. In addition,
Model 4 includes a fixed effect accounting for amino acid deficiencies (or auxotrophy), de-
noted by 𝑥. Altogether the growth rate 𝜆𝑏𝑡𝑑𝑥, conditioned on the random effect taking a value
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𝛽𝑏, is distributed as

𝜆𝑏𝑡𝑑𝑥|B=𝛽𝑏
∼ N

⎛
⎜
⎜
⎜
⎝

𝛽0 + 𝛽𝑏𝑥𝑏⏟
random

+ 𝛽𝑡𝑥𝑡 + 𝛽𝑑𝑥𝑑 + 𝛽𝑥𝑥𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
fixed

, 𝜎2
𝜖

⎞
⎟
⎟
⎟
⎠

, (5.4)

where 𝛽𝑡, 𝛽𝑑 , 𝛽𝑥 are fixed-effect terms to be inferred and 𝑥𝑡, 𝑥𝑑 , 𝑥𝑥 are elements of the model
design matrix. Compared to Model 1, Models 2, 3 and 4 have extra parameters 𝛽𝑡, 𝛽𝑑 , and
𝛽𝑥. The number of free parameters depends on howmany unique levels each factor contains,
e.g., how many driver mutations are sampled in the experiment.

The likelihood for a data vector 𝜆 given the full model (Model 4) can then be written as

𝑃 (𝜆 | model ) = 𝑃 (𝜆 | 𝛽0, 𝛽𝑡, 𝛽𝑑 , 𝛽𝑥, Σ2, 𝜎2
𝜀 )

= ∏
1≤𝑎<𝛼≤𝑛𝑏

𝑛𝑟

∏
𝑟=1 ∫ 𝑃 (𝜆𝑏𝑡𝑑𝑥 | 𝛽𝑏, 𝛽0, 𝛽𝑡, 𝛽𝑑 , 𝛽𝑥, Σ2, 𝜎2

𝜀 ) × 𝑃 (𝛽𝑏 | Σ2 ) 𝑑𝛽𝑏

where the integrand is the product of the probability density given by Equation (5.45.4) and the
posterior distribution over the random effects.

Next, we applied all four models to the fitness measurements of the genetic cross: a
genetic cross based on hydroxyurea selection, measured in hydroxyurea and a control envi-
ronment; and a genetic cross based on rapamycin selection, measured in rapamycin and a
control environment, both for spores and hybrids. We fitted eachmodel using restricted max-
imum likelihood. Using Akaike’s Information Criterion (AIC) for model selection, Model 4
scored highest across all environments apart from those selected and measured in hydrox-
yurea, where both spores and hybrids supported Model 3. We compared the fitted and ob-
served values and in all cases the fits were good, as shown in Figure 5.145.14 for Model 4.

We can assess the overall goodness-of-fit of the models by the proportion of variance
explained. In particular, we would like to know the contribution of various model compo-
nents to the overall fit, and to do so we obtain separate measures for the partial contributions
of fixed and random effects, 𝑟2 = 𝜎2

𝐹 +𝜎2
𝑅

𝜎2
𝐹 +𝜎2

𝑅+𝜎2
𝜀
, where 𝜎2

𝑅 is the variance contribution by ran-
dom effects, any incremental fixed effect contributes additively to the fixed-effect variance,
s.t. 𝜎2

𝐹 = (𝛽𝑡𝑥𝑡 + 𝛽𝑑𝑥𝑑 + 𝛽𝑥𝑥𝑥), and 𝑟2 represents the proportion of variance explained by
the fixed and random effects combined. Dropping the 𝜎2

𝑅 term from the numerator, we can
evaluate 𝑟2 and the fixed-effects variance 𝑟2

𝐹 for linear mixed models, as described by Gel-
man and Hill [225225], and estimate the background contribution to the variance by 𝑟2 − 𝑟2

𝐹 .
Then to further delineate the fixed-effect variances to individual contributions, we used the
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simpler models and their estimated 𝑟2
𝐹 . Estimates of the variance components are shown in

Figure 5.155.15. We note that modelling the background component using fixed effects instead
leads to a variance decomposition that is nearly identical to that with linear mixed models
as described here. However, we note that modelling the background as a fixed effect leads
to a large number of parameters (one extra parameter per background) and thus describing
the background by random effects is a better model for the data.

As shown in Figure 5.155.15, background genetic variation accounted for an estimated 51%
of the growth rate variance under hydroxurea exposure, more than twice the estimated 23%
contributed by RNR2 and RNR4 de novo mutations. Furthermore, these driver mutations
have landed on genetic backgrounds much fitter than average in the ancestral fitness distri-
bution, as denoted by the estimated 7% explained by the time of sampling. Both of these
results directly imply thatmoderate-effect de novomutationsmust arise on favourable genetic
backgrounds to give rise to macroscopic subclones. In contrast, under rapamycin exposure,

Spores Hybrids

Spores Hybrids

Spores Hybrids

Spores Hybrids

Fig. 5.14 Hierarchical analysis of variance in the genetic cross using linear mixed models. We model
the growth rate of spores, 𝜆𝑏𝑡𝑑

{𝑎,𝛼}, and hybrids, 𝜆𝑏𝑡𝑑
𝑎𝛼 , as a function of background genotype 𝑏, de novo

genotype 𝑑, sampling time during selection 𝑡, and auxotrophy 𝑥. Relative growth rates are accurately
fitted by this model (Model 4). Measurements are taken in SC+HU 10mgml−1 and SC only for
populations selected in hydroxyurea (A, B); SC+RM 0.025 μgml−1 and SC only for populations
selected in rapamycin (C, D). The scatter shows a set of measurements 𝜆 (𝑥-axis) against the fitted
rates ̂𝜆 (𝑦-axis). The total variance explained, 𝑟2, is separately computed for spores and hybrids by
environment.
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the pre-existing genetic variation accounted for only 22% of the variance, much less than the
70% attributed to FPR1 and TOR1 mutations. Such large-effect mutations can expand in a
vast majority of backgrounds, explaining how they can almost entirely surpass the bulk of
the fitness distribution (Fig. 5.35.3D). Taken together, these results are consistent with the ag-
gregation of small-effect, pre-existing variants which can condition the fate of newmutations
in both selection environments.

Fig. 5.15 Variance decomposition of the growth rate of spores (solid) and hybrids (hatched) that can
be attributed to effects of background and de novo genotypes, to the time of sampling during selection
and to any potential auxotrophies. Estimates of variance components are obtained by fitting the linear
mixed models using restricted maximum likelihood (see Figure 5.145.14).

5.7 Summary
In this chapter, we carried out an experimental test on the evolutionary dynamics of newmu-
tations in the presence of genetic variation and compared our results with theoretical predic-
tions. To address this, we evolved genetically diverse populations of budding yeast (S. cere-
visiae) consisting of ∼107 diploid cells with unique haplotype combinations. We studied the
asexual evolution of these populations under selective inhibition with antimicrobial drugs
by time-resolved whole-genome sequencing and phenotyping. All populations underwent
clonal expansions driven by de novomutations, but remained genetically and phenotypically
diverse. Despite the genetic diversity of the founder cells, we observed recurrent adaptive
mutations. However, the founding fitness variance limited the scope for adaptive mutations
to expand. The clones exhibited continued evolution by widespread genomic instability, ren-
dering recessive de novomutations homozygous and refining pre-existing variation. Finally,
we decomposed the fitness contributions of pre-existing and de novo mutations by creating
a large recombinant library of adaptive mutations in an ensemble of genetic backgrounds.
Both pre-existing and de novomutations substantially contributed to fitness. We find that the
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relative fitness of pre-existing variants sets a selective threshold for new adaptive mutations
as predicted by population genetic theory (discussed earlier in Chapter 22).

Our findings are relevant to understand the clonal evolution of populations with extensive
pre-existing variation, such as microbial infections or cancer, which easily reach sizes of
billions of cells. A quantitative link can be made to the asexual evolution of pathogens and
somatic evolution in cancer: ∼31, 000 loci are expected to be heterozygous in any single
cell of the recombinant cross. This is of the order of the typical mutation load in bacterial
infections or cancer. The typical number of available escape mutations to antibiotics or
chemotherapy drugs in both of these systems is limited, and it is comparable to the balance
we observe between the number of drivers and passengers. Qualitatively, our results suggest
that measuring driver mutation fitness with respect to the background distribution will be of
key importance in our understanding of clonal evolution.



Chapter 6
Genome-wide biases in the mutational spectrum

6.1 Introduction
We have provided evidence in Chapter 44 of recurrent patterns of selection at the molecu-
lar level. Despite these regularities, we have shown that different founders typically follow
different mutational paths in the genotype space. To establish whether these patterns are in-
fluenced by the activity of specific mutational processes, we aim for a systematic and robust
characterisation of the spectrum of mutations under the rate-limiting conditions we imposed
by chemical inhibition. In this chapter, we would therefore like to investigate the effects that
fluctuations in the rate-limiting components of nucleotide synthesis have on mutagenesis.
Before describing the results of our experiments, we briefly review potential constraints in
fundamental biochemical networks that we perturb by chemical inhibition. We will charac-
terise mutational processes by the type of mutations observed, their local sequence context,
their timing and their distribution along the genome. We then represent each as a linear
combination of mutational processes, using expectation-maximisation to reduce the dimen-
sionality of the features. For this purpose, we only consider the presence or absence of a
mutation and not the size of its clone or the mutation frequency. We are able to reconstruct
signatures of an endogenous mutational process and a hydroxyurea-specific process, in line
with its effect in reducing the deoxynucleoside triphosphate (dNTP) pool size which are the
building blocks needed for DNA repair.11

This project has been carried out in collaboration with V. Mustonen (V.M.) at the Well-
come Trust Sanger Institute (Cambridge, UK).22

1Data analyses related to this chapter are available from the GitHub code repository
[https://github.com/ivazquez/PhD-thesis/tree/master/Chapter6https://github.com/ivazquez/PhD-thesis/tree/master/Chapter6].

2I.V.-G. designed research, implemented computational methods based on previous work [226226] and anal-
ysed data; I.V.-G. and V.M. interpreted results.

https://github.com/ivazquez/PhD-thesis/tree/master/Chapter6
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6.2 Mutational processes
The survival of all organisms requires faithful DNA replication to avoid deleterious muta-
tions. Newmutations in a cell’s genome can arise due to endogenous processes, like stochas-
tic errors in the DNA replication machinery, enzymatic changes to DNA or defective DNA
repair [227227, 228228]. Similarly, exogenous DNA damage can be caused by mutagen exposure
from sources like ionising radiation (e.g., X-rays or gamma rays) [229229], ultraviolet radia-
tion [230230], tobacco smoke [231231] or aristolochic acid [232232, 233233]. These major challenges
to genomic integrity can lead to cellular transformation and carcinogenesis [234234]. Endoge-
nous and exogenous mechanisms of DNA damage have been studied in model organisms
such as yeast [235235–237237] or worms [238238, 239239] and also in human cells [240240]. In Chapter 44,
we presented an experiment where we characterised the mutation dynamics of populations
under exposure to antimicrobial drugs. Specifically, we focused on inhibitors of nucleotide
synthesis for their highly specific roles as the limiting steps that determine the rate of DNA
replication. In an environment with limited nucleotides there will be trade-offs between the
rate of growth and the fidelity of DNA replication. Furthermore, it has been suggested that
alterations in nucleotide pools or expression of editing deaminases cause cells to become
unable to accurately replicate and repair their DNA [241241, 242242]. A similar scenario may arise
with drugs that inhibit RNA transcription or protein translation, where the accuracy and
kinetics will be affected by the availability of RNA polymerases or of different tRNAs.

In this chapter, we aim to characterise the spectrum of mutations under balanced and
imbalanced levels of nucleotides. To begin with, we must understand the rate-limiting steps
that impose constraints on genome replication. Firstly, the rate of replication is limited by
nucleotide synthesis because the length of the cell cycle must be longer than the time taken
by the cell to synthesise its new genome. DNA replication typically proceeds at 200 base
pairs per second [243243]. Simple prokaryotes like viruses have kilobase-long genomes that can
be replicated serially. Bacteria, however, have megabase-long genomes, and they resolve the
dilemma of replicating their genome in time for cell division by employing nested replication
forks for parallel processing. Eukaryotes can also successfully decouple genome length and
doubling time thanks to their usage of multiple DNA replication start sites. Yeast replicates
its 12Mb genome once every 90 minutes, needing approximately 500 origins of replication
and over 10 replication forks coexisting in a single cell [244244]. By inhibiting nucleotide
synthesis as a selective constraint, we will test whether cells that have very long overall cell
cycle times canmaintain short DNA replication times, or instead if fitter cells that grow faster
also shorten their replication time. A question that follows is therefore whether repeatable
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substitution patterns can be observed in different selective environments, and if so whether
they involve similar or different mutational biases.

6.2.1 Variation in mutation rate
In Chapter 44, we described an experiment where we propagated 5,760 populations for 93
days under selective inhibition with antimicrobial drugs. Populations were subject to con-
stant and dynamic environments, at constant and increasing drug concentrations imposed
by inhibition of nucleotide synthesis (with hydroxyurea – HU-C and HU-D) and cellular
growth (with rapamycin – RM-C and RM-D). Control populations were propagated in par-
allel in a control environment (SC). We detected pre-existing and de novo SNVs and indels
across 1,178 ancestral-evolved genome pairs sampled at 0 and 93 days (∼930 generations).
We aggregated the mutation counts {𝑔𝑖}𝑗=1…𝑁𝑝 for this set of 𝑁𝑝 = 1, 178 populations at
multiple loci in the genome. We aggregated the total number of mutations 𝑋𝑝 acquired by
a population after 93 days, which is given by the number of mismatches with respect to its
ancestral reference, 𝑋𝑝 = 𝑠𝑛 (𝑔𝑝, 𝑔ref). A total of 𝐿 = 52, 466 pre-existing base substitu-
tions and 𝐿 = 11, 601 de novo mutations were observed. We will focus on the spectrum of
de novo mutations which have been acquired under these selective pressures.

Now that we have an estimate of the number of mutations each population has acquired,
we can try to understand how mutations occur using a Poisson process. The defining feature
of a Poisson process is that each event (mutation arrival) is independent of all others. If
you consider a single cell, then the DNA will acquire mutations at a rate 𝜇 which, for the
moment, we assume to be uniform for all loci. Now each mutation event is independent of

SC

Fig. 6.1Modelling mutation rate as a Poisson process. Histograms of the number of mutation counts
per population 𝑋𝑝 are experimentally measured. The coloured curves represent the Poisson distri-
butions estimated by a method of maximum likelihood using the histogram data. Environments are
ordered by their mean mutation rate, with the highest rate (left) induced by HU-C and the lowest
(right) found in the control environment. The total number of mutations per population typically
varies by 4-fold between lowest and highest, and by 5-fold within the two most mutagenic environ-
ments (HU-C and HU-D).
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the previous event and in a very small interval of time the chance of two or more mutations
is negligible. Hence, the number of mutations in an individual for a fixed time window (𝑇 )
follows a Poisson distribution. The probability that 𝑋𝑝 substitutions occur in population 𝑝
over time 𝑇 is

𝑋𝑝 ∼ Pois (𝑋𝑝 | 𝜇𝑇 ) = (𝜇𝑇 )𝑋𝑝𝑒−𝜇𝑇

𝑋𝑝! , (6.1)

where 𝜇 is the mutation rate per site per unit time. Maximum-likelihood estimates of the
mutation rate can then be obtained for the duration of the experiment (𝑇 = 93 days).

We first set out to investigate the influence of the rate-limiting environments on muta-
genesis, as we expect these to play a major role in the variation of mutation rates. A large
number of populations have a high rate of mutation, with almost one mutation occurring
every cycle: there is an average of 19.14 events per population in HU-C, and 16.71 events
per population in HU-D (Fig. 6.16.1). This vastly exceeds that of populations in RM-C (5.84),
RM-D (5.31) and SC (4.93). The observations are consistent with the expected mean and
variance of a Poisson process, which are both equal to 𝜇. Since we know the number of sites
at risk to be mutated in the whole genome (𝐿) – which we approximate to be 𝐿 ≃ 1.23 × 108

bases in the original ‘consensus’ genome – then we can calculate a per-site mutation rate.
The average per-site mutation rates are in the range 0.43 − 1.67 × 10−10 from the least to the
most mutagenic environment (SC and HU-C, respectively).

6.2.2 Spectrum of single-nucleotide variants
There are well-known systematic differences in the rates of transition and transversion mu-
tations. To characterise the mutation spectrum of transitions and transversions, we count nu-
cleotide substitutions strand-symmetrically by the pyrimidine of the mutated Watson-Crick
base pair (i.e., C⋅G and A⋅T), of which there are 6 different types. In this way C-to-T (writ-
ten C>T) and T>C transition mutations, and C>A, C>G, T>A, and T>G transversion mutations,
encompass all possible SNVs. These are equivalent, respectively, to G>A and A>G transi-
tion mutations, and G>T, T>A, A>T and A>C transversion mutations. We refer to these as
mononucleotide mutation channels, defined by one of six possible unique base pair changes
(𝑁𝑐 = 6).

The observed data, 𝑋𝑝
𝑐 , is the number of mutations in channel 𝑐 and population 𝑝 of size

12 × 𝑁𝑝, since we split each of the 𝑁𝑐 = 6 mononucleotide channels across coding and
non-coding strands. Overall, the prevalence of different mutations is markedly uneven: C>T
and T>C transitions are particularly prominent. Transitions are more than twice as frequent
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as transversions, even though two possible transversions exist to every transition. This is
commonly observed across the tree of life since transitions preserve the chemical structure
of bases in DNA, whereas transversions do not [1212].

6.2.3 Sequence context
We will now focus on the mutational spectra from different populations by considering the
immediate sequence context of the mutated base. Context-dependent biases have been mea-
sured in multiple species, and particularly well known are the mutation hotspots caused by
CpG methylation in vertebrates. Given our definition of mononucleotide mutation channels
on theWatson-Crick base pair (C>A, C>G, C>T, T>A, T>C, T>G), each channel has four possible
5′ and four 3′ neighbouring nucleotides. A classification of trinucleotide mutation channels
can therefore be defined by substitution class and sequence context immediately 5′ and 3′ to
the mutated base (𝑁𝑐 = 6 × 4 × 4 = 96). In this notation we use the linear sequence of bases
along the 5′-to-3′ direction, e.g., a C>T mutation flanked by a 5′ guanine and a 3′ thymine
occurs at GpCpT.

Each mutation was mapped to one of 𝑁𝑐 = 96 trinucleotide mutation channels, defined
by one of six possible unique base pair changes and one of the sixteen different trinucleotide
sequence contexts. The mutation counts form a matrix 𝑋𝑝

𝑐 of size 96 × 𝑁𝑝 (Fig. 6.36.3B). We
can also estimate the frequency of sites at risk in the genome – the mutation opportunity
– which incorporates the genome frequencies of the triplets where each mutation type can
occur (Fig. 6.36.3A).
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Fig. 6.2 Breakdown of base substitutions by nucleotide change. Each colour indicates the number of
mutations for one of the six classes of nucleotide substitutions. The total counts for each mononu-
cleotide mutation channel (𝑁𝑐 = 6) are split between those in the coding (untranscribed) and the
non-coding (transcribed) strand.
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Fig. 6.3 Sequence context of single-nucleotide substitutions across trinucleotide mutation channels
(𝑁𝑐 = 96). (A) Relative usage of each site at risk to be mutated. The bar height indicates the
frequency of trinucleotides in the genome where each substitution type can occur, which we refer
to as mutation opportunities. (B) Each bar shows the total number of mutations observed across
replicate populations for a class of single-nucleotide substitutions in a given trinucleotide context.
Each of the environments is shown from top to bottom (HU-C, HU-D, RM-C, RM-D, SC).
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6.3 Inference of mutational processes
The spectrum ofmutations we have observed is highly variable and very rich in environment-
specific, founder-specific and context-dependent features. To this extent, we would like to
reconstruct features from sequence data that may resolve which fundamental mutational pro-
cesses are behind them. Firstly, we would like to infer context-specific mutational features
(or mutational ‘signatures’), which we define by 𝜇𝑠𝑐 (𝑠 = 1, … , 𝑁𝑠, 𝑐 = 1, … , 𝑁𝑐), with
∑𝑁𝑐

𝑐=1 𝜇𝑠𝑐 = 1 [226226]. Secondly, we would like to estimate the number of mutations in each
sample that are associated with a mutational signature, also known as the ‘activity’ or ‘ex-
posure’. We define the activity of process 𝑠 in population 𝑝 as 𝑥𝑝

𝑠 .
Earlier we described the combined observations of channel- and population-specific mu-

tation counts by the matrix 𝑋𝑝
𝑐 (𝑐 = 1, … , 𝑁𝑐 , 𝑝 = 1, … , 𝑁𝑝). Fischer et al. [226226] recently

proposed a probabilistic approach to infer mutational signatures that can account for the
noise in mutation counts, partly due to their stochastic origin. Assuming the mutations to
arise independently, they describe the probability of observing the vector 𝑋𝑝

𝑐 of mutation
counts in population 𝑝 across channels using a Poisson model

𝑃 (𝑋𝑝 | 𝑥𝑝, 𝜔𝑝, 𝜇 ) =
𝑁𝑐

∏
𝑐=1

Pois
⎛
⎜
⎜
⎝
𝑋𝑝

𝑐
|
|
||

𝑁𝑠

∑
𝑠=1

𝑥𝑝
𝑠𝜇𝑠𝑐𝜔𝑝

𝑐
⎞
⎟
⎟
⎠

(6.2)

where 𝑥𝑝
𝑠 is the activity of a signature 𝑠 in population 𝑝, 𝜇𝑠𝑐 is the probability of signature 𝑠

to generate a mutation in channel 𝑐, 𝜔𝑝
𝑐 is the mutation opportunity in channel 𝑐, and 𝑁𝑠 is

the number of mutational signatures.
We used the expectation-maximisation (EM) algorithm implemented by Fischer et al.

[226226]11 to identify specific mutational signatures. EM decomposes the matrix of mutation
counts into a set of sparse factors putatively representing different mutational processes, and
into population-specific activities for each process. The mutational signatures are calcu-
lated from the relative frequency of mutations at the 96 triplets defined by the mutated base
and each flanking base on either side. The hidden states are the activities of signature 𝑠 in
population 𝑝, 𝑥𝑝

𝑠 .
The expectation-maximisation algorithm can be stated in two steps. We begin with an

initial estimate for 𝜇 that respects the normalisation of mutation counts, ∑𝑁𝑐
𝑐=1 𝜇𝑠𝑐 = 1. In

the E-step, given the observed data 𝑋𝑝 and the current best estimate 𝜇 we find all the hidden

1Expectation-maximisation implemented in the EMuEMu software [226226].

http://www.sanger.ac.uk/science/tools/emu
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data 𝑥. In the M-step, we update all 𝑁𝑠 signatures 𝜇(𝑘) → 𝜇(𝑘+1).

E-step: 𝑥̂𝑝 = argmax
𝑥

log𝑃 (𝑋𝑝 | 𝑥, 𝜔𝑝, 𝜇(𝑘) ) (6.3)

M-step: 𝜇(𝑘+1) = argmax
𝜇

𝑁𝑝

∑
𝑝=1

log𝑃 (𝑋𝑝 | 𝑥̂𝑝, 𝜔𝑝, 𝜇 ) (6.4)

After convergence to an estimate of the mutational spectra ̂𝜇, we can then evaluate the log-
likelihood, integrating out the hidden data using a saddle-point approximation [226226]. To
select the correct number of mutational processes given the data, we note that increasing
the number of signatures 𝑁𝑠 typically increases the data likelihood 𝑃 (𝑋 | ̂𝜇 ) and provides
a better explanation of the data. Fischer et al. [226226] propose using an information criterion
like BIC to penalise for model complexity,

BIC = 2 log𝑃 (𝑋 | 𝜇 ) − 𝑁𝑠(𝑁𝑐 − 1) log𝑁𝑝. (6.5)

where 𝑁𝑠 is the number of mutational signatures, 𝑁𝑐 is the number of channels and 𝑁𝑝 is
the number of populations analysed.

The results of the EM algorithm – model parameters (spectra 𝜇) and hidden data (activ-
ities 𝑥) – allow to probabilistically assign mutations to processes. A global inference can be
first carried out by aggregating counts for populations across all environments to estimate
the global activities:

𝑋̃𝑝
𝑠𝑐 = 𝑁𝑠 ̂𝜇𝑠𝑐𝜔𝑝

𝑐

∑𝑁𝑠
𝑖=1( ̂𝜇𝜔𝑝)𝑖

. (6.6)

Here, the choice of initial entries of the 𝜇𝑠𝑐 matrix is set to the observation means. The
choice of initial guess for 𝜇𝑠𝑐 must respect the normalisation of the channels. The initial
weights of the global activities 𝑥𝑝,𝑔

𝑠 of signature 𝑠 in population 𝑝 are uniform.
We can then use global activities {𝑥̂𝑝,𝑔

𝑠 } as an informative prior for the local inference of
the activity of each signature in each population:

𝑋̃𝑝,𝑙
𝑠𝑐 = 𝑁𝑠𝑥̂𝑝,𝑔

𝑠 ̂𝜇𝑠𝑐𝜔𝑝,𝑙
𝑐

∑𝑁𝑠
𝑏=1 𝑥̂𝑝,𝑔

𝑠 ( ̂𝜇𝜔𝑝,𝑙)𝑏
(6.7)
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giving us the locally inferred activities, {𝑥̂𝑝,𝑙
𝑠 }. The stability of our solutions was confirmed

by comparing the assignment of mutational signatures from the local inference to the global
inference across all environments, per environment or per founder.

The inference identified two uncorrelated mutational signatures (Fig. 6.46.4). Signature 1
corresponds to an endogenous process or processes that are active in all populations. This
signature is characterised by C>T substitutions at ApCpA and TpCpT trinucleotides, as well
as C>A and T>A substitutions at ApTpA (Fig. 6.46.4, top panel). Signature 2 is a hydroxyurea-
specific signature. This mutational process is characterised by C>T mutations at ApCpN and
GpCpN, and T>A and T>G mutations at TpTpT (Fig. 6.46.4, bottom panel). Signatures in which
mutations have different target bases, e.g., C>T and T>G in Signature 2, may inevitably try to
split into multiple signatures because different nucleotide pools are involved for the repair
of each base and relative dNTP abundance will also fluctuate in time. Additional signatures
are not supported by the data, however, as the number of counts per trinucleotide channel is
finite.

A C G T A C G T A C G T A C G T A C G T A C G T
3' base

A
C
G
T

5' 
ba

se

Signature 1

A C G T A C G T A C G T A C G T A C G T A C G T
3' base

A
C
G
T

5' 
ba

se

Signature 2

C>A C>G C>T T>A T>C T>G Probability

0.00

0.02

0.04

C>A C>G C>T T>A T>C T>G Probability

0.00

0.01

0.03

Fig. 6.4 The context-dependent mutation spectrum supports two signatures. Each of the tiles shows
one of the 6 base substitutions, with 16 trinucleotide channels sorted by the flanking 3′ base (𝑥-axis)
and 5′ base (𝑦-axis). The colour scale shows the probability ̂𝜇. Signature 1 is characterised by C>T
mutations at ApCpA and TpCpT, C>A at ApCpA and T>A at ApTpA. Signature 2 is characterised by C>T
mutations at ApCpN and GpCpN, and T>A and T>G mutations at TpTpT.

Signature 1 has an average baseline activity of 8 mutations per population (Fig. 6.56.5A).
Signature 2 contributes 16 mutations on average in HU-C and 12 mutations in HU-D. There
is an inverse relationship between the dose of hydroxyurea and the number of base substi-
tutions. There were minor differences in the total mutation load depending on the founder
genotype, largely related to uracil or lysine deficiencies of the segregants (Fig. 6.56.5B). The
activity of each mutational process, 𝑥̂𝑝

𝑠 , indicates that the relative contributions of each of
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Fig. 6.5 Activity of mutational signatures. (A) The average activity of mutational signatures by envi-
ronment, 1

𝑁𝑒
∑𝑝∈𝐸 𝑥̂𝑝

𝑠 , shown by the bar length along the horizontal axis. (B) The average activity of
each mutational signature calculated by founder, 1

𝑁𝑓
∑𝑝∈𝐹 𝑥̂𝑝

𝑠 . Founder genotypes are ordered from
top to bottom, indicated by the labels on the left margin and coloured by the type of background.
(C) The activity 𝑥̂𝑝

𝑠 of each mutational process shows their contribution in each population. The ab-
solute contribution of different mutation signatures is depicted by stacked bars and ordered by the
total number of mutations.



6.4 Mechanistic models of mutagenesis 153

the signatures across replicates is similar when more than one signature is active. Even
though Signature 2 is hydroxyurea-specific, several mutations can be attributed to this pro-
cess in other environments which is an artifact caused by finite-size effects of the total num-
ber of counts per channel when carrying out the optimisation without sparsity constraints
(Fig. 6.56.5C).

6.4 Mechanistic models of mutagenesis
We would like to determine whether we can associate certain mutational processes with the
failure of endogenous repair mechanisms or the activity of exogenous mutagens. Two differ-
ent mutational processes could have the same mutational signature, which means we should
be cautious in ascribing a single mutational process to a mutational signature. Signature 1
reflects an endogenous process or processes of DNA damage that is ubiquitous across all
replicate populations. This may be attributed to deamination, which occurs spontaneously
in all DNA bases that contain primary amines albeit at markedly different rates (Fig. 6.66.6A).
The signature profile is consistent with two common deamination reactions: (i) C>T transi-
tions arising through direct replication over uracils generated by cytidine deamination; and
(ii) C>A transversions due to replication over abasic sites formed after uracil excision by
uracil-DNA glycosylase (Fig. 6.66.6A). Similar processes have been observed in model organ-
isms (e.g., yeast [245245] or worms [238238]) and in humans [228228, 246246]. However, we note that the
baseline rate of C>T transitions at CpG dinucleotides – the most common form of deamina-
tion in vertebrates – is low, consistent with yeast lacking DNA methylation (Cristina Rada,
personal communication).

The mutations described by Signature 2 are due to an exogenous process involving nu-
cleotide depletion by hydroxyurea. Free nucleotides are normally collected by DNA poly-
merase and attached by complementary base pairing, moving in the 5′-to-3′ direction (poly-
merisation). Polymerases also carry out 3′-to-5′ error correction and are capable of excising
misincorporated bases (proofreading). Depleting the cell of dNTPs inhibits nucleotide poly-
merisation and can result in stalled replication forks. We nowwork through the rationale that
this mutational signature occurs when holding open the excision-repair induced gaps by in-
hibiting nucleotide polymerisation, which increases competition between the polymerisation
and proofreading activities of replication complexes. Interestingly, models of polymerisa-
tion and excision which assume that both these processes take place in equilibrium through
a series of reversible steps subsume that, as dNTP abundance becomes rate-limiting, more
rapid synthesis should result in decreased fidelity which fails to explain our observations.
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Instead, out-of-equilibrium models account for the fact that nucleotide incorporation is irre-
versible [247247, 248248] and predict that:

(i) During polymerisation, if a ‘wrong’ nucleotide is present at sufficiently high con-
centrations to compete with the ‘right’ nucleotide the misincorporation rate at a non-
Watson-Crick base pair can increase.

(ii) During proofreading, a high concentration of the next nucleotide promotes its incor-
poration, thereby favouring polymerisation and blocking the 3′-exonucleolytic proof-
reading of a previously misincorporated nucleotide (known as the ‘next-nucleotide’
effect).

To distinguish between these two mechanistic models (Fig. 6.66.6B), we must take toll of
our observations thus far. Firstly, we already described that mutation rates are higher with
lower doses of hydroxyurea, which is only plausible by the competition of correct and in-
correct nucleotides at high abundance of dNTPs. Secondly, the shift in mutation spectrum

Fig. 6.6Mechanistic models of mutagenesis. (A) Signature 1 is compounded of a number of endoge-
nous DNA damage processes caused by spontaneous deamination. This signature is common across
taxa and gives rise to characteristic C>T and C>A mutations (see Figure 6.46.4). (B) Signature 2 oc-
curs due to spontaneous mutagenesis in conditions of nucleotide depletion. During DNA replication,
replicative DNA polymerases in budding yeast carry out 5′-to-3′ polymerisation and 3′-to-5′ proof-
reading. The competition between the polymerisation and proofreading activities of polymerase can
lead to the misincorporation of nucleotides and impair the ability to proofread flanking nucleotides –
known as the ‘next-nucleotide’ effect –. This is clearly evidenced by an elevated mutation load under
nucleotide depletion in HU-C and HU-D, as well as an excess of C>T mutations at ApCpN and GpCpN
trinucleotide contexts (see Figures 6.46.4 and 6.56.5).
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displayed by Signature 2 is influenced by the flanking nucleotides – those 3′ to the misincor-
porated base being present in excess – suggesting the existence of a proofreading function as
part of the replication complex, which has been previously described in vitro [249249] and we
observe in vivo. The most plausible mechanistic model for this mutational signature is there-
fore determined by the competition between the polymerisation and proofreading activities
of replication complexes. This trade-off is dominant over the ultimate effect of nucleotide de-
pletion: fork stalling leading to the formation of double-strand breaks, in which both strands
in the double helix are severed. Double-strand breaks can cause genomic rearrangements
that are particularly hazardous to the cell and are most likely selected against. Furthermore,
we already characterised single-cell clones in Chapter 55 where we observed genomic rear-
rangements that enable the selection of beneficial mutant alleles by loss of heterozygosity.
We do not discard that fork stalling may be more common in HU-D than HU-C due to the
dose-dependent duration of cell-cycle arrest, but the mechanistic evidence for competition
between polymerisation and proofreading should remain invariant.

6.5 Summary
The rate of genetic mutations, mainly made by DNA polymerase, is typically much lower
than the error rates of RNA polymerase or the ribosome. In this chapter, we tackled the
challenge of systematically detecting and quantifying errors in DNA replication under nu-
cleotide pool imbalances using budding yeast. The error rate we observe byDNA sequencing
is around 10−10 per base on average, but it varies considerably between nucleotides and in
a manner that depends on the neighbouring bases. Treating yeast with drugs that alter the
nucleotide balance impaired DNA proofreading, exposing specific patterns of errors induced
in each nucleotide position. The endogenous substitution patterns we found in budding yeast
show significant similarity to those of deamination observed in other organisms, while the
exogenous patterns caused by nucleotide depletion suggest a common chemical basis for
errors under genome replication stress mediated by the ‘next-nucleotide’ effect. Finally, we
proposed a kinetic proofreading model based on basic thermodynamics that may be able
to explain some of the error patterns observed. Future studies should aim to characterise
whether substitutions under impaired replication fidelity tend to occur in positions that are
less evolutionarily conserved, which may indicate that organisms have evolved mechanisms
to minimise deleterious substitutions with detrimental phenotypic effects.





Chapter 7
Epilogue

In this thesis, we investigated theoretical and experimental approaches to understanding the
evolutionary dynamics of rapidly adapting populations. We discussed two approaches to un-
derstanding biological systems: one of them described populations as dynamical stochastic
systems that process and transmit information, whilst a data-driven approach could build a
description of the genetic diversity in a population usingDNA sequencing. We argued briefly
that the lessons learned from simple model systems such as budding yeast (S. cerevisiae) can
help us understand the role of the evolutionary forces of mutation, selection and genetic drift.
By applying these methods to the measurement of the adaptive responses in cell populations
under rate-limiting conditions, we have learned a number of new insights regarding the na-
ture of selection in populations with extensive genetic variation that we summarise below.
Finally, we present open questions and possibilities for future consideration.

Models of evolutionary dynamics distinguish driver and passenger mutations

In Chapter 22, we first introduced a minimal model with mutation, selection and genetic drift.
We started with a reduced single-locus model that gave us a heuristic understanding of the
probability of fixation or extinction of a neutral mutation or a mutation under selection.
The complex dynamics of the system that emerge from multiple mutations in the genome
quickly become intractable due to the microscopic details of multi-locus statistics. How-
ever, we could implement a multi-locus model for genetic hitchhiking using a deterministic
approximation for the motion of a driver mutation during a selective sweep. This model
can successfully discern mutations directly under selection from hitchhiker mutations. We
compared this to experimental data for a selective sweep described in Chapter 55 and we can
localise a validated driver mutation under selection, as predicted by our theory.
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Rapidly evolving populations represent a challenging modelling problem, with complex
and noisy dynamics. Despite the success of the driver-and-passengers model in explain-
ing empirical data, the assumption that mutations have identical effects everywhere in the
genome should be reconsidered. The model currently predicts fixation events, but it does
not address that many adaptive mutations will initially only sweep to intermediate frequen-
cies. Incomplete sweeps are common in our experiments and have been observed in many
populations [250250]. Accommodating incomplete sweeps will require extending the driver-
and-passengers model beyond additive effects. Finally, we reported elsewhere that for the
stochastic single-locus model, one can extend this analysis to include a control that can ac-
celerate or delay the loss of a mutation in a population [114114]. We derived optimal adaptive
controls in this scenario that could potentially be experimentally tested for model-based con-
trol of population dynamics. Demonstrating that the evolution of biological systems can be
predictably controlled would be a significant milestone with far-reaching implications, both
for population genetic theory and for the development of adaptive therapies that halt the
evolution of antimicrobial and chemotherapy resistance.

Subclonal population structure can be inferred by whole-genome sequencing

In Chapter 33, we addressed a data-driven problem to enable the computational reconstruc-
tion of the clonal composition of a population using DNA sequencing. We first reviewed
recent efforts to quantify the genetic diversity of mixed populations of cells by means of
bulk sequencing, single-cell sequencing and lineage tracing techniques. Before addressing
the problem of inferring subclonality from DNA sequences, we provided an overview of
the current state-of-the-art of algorithms addressing this problem, and we gave a brief intro-
duction to probabilistic modelling and Hidden Markov Models (HMM). As a first step, we
presented a general-purpose probabilistic filtering algorithm for one-dimensional discrete
data, similar in spirit to a Kalman filter. It is a continuous state-space HMM with Pois-
son or binomial emissions and a jump-diffusion propagator. It can be used for scale-free
smoothing, fuzzy data segmentation and filtering of DNA sequencing datasets. Secondly,
we presented a HMM with a discrete state-space to reconstruct the subclonal structure of a
population, and we showed we can exploit correlations in the data to discern macroscopic
subclones in a mixed population. Our statistical algorithms allow us to accurately estimate
the number of subclonal populations, their fractions in the sample, and the subclone-specific
total copy number profiles, B-allele status and SNV genotypes with high resolution. Two
key ingredients underlie our approach. Firstly, we exploited multiple layers of genetic varia-
tion to reconstruct the clonal composition: single-nucleotide variants (both pre-existing and
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de novo) and copy-number aberrations. This integrative approach overcomes the degener-
acy of subclonal solutions, whereby the same clonal composition may otherwise be gener-
ated by multiples of the hidden genomic state at different scaled population fractions. Sec-
ondly, the algorithm can exploit the information found in spatially- or temporally-resolved
samples, taking into account correlations along the genome caused by events such as copy-
number changes. Finally, we evaluated the algorithmic performance on simulated datasets
and synthetically-derived samples from human cancer. Using these datasets, we have shown
through quantitative comparisons of methods that computational inference of both subclonal
structure and correct assignment of mutations to subclones are highly dependent on incorpo-
rating the copy number state of the allele being measured. Our implementation for filtering
and inference is scalable and can be applied to clonal admixtures of genomes in any asexual
population, from evolving pathogens to the somatic evolution of tumours.

Several new lines of research are ripe to directly benefit from these methods: the al-
gorithm is ideally suited to infer the clonal composition of a population when selection is
sufficiently strong to amplify fit genotypes. One major line of work being currently pursued
is characterising clonal and subclonal driver genes under selection in pan-cancer datasets
based on the subclonal inference [122122]. This is revealing that subclonal drivers are as fre-
quently found to be under selection as clonal ones [3333, 110110]. As was shown in the exposition
of the algorithm, the uncertainty in assigning subclonal states reflected the inherent limits of
inference with the resolution of current technologies. This is a data-derived issue, as the cur-
rent state-of-the-art in DNA sequencing has limitations to resolve the long tail of the clone
size distribution, which is key to understand the role of selection in evolutionary dynamics.
Clearly, future models for sequencing data with resolution at the single-cell level should be
able to achieve much greater reconstruction depth by incorporating the lineage relations di-
rectly in the inference. These methods may be complemented by lineage tracing techniques
that can be used for molecular recording at temporal resolutions that can trace every cell
division [154154–156156, 251251].

Path-dependent effects of selection on the genetic diversity of a population

In Chapter 44, we used a recombinant library design of randomised genomes of budding yeast
to study the nature of contingency effects and selection on genetic variation. We carried out
directed evolution and DNA sequencing of this library to simultaneously adapt genetically
heterogeneous and homogeneous populations to an environment and measure the genotypes
of an ensemble of populations. We imposed selection by inhibition of different rate-limiting
steps of the cell cycle, like replication or translation. We wanted to determine whether a
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‘cloud’ of recombinant genotypes accelerates evolution compared to isolate segregants. The
average length of mutational paths required by genetically diverse populations was very pre-
dictable. Conversely, those same genotypes in isolation could sometimes become entrenched
in a local fitness maximum and require many more mutations to adapt, which sets limits to
the predictability of outcomes at the sequence level. We have provided evidence of recurrent
patterns of mutations at the molecular level, but the outcomes at the genetic level are stochas-
tic. In particular, we have shown that different founders follow different mutational paths in
the genotype space [183183]. The pool of adaptive mutations is common to most closely related
genotypes, but some rare mutations can be seen to dramatically change the trajectory of a
few populations.

Overall, we have gained insights into the role of chance and selection and how they in-
fluence the sequence evolution of an ensemble of population trajectories. Regarding the
patterns of recurrence at the molecular level, we could extend our scoring method to esti-
mate the fitness effects of the mutations by forming an evolutionary model with an explicit
fitness function. This can be done by projecting sequences to scores as we did, and then
drawing uncorrelated nucleotides to obtain a null distribution 𝑃0(𝑆) to define a function
𝑄(𝑆) ∝ 𝑃0(𝑆)𝑒2𝑁𝐹 (𝑆) and estimate fitness differences from the data (see e.g., Moses and
Durbin [101101] and Fischer et al. [102102]). Of particular interest will be conditional mutants,
whose fitness effect may only be expressed in extreme stress environments. Using argu-
ments from mutation-selection balance, we may be able to localise these by estimating the
fitness cost of these mutations in different environments (see e.g., Zanini et al. [109109]). Fi-
nally, an outstanding challenge at the population level is to test the value of genetic diversity
as a statistical indicator for population robustness. Whilst we have found that a set of random
genotypes generated by recombination can efficiently explore the genotype space, it remains
to be seen whether genetic diversity can ensure survival and prevent population collapse dur-
ing clonal evolution. In addition to the genome sequence measurements, a complete record
of population size changes has been kept by real-time monitoring throughout the experiment
using high-throughput scanning. These real-time measurements could be used to evaluate
genetic diversity as an early-warning indicator for the propensity of a population to thrive or
collapse.

Genetic variation sets a selective threshold on the fate of new mutations

In Chapter 55, we studied the evolutionary dynamics of populations containing extensive fit-
ness variability in yeast. As we discussed in Chapter 22, genetically diverse populations are
expected to form a travelling fitness wave, with the mean fitness increasing at a rate that is
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proportional to its fitness variance [125125, 252252]. We therefore set out to test a key theoreti-
cal result that predicts the existence of a threshold selective advantage above which the fate
of a new mutation becomes decoupled from the background it lands on [219219, 220220]. Our
results show that large populations can readily find beneficial de novo mutations, but their
adaptive trajectories are simultaneously shaped by pre-existing and de novo variation with
overlapping timescales. We observed a balance between the loss of diversity due to selec-
tion, and active diversification mechanisms that partially re-established and refined existing
variants. The background genotypes were continuously re-configured by genomic instabil-
ity, diversifying the expanding subpopulations. Measurements of the fitness distribution
revealed two different outcomes of selection: if many mutations had comparable fitness ef-
fects as in hydroxyurea, the fitness distribution remained smooth; on the contrary when few
large-effect mutations were available, such as mutations in the TOR pathway in rapamycin,
the fitness distribution became multimodal. We also carried out ensemble-averaged fitness
measurements of a recombinant library of pre-existing and de novomutations. We found that
large-effect mutations, such as those in the TOR pathway, confer resistance to rapamycin re-
gardless of the genetic background where they arise. These mutations were of sufficient
magnitude to surpass the bulk of the fitness distribution and can be interpreted to be above
the selective threshold. Conversely, the pre-existing fitness variance influenced the fate of
de novo drivers like RNR2 and RNR4mutations, which needed to land on a favourable back-
ground to be competitive. These results confirm the theoretical prediction that new muta-
tions are expected to be successful only if they land on a favourable background or if they
are beneficial enough to escape from the bulk dynamics by their own merits.

Taken together, our findings can help to understand the asexual or somatic evolution of
large populations with extensive genetic variation. Bacterial infections and cancer, which
easily reach sizes of billions of cells, host a comparable mutation load before any selective
treatment is applied. For example, the number of pre-existing variants in this model system
is comparable to the typical number of somatic mutations accrued before treatment during
carcinogenesis, which varies between 102 − 105 depending on the cancer type [253253]; and it
is also comparable to the genetic diversity in bacterial communities (e.g. in cystic fibrosis
patients [254254]). The existence of a selective threshold demonstrated by our combinatorial
strategy of background averaging shows that populations can be found at the limit cases
above and below the selective threshold, suggesting that that these dynamics may represent
a general mode of adaptation. Indeed, several biological systems have already been charac-
terised to operate at the edge of the two regimes: large-effect mutations being amplified on
well-adapted background genotypes have been observed in laboratory populations [105105] and
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in the wild, e.g. in the seasonal influenza virus [2828]. Critically, it follows from these obser-
vations that predicting the outcome of selection will hinge on characterising the background
fitness variance and on finding a common framework to describe the selective potential of a
population [255255]. These may be necessary requisites to eventually rationalise the design of
therapies in the treatment of bacterial and viral infections or cancer. Overall, we hope these
results will encourage new theoretical and empirical investigations of the complex interplay
of selection simultaneously acting on pre-existing and de novo genetic variation, and of the
role of genomic instability continuously moulding the genomes in a population.

Genome-wide signatures of endogenous and exogenous mutational processes

In Chapter 66, we aimed to characterise the spectrum of mutations under selective constraints
which affect the fidelity of genome replication. Firstly, we characterised two mutational
processes observed in the experiments in Chapter 44: an endogenous process of spontaneous
deamination active across all populations, and an environment-specific mutational process
caused by the competition of the polymerisation and proofreading of DNA under nucleotide
depletion. Supporting this exogenous process, we observed genomes to be more accurately
replicated at low substrate concentration of dNTPs, becoming less efficient at higher ab-
solute concentrations. The mutational spectrum also revealed a consistent pattern of the
so-called ‘next-nucleotide’ effect: that is, the probability of excision of the last residue by a
polymerase depended not only on the base sitting opposite but also on the rate of incorpora-
tion of the next nucleotide. These two observations can only be parsimoniously reconciled
by the competition between the polymerisation and proofreading activities of DNA repli-
cation complexes [247247, 248248]. The ‘next-nucleotide’ effect was first observed in vitro [249249,
256256] and, to our knowledge, this is the first observation in vivo.

Regarding the mutational processes that have been characterised, a genomic readout pro-
vides future opportunities for the detection of mutagenic chemicals with much higher sensi-
tivity than current assays, such as the Ames test [257257]. We can now also measure the cooper-
ative kinetics of DNA polymerisation and proofreading by sequencing. This is a particularly
interesting avenue, as nucleotide pool imbalances are known to play a role in oncogenic
activation in humans when the Rb-E2F pathway is activated, which can be caused by the
cellular oncogene cyclin E or HPV viral oncogenes [241241]. This suggests that the isolation of
mutagenic signatures in yeast could potentially be used to detect the activity of mutational
processes of different origin but similar molecular basis.
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In summary, we used theoretical, computational and experimental methods to study the
evolutionary dynamics of rapid adaptation, combining statistical analyses of genomic se-
quences, mathematical models of evolutionary dynamics and experiments in molecular evo-
lution. We covered a wide range of different topics, contributing to the general understand-
ing of structure of genotypic and phenotypic variability in population dynamics that can be
translated to a range of biological systems, from microbes, viruses or parasites, to cellular
populations, such as tumours.
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