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Thesis Summary

Nef, an accessory protein of HIV-1, is a critical determinant of viral pathogenicity.
The pathogenic effects of Nef are in large part dependent on its ability to decrease the
amount of CD4 on the surface of infected cells. Early studies suggested that Nef
induces downregulation by linking the cytosolic tail of CD4 to components of the
host-cell protein-trafficking machinery. However, the specific sorting pathway that
Nef uses to modulate CD4 expression remained uncertain. According to one model,
Nef was thought to interfere with the transport of newly synthesized CD4 from the
TGN to the cell-surface. Another model claimed that Nef facilitated the removal of

CD4 from the plasma membrane.

The primary goal of this thesis was to determine which of these models was correct.
To accomplish this objective, a novel Nef-CD4 system was developed in Drosophila
S2 cells. Nef was not only able to downregulate human CD4 in S2 cells, but it did so
in a manner that was phenotypically indistinguishable from its activity in human cells.
An RNAI screen targeting protein-trafficking genes in S2 cells revealed a requirement
for clathrin and the clathrin-associated, plasma membrane-localized AP-2 complex in
the Nef-mediated downregulation of CD4. In contrast, depletion of the related AP-1
and AP-3 complexes, which direct transport from the TGN and endosomes, had no
effect. The requirement for AP-2 was subsequently confirmed in a human cell line.
Yeast three-hybrid and GST pull-down assays were then used to demonstrate a robust,
direct interaction between Nef and AP-2. This interaction was found to depend on a
[D/E]xxxL[L/T]-type dileucine motif, located in the C-terminal loop of Nef, that is

essential for CD4 downregulation.

While mapping the binding site of AP-2 on Nef, a second determinant of interaction
in the C-terminal loop was identified. Mutation of this motif, which conforms to a
consensus [D/E]D diacidic sequence, prevented Nef from binding to AP-2 and down-
regulating CD4. However, the same mutations did not affect the ability of Nef to
interact with either AP-1 or AP-3, providing further evidence that these complexes are
not required for the modulation of CD4 expression. Additional experiments indicated
that the Nef diacidic motif most likely binds to a basic patch on AP-2 a-adaptin that is

not present in the homologous AP-1 vy and AP-3 d subunits. As with the Nef diluecine
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and diacidic motifs, the a-adaptin basic patch was shown to be necessary for CD4
downregulation. Moreover, all three of these motifs were needed for the cooperative
assembly of a CD4-Nef-AP-2 tripartite complex, which was observed here for the

first time using a yeast four-hybrid system.

The data in this thesis uniformly support an endocytic model of Nef-mediated CD4
downregulation. Indeed, there is now strong evidence that Nef simultaneously binds
CD4 and AP-2, thereby connecting the receptor to the cellular endocytic machinery
and promoting its rapid internalization from the plasma membrane. In addition, the
identification of novel motifs required for this process has provided new insights on
endocytosis, and may facilitate the development of pharmacological inhibitors of Nef

function.
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ADHI1 alcohol dehydrogenase 1

AIDS acquired immune deficiency syndrome
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bp base pair
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CIMR Cambridge Institute of Medical Research
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GAL4AD GAL4 activation domain

GAL4BD GAL4 DNA binding domain

GFP green fluorescent protein
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HIV-1 human immunodeficiency virus type 1
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IgG immunoglobulin G
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IRES internal ribosome entry site

ITAM immunoreceptor tyrosine-based activation motif

IVT in vitro transcription

kDa kilodalton

kT kilotesla

LAMP1 lysosome associated membrane protein 1

LATE lithium acetate, tris, EDTA

LB lysogeny broth

Lck 56~k
lymphotoxin-like, exhibits inducible expression and competes

LIGHT with HSV glycoprotein D for herpes virus entry mediator, a
receptor expressed by T lymphocytes

LTNP long-term non-progressor

LTR long terminal repeat

MCS multiple cloning site

MHC major histocompatibility complex

MHC-I major histocompatibility complex class I

MHC-II major histocompatibility complex class II

min minute(s)

mRNA messenger RNA

MVB multivesicular body

NIAID National Institute of Allergy and Infectious Diseases

NICHD National Institute of Child Health and Human Development

NIH National Institutes of Health

NLS nuclear localizaton sequence

NMR nuclear magnetic resonance

NK natural killer

NP-40 nonyl phenoxylpolyethoxylethanol-40

OD optical density
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Full word or phrase

PAGE

polyacrylamide gel electrophoresis

PBB protein binding buffer

PE phycoerythrin

PEG polyethylene glycol

PCR polymerase chain reaction

PIP phosphatidylinositol phospholipid
PKC protein kinase C

rfu relative fluorescence unit

RNA ribonucleic acid

RNAI RNA-interference

RPMI Roswell Park Memorial Institute
RU response units

SCID severe combined immunodeficiency
SCID-hu severe combined immunodeficiency with human T cells
SDM site-directed mutagenesis

SDS sodium dodecyl sulphate

sec second(s)

SEM standard error of the mean

siRNA small interfering RNA

SIV simian immunodeficiency virus
SOC super optimal broth with catabolite repression
SPR surface plasmon resonance

TBE tris, boric acid, EDTA

TBS tris-buffered saline

TCR T cell receptor

TDN tris, dithiothreitol, NaCl

TEV tabacco etch virus

TfR transferrin receptor

TGN trans-Golgi network

TNF tumor necrosis factor

WT wild-type

YPD yeast extract, peptone, dextrose
Y2H yeast two-hybrid

Y3H yeast three-hybrid

Y4H yeast four-hybrid

aR a-Rescue (an siRNA-resistant version of rat ai-adaptin)
3AT 3-amino-1,2,4-triazole
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Chapter 1:

Introduction



1.1 Abstract

In this chapter, several topics related to the Nef-mediated downregulation of CD4 will
be introduced. The first topic to be covered is the human immune system. Because of
the extraordinary complexity of the immune system, this section is not intended to be
a comprehensive description of its properties. Instead, the discussion of host-defense
mechanisms will simply provide a framework for understanding the critical role that
CD4 T cells play in protecting the body from pathogenic organisms. This is followed
by a more focused examination of the CD4 molecule itself, which in addition to being
the distinguishing feature of CD4 T cells, is a co-receptor for HIV-1. As explained in
the next section, the infection and destruction of CD4 T cells by HIV-1 causes AIDS
because the integrity of the immune system is slowly degraded. This subject naturally
leads to a discussion about Nef, a key regulator of disease progression. In the section
devoted to Nef, its contribution to viral pathogenicity and its wide range of functions
are described. Of all these functions, the downregulation of CD4 is probably the most
important. This process is believed to depend on interactions between Nef and at least
some components of the host-cell protein-trafficking machinery. After a brief review
of this machinery, two models that potentially explain the mechanism by which Nef
downregulates CD4 are presented. The methodology that will be used in this thesis to

identify the correct model is described in the final section.



1.2 The human immune system

The human immune system, which is charged with defending the body against attack
by foreign organisms, has two major components: the innate immune system and the
adaptive immune system (for a detailed description of these systems, see Janeway et
al., 2005). The innate immune system is capable of mounting an immediate, but non-
specific response against pathogens: in most cases, this response is able to contain and
eliminate the infection. However, if the pathogen manages to evade or overwhelm the
innate immune system, the adaptive immune system is activated. As its name implies,
this system ‘“adapts” to an infection and produces a specific, sustained response to a

particular pathogen.

The cells that mediate the innate and adaptive immune responses originate in the bone
marrow (see Fig. 1.1). There, pluripotent hematopoietic stem cells give rise to the
myeloid and lymphoid progenitors, which are themselves stem cells of a somewhat
more limited potential. Myeloid progenitors differentiate into a variety of cell types
including, but not limited to, macrophages, neutrophils, and dendritic cells. Lymphoid
progenitors, on the other hand, mature into natural killer (NK) cells, B lymphocytes,
and T lymphocytes. Each of these cells has a specialized function (Fig. 1.2), and by
working in a coordinated fashion, they ensure the proper functioning of the innate and

adaptive immune responses.

1.2.1 Cells of the myeloid lineage

Macrophages, which are present in tissues throughout the body, are generally the first
immune cells to appear at the site of an infection. Upon encountering a pathogen, they
initiate the innate immune response by engulfing and destroying the foreign organism
in a process known as phagocytosis. Activated macrophages also secrete compounds
that alert other phagocytes, such as neutrophils and dendritic cells, of the emerging
infection. In response to these signals, large numbers of neutrophils migrate from the
blood stream to the affected area, where they bolster the innate immune response by
rapidly ingesting and neutralizing pathogens. Dendritic cells arrive later, and in fewer
numbers, but they act as an important link between the innate and adaptive immune
systems. The primary role of these cells is to present peptide fragments, or antigens,

derived from phagocytosed pathogens on their surface using a special receptor (which
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is described in more detail below). Antigen-presenting dendritic cells then travel from
the infection site to a nearby lymph node, where they induce the activation of a subset

of lymphocytes and thereby stimulate the adaptive immune response.

1.2.2 The major histocompatibility complex receptors

The receptor that dendritic cells use to display foreign antigens belongs to a family of
highly polymorphic genes called the major histocompatibility complex (MHC). There
are two kinds of MHC receptors, designated class I (MHC-I) and class IT (MHC-II).
Both classes of receptor bind peptides at an intracellular location, traffic to the plasma
membrane, and present the peptides on the exoplasmic face of the cell to circulating
lymphocytes. However, the receptors differ in several important ways, including their
cellular expression profiles, the source of their peptide ligands, the organelle where

peptide loading takes place, and the specific kind of lymphocyte they activate.

MHC-I molecules (reviewed by Purcell and Elliot, 2008; van Endert, 1999) are found
on the surfaces of most cell types, and bind peptides that are obtained from proteins
produced within the cell. A randomly chosen fraction of all proteins translated in the
cytosol is degraded by the proteosome into short peptide fragments; these peptides are
then translocated into the endoplasmic reticulum (ER), where they are loaded onto
MHC-I receptors moving through the secretory pathway on their way to the plasma
membrane. Because all newly synthesized proteins are potentially subject to this
process, many MHC-I antigens are generated from endogenous polypeptides. But if
the cell is infected with a pathogen, such as a virus, at least some of the antigens that

are displayed on the plasma membrane will be derived from foreign proteins.

Unlike MHC-I receptors, MHC-II molecules (reviewed by Guermonprez et al., 2002;
van Niel et al., 2008) are normally expressed only by certain types of phagocytes, like
the dendritic cells mentioned above. As the MHC-II receptors pass through the ER, en
route to the cell surface, they are prevented from binding the peptides available in this
location by the tight association of a transmembrane protein called the invariant chain
(I1). This protein then chaperones MHC-II to the phagolysosome (Dugast et al., 2005;
McCormick et al., 2005), an acidic organelle that contains any endogenous or foreign
material that the cell may have internalized. Hydrolases in the phagolysosome digest

this material, and the resulting peptides are loaded onto MHC-II receptors in place of



Ii. Once this process is finished, antigen-bound MHC-II complexes are transported to

the plasma membrane for presentation on the exterior of the cell.

1.2.3 Cells of the lymphoid lineage

As described in the preceding section, the MHC-I and MHC-II antigen-presentation
pathways play distinct, but complementary, roles in activation of the adaptive immune
response: MHC-I receptors are used to alert one set of lymphocytes to the presence of
pathogens within the cell, while MHC-II receptors are used to signal to a different set
of lymphocytes that there are foreign organisms in the extracellular space. In both
cases, the lymphocytes that interact with the antigen-MHC complexes are T cells, so
called because they mature in the thymus rather than the bone marrow. These cells

express a unique molecule on their surface known as the T cell receptor (TCR).

The function of the TCR is to recognize foreign peptides bound to either MHC-I or
MHC-II (for a thorough review of this topic, see Janeway et al., 2005). Because each
TCR can recognize only one antigen, the adaptive immune system must have many
different TCRs in its repertoire in order to effectively respond to the range of foreign
peptides that it is challenged with. Diversity among TCRs is generated by a complex
mechanism called somatic recombination, in which the genes that encode the TCR are
assembled, in part, by the random joining of highly variable segments of DNA. This
process occurs during the early stages of T cell differentiation, and once complete, is
irreversible. Thus, each T cell is endowed with a distinct version of the TCR that has

unique antigen-recognition properties.

In addition to the TCR, T lymphocytes at this stage of development express several
other important surface receptors, including CD4 and CD8. These cells (often referred
to as “double-positive” T cells due to the concurrent expression of CD4 and CDS)
must undergo two rounds of selection in the thymus before they are allowed to enter
the peripheral lymphoid organs. The first round, known as positive selection, ensures
that the TCR has at least some inherent affinity for either MHC-I or MHC-II (for a
review of this process, see Fowlkes and Schweighoffer, 1995). Positive selection also
coordinates expression of CD4 and CDS8 with the specificity of the TCR (reviewed by
Germain, 2002). From this point onwards, cells with TCRs that preferentially bind
MHC-I express only CD8 (and are referred to as CD8 T cells), while those cells that



have MHC-II-restricted TCRs express only CD4 (and are referred to as CD4 T cells).
T lymphocytes that harbor versions of the TCR incapable of binding one of the MHC
receptors are eliminated. The remaining “single-positive” T cells are then subjected to
a round of negative selection, the purpose of which is to delete TCRs that interact too
strongly with MHC receptors carrying endogenous peptides (reviewed by Hogquist et
al., 2005). Cells with such TCRs are likely to initiate inappropriate immune reactions,
and therefore must be purged. CD8 T cells and CD4 T cells that survive both rounds
of selection are exported from the thymus to the periphery, where they execute their

effector functions.

The primary function of CD8 T cells is to identify and destroy host cells infected by
foreign organisms (see Russell and Ley, 2002). As described above, infected cells are
able to present peptides derived from foreign proteins on their surface via the MHC-I
antigen-presentation pathway, thus signaling that their health has been compromised.
Naive CD8 T cells move through the body in search of such cells, using their TCRs to
sample many different peptide-MHC-I complexes. TCR-dependent recognition of a
foreign antigen causes the CD8 T cell to rapidly proliferate, creating a large number
of daughter cells with the same antigen specificity. These clones mature into cytotoxic
T lymphocytes (CTLs), which seek out and induce the apoptosis of any cell with the

cognate antigen on its surface.

In an attempt to avoid the CTL-mediated killing of their host cells, many viruses have
evolved mechanisms to disrupt the MHC-I antigen-presentation pathway (reviewed
by Yewdell and Bennink, 1999). Often, this involves the downregulation of MHC-I
from the plasma membrane, either by blocking its exit from the ER, or by promoting
internalization of the receptor once it reaches the cell surface. Such actions effectively
mask the presence of the virus, allowing it to replicate within the cell undetected. To
combat this relatively common evasion strategy, the immune system uses NK cells to
detect and destroy cells with unusually low levels of MHC-I expression (reviewed by

Timonen and Helander, 1997).

CD4 T cells, in contrast to the CTLs and NK cells mentioned above, lack the intrinsic
cytotoxic activity needed to kill infected cells directly. Instead, CD4 T cells promote
the clearance of pathogens by coordinating the overall immune response (see Janeway

et al., 2005). This complex process is normally initiated by dendritic cells, which use
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the MHC-II antigen-presentation pathway to inform CD4 T cells of an infection. The
TCR-mediated recognition of a foreign peptide induces CD4 T cells to rapidly divide
and differentiate into helper T cells (reviewed by Reiner, 2007). These cells produce
and secrete a wide variety of molecules, called cytokines, that influence the behavior
of target cells. There are two major kinds of helper T cells, known simply as Ty1 and
Ty2 cells, that are distinguished largely on the basis of which cytokines they secrete
(reviewed by Mosmann and Chapman, 1989). Tyl cells release cytokines that drive
hematopoietic stem cells to mature into macrophages, neutrophils, and dendritic cells;
activate existing macrophages, neutrophils and dendritic cells; and stimulate CTLs and
NK cells to attack infected cells. Ty2 cells, on the other hand, induce B lymphocytes
to secrete antibodies that neutralize toxins and target pathogens for destruction. Thus,
CD4 helper T cells play a critical role in regulating the immune system, maximizing

its capabilities, and directing its efforts against aggressive foreign organisms.
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1.3 The CD4 receptor

As described in the previous section, both Tyl and Ty2 cells are derived from naive
CD4 T cells, and express the CD4 receptor on their surface. In addition, CD4 can be
found in small amounts on the plasma membrane of macrophages and dendritic cells;
however, the function of the receptor in these cell types is currently unknown. In this
section, the structure, intracellular trafficking, and physiological role of CD4 in helper

T cells is examined in greater detail.

1.3.1 Structural features of CD4

Human CD4 is a type I transmembrane protein that, in its mature form, has a mass of
55 kDa and is comprised of 433 amino acids (reviewed by Bowers et al., 1997). These
amino acids are distributed unevenly among the three major regions of CD4, resulting
in a topologically asymmetrical molecule: the N-terminal exoplasmic section contains
371 residues, the transmembrane domain contains 24, and the C-terminal cytoplasmic
tail contains 38 (Fig. 1.3). From a structural perspective, the exoplasmic region can be
further divided into four smaller domains, all of which have an immunoglobulin-like
fold (Bradley et al., 1993; Ryu et al., 1990; Wang et al., 1990). The first two domains
(D1 and D2) are located at the N-terminus of the receptor, and are packed together to
form a rigid rod. A flexible linker joins this structure to a similar rod, composed of the
third and fourth exoplasmic domains (D3 and D4). Immediately following D4 is the
a-helical transmembrane domain, which both anchors the receptor in the membrane
and physically connects the exoplasmic region to the cytoplasmic tail. The tail itself is
largely unstructured, but under certain conditions, it appears to form an amphiphatic
a-helix spanning residues 402-419 (Willbold and Rdésch, 1996; Wray et al., 1998).
Within this a-helix lies a pair of leucines (L413 and L414), flanked on either side by
serine residues (S408 and S417, respectively). In addition, four cysteine residues are
located in the tail, two upstream of the a-helix (C394 and C397) and two downstream
(C420 and C423, as part of a CxCP motif [where x is any amino acid]). These cyto-
plasmic motifs are important for the post-translational modification of CD4 and the

intracellular trafficking of the receptor.
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1.3.2 Intracellular trafficking of CD4

CD4, like all transmembrane proteins, is partially inserted into the ER during protein
synthesis. As the receptor is translated, its exoplasmic region is drawn into the lumen
of the ER, while its tail remains exposed to the cytoplasm. At this stage, carbohydrate
moieties are added to two consensus sites on the D3 and D4 domains of CD4 (Ko&nig
et al., 1998). These N-linked oligosaccharides facilitate proper folding of the receptor
within the lumen, allowing it to leave the ER and enter the Golgi apparatus (Tifft et
al, 1992). There one of the oligosaccharides is modified in preparation for transport to
the cell surface. Meanwhile, on the cytoplasmic side, the C394 and C397 tail residues
are acylated by the covalent attachment of palmitate, a saturated fatty acid (Crise and
Rose, 1992). The functional significance of palmitoylating the CD4 cytoplasmic tail
remains unclear; however, it may stabilize the interactions between CD4 and other

proteins by decreasing the lateral mobility of the receptor within the membrane.

One of the proteins that CD4 interacts intimately with is p56'* (Lck), a member of the
Src family of protein tyrosine kinases (Rudd et al., 1988; Veillette et al., 1988). Lck is
expressed by T lymphocytes, and similar to CD4, is palmitoylated at an early stage of
the biosynthetic pathway (Bijlmakers and Marsh, 1999). Shortly thereafter, Lck binds
to the CD4 cytoplasmic tail, and migrates with the receptor to the plasma membrane
(Bijlmakers and Marsh, 1999). This interaction is mediated by a zinc clasp, in which a
positively charged zinc ion is coordinated by four cysteines: C20 and C23 on Lck, and
C420 and C423 on the CD4 tail (Kim et al., 2003; Turner et al., 1990). Upon reaching
the cell surface, Lck retains CD4 at the plasma membrane by significantly decreasing
the rate at which the receptor is endocytosed (for further information on endocytosis,
see Section 1.6). In the absence of Lck, CD4 is internalized at a rate of 2-5% per min
(Pelchen-Matthews et al., 1991). This process requires the CD4 dileucine motif, and
is accelerated by the protein kinase C (PKC)-mediated phosphorylation of S408 and
S417 on the receptor tail (Shin et al., 1990; Shin et al., 1991). In the presence of Lck,
however, the rate of CD4 endocytosis is reduced approximately ten-fold, to 0.2-0.6%
per min (Pelchen-Matthews et al., 1992). By trapping CD4 at the plasma membrane,
Lck ensures that the receptor-kinase complex is in position to participate in helper T

cell signaling events.
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1.3.3 Function of CD4

In helper T cells, CD4 cooperates with Lck and the TCR complex to initiate a signal
transduction pathway that leads to activation of the cell (for a comprehensive review,
see Janeway et al., 2005). The first step in this pathway occurs when the TCR binds a
peptide-MHC-II complex on the surface of an antigen-presenting cell. CD4 then binds
to a non-polymorphic portion of the MHC-II receptor via its D1 domain (see Fig. 1.3;
Cammarota et al., 1992; Konig et al., 1992; Wang et al., 2001). The binding of CD4
and the TCR to the same MHC-II molecule brings Lck into close proximity of several
immunoregulatory tyrosine-based activation motifs (ITAMs) located in the cytosolic
region of the TCR complex (Xiong et al., 2001). This allows Lck to phosphorylate the
ITAMs, which then recruit the kinase ZAP-70 from the cytoplasm (Chan et al., 1992;
Iwashima et al., 1994). Lck subsequently phosphorylates ZAP-70, thereby passing the
antigen-recognition signal onto another kinase (Yamasaki et al., 1996). The signal is
eventually transmitted from the plasma membrane to the nucleus, priming the cell for
activation (Zhang et al., 1988). Activation is finally achieved when the cell receives a
co-stimulatory signal, usually induced by the interaction of CD28 on the surface of
the helper T cell with either CD80 or CD86 on the surface of the antigen-presenting
cell (Linsley et al., 1990). The integration of antigen-recognition and co-stimulatory
signals causes the helper T cell to proliferate, differentiate, and produce the cytokines
that are needed to coordinate the immune response (Harding et al., 1992; Thompson
et al., 1989). Although many proteins are involved in the activation of helper T cells,
it is clear that CD4 is a critical component of this process. However, CD4 has another,
less beneficial function: it also serves as the primary receptor for the human immuno-

deficiency viruses (HIV).
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1.4 The human immunodeficiency virus

The human immunodeficiency viruses, HIV-1 and HIV-2, are the etiological agents of
acquired immune deficiency syndrome (AIDS) in humans (please refer to Barin et al.,
1985; Barré-Sinoussi et al., 1983; Gallo et al., 1984; Hahn et al., 1984; Popovic et al.,
1984a; Sangadarhan et al., 1984; Schiipbach et al., 1984; Vilmer et al., 1984). As its
name suggests, AIDS is a condition characterized by failure of the immune system. In
nearly all cases, the disease leads to premature death, as opportunistic infections and
aggressive cancers eventually overwhelm the body (Gottlieb et al., 1981; Masur et al.,
1981; Siegel et al., 1981). Although both viruses can cause AIDS, HIV-1 has had a
greater impact on public health because it is more infectious, widespread, and virulent
than HIV-2 (reviewed by Rowland-Jones and Whittle, 2007). This thesis, therefore,

focuses primarily on HIV-1.

1.4.1 Origin and spread of HIV-1

Sequencing studies performed over several decades have convincingly demonstrated
that HIV-1 is closely related to a simian immunodeficiency virus (SIV) found in the
chimpanzees of central Africa (reviewed by Holmes, 2001). Phylogenetic analyses of
the available sequences later indicated that three strains of this SIV virus were trans-
ferred from chimpanzees to humans between 1910 and 1950, giving rise to the three
major groups of HIV-1 (Gao et al., 1999; Korber et al., 2000). While it is still unclear
how the virus managed to cross the species barrier, among humans HIV-1 is spread
by exposure to certain types of contaminated body fluids. This mode of transmission
has carried HIV-1 across the globe, creating a pandemic. According to the most recent
estimates, 33 million people are currently infected with HIV-1, and another 25 million
people have already died of HIV-1-associated AIDS (Cohen et al., 2008; UN Program
on HIV/AIDS, 2008). The genome and life cycle of this virus are described below.

1.4.2 The HIV-1 genome

HIV-1 is a retrovirus, meaning that its genome can exist as either a RNA or a DNA
molecule depending on the stage of its life cycle (for more detailed information on the
HIV-1 life cycle, see Section 1.4.3). Within the virion, the viral genome is encoded by
single-stranded RNA. Shortly after the infection of a cell, however, the RNA genome
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is converted into double-stranded DNA and inserted into a host chromosome. In this
form, the genetic material of HIV-1 is often referred to as a provirus, because it must

be transcribed back into RNA before it can be incorporated into another virion.

The HIV-1 provirus contains nine open reading frames (ORFs), flanked on either side
by long terminal repeat (LTR) sequences (see Fig. 1.4; Muesing et al., 1985; Ratner et
al., 1985; Sanchez-Pescardo et al., 1985; Wain-Hobson et al., 1985). The LTRs do not
code for any proteins, but they are required for the integration and transcription of the
provirus (Bushman et al., 1990; Rosen et al., 1985; Starich et al., 1985). Of the nine
OREFs, three code for large polyproteins, which are cleaved by proteases into several
smaller proteins. Thus, HIV-1 can express a total of fifteen proteins (listed in Fig. 1.5;
also reviewed by Frankel and Young, 1998; Swanson and Malim, 2008). Although a
detailed description of each of these is beyond the limited scope of this thesis, special
attention will be paid to the activities of gp120, gp41, reverse transcriptase, integrase,

Tat, Rev, and Nef during the viral life cycle.

1.4.3 The HIV-1 life cycle

The surface of the HIV-1 virion (depicted in Fig. 1.6) is coated with heterodimers of
gp120 and gp41, which are glycoproteins that regulate fusion of the virus with a host
cell (Hu et al., 1986; Robey et al, 1985; Veronese et al., 1985). The gp120 portion of
this glycoprotein complex binds to CD4 with high affinity, thereby targeting HIV-1 to
macrophages, dendritic cells, immature CD4 T cells, and helper T cells (see Fig. 1.3;
Dalgleish et al., 1984; Ho et al., 1986; Klatzmann et al., 1984; McDougal et al., 1986;
Popovic et al., 1984b). Binding of CD4 by gp120 induces a conformational change in
the viral glycoprotein that also allows it to interact with a chemokine receptor on the
surface of the host cell, usually either CCR5 or CXCR4 (Alkhatib et al., 1996; Deng
et al., 1996; Dragic et al., 1996; Kwong et al., 1998; Oberlin et al., 1996; Trkola et al.,
1996). These secondary interactions, in turn, expose a hydrophobic domain on gp41
that triggers fusion of the viral envelope with the cellular membrane (Kowalski et al.,
1987; Melkyan et al., 2000). This causes the core of the HIV-1 virion to enter the cell.
A short time later, the protective layers of the core disintegrate, and the RNA genome,
reverse transcriptase, integrase, and several other viral proteins are released into the

cytoplasm (Dvorin and Malim, 2003).
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Reverse transcriptase uses the single-stranded RNA molecule as a template to create a
double-stranded DNA genome that, when bound to certain viral proteins, is called the
pre-integration complex (Harrich and Hooker, 2002). The pre-integration complex is
subsequently transported to the nucleus, where it directs the immediate synthesis of
Tat, Rev, and Nef in small but detectable amounts (see Popov et al., 1998; Stevenson
et al., 1990; Wu and Marsh, 2001). Integrase then inserts the pre-integration complex
into the host cell chromatin via a LTR-dependent mechanism (Bushman et al., 1990;
Clavel et al., 1990; Roth et al., 1989). In quiescent cells, the HIV-1 provirus can lay
dormant, with little or no transcriptional activity beyond basal levels of Tat, Rev, and
Nef production (Chun et al., 1997; Jordan et al., 2001). Activation of the infected cell
leads to expression of many endogenous transcription factors, including NF-kB (Sen
and Baltimore, 1986a; Sen and Baltimore, 1986b). NF-kB binds to specific sequences
in the LTR, and along with Tat, promotes transcription of the viral genes and genome
(Berkhout et al., 1990; Liu et al., 1992; Nabel and Baltimore, 1987). Rev then directs
the export of unspliced RNA genomes to the cytoplasm, so that they can be packaged
into newly-forming virions (Lever, 2002; Malim et al., 1989). The HIV-1 life cycle is
completed when these nascent virions bud from the endosomal or plasma membrane
to infect surrounding cells (Jouvenet et al., 2008; Neil et al., 2008; Pelchen-Matthews
et al., 2003).

1.4.4 Progression from HIV-1 infection to AIDS

The cycle of HIV-1 replication explained above begins with the infection of a single
cell; however, the virus eventually overwhelms the body. Although there are several
routes by which an individual may become infected, the cells most likely to make first
contact with the virus are macrophages and dendritic cells (reviewed by Martin and
Bandrés, 1999). These cells are natural hosts of HIV-1, and they readily transmit the
virus to CD4 T lymphocytes (Groot et al., 1998; McDonald et al., 2003). On average,
productively infected lymphocytes survive only two to three days (Herz et al., 1996;
Perelson et al., 1996). The short life-span of virus-producing cells has been attributed
to a variety of factors, the most important of which appear to be the cytopathic effects
of HIV-1, CTL-mediated killing of infected cells, and apoptosis (Getchell et al., 1987;
Meyaard et al., 1992; Plata et al., 1987; Walker et al., 1987). Repeated rounds of viral

replication leads to the near total depletion of CD4 T cells over a period of three to ten
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years (Rutherford et al., 1990; Ward et al., 1989). The steady decline of CD4 T cells
can be slowed, but not averted, by the application of antiretroviral therapy (Larder et
al., 1989; Ledergerber et al., 1999; Mitsuya et al., 1987; Palella et al, 1998). Once the
number of CD4 T cells drops below a certain threshold, the body loses its capacity to
properly coordinate the immune system (Bonavida et al., 1986; Pinching et al., 1983;
Seligmann et al., 1984). This final stage of the disease is marked by a severe immune
deficiency, which is the hallmark of AIDS. It is now understood that the progression
from HIV-1 infection to AIDS depends not only on the viral proteins described above,

but also on the activity of Nef.
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1.5 Nef

Sequencing of the proviral genome, performed shortly after the discovery of the virus
itself, revealed a 3° ORF of unknown function (Fig. 1.4; Muesing et al., 1985; Ratner
et al., 1985; Sanchez-Pescardo et al., 1985; Wain-Hobson et al., 1985). The mRNA
transcript and the protein corresponding to this ORF were subsequently identified in
samples taken from patients infected with HIV-1 (Allan et al., 1985; Arya and Gallo,
1986; Lee et al., 1986; Franchini et al, 1986; Rabson et al., 1985). Early studies aimed
at elucidating the function of this protein found that it was not required for replication
of the virus in vitro (Ahmad and Venkatesen, 1988; Fisher et al., 1986; Luciw et al.,
1987; Terwilliger et al., 1987). Some of these reports also claimed that expression of
the protein actually reduced the rate of viral replication in their tissue culture systems
(Ahmad and Venkatesan, 1988; Luciew et al., 1987; Terwilliger et al., 1987). Based
on these findings, the protein was called Nef, which is short for “Negative factor” of
viral growth (Gallo et al., 1988). Over time, it became clear that the role of Nef had
been mischaracterized. Later studies definitively demonstrated that Nef did not have a
negative impact on viral replication, and in conditions that more closely resembled the
natural setting of HIV-1 infection, viruses with functional Nef proteins were found to
grow more rapidly than viruses that lacked Nef (de Ronde et al., 1992; Hammes et al.,
1989; Kim et al., 1989a; Miller et al., 1994; Spina et al., 1994). Importantly, Nef has
also been shown to be a key determinant of disease progression in vivo. The results of

these studies are summarized below.

1.5.1 Nef: a critical determinant of disease progression

A key role for Nef in the development of AIDS is supported by studies on a particular
class of patients, known as long-term non-progressors (LTNPs), that remain symptom
free for at least ten years after infection without the aid of antiretroviral therapy (see
Cao et al., 1995; Learmont et al., 1992; Pantaleo et al., 1995). Analysis of a naturally
attenuated virus isolated from an Australian LTNP cohort revealed that it was missing
a large portion of the Nef ORF (Deacon et al., 1995). These patients, all of whom had
been infected by the same individual, maintained extremely low viral loads and steady
CD4 T cell counts for 15-25 years (Birch et al., 2001; Gorry et al., 2007; Learmont et
al., 1992; Learmont et al., 1995; Learmont et al., 1997; Rhodes et al., 1999). Similar
deletions of the Nef ORF have also been detected among independent LTNP cohorts
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located in Asia, Europe, and North America (Kirchhoff et al., 1995; Salvi et al., 1998;
Tobiume et al., 2002).

Further evidence for a role of Nef in disease progression is provided by studies of SIV
in rhesus macaques. As with humans, deletion of the Nef ORF reduced the pathogenic
potential of the virus, and dramatically delayed the onset of AIDS (see Kestler et al.,
1991). In fact, the virus appeared to be under strong selective pressure to express Nef.
When macaques were infected with engineered SIV strains that contained a premature
stop codon or a 12 bp deletion in the Nef ORF, the expression of full-length Nef was
quickly and universally restored (Kestler et al., 1991; Whatmore et al., 1995).

Mouse models also indicate that there is a strong correlation between the expression
of Nef and the virulence of infection. Upon inoculation with HIV-1, chimeric SCID-
hu mice transplanted with human thymic tissue experienced a significant decline of
CD4 T cells (Aldrovandi et al., 1993; Bonyhadi et al., 1993; McCune et al., 1988). In
this system, viruses that were unable to express Nef had a slower rate of replication,
achieved a lower overall titer, and depleted significantly fewer CD4 T cells than their
wild-type counterparts (Arora et al., 2002; Jamieson et al., 1994). In another mouse
model system, the expression of Nef in CD4-positive cells rapidly induced an AIDS-
like disease despite the absence of all other HIV-1 proteins (Hanna et al., 1998; Lind-
ermann et al., 1994; Skowronski et al., 1993).

1.5.2 Structural and biochemical features of Nef

Given the considerable influence of Nef on viral pathogenesis, much work has been
done to characterize its structural and biochemical features, which are described here.
Translation of the HIV-1 Nef mRNA transcript produces a 27 kDa protein containing
206 amino acids (Allan et al., 1985; Arya and Gallo, 1986; Lee et al., 1986). Because
the Nef mRNA molecule is multiply-spliced, it can be exported from the cell nucleus
without the help of Rev (see Section 1.4.3). Thus, during the early stages of cellular
infection, the Nef mRNA transcript comprises nearly three-quarters of the total viral
mRNA load (see Kim et al., 1989b; Klotman et al., 1991; Robert-Guroff et al., 1990).
This makes Nef the first HIV-1 protein to be translated in significant quantities (Ranki
et al., 1994). During translation, the viral protein is myristoylated by an endogenous

enzyme, called N-myristoyltransferase, that cleaves off the initiating methionine and
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attaches a saturated fatty acid to the glycine at position two (see Allan et al., 1985;
Hill and Skowronski, 2005). Myristoylation of Nef promotes its association with the
cytoplasmic leaflet of cellular membranes, and is required for nearly all of its major
functions (Aldrovandi et al., 1998; Franchini et al., 1986; Hanna et al., 2004; Mariani
and Skowronski, 1993; Yu and Felsted, 1992). In addition, Nef has been reported to
be phosphorylated by various kinases on two serine residues (S6 and S9), but unlike
myristoylation, the functional consequences of this post-translational modification are
not clear (Coats and Harris, 1995; Coats et al., 1997; Li et al., 2004; Luo et al., 1997,
Wolf et al., 2008).

The three-dimensional structure of Nef has largely been solved by a combination of
NMR spectroscopy and X-ray crystallography (Fig. 1.7). These studies indicate that
Nef can be divided into three domains: a flexible N-terminal region (residues 1-80), a
well-folded core (residues 81-147 and 181-206), and a disordered loop (residues 148-
180) near the C-terminus of the protein (see Geyer et al., 1999; Grzesiek et al., 1996a;
Grzesiek et al., 1997; Lee et al., 1996). Within the flexible N-terminal domain, there
are two a-helices, both of which appear to be stabilized by the addition of myristate.
This domain also has four motifs of significance: the aforementioned myristoylation
site (G2), a small hydrophobic pocket comprised of tryptophan and leucine residues
(WL57,58), an acidic cluster (EEEE62-65), and two prolines (PxxP72,75). The core
of Nef contains four a-helices arranged around a five-stranded antiparallel 3-sheet. In
this conformation, an aspartate residue (D123) positioned next to the second 3-strand
is exposed to the solvent. The disordered C-terminal loop connects the fourth and fifth
[B-strands, and projects outwards from the core. This loop is roughly centered on an
acidic dileucine motif (ExxxLL160-165), and is bordered on either end by negatively
charged glutamate (EE154,155) and aspartate (DD174,175) pairs.

Myristoylated Nef can adopt a variety of quartenary structures, including monomers,
dimers, and timers (Arold et al., 2000; Dennis et al., 2005; Kienzle et al., 1993). The
equilibrium between these states appears to depend on the concentration of Nef, with
greater amounts of the viral protein favoring more complex oligomeric arrangements
(Arold et al., 2000). Assembly of these oligomers is mediated by the D123 residue in
the core domain of Nef (see Fig. 1.8; Arold et al., 2000; Liu et al., 1997). Mutation of

this residue prevents the formation of dimers and trimers, and abrogates many of the
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FIG. 1.7: Structure and function of HIV-1 Nef

The structure of HIV-1 Nef is shown in the top panel. In this panel, a ribbon diagram
(left) and a surface representation (right) of the protein are depicted. Based on its
structure, Nef can be divided into three major domains: an N-terminal arm, a well-
folded core, and a flexible C-terminal loop. Important functional motifs within each
of these domains is highlighted. The N-terminal arm contains the myristoylation site
(MyrG), the CD4 binding site (WL), the acidic cluster (EEEE), and the polyproline
motif (PxxP). The core harbors a residue that is critical for the oligomerization of Nef
(D123), while the C-terminal loop contains three motifs that have been implicated in
CD4 downregulation (EE, ExxxLL, and DD). These motifs have been color-coded for
easy recognition: green for hydrophobic motifs, for acidic motifs, and blue
for the polyproline motif. Myristate is represented as a black squiggle embedded in
the membrane bilayer. The cytosol is shown in . The ribbon
diagram and surface representation are composites of two structures (PDB ID 1QAF
[Geyer et al., 1999] and 2NEF [Grzesiek et al., 1997]) and were drawn using PyMOL
(Delano, 2002). Annotations of these images were performed using Microsoft Power-
point. In the bottom panel, the major functions of each motif are provided, along with

their known binding partners.
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FIG. 1.7

Motif Residues Function Known Binding Partners
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functions of Nef (Liu et al., 1997). Therefore, oligomerization may be necessary for
Nef activity in vivo. Oligomerization reduces the amount of solvent-exposed surface
area for each Nef molecule; however, for a protein of its size, Nef remains extremely
accessible. Calculations indicate that the total exposed surface area of monomeric Nef
is 17,600 A? (Geyer et al., 2001). By comparison, the compact nuclear import protein
Ran, which also contains 206 residues, has a total accessible surface area of 9,950 A?
(Geyer et al., 2001). Crystallographic models of Nef dimers and trimers suggest that
oligomerization of the viral protein occludes only a minor fraction of the surface area,
because in both cases the contact interfaces are predicted to be relatively small (Arold
et al., 2000). The combination of flexible domains and highly exposed surface areas

may account for the numerous protein interactions and functions attributed to Nef.
1.5.3 Functions of Nef

Despite initial reports that suggested Nef was a GTPase, the viral protein is not known
to have any inherent catalytic activities (Backer et al., 1991; Guy et al., 1987; Harris
et al., 1992; Samuel et al., 1987). Instead, Nef is believed to exert itself by binding to
endogenous proteins and physically modulating their functions. Nef has in fact been
reported to interact with several dozen proteins, although it is not clear how many of
these interactions are biologically significant (for a list of Nef binding partners, please
see Fu et al., 2009). Nevertheless, by all accounts Nef is a pleiotropic protein, capable
of executing a variety of intracellular functions that increase the overall pathogenicity
of the virus (reviewed by Greenway et al., 2000). These include the enhancement of
virion infectivity, disruption of T cell signaling, regulation of apoptotic pathways, and
perhaps most importantly, alteration of cell-surface receptor expression (Fig. 1.7). In
this latter regard, Nef does not appear to affect the expression of all plasma membrane
receptors indiscriminately; rather, it targets specific receptors for either upregulation
or downregulation (Fig. 1.8). Nef increases the surface levels of Ii, LIGHT, and TNF,
while decreasing the levels of CD1, CD4, CDS, CD28, CD71, CD80, CD86, CCRS,
CXCR4, MHC-I, and mature MHC-II (Aiken et al., 1994; Chadhury et al., 2005; Cho
et al., 2006; Coleman et al., 2006; Fleis et al., 2002; Greenberg et al., 1998; Guy et al.,
1987; Hrecka et al., 2005; Lama and Ware, 2000; Madrid et al., 2005; Michel et al.,
2005; Piguet et al., 2000; Roeth et al., 2004; Schindler et al., 2003; Schwartz et al.,
1996; Shinya et al., 2004; Sol-Foloun et al., 2002; Stumptner-Cuvelette et al., 2002;
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FIG. 1.8: Nef targets specific receptors for downregulation

To test whether Nef affects the expression of a large number of cell-surface receptors,
or targets only a few for downregulation, CD4-CDS8 double-positive thymocytes were
transfected with vectors coding for Nef and stained with a variety of antibodies. These
cells were compared to similar thymocytes that had been transfected at the same time
with empty vectors. All cells were analyzed by flow cytometry (see Section 2.7), and
representative histograms are shown. A total of 54 cell-surface receptors were tested;
however, these particular thymocytes (JM cells, see Section 2.6.2) expressed only 31.
Two isotype controls (IgG1 and 1gG2a) were also included in the experiment. Each
condition was repeated a minimum of three times. Background fluorescence (i.e., the
appropriate isotype control for the given antibody) is shaded , while the surface-
expression of receptors is shown in green for cells transfected with the empty vector
and for cells transfected with the Nef vector. Of the 31 receptors found to be
expressed on the surface of these cells, Nef downregulates only 7. Thus, Nef does not
appear to disrupt general trafficking pathways; instead, it targets specific receptors for
downregulation. These receptors are highlighted in red. Following the histograms, a
chart lists the function of each receptor expressed on the JM cell-surface and tested in

the assay. This experiment was performed by the author.
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FIG. 1.8, continued

# | Antigen | Other Names Function(s)

I |IgGl Immunoglobulin G1 | Isotype control

2 | IgG2a Immunoglobulin G2 | Isotype control

3 |CDlI N/A Presentation of lipid antigens

4 | CD2 SRBC Adhesion molecule; binds Lck

S5 [CD3 N/A Associated with the TCR; signal transduction

6 |CD4 N/A Co-receptor for MHC-II; binds Lck; binds HIV-1 gp120
7 | CD5 LEU-1 Involved in activation and adhesion

8 | CD7 LEU-9 Unknown; binds phosphoinositide 3 kinase

9 | CD8 N/A Co-receptor for MHC-I; binds Lck

10 [ CDlla LFA-1 Adhesion molecule; binds CD18 and CD54

11 | CD18 N/A Adhesion molecule; binds CD11a and CD54

12 | CD27 N/A Involved in the stimulation of B cells

13 | CD28 N/A Co-stimulatory molecule; binds CD80 and CD86

14 | CD31 PECAM-1 Adhesion molecule

15 | CD34 N/A Adhesion molecule; binds CD62L

16 | CD38 N/A Involved in activation; NAD glycohydrolase

17 | CD44 Hermes antigen Adhesion molecule

18 | CD45 LCA Protein tyrosine phosphatase involved in signaling

19 | CD45RA | N/A Short isoform of CD45; also a tyrosine phosphatase
20 | CD52 CAMPATH-1 Unknown
21 | CD54 ICAM-1 Adhesion molecule; binds CD11a and CD18
22 | CD59 Protectin Inhibits initiation of complement cascade on membrane
23 | CD62L L-selectin Adhesion molecule; binds CD34
24 | CD69 N/A Involved in activation
25 | CD71 Transferrin receptor | Uptake of iron
26 | CD120b | TNFR2 Cytokine receptor for tumor necrosis factor
27 | CD122 IL-2Rb Cytokine receptor for interleukin-2b

28 | CD132 N/A Cytokine receptor for various interleukins

29 [ CD166 ALCAM Adhesion molecule

30 [ CD184 CXCR4 Chemokine receptor; binds gp120 of some HIV-1 strains
31 [CDI185 CXCR5 Chemokine receptor

32 | MHC-I HLA-A, B, C, etc. Presentation of peptide antigens

33 | TCRab | T cell receptor T cell activation; binds antigen-loaded MHC-I or MHC-II
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Swan et al., 2001; Swigut et al., 2002). The mechanisms that Nef uses to upregulate
and downregulate these receptors are poorly understood. In most cases, however, Nef
seems to alter the expression of surface receptors by interacting with the intracellular
protein-trafficking machinery. The major components of this machinery are described

in the next section.
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1.6 Intracellular protein transport

Within eukaryotic cells, macromolecules are transported between organelles by small,
membrane-enclosed structures known as vesicles (Palade, 1975). These vesicles bud
from a donor compartment, travel along the cytoskeleton, and fuse with an acceptor
compartment (see Bonifacino and Glick, 2004; Hehnly and Stammes, 2007). Central
to this process are coat proteins, which are distinguished by the polyhedral cages they
form around nascent vesicles. There are several kinds of coat proteins, but they are all
either directly or indirectly involved in cargo selection, donor membrane deformation,
and the recruitment of additional proteins required for vesicle scission, transport, and
fusion (reviewed by Bonifacino and Lippincott-Schwartz, 2003; Kirchhausen, 2000;
Schekman and Orci, 1996). The three most well-characterized coat proteins are COPI,
COPII, and clathrin. Each of these appears to regulate one or more distinct trafficking
pathways: COPI-coated vesicles traffic primarily from the Golgi complex to the ER,
although they have also been suggested to have a role in endosomal transport; COPII-
coated vesicles move from the ER to the Golgi; and clathrin-coated vesicles (CCVs)
shuttle between multiple post-Golgi organelles (Anderson et al., 1977a; Barlowe et al.,
1994; Letourneur et al., 1994; Orci et al., 1986; Pearse, 1975; Roth and Porter, 1964;
Waters et al., 1991; Whitney et al., 1995). Previous work has demonstrated that Nef
co-localizes with some clathrin-coated structures (Foti et al., 1997; Greenberg et al.,
1997). Therefore, the remainder of this section focuses on clathrin, clathrin-associated

proteins, and the interactions between Nef and these proteins.

1.6.1 Clathrin

The first observation of coated vesicles was made during studies on mosquito oocytes
that were actively taking up yolk (Roth and Porter, 1964). These vesicles were found
to bud from the plasma membrane, covered in bristle-like projections that were lost as
the vesicle moved towards the cell center. Similar coated vesicles were subsequently
described around the Golgi area of the cell (Friend and Farquhar, 1967). Purification
and characterization of these vesicles revealed that the coats were composed of two
major proteins: a 180 kDa polypeptide named clathrin heavy chain, and a 33-36 kDa
polypeptide called clathrin light chain (Kanaseki and Kadota, 1969; Keen et al., 1979;
Pearse, 1975). Additional studies showed that the basic unit of clathrin cages was the

triskelion, comprised of three heavy and three light chains (Kirchhausen and Harrison,
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1981; Ungewickell and Branton, 1981). Electron micrographs have since confirmed
that these triskelions assemble into the lattice of pentagons and hexagons commonly
seen on the surface of CCVs (Fig. 1.9; Crowther and Pearse, 1981; Fotin et al., 2004;
Heuser, 1980).

The incorporation of transmembrane cargo proteins into CCVs was initially believed
to occur through a direct interaction with clathrin (Anderson et al., 1977b; Brown and
Goldstein, 1979). However, careful biochemical and ultrastructural analyses of CCVs
indicated that, in addition to clathrin, the coats contained two 100 kDa polypeptides
situated between the lattice and the membrane (Keen et al., 1979; Unanue et al., 1981;
Vigers et al., 1986). These non-clathrin proteins were found to facilitate the assembly
of CCVs in vitro, and were thus called “assembly polypeptides” (Keen et al., 1979). It
later became evident that the principal role of the assembly polypeptides was to bind
cargo molecules and link them to the clathrin lattice (Glickman et al., 1989; Ohno et
al., 1995; Sorkin and Carpenter, 1993). Their name was therefore changed to “adaptor

proteins” (APs) to more accurately reflect this function (Pearse and Bretscher, 1981).

1.6.2 The AP complexes

Detailed studies of the APs revealed that they were part of separate heterotetrameric
complexes (Keen, 1987; Pearse and Robinson, 1984). These distinct complexes were
designated AP-1 [which is composed of y, B1, ul, and o1 subunits] and AP-2 [a, B2,
u2, 02]. Two more adaptor complexes, AP-3 [9, B3, u3, 03] and AP-4 [e, 4, ud, o4],
have since been identified by searching sequence databases for homologs of AP-1 and
AP-2 subunits (see Dell’ Angelica et al., 1997; Dell’ Angelica et al., 1999; Hirst et al.,
1999; Simpson et al., 1996; Simpson et al., 1997). Phylogenetic analyses indicate that
the AP complexes appeared during the early stages of eukaryotic evolution; however,
some lineages have lost AP-4 (see Section 3.3.3; Boehm and Bonifacino, 2001; Hirst

et al., 1999).
1.6.3 Structural features of AP complexes

The AP complexes share many basic features, including the size of their subunits and
their three-dimensional structure. In each AP complex, the two largest subunits [y, a,

9, € and B1-4] are 100-130 kDa, the medium subunit [u1-4] is approximately 50 kDa
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and the smallest subunit [01-4] is 15-20 kDa (Keen, 1987; Dell’ Angelica et al., 1997;
Dell’ Angelica et al., 1999; Hirst et al., 1999; Simpson et al., 1996). Proteolytic assays
and electron micrographs have revealed that the N-terminal domains of the two large
subunits combine with the small subunits to form a well-folded core (see Fig. 1.10;
Heuser and Keen, 1988; Schroder and Ungewickell, 1991; Zaremba and Keen, 1985).
A flexible linker extends from each of the large subunits to connect the core to folded
appendages, called “ears” (Heuser and Keen, 1988; Kirchhausen et al., 1989). X-ray
crystallography studies have provided more detailed information on the structure of
the core and ear domains (Fig. 1.10; reviewed by Owen et al., 2004). Within the core,
the large subunits fold into solenoids, while the medium and small subunits form (-
sheets that are flanked by a-helices (Collins et al., 2002; Heldwein et al., 2004). Both
ears have similar bi-lobal structures and contain platform-like subdomains (see Brett

et al., 2002; Owen et al., 1999; Owen et al., 2000; Traub et al., 1999).
1.6.4 Cargo recognition by AP complexes

In addition to having a similar structure, all of the AP complexes are able to recognize
linear peptide motifs (reviewed by Bonifacino and Traub, 2003). These motifs, which
are present in the cytosolic domains of transmembrane proteins, generally conform to
one of two consensus sequences: Yxx@ (where @ is a bulky hydrophobic residue) or
[D/E]xxxL[L/I] (Canfield et al., 1991; Johnson and Kornfeld, 1992; Lazavorits and
Roth, 1988; Letourneur and Klausner, 1992). A variety of assays have convincingly
demonstrated that Yxx@-type motifs, often referred to as tyrosine signals, bind to the
C-terminal region of all four u subunits (Boll et al., 1996; Dell’ Angelica et al., 1997;
Hirst et al., 1999; Ohno et al., 1995; Ohno et al., 1998; Owen and Evans, 1998). The
recognition site for [D/E]xxxL[L/I]-type dileucine signals is less certain, as different
experimental approaches have yielded conflicting results. Phage display screens and
yeast two-hybrid assays initially suggested that, like tyrosine signals, dileucine motifs
bound to the w subunits of AP complexes (Bremens et al., 1998; Craig et al., 2000;
Rodionov and Bakke, 1998). These findings were contested by photoaffinity labeling
experiments, which implicated the B subunits (Rapoport et al., 1998). More recently,
yeast three-hybrid assays have indicated that dileucine signals interact with the AP-1
v-ol and AP-3 0-03 hemicomplexes (Janvier et al., 2003). Thus, the specific binding

site for dileucine motifs on AP complexes remains controversial.
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1.6.5 Cargo sorting by AP complexes

The primary function of AP complexes is to bind transmembrane proteins that contain
either tyrosine or dileucine signals, and mediate their transport from one organelle to
another (reviewed by Robinson, 2004). Each AP complex, however, directs a distinct
sorting pathway. AP-1 is involved in the trafficking of cargo between the trans-Golgi
network (TGN) and endosomes, although the directionality of this movement is still
under debate (Doray et al., 2002; Meyer et al., 2000; Puertollano et al., 2003; Reusch
et al., 2002; Robinson, 1987). AP-2 controls an endocytic pathway, and is responsible
for transporting a large number of proteins from the plasma membrane to endosomes,
including CD4 (Ahle et al., 1988; Motley et al., 2003; Nesterov et al., 1999; Pelchen-
Matthews et al., 1993; Pitcher et al., 1999). Both AP-1 and AP-2 interact directly with
clathrin via a small motif in the flexible linker of their B subunits, and depend on this
interaction to execute their respective functions (Dell’ Angelica et al., 1998; Galluser
and Kirchhausen, 1993; Shih et al., 1995; ter Harr et al., 2000). In contrast, AP-3 may
be able to operate independently of clathrin, even though it contains a similar clathrin-
binding motif (Dell’ Angelica et al., 1998; Newman et al., 1995; Peden et al., 2002).
While its relationship to clathrin is poorly defined, there is widespread agreement that
AP-3 promotes delivery of cargo from the TGN and endosomes to lysosomes (Cowles
et al., 1997; Le Borgne et al., 1998; Rous et al., 2002). AP-4 is devoid of a canonical
clathrin-binding motif, and it does not appear to associate with clathrin (Borner et al.,
2006; Hirst et al., 1999). Thus, like AP-3, the AP-4 complex may utilize another coat
protein. The sorting function of AP-4 is not yet established, but it has been implicated
in the trafficking of proteins from the TGN to the basolateral membrane of polarized

epithelial cells (Simmen et al., 2002).

1.6.6 Interactions of Nef with the AP complexes

Because Nef contains a well-conserved dileucine motif, it has long been considered a
candidate to interact with the AP complexes (Greenberg et al., 1997; Bresnahan et al.,
1998). Indeed, various assays have suggested that the viral protein binds AP-1, AP-2,
and AP-3 in a dileucine-dependent manner, although an interaction with AP-4 has not
yet been reported. As with other dileucine ligands, the location of the Nef binding site
on AP complexes is disputed. Nef has been shown to interact with ul and u3 by yeast

two-hybrid experiments, and 1 and 2 by photoaffinity labeling analyses; however,
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the affinity of Nef for these adaptin subunits appeared to be relatively weak (Craig et
al., 2000; Greenberg et al., 1998a; Rose et al., 2005). Yeast three-hybrid assays later
demonstrated that Nef binds far more robustly to the y-o1 and 6-03 hemicomplexes of
AP-1 and AP-3, but a similar interaction between Nef and the a-02 hemicomplex of
AP-2 was not detected (Janvier et al., 2003). While the manner in which Nef binds the
AP complexes must still be resolved, the viral protein most likely relies on these inter-
actions to downregulate cell-surface receptors. The mechanisms used by Nef to affect
the expression of the two such receptors, MHC-I and CD4, are examined more closely

in the following sections.
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1.7 Nef-mediated MHC-I downregulation

As mentioned earlier, many viruses interfere with the expression of MHC-I in order to
escape detection and destruction by the adaptive immune system (Section 1.2.3; also
see Yewdell and Bennink, 1999). HIV-1 is among these viruses, as it reduces the level
of MHC-I on the surface of infected cells (Scheppler et al., 1989). The HIV-1 protein
primarily responsible for this activity is Nef, which is capable of downregulating two
of the three major MHC-I alleles: HLA-A and HLA-B (Cohen et al., 1999; Le Gall et
al, 1998; Schwartz et al., 1996). Nef does not alter the expression of HLA-C, the other
major MHC-I allele (Cohen et al., 1999; Le Gall et al., 1998). HLA-A and HLA-B are
known to present antigens to CTLs, while HLA-C interacts with inhibitory receptors
on NK cells (Lanier, 1998; Littaua et al., 1991; Yokoyama, 1998). The ability of Nef
to selectively downregulate MHC-I molecules, therefore, protects infected cells from
the cytopathic effects of both CTLs and NK cells (Section 1.2.3; Cohen et al., 1999;
Collins et al., 1998; Le Gall et al., 1998).

1.7.1 Direct interaction between Nef and MHC-I

Although multiple mechanisms for the Nef-mediated downregulation of MHC-I have
been proposed, the most convincing model involves a direct interaction between the
viral protein and the endogenous receptor (Blagoveshchenskaya et al., 2002; Le Gall
et al., 1998; Schwartz et al., 1996). Co-immunoprecipitation experiments indicate that
Nef binds to the cytoplasmic tail of some MHC-I alleles (Williams et al., 2002). GST
pull-down assays have subsequently demonstrated that this interaction depends on an
a-helix in the N-terminal domain of Nef, and a YSQAA motif in the tails of HLA-A
and HLA-B (Cohen et al., 1999; LeGall et al., 2000; Williams et al., 2002; Williams
et al., 2005). HLA-C lacks the YSQAA motif, which may explain why it is not down-
regulated by Nef (Cohen et al., 1999; LeGall et al., 1998; Williams et al., 2002).

1.7.2 The mechanism of Nef-mediated MHC-I downregulation

In addition to the N-terminal a-helix, mutational analyses have identified three other
motifs on Nef that are required for the downregulation of MHC-I: the myristoylation
site, the acidic cluster, and the polyproline motif (Fig. 1.7 and 1.8; Mangasarian et al.,
1999; Peng and Robert-Guroff, 2001). According to the prevailing model of MHC-I

47



downregulation, these regions of Nef work together to connect HLA-A and HLA-B to
the host-cell protein-trafficking machinery (Kasper and Collins, 2003; Kasper et al.,
2005; Lubben et al., 2007; Noviello et al., 2008; Roeth et al., 2004; Williams et al.,
2005; Wonderlich et al., 2007). The myristoylation of Nef allows it to associate with
the cytosolic leaflet of most intracellular membranes, including that of the TGN (Yu
and Felsted, 1992). While located at the TGN, Nef simultaneously binds to the tail of
an MHC-I receptor, via its a-helix, and the AP-1 ul subunit, via its acidic cluster and
its polyproline motif (Kasper et al., 2005; Noviello et al., 2008; Williams et al., 2005).
Although HLA-A and HLA-B do not normally interact with AP-1, Nef increases the
affinity of these molecules for each other by permitting the YSQAA motif to function
as a canonical tyrosine-based sorting signal (Noviello et al., 2008; Wonderlich et al.,
2007). As ligands for AP-1, HLA-A and HLA-B are no longer transported to the cell-
surface (Kasper and Collins, 2003). Instead, the MHC-I receptors are directed towards
lysosomes, where Nef ensures that they are degraded (Roeth et al., 2004; Schaefer et
al., 2008). Like HLA-A and HLA-B, the degradation of CD4 by Nef may also depend
on interactions with the clathrin adaptor protein complexes. However, the mechanism

of CD4 downregulation remains uncertain, as described below.
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1.8 Nef-mediated CD4 downregulation

Similar to other viruses, HIV-1 reduces the expression of its own receptors soon after
it enters the host-cell (Dalgleish et al., 1984; Hrecka et al., 2005; Michel et al., 2004;
Salman et al., 1988). In particular, the downregulation of CD4 appears to be a critical
step in the HIV-1 life cycle, because viral strains that lack this function have difficulty
spreading both in vitro and in vivo (Lundquist et al., 2002; Stoddart et al., 2003). This
diminished level of infectivity is generally attributed to a profound inhibition of viral
budding. Indeed, the presence of CD4 on the surface of infected cells has been shown
to trap newly-formed virions as they attempt to bud from the plasma membrane (Bour
et al., 2001; Marshall et al., 1991; Ross et al., 1999). CD4 surface-expression has also
been found to decrease the rate of viral replication by making host-cells susceptible to
superinfection (Pauza et al., 1990; Robinson and Zinkus, 1990). Superinfection occurs
when multiple virions infect the same cell, and it often results in the accumulation of
a large amount of unintegrated viral DNA (Bergeron and Sodroski, 1992). This causes
the host-cell to undergo apoptosis, prematurely ending the production of new virions

(Daniel et al., 1999).

Given the deleterious effects of CD4 expression on viral replication, it is perhaps not
surprising that HIV-1 uses three proteins to ensure that the receptor is downregulated
efficiently (Chen et al., 1996). Nef, Env (the uncleaved precursor of gp41 and gp120),
and Vpu have all been implicated in this process (Garcia and Miller, 1991; Stevenson
et al., 1988; Willey et al., 1992; Wildum et al., 2006). Nef is the first of these proteins
to be expressed during the viral life cycle, as its mRNA transcript is multiply-spliced
and does not need the aid of Rev to be exported from the nucleus (see Section 1.4.3).
Although the mechanism that Nef utilizes to downregulate CD4 is still under debate,
it clearly directs the receptor from a post-Golgi compartment to lysosomes (Rhee and
Marsh, 1994). Env and Vpu, in contrast, are expressed later in the viral life cycle with
the help of Rev, and intercept CD4 in the ER (reviewed by Lama, 2003). Env binds to
CD4 in the ER lumen, forming aggregates that block transport of the receptor to the
cell-surface. Vpu then induces the degradation of CD4 molecules retained in the ER

via a proteasomal pathway.

Of the three HIV-1 proteins involved in CD4 downregulation, Nef appears to have the

most significant role. Indeed, experiments measuring the relative contribution of each
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protein to this process have demonstrated that Nef accounts for the largest fraction of
total CD4 downregulation activity (Chen et al., 1996; Wildum et al., 2006). While all
three viral proteins are required to completely eliminate expression of the receptor on
the plasma membrane, Nef-mediated CD4 downregulation is capable of enhancing the
release of nascent virions and protecting host-cells from superinfection (Lundquist et
al., 2002; Ross et al., 1996; Wildum et al., 2006). Thus, the ability of Nef to modulate
CD4 surface-levels is a key aspect of viral replication (Lundquist et al., 2004; Ross et
al., 1996; Miller et al., 2004).

There is evidence to suggest that CD4 downregulation is, in fact, the most important
Nef function. Of all the activities that have been attributed to the viral protein, it is the
one that best correlates with faster replication and overall disease progression (Cortes
et al., 2002; Glushakova et al., 2001; Mariani et al., 1996; Stoddart et al., 2003). In the
SCID-hu model system described earlier, the depletion of thymocytes was dependent
on the ability of Nef to downregulate CD4, and not on its ability to modulate MHC-I
expression (see Section 1.5.1; Stoddart et al., 2003). Similarly, HIV-1 strains isolated
from some LTNPs have been found to code for Nef proteins that cannot downregulate
CD4, but are fully functional in all other respects, including MHC-I degradation (Carl
et al., 2000; Mariani et al., 1996; Tobiume et al., 2002). Conversely, Nef proteins that
are derived from virulent HIV-1 strains are known to downregulate CD4 aggressively
(Arganaraz et al., 2003). In order for Nef to execute this critical function, it must bind

directly to CD4. Details of this interaction are described below.

1.8.1 Direct interaction between Nef and CD4

The binding of Nef to CD4 was first demonstrated in heterologous expression systems
(Harris and Neil, 1994; Rossi et al., 1996). These initial experiments, which involved
yeast two-hybrid assays and GST pull-downs, revealed that the CD4 cytoplasmic tail
was both necessary and sufficient for the interaction with full-length Nef. Subsequent
NMR studies managed to identify the specific binding site on each protein (Grzesiek
et al., 1996; Preusser et al., 2001; Wray et al., 1998). According to the NMR data, an
a-helical region of the CD4 tail containing L.1.413,414 binds to a hydrophobic pocket
on Nef composed of WL57,58 (see Sections 1.3.1 and 1.5.2 for more information on
these motifs). The dissociation constant of this interaction was calculated to be in the

low micromolar range. A CD4-Nef complex has since been detected in human cells
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using a variety of methods, including chemical cross-linking, co-immunoprecipitation
under native conditions, and bioluminescence resonance energy transfer (Bentham et
al., 2003; Cluet et al., 2005). Sensitive techniques are needed to observe this complex
in situ because the interaction between CD4 and Nef is relatively weak and probably
short-lived (Grzesiek et al., 1996; Cluet et al., 2005; Rossi et al., 1996). After binding
CD4, Nef rapidly downregulates the receptor and promotes its degradation (Aiken et
al., 1994; Rhee and Marsh, 1994; Piguet et al., 1999). The mechanism that Nef uses to
eliminate CD4 expression, however, remains highly controversial. In the next section,
the intracellular trafficking pathways that Nef might exploit to downregulate CD4 are

presented.

1.8.2 The mechanism of Nef-mediated CD4 downregulation

Two competing models have emerged that attempt to explain the mechanism of Nef-
mediated CD4 downregulation. Both models agree that Nef binds to the CD4 tail on a
post-Golgi membrane, and then directs the receptor to perinuclear endosomes en route
to lysosomes (see Fig. 1.11; Piguet et al., 1999). The post-Golgi nature of this process
strongly suggests that clathrin and a clathrin adaptor protein are involved, and several
groups have speculated that a CD4-Nef-AP complex forms during the initial stages of
downregulation (see Section 1.5; Blagoveshchenskaya et al., 2002; Craig et al., 2000;
Foti et al., 1997; Greenberg et al., 1997; Janvier et al., 2003; Rose et al., 2005). In this
respect, CD4 downregulation may superficially resemble the effect of Nef on MHC-I;
however, the manner in which Nef connects CD4 to the AP complex must be entirely
different than that used for HLA-A and HLA-B (Mangasarian et al., 1999). While the
Nef acidic cluster and polyproline domains are thought to link HLA-A and HLA-B to
AP-1, neither motif is required for CD4 downregulation (Stove et al., 2005). Instead,
Nef uses the leucine-tryptophan hydrophobic pocket in its N-terminal region to bind
CD4 and the dileucine motif in its C-terminal loop to interact with the AP complexes
(Craig et al., 2000; Grzesiek et al., 1996). The two models mentioned above differ in
the particular AP complex deemed most important for CD4 downregulation (see Fig.
1.12). According to the traditional model, Nef relies on AP-2 to accelerate the rate of
CD4 endocytosis from the plasma membrane. More recent data, though, has tended to
favor a model in which Nef utilizes one of the other AP complexes to prevent newly-

synthesized CD4 molecules from reaching the cell-surface.
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Preliminary studies on the mechanism of Nef-mediated CD4 downregulation reported
that the expression of Nef did not interfere with the movement of CD4 from the ER to
the Golgi complex, as determined by resistance of the receptor to endoglycosidase H
degradation (Craig et al., 1998; Rhee and Marsh, 1994). One of these studies further
claimed, on the basis of biotinylation studies, that CD4 was transported to the plasma
membrane with normal kinetics in the presence of Nef, although this finding has since
been contested by others (Rhee and Marsh, 1994; Rose et al., 2005). Antibody uptake
experiments, performed in conjunction with the endoglycosidase H and biotinylation
assays, showed that Nef accelerated the endocytosis of CD4 (Aiken et al, 1994; Rhee
and Marsh, 1994). Thus, Nef was proposed to act on CD4 only after the receptor had
reached the cell-surface. In support of this model, Nef was later observed to promote
the formation of clathrin coated pits at the plasma membrane, and Nef-GFP chimeras
were found to partially colocalize with AP-2 (Foti et al., 1997; Greenberg et al., 1997;
Mangasarian et al., 1997).

While these studies provide compelling evidence that Nef uses AP-2 to downregulate
CD4 via an endocytic mechanism, this model has been undermined by more recently
acquired data. In particular, the RNAi-mediated depletion of AP-2 by itself does not
appear to have a substantial effect on the ability of Nef to reduce CD4 expression (Jin
et al., 2005; Rose et al., 2005). Moreover, a robust interaction between Nef and AP-2
has not yet been observed. Some reports indicate that Nef binds weakly to AP-2, but it
is not clear whether this low level of affinity is sufficient to alter the dynamics of CD4
trafficking (see Section 1.6). Much stronger interactions have been reported between
Nef and the AP-1 and AP-3 complexes, leading some to argue that these adaptors are
more likely to be utilized by Nef than AP-2 (Craig et al., 2000; Janvier et al., 2003b;
Rose et al., 2005). Nef has in fact been shown to stabilize the association of AP-1 and
AP-3 with intracellular membranes (Janvier et al., 2003a). These results prompted one
group to reassess the effect of Nef expression on CD4 transport, and their data sharply
disagreed with earlier reports. Instead of finding that Nef accelerated the endocytosis
of CD4, they observed that Nef slowed the rate at which CD4 molecules moved from
the Golgi complex to the plasma membrane (Rose et al., 2005). This group therefore
suggested that Nef acts on CD4 not at the cell-surface, but in the vicinity of the TGN,
where it directs the receptor towards lysosomes with the aid of AP-1 or AP-3 (Rose et
al., 2005).
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1.9 Objectives of this thesis

The primary goal of this thesis is to determine which model — accelerated endocytosis
or intracellular retention — most accurately describes the mechanism of Nef-mediated
CD4 downregulation. This will be accomplished using a variety of techniques drawn
from the cell biology tool kit, including RNAi1 knockdowns, yeast three-hybrid assays,
and GST pull-down experiments. RNAi knockdowns will be used to confirm that the
ability of Nef to alter CD4 expression depends on clathrin, and to identify the clathrin
adaptor protein that is most critical for this process. Yeast three-hybrid and GST pull-
down assays will then be used to ascertain whether Nef binds to this AP complex, and
if so, whether the interaction is direct. If the interaction is found to be direct, then the
surfaces of both Nef and the AP complex will be closely examined to identify novel
motifs that are required for binding and CD4 downregulation. Finally, an attempt will
be made to demonstrate the formation of a CD4-Nef-AP tripartite complex, which has
long been predicted, but never observed. The results obtained from these experiments
should provide new insights on the mechanism used by Nef to downregulate CD4, an

important component of HIV-1 replication and disease progression.
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Chapter 2:
Materials and Methods
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2.1 Abstract

This chapter is divided into eight major sections (2.2 - 2.9). The first of these sections
(2.2) describes molecular biology techniques, which were used to generate most of
the plasmids required for this study. The next four sections (2.3 - 2.6) describe the
materials and methods used for experiments with bacterial, yeast, Drosophila, and
human cell lines, respectively. Expression vectors, reagents, and assays particular to
one cell type are described in the section devoted to that system. Assays performed on
multiple cell types, such as flow cytometry, immunofluorescence, and immuno-
blotting, are described in the final three sections (2.7 - 2.9). Comprehensive tables
listing all plasmids, primers, and antibodies used in this work can be found at the end

of the chapter.
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2.2 Molecular biology

2.2.1 Polymerase chain reactions

Polymerase chain reactions (PCRs) were carried out using the Phusion High Fidelity
(HF) PCR Kit (Finnzymes, Woburn, MA, USA) and appropriate primers purchased
from a commercial vendor (Eurofins MWG Operon, Hunstville, AL, USA or Sigma-
Genosys, Haverhill, Suffolk, UK). The reagents and thermal cycling conditions used
for the PCRs are listed in Table 2.1, Table 2.2, and Table 2.9. Upon completion of
each reaction, the PCR product was subjected to agarose gel electrophoresis in Tris-
boric acid-EDTA (TBE) buffer [89 mM Tris, 89 mM boric acid, 2 mM EDTA (pH
8.0)], and its size was determined by comparison against a 100 bp - 12,000 bp DNA
ladder (Invitrogen, Carlsbad, CA, USA). The PCR product was then purified using
the QIAquick PCR Purification Kit (Qiagen, Valencia, CA, USA) and eluted in sterile

water.

2.2.2 Restriction endonuclease digests

PCR products and plasmids were digested with restriction endonucleases (purchased
from New England BioLabs, Ipswich, MA, USA) according to the manufacturer’s
instructions. For each digest, 1 ug of DNA was used, and the reactions were carried
out at 37°C for 3 hr. In some cases, digested vectors were incubated with a small
amount of Calf Intestinal Phosphatase (New England BioLabs) at 37°C for 1 hr to
prevent re-circularization of the vector during a subsequent ligation reaction. In all
cases, the digested DNA was analyzed by agarose gel electrophoresis. The desired
DNA fragments were then purified from the gel using the QIAquick Gel Extraction
Kit (Qiagen) and eluted in sterile water. Subsequent ligation reactions were carried

out as described in Section 2.2.3.

2.2.3 Ligation reactions

DNA ligation reactions were performed using the T4 DNA Ligase Kit (New England
BioLabs) according to the manufacturer’s instructions. The reagents for each reaction
are listed in Table 2.3. The ligation reaction was incubated at 25.0°C for 1 hr and then
the temperature was reduced to 15.0°C for 15 hrs. After completion of the reaction,

ligated plasmids were used to transform bacteria as described in Section 2.2.5.
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2.2.4 Site-directed mutagenesis

Site-directed mutagenesis (SDM) reactions were used to introduce point mutations
into the open reading frames (ORFs) of selected genes. For each mutagenesis
reaction, complimentary primers were designed such that they annealed to opposite
strands of the ORF and coded for the desired mutation (please see Table 2.9 for
further information on the individual primers). The primers (purchased from Eurofins
MWG Operon or Sigma-Genosys) were combined with template DNA, containing the
ORF to be mutated, and reagents from the QuikChange II Kit (Stratagene, La Jolla,
CA, USA) as described in Table 2.4. The thermal cycling conditions used for the
mutagenesis reactions are listed in Table 2.5. Upon completion of each reaction, the
methylated template DNA was digested by incubation with 1.0 uL of Dpnl enzyme at
37°C for 1 hr. The unmethylated, newly synthesized DNA, containing the mutated

ORF, was then used to transform bacteria as described in Section 2.2.5.

2.2.5 Bacterial transformations

Competent XL-10 Blue DH-5a Echeveria coli (purchased from Stratagene) were
transformed with plasmids containing antibiotic resistance markers using the standard
heat-shock protocol. For each transformation, a small aliquot of bacteria was thawed,
incubated with the plasmid for 30 min on ice, and then heat shocked at 42°C for 45
sec. The transformed bacteria were chilled for 2 min on ice, supplemented with room
temperature SOC medium [2% tryptone (wt/vol), 0.5% yeast extract (wt/vol), 10 mM
NaCl, 2.5 mM KCI, 10 mM MgCl,, 10 mM MgSQO4, 20 mM glucose], and incubated
at 37°C for 1 hr with shaking. The bacteria were finally transferred to LB-Agar plates
containing the appropriate antibiotic [1.0% tryptone (wt/vol), 0.5% yeast extract
(wt/vol), 1.0% NaCl (wt/vol), 1.5% agar (wt/vol) with either 100 ug/mL ampicillin or
50 ug/mL kanamycin], and incubated at 37°C overnight to allow selection and colony
growth to occur. Purification of DNA from selected colonies was performed as

described in Section 2.2.6.

2.2.6 DNA purification

All plasmids described here were initially purified from transformed bacteria using
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the QIAprep Spin Miniprep Kit (Qiagen) according to the manufacturer’s instructions.
Some of the more frequently used plasmids were subsequently purified in greater
quantities using the HiSpeed Plasmid Maxiprep Kit (Qiagen). The concentration of
purified plasmid DNA was measured using a NanoDrop spectrophotometer (Thermo

Fisher Scientific, Waltham, MA, USA).

2.2.7 DNA nucleotide sequencing

The ORFs of all plasmids described in this work were verified by nucleotide sequence
analysis (sequencing runs performed by Nora Tsai, Eunice Kennedy Shriver National
Institute of Child Health and Human Development [NICHD], National Institutes of
Health [NIH], Bethesda, MD, USA and Geneservice Limited, Cambridge, UK).
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2.3 Recombinant protein expression, purification, and binding assays

2.3.1 Bacterial expression vectors

The pHis (Section 2.3.1.1), pGEX (Section 2.3.1.2), and pST (Section 2.3.1.3) vectors
were used to express recombinant fusion proteins in bacteria cells; these proteins were
subsequently purified and used in various in vitro binding assays. A description of
these expression vectors, along with information on how the protein coding sequences

were inserted into the plasmids, is provided below.

2.3.1.1 pHis

The pHis-Parallel2 vector (Sheffield et al. 1999) allows for the expression of an N-
terminal hexahistidine (Hisg) fusion protein in bacteria under the control of the T7
promoter. The wild-type NL4-3 Nef coding sequence was amplified from pCI.Nefy4-
3 (described in Section 2.6.1.2) by PCR using 5° BamHI and 3’ EcoRI primers,
digested with the appropriate enzymes, and subcloned into pHis-Parallel2 to create
pHis.Nef (Fig. 2.1) SDM reactions on this construct resulted in the pHis.Nef
LL164,165AA and pHis.Nef DD174,175AA plasmids.

2.3.1.2 pGEX

The pGEX-5X-1 plasmid (GE Healthcare, Piscataway, NJ, USA) allows for inducible
expression of a N-terminal glutathione S-transferase (GST) fusion protein. Expression
of the fusion protein is controlled by the tac promoter, which is a hybrid of the trp and
lac promoters; its activity is repressed by the Lacl protein, which in turn is inactivated
by isopropyl-p-D-thiogalactopyranoside (IPTG). Therefore, the addition of IPTG to
the growth medium drives expression of the GST fusion protein from pGEX. The ear
domains of AP-2 aC-adaptin, AP-3 B3-adaptin, and AP-4 g-adaptin were subcloned
into the EcoRI-Xhol restriction sites of pGEX (by Rafael Mattera and William Smith)
to create pGEX.GST-aC ear, pGEX.GST-B3 ear, and pGEX.GST-¢ ear, respectively
(Fig. 2.2).

2.3.1.3 pST

pST39 (Tan, 2001) is a polycistronic expression vector that allows for the independent
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translation of four genes from a single mRNA transcript. The plasmid contains a T7
promoter upstream of four expression cassettes; each cassette has its own ribosome
binding site and multiple cloning site (MCS). Portions of the four subunits of AP-2
were subcloned into pST39 (by William Smith and Bridgette Beach of the Jim Hurley
Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, NIH)

to generate pST.AP-2CORE

. The coding sequence for residues 1-141 of rat u2-adpatin
(u2-N) was subcloned into the Xbal-BamHI restriction sites of cassette 1; the coding
sequence for residues 1-621 of rat aC-adaptin (aC trunk) with a C-terminal fusion to
GST was subcloned into the EcoRI-HindlIII restriction sites of cassette 2; the coding
sequence for residues 1-143 of rat o2-adaptin (full-length 62) was subcloned into the
Sacl-Kpnl restriction sites of cassette 3; and the coding sequence for residues 1-591
of rat 32-adaptin (B2 trunk) with a N-terminal Hise tag was subcloned into the BspEI-
Mlul restriction sites of cassette 4 (Fig. 2.3). Tobacco etch virus (TEV) protease
cleavage sites were inserted between aC and the GST tag, and between the Hisq tag
and B2, so that those epitopes could be removed from the AP-2“%F construct as

desired. SDM reactions on pST.AP-2“® (also referred to as pST.AP-2““** o wild-
type [WT]) yielded pST.AP-2““* ot KR297,340EE.

2.3.2 Recombinant protein expression and purification

The bacterial expression vectors described in Section 2.3.1 were transformed into
Escherichia coli Rosetta2 BL21 (DE3) cells (Novagen, San Diego, CA, USA) using
the standard heat shock protocol. These cells contain a chromosomal copy of the T7
bacteriophage RNA polymerase under the control of the lac operator; the addition of
IPTG to the growth medium allows for expression of the T7 RNA polymerase and
subsequent transcription of genes downstream of a T7 promoter. The Rosetta2 BL21
(DE3) cells also contain several tRNAs that utilize codons more commonly found in
eukaryotic systems, thus facilitating the translation of eukaryotic proteins. Methods

used to purify the Hiss-tagged, GST-tagged, and AP-2°ORF

recombinant proteins are
described in separate sections below. All protein purification steps were carried out by

either William Smith or Rafael Mattera.
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2.3.2.1 Hise-tagged proteins

Bacteria transformed with pHis.Nef, pHis.Nef LL164,165AA, or pHis.Nef DD174,
175AA were grown overnight at 18°C in LB medium supplemented with 0.5 mM
IPTG. The bacteria were then harvested and lysed in Tris-Buffered Saline (TBS) [50
mM Tris-HCI with 500 mM NacCl (pH 8.0)], and the supernatants were applied to
HisTrap Fast Flow columns (GE Healthcare). The Hiss-tagged Nef proteins were
eluted in TBS containing 0.25 M imidazole, concentrated, and then purified by gel
filtration on Superdex 200 columns (GE Healthcare) in Tris-dithiothreitol-NaCl
(TDN) buffer [SO mM Tris-HCl with 5 mM dithiothreitol and 150 mM NaCl (pH
8.0)].

2.3.2.2 GST-tagged proteins

Bacteria that had been transformed with empty pGEX.GST, pGEX.GST-aC ear,
pGEX.GST-p3 ear, or pPGEX.GST-¢ ear were likewise grown overnight at 18°C in LB
medium supplemented with 0.5 mM IPTG. The bacteria were harvested and lysed as
described above, and the supernatants applied to glutathione-Sepharose affinity
columns (GE Healthcare). After extensive washing with TBS, unfused GST, GST-a.C
ear, GST-B3 ear, and GST-¢ ear were eluted with 10 mM glutathione, concentrated,

and purified in TDN using Superdex 200 columns.
2.3.2.3 AP-2CORE complexes

The AP-2°“* constructs were designed to have both a Hise-tag (fused to the N-
terminus of the B2 trunk) and a GST-tag (fused to the C-terminus of the aC trunk);
therefore, a combination of the two protein purification strategies described above
was used to isolate AP-2ORE

pST.AP-2“%E or pST.AP-2°R o KR297,340EE were grown in LB medium at 37°C

complexes. Bacteria that had been transformed with

to an optical density (OD) of 0.8 at 600 nm. The temperature was then lowered to

18°C and expression of the AP-2°ORE

complexes was induced by the addition of IPTG
to a final concentration of 0.5 mM. The bacteria were allowed to grow under these
conditions for 12 hrs, after which the cells were harvested and lysed in TBS. Insoluble
material was cleared from the lysates by centrifugation, and the supernatants were

applied to HisTrap Fast Flow columns. After the columns were washed extensively
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with TBS to remove contaminants, the AP-2°°%* complexes were eluted in TBS
containing 0.25 M imidazole. The complexes were then transferred to glutathione-
Sepharose affinity columns, washed again with TBS, and eluted in TBS containing 10
mM glutathione. AP-2°%* and AP-2“"F o KR297,340EE were finally purified in
TDN using Superdex 200 columns. For surface plasmon resonance (SPR) assays (see
Section 2.3.3.2), purified AP-2““** was treated with a Hiss-tagged TEV protease to
cleave the Hise-tag from the P2 trunk and the GST-tag from the aC trunk. The
complex was then isolated from the protease using a HisTrap Fast Flow column; the

RE
2CO

untagged AP- complex passed through the column and was collected in the

filtrate, while the Hise-tagged TEV protease remained bound to the column.

2.3.3 Binding assays

The ability of wild-type or mutant Nef proteins to bind wild-type or mutant AP-2°RF

complexes were assayed by GST pull-down experiments (performed by William Smith
and Rafael Mattera and described in Section 2.3.3.1) and surface plasmon resonance

experiments (performed by William Smith and described in Section 2.3.3.2).

2.3.3.1 GST pull-down assays

Saturating amounts (5 ug) of the purified GST-tagged proteins (including AP-2RF,

AP-2CORE KR297,340EE, GST-aC ear, GST-B3 ear, GST-¢ ear, and unfused GST)
were immobilized onto 30 uL of glutathione-Sepharose beads at 4°C in TBS. The
beads were then washed with TBS and incubated with 3 ug of a Hise-tagged Nef
protein (either Hise-Nef, Hisg-Nef LL164,165AA, or Hise-Nef DD174,175AA) at 4°C
for 2 hrs in a final volume of 1 mL of Protein Binding Buffer (PBB) [15 mM HEPES
(pH 7.0), 75 mM NaCl, 0.25% (vol/vol) Triton-X-100, 0.15% (wt/vol) bovine serum
albumin (BSA), and supplemented with a protease inhibitor cocktail (Roche Applied
Science, Basel, Switzerland)]. Following the incubation, the beads were washed with
PBB lacking BSA, and then centrifuged at 2000 g for 2 min at 4°C. Proteins bound to
the beads were eluted by resuspension in 50 ul. of NuPAGE Laemmli sodium
dodecyl sulphate (SDS) sample buffer (Invitrogen) and incubated at 90°C for 10 min.
The samples were then centrifuged at 16,000 g for 2 min at room temperature, and
equal volumes of the supernatants were subjected to SDS-PAGE and immunoblotting

(please see Section 2.9 for further information). To determine whether the interaction
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between Nef and AP-2 was salt-sensitive, identical aliquots of immobilized AP-2“O%"
were incubated with Hise-Nef in the presence of varying concentrations of NaCl

(from 0 M to 1.0 M). The beads were prepared for analysis as described above.
2.3.3.2 Surface plasmon resonance assays

Surface plasmon resonance (SPR) was used to measure the binding of untagged AP-
2CORE complex to Hiss-tagged wild-type and DD174,175AA Nef proteins. All SPR
experiments were performed using a Biacore T100 instrument (Biacore, Uppsala,
Sweden) at room temperature with HEPES-Buffered Saline (HBS) [10 mM sodium
HEPES with 150 mM NaCl (pH 7.4)]. The assay was begun by activating a CMS5
sensor chip (Biacore) using N-hydroxysuccinimide-1-ethyl-3-3-dimethylaminopropyl
carbodiimide at a flow rate of 5 uL/min for 400 sec. Equivalent amounts of GST-
tagged € ear domain of AP-4 (used as a negative control) and Hise-tagged wild-type
and DD174,175AA Nef in 10 mM acetate buffer (pH 5.0) were then covalently
attached to separate surfaces of the CMS5 chip by passing the recombinant proteins
over individual flow cells at a rate of 20 uL/min. With the sensitivity of the Biacore
T100 set to 10,000 response units (RU), the binding of recombinant untagged AP-
2CORE to wild-type and DD174,175AA Nef was simultaneously measured by passing
AP-2RF gver consecutive flow cells with association and dissociation times of 120
sec and 400 sec, respectively. Between subsequent injections of AP-2“®F proteins,
the chip surfaces were regenerated with an injection of HBS supplemented with 500
mM NaCl for 15 sec at 100 uL/min. Sensorgram RU data was normalized by
subtracting the values obtained from the portion of the CM5 chip containing the AP-4
¢ ear domain negative control. Steady-state binding data of AP-2°“%* for Nef were
fitted using Bia-evaluation software (Biacore) with globally floating Kp (equilibrium

dissociation constant), Rmax, and refractive index values.
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2.4 Yeast expression vectors, transformations, and hybrid assays

2.4.1 Yeast expression vectors

The pBridge (Section 2.4.1.1), pGADT?7 (Section 2.4.1.2), and pAD (Section 2.4.1.3)
vectors were used to express heterologous proteins in Saccharomyces cerevisiae
HF7c¢ cells for yeast hybrid assays. A description of these expression vectors, along
with information on how the protein coding sequences were inserted into the

plasmids, is provided below.

2.4.1.1 pBridge

The pBridge vector (Clontech, Mountain View, CA, USA; Fig. 2.4) has two MCS and
a TRP1 nutritional marker that allows yeast auxotrophs transformed with pBridge to
grow on drop-out medium lacking tryptophan. The first MCS (MCS1) of pBridge is
downstream of a constitutively active yeast alcohol dehydrogenase (ADH1) promoter
and the coding sequence for the GAL4 DNA Binding Domain (BD). Genes inserted
into MCS1 are expressed as GAL4BD fusion proteins. These fusion proteins are
targeted to the yeast nucleus by virtue of a nuclear localization sequence (NLS) that is
an intrinsic component of the GAL4BD. The second MCS (MCS2) is downstream of
a conditional MET25 promoter; this promoter induces expression of the gene cloned
into MCS2 when methionine is absent from the growth medium. An exogenous SV40
NLS positioned just upstream of MCS2 ensures that gene products expressed from
this region of pBridge are directed to the yeast nucleus. The pBridge.Tyr.ol, pBridge.
Tyr.02, and pBridge.Tyr.03 plasmids, in which the coding sequence for the cytosolic
tail of mouse tyrosinase had been subcloned into the EcoRI-Pstl sites of MCS1, and
the ORFs of rat olA, rat 62A, and rat 063A had been subcloned into the NotI-BglII
sites of MCS2, have been previously described (Theos et al., 2005). SDM reactions
on pBridge.Tyr.02 yielded the various mutants of this plasmid (listed in Table 2.8).
The coding sequence for NL4-3 Nef was subcloned from pCI.Nefni4-3 (described in
Section 2.6.1.2) and inserted into the EcoRI-Sall restriction sites of pBridge MCS1 to
generate pBridge.Nef. The rat olA, 02A, and 063A ORFs were subcloned from the
pBridge.Tyr.ol, pBridge. Tyr.02, and pBridge.Tyr.03 plasmids and inserted into
MCS?2 of pBridge.Nef to make pBridge.Nef.o1, pBridge.Nef.02, and pBridge.Nef.o3.

SDM reactions on these plasmids generated a large number of mutants used in this
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study (for a complete list, please refer to Table 2.8).

2.4.1.2 pGADT7

The pGADT?7 expression vector (Clontech; Fig. 2.5) has a LEU2 nutritional marker
that allows yeast auxotrophs carrying the plasmid to grow on limiting medium lacking
leucine, and a single MCS. The MCS is downstream of the constitutively active yeast
ADHI1 promoter and the coding sequence for the GAL4 Activation Domain (AD).
Genes inserted into the MCS of pGADT7 are expressed as GAL4AD fusion proteins.
These proteins are targeted to the yeast nucleus by a SV40 NLS located at the N-
terminus of the GAL4AD. The pGADT7.y, pGADT7.a, and pGADT?7.8 plasmids, in
which the coding sequences for mouse yl-adaptin, rat aC-adaptin, and human 6-
adaptin were inserted into the Smal-Xhol restriction sites of the pGADT7 MCS, have
been previously described (Janvier et al., 2003b). Resequencing of the original rat
aC-adaptin cDNA insert revealed the presence of a point mutation that changed an
alanine at position 131 to threonine. This codon was reverted back to alanine by
SDM, resulting in the pPGADT7.a plasmid used in this study. SDM was also used to
generate a large number of desired mutations in pPGADT7.a (all of which are listed in

Table 2.8).

2.4.1.3 pAD

To create the pAD series of expression vectors (Fig. 2.6), the pMET25-MCS2-tPGK
cassette was excised from pBridge (Section 2.4.1.1) by Apal digestion, polished with
DNA polymerase I, and inserted into the Pvull site of pGAD424 (Clontech) by blunt-
end ligation. This process generated a new vector, hereafter referred to as pAD, which
has two MCS: one downstream of the ADHI1 promoter and the GAL4AD sequence
(MCS1), and one downstream of the MET25 promoter (MCS2). Genes inserted into
MCSI are expressed as GAL4AD fusion proteins, and are targeted to the nucleus by a
SV40 NLS located on the GAL4AD. Genes inserted into the MCS2 of pAD are
expressed as unfused proteins, but are also targeted to the nucleus by the presence of a
NLS. The coding sequence for the cytosolic tail of human CD4 was amplified from
pCMV.CD4 (Section 2.6.1.1) by PCR and subcloned into the EcoRI-Sall restriction
sites of pAD MCSI to create pAD.CD4. To generate pAD.CD4.a, the aC ORF was
amplified from pGADT7.a. (Section 2.4.1.2) by PCR using primers containing Notl
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and BamHI restriction sites, digested with the appropriate enzymes, and ligated into
the compatible NotI-BglII site of pAD.CD4 MCS2. The pAD.CD4.a-KR297,340EE
plasmid was prepared by a similar procedure, using pGADT7.a-KR297,340EE as the
PCR template.

2.4.2 HF7c¢ cells and yeast hybrid assays

The haploid Saccharomyces cerevisiae strain HF7¢ (Feilotter et al., 1994), which is
commonly used in yeast hybrid experiments (Fields and Song, 1989; Aguilar et al.,
1997; Janvier et al., 2003b; Theos et al., 2005), lacks the TRP1 and LEU2 genes. HF7¢
cells, therefore, are unable to grow on medium lacking leucine and tryptophan unless
transformed with plasmids (such as pBridge, pGADT7, and pAD) that carry the TRP1
and LEU2 genes. In addition, HF7c cells are engineered so that the single copy of the
HIS3 gene is substituted for the GAL4 transcription factor downstream of the GAL4
promoter. This prevents HF7¢ cells from growing on medium lacking histidine unless
the expression of HIS3 is induced by the presence of an artificial GAL4 transcription
factor. This transcription factor can be reconstituted in the nucleus of yeast cells by
the physical interaction of proteins fused to the GAL4BD (expressed from pBridge
MCS1) and GAL4AD (expressed from pGADT7 or pAD MCS1). Additional nuclear-
localized proteins (expressed from MCS2 of pBridge or pAD) may be required for the
fusion proteins to bind and bring the separate GAL4BD and GAL4AD domains into
close proximity of each other. Thus, the growth of HF7c cells co-transformed with
plasmids that express GAL4BD and GAL4AD fusion proteins on medium lacking

histidine is indicative of an interaction between these two proteins.

2.4.2.1 Transformation of HF7¢ cells

HF7c cells were transformed with pairs of pBridge and pGADT?7 (or pAD) plasmids
as previously described (Schiestl and Gietz, 1989; Gietz and Schiestl, 1991; Gietz et
al., 1995). Briefly, the yeast were grown in YPD Broth [1% (wt/vol) yeast extract, 2%
(wt/vol) peptone, 2% (wt/vol) dextrose (Sunrise Science Products, San Diego, CA,
USA)] at 30°C overnight, after which the culture was diluted in YPD to an OD of
0.35 and grown at 30°C for 3 additional hrs to an OD of approximately 0.80. The
culture was then centrifuged at 1000 g for 5 min, resuspended in sterile H,O, and

centrifuged again at 1000 g for 5 min to collect the yeast. For each transformation,
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0.80 OD units of HF7¢ cells were resuspended in 100 uL of LATE solution [0.1 M
Lithium Acetate, 0.1 M Tris, and 0.5 M EDTA (pH 8.0)] containing 1 ug of single-
stranded salmon sperm carrier DNA (Sigma). The cells were then combined with 1 ug
of each vector (pBridge and either pGADT7 or pAD), mixed with 600 uL. of LATE
solution that had been supplemented with 40% (wt/vol) polyethylene glycol (PEG),
and incubated at 30°C for 1 hr with shaking. At the end of this incubation period, 60
uL of dimethyl sulfoxide (DMSO) was added to the mixture, and the yeast were
transformed by heat shock at 42°C for 15 min. The HF7c cells were then cooled on
ice for 30 sec, pelleted, resuspended in 30 uLL of H,O, and transferred to drop-out agar
plates lacking leucine, tryptophan, and methionine. Yeast that had been successfully

transformed with both plasmids produced visible colonies on the plates after 4 days.

2.4.2.2 Yeast three-hybrid assays

For the yeast three-hybrid (Y3H) assay, three heterologous proteins were expressed in
yeast cells and targeted to the nucleus. Wild-type and mutant versions of NL4-3 Nef
or the cytosolic tail of mouse tyrosinase were expressed as GAL4BD fusion proteins
from the pBridge vector, along with rat o1A, rat 062A, or rat 63A (Section 2.4.1.1).
Mouse y1, wild-type and mutant versions of rat aC, and human 8 were also expressed
as GAL4AD fusion proteins from the pGADT7 plasmid (Section 2.4.1.2). HF7c cells
were transformed with pairs of pBridge and pGADT?7 plasmids, and co-transformants
were selected on drop-out agar plates containing all necessary amino acids except
leucine, tryptophan, and methionine (Section 2.4.2.1). For each sample, colonies were
allowed to grow on these plates for 4 days, after which they were pooled, normalized
to 0.1 OD units (at 600 nm) in H,O, and transferred to three sets of drop-out plates:
those lacking leucine, tryptophan, and methionine (i.e., +His); those lacking histidine,
leucine, tryptophan, and methionine (—His); and those lacking histidine, leucine,
tryptophan, and methionine, and supplemented with 1-3 mM 3-amino-1,2,4-triazole,
an inhibitor of histidine biosynthesis (—His+3AT). Colony growth on the three sets of
plates was analyzed 4 days later. The growth of transformed yeast on the —His plates
is indicative of an interaction between the GAL4BD and GAL4AD fusion proteins
(see Section 2.4.2), while growth on the —His+3AT plates is indicative of stronger

interactions.
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2.4.2.3 Yeast two-hybrid and four-hybrid assays

For the yeast two-hybrid (Y2H) and yeast four-hybrid (Y4H) assays, two and four
heterologous proteins were expressed in yeast cells, respectively. In the Y2H assay, a
GAL4BD-Nef fusion protein was expressed from pBridge MCS1 (Section 2.4.1.1),
while a GAL4AD-CD4 cytosolic tail fusion protein was expressed from pAD MCS1
(Section 2.4.1.3). In the Y4H assay, a GAL4BD-Nef fusion protein was expressed
from pBridge MCSI1, rat 62A was expressed from pBridge MCS2 (Section 2.4.1.1),
the GAL4AD-CD4 fusion protein was expressed from pAD MCSI1, and rat aC was
expressed from pAD MCS2 (Section 2.4.1.2). Y2H, Y3H, and Y4H assays using the
pBridge and pAD plasmids were carried out according to the procedure described
above with only one modification: following the selection of positive transformants,
the densities of the corresponding yeast suspensions were normalized to 1.6 OD units
(at 600 nm), and the suspensions were serially diluted to 0.1 OD units before transfer

to the +His and —His drop-out agar plates.
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2.5 Drosophila expression vectors, tissue culture, transfections, and knockdowns
2.5.1 Drosophila expression vectors

The pAc (Section 2.5.1.1) and pMt (Section 2.5.1.2) vectors were used to express
heterologous proteins in Drosophila melanogaster S2 cells for various cell biological
assays. The pCo-Blast (Section 2.5.1.3) vector was used in the generation of stable
cell lines. A description of these expression vectors, along with information on how
protein coding sequences were inserted into the pAc and pMt plasmids, is given

below.
2.5.1.1 pAc-V5

The pAc-V5 vector (Invitrogen; Fig. 2.7) contains a constitutive Drosophila actin 5C
promoter upstream of a MCS and a sequence coding for a V5 epitope tag. Human
CD4 ¢cDNA was amplified by PCR from pCMV.CD4 (Section 2.6.1.1) and subcloned
into the EcoRI and Xhol restriction sites of pAc-V5 to create pAc.CD4. A stop codon
at the end of the CD4 gene prevented the attachment of a C-terminal VS5 tag during
translation. SDM on pAc.CD4 was used to generate pAc.CD4 L1413,414AA.
Drosophila cDNAs for AP-1 ul (CG9388); AP-2 u2 (CG7057); AP-3 u3 (CG3035);
and Golgi-localized, gamma-ear-containing, ARF-binding protein (GGA, CG3002)
were obtained from the Drosophila Genomics Resource Center (Bloomington, IN,
USA), while the cDNA for Drosophila clathrin light chain (CLC, CG6948) was
kindly provided by Henry Chang (Purdue University, West Lafayette, IN, USA). Each
cDNA was amplified by PCR without a stop codon and inserted into the EcoRI and
Apal restriction sites of pAc-V5 such that they would be expressed with C-terminal
V5 epitope tags; this process was used to generate pAc.ul-V5, pAc.u2-V5, pAc.u3-
V5, pAc.GGA-VS5, and pAc.CLC-VS5.

2.5.1.2 pMt

The pMt vector (Invitrogen; Fig. 2.8) contains an inducible metallothionein promoter
upstream of a MCS. The metallothionein promoter is normally inactive; however, it
drives high levels of expression of downstream genes in response to some divalent

metal cations, such as Cu”". The coding sequence for NL4-3 Nef was amplified by
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PCR from the pIRES.Nefnr4-3.IRES.GFP (described in Section 2.6.1.3) and subcloned
into the EcoRI-Xhol restriction sites of pMt to create pMt.Nefyr4.3. A similar method
was used to subclone four other HIV-1 and SIV Nef alleles in pMt, using pIRES.GFP
based plasmids as a template (all described in Section 2.6.1.3); this process generated
pMt.Nefya7, pMt.Nefpuiz-3, pMt.Netfass, and pMt.Nefsrymac2zo. SDM on pMt.Nefnia-3
created pMt.Nefnra-3GoA, pMt.NefnrasWLS57,58AA, pMt.Nefni43EEEE62-65AAAA
pMt.Nefnr4.3PP72,75AA, and pMt.Nefni43LL164,165AA.

2.5.1.3 pCo-Blast

The pCo-Blast vector (Invitrogen; Fig. 2.9) contains a strong, constitutively active
Drosophila promoter upstream of a blasticidin resistance gene. Blasticidin is a
nucleoside antibiotic that inhibits protein synthesis in eukaryotic cells. The blasticidin
resistance gene expressed from pCo-Blast is a deaminase that converts blasticidin into
a non-toxic compound. The pCo-Blast plasmid is therefore a useful selection marker
when generating stable clones; Drosophila S2 cells co-transfected with pCo-Blast and
other plasmids (such as pAc and pMt) can be selected from untransfected cells by the
addition of blasticidin to the growth medium (see Section 2.5.2.3).

2.5.2 Drosophila S2 cells

Drosophila melanogaster Schneider 2 (S2) cells, originally derived from a late-stage
Drosophila embryo and having phagocyte-like properties (Schneider, 1972), were
kindly provided by Mary Lilly (Eunice Kennedy Shriver NICHD, NIH).

2.5.2.1 Tissue culture

S2 cells were cultured in complete Schneider’s medium [Schneider’s Drosophila
medium (Invitrogen) supplemented with 10% (vol/vol) fetal bovine serum (FBS), 100
U/mL of penicillin, 0.1 mg/mL of streptomycin, and 2 mM L-glutamine] at 24°C in
humidified air containing ambient levels of carbon dioxide (CO;). The S2 cells were

grown on standard tissue culture plates and passaged every 2 to 3 days.
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2.5.2.2 Transient DNA transfections

S2 cells were transfected with plasmids using the Amaxa Nucelofector (Amaxa,
Walkersville, MD, USA). Prior to the transfection, S2 cells were harvested from a
tissue culture plate and counted using a hemocytometer and trypan blue. 1x10° live
cells were centrifuged at 1000 g for 5 min, washed once with room temperature
Phosphate Buffered Saline (PBS) [0.8% (wt/vol) NaCl, 0.115% (wt/vol) Na,HPOs,
0.02% (wt/vol) KCl, 0.02% (wt/vol) KH,PO4 (pH 7.4)], and centrifuged again at 1000
g for 5 min. The S2 cells were then resuspended in 100 uL of room temperature V-
solution (Amaxa), to which 1 ug of each plasmid to be transfected had already been
added. The cells and transfection solution were mixed gently, transferred to a metal-
plated cuvette, and electroporated using the Nucleofector set to program O-20.
Immediately following the electric shock, the cuvette was withdrawn form the
Nucleofector, and 1.9 mL of complete Schneider’s medium pre-warmed to 24°C was
added. The transfected cells were then divided equally between two wells in a 12-well
plate, each well having a total volume of 1.0 mL. The next day, one of the wells in the
pair was treated with 5 uLL of 100 mM CuSOy (for a final concentration of 0.5 mM) to
activate the metallothionein promoter of the pMt plasmid and induce Nef expression.
The cells were incubated at 24°C for another day, at which time various assays were

performed (48 hrs post-transfection and 24 hrs post Nef-induction).
2.5.2.3 Generation of a stable CD4-Nef cell line

To generate a stable CD4-Nef cell line, in which CD4 was constitutively expressed
and Nef was expressed upon the addition of CuSO,, 1x107 S2 cells were transfected
with 4 ug of pAc.CD4, 4 ug of pMt.Nefnr4.3, and 1 ug of pCo-Blast using the Amaxa
Nucleofector as described in Section 2.5.1.2. The cells were initially plated on a 15
cm” tissue culture dish and grown for 1 week in complete Schneider’s medium; after
this period, stable clones were selected and maintained by supplementing the medium
with 25 ug/mL of blasiticidin. After several weeks, surviving clones were transferred
to individual wells of a 96-well plate, and then to a 12-well plate, as cell growth
permitted. At this stage, the clones were assayed by flow cytometry for CD4 surface
levels before and after induction of Nef expression. Of the clones assayed, the D6 cell

line was chosen for its uniform CD4 surface expression and consistent, inducible
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downregulation of CD4 by Nef.

2.5.2.4 RNAi-mediated protein depletion

The Expression Arrest Drosophila RNA-interference (RNA1) Library, a collection of
double-stranded (ds) DNA templates representing most of the ORFs in the Drosophila
genome, was obtained from Open Biosystems (Hunstville, AL, USA). Each template
contained 200-800 bp of cDNA sequence from a particular gene, and was flanked by
T7 RNA polymerase initiation sites. Sixty-six genes, the homologues of which had
previously been implicated in protein trafficking processes in yeast and animals, were
selected from the library for use in this study. Similar dsDNA sequences for another
five genes (Drosophila CLC, Drosophila Tsg101, human CD4, HIV-1 NL4-3 Nef, and
Green Fluorescent Protein [the latter three used as controls]) were made by PCR using
primers containing T7 promoters and the appropriate cDNA sequences (see Table 2.9
for further information). In vitro transcription (IVT) reactions were carried out on the
dsDNA templates of the selected genes using the MEGAscript T7 Kit (Ambion,
Austin, TX, USA) at 37°C for 16 hrs to produce the desired dsSRNAs. Each dsRNA
was analyzed by agarose gel electrophoresis to determine that a product of expected
size was obtained, after which the yield of the IVT reaction was quantified using a
NanoDrop spectrophotometer. To deplete target proteins, S2 cells were treated with
dsRNAs according to a five day protocol. On day 1, the cells were incubated for 1 hr
in serum-free growth medium containing 30 ng/mL of dsRNA, after which FBS was
added to a final concentration of 10% (vol/vol). On day 3, cells receiving a particular
dsRNA treatment were split into two equivalent wells in a tissue culture dish. On day
4, the expression of Nef was induced in one of the wells by the addition of CuSOy (to
a final concentration of 0.5 mM), while the other well was left uninduced. On day 5,
the S2 cells were prepared for flow cytometric analysis (96 hrs post dsSRNA-treatment

and 24 hrs post Nef-induction; see Section 2.7 for further information).
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2.6 Human expression vectors, tissue culture, transfections, and knockdowns

2.6.1 Human expression vectors

The pCMYV (Section 2.6.1.1), pCI (Section 2.6.1.2), and pIRES.GFP (Section 2.6.1.3)
vectors were used to express proteins in JM and HeLa cells for various cell biological
and biochemical assays. A description of these expression vectors, along with detailed
information on how protein coding sequences were inserted into these plasmids, is

provided below.

2.6.1.1 pPCMV

The pCMYV expression vector (Clontech) contains a human cytomegalovirus (CMV)
immediate-early enhancer-promoter upstream of a single MCS. The CMV promoter is
constitutively active and induces high levels of expression of downstream genes in
many human cell lines, including JM and HeLa cells. The pCMV.CD4 plasmid, in
which the coding sequence for human CD4 was inserted between the BamHI and
EcoRI restriction sites of pCMV, was kindly provided by Klaus Strebel (National
Institute of Allergy and Infectious Diseases [NIAID], NIH; see Fig. 2.10).

2.6.1.2 pCI

Like pCMYV, the pCI expression vector (Promega, Madison, WI, USA) has a CMV
immediate-early enhancer-promoter upstream of a single MCS. Several pCl-based
plasmids containing different HIV and SIV Nef alleles, including pCI.Nefni4.3, pCIL.
Nefpuiz-3, pCLNefss, and pClL.Nefsivmac239, were kindly provided by Sundararajan
Venkatesan (NIAID, NIH; see Fig. 2.11). In all cases, the Nef coding sequence had
been inserted between the EcoRI and Sall restriction sites of pCI. SDM reactions on
pCl.Nefnr43 yielded pCl.Nefnrs3LL164,165AA, pCl.Nefnr43D174E, pCIL.Nefnis-s
D175E, and pCI.Nefn14.3DD174,175AA.

2.6.1.3 pIRES.GFP

The pIRES2.eGFP expression vector (Clontech; hereafter referred to as pIRES.GFP)
contains a CMV immediate-early enhancer-promoter upstream of a MCS, an internal

ribosome entry site (IRES), and the coding sequence for enhanced Green Fluorescent
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Protein (GFP). Thus, this plasmid allows for the independent translation of a gene of
interest (cloned into the MCS) and GFP from a single bicistronic mRNA transcript
(see Fig. 2.12). GFP fluorescence can then be used to identify cells that have been
transfected with the plasmid and that express the gene of interest. The coding
sequences of NL4-3 Nef, DH12-3 Nef, 248 Nef, and SIVmac239 Nef were subcloned
from pCl-based vectors (described in Section 2.6.1.2) into the EcoRI-Sall restriction
sites of the pIRES.GFP MCS to generate pNefyr4.3.IRES.GFP, pNefpy;,-3.IRES.GFP,
pNefr45. IRES.GFP, and pNefsivmac239.IRES.GFP. The NA7 Nef ORF from pCDNA.
Nefnaz (kindly provided by Jacek Skowronski, Cold Spring Harbor Laboratory, Cold
Spring Harbor, NY, USA) was amplified by PCR and also inserted into the EcoRI-
Sall restriction sites of pIRES.GFP to create pNefya7.IRES.GFP. SDM of pNefnia-
3.IRES.GFP yielded all permutations of this plasmid (for a complete listing, see Table
2.8). The paR-V5.IRES.GFP and paR-KR297,340EE-VS5.IRES.GFP plasmids, used

in the a-adaptin knockdown and rescue assays, are described in Section 2.6.3.4.
2.6.2 JM cells

JM cells are immature CD4'/CD8" human T cells that were originally isolated from
an adolescent male lymphoblastoid leukemia patient prior to the thymic selection
process (Schneider, 1977). The JM cells were obtained from the NIH AIDS Research
and Reference Reagent Program (NIAID, NIH, Germantown, MD, USA).

2.6.2.1 Tissue culture

IJM cells were cultured in complete RPMI-1640 [Roswell Park Memorial Institute-
1640 medium (Invitrogen) supplemented with 10% (vol/vol) FBS, 100 U/mL of
penicillin, 0.1 mg/mL of streptomycin and 2 mM L-glutamine] at 37°C in humidified
air containing 5% CO,. The JM cells were grown in standard tissue culture flasks and
passaged every 2 to 3 days; a cell density of 1x10° to 8x10° cells/mL was maintained

at all times.
2.6.2.2 Transient DNA transfections

IJM cells were transiently transfected with plasmids using the Amaxa Nucleofector in

a manner similar to that described in Section 2.5.2.2. For each transfection, 1x10° live

78



JM cells were harvested by centrifugation at 1000 g for 5 min, washed once with
room temperature PBS, and pelleted again by centrifugation at 1000 g for 5 min. The
cells were then resuspended in 100 uL. of room-temperature V-solution, to which 1 pg
of DNA had already been added. The cells and transfection reagents were mixed
gently, placed in a cuvette supplied by the manufacturer, and electroporated using the
Nucleofector set to program O-17. After the electric shock, the cuvette was
withdrawn from the Nucleofector, and 500 uL. of complete RPMI-1640 pre-warmed
to 37°C was added. The transfected cells were then transferred from the cuvette to a
T-25 tissue culture flask containing 9.5 mL of complete RMPI-1640 and incubated
overnight at 37°C. Assays were performed on the JM cells the following day (24 hrs

post-transfection).

2.6.3 HeL.a cells

HeLa cells are human cervical cancer cells originally isolated from an adult female
patient. The HeLa cells used in this study were purchased from the American Type

Culture Collection (Manassas, VA, USA).

2.6.3.1 Tissue Culture

HeLa cells were cultured in complete DMEM [Dulbeco’s modified Eagle medium
(Invitrogen) supplemented with 10% (vol/vol) FBS, 100 U/mL of penicillin, 0.1
mg/mL of streptomycin, and 2 mM L-glutamine] at 37°C in humidified air containing
5% CO,. The HeLa cells were grown on standard tissue culture plates and passaged

every 3 to 4 days.

2.6.3.2 Transient DNA transfections

HeLa cells were transiently transfected with expression vectors using Lipofectamine
2000 (Invitrogen) according to instructions provided by the manufacturer. For each
transfection, two 100 uL aliquots of Opti-MEM I (Invitrogen) were brought to room
temperature. To one aliquot, 1.0 ug of DNA was added; to the other aliquot of Opti-
MEM 1, 3 uL of Lipofectamine 2000 was added. The two solutions were incubated at
room temperature for 5 min, mixed, and then incubated at room temperature for a

further 20-25 min. During the second incubation step, HeLa cells growing on a 6-well
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tissue culture dish at 30-50% confluency were removed from the incubator and
washed once with room temperature Opti-MEM I; each well was then seeded with
800 uL of serum-free DMEM supplemented with 100 U of penicillin/mL, 0.1 mg of
streptomycin/mL, and 2 mM L-glutamine. The transfection mixture was then applied
drop-wise to the well (for a total volume of 1000 uL), and the tissue culture dish was
swirled gently before being placed back in the incubator. Three hrs later, 500 uL of
DMEM supplemented with 30% FBS (vol/vol), 100 U of penicillin/mL, 0.1 mg of
streptomycin/mL, and 2 mM L-glutamine was added to each well, and the cells were
incubated for another 24 hrs at 37°C. Various assays were performed on the cells the

following day (24 hrs post-transfection) as described below and in Sections 2.7, 2.8,

and 2.9.

2.6.3.3 Endocytosis assays

Endocytosis assays were used to measure the rate at which CD4 was internalized from
the plasma membrane in the absence and presence of Nef. HeLa cells growing on 9-
cm-diameter tissue culture plates at approximately 70% confluency were transfected
with the appropriate plasmids as described in Section 2.6.3.2. The following day, the
plates were washed with PBS pre-warmed to 37°C, incubated in detachment buffer
[PBS supplemented with 2mM EDTA] for 30 min at 37°C, and harvested. The
harvested cells were washed twice with ice-cold PBS and then incubated on ice for 30
min in Endocytosis Binding Buffer (EBB) [Opti-MEM [ with 2% (wt/vol) BSA]
containing a 1:100 dilution of mouse anti-human CD4 antibody. An aliquot of cells
was incubated without the primary antibody as a control. The cells were then washed
twice with ice-cold PBS, resuspended in EBB pre-warmed to 37°C, and incubated at
37°C. An aliquot of cells that remained on ice was reserved for the 0-min time point.
At the indicated time intervals, equal aliquots of cells were transferred from the
incubation tubes to ice-cold PBS. At the end of the time course, the samples were
subjected to two additional washes with ice-cold PBS and incubated in PBA [PBS
with 1% (wt/vol) BSA and 0.1% (vol/vol) sodium azide] containing a 1:100 dilution
of goat anti-mouse antibody conjugated to allophycocyanin (APC) for 1 hr on ice.
The cells were finally washed three times with ice-cold PBS, fixed in PBA-F [PBA
with 1% (vol/vol) paraformaldehyde], and analyzed by flow cytometry as described in
Section 2.7.3.
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2.6.3.4 siRNA-mediated protein depletion of p1, 2, and u3

The expression of ul-adaptin, u2-adaptin, and u3-adaptin was depleted in HeLa cells
by using small interfering RNA (siRNA) duplexes. For each gene to be silenced,
siRNA duplexes were designed (ul sense sequence: 5’~AAGGCAUCAAGUAUCGG
AAGA-3’, u2: 5’-AAGUGGAUGCCUUUCGGGUCA-3’, u3: 5’-AAGGAGAACA
GUUCUUGCGGC-3’) and purchased, along with a non-targeting oligonucleotide
duplex called siCONTROL 1, from Dhamacon (Lafayette, CO, USA). For each
transfection reaction, two aliquots of Opti-MEM I were brought to room temperature.
The first aliquot of Opti-MEM I (8 ulL) was combined with 2 uL of Lipofectamine
2000, while the second aliquot of Opti-MEM 1 (185 uL) was combined with 5 uLL of
an siRNA duplex at a stock concentration of 20 uM. The two solutions were allowed
to incubate at room temperature for 5 min, after which they were mixed and incubated
at room temperature for another 25 min. At the end of the second incubation period,
HeLa cells growing on a 6-well tissue culture dish (at ~30% confluence) were washed
with Opti-MEM I, and each well was seeded with 800 uL of fresh Opti-MEM 1. The
siRNA transfection solution was then added drop-wise to the well (for a total volume
of 1000 uL and a final siRNA duplex concentration of 100 nM). The dish was swirled
gently and placed back in the tissue culture incubator; the following day, 500 uL of
DMEM supplemented with 30% FBS (vol/vol), 300 U of penicillin/mL, 0.3 mg of
streptomycin/mL, and 6 mM L-glutamine was added to each well. For each siRNA-
mediated protein depletion experiment, HeLa cells were transfected twice with the
targeting and non-targeting siRNA duplexes over 6 days according to the protocol
described above. On day 1, HeLa cells received the first siRNA treatment. On day 3,
the cells were split onto fresh six-well dishes in a 1:3 ratio. On day 4, the HeLa cells
received the second siRNA treatment. On day 5, the cells were transfected with DNA
plasmids as detailed in Section 2.6.3.2 and Table 2.6. On day 6, the cells were
harvested and prepared for flow cytometric analysis (as described in Section 2.7) and

immunoblot analysis (as described in Section 2.9).

2.6.3.5 a-adaptin knockdown and rescue reagents

HeLa cells express two isoforms of a-adaptin, oA and aC. To simultaneously silence
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the expression of both isoforms, a single siRNA duplex was designed (sense sequence
5’-GAGCAUGUGCACGCUGGCCATT-3’; Qiagen) that targeted nucleotides 1053
to 1072 of the human oA and aC ORFs. An siRNA-resistant version of aC-adaptin
(hereafter referred to as aR) was generated by introducing three silent substitutions
into the rat aC cDNA (C—T, C—T, and G—C at nucleotides 1053, 1059, and 1065,
respectively, of the rat aC sequence). These substitutions resulted in a total of four
mismatches between aR and the siRNA-sensitive human aA/aC sequences (the rat
a.C cDNA contains an additional A—G substitution at position 1062 compared to the
human aA/aC sequences). The sequence for a V5 epitope tag was fused to the 3° end
of the aR ORF by PCR, and the aR-V5 cassette was subcloned into the BamHI-Sall
restriction sites of pIRES.GFP to generate paR-V5.IRES.GFP. SDM on this plasmid
yielded paR-KR297,340EE-V5.IRES.GFP (also referred to as paR-KREE-V5.IRES.

GFP; see Section 2.6.1.3 for more information on the pIRES.GFP expression vector).

2.6.3.6 a.-adaptin knockdown and rescue transfections

In HeLa cells, the expression of endogenous a-adaptin was silenced by transfection
with siRNA and replaced with aR according to a seven day protocol. On day 1, HeLa
cells growing on six-well plates (at ~15% confluence) were either left untreated or
transfected with the aA/aC siRNA duplex (100 nM) using Lipofectamine 2000 and
Opti-MEM 1 as described in Section 2.6.3.4. On day 3, the cells were split at a 1:3
ratio onto fresh 6-well plates. On day 4, the cells (at ~50% confluence) were
transfected with a second round of siRNA and/or a unique combination of DNA
plasmids (pCMV.CD4; pCI or pCIl.Nefyr4.3; and pIRES.GFP, paR-V5.IRES.GFP, or
paR-KR297,340EE-VS5.IRES.GFP; see Table 2.7) using Lipofectamine 2000 and
Opti-MEM 1. On day 6, the cells were split again onto fresh 6-well plates in a 1:2
ratio. On day 7, the cells were harvested and prepared for flow cytometric analysis (as

described in Section 2.7) and immunoblot analysis (Section 2.9).
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2.7 Flow Cytometry

Flow cytometry was used to quantify the amount of CD4 and other proteins on the
surface of S2, JM, and HeLa cells in the absence and presence of Nef. Regardless of
the type, the cells were analyzed by flow cytometry in the same manner, with the

exception of the method in which they were harvested.

2.7.1 Antibodies used

The following primary and secondary antibodies were used to stain harvested cells for
flow cytometry: unconjugated mouse immunoglobulin G (IgG [used as an isotype
control]) (Jackson ImmunoResearch, West Grove, PA, USA), unconjugated mouse
anti-human CD4 (Caltag, Burlingame, CA, USA), unconjugated mouse anti-human
transferrin receptor (TfR) CD71 (Sigma-Aldrich), unconjugated mouse anti-human
lysosomal associated membrane protein 1 (LAMP1) CD107a (Abcam, Cambridge,
MA, USA), APC-conjugated mouse anti-human CD4 (Caltag), APC-conjugated goat
anti-mouse IgG (Jackson ImmunoResearch), phycoerythrin (PE)-conjugated mouse
anti-human CD71 (Sigma-Aldrich), and PE-conjugated goat anti-mouse IgG (Jackson

ImmunoResearch).

2.7.2 Harvesting of cells

S2 cells, which are only loosely adherent to the surfaces on which they grow, were
harvested from tissue culture plates by gentle pipetting. JM cells, which grow in
suspension, were collected by centrifugation. HeLa cells, which adhere strongly to the
surface of tissue culture plates, were washed once in PBS pre-warmed to 37°C, and
then incubated in detachment buffer for 30 min at 37°C. The HeLa cells were then

harvested from the tissue culture plates by gentle pipetting.

2.7.3 Staining and analysis of cells

For each sample, the harvested cells were washed three times with 1 mL of ice-cold
PBS, and then resuspended in 100 uL of PBA containing a primary antibody diluted
to the appropriate concentration (please refer to Section 2.7.1 and Table 2.10 for
further information on the antibodies used). The cells were then incubated for 1 hr on

ice, with gentle mixing every 20 min. For those samples in which the primary

83



antibody used was conjugated to a fluorophore, the cells were then washed three
times with 1 mL of ice-cold PBS, and fixed in 100 uL of PBA-F. For those samples in
which the primary antibody was not directly conjugated to a fluorophore, the cells
were washed three times with 1 mL of ice-cold PBS, and then resuspended in 100 uL
of PBA containing a fluorescently-conjugated secondary antibody diluted to the
appropriate concentration. These cells were incubated for an additional 1 hr on ice
with gentle mixing every 20 min, and then washed three times with 1 mL of ice-cold
PBS and fixed in 100 uL of PBA-F. The amount of fluorescence associated with
intact cells for each sample was measured using a FACSCalibur multicolor flow
cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). For JM and HeLa cells
transfected with a pIRES.GFP construct, GFP fluorescence was used as a marker to
identify and gate around transfected cells. In each case, the data were analyzed using

CellQuest software (Becton Dickinson).
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2.8 Immunofluorescence and confocal microscopy

Immunofluorescence and confocal microscopy were used to visualize the distribution
of CD4 in S2 and HelLa cells either lacking or expressing Nef. The methods used to
prepare the S2 and HeLa cells for immunofluorescent analysis differed slightly;

however, all cells were fixed, stained, and imaged in a similar manner.

2.8.1 Antibodies used

Unconjugated mouse anti-human CD4 (Caltag) and Alexa 594-conjugated donkey
anti-mouse IgG (Invitrogen) antibodies were used for immunofluorescence staining

and confocal microscopy imaging.

2.8.2 Preparation of cells

S2 cells were transfected (as described in Section 2.5.2.2) and then seeded onto glass
coverslips coated with poly-L-lysine (Sigma-Aldrich), while HeLa cells were initially
seeded onto uncoated glass coverslips and then transfected (as described in Section

2.6.3.2) with the appropriate plasmids.

2.8.3 Staining and imaging of cells

S2 cells (24 hrs post Nef-induction) and HeLa cells (24 hrs post-transfection) were
fixed for 10 min in PBS-F [PBS with 4% (vol/vol) paraformaldehyde], permeabilized
for 10 min in PBS-T [PBS with 0.1% (wt/vol) Triton-X-100], and incubated for 1 hr
in blocking buffer [PBS with 4% (vol/vol) FBS]. The cells were then incubated for 1
hr in blocking buffer containing mouse anti-human CD4 antibody (1:100 dilution),
washed three times with PBS, incubated for 1 hr in blocking buffer containing donkey
anti-mouse antibody conjugated to the Alexa 594 fluorophore (1:100 dilution),
washed three more times with PBS, and mounted on slides. The cells were imaged on
a Zeiss LSM510 laser scanning confocal microscope (Carl Zeiss, Thornwood, NY,
USA) with a 63X plan apochromat 1.4 numerical-aperture objective using the 543 nm
line of the He-Ne laser. Emission data were collected over the range of 560 to 660 nm

with appropriate filter sets.
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2.9 Immunoblotting

Immunoblotting was used to detect the expression of various proteins in S2 and HeLa
cell lysates following transfection of live cells with DNA plasmids and/or treatment
with RNAI1 reagents. Immunoblotting was also used to check for protein interactions
after GST pull-down experiments (see Section 2.3.3.1 for information on how these

samples were prepared for electrophoresis and protein detection).

2.9.1 Antibodies used

The following antibodies were used for immunoblotting: unconjugated mouse anti-V5
epitope (Invitrogen), unconjugated mouse anti-Hise epitope (Abcam), unconjugated
mouse anti-human CD4 (Caltag), unconjugated mouse anti-human o-tubulin (Sigma-
Aldrich), unconjugated mouse anti-human a-adaptin clone numbers “100/2” (Sigma-
Aldrich) and “8/Adaptin a” (Becton Dickinson), unconjugated rabbit anti-human
ulA-adaptin (Juan Bonifacino, NICHD, NIH), unconjugated rabbit anti-human u2-
adaptin (Juan Bonifacino), unconjugated rabbit anti-u3A-adaptin (Juan Bonifacino),
unconjugated rabbit anti-HIV-1 Nef (NIH AIDS Research and Reference Reagent
Program, originally deposited by Ronald Swanstrom; see Shugars et al., 1993),
horseradish peroxidase (HRP)-conjugated sheep anti-mouse IgG (GE Healthcare), and
HRP-conjugated donkey anti-rabbit IgG (GE Healthcare).

2.9.2 Lysis, electrophoresis, and protein detection

S2 and HeLa cells were lysed at 4°C for 20-30 min in lysis buffer [PBS supplemented
with 1% (vol/vol) NP-40 and a protease inhibitor cocktail (Roche Applied Science)].
The lysates were then centrifuged to remove insoluble material, and NuPAGE
Laemmli SDS sample buffer was added to the supernatants. The samples were boiled
for 3 min and then subjected to electrophoresis on 4-12% NuPAGE Novex Bis-Tris
gradient gels (Invitrogen) using a constant voltage of 150 V for 1 hr. The separated
proteins were then transferred from the gels to nitrocellulose membranes using a
constant current of 350 mA for 1.5 hrs. Membranes were blocked in PBS-T-DM [PBS
with 0.01% (vol/vol) Tween 20 and 5% (wt/vol) dry milk] for 1 hr at room
temperature or overnight at 4°C. Primary antibodies were added to the PBS-T-DM

mixture and incubated with the membranes for 1 hr at room temperature or overnight
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at 4°C. The membranes were washed three times with PBS-T [PBS with 0.01%
(vol/vol) Tween 20], incubated with HRP-conjugated secondary antibodies in PBS-T-
DM for 1 hr at room temperature, and washed three more times with PBS-T. Proteins
were detected using the Enhanced Chemi-Luminescence (ECL) Plus Kit (GE Health-

care) according to the instructions provided by the manufacturer.
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Table 2.1: PCR reagents. For each reaction, the following reagents were combined

to yield a total volume of 50 uL. See Table 2.9 for more further information on the

individual forward and reverse primers.

Reagent Initial Conc. Volume Final Conc.
H,O N/A 32.5ulL N/A

HF PCR Buffer 5X 10.0 uL 1X

dNTPs 10 mM 1.0 uL 200 uM
Forward Primer 10 uM 2.5 ulL 0.5 uM
Reverse Primer 10 uM 2.5ul 0.5 uM
DNA Template 100 ng/uLL 1.0 uL 2 ng/uLL
Phusion DNA Polymerase 2 U/uL 0.5 uL 0.02 U/uL

Table 2.2: PCR thermal cycling conditions. The temperature for the annealing step

was generally set to 2°C below the calculated primer melting temperature (Ty,), and

the duration of the extension step was set to 1.0 min per 1.0 kbp of PCR product. The

remaining temperatures and times remained constant for all reactions.

Cycle step Temperature Time Cycles
Initial denaturation 95°C 1.0 min 1
Denaturation 95°C 0.5 min

Annealing 55-64°C 0.5 min 30
Extension 72°C 1.0 min per kbp

Final Extension 72°C 10.0 min 1
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Table 2.3: Ligation reagents. For each ligation reaction, the following reagents were

combined to yield a total volume of 20 uL.

Reagent Initial Conc. Volume Final Conc.
H,O N/A 13.0 uL N/A

T4 DNA Ligase Buffer 10X 2.0 uL 1X

DNA insert 20 ng/uL 3.0 uL 3 ng/uLL
DNA vector 20 ng/uL 1.0 uL 1 ng/uLL

T4 DNA Ligase 400 U/uL 1.0 uL 20 U/uL

113




Table 2.4: SDM reagents. For each mutagenesis reaction, the following reagents
were combined to yield a total volume of 50 uL. See Table 2.9 for more information

on the individual forward and reverse primers.

Reagent Initial Conc. Volume Final Conc.
H,O N/A 37.0 uL N/A

SDM Buffer 10X 5.0 uL 1X

dNTPs 10 mM 1.0 uL 200 uM
Forward Primer 10 uM 2.5 ulL 0.5 uM
Reverse Primer 10 uM 2.5ul 0.5 uM
DNA Template 100 ng/uLL 1.0 uL 2 ng/uLL
Pfu Ultra DNA Polymerase | 2.5 U/uL 1.0 uL 0.05 U/uL

Table 2.5: SDM thermal cycling conditions. The following temperatures, times, and

cycles were used for each mutagenesis reaction.

Cycle step Temperature Time Cycles
Initial denaturation 95°C 1.0 min 1
Denaturation 95°C 0.5 min

Annealing 55°C 0.5 min 18
Extension 68°C 12.0 min

Final Extension 68°C 12.0 min 1
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Table 2.6: Combinations of DNA plasmids used to transfect HeLa cells following
siRNA-mediated protein depletion of u1, w2, and pu3. HeLa cells were treated with
100 nM of the siRNA duplex shown below on days 1 and 4 of the knockdown assay.
On day 5, the cells were transfected with 0.3 ug of DNA plasmid 1 and 0.3 ug of
DNA plasmid 2 (if applicable). On day 6, the siRNA-treated and DNA-trasnsfected

cells were prepared for flow cytometric and immunoblot analysis. See Section 2.5.3.4

for further detail.

Row | siRNA DNA 1 DNA 2

1 siCONTROL 1 | pIRES.GFP None

2 siCONTROL 1 | pNefyp4.3.IRES.GFP pCMV.CD4
3 siCONTROL 1 | pNefni43LL164,165AA.IRES.GFP pCMV.CD4
4 ulA-adaptin pIRES.GFP None

5 ulA-adaptin pNefnpa3. IRES.GFP pCMV.CD4
6 ulA-adaptin pNefnra3LL164,165AA. IRES.GFP pCMV.CD4
7 u2-adaptin pIRES.GFP None

8 u2-adaptin pNefnra3. IRES.GFP pCMV.CD4
9 u2-adaptin pNefnra3LL164,165AA. IRES.GFP pCMV.CD4
10 u3A-adaptin pIRES.GFP None

11 u3A-adaptin pNefnpa3. IRES.GFP pCMV.CD4
12 u3A-adaptin pNefnra3LL164,165AA. IRES.GFP pCMV.CD4
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Table 2.7: Combinations of siRNA duplexes and DNA plasmids used to transfect
HeLa cells for the a-adaptin knockdown and rescue assays. On day 1 of the assay,
HeLa cells were either left untreated or treated with 100 nM of the a-adaptin siRNA
duplex. On day 4, the cells were again either left untreated or treated with 100 nM of
the a-adaptin siRNA, and also transfected with 0.4 ug of DNA plasmid 1, 0.3 ug of
DNA plasmid 2, and 0.3 ug of DNA plasmid 3. On day 7, the transfected HeLa cells

were prepared for flow cytometric and immunoblot analysis. See Sections 2.5.3.5 and

2.5.3.6 for further detail.

Row | siRNA DNA 1 DNA 2 DNA 3

1 None pIRES.GFP pCI pCMV.CD4
2 None pIRES.GFP pCIL.Nefnr 4.3 pCMV.CD4
3 a-adaptin | pIRES.GFP pCI pCMV.CD4
4 a-adaptin pIRES.GFP pCIL.Nefnia3 pCMV.CD4
5 a-adaptin | paR-V5.IRES.GFP pCI pCMV.CD4
6 a-adaptin paR-V5.IRES.GFP pCIL.Nefnia3 pCMV.CD4
7 a-adaptin | paR-KREE-VS5.IRES.GFP | pCI pCMV.CD4
8 a-adaptin | paR-KREE-VS.IRES.GFP | pCI.Nefyr4.3 pCMV.CD4
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Chapter 3:
Downregulation of CD4 by HIV-1 Nef is dependent on clathrin and involves a
direct interaction of Nef with the AP-2 clathrin adaptor
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3.1 Abstract

Nef, an accessory protein of human and simian immunodeficiency viruses, is a critical
determinant of pathogenesis that promotes progression of the disease from infection
to AIDS. The pathogeneic effects of Nef are in large part dependent on its ability to
downregulate the macrophage and T cell co-receptor, CD4. It has been proposed that
Nef induces downregulation by linking the cytosolic tail of CD4 to components of the
host-cell protein trafficking machinery. To identify these components, a novel Nef-
CD4 downregulation system was developed in Drosophila melanogaster S2 cells. It
was found that human immunodeficiency virus type 1 (HIV-1) Nef downregulates
human CD4 in S2 cells, and that this process is subject to the same sequence
requirements as in human cells. An RNA interference screen targeting protein
trafficking genes in S2 cells revealed a requirement for clathrin and the clathrin-
associated, plasma membrane-localized AP-2 complex in the downregulation of CD4.
The requirement for AP-2 was confirmed in the human HeLa cell line. Yeast three-
hybrid and glutathione S-transferase pull down assays were also used to demonstrate a
robust, direct interaction between HIV-1 Nef and AP-2. This interaction requires a
dilecuine motif in Nef that is also essential for downregulation of CD4. Together,
these results support a model in which HIV-1 Nef downregulates CD4 by promoting

its accelerated endocytosis via a clathrin/AP-2 pathway.
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3.2 Introduction

As mentioned earlier, the primary goal of this thesis is to determine the mechanism of
Nef-mediated CD4 downregulation (see Section 1.9). Previous studies have revealed
that several regions of Nef are essential for this process, including the myristoylation
site, the hydrophobic pocket, and the dileucine motif (see Fig. 1.7; Stove et al., 2005).
Mpyristoylation allows Nef to associate with intracellular membranes, where it binds
to the cytosolic tail of CD4 via the hydrophobic pocket (Grzesiek et al., 1996; Harris
and Neil, 1994; Peng and Robert-Guroff, 2001; Yu and Felsted, 1992). The role of the
dileucine motif is less certain, although it has been suggested to connect Nef to some
components of the host-cell protein trafficking machinery, such as the clathrin adaptor
protein complexes (Bresnahan et al., 1998; Craig et al., 1998; Greenberg et al., 1998;
Mangasarian et al., 1997; Janvier et al., 2003b). However, each AP complex controls
protein sorting at a different location within the cell, leaving in doubt the pathway that

Nef might use to downregulate CD4 (see Section 1.6).

Prior attempts to clarify this pathway by depleting human cells of the AP complexes
have produced conflicting results, probably due to low RNAI transfection efficiencies
and incomplete knockdowns (Jin et al., 2005; Rose et al., 2005). In the next section, a
similar RNAi-based approach will be utilized to determine which AP complex is most
important for the downregulation of CD4, and to screen for other endogenous proteins
that might participate in this process. However, the initial RNAi experiments will be
performed on Drosophila melanogaster S2 cells expressing Nef and CD4; compared
to human cells, S2 cells are easier to transfect and are therefore more suitable for use
in RNA1 screens (see Agaisse et al., 2005; Derr¢ et al., 2007; Elwell and Engel, 2005;
Philips et al., 2005; Ramet et al., 2002). Once the RNA1i screen is finished, homologs
of the most promising candidates will be knocked down in HeLa cells. Although these
human cells are less amenable to RNAI treatment than the Drosophila S2 cells, they
provide a more physiologically relevant setting in which to evaluate the contribution
of endogenous proteins to the Nef-mediated downregulation of CD4. In vitro binding
assays will then be used to determine whether one of these proteins interacts directly
with Nef, and if so, whether this interaction depends on the dileucine motif described
above. When taken together, the data from the RNAi and in vitro binding experiments

should yield a clearer understanding of how Nef modulates CD4 expression.
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3.3 Results
3.3.1 Downregulation of human CD4 by HIV-1 in Drosophila S2 cells

To identify host cell factors that are required for the downregulation of CD4 by Nef,
an RNA1 screen was performed using the Drosophila melanogaster S2 cell line. This
system was chosen because the efficiency of RNAi and DNA transfections is nearly
100%, RNA1 treatment is carried out by the simple addition of dsRNA to the tissue
culture medium, and an RNAI library targeting most of the Drosophila genome was
available at a reasonable price. This approach was predicated on the assumption that
HIV-1 Nef would be able to downregulate human CD4 in the Drosophila cells. To
determine whether this was indeed the case, S2 cells were transiently co-transfected
with a plasmid driving constitutive expression of human CD4 (pAc.CD4; see Section
2.5.1.1) and another plasmid driving Cu”*-inducible expression of the NL4-3 variant
of HIV-1 Nef (pMt.Nefni4.3; see Section 2.5.1.2). Immunoblot analysis revealed that
both CD4 and Nef were expressed in the transfected S2 cells; as expected, Nef was
apparent only in cells incubated with Cu*" (Fig. 3.1A). Importantly, in the absence of
Nef expression, CD4 was detected on the plasma membrane of S2 cells by flow
cytometry (Fig. 3.1B) and immunofluorescence microscopy (Fig 3.1C). The induction
of Nef expression by the addition of Cu®" (in the form of CuSO) caused an
approximately 3-fold reduction in the surface level of CD4 (Fig 3.1B) and its
redistribution to intracellular vesicles (Fig. 3.1C). These effects of Nef expression on
CD4 distribution were similar to those previously demonstrated in human cells by

others (Fig. 1.11; Aiken et al., 1994; Garcia and Miller, 1991; Rose et al., 2005).
3.3.2 Determinants of Nef-induced CD4 downregulation in S2 cells

Next, the ability of several Nef alleles to downregulate CD4 in Drosophila S2 and
human JM CD4" T cells was tested. Despite high primary sequence variability among
different HIV-1 and SIV clades, the ability to downregulate CD4 in human cells is a
strongly conserved feature of Nef proteins (Benson et al., 1993; Hua et al., 1997;
Janvier et al., 2003b; Mariani and Skowronski, 1993). S2 cells were co-transfected
with pAc.CD4 and pMt.Nef plasmids (see Section 2.5.1.2), while CD4" JM cells were
transfected with pNef.IRES.GFP plasmids (see Section 2.6.1.3). CD4 surface levels
were measured by flow cytometry. The data showed that all four HIV-1 Nef variants
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tested (from the NL4-3, NA7, DH12-3, and 248 strains), as well as an SIV Nef variant
(mac239), significantly reduced CD4 surface levels in both S2 and JM cells (Fig. 3.2).

Further evidence for the suitability of a CD4-Nef expression system in S2 cells was
obtained by pairwise comparisons of various NL4-3 Nef mutants in S2 and JM cells
(see Roeth and Collins, 2006 for a review of Nef functional domains). S2 cells were
co-transfected with pAc.CD4 and wild-type or mutant pMt.NL4-3 Nef plasmids (see
Section 2.5.1.2), while the CD4" JM cells were transfected with wild-type or mutant
pNefnLa3. IRES.GFP plasmids (see Section 2.6.1.3). As before, CD4 surface levels
were measured by flow cytometry (Fig. 3.3). For both S2 and JM cells, mutation of
the Nef myristoylation site (G2A), CD4-binding site (WL57,58AA), and dileucine
motif (LL164,165AA) abrogated the ability of the viral protein to downregulate CD4.
On the other hand, mutation of the acidic cluster (EEEE62-65AAAA) and the
polyproline motif (PP72,75AA), which are required for downregulation of the major
histocompatability complex class I (MHC-I) receptor (Janvier et al., 2001; Piguet et
al., 2000), had no effect on the ability of Nef to modulate CD4 surface levels in both
S2 and JM cells. Immunofluorescence assays confirmed that the Nef WL57,58AA
and LL164,165A A mutant proteins did not alter the plasma membrane-localization of
CD4 in S2 cells, while the Nef EEEE62-65AAAA and PP72,75AA mutants redirected
CD4 from the surface to intracellular vesicles (Fig. 3.4). Thus, identical motifs on Nef
are required for the downregulation of CD4 in S2 and JM cells. Another hallmark of
Nef-mediated CD4 downregulation in human cells is the requirement of a pair of
leucines in the CD4 cytosolic tail (Aiken et al., 1994; Anderson et al., 1994). In a
similar fashion, mutation of the CD4 dileucine motif (LL413,414AA) also prevented

downregulation of the receptor in S2 cells (Fig. 3.3A).

Taken together, these data provide strong evidence that the downregulation of CD4 by
HIV-1 Nef occurs via a similar mechanism in S2 and JM cells, and likely involves
homologous host-cell trafficking proteins. S2 cells were therefore considered to be a
suitable system for an RNAi screen aimed at identifying host-cell proteins involved in

Nef-induced CD4 downregulation.
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FIG. 3.2: Comparison of the downregulation of CD4 by Nef from various HIV-1
and SIV variants in Drosophila S2 and human JM CD4" T cells

(A) Flow cytometric histograms of Drosophila S2 cells that were co-transfected with
pAc.CD4 and pMt vectors encoding a variety of HIV-1 (NL4-3, NA7, DH12-3, and
248) and SIV (mac239) Nef alleles, incubated without (shaded gray) or with CuSO4
(bold line), and then stained with a mouse monoclonal antibody to human CD4 and a
PE-conjugated goat antibody to mouse IgG. Uninduced control cells were also stained
with a non-specific mouse monoclonal IgG (as an isotype antibody control) and the
aforementioned PE-conjugated goat antibody to mouse IgG (light gray line) in order

to demonstrate the level of background fluorescence.

(B) Bar graph depicting the levels of cell surface CD4 in Drosophila S2 cells co-
transfected with pAc.CD4 and pMt.Nef encoding various HIV-1 and SIV alleles (dark
gray) and in human JM CD4" T cells transfected with pNef.IRES.GFP encoding the
same HIV-1 and SIV alleles (light gray). S2 cells were stained with appropriate
antibodies 24 hours after Nef induction with CuSQOy, and the JM cells were stained 24
hours after transfection, as described in the Materials and Methods (Sections 2.4.2.2
and 2.5.2.2). For S2 cells, the control represents the amount of CD4 on the surface of
cells transfected with NL4-3 Nef, but left uninduced. For JM cells, the control
represents the amount of CD4 on the surface of cells transfected with the empty
vector, pIRES.GFP. In order to compare between different cell types, CD4 surface
levels are shown as a percentage of the control condition. Numerical values depicted
in the bar graph are the mean relative CD4 surface level percentage + the standard

error of the mean (SEM) from three independent experiments.
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FIG. 3.2
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FIG. 3.3: Determinants of Nef-induced CD4 downregulation in Drosophila S2
and human JM CD4" T cells

(A) Flow cytometric histograms of Drosophila S2 cells co-transfected with pairs of
pAc.CD4 and pMt.Nefni4.3 plasmids, encoding wild-type or mutant versions of CD4
and NL4-3 Nef, respectively. Following transfection, the cells were either left
untreated (shaded gray) or treated with CuSO, to induce Nef expression (bold line).
The cells were then stained with mouse monoclonal antibody to human CD4 and PE-
conjugated goat antibody to mouse IgG. Uninduced control cells were also stained

with an isotype antibody control and PE-conjugated goat antibody to mouse IgG
(light gray line).

(B) Bar graph depicting the level of CD4 on the plasma membrane of Drosophila S2
cells co-transfected with pAc.CD4 and wild-type or mutant versions of pMt.Nefyi4.3
(dark gray) and human JM CD4" T cells transfected with wild-type or mutant versions
of pNefnr43.IRES.GFP (light gray). S2 cells were stained with antibodies 24 hours
after induction of Nef expression with CuSQO,, while JM cells were stained 24 hours
after transfection. The controls are the same as those described in Fig. 3.2B: for S2
cells, the control represents the amount of CD4 on the surface of cells transfected with
wild-type Nef and left uninduced, while for JM cells, the control represents the
amount of CD4 on the surface of cells transfected with the empty vector, pIRES.GFP.
To compare between different cell types, CD4 surface levels in cells transfected with
the various Nef mutants are shown as a percentage of the control condition. Values
are the mean relative CD4 surface level percentage + SEM from three independent

experiments.
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FIG. 3.3
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3.3.3 RNA.I screen in S2 cells reveals a requirement for clathrin and AP-2 in the

Nef-induced downregulation of CD4

Prior to conducting the RNAIi screen, it was necessary to generate a stable CD4-Nef
S2 cell line, and then to test the efficiency of RNAi-treatment on these cells. The
wild-type pAc.CD4 and pMt.NL4-3 Nef plasmids were used to transfect S2 cells,
from which a monoclonal cell line was chosen for its uniform surface expression of
CD4 and consistent, Cu**-inducible downregulation of CD4 by Nef (see Materials
and Methods, Section 2.5.2.3). The ability of RNAi to reduce protein expression
levels in these cells was tested by the addition of dsRNAs targeted against CD4 and
Nef (Fig. 3.5A). Compared to the negative control (a dsSRNA targeting GFP, which is
absent in these cells), the dSRNA directed against CD4 knocked down surface levels
of this protein by approximately 85%, as measured by flow cytometry (Fig. 3.5A and
Table 3.1). In addition, treatment of the stable cells with dsRNA targeted to Nef
completely abolished the normal Cu**-induced downregulation of CD4 (Fig. 3.5A and
Table 3.1), demonstrating that Nef expression had been effectively eliminated. The
nearly complete elimination of surface CD4 expression and Nef function by dsRNA-
treatment was taken as a general indicator of the effectiveness of RNAI in this system.
To further assess the efficiency of RNAi in S2 cells, several epitope-tagged proteins
were introduced into the cells by transient transfection, targeted for knockdown with
dsRNAs, and then subjected to immunoblot analysis (Fig. 3.5C). Upon treatment with
gene-specific dSRNAs, there was a significant reduction in the expression of these
proteins relative to treatment with a non-specific dSRNA (Fig. 3.5C). Endogenous
protein levels were not measured for this assay (or for the larger RNAi screen) due to

a lack of available antibodies for most targets.

Given the effectiveness of RNAi knockdowns in S2 cells, it appeared reasonable to
proceed with the larger RNAIi screen. A total of 68 components of the Drosophila
protein-trafficking machinery were screened for their potential contribution to the
Nef-mediated downregulation of CD4. The targets included clathrin and clathrin-
associated proteins, non-clathrin coat proteins, components of the multivesicular body
(MVB) and endosomal recycling machineries, actin-associated proteins, components
of the ubiquitin-modification machinery, phosphoinositide metabolism enzymes, and

miscellaneous others (Table 3.1). For each protein tested in the screen, the stable
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FIG. 3.5: Effect of selected RNAI treatments on the Nef-induced downregulation
of CD4 in stably transfected S2 cells

(A) CD4 expression profiles of S2 cells stably expressing CD4 and Nef (the latter
under the control of an inducible promoter), after treatment with dsRNAs targeting
GFP (non-targeting control), CD4 (no CD4 expression control), and Nef (no down-
regulation control). A portion of the dsRNA-treated cells were left uninduced (shaded
gray), while the remainder were incubated with CuSO, to induce Nef expression (bold
line). The cells were then stained with mouse monoclonal antibody to human CD4
and PE-conjugated goat antibody to mouse IgG. Cells stained with an isotype control
and the PE-conjugated secondary antibody (light gray line) are also included as a

measure of background fluorescence.

(B) CD4 expression profiles of S2 cells stably expressing CD4 and Nef (the latter
under the control of an inducible promoter), after treatment with dsRNAs targeting
the clathrin subunits CHC and CLC; a-COP; AP-complex subunits ul, u2, and u3;
and GGA. Induction and staining of the dsRNA-treated cells was carried out as

described above.

(C) Immunoblot (IB) analysis of lysates from S2 cells transiently transfected with V5-
eptiope-tagged Drosophila genes (ul, u2, u3, GGA, and CLC). After transfection,
each group of cells was seeded into two tissue culture wells and received dsRNA
targeting either GFP (negative control; lanes 1, 3, 5, 7, and 9) or the specific transgene
(lanes 2, 4, 6, 8, and 10). Lysates were subjected to SDS-PAGE and probed with anti-
V5 monoclonal antibody. Positions of molecular mass markers (in kDa) are shown on

the left.
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CD4-Nef S2 cells were treated with a specific dSRNA, incubated for 3 days, and then
split into two parallel cultures. One culture was left uninduced, while Nef expression
was induced in the other culture by the addition of CuSO4. After 24 hours, the CD4
surface levels of both uninduced and induced cells were measured by flow cytometry.
The entire screen was conducted in duplicate, and most targets were tested additional

times for purposes of confirmation.

The results for the RNAi screen are shown in Fig. 3.5B (histograms for selected
targets), Fig. 3.6 (scatter plot of all the data), and Table 3.1 (numerical values for all
data). Most of the RNAI treatments, including the non-targeting negative control, fall
along a single regression line with a slope of 0.45 on the scatter plot (Fig. 3.6),
indicating that these dsSRNAs had no effect on the ability of Nef to downregulate
CDA4. This slope corresponds to an average downregulation of 2.2-fold for the entire
data set, which is roughly equivalent to the observed value of approximately 2-fold in
untreated cells. Because in most cases it is not known if the RNAI treatments caused
effective elimination of the target proteins, it is not possible to rule out the involve-
ment of the targets which tested negative in this screen. In addition, some targets that
produced minor effects were difficult to replicate beyond the initial screen due to mild
toxicity (see Table 3.1). A small number of dsRNAs, however, produced reliable
outliers, evidence that they interfered with the ability of Nef to modulate CD4
expression. These included dsRNAs targeting the clathrin heavy chain (CHC), the
clathrin light chain (CLC), the u2 subunit of AP-2, and a-COP (Fig. 3.5B and 3.6;
Table 3.1). There also appeared to be a mild inhibition in cells treated with a dSRNA
targeting Vps41, but the relatively large variation between experimental replicates

precluded the assignment of this target as a true hit.

The CHC dsRNA displayed the strongest inhibition on Nef function, and was nearly
as effective as the dsRNA that targeted Nef itself (Fig. 3.5B and 3.6; Table 3.1). A
dsRNA targeting CLC had a weaker, but reproducible effect on Nef function (Fig.
3.5B and 3.6; Table 3.1). These findings are consistent with previously proposed
models of Nef-induced CD4 downregulation that invoke a role for clathrin-dependent
trafficking intermediaries. Nevertheless, these results are the first to directly
demonstrate that clathrin is required for the Nef-mediated downregulation of CD4. A
dsRNA targeting the u2 subunit of AP-2 reduced Nef activity by roughly half in this
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FIG. 3.6: Results of the RNAI screen of 68 components of the protein trafficking

machinery for their involvement in Nef-induced CD4 downregulation in S2 cells

The mean CD4 surface levels (+ the SEM; n = 2 to 10) of cells treated with dsSRNAs
targeting 68 candidate and 3 control genes (see Table 3.1) are represented on an x-y
plot. Each datum point on the plot represents surface CD4 levels, as measured by flow
cytometry, for cells treated with a particular dsSRNA. The position on the x axis
indicates the amount of CD4 on the cell surface without induction, while the position
on the y axis indicates the amount of CD4 on the cell surface upon induction of Nef
expression, in relative fluorescence units (rfu). According to this rubric, data points
that have the same amount of CD4 expression in the absence and presence of Nef
indicate dsRNA treatments that completely inhibited the ability of Nef to down-
regulate CD4. A least-squares fit regression line (solid black line) for the entire data
set with 95% confidence intervals (dashed lines) is shown. The line y = x (gray line),
indicating the position of no downregulation, has also been added to the plot. Data
points for control targets are shown in green, while data points for selected targets

from the screen are shown in red.
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system (Fig. 3.5B and 3.6; Table 3.1). Interestingly, dsSRNAs targeting the y and ul
subunits of AP-1 and the & and u3 subunits of AP-3, either alone (Fig. 3.5B; Table
3.1) or in combinations (data not shown), had no effect on CD4 downregulation.
Because AP-1 and AP-3 have been proposed to act as mediators of CD4
downregulation (Bresnahan et al., 1998; Craig et al., 2000; Janvier et al., 2003b; Rose
et al., 2005), the efficacy of the ul and u3 dsRNAs on protein expression was tested
directly. Immunoblot analysis clearly indicated a strong reduction of protein levels
(Fig. 3.5C), supporting the conclusion that neither AP-1 nor AP-3 are required for
Nef-mediated CD4 downregulation in S2 cells. Drosophila does not have orthologs
for the subunits of a fourth, non-clathrin-associated AP complex in human cells called
AP-4 (Boehm and Bonifacino, 2001), so this trafficking protein can be definitively

ruled out as a required mediator of Nef effects on CD4.

The ability of Nef to downregulate CD4 was also inhibited by treatment of the S2
cells with dsRNA against a-COP (Fig. 3.5B and 3.6). This effect was somewhat
unusual in that higher levels of CD4 were found on the cell surface regardless of Nef
induction. a-COP is a subunit of the heteroheptameric COPI complex that appears to
be primarily involved in endoplasmic reticulum and Golgi transport processes (for a
review, see Kirchausen, 2000), although a role for COPI in endosomal traffic has also
been proposed (Gu and Gruenberg, 1999; Whitney et al., 1995). In this regard, Nef has
been previously shown to interact with the 3-COP subunit of COPI (Benichou et al.,
1994; Schaefer et al., 2008), but the functional significance of this interaction remains

a matter of debate (Janvier et al., 2001; Piguet et al., 1999; Schaefer et al., 2008).

3.3.4 Requirement of AP-2 for Nef-induced CD4 downregulation in human cells

Next, the role of AP-1, AP-2, and AP-3 in the Nef-mediated downregulation of CD4
was assessed in the human cell line HeLa (experiments performed in collaboration
with Wolf Lindwasser). Immunoblot assays indicated that the treatment of these cells
with RNAI targeting the u subunits of the three AP complexes reduced the expression
of ulA, u2, and u3A compared to treatment with non-targeting RNAi (Fig. 3.7A).
The RNAI1 against u2 increased surface levels of the transferrin receptor (TfR) and
RNAI against u3A increased surface levels of lysosome associated membrane protein

1 (LAMP1) as measured by flow cytometry (Fig. 3.7B), indicators of impaired AP-2
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and AP-3 function, respectively (Janvier and Bonifacino, 2005; Nesterov et al., 1999).
The amount of plasma membrane-associated CD4 was then measured in RNAi-
treated cells expressing either wild-type Nef or the Nef LL164,165AA null-mutant
(Fig. 3.7C). Cells treated with a non-targeting RNA1 displayed robust downregulation
of CD4 by wild-type Nef (in comparison to the Nef LL164,165AA mutant), whereas
cells depleted of u2 showed decreased downregulation. It should be noted that, in
both S2 and HeLa cells, depletion of u2 was only partially effective in blocking the
effect of Nef on CD4. This may be due to an incomplete knockdown of the AP-2
complex in RNA-treated cells or the activity of a partially redundant pathway. Given
the data presented here, it is not possible to distinguish between these two possibilities
(see Chapters 4 and 5 for additional work on this topic). In agreement with a previous
study (Roeth et al., 2006), neither w1 A nor u3A appeared to be required for the Nef-
induced downregulation of CD4 (Fig. 3.7C). A similar experiment was attempted in
cells depleted of CHC, but these cells proved refractory to transient DNA transfection

after RNAI treatment, and reproducible results could not be obtained.

3.3.5 Physical interaction of Nef with AP-2 in a yeast three-hybrid system

The RNAI experiments performed on Drosophila and human cells indicated that AP-2
was involved in the Nef-mediated downregulation of CD4. However, it was unclear if
AP-2 was directly involved in this process, as there was little evidence in the literature
of an interaction between Nef and AP-2. Others had previously reported interactions
of Nef with the y-o1 and §-03 hemicomplexes of AP-1 and AP-3, respectively, using
the yeast three-hybrid (Y3H) system (Janvier et al., 2003b). However, these authors
had failed to detect an interaction between Nef and the analogous a-02 hemicomplex
of AP-2. (Janvier et al., 2003b). Resequencing of the a.C clone used in the Y3H assays
revealed the presence of a single base-pair mutation that resulted in the substitution of
a threonine residue for alanine at codon 131. Based on the three-dimensional crystal
structure of AP-2 (Collins et al., 2002), the A131T mutation placed a hydrophilic side
chain within the normally hydrophobic core of the o subunit. Such a mutation may be
expected to have deleterious effects on the folding of the a subunit and stability of the
a-02 hemicomplex. The mutated o residue was therefore changed back to alanine,
and the Y3H assays were repeated. Nef was now observed to interact strongly with

the a-02 hemicomplex (Fig. 3.8). Indeed, the interaction between Nef and a-02
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FIG. 3.8: Yeast three-hybrid analysis of Nef-AP-2 interactions

(A) Wild-type and mutant versions of NL4-3 Nef were expressed as GAL4BD fusion
proteins from pBridge, along with either ol or 02. The yl and aC subunits were
expressed as GAL4AD fusion proteins from pGADT7. See Materials and Methods
(Sections 2.4.1.1 and 2.4.2.2 and Figs. 2.4 and 2.5) for more details.

(B) HF7c yeast cells co-transformed with pairs of pBridge and pGADT7 plasmids
were inoculated on medium containing histidine (+His) or lacking histidine (—His) in
the absence or presence of 3 mM 3-amino-1,2,4-triazole (3AT). Growth of yeast on
the —His medium is indicative of an interaction between the fusion proteins, while

growth on the —His +3AT medium is indicative of stronger interactions.
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appeared to be as robust as the previously reported interaction between Nef and y-o1
(Fig 3.8; Janvier et al., 2003b). The Nef dileucine motif (ENTSLL160-165 in NL4-3;
ExxxLL consensus sequence in all HIV-1 Nef variants, where x is any amino acid)
fits the canonical [D/E]xxxL[L/I] motif that has been shown to bind to AP complexes
(Bonifacino and Traub, 2003). To determine whether the Nef dileucine motif also
mediates binding to the a-02 hemicomplex, several ENTSLL residues were mutated
to alanine, either alone or in combination (Fig. 3.8). Mutation of the acidic residue
(E160A) caused a partial loss of binding (apparent in the presence of 3-amino-1,2,4-
triazole), while mutation of either the first leucine (L164A) or both leucines together
(LL164,165AA) completely abrogated the interaction of Nef and a-02. Mutation of
two of the intervening residues (T162A and S163A) had no effect. Interestingly,
mutation of four other Nef functional motifs (G2A, WL57,58AA, EEEE62-65AAAA,
and PP72,75AA, initially described in Section 3.3.2) also had no effect on the binding
of Nef and a-02 (Fig. 3.8). These results indicated that the interaction of Nef with the
a-02 hemicomplex is specifically dependent on the conserved residues of the Nef
dileucine motif. Importantly, these residues are also required for Nef downregulation
of CD4 in cells (Fig. 3.3, Fig. 3.4; Bresnahan et al., 1998; Greenberg et al., 1998a). It
is also worth noting that the interaction of Nef with a-02 appears to be much stronger

than a previously reported interaction of Nef and u2 (Craig et al., 2000).

3.3.6 Direct interaction of Nef and AP-2 in vitro

Although Nef was shown to bind to a.-02 by Y3H, this association may not be direct,
as other proteins in the yeast nucleus could potentially contribute to the interaction. It
was therefore deemed necessary to test the ability of Nef to bind AP-2 in vitro (all
assays described in this section were performed by William Smith; see the Materials
and Methods, Section 2.3 for further information on the reagents and experiments
mentioned below). Others had recently demonstrated that the dileucine motifs of
several proteins bound in vitro to a recombinant AP-2 “core” complex consisting of
the N-terminal trunk domains of a and B2, plus the full-length u2 and 02 subunits
(Honing et al., 2005). In addition, these authors showed that the dileucine binding site
was not contained within the C-terminal domain of u2 (Hoéning et al., 2005). Given

CORE
2

these considerations, a similar AP-2 core construct (denoted AP- ), lacking the

C-terminal domain of u2, was designed. The a trunk was expressed as a GST fusion
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FIG. 3.9: Direct interaction of Nef and AP-2 detected in vitro

Recombinant proteins were purified from bacteria, used in a GST pull-down assay,
and then separated by SDS-PAGE (see Materials and Methods, Section 2.3). The
separated proteins were then stained with Coomassie blue (A) and immunoblotted
with an antibody targeting Nef (B). Proteins were run individually in lane 1 (NL4-3
Nef LL164,165AA mutant), lane 2 (wild-type NL4-3 Nef), lane 3 (GST-AP-2°°%F),
and lane 4 (GST-g-ear). Mutant and wild-type Nef proteins were incubated with GST-
e-ear (lanes 5 and 6; negative control) or with GST-AP-2°RF (lanes 7 and 8). Wild-
type Nef is visible as an approximately 27-kDa band in lane 8 in both panels A and B.
This experiment is representative of three trials with similar results. Molecular mass
markers are visible on the left side of the Coomassie blue-stained gel. The masses (in

kDa) are indicated.
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FIG. 3.9

Performed by William Smith
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protein, while the B2 trunk was expressed as a hexahistidine (Hise) fusion protein. The
presence of these epitope tags facilitated the purification of the AP-2°RE complex
from bacteria. Wild-type Nef and the dileucine mutant, Nef LL164,165AA, were also
expressed as Hisg fusion proteins and purified from bacteria. GST pull down assays
using these recombinant proteins indicated that wild-type Nef, but not Nef LL164,
165AA, bound to the AP-2°“R complex, as determined by Coomassie blue staining
(Fig. 3.9A) and immunoblot analysis (Fig. 3.9B). In contrast, neither Nef construct
interacted with the GST-¢ ear fusion protein, which was used as a negative control
(Fig. 3.9). These observations thus demonstrated a direct and specific interaction of

Nef, through its dileucine motif, with the fully assembled AP-2“FF complex.
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3.4 Discussion
3.4.1 Chapter overview

Recent studies have begun to exploit the ease and efficiency of RNAIi screens in
Drosophila S2 cells to identify host-cell factors that are required for infections by
human pathogens such as bacteria and fungi (Agaisse et al., 2005; Derré¢ et al., 2007;
Elwell and Engel, 2005; Philips et al., 2005; Ramet et al., 2002; Stroschein-Stevenson
et al., 2006). Here, the Drosophila S2 model system was used to investigate the
molecular machinery involved in an aspect of viral pathogenesis: namely, the
mechanism by which primate immunodeficiency viruses downregulate their own co-
receptor, CD4. An RNAi screen of 68 components of the protein trafficking
machinery in S2 cells revealed that CD4 downregulation by HIV-1 Nef requires
clathrin and the heterotetrameric AP-2 complex, both of which are components of
protein coats involved in endocytosis from the plasma membrane of host cells. The
requirement for AP-2 in this process was confirmed in human HeLa cells. In contrast,
other heterotetrameric (i.e., AP-1 and AP-3) and monomeric (i.e., GGA) clathrin
adaptors appear to be dispensable for CD4 downregulation. In addition, Y3H assays
were used to demonstrate an interaction of Nef with a combination of the o and 02
subunits of AP-2. Finally, a GST pull-down assay showed a direct and specific

interaction of Nef with the heterotetrameric AP-2°°RE

complex in vitro. Importantly,
both the function and interaction of Nef in these assays exhibited a dependence on a
dileucine sequence in the viral protein that had previously been identified as critical
for CD4 downregulation (Bresnahan et al., 1998; Greenberg et al., 1998a). These
observations thus support a model in which Nef links the cytosolic tail of CD4 to

clathrin-AP-2 coats at the plasma membrane, leading to the endocytic removal of the

receptor from the cell surface.

3.4.2 Role of clathrin and AP-2 in Nef-mediated CD4 downregulation

As the major devices for sorting proteins at different stages of the endocytic and
secretory pathways, clathrin-AP coats have long been suspected to play a role in the
downregulation of CD4 by Nef (Blagoveshchenskaya et al., 2002; Bresnahan et al.,
1998; Craig et al., 1998; Craig et al., 2000; Foti et al., 1997; Greenberg et al., 1997;
Janvier et al., 2003a; Janvier et al., 2003b; Le Gall et al., 1998; Piguet et al., 1998).
This hypothesis was affirmed by the discovery that downregulation is strictly depend-
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ent on a Nef dileucine sequence (Bresnahan et al., 1998; Greenberg et al., 1998) that
fits the [D/E]xxxL[L/I] consensus motif for signals that mediate clathrin-dependent
sorting events and interaction with clathrin-associated AP complexes (Bonifacino and
Traub, 2003). Much work has since been done to elucidate the exact role of clathrin
and the various AP complexes in the downregulation of CD4. However, the evidence
has thus far been largely indirect, and different studies have produced conflicting

results.

Nef has previously been shown to localize to clathrin-AP-2 coated pits at the plasma
membrane and to promote the recruitment of CD4 to such pits (Burtley et al., 2007,
Foti et al., 1997; Greenberg et al., 1998a). This is consistent with the finding that Nef
accelerates CD4 internalization from the cell-surface (Aiken et al., 1994; Rhee and
Marsh, 1994). These observations led to the testing for an involvement of AP-2 in
CD4 downregulation. Expression of an AP-2 u2 subunit construct rendered incapable
of binding Yxx@-type signals by the mutation of aspartate-176 to alanine (Nesterov et
al., 1999) was found to block the HIV-1 Nef-dependent redistribution of CD4 to
endosomes in HeLa cells (Blagoveshchenskaya et al., 2002). This finding is puzzling,
however, because neither HIV-1 Nef nor CD4 have YxxO-type signals; instead,
downregulation depends on dileucine-containing sequences in both Nef and CD4
(Aiken et al., 1994; Bresnahan et al., 1998; Coleman et al., 2005; Foti et al., 1997;
Greenberg et al., 1998a). Since Yxx@ and dileucine signals have different binding
sites on AP-2 (Honing et al., 2005; Janvier et al., 2003b; Marks et al., 1996; Ohno et
al., 1995; Rapoport et al., 1998; Kelly et al. 2008), it is unclear how such a mutant
could have a “dominant-negative” effect on CD4 downregulation by Nef. Subsequent
experiments showed that the depletion of u2 by RNAi caused only a slight inhibition
of Nef-mediated CD4 downregulation in HeLa cells and T cells (Jin et al., 2005; Rose
et al., 2005). More complete inhibition required over-expression of a dominant-
negative mutant of Epsl5, a regulator of endocytosis, in conjunction with RNAi-
mediated u2 depletion in T cells (Jin et al., 2005). Attempts to demonstrate a clear
physical connection between Nef and AP-2 have similarly yielded conflicting results.
Yeast two-hybrid (Y2H) assays have been used to detect a very weak interaction of
HIV-1 Nef with u2 (Craig et al., 2000), whereas an interaction with the AP-2 (32
(Greenberg et al., 1998a) subunit was observed by using a chemical cross-linking

approach. Thus, the role of AP-2 in downregulation remained unclear from all of this
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work. The data presented here — in which RNAi-mediated depletion of either clathrin
or AP-2 is shown to cause a profound inhibition of CD4 downregulation by Nef, and
in which Nef is shown to interact robustly and specifically with AP-2 — now provide

strong support to the AP-2-dependent, endocytic model of Nef action on CD4.

3.4.3 Recognition of dileucine signals by AP-2

Upon correction of a point mutation in the AP-2 a construct used for previous Y3H
assays (Janvier et al., 2003b), it was possible to detect a robust interaction between
the a-02 hemicomplex and Nef. This interaction requires the co-expression of both
AP-2 subunits and is not observed with either o or 02 alone (data not shown). This
could indicate that Nef simultaneously binds to both the o and 62 subunits, or that the
subunits remain properly folded only in the context of the hemicomplex. In addition,
the Y3H interaction is strictly dependent on the Nef dileucine (LL164,165) sequence
and partially dependent on the upstream acidic residue (E160). It is not dependent,
however, on neighboring residues or other functional motifs within the viral protein.
These requirements exactly match those already defined for CD4 downregulation
(Bresnahan et al., 1998; Coleman et al., 2006; Greenberg et al., 1998a), indicating that
the interactions are likely to be functionally relevant. These interactions are analogous
to those of Nef with the y-o1 subunits of AP-1 and 8-03 subunits of AP-3 (Janvier et
al., 2003b), suggesting that these three complexes bind to Nef in a similar manner.
Moreover, like the corresponding AP-1 and AP-3 hemicomplexes, the AP-2 a-02
hemicomplex would be expected to bind to other [D/E]xxxL[L/I]-type dileucine
signals involved in internalization from the cell surface. The easy detection of these
interactions with the Y3H system now opens the way for further studies on the

mechanism of dileucine signal recognition.

3.4.4 Do AP-1 and AP-3 participate in Nef-induced CD4 downregulation?

In addition to the plasma membrane, HIV-1 Nef has been found to localize to an area
of the cell that includes the Golgi complex (Janvier et al., 2003a; Mangasarian et al.,
1997), and to induce the retention of CD4 in the Golgi region (Brady et al., 1993,
Mangasarian et al., 1997). Together, these observations supported a model in which
the intracellular retention of newly synthesized or recycling CD4 contributes to the

downregulation of the receptor (Brady et al., 1993; Mangasarian et al., 1997; Rose et
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al., 2005). The area of the Golgi which Nef has been localized to includes the TGN
and a subset of endosomes, both of which have clathrin coats containing AP-1 and
AP-3. Indeed, a variety of biochemical assays have shown interactions of Nef with
AP-1 and AP-3. Specifically, HIV-1 Nef has been found to interact with AP-1 and
AP-3 from cell extracts by GST pull-down assays (Bresnahan et al., 1998, Janvier et
al., 2003a; Janvier et al., 2003b), with the ulA subunit of AP-1 and the u3A subunit
of AP-3 by Y2H assays (Craig et al., 2000; Le Gall et al., 1998), and with the y-o1
and 0-03 hemicomplexes of AP-1 and AP-3, respectively, by Y3H assays (Janvier et
al., 2003b). All of these interactions are dependent on the dileucine sequence of Nef,
indicating that they may be functionally relevant for CD4 downregulation. However,
RNAi-mediated depletion of AP-1 and AP-3 subunits has been reported to have no
effect on the downregulation of CD4 by Nef in human T cells and astrocytes (Roeth et
al., 2006), a finding that has now been replicated in S2 and HeLa cells. Therefore, it is
unclear what roles — if any — the interactions of Nef with AP-1 and AP-3 might play
in CD4 downregulation. It is possible that these complexes participate in the post-
endocytic routing of internalized CD4, but more work will be needed to either
confirm or refute this hypothesis. Ideally, a Nef mutant capable of binding AP-1 and
AP-3, but not AP-2, will be identified. Such a mutant would be useful in determining
whether AP-1 and AP-3 contribute to the Nef-induced downregulation of CD4.

3.4.5 Postendocytic fate of internalized CD4

The downregulation of CD4 by Nef involves not only removal of the receptor from
the cell surface, but also its targeting to lysosomes for eventual degradation (Piguet et
al., 1999; Rhee and Marsh, 1994; Sanfridson et al., 1994). Thus, it is likely that Nef
also functions to prevent the recycling of internalized CD4 to the plasma membrane
and/or to promote its delivery to lysosomes, perhaps by following the MVB pathway.
However, the depletion of various components of the endosomal recycling (e.g.,
EHDI1, Rabenosyn-5, Arf6, Rab35, and Rabip4; Table 3.1) and MVB pathways (e.g.,
TSG101, STAMI, ALIX, and Vps25; Table 3.1) had no effect on the ability of Nef to
decrease surface levels of CD4. This observation does not necessarily imply a lack of
Nef involvement in these processes because of the following caveats: (i) the RNAi
treatment may not have caused sufficient depletion of the target proteins to elicit an

effect, (ii) the right target proteins may not have been picked for depletion, and (iii)
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inhibition of recycling or lysosomal delivery may affect the intracellular distribution
of the internalized proteins (as may also be the case for AP-1 and AP-3 depletion),
without preventing the reduction in surface CD4 levels. To fully assess the role of
these intracellular sorting events on CD4 downregulation, more components of the
endosomal recycling and MVB pathways would have to be depleted; if possible, such
depletions would also be verified by immunoblotting. In addition, the depleted cells
should be subjected to confocal fluorescence microscopy, so that information on the
intracellular localization of CD4 — and any changes therein — can be collected and

analyzed.
3.4.6 Distinct mechanisms for CD4 and MHC-I downregulation

CD4 is one of several plasma membrane-associated receptors downregulated by Nef.
Among the other cell surface proteins that undergo Nef-induced downregulation are
certain MHC-I haplotypes (Greenberg et al., 1998b; Mangasarian et al. 1999; Roeth et
al., 2004; Schwartz et al., 1996; Swann et al., 2001). The redistribution of these
MHC-I receptors from the plasma membrane to intracellular vesicles is thought to
allow HIV-1 to evade immune surveillance (Cohen et al., 1999; Collins et al., 1998).
Strikingly, Nef-induced MHC-I downregulation appears to occur by a mechanism that
is quite distinct from that of CD4 downregulation. Indeed, downregulation of MHC-I
by Nef primarily involves the misrouting of newly synthesized molecules from the
TGN to lysosomes (Kasper et al., 2005), and requires AP-1 but not AP-3 (Roeth et al.,
2004). This process is independent of the Nef dileucine sequence (Riggs et al., 1999)
and instead depends on the acidic cluster (EEEE62-65) and the polyproline (PP72,75)
motifs (Mangasarian et al., 1999; Piguet et al., 2000; Roeth et al., 2006). In addition,
Nef promotes the association of MHC-I and AP-1 with sequence requirements that
are identical to those required for downregulation (Mangasarian et al., 1999; Roeth et
al., 2004; Williams et al., 2005). Thus, Nef is a multifunctional “connector”” molecule
capable of using distinct interfaces to link the cytosolic tails of different trans-
membrane proteins to specific AP complexes. These alternative modes of interaction
endow Nef with the ability to interfere with protein trafficking at different stages of

the secretory and endocytic pathways.
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Chapter 4:
A diacidic motif in HIV-1 Nef is a novel determinant of binding to AP-2
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4.1 Abstract

Nef, an accessory protein of the primate immunodeficiency viruses, downregulates
CD4 from the surface of infected cells. The ability of HIV-1 Nef to reduce the amount
of CD4 at the cell surface is believed to increase the efficiency of viral replication,
and contribute to progression of the disease. Current models suggest that Nef induces
aberrant sorting of CD4 by binding to the cytoplasmic tail and physically linking it to
specific components of the host-cell protein-trafficking machinery. This process is
known to depend on the dileucine motif in the C-terminal flexible loop of Nef, which
has been shown by others to mediate interactions between Nef and the AP-1 and AP-3
clathrin adaptor protein complexes. This has led to the proposal that Nef recruits AP-1
and AP-3 to intracellular membranes to redirect CD4 from the secretory pathway to
lysosomes, where the receptor is degraded. In the previous chapter, Nef was found to
interact with the plasma membrane-localized AP-2 complex in a dileucine-dependent
manner. RNAi-mediated depletion of AP-2 inhibited the downregulation of CD4 by
Nef, but similar knockdowns of AP-1 and AP-3 appeared to have no effect. Here, the
identification of a second motif in the Nef flexible loop, required for the interaction
with AP-2, is described. This motif is centered around an acidic pair that fits the
consensus sequence [D/E]D. Mutation of either of these residues had no effect on the
binding of Nef to AP-1 or AP-3; however, even minor modifications of the [D/E]D
site disrupted the Nef-AP-2 interaction and prevented Nef from downregulating CD4.
Interestingly, the dileucine motif of the endogenous protein tyrosinase was found to
bind AP-2 independently of the diacidic motif, both in its native context and in the
context of full-length Nef. Collectively, these results identify a novel type of AP-2
interaction determinant, support the notion that AP-2 is the key clathrin adaptor for
the downregulation of CD4 by Nef, and reveal a previously unrecognized diversity

among dileucine sorting signals.
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4.2 Introduction

In the previous chapter, RNAi experiments in Drosophila and human cells confirmed
the role of AP-2 in the Nef-mediated downregulaton of CD4. Yeast three-hybrid and
GST pull-down experiments were then used to demonstrate a direct, robust interaction
between Nef and AP-2. This interaction was found to depend on the dileucine motif in
the C-terminal flexible loop of Nef, which has been shown by others to be crucial for
CD4 downregulation (Section 1.8; Bresnahan et al., 1998; Craig et al., 1998; Craig et
al., 2000). In this chapter, the Nef flexible loop will be examined in greater detail to
determine if it contains any other motifs that are required for AP-2 binding and CD4

downregulation.

The Nef flexible loop (which is comprised of residues 154 to 180 in the HIV-1 NL4-3
variant) sits between the final two strands of a -sheet located in the Nef core, and is
entirely exposed to the surrounding solvent (see Fig. 1.7). In addition to the dileucine
sequence, three distinct motifs in the flexible loop have previously been implicated in
the modulation of CD4 expression. All three of these motifs (EE154,155, DD174,175,
and ERE177-179) are characterized by the presence of polar residues. Substitution of
these residues with alanine, a non-polar amino acid, significantly decreases the ability
of Nef to downregulate CD4 (Aiken et al., 1996; Piguet et al., 1999). Immunoblotting
indicates that mutation of the charged residues does not affect stability of Nef, which

is consistent with their position on a solvent-exposed loop (Aiken et al., 1996; Geyer

et al., 1999; Grzesiek et al., 1996).

Instead, the alanine substitutions described above are believed to interfere with CD4
downregulation by disrupting electrostatic interactions between Nef and endogenous
proteins (Aiken et al., 1996; Gibbs and Zoller, 1991). The EE154,155 motif has been
suggested to bind COPI, which may promote the transport of CD4 from endosomes to
lysosomes (for more information on this motif and the postendocytic fate of CD4, see
Sections 3.4.5 and 6.4.2; also see Benichou et al., 1994; Piguet et al., 1999; Schaefer
et al., 2008). The DD174,175 motif, on the other hand, has been implicated in binding
to several host-cell proteins: the c-Rafl kinase, the Eed Polycomb Group protein, and
the V1H subunit of the vacuolar ATPase (Hodge et al., 1998; Lu et al., 1998; Witte et
al., 2004). VIH has also been shown to interact with the u2 subunit of AP-2, leading
to the proposal that it acts as a bridge between Nef and AP-2 (Geyer et al., 2002). The
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ERE177-179 motif, unlike the other two polar motifs in the Nef flexible loop, has not

yet been linked to any protein interactions.

In the next section, each residue in the loop — including those that comprise the three
polar motifs mentioned above — will be mutated to alanine to determine whether they
contribute to the binding of Nef and AP-2. Special attention will be paid to D174 and
D175, as these residues have been suggested by others to participate in AP-2 binding
in an indirect fashion, via the VIH intermediary protein (Geyer et al., 2002; Lu et al.,
1998). However, data presented in the previous chapter shows that Nef interacts with
AP-2 directly; yeast three-hybird and in vitro assays will therefore be used to evaluate
whether the D174 and D175 residues are required for this direct binding. Results from
these experiments will be correlated with functional data measuring the role of D174
and D175 in CD4 downregulation. Finally, yeast three-hybrid assays will also be used
to ascertain whether D174 and D175 are involved in the interaction of Nef with AP-1
and AP-3, and whether diaspartic acid motifs mediate the binding of adaptins in other
contexts, such as the cytoplasmic tail of tyrosinase. Collectively, the assays performed
in this chapter should provide a clearer picture of the AP-2 binding surface on Nef, an
improved understanding of the CD4 downregulation mechanism, and new insights on

adaptin-cargo interactions.
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4.3 Results

4.3.1 Identification of a diacidic motif required for the interaction of HIV-1 Nef
with the AP-2 a-62 hemicomplex

The Nef dileucine motif (ENTSLL160-165 in the HIV-1 NL4-3 strain) is contained
within a 27-residue C-terminal flexible loop of the protein (residues 154-180 in NL4-
3; see Fig. 1.7), and is highly conserved among all strains of HIV and SIV (Leitner et
al., 2005; Munch et al., 2005; O’Neil et al., 2006). Such a high degree of conservation
is consistent with the critical role the dileucine motif plays in CD4 downregulation
and AP-2 binding (see Fig. 3.3, 3.4, 3.8, and 3.9; Bresnahan et al., 1998; Craig et al.,
1998; Doray et al., 2007; Greenberg et al., 1998a; Janvier et al., 2003b; Rose et al.,
2005). Analysis of 1,290 Nef sequences catalogued in the Los Alamos HIV sequence
database revealed that this conservation extends beyond the dileucine motif, to
include most of the residues within the C-terminal flexible loop (Fig. 4.1B). To
determine whether these residues were also important for binding AP-2, 26 of the 27
loop residues were mutated to alanine in the context of full-length Nef (residue 156 is
a naturally occurring alanine). These mutants were then tested for their ability to
interact with AP-2 in the Y3H assay. Of the four subunits of AP-2, an assembly of
two, a-02, was shown in the previous chapter to be sufficient for the interaction with
Nef (see Fig. 3.8), thus enabling the use of the Y3H system. As expected, mutation of
either L164 or L165 of the Nef dileucine motif completely abrogated binding of a-02
(Fig. 4.1C; see also Fig. 3.8). Mutation of the E160 residue, which is part of the
consensus ExxxLL sequence, caused a partial loss of binding (Fig. 4.1C), as shown
previously (see Fig. 3.8). Interestingly, mutation of several residues in the C-terminal
half of the loop also caused defects in a-02 binding, with varying degrees of severity
(Fig. 4.1C). The strongest defects were observed for mutants with alterations of the
acidic residues D174 and D175, which exhibited no binding to a-02 (Fig. 4.1C).
Mutation of several other residues in this region, including L170, H171, G172, M173,
P176, R178, E179, and V180 caused partial binding defects (Fig. 4.1C). The charged
residues in the C-terminal half of the loop have previously been implicated in CD4
downregulation (Aiken et al., 1996; lafrate et al., 1997) and localization of Nef to
clathrin-coated pits at the plasma membrane (Greenberg et al., 1997). In particular,

the DD174,175AA and ERE177-179AAA mutants have been shown to be null for
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CD4 downregulation (Aiken et al., 1996; Greenberg et al., 1997). The Y3H results
presented here suggest that the requirement of these residues for Nef function may be
due to their roles in mediating the interaction with AP-2. Because mutation of D174
and D175 caused the most severe defects in binding AP-2, subsequent experiments

focused on these two residues (referred to below as the “diacidic motif™).
4.3.2 The diacidic motif is required for direct binding of HIV-1 Nef to AP-2

To determine if the diacidic motif was required for the direct interaction of Nef with
AP-2, in vitro experiments were performed (by William Smith) using recombinant
proteins produced in bacteria. These experiments were carried out using the AP-2ORE
complex, which lacks the C-terminal domain of the u2 subunit (see Section 2.3.1.3
for further information on this construct). In the previous chapter, pull-down assays
demonstrated that the GST-tagged AP-2““*F complex interacted with Nef in a manner
that was dependent on the Nef dileucine motif (see Fig. 3.9). Additional pull-down
HCORE

assays showed that the AP-
Nef DD174,175AA mutant, as detected by SDS-PAGE followed by Coomassie blue

complex was able to bind wild-type Nef, but not the

staining (Fig. 4.2A, top) and immunoblot analysis (Fig. 4.2A, bottom). Under the
same conditions, there was negligible binding of both wild-type and mutant Nef to
GST-e-ear (Fig. 4.2A), confirming the specificity of the Nef-AP-2 interaction. These
results were corroborated by surface plasmon resonance (SPR) spectroscopy, which
showed binding of untagged AP-2““*F to wild-type Nef but not to the DD174,175AA
mutant (Fig. 4.2B). The affinity of AP-2RE for wild-type Nef, as calculated from the
SPR experiments, was 6 + 1 uM (n = 3). The GST pull-down and SPR assays thus
demonstrated that the diacidic motif is required for the direct interaction of Nef with

AP-2.
4.3.3 Binding of HIV-1 Nef to AP-2 is dependent on electrostatic interactions

The requirement of the diacidic motif, as well as other charged residues (such as E160
and ERE177-179), for Nef binding to AP-2 suggested that electrostatic interactions
might be important contributors to the overall binding affinity. If so, binding of the
two proteins should be sensitive to high salt concentrations. To test this prediction,
GST pull-down assays were carried out (by William Smith) to examine the binding of

Nef to AP-2°“FE in the presence of increasing concentrations of NaCl (Fig. 4.2C).
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The interaction did, indeed, appear to be salt sensitive, as a dramatic loss of binding
between Nef and AP-2°“*F was observed at NaCl concentrations above physiological
levels (150 mM). This indicated that electrostatic interactions are a driving factor in

the formation of a Nef-AP-2 complex.

4.3.4 The diacidic motif fits a [D/E]D consensus sequence and is not required for

interaction with the AP-1y-01 or AP-3 §-03 hemicomplexes

To further characterize the specific requirements for each residue of the Nef diacidic
motif, the aspartate residues were mutated — either individually or in combination — to
alanine, glutamate, and asparagine. The effect of these mutations on the ability of Nef
to bind the AP-2 a-02 hemicomplex was then examined using the Y3H system (Fig.
4.3B, middle panel). The single or double mutation of Nef D174 and D175 to alanine
completely abolished the interaction with a-02. The isoelectric D174E mutation, on
the other hand, had no effect on the ability of Nef to bind a-02. This result correlates
with the sequence conservation of Nef, as position 174 is nearly always occupied by
either D or E (46.0% D, 52.2% E among all HIV-1 Nef variants; see Fig. 4.1B). In
contrast, D175E displayed severely reduced binding to a-02. This is in accordance
with the almost exclusive occurrence of D at this position (98.9% D among all HIV-1
Nef variants; see Fig. 4.1B). The isosteric D174N and D175N substitutions resulted in
elimination and reduction of Nef binding to a-02, respectively. Thus, the Nef diacidic
motif can be generally defined as [D/E]D, with N as a weak substitute for the second
position. Remarkably, none of the mutations in the diacidic motif had any effect on
the interaction of Nef with the homologous AP-1 y-o1 (Fig. 4.3B, top panel) and AP-
3 8-03 (Fig. 4.3B bottom panel) hemicomplexes. Mutation of the Nef dileucine motif,
however, disrupted binding to all three hemicomplexes (Fig 4.3; see also Fig. 3.8 and
Janvier et al., 2003b). Therefore, the interaction of Nef with AP-2 depends on both
the dileucine and diacidic motifs, whereas the interaction with AP-1 and AP-3 is
exclusively dependent on the dileucine motif. This strongly suggests that the Nef
diacidic motif is conserved for the purpose of binding AP-2.

4.3.5 Correlation between the requirements of the Nef diacidic motif and CD4

downregulation

In order to assess whether — in addition to binding AP-2 — the Nef diacidic motif was
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required for CD4 downregulation, the activity of several of the Nef mutants described
above was observed in transfected HeLa cells by immunofluorescence (Fig. 4.4) and
flow cytometry (Fig. 4.5). In agreement with previously published work (Aiken et al.,
1996; Iafrate et al., 1997), the Nef DD174,175AA mutant, like the Nef LL164,165AA
mutant, failed to downregulate CD4 in both assays (Fig. 4.4 and 4.5A and B). The
individual mutation of D174 or D175 to alanine also significantly impaired the ability
of Nef to downregulate CD4, as measured by flow cytometry (Fig 4.5A and B).
Remarkably, mutation of D174 to glutamate had no effect on CD4 downregulation,
while mutation of D175 to glutamate abolished downregulation in both assays (Fig.
4.4 and 4.5A and B). Immunoblot analysis showed that all constructs were expressed
at similar levels (Fig. 4.5B), and consistent with a previous report (Stoddart et al.,
2003), mutation of the diacidic motif did not affect the ability of Nef to downregulate
the MHC-I receptor in HeLa cells, as observed by flow cytometry (assays performed
by Wolf Lindwasser, data not shown). Therefore, the failure of some Nef mutants to
downregulate CD4 was not due to either a lack of expression or misfolding of the
viral protein. Rather, the ability of the Nef diacidic mutants to downregulate CD4
corresponded closely to their affinity for a-02 in the Y3H experiments (see Fig. 4.3),
which provides further evidence for a causal relationship between Nef-AP-2 binding

and CD4 downregulation.

Although intracellular retention and enhanced endocytosis have both been proposed
as potential mechanisms for the downregulation of CD4 by Nef (see Fig. 3.6 and 3.7;
Aiken et al., 1994; Foti et al., 1997; Greenberg et al. 1998a; Greenberg et al., 1998b;
Jin et al., 2005; Mangasarian et al., 1997; Rhee et al., 1994; Rose et al., 2005), only
the latter pathway is consistent with a role for AP-2 in this process. To explore the
correlation between Nef-AP-2 binding and CD4 downregulation in more detail, the
rate at which CD4 was endocytosed from the plasma membrane was measured (in
collaboration with Wolf Lindwasser) in the absence and presence of wild-type and
mutant forms of Nef (Fig. 4.5C). Compared to an empty vector control, wild-type Nef
increased the rate of CD4 internalization, but the Nef LL164,165AA dileucine mutant
did not (Fig. 4.5C). Importantly, the Nef DD174,175AA diacidic mutant also failed to
increase the rate of CD4 endocytosis above basal levels (Fig. 4.5C). Thus, both the
dileucine and diacidic motifs of Nef are required for the enhanced endocytosis and

downregulation of CD4.
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4.3.6 Distinct requirements of different dileucine motifs for the contribution of

diacidic motifs

Nef is one of several proteins that, in addition to a dileucine motif, contains a diacidic
motif in its cytoplasmic domain. Another example is the enzyme tyrosinase, which is
a type I transmembrane protein involved in the synthesis of melanin in melanosomes.
Within the cytoplasmic tail of mouse tyrosinase (residues 499-533; Fig. 4.6B), the
dileucine motif (ERQPLL; residues 513-518) is followed by a diacidic motif (DD;
residues 522 and 523). The tyrosinase tail has previously been shown to bind to the
AP-1 y-o1 and AP-3 8-03 hemicomplexes using the Y3H system (Theos et al. 2005).
Here, the Y3H system was used to test the ability of the wild-type tyrosinase tail, as
well as the LL517,518AA and DD522,523AA mutants, to bind to the AP-2 a-02
hemicomplex. These experiments revealed that the tyrosinase tail interacted with o.-
02, and that this interaction was completely dependent on the dileucine motif, but
only slightly dependent on the diacidic motif (Fig. 4.6C, left panel). This latter result
is in contrast with the absolute requirement of the diacidic motif for the interaction of
Nef and a-02. However, it is possible that the dileucine motif of Nef might be weaker
than that of tyrosinase, necessitating the additional contribution of the diacidic motif
for detectable binding. To test this hypothesis, tyrosinase tail constructs were made in
which the ERQPLL sequence was replaced by the Nef ENTSLL sequence, and vice
versa. Unlike the wild-type tyrosinase tail, tyrosinase with the ENTSLL sequence was
not able to bind a-02 (Fig. 4.6C, right panel). Importantly, Nef ERQPLL interacted
with a-02 in a manner that was largely independent of the diacidic motif (Fig. 4.6C,
right panel). Because swapping the dileucine signals involved replacement of only the
intervening NTS and RQP residues (i.e., the X positions in the [D/E]xxxL[L/]
consensus sequence), the data shown here suggest that these residues are important
contributors to the interaction between dileucine motifs and a-02. These experiments
thus highlight a previously unrecognized diversity among [D/E]xxxL[L/I] sorting

signals, some of which require additional determinants for binding AP-2.
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4.4 Discussion
4.4.1 Chapter overview

The results shown in this chapter provide evidence for the existence of a novel,
conserved diacidic motif within the C-terminal flexible loop of HIV-1 Nef. The
diacidic motif (DD174,175 in the NL4-3 strain and [D/E]D in general) cooperates
with the previously characterized dileucine motif (ENTSLL160-165 in NL4-3 and
ExxxLL in general) to bind the AP-2 complex. Indeed, both the diacidic and dileucine
motifs were required for the interaction of Nef and AP-2 in Y3H, GST pull-down, and
SPR assays. Functional analysis of the diacidic motif revealed that it was essential for
the downregulation of CD4 by Nef, as determined by confocal microscopy and flow
cytometry. The diacidic motif, however, was not required for the interaction of Nef
with the AP-1 and AP-3 complexes, nor was it required for the dileucine motif of
tyrosinase to bind AP-2. Together, these results provide strong support for the
proposed role of AP-2 in the Nef-mediated downregulation of CD4, and reveal
qualitative differences among dileucine sorting signals and their binding sites on AP

complexes.

4.4.2 The Nef diacidic motif is needed for AP-2 binding and CD4 downregulation

The Nef DD174,175 residues were first ascribed a role in CD4 downregulation more
than a decade ago (Aiken et al., 1996). In that study, the authors identified several
clusters of conserved, charged residues within Nef. They then mutated those residues
to alanine, and observed the effect of those substitutions on the stability and function
of the viral protein. Mutation of the aspartate residues did not reduce the stability of
the protein when compared to the expression of wild-type Nef; however, the DD174,
175AA mutant was completely null for CD4 downregulation. Others subsequently
demonstrated that the failure of Nef DD174,175AA to downregulate CD4 was not due
to misfolding of the viral protein, as the mutant was capable of reducing the amount
of MHC-I on the cell surface (Wolf Lindwasser, data not shown; Stoddart et al.,
2003). Several years after the Nef DD174,175 residues were reported to be essential
for the downregulation of CD4, a research group claimed that these residues were
important for binding the V1H subunit of the vacuolar ATPase (Lu et al., 1998). The
same group later suggested that, because V1H binds the u2 subunit of AP-2, the Nef

DD174,175 residues were important for linking the viral protein to the endocytic
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machinery of the host cell (Geyer et al., 2002). This led to a model in which Nef was
thought to bind to CD4 at the plasma membrane, and then promote the internalization
of the receptor by interacting with V1H directly and AP-2 indirectly (Geyer et al.,
2002; reviewed in Geyer et al., 2001).

In the previous chapter, Nef was found to bind directly to a combination of the a and
02 subunits of AP-2 (Fig. 3.7 and 3.8). In this chapter, several assays were used to
show that this interaction depended on the Nef DD174,175 residues (Fig. 4.1, 4.2, and
4.3). Importantly, the ability of Nef to bind AP-2 was correlated with the amino acids
most often found in that region of the viral protein (Fig. 4.1 and 4.3). This is best
exemplified by the observation that glutamate — which is commonly found at position
174, but virtually never found at position 175 in HIV-1 Nef alleles — was only able to
substitute for the first aspartate in Nef-AP-2 binding assays (Fig. 4.3). Two different
functional assays also showed that the Nef D174E mutant, but not the D175E mutant,
was able to downregulate CD4 (Fig. 4.4 and 4.5). Thus, it appears likely that the Nef
diacidic motif is conserved for the purpose of directly binding AP-2, which the viral
protein uses to accelerate the endocytosis of CD4 (Fig. 4.5C).

Compared to the VIH-dependent model of Nef function described earlier (Geyer et
al., 2002), these results provide a simpler, more straightforward explanation for the
strict conservation of the diacidic motif and its role in CD4 downregulation. However,
arole for V1H in the Nef-mediated targeting of CD4 to lysosomes cannot be ruled out
entirely. Indeed, it is possible that Nef binds to V1H after CD4 is internalized from
the cell surface and the AP-2-clathrin coat is lost. An interaction between Nef and
VIH at this stage could facilitate the assembly of functional vacuolar ATPases on
CD4-positive endosomes, and promote acidification of these compartments prior to
their eventual fusion with lysosomes (for reviews on vacuolar ATPases, see Nishi and
Forgac, 2002; Marshansky and Futai, 2008). Additional experiments will have to be

carried out to determine if Nef and V1H cooperate in this manner.

4.4.3 The AP-1 and AP-3 complexes are largely dispensable for the Nef-mediated
downregulation of CD4

Although Nef has long been suspected to promote the downregulation of CD4 by an

endocytic mechanism (Aiken et al., 1994; Rhee et al., 1994), more recent studies have
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suggested that the AP-1 and AP-3 complexes, which mediate distinct protein sorting
events, could be involved in the process (Bresnahan et al., 1998; Craig et al., 2000;
Janvier et al., 2003b; Rose et al., 2005). The conclusions drawn from these studies
were largely based on the observation that Nef binding to AP-1 and AP-3 depended
on a dileucine motif in the viral protein, and that this motif was also required for CD4
downregulation (Bresnahan et al., 1998; Craig et al., 2000; Janvier et al., 2003b; Rose
et al., 2005). One of the studies, however, did report the delayed transport of newly
synthesized CD4 to the cell surface in the presence of Nef (Rose et al., 2005).

At least two major factors may have led those authors to include AP-1 and AP-3 in
their models of Nef-induced CD4 downregulation. First, Nef was shown to interact
with AP-1 and AP-3 (Bresnahan et al., 1998; Craig et al., 2000; Janvier et al., 2003b)
several years before assays capable of detecting the robust binding of Nef to AP-2
were developed (Fig. 3.8 and 3.9). Second, prior to the identification of the diacidic
motif (Fig. 4.1, 4.2, and 4.3), it was not possible to genetically separate the binding of
Nef to the various AP complexes. Mutation of the previously mentioned Nef dileucine
motif, for instance, not only inhibited CD4 downregulation, but also disrupted binding
to AP-1, AP-2, and AP-3 (Fig. 3.3, 3.8, and 3.9; Bresnahan et al., 1998; Craig et al.,
2000; Janvier et al., 2003b). Thus, it was difficult to ascribe the effect of this mutation
on the ability of Nef to bind any one AP complex in particular. The RNAi-mediated
depletion of adaptin subunits indicated that AP-2 was used by Nef to downregulate
CD4 (Fig. 3.7; Jin et al., 2005), but the potential contribution of AP-1 and AP-3 to
this process could not be ruled out, as residual amounts of these complexes may have

been sufficient for Nef function (Fig. 3.7).

Experiments described in this chapter have identified, for the first time, mutants of
Nef that are capable of interacting with AP-1 and AP-3, but not with AP-2 (Fig. 4.3).
These mutants have substitutions in the conserved diacidic motif of the viral protein
that profoundly inhibit the downregulation of CD4 (Fig. 4.3, 4.4, and 4.5). Therefore,
the ability of Nef to downregulate CD4 appears to be dependent on its interaction
with AP-2, and independent of its interactions with AP-1 and AP-3. From the data
presented here, it is clear the Nef relies mainly on AP-2 to redistribute CD4 from the
cell surface to intracellular vesicles (Fig. 4.4 and 4.5). However, it is still possible that

Nef recruits AP-1 and/or AP-3 in support of this primary pathway. Nef could, for
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example, use these other adaptors to either target CD4 from endosomes to lysosomes,
delay the recycling of CD4 back to the cell surface, or route a small proportion of
newly synthesized CD4 from the TGN to degradative compartments, as proposed
earlier (Rose et al., 2005). To determine if this is the case, it will be important to
measure how much CD4 is degraded in cells expressing a Nef diacidic mutant that is
incapable of interacting with AP-2, such as DD174,175AA (Fig. 4.2 and 4.3). This
experiment, and others like it, should provide an indication of whether AP-1 and AP-3
are invovled in the downregulation of CD4, and could shed light on the mechanism
Nef uses to target CD4 to lysosomes after the receptor is internalized from the plasma

membrane.

4.4.4 Analysis of the diacidic motif yields insights on the binding of dileucine

signals to AP complexes

As mentioned above, the Nef dileucine motif (ENTSLL) is able to mediate binding to
AP-1 and AP-3 independently of the diacidic motif ([D/E]D), while both motifs are
required for binding to the homologous AP-2 complex (Fig. 4.3). This immediately
suggests that the dileucine binding sites on AP-1 and AP-3 differ, at least slightly,
from that on AP-2, as these complexes have varying affinities for the same ligand.
This also indicates that the binding site for the Nef diacidic motif is specific to AP-2
(a topic explored further in Chapter 5).

The Nef dileucine and diacidic motifs probably make direct, simultaneous contact
with the surface of the AP-2 a-02 hemicomplex (Fig. 3.8, 3.9, 4.1, 4.2, and 4.3). The
properties of the dileucine and diacidic binding sites on a-02 are most likely quite
distinct, as the key residues in these motifs have bulky hydrophobic and charged side
chains, respectively. Consistent with an important contribution of electrostatic forces
to the overall strength of the interaction, binding of Nef and AP-2 is inhibited in vitro
by high salt concentrations (Fig. 4.2C). Interestingly, the observation that increasing
the ionic strength of the solution disrupts the Nef-AP-2 interaction may indicate that
charged residues (e.g., the diacidic motif) contribute more to the binding affinity than

do hydrophobic residues (e.g., the dileucine motif).

Similar to Nef, the endogenous protein tyrosinase contains a dileucine sorting signal

(ERQPLL) upstream of a pair of acidic residues (DD). These features make tyrosinase
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an intriguing protein to study in parallel with Nef. Binding assays revealed that the
diacidic motif was required for the interaction of Nef and AP-2, but was not required
for the interaction of tyrosinase and AP-2 (Fig. 4.2, 4.3, and 4.6). One reason for this
discrepancy may be that the tyrosinase dileucine motif is a stronger ligand than the
Nef dileucine motif. In support of this idea, substitution of the Nef ENTSLL sequence
for the ERQPLL sequence in the tyrosinase cytosolic tail abrogated binding to AP-2
(Fig. 4.6). Conversely, the replacement of ERQPLL with ENTSLL in the context of
full-length Nef allowed the viral protein to bind AP-2 independently of the diacidic
motif (Fig. 4.6). Thus, the tyrosinase dileucine motif does appear to have a greater
affinity for AP-2 than the Nef dileucine motif. Since both motifs contain a glutamate
and a pair of leucines, the differences in affinity must be due to the intervening
residues (i.e., RQP and NTS). Consistent with this conclusion, a proline immediately
upstream of the leucine pair has been found to induce more rapid endocytosis than an
alanine at the same position (Patrycja Kozik and Margaret Robinson, personal com-

munication).

Compared to the tyrosinase dileucine motif, the Nef dileucine motif does seem to be a
weaker ligand for AP-2 binding. The diacidic motif may be required to compensate
for this weakness and increase the avidity of Nef for AP-2. Given the reliance of Nef
on AP-2 for CD4 downregulation, however, it is puzzling that the viral protein has not
adopted a stronger dileucine motif. One possibility is that bivalent binding causes a
conformational change in Nef that is required for its effect on CD4. Alternatively, the
ENTSLL motif may be conserved because some residues are involved in functions
other than AP-2 binding and CD4 downregulation. Some evidence for this already
exists. Mutation of the NTS portion of the dileucine motif has recently been shown to
have deleterious effects on the Nef-dependent upregulation of DC-SIGN and MHC
class II-associated invariant chain (Coleman et al., 2006), despite the fact that these
residues play little, if any, role in CD4 downregulation (Coleman et al., 2006; Janvier

et al., 2003b).

4.4.5: The diacidic motif: specific to Nef or broadly applicable?

The diacidic motif, found in all HIV-1 Nef variants, represents a novel class of AP-2
cargo interaction determinant, in addition to the already well-characterized dileucine-

and tyrosine-based sorting signals (reviewed in Bonifacino and Traub, 2003). In some
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ways, this multiplicity of binding determinants is reminiscent of the endoplasmic
reticulum-associated COPII complex, which can also interact with diverse signals
through different interaction surfaces (reviewed in Barlowe, 2003). The Nef diacidic
motif differs from most dileucine- and tyrosine-based signals, though, in that it does
not appear capable of binding AP-2 on its own (Fig. 4.2 and 4.3). It remains to be
seen whether acidic motifs from other proteins mediate interactions with AP-2. A pair
of acidic residues in the cytosolic tail of tyrosinase, for instance, does not significantly
contribute to AP-2 binding (Fig. 4.6). However, the cytosolic tails of many trans-
membrane proteins have acidic clusters that are believed to function as sorting signals
(Bonifacino and Traub, 2003). The acidic cluster of furin, in particular, has previously
been found to mediate endocytosis as well as TGN localization (Vorhees et al., 1995),
and is therefore a good candidate for interaction with AP-2. Alternatively, the binding
of a diacidic motif with AP-2 might be particular to Nef. In that case, the interaction
could be targeted for disruption by pharmacological agents in order to moderate the

pathogenic effects of Nef.
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Chapter 5:
A basic patch on a-adaptin is required for binding of HIV-1 Nef and

cooperative assembly of a CD4-Nef-AP-2 complex
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5.1 Abstract

A critical function of the HIV-1 Nef protein is the downregulation of CD4 from the
surfaces of infected cells. Nef is believed to act by linking the cytosolic tail of CD4 to
the endocytic machinery of the host-cell, thereby increasing the rate at which CD4 is
internalized. In support of this model, weak binary interactions between CD4, Nef,
and the endocytic clathrin adaptor complex, AP-2, have been reported. In the previous
two chapters, dileucine and diacidic motifs in the C-terminal flexible loop of Nef
were shown to mediate binding to a combination of the o and 62 subunits of AP-2. In
this chapter, the identification of a potential binding site for the Nef diacidic motif on
a-adaptin is described. This site is comprised of two basic residues, lysine-297 and
arginine-340, on the a-adaptin trunk domain. Mutation of these residues specifically
inhibits the ability of Nef to bind AP-2 and downregulate CD4. In addition, evidence
presented here indicates that the diacidic motif and the basic patch on a-adaptin are
both required for the cooperative assembly of a CD4-Nef-AP-2 tripartite complex.
This cooperativity explains how Nef is able to efficiently downregulate CD4 despite

weak binary interactions between components of the tripartite complex.
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5.2 Introduction

In the previous chapter, the Nef diacidic motif (which is comprised of the DD174,175
residues in the HIV-1 NL4-3 variant) was found to be essential for AP-2 binding and
CD4 downregulation (Fig. 4.1, 4.2, 4.4, and 4.5). Importantly, the diacidic motif was
not required for the interaction of Nef with AP-1 and AP-3 (Fig. 4.3), which suggests
that these clathrin adaptors contribute less to the modulation of CD4 expression than
AP-2. Overall, these results are consistent with the RNAi data presented earlier (Fig.
3.5 and 3.7), and support the endocytic model of Nef-mediated CD4 downregulation
(see Section 1.8.2). According to this model, Nef physically links the cytosolic tail of
CD4 to AP-2, thereby increasing the rate at which the receptor is internalized from the

plasma membrane.

The primary focus of this chapter will be to identify a binding site for the Nef diacidic
motif on the surface of AP-2. Although a wide variety of motifs, belonging to a large
number of proteins, have been found to interact with the appendage domains of a and
B2 (reviewed by Schmid and McMahon, 2007), in vitro experiments indicate that the
diacidic motif binds to the AP-2 core (Fig. 4.2; for a detailed description of the AP-2
core, see Fig. 1.10 and Section 1.6). Three other cargo motifs are known to bind to the
AP-2 core: phosphatidylinositol phospholipid (PIP) headgroups, tyrosine signals, and
dileucine signals. Negatively-charged PIP headgroups interact with basic patches on
the a-trunk and the C-terminus of u2, and are probably responsible for targeting AP-2
to the plasma membrane (Chang et al., 1993; Collins et al., 2002; Gaidarov and Keen,
1999; Gaidarov et al., 1996). Tyrosine-based signals, which are found in the cytosolic
domains of many transmembrane proteins, also bind to the C-terminus of u2 (Ohno et
al., 1995; Owen and Evans, 1995). Dileucine-based signals, another motif commonly
found in transmembrane proteins, interact with the a-02 region of the AP-2 core, but

the specific binding site of these signals is still unknown (Fig. 3.8 and 3.9).

In the next section, a directed mutagenesis strategy will be used in concert with yeast
three-hybrid assays to identify a candidate binding site for the Nef diacidic motif on
the AP-2 core. Once this site is identified, it will be further evaluated using GST pull-
downs, and its contribution to CD4 downregulation will be assessed using functional

assays. Later, a novel yeast four-hybrid system will be used to test whether CD4, Nef,
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and AP-2 interact simultaneously to form a tripartite complex. The formation of this
complex — a critical component of the endocytic model of CD4 downregulation — has
long been hypothesized, but never demonstrated experimentally. If a CD4-Nef-AP-2
tripartite complex is observed, then additional assays will be performed to determine
whether assembly of the complex depends on key domains, such as the Nef diacidic
motif and its prospective binding site on AP-2. When taken together, the results from
these experiments should provide more information on the mechanism of Nef-induced
CD4 downregulation, and may identify new targets for the pharmacological inhibition

of this process.
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5.3 Results

5.3.1 Identification of basic residues on a-adaptin required for the interaction of

HIV-1 Nef

Data from the two previous chapters demonstrated that HIV-1 Nef binds to the a-02
hemicomplex of AP-2 (Fig. 3.8), and that electrostatic interactions are an important
component of the overall binding affinity (Fig. 4.2). In particular, a diacidic motif in
the C-terminal flexible loop of Nef is essential for the interaction with AP-2 (Fig. 4.2
and 4.3). However, the Nef diacidic motif is not required for binding to the related
AP-1 and AP-3 adaptor protein complexes (Fig. 4.3). These findings suggested that
the Nef diacidic motif interacts with basic residues on AP-2 that are not conserved

among the three AP complexes.

To test this hypothesis, 21 lysine and arginine residues on o.-02 that are not present on
the corresponding y-o1 and 8-03 hemicomplexes of AP-1 and AP-3 were identified
(Fig. 5.1). These residues were then changed to either aspartate or glutamate, and the
resulting a-02 mutants were assayed for a loss of binding to wild-type Nef using the
Y3H system (Fig. 5.2). Several alterations of the a-02 hemicomplex, including the
triple mutant oo KKK295,297,298EEE (initially mutated en bloc because the close
proximity of these residues to each other), the single mutant o R340E, and the double
mutant 02 RK124,130EE, impaired the binding of Nef (Fig. 5.2).

In order to determine whether this loss of binding was due to the disruption of the Nef
binding site, or to more global effects on the hemicomplex, the a-02 mutants were
also tested for their ability to bind to the cytoplasmic tail of mouse tyrosinase. Unlike
Nef, the tyrosinase tail interacts with a-02 in a manner that is not dependent on the
presence of a diacidic motif (see Fig. 4.6). The o KKK295,297,298EEE and o R340E
mutants, which were notable for their decreased affinity for Nef, bound to tyrosinase
with relatively strong avidities (Fig. 5.2), suggesting that these mutations specifically
interfered with the interaction between Nef and AP-2. The 62 RK124,130EE mutant,
on the other hand, failed to bind either Nef or tyrosinase (Fig. 5.2), consistent with an
adverse effect of these substitutions on either the folding of the 02 subunit or the

stability of the a-02 hemicomplex.
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FIG. 5.1: Identification of basic residues in the AP-2 a-02 hemicomplex that are

not conserved in the homologous subunits of AP-1 and AP-3

Sequence alignments of the AP-1 y-ol, AP-2 a-02, and AP-3 8-s3 hemicomplexes
were performed using the ClustalW2 program (available at http://www.clustal.org/).
Amino acid numbers for the first residue in each row are indicated on the left, while
amino acid numbers for the last residue in each row are indicated on the right. Lysine
and arginine residues present in AP-2 a.-02 but not on the corresponding AP-1 and
AP-3 subunits are highlighted in red. These residues were mutated to either aspartate
or glutamate (see Fig. 5.2). Asterisks indicate residues that were also mutated to
alanine (see Fig. 5.3). Red asterisks denote AP-2 a residues K297 and R340, which
were found to be required for the interaction with HIV-1 Nef (see Fig. 5.3).

(A) Protein sequence alignment of the trunk domains of human AP-1 y (y1 isoform;
accession number AAH36283), AP-2 a (aC isoform; accession number 094973), and
AP-3 & (accession number AAC51761).

(B) Protein sequence alignment of human AP-1 o1 (olA isoform; accession number
AAA37243), AP-2 02 (accession number AAP36470), and AP-3 03 (03A isoform;
accession number EAW48952).
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FIG. 5.2: Y3H analysis of the interaction between HIV-1 Nef and AP-2 a-02

hemicomplexes containing substitutions for nonconserved basic residues

Lysine and arginine residues in AP-2 a-02 that are not conserved in the homologous
AP-1 y-01 and AP-3 8-03 hemicomplexes were mutated, either individually or in
combination, to glutamate or aspartate (see Fig. 5.1). The resulting ai-02 constructs
were then tested for their ability to interact with HIV-1 Nef and the cytosolic tail of
mouse tyrosinase using the Y3H assay. To test whether mutation of the o subunits
resulted in self-activation, these constructs were also paired with o1, a combination

that under normal circumstances would not bind to either Nef or tyrosinase.

(A) Plasmids used in the Y3H assays. Nef and the tyrosinase cytosolic tail (ct) were
expressed as GAL4BD fusion proteins from pBridge, along with either ol or 02; a

was expressed as a GAL4AD fusion protein from pGADT7.

(B) Y3H assay results for the seventeen o mutants. Growth of yeast on media lacking
histidine (—His), or lacking histidine and supplemented with 1 mM of 3-amino-1,2,4-
triazole (+3AT), is indicative of an interaction with Nef or the tyrosinase cytosolic tail

at two levels of stringency.

(C) Y3H assay result for the 02 RK124,130EE mutant. Interactions were analyzed as

described above.
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FIG. 5.2
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The remaining mutants, all of which were generated by alteration of the o subunit,
interacted with both Nef and tyrosinase. To determine whether these were genuine
interactions, each of the o mutants was tested for self-activation by substituting ol for
02 in the Y3H assay. Given that o and ol do not form a functional hemicomplex
(Page and Robinson, 1995), this adaptin subunit pair should not be able to bind either
Nef or tyrosinase, and should not be able to stimulate yeast growth on selective media
unless expression of the mutants results in self-activation. When combined with o1,
none of the o mutants induced yeast growth on the —His plates (Fig. 5.2), indicating
that (i) the mutations do not cause self-activation, (ii) the observed interactions
between mutant a-02 hemicomplexes and the ligands are genuine, and (iii) the only
non-conserved arginine and lysine residues on the a-02 hemicomplex that potentially

contribute to Nef binding are a K295, K297, K298, and R340.

5.3.2 The a-adaptin K297 and R340 residues form a basic patch that is required
for the binding of Nef

In order to analyze the individual contributions of o K295, K297, K298, and R340 on
Nef binding, several additional constructs were made by mutating these residues to
alanine or glutamate; the new constructs were then used in the Y3H assay described
above (Fig. 5.3). As before, mutation of o R340 alone, or the combined mutation of
all three lysine residues impaired the ability of Nef to bind the a-02 hemicomplex
(Fig. 5.3). The individual mutation of oo K295 and K298 revealed that these residues
do not contribute to the interaction of Nef, while the alteration of oo K297 produced as
significant a defect in Nef binding as the mutation of all three lysine residues at once
(Fig. 5.3). Consistent with this finding, the double mutation of a K297 and R340
caused approximately the same decrease in Nef binding as the quadruple mutation of
a K295, K297, K298, and R340 (Fig. 5.3). Thus, o K297 and R340 were identified as
key residues for the interaction of a-02 with Nef. Although the mutation of a K297
and R340 to alanine decreased Nef binding (see the —His +3AT plates in Fig. 5.3),
changing these residues to glutamate had a more dramatic effect (Fig. 5.3), providing
further evidence that the coupling of Nef and AP-2 is at least partially dependent on
electrostatic interactions. All of the mutants involving o K297 and R340 bound to

tyrosinase with wild-type affinity in the presence of 02, while none bound to either
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FIG. 5.3: AP-2 a residues K297 and R340 are required for the interaction of the
0.-02 hemicomplex and HIV-1 Nef

The AP-2 a residues K295, K297, K298, and R340 were mutated, individually and in
combination, to alanine and glutamate (see Fig. 5.1). The effect of these mutations on
the binding of a-02 to HIV-1 Nef and the cytosolic tail of mouse tyrosinase were then
analyzed using the Y3H system, as shown in the figure. The discordant a.-o1 pair was

also included as a negative control. Interactions were interpreted as described in the

legend to Fig. 5.2B.
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FIG. 5.3
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Nef or tyrosinase in the presence of o1 (Fig. 5.3). These controls demonstrate that the
alteration of oo K297 and R340 specifically affects the ability of a-02 to interact with
Nef in the Y3H system. Interestingly, mapping of a K297 and R340 on the three-
dimensional crystal structure of AP-2 (Collins et al., 2002) shows that these residues
are brought into close proximity of each other by the folding of the a subunit (Fig.
5.4). The a K297 and R340 residues can therefore be described as a single basic

patch, which likely coordinates the binding of a negatively charged, acidic region of

Nef.
5.3.3 The AP-2 a K297 and R340 residues are required for direct binding of Nef

To determine whether the oo K297 and R340 residues were required for the direct
interaction of AP-2 and Nef, in vitro experiments were performed using recombinant
proteins expressed in bacteria. In previous chapters, the AP-2°°%F construct, which
lacks the C-terminal domain of u2 and the hinge and ear domains of a and B2, was
shown to bind Nef (Fig. 3.9 and 4.2). This construct (referred to in the accompanying
figure as AP-2°RE o wild-type [WT]) was mutated to generate AP-2°9RE o KR297,
340EE. SDS-PAGE analysis of the purified AP-2°°*F constructs, which contain a
GST-tag on the a-trunk domain and a Hise-tag on the B2-trunk domain, indicated that
the o KR297,340EE mutation did not affect the assembly of the AP-2°°%F complex
(Fig. 5.5A). However, GST pull-down assays showed that the o KR297,340EE
mutation markedly impaired the binding of Hise-Nef (Fig. 5.5B). Immunoblots using
either anti-Hise (Fig. 5.5B, top panel) or anti-Nef (Fig. 5.5B, bottom panel) antibodies
revealed that AP-2°RF o KR297,340EE had nearly the same affinity for the viral
protein as several negative controls. Thus, the o K297 and R340 residues are required

for the direct interaction of AP-2 with Nef.

5.3.4 The a-adaptin K297 and R340 residues are required for Nef-induced CD4

downregulation

Earlier, the downregulation of CD4 by Nef was shown to be dependent on AP-2 (Fig.
3.7, 4.4, and 4.5; Jin et al, 2005). Having already demonstrated that the o K297 and
R340 residues were required for the direct binding of AP-2 to Nef, the contribution of

these residues to the Nef-mediated downregulation of CD4 was evaluated next, using
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FIG 5.4: Location of & K297 and R340 on the three-dimensional structure of the

AP-2 complex

In both panels, the three-dimensional structure of AP-2 core (PBD ID numbers 1GW5
and 2VGL [Collins et al., 2002]) is shown, with the a, 2, u2, and 62 subunits drawn
in dark blue, green, , and , respectively. The polyphosphoinostide (PIP)
binding site on the o subunit is colored in , while the @ K297 and & R340
residues (including their side chains) are depicted in red. It should be noted that the a
K297 and a R340 residues referred to throughout this work (and highlighted in this
figure) correspond to o K298 and o R341 in the crystal structure of the AP-2 core,
due to a one residue difference between the a alleles used in the two studies. The

images were drawn with PyMOL (Delano, 2002) and annotated using Microsoft

PowerPoint.

(A) Surface representation of the AP-2 core complex.

(B) Magnified ribbon diagram of region surrounding o K297 and a R340.
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an RNAI and rescue approach. Others have shown that the depletion of AP-2 subunits
destabilizes the complex and inhibits the internalization of a subset of transmembrane
proteins from the plasma membrane, including the transferrin receptor (TfR) and CD4
(Huang et al., 2004; Janvier and Bonifacino, 2005; Jin et al., 2005; McCormick et al.,
2005: Motley et al., 2003; Motley et al., 2006).

Consistent with these results, the siRNA-mediated depletion of endogenous a-adaptin
in HeLa cells increased the amount of TfR and CD4 on the cell surface, as determined
by flow cytometry (Fig. 5.6A). The cytosolic tails of TfR and CD4 contain tyrosine-
and dileucine-based sorting signals, respectively, that under normal circumstances are
recognized by AP-2 for endocytosis from the plasma membrane (Motley et al., 2003;
Pitcher et al., 1999). The accumulation of TfR and CD4 on the cell surface following

the knockdown of a. expression, therefore, is indicative of impaired AP-2 function.

In an attempt to rescue the function of AP-2, cells depleted of endogenous a were
transfected with RN Ai-resistant versions of wild-type and KR297,340EE mutant .-
adaptin (referred to below as aR-WT and aR-KR297,340EE, respectively). The two
aR constructs were able to reduce the amount of TfR and CD4 on the cell surface to
appoximately normal levels (Fig. 5.6B). This demonstrated that both the aR-WT and
the aR-KR297,340EE constructs could rescue AP-2 function in regards to tyrosine-

and dileucine-based sorting at the cell surface.

The RNAI and rescue assay was then applied to HeLa cells expressing Nef and CDA4.
Treatment of cells with RNAi against ai-adaptin completely eliminated the ability of
Nef to downregulate CD4 from the plasma membrane (Fig. 5.6C). Importantly, the
transfection of a-depleted cells with the aR-WT construct restored the ability of Nef
to downregulate CD4, but expression of the aR-KR297,340EE construct did not (Fig.
5.6D). Immunoblot analysis of the transfected cells indicated that this disparity in Nef
function was not due to differences in the silencing of endogenous a, the expression
of the RNAi-resistant a constructs, or the expression of Nef itself (Fig. 5.6F). This in
vivo analysis thus demonstrates that the o K297 and R340 residues are specifically

required for the Nef-mediated downregulation of CD4.

236



FIG. 5.6: The AP-2 & K297 and R340 residues are necessary for Nef-mediated
downregulation of CD4

HeLa cells were transfected with siRNA oligos and DNA constructs over a period of
7 days, as described in the Materials and Methods (see Sections 2.6.3.4 - 2.6.3.6 and
Table 2.7). Control and a siRNA-treated cells were cotransfected with three DNA
plasmids: one expressing CD4, one lacking or expressing Nef, and one lacking or
expressing either an siRNA-resistant version of wild-type a-adaptin (aR-WT) or an
siRNA-resistant version of KR297,340EE mutant a-adaptin (aR-KR297,340EE). The
cells were then prepared for flow cytometry and immunoblotting. Cells prepared for
flow cytometry were either left unstained as a control for background fluorescence
(shaded curves in all plots) or stained with PE-conjugated anti-human TfR and

APC-conjugated anti-human CD4 antibodies.

(A) Depletion of ai-adaptin increases the cell surface expression of TfR and CD4. The
amount of TfR (left panel) and CD4 (right panel) on the plasma membrane of cells
left untreated (thin black lines) or treated with siRNA targeting ai-adaptin (thick black

lines) is shown.

(B) Both aR-WT and aR-KR297,340EE prevent the increase in cell surface TfR and
CD4 expression caused by o siRNA treatment. The amount of TfR (left panel) and
CD4 (right panel) on the plasma membrane of cells treated with o siRNA and then
transfected with an empty vector (thick black lines), a vector containing aR-WT

(blue lines), or a vector containing aR-KR297,340EE (red lines) is shown.

(C) The expression of Nef induces CD4 downregulation in control but not o siRNA-
treated cells. The amount of CD4 on the plasma membrane of cells that had not been
treated with siRNA (left panel) or had been treated with oo siRNA (right panel), and

that were either lacking Nef (green lines) or expressing Nef ( lines), is shown.

(D) Nef-induced CD4 downregulation is rescued by aR-WT but not by aR-KR297,
340EE in a siRNA-treated cells. The amount of CD4 on the surface of o siRNA-
treated cells that had been transfected with either aR-WT (left panel) or aR-KR297,
340EE (right panel), and were either lacking Nef (green lines) or expressing Nef

( lines) is shown.

237



FIG. 5.6
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(E) Bar graph depicting the results of three independent experiments for the rescue of
Nef-induced CD4 downregulation by aR-WT but not by aR-KR297,340EE [KREE].
Statistical analysis of the data from these experiments showed that Nef-mediated CD4
downregulation (expressed in terms of fold-downregulation [ratio of geometric means
in the absence and presence of Nef]) was 4.81 + 0.70 for control cells, 1.51 + 0.24*
for a siRNA-treated cells, 4.60 + 0.94 for o siRNA-treated cells expressing aR-WT,
and 1.50 + 0.40*f for a siRNA-treated cells expressing aR-KREE (mean + standard
error of the mean; n = 3). The symbols * and { indicate values that are significantly
different (P < 0.05) from those of control cells and a siRNA-treated cells expressing
aR-WT, respectively, as calculated by an analysis of variance followed by a two-tail

Dunnett’s test.

(F) Aliquots of transfected cells from all of the experimental groups were lysed and
subjected to SDS-PAGE, followed by immunoblotting (IB) with the antibodies shown
on the right. All of the cells were transfected with a plasmid encoding CD4, together
with plasmids and siRNA oligos indicated in the grid above the blots (wild-type [WT]
KR297,340EE [KREE]). Note that the anti-AP-2 o (100/2) antibody recognized both
endogenous isoforms of a-adaptin, aA and aC (apparent as an approximately 100
kDa doublet in which the upper band represents oA, while the lower band represents
aC [Ball et al., 1995]), as well as a nonspecific band at approximately 85 kDa. The
anti-AP-2 a (8/a) antibody, however, recognized only endogenous a.A-adaptin, since
it was raised against a protein fragment unique to that isoform. The siRNA-resistant,
V5-epitope-tagged aC rescue constructs were detected by both the AP-2 a (100/2)
and the anti-V5 antibodies. The anti-a-tubulin antibody was used as a loading control.

Numbers on the left indicate the positions of molecular mass markers (in kDa).
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FIG. 5.6, continued
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5.3.5 The CD4 tail, Nef, and the AP-2 a-02 hemicomplex assemble cooperatively
to form a CD4-Nef-AP-2 tripartite complex

Nef is believed to downregulate CD4 by binding to the cytosolic tail of the receptor
and linking it to the AP-2 complex, thereby accelerating the rate of CD4 endocytosis.
Although previous work has provided evidence for weak binary interactions between
Nef and CD4 (Rossi et al., 1996; Grzesiek et al., 1996; Presseur et al., 2001; Bentham
et al., 2003), Nef and AP-2 (Fig. 3.8, 3.9, 4.1, 4.2,4.3, 5.2, 5.3, and 5.6), and CD4 and
AP-2 (Honing et al., 2005), a tripartite complex involving all three components has
not yet been demonstrated. The possible formation of such a complex was analyzed
using a combination of Y2H, Y3H, and Y4H assays. Yeast were transformed with the
pBridge and pAD vectors, each of which contained two multiple cloning sites under
the control of independent promoters (Fig. 5.7A). Thus, it was possible to express up
to four proteins in the yeast system, each of which was targeted to the nucleus by the

presence of nuclear localization signals.

Using this system, the ability of Nef (expressed as a GAL4BD fusion protein) to bind
to the cytosolic tail of CD4 (expressed as a GAL4AD fusion protein) either alone or
in the presence of the AP-2 a and 02 subunits was tested (Fig. 5.7B). In the absence
of a and 02, Nef did not appear to interact with CD4. This result likely differed from
previous work due to the stringent requirements of the yeast system; only interactions
of sufficient strength and stability to promote yeast growth could be observed in the
assay. The individual expression of either a or 02 also failed to yield a detectable
interaction between Nef and CD4. However, when both a and 02 were expressed,
Nef bound to the CD4 cytosolic tail. The increased affinity of Nef for CD4, in the
presence of the a-02 hemicomplex, indicates that a CD4-Nef-AP-2 complex is formed

by cooperative assembly.

In order to test whether the assembly of the CD4-Nef-AP-2 complex is dependent on
binary interactions between its components, the Y4H assay was repeated with several
mutants (Fig. 5.7C). Mutations that are known to prevent binding of Nef to either
CD4 (Nef WL57,58AA) (Grzesiek et al., 1996) or AP-2 (Nef LL164,165AA and Nef
DD174,175AA) (Fig. 3.8, 3.9, 4.2, and 4.3) inhibited formation of the larger complex.
Expression of the oo KR297,340EE mutant, which earlier in the chapter was shown to
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FIG. 5.7: Cooperative assembly of a tripartite complex consisting of the CD4
cytosolic tail, full-length Nef, and the AP-2 a-02 hemicomplex, as demonstrated
by yeast hybrid assays

(A) Plasmids used in the Y2H, Y3H, and Y4H assays. In all assays, full-length HIV-1
Nef was expressed from pBridge as a GAL4BD fusion protein, while the cytosolic tail
(ct) of human CD4 was expressed from pAD as a GAL4AD fusion protein. In the
Y2H assay, no other proteins were expressed from these vectors; in the Y3H assay,
either 02-adaptin or aC-adaptin was expressed from pBridge or pAD, respectively;

and in the Y4H assay, both 02-adaptin and aC-adaptin were coexpressed.

(B) Y2H, Y3H, and Y4H analyses of the interaction between GAL4BD-Nef and
GAL4AD-CD4 in the absence or presence of one or both components of the a-02
hemicomplex. The plasmids used in the yeast hybrid experiments are noted in to the
left of the panel, with the pBridge (pBr)-based vectors in the first column and the
pAD-based vectors n the second column. Row 1 corresponds to the Y2H assay, rows
2 and 3 correspond to the Y3H assays, and row 4 corresponds to the Y4H assay.
Yeast from all assays were seeded onto +His and —His plats at increasing levels of
OD. Yeast grown on the —His plates indicates an interaction between GAL4BD-Nef
and GAL4AD-CDA4.

(C) Y4H analysis of the effect of several Nef and o mutants on the interaction of

GAL4BD-Nef and GAL4AD-CD#4 in the presence of the a-02 hemicomplex.
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FIG. 5.7
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be unable to interact with Nef (Fig. 5.3 and 5.5), yielded the same result. In contrast,
mutation of three Nef motifs not required for binding either CD4 or AP-2 (Nef G2A,
Nef EEEE62-65AAAA, and Nef PP72,75AA) (Grzesiek et al., 1996; Presseur et al.,
2001) did not significantly affect formation of the complex. Thus, binary interactions
between CD4, Nef, and AP-2 are required for the assembly of the CD4-Nef-AP-2

tripartite complex.
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5.4 Discussion

5.4.1 Chapter overview

In the two previous chapters, Nef was shown to bind directly to AP-2 in a manner that
depended on the well-conserved dileucine and diacidic motifs of the viral protein. In
this chapter, a potential binding site for the Nef diacidic motif on AP-2 was identified.
This site, which is comprised of two basic residues from a-adaptin, K297 and R340,
is required for the interaction of Nef and AP-2 and the Nef-mediated downregulation
of CD4. The Nef diacidic motif and the a-adaptin basic patch were also found to be
essential for the cooperative assembly of a CD4-Nef-AP-2 tripartite complex. Taken
together, these results begin to define a binding surface for Nef on AP-2, confirm the
critical role of AP-2 in the Nef-mediated downregulation of CD4, and provide the

first experimental evidence describing the formation of a CD4-Nef-AP-2 complex.

5.4.2 Characteristics of the a-adaptin basic patch

Y3H data presented earlier demonstrated that the Nef diacidic motif was required for
the interaction between Nef and AP-2, but not for the interactions between Nef and
the homologous AP-1 and AP-3 complexes (Fig. 4.3). Separately, GST pull-down
assays showed that the binding of Nef and AP-2 was at least partially dependent on
electrostatic interactions (Fig. 4.2). These results suggested that the Nef diacidic motif
interacts with basic residues on the surface of AP-2 that are not present on either AP-1
or AP-3. A sequence alignment of the relevant portions of the AP-1, AP-2, and AP-3
complexes revealed 21 lysine and arginine residues that fit this description (Fig. 5.1).
Of these, mutation of o K297 and R340 inhibited Nef binding (Fig. 5.2, 5.3, and 5.5)
and prevented the Nef-mediated downregulation of CD4 (Fig. 5.6C-F). In contrast,
these residues were dispensable for AP-2 functions that do not depend on the presence
of a diacidic motif in the ligand, such as the binding of tyrosinase (Fig. 5.3) and the
maintenance of steady-state levels of TfR and CD4 on the plasma membrane (Fig.
5.6A and B). Thus, a K297 and R340 define a previously uncharacterized feature on
AP-2 that is required for the engagement of Nef, likely via the diacidic motif of the

viral protein.

The K297 and R340 residues of a-adaptin are part of a large, surface-exposed basic
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patch that rivals in size the polyphosphoinositide binding site near the N-terminus of
the protein (Fig. 5.8; Collins et al., 2002). K297 itself is contained within a flexible
loop between helices 14 and 15 of the a solenoid, while R340 is positioned nearby on
a loop between helices 16 and 17 (Fig. 5.4 and 5.8; Collins et al., 2002). Interestingly,
the basic patch that o K297 and R340 contribute to is largely absent in the AP-1 and
AP-3 complexes. Indeed, the AP-1y and AP-3 § subunits not only lack residues that
are homologous to a K297 and R340, but they are also devoid of several other amino
acids that make up the a-adaptin basic patch, such as K295 and K298 (Fig. 5.1A;
Collins et al., 2002; Heldwein et al., 2004).

Although the basic patch appears to be a unique feature of AP-2, many of the residues
in this region are conserved among a-adaptins of the metazoan lineage (Fig. 5.9). The
K295, K297, K298, and R340 residues, for instance, are found in both the oA and aC
isoforms of human oa-adaptin, as well as in the a.-adaptins of a variety of other animal
species, including mice, frogs, worms, and fruit flies (Fig. 5.9; see Chapter 3 for more
information regarding the activity of Nef in Drosophila cells). Since Nef-encoding
immunodeficiency viruses only infect primates, the phylogenetic conservation of the

ai-adaptin basic patch suggests that it has a more general function.

One possibility is that the basic patch is involved in the recognition of acidic clusters,
either alone or in combination with other sorting signals. As discussed in the previous
chapter, furin is one of several transmembrane proteins that has such an acidic cluster
in its cytosolic tail (reviewed in Bonifacino and Traub, 2003). In conjunction with
sequences resembling tyrosine-based and dileucine-based sorting signals, the acidic
cluster directs furin to the TGN (Jones et al., 1995; Schifer et al., 1995; Voorhees et
al., 1995) and to the basolateral membrane of polarized epithelial cells (Simmen et al.,
1999). The intracellular movement of furin appears to be aided by the association of
its acidic cluster with phosphofurin acidic cluster sorting protein-1 (PACS-1), which
in turn interacts with the AP-1 and AP-3 complexes (Crump et al., 2001; Wan et al.,
1998). Others have shown that, in the absence of all other sorting signals, the acidic
cluster is also able to promote the clathrin-mediated endocytosis of furin (Lubben et
al., 2007; Voorhees et al., 1995), even though PACS-1 does not bind to AP-2 (Crump
et al., 2001). These results suggest that the acidic cluster engages AP-2 in a manner

that is independent of PACS-1. Given that the a-adaptin basic patch is present only in
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FIG. 5.8: The a K297 and R340 residues are part of a large basic patch on the
surface of AP-2

(A) Surface representation of the three-dimensional structure of the AP-2 core (PDB
ID numbers IGWS5 and 2VGL [Collins et al., 2002]), with the same color conventions
as described in the legend to Fig. 5.4. Relative to the image shown in Fig. 5.4A, this
rendering of the AP-2 core has been rotated along the x-axis towards the reader by

approximately 60°.

(B) Surface representation of the AP-2 core, in the same orientation as depicted in the
previous panel, but colored according to electrostatic potential (contoured as red to
blue from -74 kiloTesla [kT]/e to +74 kT/e). The images in panels A and B were both
drawn using PyMOL (DeLano, 2002) and annotated with Microsoft Powerpoint.
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FIG. 5.8
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FIG. 5.9: Phylogenetic conservation of a-adaptin basic residues involved in the

binding of HIV-1 Nef

An amino acid sequence alignment of a-adaptins from different metazoan species is
shown. The alignment was carried out with the Clustal W2 program used to generate
Fig. 5.1. The sequence shown on top corresponds to residues 292-341 of the human
aC isoform, and includes the basic residues identified in this chapter as critical for
Nef binding. AP-2 aC residues analyzed in the experiments depicted in Fig. 5.3 are
indicated in red. Asterisks above the sequence alignment denote the key aC residues
K297 and R340, and homologous residues in a-adaptins from other species. Species
abbreviations and accession numbers are as follows: Hs (Homo sapiens; 094973 for
the aC isoform and 095782 for the aA isoform), Bt (Bos taurus; QOVCKS), Rn
(Rattus norvegicus; P18484), Mm (Mus musculus; P17427), Gg (Gallus gallus;
NP_001012941), XI (Xenopus laevis; AAH91638), Dr (Danio rerio; XP_001922436),
Ta (Trichoplax adhaerens; EDV28677), Aa (Aedes aegypti; XP_001649235), Cq
(Culex quinquefasciatus; XP_001868082), Ag (Anopheles gambiae; Q7QG73), Dm
(Drosophila melanogaster; NP_995607), Tc (Tribolium castaneum; XP_971368), Ci
(Ciona intestinalis; XP_002119553), Ce (Caenorhabditis elegans; AAA68332), Bm
(Brugia malayi; XP_001892909), Nv (Nematostella vectensis; XP_001641214).
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AP-2, it is tempting to speculate that the furin acidic cluster interacts directly with
AP-2 via the basic patch and indirectly with AP-1 and AP-3 via PACS-1. Yeast hybrid
and in vitro binding assays, similar to those described in this chapter, could be used to
test whether the a-adaptin basic patch does in fact interact with the acidic clusters

found in furin and other transmembrane proteins.

If, however, these experiments reveal that the basic patch on a-adaptin does not have
any endogenous binding partners, then this site would be an appealing target for the
pharmacologic inhibition of Nef function. The use of a rationally designed drug that
binds to the ai-adaptin basic patch with high affinity ought to disrupt the interaction
between Nef and AP-2 (Fig. 5.2, 5.3, and 5.5) and prevent the downregulation of CD4
(Fig. 5.6). Because Nef-induced CD4 downregulation has been identified as a critical
determinant of viral pathogenesis and disease progression (reviewed in Foster and
Garcia, 2008; Lama, 2003; Levesque et al., 2004), interfering with this pathway may
be expected to have beneficial consequences for individuals infected with HIV-1. In
addition, the binding of a small pharmacological agent to the a-adaptin basic patch is
unlikely to perturb the normal role of AP-2 in the cell, as this region of the complex is
not involved in the endocytosis of cargo proteins with tyrosine- and dileucine-based

sorting signals (Fig. 5.6).

5.4.3 Cooperative assembly of a CD4-Nef-AP-2 tripartite complex

The Y4H results shown earlier in the chapter describe, for the first time, the formation
of a CD4-Nef-AP-2 tripartite complex (Fig. 5.7). This complex is comprised of the
CD4 cytosolic tail, full-length Nef, and the o and 62 subunits of AP-2 (Fig. 5.7). The
detection of the CD4-Nef-AP-2 complex is dependent on the known determinants of
bimolecular interactions between CD4 and Nef (i.e., the Nef WL57,58 hydrophobic
pocket) and between Nef and AP-2 (i.e., the Nef LL164,165 dileucine and DD174,175
diacidic motifs and the o KR297,340 basic patch) (Fig. 5.7). Furthermore, detection
of the complex is independent of Nef residues that do not participate in binding to
either CD4 or AP-2 (i.e., G2 myristoylation site, the EEEE62-65 acidic cluster, and
the PP72,75 polyproline motif) (Fig. 5.7).

Importantly, these results correlate with the available functional data. Mutations that

disrupt the formation of the CD4-Nef-AP-2 complex also prevent downregulation of
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CD4 from the plasma membrane (Fig. 3.3, 3.4, 4.4, 4.5, and 5.6; Aiken et al., 1994;
Aiken et al., 1996; Stove et al., 2005; Swigut et al., 2000), while mutations that do not
affect assembly of the complex are not essential for CD4 downregulation (Fig. 3.3
and 3.4; Aiken et al., 1994; Aiken et al., 1996; Mangasarian et al., 1999; Swigut et al.,
2000). The only exception to this correlation is the Nef G2A mutant, which fails to
downregulate CD4 from the cell surface because it is not myristoylated, and therefore
cannot associate with the inner leaflet of the plasma membrane (Fig. 3.3; Bentham et
al., 2006; Kaminchick et al., 1991; Peng and Robert-Guroff, 2001; Stove et al., 2005;
Yu and Felsted, 1992). However, myristoylation of Nef is not necessary for binding
either CD4 or AP-2 in vitro (Fig. 3.9, 4.2, and 5.5; Grzesiek et al., 1996; Presseur et
al., 2001). In a similar manner, the myristoylation of Nef should not be required for its
incorporation into the CD4-Nef-AP-2 complex described here, as all the proteins in
the Y4H experiments are targeted to the yeast nucleus by the presence of heterologous
nuclear localization signals (see Materials and Methods, Section 2.4). The correlation
between residues that are important for assembly of the CD4-Nef-AP-2 complex and
the downregulation of CD4 underscores the biological significance of the tripartite

complex.

In T cells, the majority of CD4 can be found at the plasma membrane in a complex
with the protein tyrosine kinase Lck (Pelchen-Matthews et al., 1992; Veillete et al.,
1988; reviewed in Oldridge and Marsh, 1998). In this complex, the CD4 cytosolic tail
and the N-terminus of Lck form a folded zinc clasp structure, which obscures a region
of CD4 that is bound by Nef and required for downregulation of the receptor (Bandres
et al., 1995; Gratton et al., 1996; Grzesiek et al., 1996; Kim et al., 2003; Salghetti et
al., 1995). Previous studies have suggested that Nef induces the dissociation of CD4
and Lck (Kim et al., 1999; Salghetti et al., 1995), although the mechanism by which
Nef does so is poorly understood. Interestingly, a Nef mutant lacking the DD174,175
diacidic motif, which is now known to be critical for the binding of AP-2 (Fig. 4.1,
4.2 and 4.3) and assembly of the CD4-Nef-AP-2 complex (Fig. 5.7), was found to be
defective in promoting the dissociation of CD4 and Lck (Kim et al., 1999). Thus, the
establishment of the tripartite complex may either induce CD4 to separate from Lck,
or prevent it from reassociating with the membrane-anchored kinase. This would then
allow Nef to internalize CD4 from the cell surface and direct the receptor towards

lysosomes for eventual degradation (Aiken et al., 1994; Rhee et al., 1994).
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The assembly of the CD4-Nef-AP-2 complex is consistent with the previous proposal
that Nef links the cytosolic tail of CD4 to AP-2 (Greenberg et al., 1997; Greenberg et
al., 1998a; reviewed in Oldridge and Marsh, 1998). In addition, the data shown here
indicates that the a.-02 hemicomplex promotes the interaction of Nef and the CD4 tail
(Fig. 5.7B). Thus, the formation of the CD4-Nef-AP-2 complex involves cooperative
interactions among its components. One possible explanation for this cooperativity is
that the binding of AP-2 to Nef induces a conformational change in the viral protein
that increases its affinity for CD4. In this model, AP-2 does not make direct contact
with the CD4 tail. Instead, Nef serves as a physical link between the receptor and the
clathrin adaptor. An alternative explanation is that each component of the CD4-Nef-
AP-2 complex makes simultaneous contact with the other two, thereby enhancing the
overall stability of the tripartite complex. This model requires that both Nef and AP-2
bind to the CD4 tail directly and at the same time. Detailed biochemical and structural
studies will be needed to distinguish between these models, and to identify all the

determinants of assembly for the CD4-Nef-AP-2 complex.

The observation of a CD4-Nef-AP-2 complex is not without precedent, as Nef has
previously been shown to engage in cooperative interactions with other receptors and
AP complexes. For example, the binding of HIV-1 Nef to the cytosolic tail of MHC-I
increases the affinity of a tyrosine-like motif in this tail for the ul subunit of AP-1,
thus stabilizing the assembly of a MHC-I-Nef-AP-1 complex (Noviello et al., 2008;
Wonderlich et al., 2008). Similarly, the binding of SIV Nef to the TCR-associated
CD3-C chain increases its affinity for AP-2, leading to the formation of a CD3-C-Nef-
AP-2 complex (Swigut et al., 2003). These cooperative interactions enable Nef to
reduce the expression of MHC-I and TCR-CD3 on the plasma membrane (Noviello et
al., 2008; Swigut et al., 2003; Wonderlich et al., 2008). Together with the Y4H data
shown here, these results indicate that the establishment of cooperative interactions
with receptors and adaptors is a general feature of Nef that underlies its effect on host

cell protein trafficking pathways.
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Chapter 6:

Discussion
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6.1 Abstract

This chapter is divided into four major sections (6.2 - 6.5). The first of these sections
(6.2) summarizes the major findings of this thesis. The next two sections (6.3 and 6.4)
describe ongoing and future work, respectively. Ongoing experiments are focused on
the identification of the Nef dileucine binding site on AP-2, while future experiments
could either explore how this interaction affects the surface-expression of endogenous
receptors or the postendocytic fate of CD4. Some concluding remarks are provided in

the final section of this thesis (6.5).
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6.2 Summary of results

The primary goal of this thesis was to determine how HIV-1 Nef downregulates CD4
(see Section 1.9). Previous work on this topic had produced conflicting results; some
studies favored an endocytic model of downregulation, while other studies favored an
intracellular retention model (see Section 1.8). According to the endocytic model, Nef
connects CD4 to AP-2 at the plasma membrane, thereby accelerating the rate at which
the receptor is internalized from the cell-surface. In contrast, the intracellular retention
model claimed that Nef uses either AP-1 or AP-3 to prevent newly synthesized CD4
from reaching the plasma membrane. Both models agree that Nef ultimately induces

the transport of CD4 to lysosomes, where it is degraded (see Section 6.4).

A variety of cell and molecular biology assays were used to distinguish between these
contrasting models. First, a novel CD4-Nef downregulation system was constructed in
Drosophila S2 cells (Fig. 3.1, 3.2, 3.3, and 3.4). The RNAi-mediated depletion of host
cell proteins in this heterologous system showed that clathrin and AP-2, but not AP-1
and AP-3, were required for CD4 downregulation (Fig. 3.5 and 3.6; Table 3.1). RNAi
knockdowns in human HeL a cells later confirmed these results (Fig. 3.7). Yeast three-
hybrid and GST pull-down experiments were then used to demonstrate a robust, direct
interaction between Nef and the a-02 hemicomplex of AP-2 (Fig. 3.8 and 3.9). This
interaction was found to depend on the Nef dileucine motif, which is essential for the

downregulation of CD4 (Fig. 3.3, 3.4, 3.8, and 3.9).

Subsequent experiments identified a second motif on Nef required for the interaction
with AP-2. This motif, which conforms the [D/E]D consensus sequence, is strongly
conserved among HIV-1 Nef alleles, and is necessary for both AP-2 binding and CD4
downregulation (Fig. 4.1, 4.2, 4.4, 4.5). Yeast three-hybrid assays showed that the Nef
diacidic motif was dispensable for binding both AP-1 and AP-3, suggesting that these
clathrin adaptors do not significantly contribute to the modulation of CD4 expression
(Fig. 4.3). Yeast three-hybrid assays were also used to identify a prospective binding
site for the Nef diacidic motif on the surface of AP-2 (Fig. 5.1, 5.2, 5.3, and 5.4). GST
pull-downs confirmed that this site, a basic patch on the a-adaptin trunk domain, was
required for the interaction between Nef and AP-2 (Fig. 5.5). RNAi1 knockdown and

rescue assays were then used to show that, like the Nef diacidic motif, the a-adaptin
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basic patch is critical for the downregulation of CD4 (Fig. 5.6). Finally, a novel yeast
four-hybrid assay revealed that CD4, Nef, and AP-2 interact simultaneously to form a
tripartite complex, the assembly of which depends on the Nef dileucine and diacidic
motifs and the a-adaptin basic patch (Fig. 5.7). The results from all these experiments
uniformly support the endocytic model of downregulation, whereby Nef uses AP-2 to

direct CD4 from the plasma membrane towards lysosomes (Fig. 6.1).
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6.3 Ongoing work: identification of the Nef dileucine binding site on AP-2

As described in the last section, two new determinants of interaction between Nef and
AP-2 were identified during the course of this work: the Nef diacidic motif and the o-
adaptin basic patch. However, these motifs are not sufficient to mediate the binding of
Nef and AP-2. Another required element of this interaction is the Nef dileucine motif
(Fig. 3.8 and 3.9). Previous attempts to identify the binding site of the Nef dileucine
motif on the surface of AP-2 yielded ambiguous results; photoaffinity labeling assays
indicated that leucine residues bound to 2, while yeast two-hybrid assays suggested
that u2 was involved (Craig et al., 2000; Greenberg et al., 1998). Unfortunately, these
interactions appeared to be of very low affinity, and may have been the result of non-
specific binding. In contrast, the yeast three-hybrid and GST pull-down experiments
shown here indicate that the Nef dileucine motif binds with relatively high affinity to
the a-02 region of the AP-2 core (Fig. 3.8, 3.9, 4.1, 4.2, and 4.3).

Based on these findings, an effort was made to locate the specific binding site of the
Nef dileucine motif on AP-2. This motif (ENTSLL in the NL4-3 variant) conforms to
the [D/E]xxxL[L/I] consensus sequence for dileucine motifs found in a large number
of transmembrane proteins, including tyrosinase (ERQPLL). An important feature of
these dileucine motifs is the presence of an acidic residue upstream of the leucine pair
(reviewed by Bonifacino and Traub, 2003). In the case of HIV-1 Nef, this residue is
almost always a glutamate (Fig. 4.1). Substitution of the glutamate with a basic amino
acid, such as lysine, significantly impairs the ability of Nef to downregulate CD4 (see
Coleman et al., 2006). This suggests that the acidic portion of the Nef dileucine motif
binds to a basic patch on the surface of the a-62 hemicomplex. Indeed, the binding of
Nef to AP-2 probably involves the formation of salt bridges, as strong ionic solutions
disrupt the interaction (Fig. 4.2). Furthermore, the region on AP-2 that binds the Nef
dileucine motif is likely to be conserved among the AP complexes, because mutation
of either the glutamate or the leucines inhibits the interaction of Nef with y-ol, a-02,

and 0-03 (Fig. 3.8, 4.1, and 4.3; Janvier et al., 2003).

These considerations were taken into account while devising a strategy to identify the
AP-2 residues that coordinate binding of the Nef dileucine motif. The first step of this

strategy was to perform a sequence alignment of y-o1, a-02, and §-03, and determine
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which basic amino acids were conserved among all three adaptin hemicomplexes (see
Fig. 6.2). Conserved arginine and lysine residues in the oo and 02 subunits were then
changed to aspartate or glutamate, and yeast three-hybrid assays were used to test the
resulting mutants for a loss of binding to wild-type Nef (ENTSLL) (Fig. 6.3, 6.4, 6.5).
The same o and 02 mutants were then tested for their ability to interact with a version
of Nef that had its glutamate residue changed to lysine (KNTSLL) (Fig. 6.3, 6.4, 6.5).
These assays were designed to show which AP-2 residues normally interact with the
Nef glutamate; changing the relevant a-02 residues from bases to acids should inhibit
their binding of Nef ENTSLL but promote the binding of Nef KNTSLL, as the latter
condition would act as a charge-swap and reconstitute the necessary salt bridge. Only
one AP-2 residue, o R21, satisfied these requirements (Fig. 6.4). Indeed, the o R21D
mutant displayed decreased affinity for Nef ENTSLL but markedly increased affinity
for Nef KNTSLL, when compared to wild-type a-adaptin. This strongly suggests that
o R21 normally binds to the Nef glutamate. Similar assays were performed with wild-
type and mutant tyrosinase, in place of Nef, to confirm that o R21 binds to the acidic

portion of dileucine motifs in general (Fig. 6.4 and 6.5).

Because the hydrophobic and acidic portions of dileucine motifs are separated by only
three amino acids, the AP-2 residues that bind the leucine pair are probably located in
the vicinity of o R21. Mapping of o R21 on the three-dimensional crystal structure of
AP-2 indicates that it lies at the interface of the o and 02 subunits (Fig. 6.6; Collins et
al., 2002). Thus, residues from either subunit might be responsible for the binding of
the two leucines. With this in mind, several amino acids on o and 62 were selected as
potential leucine-binding partners, based on their proximity to a R21 and their strong
conservation among the AP complexes (see Fig. 6.6 and 6.7). These amino acids were
then changed to alanine or aspartate, and the resulting mutants were tested for a loss
of binding to Nef ENTSLL using yeast three-hybrid assays (Fig. 6.8). The mutation of
02 A63, 02 V88, and 02 L103 abolished the interaction between AP-2 and Nef, while
the alteration of 02 E89, 02 E100, and 62 D102 resulted in binding defects that were
nearly as profound. Thus, these residues may interact with the leucines in Nef. Similar
data were obtained when tyrosinase ERQPLL was substituted for Nef, suggesting that
the 02 residues mentioned above bind to the hydrophobic segment of other dileucine

motifs. However, the AP-2 crystal structure indicates that this area of 02 is normally
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FIG. 6.2: Identification of basic residues in the AP-2 a-02 hemicomplex that are

conserved with the homologous subunits of AP-1 and AP-3

Sequence alignments of the AP-1 y-ol, AP-2 a-02, and AP-3 8-s3 hemicomplexes
were performed using the ClustalW2 program (available at http://www.clustal.org/),
as previously described (Fig. 5.1). Amino acid numbers for the first residue in each
row are indicated on the left, while amino acid numbers for the last residue in each
row are indicated on the right. Lysine and arginine residues that are present in AP-2
a-02, and conserved among the corresponding AP-1 y-o1 and AP-3 8-s3 subunits, are

highlighted in red. These residues were mutated to either aspartate or glutamate (see
Fig. 6.4 and 6.5). The red asterisk denotes AP-2 a residue R21, which was found to

bind the acidic portion of dileucine sorting signals (see Fig. 6.4).

(A) Protein sequence alignment of the trunk domains of human AP-1 y (y1 isoform;
accession number AAH36283), AP-2 a (aC isoform; accession number 094973), and
AP-3 & (accession number AAC51761).

(B) Protein sequence alignment of human AP-1 o1 (olA isoform; accession number
AAA37243), AP-2 02 (accession number AAP36470), and AP-3 03 (03A isoform;
accession number EAW48952).
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FIG. 6.2
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FIG. 6.3: Plasmids used for the Y3H assays shown in this chapter

The pBridge and pGADT7 plasmids used in the yeast three-hybrid assays described in
this chapter are shown here. The following constructs were expressed from pBridge as
GAL4BD fusion proteins: wild-type HIV-1 Nef (ENTSLL), mutant Nef (KNTSLL),
wild-type mouse tyrosinase (ERQPLL), and mutant tyrosinase (KRQPLL). Wild-type
and mutant versions of 02-adaptin were also expressed from pBridge. The pGADT7
plasmid was used to express GAL4AD fusions of wild-type and mutant a-adaptin. In
some cases, the multiple cloning sites of one or both vectors were left empty for use
as controls. Yeast were transformed with pairs of the pBridge and pGADT?7 plasmids
and plated on selective media as previously described (see Section 2.4). Growth of the
yeast on media lacking histidine (—His), or lacking histidine and supplemented with 3
mM of 3-amino-1,2,4-triazole (+3AT) is indicative of an interaction between the o-

02 hemicomplex and either Nef or tyrosinase at two levels of stringency.
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FIG. 6.3
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FIG. 6.4
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FIG. 6.5: Y3H analysis of the 2 mutants: role of the conserved, basic residues in

binding the acidic portion of dileucine motifs

Lysine and arginine residues in AP-2 02 that are conserved in the homologous AP-1
ol and AP-3 o3 subunits were mutated to aspartate or glutamate, combined with wild
type a-adaptin, and used in yeast three-hybrid assays to test for interactions with Nef
ENTSLL, Nef KNTSLL, tyrosinase ERQPLL, tyrosinase KRQPLL, and empty vector
(as described in the legend to Fig. 6.4). The mutation of several 02 residues, including
R15, caused loss of binding to both Nef ENTSLL and tyrosinase ERQPLL. However,
these mutants failed to bind either Nef KNTSLL or tyrosinase KRQPLL, precluding

their assignment as ligands of dileucine sorting signals.
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FIG. 6.5
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FIG. 6.6: Location of a R21 and adjacent residues on the crystal structure of the

AP-2 complex

(A) Ribbon diagram of the a-02 hemicomplex (PDB ID numbers IGW5 and 2VGL
[Collins et al., 2002]) depicting the location of the @ R21 residue. For clarity, only the
a and 02 subunits of the AP-2 core are shown, with the o subunit drawn in dark blue
and the 02 subunit in . The a R21 residue (including its side chain) is colored in
red. The locations of @ K297 and & R340, also colored in red, are provided as points

of reference.

(B) Ribbon diagram of the a-02 hemicomplex, with the locations of several candidate
residues that might bind the hydrophobic portion of dileucine sorting signals. Only the
portion of the a-02 hemicomplex that lies within the dashed box of panel A is shown.
As in panel A, the o subunit is drawn in dark blue; the 62 subunit is colored in ;
and the o R21, o K297, and oo R340 residues are shaded red. The candidate leucine-

binding residues (and their side chains) are depicted in
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FIG. 6.7: Sequence conservation of &-02 residues potentially involved in binding

the hydrophobic portion of dileucine sorting signals

Sequence alignments of the AP-1 y-ol, AP-2 a-02, and AP-3 8-s3 hemicomplexes
were performed as described in the legend to Fig. 6.2. The position of the first amino
acid in each row is indicated by the number on the left, while the position of the last
amino acid in each row is indicated by the number on the right. Several a.-02 residues
were identified as leucine-binding candidates, based on their physical proximity to o
R21 (see Fig. 6.6) and their conservation among the homologous y-o1 and §-03 hemi-
complexes. These residues are highlighted in , and were mutated prior to their
incorporation in a yeast three-hybrid assay (see Fig. 6.8). The asterisks denote
02 V88 and 02 L103, which were shown to be critical for binding the Nef, tyrosinase,
and CD4 dileucine motifs (see Fig. 6.8 and Kelly et al., 2008).

(A) Protein sequence alignment of the trunk domains of human AP-1 y (y1 isoform;
accession number AAH36283), AP-2 a (aC isoform; accession number 094973), and
AP-3 & (accession number AAC51761).

(B) Protein sequence alignment of human AP-1 o1 (olA isoform; accession number
AAA37243), AP-2 02 (accession number AAP36470), and AP-3 03 (03A isoform;
accession number EAW48952).
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FIG. 6.8: Y3H analysis of the &-02 residues potentially involved in binding the

hydrophobic portion of dileucine motifs

As described in the legend to Fig. 6.7, a small number of a-02 residues were chosen,
based on their physical proximity to oo R21 and their conservation among the related
v-ol and 6-03 hemicomplexes, as candidates for binding the hydrophobic portion of
dileucine-type sorting signals. These residues were then mutated to alanine, aspartate,
or serine, and the resulting constructs were incorporated into the standard yeast three-
hybrid assay. Each mutant was tested for loss of binding to wild-type Nef (ENTSLL)
and wild-type tyrosinase (ERQPLL). An empty vector condition, in which neither Nef
nor tyrosinase were expressed, was included as before (Fig. 6.4 and 6.5). Pairing the
a-02 mutants with empty vectors tests these constructs for self-activation, which may
otherwise be interpreted as false-positives. In the top panel, the positive control shows
the interaction between Nef ENTSLL and wild-type a-02, while the negative control
represents the interaction between Nef ENTSAA (i.e., Nef LL164,165AA) and wild-
type a-02. Similar positive and negative controls were used for the middle panel, but
tyrosinase ERQPLL was substituted for Nef ETNSLL, and tyrosinase ERQPAA (i.e.,
tyrosinase LL517,518AA) was substituted for Nef ENTSAA. Unlike the Y3H assays
shown earlier in this chapter, the positive control for the bottom (empty vector) panel
was a combination of a-02 with empty pBridge, while the negative control combined
empty pGADT7 and empty pBridge (these controls were included to rule out spurious
growth that might have been caused by the vector backbones). Mutation of several 62
residues (particularly A63, V88, and L103) inhibited binding with Nef and tyrosinase,
suggesting that these amino acids either interact with the dileucine moiety directly, or
are adjacent to the dileucine binding site. Mutation of several other 62 residues (such
as E89, E100, and D102) also impair binding with Nef and tyrosinase, although to a
somewhat lesser degree. In general, binding of tyrosinase to a-02 was more sensitive
to mutations of the hemicomplex than Nef. This might be due to subtle differences in
their respective dileucine binding sites, or the greater overall affinity of Nef for AP-2

(as demonstrated in Fig. 5.2).
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occluded by the N-terminus of the B2 subunit (Fig. 6.9; Collins et al., 2002). Thus, in
order for these 02 residues to participate in the binding of dileucine signals, the AP-2
core would have to undergo a conformational change. Such a rearrangement might be
triggered by phosphorylation of the 32 N-terminus, which has previously been shown
to promote the internalization of proteins containing dileucine sorting signals from the
cell-surface (see Huang et al., 2003). Additional experiments will be needed to verify
that the 02 residues identified here bind dileucine signals. These experiments could be
variations of the GST pull-downs and RNA1 rescue assays described earlier (Fig. 5.5
and 5.6). Much more information, though, would be provided by a crystal structure of

the AP-2 core bound to a dileucine ligand.

Several months after completion of the yeast three-hybrid assays, the crystal structure
of AP-2 in complex with a phosphorylated version of the CD4 dileucine sorting signal
was solved and published (Kelly et al., 2009; see Section 1.3 for a brief description of
CD4 phosphorylation and endocytosis). This crystal structure confirmed many of the
observations made using the yeast three-hybrid system, including the role of o R21 in
binding the acidic portion of dileucine motifs, and the role of 62 V88 and 02 L103 in
binding the hydrophobic portion (Fig. 6.10; Kelly et al., 2009). Four other o2 residues
were considered to be candidates for interacting with the leucine moiety, based on the
results of the yeast experiments (Fig. 6.8). The crystal structure showed that most of
these residues were adjacent to the dileucine binding site; their mutation in the yeast
assay may have prevented the Nef and tyrosinase dileucine motifs from accessing the
appropriate contact points on 02 and caused loss of binding. The crystal structure also
showed that the AP-2 core must undergo a significant conformational change in order
to accommodate dileucine ligands, with the N-terminus of 2 shifting so as to expose
the binding site on 02 (Kelly et al., 2009). A comparison of the yeast three-hybrid and
structural data indicates that there are subtle differences in the specific binding sites of
each dileucine motif. In particular, 62 L101 appears to be important for binding CD4
and tyrosinase, but is not required for binding Nef (Fig. 6.8; Kelly et al., 2009). Thus,
the residues in dileucine motifs that separate the acidic and hydrophobic moieties (i.e.,
the xxx residues in the [D/E]xxxL[L/I] consensus sequence) most likely interact with
slightly different regions of 02. This may explain why each dileucine signal binds to

AP-2 with a unique affinity (Fig. 4.6). Despite these differences, the dileucine motifs
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FIG. 6.9: Location of the prospective Nef dileucine binding site on the structure

of AP-2

(A) Ribbon diagram of the a-02 hemicomplex (PDB ID numbers IGW5 and 2VGL
[Collins et al., 2002]) with the locations of the 2 A63, 62 V88, and ¢2 L103 amino
acids highlighted in . For the sake of clarity, only the o and 62 subunits of the
AP-2 core are shown in this panel; the o subunit is colored in dark blue, while the 62
subunit is shaded in . The o R21, o K297, and a R340 residues are highlighted in
red, and included here as points of reference. Given the location of all these residues,
Nef probably binds across the a-02 hemicomplex, with Nef E160 binding o R21; Nef
LL 164,165 binding 02 L103, 02 V88, and 02 A63; and Nef DD174,175 binding a
K297 and a R340. This arrangement may explain why the binding of Nef to AP-2

requires both the o and 62 subunits (Janvier et al., 2003b).

(B) Surface representation of the unbound AP-2 core complex (PDB numbers IGWS5
and 2VGL [Collins et al., 2002]), with the o, $2, u2, and 02 subunits colored in dark
blue, green, , and , respectively. The positions of a R21, o K297, and o
R340 are colored in red. In this conformation, the Nef dileucine binding site on a-02
is occluded by the N-terminus of 2. Thus, for Nef to interact with AP-2, the adaptin

core must undergo a conformational shift.
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FIG. 6.10: Location of the CD4 dileucine binding site on AP-2

The three-dimensional crystal structure of the AP-2 core bound to the CD4 dileucine
signal (pSQIKRLLS) was recently solved and published (PDB ID number 2JKR and
2JKT [Kelly et al., 2008]). The images shown here are taken from this publication. In
both panels, the a subunit is colored dark blue, while the 62 subunit is shaded

. Residues that were mutated during the course of the yeast three-hybrid assays

(see Fig. 6.4, 6.5, and 6.8) are surrounded by boxes.

(A) Ribbon diagram of the AP-2 core in complex with the CD4 dileucine peptide. For
the sake of clarity, only the relevant portions of the o and 02 subunits are shown. The
side chains of the CD4 residues are depicted in , while the side chains of the a.-

02 residues are colored red.

(B) Schematic representation of the a-02 residues that participate in binding the CD4
dileucine peptide. In this diagram, the color conventions for the a and 02 subunits are

maintained, but the CD4 residues are shown in black.

279



FIG. 6.10
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Crystal structure from Kelly et al., 2008
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of CD4 and Nef seem to interact with the same general region of 62, which suggests
that only one of these sorting signals makes contact with AP-2 in the CD4-Nef-AP-2
tripartite complex. A tempting model that fits this description has the CD4 dileucine
motif binding to the Nef hydrophobic pocket, and the Nef dileucine motif binding to
a-02 (see Section 5.4). However, this is only one possibility, and careful biochemical
and structural studies will be needed to determine the exact configuration of the CD4-

Nef-AP-2 complex.

281



6.4 Future Work

While the work presented in this thesis has firmly established the role of AP-2 in the
Nef-mediated downregulation of CD4, several related topics remain to be explored. In
light of the direct binding between Nef and AP-2 shown here, a natural extension of
this thesis would be to investigate the effect of this interaction on other receptors. This
line of study should focus on cell-surface proteins that contain dileucine-based sorting
signals, as the binding of Nef to AP-2 might disrupt their endocytosis from the plasma
membrane. Another subject that deserves greater attention is the postendocytic fate of

CD4 itself. These topics will be discussed in more detail below.

6.4.1 The effect of Nef-AP-2 binding on surface receptor expression

The robust binding of Nef to AP-2, via its dileucine and diacidic motifs (Fig. 3.8, 3.9,
4.1, and 4.2), allows the viral protein to downregulate CD4 (Fig. 3.3, 3.4, 4.4, 4.5, and
5.6). Interestingly, this interaction may also be responsible for the differential effects
that Nef has several on other cell-surface receptors, including CD8, CD28, DC-SIGN,
Ii, LIGHT, and TNF (see Section 1.4). Nef has been shown to downregulate CD8 and
CD28 by increasing the rate at which these receptors are internalized from the plasma
membrane (see Fig. 1.8; Stove et al., 2005; Swigut et al., 2001). Mutation of either the
dileucine or diacidic motif prevents Nef from executing these functions (Stove et al.,
2005), suggesting that like CD4, the downregulation of CD8 and CD28 depends on an

interaction between Nef and AP-2.

Separately, Nef has also been shown to upregulate the expression of DC-SIGN, TNF,
Ii, and LIGHT on the cell-surface by slowing their normal rate of endocytosis (Lama
and Ware, 2000; Schindler et al., 2003; Sol-Foulon et al., 2002; Stumpner-Cuvelette
et al., 2001). All four of these receptors contain dileucine-type sorting signals in their
cytosolic domains, and in the absence of Nef, are internalized in an AP-2-dependent
manner (Dugast et al., 2005; Engering et al., 2002; McCormick et al., 2005; Mitchell
et al., 2008; Sol-Foulon et al., 2002). Upregulation of each receptor requires an intact
Nef dileucine motif (see Coleman et al., 2006; Lama and Ware, 2000; Mitchell et al.,
2008; Schindler et al., 2003; Sol-Foulon et al., 2002; Stumpner-Culvette et al., 2001),
which also suggests that these processes depend on the interaction between Nef and

AP-2.
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The results described above have created an apparent contradiction: while the binding
of Nef and AP-2 probably causes the downregulation of some surface receptors (such
as CD4, CD8, and CD28), it may also cause the upregulation of other proteins located
on the plasma membrane (like DC-SIGN, TNF, Ii, and LIGHT). In order to reconcile
these findings, a new model of Nef activity at the cell-surface has been proposed (see
Mitchell et al., 2008). According to this model, Nef binds AP-2 with a higher affinity
than any of the aforementioned receptors, which effectively blocks their access to the
dileucine binding site and disrupts their usual interaction with the cellular endocytic
machinery. Downregulation would occur when Nef binds to a receptor and traps it in
a clathrin-coated pit. On the other hand, upregulation would occur when Nef does not
bind the receptor; because these proteins are unable to undergo either normal or Nef-
induced endocytosis, they will accumulate on the plasma membrane. Support for this
model is drawn from a variety of sources, including: the observation that all affected
receptors have canonical dileucine sorting signals, or variations thereof; a requirement
for the Nef dileucine motif, as described above; and the direct binding of Nef to AP-2,
which was observed here for the first time (Fig. 3.8, 3.9, 4.2, and 5.5).

Before this model can be validated, at least two of its predictions must be tested. First,
it will be necessary to show that Nef connects both CD8 and CD28 to AP-2. For this
purpose, yeast four-hybrid assays could be used to determine whether Nef promotes
the formation of CD8-Nef-AP-2 and CD28-Nef-AP-2 complexes. Downregulation of
CD8 and CD28 requires the same motifs on Nef as the downregulation of CD4 (Stove
et al., 2005; Swigut et al., 2001), suggesting that these processes are highly similar, if
not identical. Second, it will be important to show that Nef only affects the expression
of receptors which contain dileucine signals weaker than its own. Consistent with this
prediction, Nef has been observed to alter the surface-expression of a limited number
of receptors (Fig. 1.8). The AP-2 binding assays developed during the course of this
work (Fig. 3.8, 3.9, and 4.2) should now make it possible to test whether Nef does, in
fact, bind AP-2 with greater affinity than these receptors. The outcome of such assays

will do much to explain the activity of Nef at the cell-surface.

6.4.2 Postendoyctic fate of CD4

Nef uses AP-2 to transport CD4, and possibly a small number of other receptors, from

the plasma membrane to endosomes (Fig. 3.7, 4.4, 4.5, 5.6, and 5.7). Nef then directs
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CD4 to lysosomes, where the receptor is degraded (Rhee and Marsh, 1994). However,
the intracellular pathway used by Nef to transfer CD4 from endosomes to lysosomes
is poorly characterized, and remains controversial. Some groups have suggested that
this process depends on an interaction between Nef and the COPI complex (Piguet et
al., 1999; Schaefer et al., 2008), which has been reported to participate in endosomal
sorting events (Aniento et al., 1996; Daro et al., 1997). The RNAi-mediated silencing
of COPI expression appears to partially inhibit CD4 downregulation (Schaefer et al.,
2008; Fig 3.5), but this treatment probably affects a wide variety of cellular functions,
making it difficult to specifically attribute CD4 downregulation to COPI activity. In
addition, mutation of the COPI binding site on Nef does not prevent CD4 degradation
(Janvier et al., 2001; Schaefer et al., 2008), indicating that Nef likely uses a different
pathway to target CD4 to lysosomes. Many receptors are directed towards lysosomes
via the MVB pathway, which usually involves the attachment of ubiquitin to a trans-
membrane protein and its subsequent recognition by the ESCRT machinery (reviewed
by Piper and Katzman, 2007). Both Nef and CD4 are ubiquitinated on multiple lysine
residues (da Silva et al., 2009; Jin et al., 2008), but these modifications do not appear
to be important for downregulation of the receptor (da Silva et al., 2009). Transport of
CD4 from endosomes to lysosomes, however, was found to require components of the
ESCRT machinery (da Silva et al., 2009). Thus, the Nef-mediated downregulation of
CD4 might be a new example of the small number of cargo proteins which are sorted
to the MVB pathway in an ESCRT-dependent, but ubiquitin-independent manner (see
Hislop et al., 2004; Yamashita et al., 2008; Watson and Bonifacino, 2007). Given the
uncertainty surrounding the final stages of CD4 downregulation, it will be necessary
to perform additional experiments to determine the precise mechanism used by Nef to

drive CD4 towards lysosomes.
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6.5 Concluding remarks

The primary goal of this thesis was to determine whether Nef downregulates CD4 via
an accelerated endocytosis or intracellular retention pathway (please refer to Section
1.9). The data presented here uniformly supports the accelerated endocytosis model,
whereby Nef increases the rate of CD4 internalization by linking the cytosolic tail of
the receptor to AP-2. These findings (published in Chaudhuri et al., 2007; Chaudhuri
et al., 2009; Lindwasser et al., 2008) have led to a general agreement within the field
on the mechanism of Nef-mediated CD4 downregulation (da Silva et al., 2009; Foster
and Garcia, 2008; Schaefer et al., 2008; Toussaint et al., 2008).

In the absence of an effective HIV-1 vaccine, some scientists have concluded that the
inhibition of CD4 downregulation is the most promising strategy for combating AIDS
(Foster and Garcia, 2008; Watkins et al., 2008). The discovery of AP-2 as an essential
component of Nef-induced CD4 downregulation, and the subsequent identification of
specific residues required for the interaction between Nef and AP-2, has created new
opportunities for the development of antiviral agents. Indeed, the results of this thesis
may now allow for the rational design of a drug that can block the binding of Nef and
AP-2, prevent the downregulation of CD4, and — hopefully — moderate the pathogenic
effects of Nef.
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