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1  |  INTRODUC TION

The availability of affordable miniaturized biologger devices has rev-
olutionized the field of behavioural ecology over the past decade 
(Kays et al., 2015). Inertial measurement units, and especially accel-
erometers, provide information that can be translated to behavioural 
modes, typically using a supervised machine learning classification 
approach (Nathan et al.,  2012; Resheff et al.,  2014). The detailed 
understanding of behaviour and its location is key in the pursuit of 
questions at the heart of animal ecology (Hays et al., 2016; Nathan 
et al., 2008; Williams et al., 2020).

The process of inferring animal behaviour from acceleration mea-
surements using supervised machine learning requires, first, obtaining 
observations of animals fitted with the biologging devices to generate 
a training set of acceleration records coupled with known behaviours. 
These data are used to train machine learning models, that are then 
used to classify behavioural modes for body acceleration data of un-
observed animals. Finally, the proportion of the classified behaviours, 
which are generally referred to as behavioural time budgets, are used 
to answer ecological questions about the distribution of behaviour 
across population in space and time (e.g. Chimienti et al., 2021; Harel 
et al., 2016; Rotics et al., 2017; Weegman et al., 2017).
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Abstract

1.	 Supervised learning of behavioural modes from body acceleration data has be-
come a widely used research tool in Behavioural Ecology over the past decade. 
One of the primary usages of this tool is to estimate behavioural time budgets 
from the distribution of behaviours as predicted by the model. These serve as 
the key parameters to test predictions about the variation in animal behaviour. In 
this paper we show that the widespread computation of behavioural time budg-
ets is biased, due to ignoring the classification model confusion probabilities.

2.	 Next, we introduce the confusion matrix correction for time budgets—a simple cor-
rection method for adjusting the computed time budgets based on the model's 
confusion matrix.

3.	 Finally, we show that the proposed correction is able to eliminate the bias, both 
theoretically and empirically in a series of data simulations on body acceleration 
data of a fossorial rodent species (Damaraland mole-rat Fukomys damarensis).

4.	 Our paper provides a simple implementation of the confusion matrix correction 
for time budgets, and we encourage researchers to use it to improve accuracy of 
behavioural time budget calculations.
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Behavioural time budgets are commonly the key metric used for 
inferring animal behaviour and ecology based on body acceleration 
data. However, the regular practice of computing time budgets from 
the distribution of the classified behaviours does not consider the 
information regarding the classification model's accuracy. This infor-
mation includes the probability of classifying each behaviour incor-
rectly by confusing it with any of the other behaviours. The table of 
these probabilities is summarized in the model's ‘confusion matrix’— 
a standard output of testing supervised machine learning accuracy 
using cross validation (Hastie et al.,  2009). For example, assuming 
we are interested in the ‘running’ behaviour, and the confusion ma-
trix shows that in 10% of cases ‘running’ is wrongly classified by our 
model as ‘walking’ (whereas ‘walking’ is wrongly classified as ‘run-
ning’ in 5% of the cases), it would be important to adjust the calcu-
lated proportion of ‘running’ according to this information.

This problem has previously been discovered and studied in 
the field of machine learning, in a setting called domain adaptation, 
where the aim is to compute the distribution of classes in test data 
(Lipton et al., 2018) in order to train classifiers better suited for it. 
The authors found that simply counting classifier predictions leads 
to biased estimates of the distribution of classes in the test data, 
but a simple confusion matrix-based correction is enough to allevi-
ate this problem. Following these results, we examined whether the 
computation of time budgets which ignores the classification mod-
el's confusion probabilities introduces a systematic bias, and it can 
be reduced by accounting for these probabilities.

Supervised machine learning models are optimized for the data 
distribution they are trained upon (Hastie et al., 2009). If the distribu-
tion of behaviours in the training data differs considerably from the 
distribution of behaviours in the unobserved data that are to be clas-
sified by the supervised model, the classification accuracy is likely to 
drop. In such cases we hypothesize that the systematic bias of the 
time budget computation will increase, and its correction based on 
the model's confusion matrix will become even more important. A 
case of differing behavioural distributions between training and un-
observed data may be fairly common in animal field studies. This is 
because the training data are usually collected under specific condi-
tions under which observing the animal is more feasible (sometimes 
even in captivity (Clarke et al.,  2021, Graf et al.,  2015, Hammond 
et al., 2016), and which may not reflect the behavioural distribution 
when not observed. We therefore tested the time budget computa-
tion bias as well as its correction under data scenarios that simulate 
varying degrees of difference between the behavioural distributions 
in the training and test data.

In this paper, we mathematically formulate and analyse the 
sources of bias in time budgets that are computed based on su-
pervised machine learning models. Based on data simulations on 
acceleration records matched with known behaviours, collected 
in Damaraland mole-rats, we show that the standard time budget 
computation can be inaccurate, and that accounting for the con-
fusion probabilities (the confusion matrix) substantially improves 
the accuracy of the computed time budgets. We demonstrate the 

implementation of the confusion matrix correction for time budgets 
and explore in which data situations it is particularly needed.

2  |  ESTIMATING BEHAVIOUR AL TIME 
BUDGETS

The standard method of computing time budgets as the distribu-
tion of classified behaviours introduces errors related to accuracy 
properties of the classifier. There are two sources of error when es-
timating the proportion of any specific behaviour. Consider for in-
stance the estimate of the proportion of Eating. Some of the samples 
where the correct behaviour was Eating may be mistakenly classi-
fied as other behaviours (i.e. known as type II error; false negative). 
Conversely, some of the samples where in reality other behaviours 
took place may be wrongly classified as Eating (known as type I error; 
false positive). In case the two types of error happen to cancel each 
other out the estimation will be correct, whereas in any other case 
type I and type II errors will produce a systematic bias. This bias and 
method to correct for it were first formulated by Lipton et al. (2018) 
in the machine learning literature. We adapt the derivation here to 
elucidate the sources of the bias in a comprehensive way in the con-
text of behavioural time budgets.

We can quantify the amount of estimation error in terms of the 
unknown correct time budget and the predictor's confusion matrix. 
The proportion of false negative for a specific behaviour is defined as 
the probability of the reality being the specific behaviour, and the 
classifier predicting otherwise:

where x denotes an acceleration (ACC) sample of a corresponding be-
haviour y, f  is the classifier (see Appendix A for a full notation table). 
Using bi to denote Pr(y = i), the proportion of behaviour i  in the data, 
Equation (1) can equivalently be written as:

Similarly, the proportion of false positive for the i-th behaviour is defined 
as the probability of the classifier predicting the i-th behaviour when 
the correct label for the sample is a different behaviour:

as before, Equation (3) can be written as:

and in total, the bias in the estimation of the proportion of time spent 
in the i-th behaviour, is the difference of the two:

(1)Pr(y = i and f(x) ≠ i),

(2)bi ⋅ Pr(f(x) ≠ i|y = i),

(3)Pr(y ≠ i and f(x) = i),

(4)
(
1 − bi

)
⋅ Pr(f(x) = i|y ≠ i),

(5)Δi =
(
1 − bi

)
⋅ Pr(f(x) = i|y ≠ i) − bi ⋅ Pr(f(x) ≠ i|y = i),
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We denote by oi the observed proportion of time spent in the i-th be-
haviour as computed from the classified behaviours, we can express 
the expected bias in estimation for the i-th behaviour as:

For each behaviour i ∈ {1, … ,n} there is a single linear Equation  (6). 
This gives a collection of n linear equations in n variables, the simulta-
neous solution of which provides the corrected time budget. In matrix 
form, this set of equations can be written as:

where o is the vector 
[
o1, … ,on

]
 of observed time budget per be-

haviour, C is the (row-normalized) confusion matrix (the ij-th element 
of C is the fraction of samples of behaviour i  in the validation data, that 
were classified as behaviour j) and b =

[
b1, … ,bn

]
 is the unknown real 

time budget (see proof in Appendix B). Inverting C yields:

which gives a corrected time budget. The intuitive way to interpret this 
relation is that we ask what the real time budget must have been, so 
that together with the known confusion matrix for our classifier, we 
would get the computed time budget. This sheds light on some proper-
ties of the time budget correction.

First, as expected, the estimate of any behaviour that is perfectly 
classified, in terms of recall and precision, will not be changed at all 
by the correction. This is true because the associated Δ for this be-
haviour will necessarily be 0 (Equation 5). Second, due to Equation (5), 
behavioural classes of lower proportion and lower classification preci-
sion will tend to be over-estimated before the correction. Classes with 
high correct proportion and low recall will tend to be under-estimated.

For more information on statistical properties of the estimates 
produced by (8), and a broader discussion of label shift in machine 
learning, we refer the reader to (Lipton et al., 2018) where to the 
best of our knowledge this correction was first introduced.

3  |  MATERIAL S AND METHODS

3.1  |  Body acceleration data

We examined the adjustment of the time budgets according to the 
confusion matrix using data simulations (detailed below) on an em-
pirical dataset of body acceleration records of known behaviours. 
We obtained this dataset from 16 Damaraland mole-rats (DMRs) 
that were collared with acceleration loggers (Technosmart LTD, Italy) 

for 1–3 weeks, and videotaped during this period to match the ac-
celeration records with known behaviours. The collars were fitted 
under isoflurane anaesthesia, with collar weight [2.8 (g)] being less 
than the 3% of the smallest collared animal used in this study [108 
(g)]. Acceleration was recorded by the loggers continuously at 25 Hz 
in each of three perpendicular axes. The collaring and videotaping 
took place in a laboratory facility in the southern Kalahari (Kuruman 
River Reserve, South-Africa), wherein several groups of mole-rats 
are housed in a large system of tunnels that mimic their underground 
habitat (Houslay et al., 2020; Zöttl et al., 2016). These tunnels are built 
of mostly transparent tubes, allowing to observe the DMR behaviours 
(see Zöttl et al., 2016, for details). We recorded 57, 10-minutes vid-
eos of the collared individuals and labelled the behaviours when they 
were clearly visible using the Boris software (Friard & Gamba, 2016). 
The ACC data were then coupled with labelled behaviours and the 
analysis was conducted on 2-s segments of acceleration records of 
a single behaviour (shorter behaviours were omitted). Only the most 
frequent behaviours were included in the analysis, which were: rest-
ing, eating, walking, digging, sweeping and standing (see Table 1 for 
the behavioural distribution of the dataset collected). There were 
another 26 classes of behaviours, consisting in total 17% of the la-
belled behaviours, which were not included in the analysis in order to 
simplify our study which solely aimed to examine a methodological 
concept (rather than the DMR biology). For additional validation, we 
repeated the main analysis with all the behaviours included, with the 
infrequent behaviours aggregated to an ‘Other’ class. The results did 
not change qualitatively (see Appendix E). All research including the 
housing and collaring of the DMRs were done with the approval of the 
University of Pretoria Animal Ethics Committee (permits EC089-12, 
SOP-004-13, EC059-18).

3.1.1  |  Data processing

For each 2-sec acceleration record, 55 statistics were computed 
(e.g. mean, median and standard deviation of each axis), and used as 
input to train the supervised machine learning models (see Resheff 
et al., 2014, for a detailed manual of supervised learning of behav-
ioural modes from sensor measurements). The models were trained 
to classify samples to one of the target behaviours (resting, eating, 
walking, digging, sweeping and standing). In all experiments, the 
data were divided into three parts, designated train, validation and 
test respectively. The size of each partition was reported for each 
experiment separately. The machine learning models (random forest 
with 250 trees, Buitinck et al.,  2013) were trained using the train 
partition only. A confusion matrix was computed using the validation 
partition only. Time budget results were reported based on the test 
partition only.

(6)bi + Δi = oi .

(7)o = CTb

(8)b =
(
CT

)−1
o,

Behaviour Eat Dig Rest Sweep Stand Walk Total

count 2,238 1,807 745 729 662 410 6,591

TA B L E  1  Overall distribution of labels
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3.2  |  Simulation experiments

The purpose of the following simulation experiments is twofold: 
first, to measure the amount of bias in the regular computation of 
behavioural time budgets (from the distribution of the classified 
behaviours) under various data scenarios; second, to quantify the 
ability of the confusion matrix-based correction described above to 
improve the accuracy of the calculated time budgets.

In the first set of simulations we examined the basic case where 
the training and test datasets have the same behavioural distribu-
tion. This reflects the ideal setting, in which the behavioural distri-
bution during training is identical to that in the unobserved dataset. 
To do so, the entire data were evenly split at random into three equal 
sized partitions designated train, validation and test, the classifier 
was trained on the train partition, the confusion matrix was gener-
ated based on the validation partition and the regular and corrected 
time budgets were calculated on the test partition. To robustly col-
lect statistics of estimation error, we repeated the process for 250 
iterations with a different random split of data each time.

Next, we examined scenarios where a behaviour was represented 
disproportionately in the training set versus the test set. This ad-
dresses the case when during observations for obtaining the training 
set, the animals were conducting some behaviours more or less fre-
quently than when not observed. Keeping the test set uniform (100 
samples of each behaviour), we simulated cases where one of the 
behaviours was under- or over-expressed (20 to 200 with increments 
of 10) in the training set while the others were held constant (at 60 
samples each for all other behaviours). All the remaining data were 
assigned to the validation set. The process was repeated 10 times for 
each value of under- or over-expression, for each behaviour, and the 
regular and corrected time budget tables were calculated.

Third, we examined a similar scenario to the above but this time 
keeping the training set distribution constant (60 samples per be-
haviour) and varying the extent of representation of a single be-
haviour in the test dataset (20–200 samples at increments of 10), 
while the others remained constant (100 samples per behaviour). All 
the remaining samples were assigned to the validation set. Again, 
the process was repeated 10 times for each value of expression, for 
each behaviour, and the regular and corrected time budget tables 
were calculated.

4  |  RESULTS

4.1  |  Train and test data with equal behavioural 
distributions

Our first, basic set of simulations with training and test sets of equal 
behavioural distributions showed that there is a bias in time budget 
estimates (Figure 1, left column). For example, eating behaviour was 
estimated to constitute 22% of the total behaviour whereas its true 
proportion was 16.6%. The simulations also showed that on aver-
age the bias was eliminated completely when the ‘confusion matrix 

correction’ is implemented to adjust the time budget estimates 
(Figure 1, right column).

4.2  |  Train data with varying behavioural 
distributions

A series of simulations in which a single behaviour in the training set 
varied in its proportion (from under- to over-representation) showed 
that the time budget estimate (calculated on the test set) increased 
monotonically with the proportion of the behaviour in the training 
set (Figure 2). Thus, under- or over-representation in the training set 
was a source of bias in estimating the true proportion (time budget) 
of the behaviour in the test data. The range of estimation error was 
highly variable, depending on the behaviour, with, for example, 
estimates in the range of 5%–30% for Stand (true value is always 
16.66%), versus a range of roughly 16%–18% for Rest (Figure  2). 
However, for all behaviours, the corrected time budget estimates 
(generated using the ‘confusion matrix correction for time budgets’) 
were uncorrelated with the behaviour's proportion in the training 
set, showing that the correction eliminated the bias even in cases of 
large over (or under)-expression of a behaviour in the training data, 
and generally provided more accurate estimates than the regular, 
uncorrected time budget estimates (Figure 2).

4.3  |  Test data with varying behavioural 
distributions

A series of simulations in which a single behaviour in the test set 
varied in its proportion (from under- to over-representation) showed 
that the corrected time budget (using the confusion matrix correc-
tion) follows the true time budget more closely than the regular time 
budget, indicating the former is more accurate (Figure 3).

5  |  DISCUSSION

When behaviours are classified from sensor measurement data 
using a supervised machine learning classifier, the straightforward 
approach of calculating behavioural time budgets is from the distri-
bution of the classified behaviours. The drawback in this common 
approach is that it considers only the final output of the classifica-
tion model—the classified behaviours, and neglects information re-
garding the rates of confusion between behaviours.

Our paper shows both theoretically and by using data simula-
tions that the current standard method of computing time budgets is 
biased by the asymmetric confusion properties of the classifier. We 
show that this bias can be corrected by adjusting the time budget 
according to the confusion matrix of the classifier. We introduce this 
correction following Lipton et al.  (2018), and we call it the ‘confu-
sion matrix correction for time budgets’. The implementation of this 
method is simple, using the three lines of code provided in Appendix 
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D. We demonstrate that using it improves the accuracy of time bud-
gets (or of frequency of behaviours) that are derived from machine 
learning models.

In our first, basic series of simulations, where train and test dis-
tributions were identical (see Table  1 for the precise distribution), 
results showed varying degrees of time budget bias for the different 

F I G U R E  1  Distribution of deviation from correct time budget per behaviour in 250 simulations for the regular time budgets (left 
column) and corrected time budgets (right column). Deviation is presented as the proportion (percentages) of the behaviour in the classified 
(annotated) behaviours minus its correct proportion (see Table 1.) vertical dashed line represented the average of each distribution. Classifier 
performance (F1 M ± SD) per behavior across the 250 iterations: Dig 88.07 ± 0.92, eat 85.5 ± 0.74, rest 97.13 ± 0.66, sweep 80.25 ± 1.75, 
stand 56.41 ± 2.96, walk 63.72 ± 3.15
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behaviours. The bias was minor for behaviours with very high classifi-
cation accuracy (e.g. rest, see for example a confusion matrix Appendix 
C), but other, less accurately classified behaviours such as eat or stand 
were over or under estimated by up to 30% of their true proportion.

The bias increased when behaviours were over (or under)-
represented in the train data versus the test data (in which their 
proportion stayed fixed at 16.66%), with estimates biased as high as 
three times the true proportion of the behaviour. These simulation 

F I G U R E  2  Effect of over- or under-expression of a single behaviour in the training data on computed time budget in the wild for the same 
behaviour. Test data are uniform. Blue—regular time budgets, Orange—corrected time budgets. Black line indicates the correct value. Dots 
indicate single trial results, solid lines are the averages
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results showed a positive association between the behaviour's rep-
resentation in the training data and its estimated proportion, even 
though its true proportion stayed constant. Thus, the bias in time 

budget estimates increased with increasing disparity between the 
train and test data distributions. Consequently, one could reason-
ably obtain a wide range of behavioural time budgets for the same 

F I G U R E  3  Effect of over- or under-expression of a single behaviour in the test data on computed time budgets. Training data are uniform. 
Blue—regular time budgets, Orange—corrected time budgets. Black line indicates the correct value. Dots indicate single trial results, solid 
lines are the averages
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body acceleration dataset, depending solely on the behavioural dis-
tribution in the data collected to train the classifier. This effect may 
have significant consequences for the validity of results obtained 
using the standard time budget estimation method without correc-
tion for this systematic bias.

In practice, we believe that a scenario of differing training 
and test behavioural distributions is common in wildlife research. 
Training data are usually confined to being collected when animal 
observation conditions are feasible or convenient. In some studies, 
it is collected from animals in captivity (e.g. Clarke et al., 2021; Graf 
et al., 2015; Hammond et al., 2016), in others only during more ap-
proachable life phases of the animal, such as only during breeding 
period in migrating birds (e.g. Rotics et al., 2016). Such training data 
are, therefore, unlikely to reflect precisely the distribution of be-
haviours in the entire free-ranging data. Moreover, since research 
questions involve a comparison of time budgets in different situa-
tions potentially having different budgets, it is not possible for train-
ing data to fit all the behavioural distributions.

In our last series of simulations, in which behaviours were over 
(or under)-represented in the test data versus the train data (in which 
their proportion stayed fixed at 16.66%), we found a ‘regression to 
the mean’ bias in the time budgets estimation. That is, behaviours 
with small actual proportions are over-estimated, and conversely 
behaviours with large actual proportions are under-estimated, 
where the pivot point is around the proportion used in training data 
(16.66% for each behaviour). It is noteworthy that these simulation 
results with uniform training data show smaller overall estimation 
bias, compared to the simulations in which behaviours were over (or 
under)-expressed in training data.

Our simulation results indicate that using the proposed ‘confu-
sion matrix correction for time budgets’ improves the time budget ac-
curacy and on average eliminates the bias completely, regardless of 
the behaviour's classification accuracy and the degree of disparity 
between the train and test data distributions.

Other methods for inferring animal behaviour from acceleration 
measurements that do not rely on supervised learning include al-
gorithms that characterize elements of movement such as turning 
points (Potts et al., 2018), and trajectory segments (Resheff, 2016). 
These methods may also be susceptible to the bias arising from the 
confusion properties of the algorithm, and thus could benefit from 
the confusion matrix correction.

6  |  CONCLUSIONS

The current standard method for computation of behavioural time 
budgets based on supervised learning of behavioural modes from 
acceleration data (Nathan et al., 2012; Resheff et al., 2014) ignores 
information about the confusion probabilities of specific behaviours 
and frequently leads to biased estimates of time budgets. This is 
especially the case for behaviours of lower classification accuracy, 
for small behavioural categories, and for behaviours that were over- 
or under-represented in training data. The corrected time budget 

estimates take the classifier's confusion matrix into account leading 
to more accurate results. These findings suggest that the confusion 
matrix correction for time budgets should generally be used whenever 
computing behavioural time budgets. The correction should be ap-
plied on each time budget computed, based on the specific unit of 
the analysis, that is, per individual's time budget if individuals are 
being contrasted, or for example per individual and period if individ-
ual behaviour is compared between different periods (like summer 
and winter, or day and night).
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