
Latency-driven performance in data centres

Diana Andreea Popescu

University of Cambridge

Churchill College

December 2018

This dissertation is submitted for
the degree of Doctor of Philosophy





Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of
work done in collaboration except as declared in the Preface and specified in the text. It is not
substantially the same as any that I have submitted, or, is being concurrently submitted for a
degree or diploma or other qualification at the University of Cambridge or any other University
or similar institution except as declared in the Preface and specified in the text. I further state
that no substantial part of my dissertation has already been submitted, or, is being concurrently
submitted for any such degree, diploma or other qualification at the University of Cambridge or
any other University or similar institution except as declared in the Preface and specified in the
text. This dissertation does not exceed the regulation length of 60,000 words, including tables
and footnotes.

Diana Andreea Popescu

December 2018





Latency-driven performance in data centres

Diana Andreea Popescu

Summary

Data centre based cloud computing has revolutionised the way businesses use computing in-
frastructure. Instead of building their own data centres, companies rent computing resources
and deploy their applications on cloud hardware. Providing customers with well-defined appli-
cation performance guarantees is of paramount importance to ensure transparency and to build
a lasting collaboration between users and cloud operators. A user’s application performance is
subject to the constraints of the resources it has been allocated and to the impact of the network
conditions in the data centre.

In this dissertation, I argue that application performance in data centres can be improved through
cluster scheduling of applications informed by predictions of application performance for given
network latency, and measurements of current network latency in data centres between hosts.

Firstly, I show how to use the Precision Time Protocol (PTP), through an open-source software
implementation PTPd, to measure network latency and packet loss in data centres. I propose
PTPmesh, which uses PTPd, as a cloud network monitoring tool for tenants. Furthermore, I
conduct a measurement study using PTPmesh in different cloud providers, finding that network
latency variability in data centres is still common. Normal latency values in data centres are
in the order of tens or hundreds of microseconds, while unexpected events, such as network
congestion or packet loss, can lead to latency spikes in the order of milliseconds.

Secondly, I show that network latency matters for certain distributed applications even in small
amounts of tens or hundreds of microseconds, significantly reducing their performance. I pro-
pose a methodology to determine the impact of network latency on distributed applications
performance by injecting artificial delay into the network of an experimental setup. Based on
the experimental results, I build functions that predict the performance of an application for a
given network latency.

Given the network latency variability observed in data centers, applications’ performance is
determined by their placement within the data centre. Thirdly, I propose latency-driven, ap-
plication performance-aware, cluster scheduling as a way to provide performance guarantees
to applications. I introduce NoMora, a cluster scheduling architecture that leverages the pre-
dictions of application performance dependent upon network latency combined with dynamic
network latency measurements taken between pairs of hosts in data centres to place applica-
tions. Moreover, I show that NoMora improves application performance by choosing better
placements than other scheduling policies.





Acknowledgements

“Nu şovăi, nu te-ndoi, nu te-ntrista.
Purcede drept şi biruie-n furtună.“

–Tudor Arghezi, Inscripţie pe o uşe

First, and foremost, I would like to thank my supervisor, Andrew W. Moore, for his help and
support throughout the years. His guidance through ideas of experiments and discussions has
been crucial. Andrew has taught me to look at the wider implications of my research, and has
always had a positive outlook on what I have achieved. He has always encouraged me to attend
conferences, and supported me whenever I wanted to travel home to recharge. Furthermore,
Andrew’s feedback on this dissertation has been invaluable.

I would like to thank the members of the Networking and Operating Systems Group, past
and present: Jon Crowcroft, Richard Mortier, Malcolm Scott, Gianni Antichi, Salvator Galea,
Neels Manihatty-Bojan, Marcin Wojcik, Nik Sultana, Murali Ramanujan, Jan Kucera, Matt
Grosvenor, Eva Kalyvianaki, Noa Zilberman, for fruitful interactions and discussions; Ionel
Gog and Malte Schwarzkopf for answering questions about Firmament. I would like to thank
George Neville-Neil for answering questions and providing insights about PTPd. I would like
to thank Jon Crowcroft and Peter Pietzuch for serving on my PhD viva committee.

I would like to thank the mentors and people I met during my internships at Google, for provi-
ding practical experience on real-world problems, and Jeff Mogul, whose paper about network
latency requirements of cloud tenants I read early on in my PhD.

I would like to thank the researchers and fellow PhD students involved in the ITN METRICS
project, who represented a great support network. I would also like to thank the Computer
Laboratory and Graduate Students administration. I greatly enjoyed attending women@CL
events and being part of its organising committee.

I would like to thank Churchill College, especially Rebecca Sawalmeh, who has always been
prompt in helping me with whatever I needed. I am grateful to the many graduate students I
met throughout the years in the Churchill MCR. I learnt something new from each one of them.
I want to thank Gillian, Hansini, Marija, Shri, Anantha, Sam, Marco, Sai, Bill, Dominic and
many others. Furthermore, I would like to thank Tiago, Kaspars, and Alex, for their cheerful
support and encouragement, and with whom I shared excellent food from our home countries.
I would also like to thank the friends I made during my internships, Konstantina, Maria and
others, for brightening up my internship experience.

Lastly, I would like to thank my parents, Delia and Emil, my brother Marius, my sister-in-law
Ruxandra, and all members of my family, who have been continuously with me throughout these
years, especially my mother. My parents and my brother have accompanied me day and night,
home or around the world, in this journey, with loving support and advice. This dissertation is
dedicated to them.



I would like to express my gratitude for the financial support of EU FP7 ITN METRICS, EU
Horizon 2020 SSCICLOPS, EPSRC EARL, the Women Techmakers Scholarship, Churchill
College, and the Computer Laboratory, for funding my studies and supporting my attendance at
conferences.



To my family





Contents

1 Introduction 19

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Background 25

2.1 Network measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Timekeeping on computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Data centres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Latency in data centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Network latency impact on application performance . . . . . . . . . . . . . . . 55

2.6 End-host and in-network baseline latency contributions . . . . . . . . . . . . . 56

2.7 Cluster scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Measuring network conditions with the Precision Time Protocol (PTP) 75

3.1 Experimental setup and methodology . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Measuring network latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 The effect of network congestion on PTPd measurements . . . . . . . . . . . . 79

3.4 Measuring network latency in virtualised environments . . . . . . . . . . . . . 84

3.5 Estimating packet loss ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.6 PTP-enabled NICs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



CONTENTS CONTENTS

4 Measuring the cloud network with PTPmesh 91

4.1 Deployment scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Measurement methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Measurement calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 One-way delay (OWD) measurements . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Packet loss ratio measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 Path symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.8 Identifying different network paths within data centres . . . . . . . . . . . . . 111

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.10 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Characterising the network latency impact on cloud-based applications perfor-
mance 115

5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Selected cloud-based applications . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Baseline application performance . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 The effect of static latency on application performance . . . . . . . . . . . . . 122

5.5 Predicting application performance . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6 NoMora: latency-driven, application performance-aware, cluster scheduling 135

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2 NoMora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 NoMora evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 Conclusions and future work 157

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12



List of Figures

2.1 NTP protocol one-step mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 PTP protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 A data centre fat-tree topology. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 System events and their latencies. . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Measured RTTs within data centres for Amazon EC2, Google Compute Engine
and Microsoft Azure in December 2016. . . . . . . . . . . . . . . . . . . . . . 53

2.6 Measured RTTs within data centres for Amazon EC2, Google Compute Engine,
and Microsoft Azure in May 2017. . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Network latency effect on application performance. . . . . . . . . . . . . . . . 55

2.8 Network latency is injected between the two hosts in both directions (send and
receive) by the hardware device. . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.9 End-host tests setup [ZGP+17]. . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.10 Client-server tests setup [ZGP+17]. . . . . . . . . . . . . . . . . . . . . . . . . 58

2.11 End-host latency contribution [ZGP+17]. . . . . . . . . . . . . . . . . . . . . . 60

2.12 Different network topologies [ZGP+17]. . . . . . . . . . . . . . . . . . . . . . 63

2.13 Network latency contributions [ZGP+17]. . . . . . . . . . . . . . . . . . . . . 63

2.14 Azure workload number of task arrivals per hour - average, 25thand 75thper-
centiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Testbed to analyse PTPd’s behaviour under different network conditions. . . . . 76

3.2 The slave’s clock offset is within 20µs of the master’s clock after less than five
minutes after PTPd’s start-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 The slave’s clock offset is within 40ns of the master’s clock after less than five
minutes after Solarflare’s PTP daemon start-up. . . . . . . . . . . . . . . . . . 77

3.4 RTT/2 reported by ping and the UDP-based tool that uses the TSC [ZGP+17],
and one-way delay reported by PTPd . . . . . . . . . . . . . . . . . . . . . . . 79



LIST OF FIGURES LIST OF FIGURES

3.5 Network congestion effect on PTPd measurements. . . . . . . . . . . . . . . . 80

3.6 Network congestion effect on PTPd measurements and on memaslap’s perfor-
mance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Changing the interval for the Sync and Delay Request messages. . . . . . . . . 83

3.8 Number of messages needed for the one-way delay to return to normal values
after network congestion caused by an iperf stream of 1s for different message
frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.9 One-way delay reported by a PTPd client on a bare metal host and with virtua-
lisation for different message frequencies. . . . . . . . . . . . . . . . . . . . . 85

3.10 The clock offset reported by sfptpd is not affected by the iperf traffic, since it
uses NIC hardware timestamping. . . . . . . . . . . . . . . . . . . . . . . . . 88

3.11 The clock offset reported by PTPd is adversely affected by the iperf traffic be-
cause of end-host interference. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 The zones in which PTPmesh was deployed to take measurements from diffe-
rent cloud providers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 OWD measured using PTPd for periods of 15 minutes between two VMs in
Azure-KS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 CPU utilisation of the PTPd master running on a VM in the Azure-KS data
centre synchronising with one PTPd client. . . . . . . . . . . . . . . . . . . . 95

4.4 Receive network bandwidth of the PTPd master running on a VM in the Azure-
KS data centre synchronising with one PTPd client. . . . . . . . . . . . . . . . 96

4.5 Send network bandwidth of the PTPd master running on a VM in the Azure-KS
data centre synchronising with one PTPd client. . . . . . . . . . . . . . . . . . 96

4.6 CPU and network bandwidth of the PTPd master running on a VM in the Azure-
KS data centre synchronising with one PTPd client. . . . . . . . . . . . . . . . 97

4.7 Varying the number of PTPd clients that synchronise with the PTPd master in
EC2-USE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.8 CDF of OWD in different data centres using the low message frequency. . . . . 103

4.9 OWD and packet loss ratios over 1-hour intervals between VM1-VM3 in EU
and US data centres over one week. . . . . . . . . . . . . . . . . . . . . . . . 104

4.10 Measured OWD between VM1 and VM2 in GCE-USW data centre. . . . . . . 105

4.11 Histogram of standard deviation values for OWD computed for different inter-
vals of time (1 minute, 10 minutes, and 1 hour) for different data centres. . . . . 107

4.12 Measured OWD between VM1 and VM2 using the high message frequency. . . 108

14



LIST OF FIGURES LIST OF FIGURES

4.13 Measured OWD between VM1 and VM2 in Azure-UKS using the high message
frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.14 Measured OWD between VM1 and VM10 in EC2-USE data centre. . . . . . . 108

4.15 CDF for the master-to-slave (m-to-s) delay, slave-to-master (s-to-m) delay and
OWD in different data centres. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1 Experimental setup to evaluate application performance under changing net-
work latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Baseline analysis to determine the maximum QPS that can be achieved by the
Memcached server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Baseline analysis to determine how many worker machines are needed to com-
plete the STRADS Lasso Regression training in minimal time. . . . . . . . . . 121

5.4 DNS QPS and average query latency for static latency injection. . . . . . . . . 123

5.5 Memcached QPS and request-response latency for the Facebook “ETC” work-
load for static latency injection. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6 STRADS Lasso Regression training time for static latency injection. . . . . . . 125

5.7 Spark GLM Regression training time for static latency injection. . . . . . . . . 126

5.8 Tensorflow handwritten digit recognition training time for static latency injection.126

5.9 The effect of injected static latency on typical cloud applications’ performance. 128

5.10 The effect of injected static latency on typical cloud applications’ performance
running on cloud hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.11 Polynomial function fitted to Memcached experimental data. . . . . . . . . . . 131

5.12 Polynomial function fitted to STRADS Lasso Regression experimental data. . . 132

5.13 Polynomial function fitted to Spark GLM experimental data. . . . . . . . . . . 133

5.14 Polynomial function fitted to Tensorflow handwritten digit recognition experi-
mental data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.1 A general flow network with annotated capacities and costs on arcs. Job J1

has tasks T1,1 and T1,2. Job J2 has tasks T2,1, T2,2 and T2,3. The unscheduled
aggregator is U1. The machines in the cluster are M1, M2, M3 and M4. Rack
aggregators are R1 and R2. The cluster aggregator is X . The sink vertex is S. . . 137

6.2 Firmament architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 NoMora architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4 NoMora flow network with annotated capacities and costs on arcs. . . . . . . . 143

6.5 Average application performance for different policies on the Google workload. 149

15



LIST OF FIGURES LIST OF FIGURES

6.6 Algorithm runtime for different policies on the Google workload. . . . . . . . . 151

6.7 Percentage of migrated tasks for NoMora policy with preemption (parameters
105 and 110) on the Google workload. . . . . . . . . . . . . . . . . . . . . . . 152

6.8 Task placement latency for different policies on the Google workload. . . . . . 152

6.9 Task response time for different policies on the Google workload. . . . . . . . 153

16



List of Tables

2.1 Classical network monitoring tools. . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Data centre network traffic characteristics - part 1. . . . . . . . . . . . . . . . . 44

2.3 Data centre network traffic characteristics - part 2. . . . . . . . . . . . . . . . . 45

2.4 Comparison between systems used to measure network latency and packet loss
in data centres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 System events and their latencies. . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Summary of Latency Results. Entries marked α return results that are within
DAG measurement error-range. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.7 Systems providing network bandwidth and tail latency guarantees in data centres. 72

3.1 Approximate number of messages needed to converge to the baseline OWD and
how long it takes to reach the baseline OWD. . . . . . . . . . . . . . . . . . . 84

3.2 One-way delay reported by a PTPd client on a bare metal host and with virtua-
lisation for different message frequencies. . . . . . . . . . . . . . . . . . . . . 85

3.3 Packet loss ratio computed based on the number of Delay Request and Delay
Response messages reported at the PTPd slave. . . . . . . . . . . . . . . . . . 87

4.1 VM types and specifications for the three cloud providers studied. . . . . . . . 94

4.2 The setup has one PTPd master and one PTPd client. CPU utilisation and net-
work bandwidth double as the message frequency doubles. OWD average goes
down, while standard deviation is roughly the same. . . . . . . . . . . . . . . . 98

4.3 Traces collected in data centres across the world from three cloud providers.
The last column represents the number of latency spikes (l.s.) (> 500µs) ob-
served throughout the trace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 Packet loss ratio ×10−4 over one week. . . . . . . . . . . . . . . . . . . . . . 109



LIST OF TABLES LIST OF TABLES

5.1 Workloads Setup. #Hosts indicates the minimum number of hosts required to
saturate the selected host for which I measure the application performance, or
the number of hosts for which I determine the best training time when no latency
is added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1 Arcs in the NoMora flow network with their capacities and costs. . . . . . . . . 144

18



Chapter 1

Introduction

Networks represent an important component of modern computing, shaping an interconnected
world. While high-level applications, such as games, music and video streaming, office tools,
play an important role in people’s lifes, the importance of communication between computers
cannot be overstated. Without a fast and reliable means of communication, these applications
would be running only on the local computers with no external input, safe for the information
obtained through compact disks or memory sticks. The Internet has evolved over the years into
such a fast and reliable means of communication. At the heart of this evolution have been the
strong need of people to communicate with each other, and the information that people want
to disseminate to the world. As a result, a person can contact anyone over the Internet through
electronic mail, voice or video call, and information on just about anything is nowadays easily
available worldwide to anyone with an Internet connection. These two key needs have fueled
the development of networks over the years, making the Internet ubiquitous.

Services such as web search, social networking, online shopping, content streaming, instant
messaging, video calling, digitised newspapers, books, or research articles, form the online
landscape today. Because of the huge number of people that access these services, enormous
computing resources are needed. This demand has lead to the development of specialised
warehouse-scale computers (WSCs) [BH18] that are housed in data centres. Data centres con-
tain many hundreds of thousands of such computers, powering the above-mentioned services
and many more. But designing and operating such complex systems require expert know-
ledge. As a result, only a few companies, such as Amazon, Google, IBM, Oracle or Microsoft,
develop and manage their own data centres. This complexity has given rise to cloud com-
puting: businesses rent compute, storage and network resources from specialised companies,
cloud providers, to power their services, instead of developing and maintaining their own in-
frastructure. Naturally, businesses require and expect predictability from the rented resources,
which translates into predictable performance for their applications. The customer, or tenant,
expectations are encoded into contracts called Service Level Agreements (SLAs), with specific
objectives, Service Level Objectives (SLOs), defined in collaboration with the cloud provider.
The objectives refer to quantifiable metrics, such as availability, throughput, or response time.

19



20

The infrastructure in data centres is shared amongst different tenants, giving rise to possible
interference between different applications, which in turn can lead to unpredictable application
performance. Interference can appear in multiple places in the data centre: at the servers (hosts
or end-hosts), where tenant applications that run inside virtual machines (VMs) share the under-
lying server hardware, or in the network, with some tenants sending traffic that causes packets
to queue behind each other in switches, increasing the packets’ network latency, or network
delay, or one-way delay (OWD) (the time a packet takes to travel from the source to the des-
tination across the network) [MK15; BMP+17]. Several approaches to minimise interference
have been proposed, both at the end-host and in-network. Avoiding or reducing the interference
at the end-host can be achieved through thoughtful cluster scheduling: avoiding the colocation
of applications that compete for the same end-host resources by placing these applications on
different hosts that meet their resource requirements. In the network, interference effects can be
avoided or reduced through flow scheduling [AYS+13; POB+14; GNK+15; GSG+15; HRA+17]
and traffic load balancing [ARR+10; BAA+11; AED+14]. Pinpointing the exact cause of the
interference is as challenging as data centre systems are complex [RBB+18].

In my dissertation, I focus specifically on network latency in data centres, as an intrinsic pro-
perty of the data centre network, and as a consequence of network interference. I focus on three
aspects: how to best measure network latency, assessing and modelling its impact on typical
cloud applications’ performance, and how to mitigate its effects.

In Chapter 3, I show how the Precision Time Protocol (PTP), through its software implemen-
tation PTPd [PTP18], can measure network latency and estimate packet loss. In Chapter 4, I
present PTPmesh, a cloud monitoring tool for tenants, which uses PTPd as a building block.
PTPmesh offers end-to-end measurements (VM-to-VM measurements) in cloud environments.
To demonstrate the practicality of PTPmesh, I conduct measurement campaigns using PTPmesh
in several data centres from different cloud providers, identifying different latency magnitude,
latency variance and packet loss characteristics. Under normal conditions, latency in data cen-
tres varies between tens to hundreds of microseconds. Unexpected events, such as network
congestion or packet loss, can lead to network latencies in the order of milliseconds.

In Chapter 5, I conduct an analysis of the impact of network latency on typical cloud applica-
tions’ performance. I quantify experimentally the relationship between application performance
and increasing network latency through controlled experiments conducted on custom testbeds
where I artificially inject network latency. I show that even small amounts of network latency
in the order of tens or hundreds microseconds can cause application performance loss for cer-
tain applications. I then build functions that predict application performance under different
network latency values using the experimental results.

Previous work on providing network guarantees has sought to provide bandwidth and-or tail
latency guarantees (§2.7.2.2), and, as a result, provide applications with predictable perfor-
mance. In my work, I take the opposite approach. In Chapter 6, I use the predictions for
application performance built in Chapter 5, and current measured network latency, as inputs to



CHAPTER 1. INTRODUCTION 21

a cluster scheduling policy for data centres. The policy places or migrates applications in order
to achieve the best performance under the current network conditions. I call this type of cluster
scheduling latency-driven, application performance-aware, cluster scheduling. To demonstrate
the practicality of my policy, I implement the NoMora cluster scheduling architecture as an
extension of the Firmament cluster scheduler [GSG+16].

The thesis of this dissertation is that application performance in data centres can be improved
through cluster scheduling of applications informed by measurement-based application perfor-
mance predictions combined with measurements of current network latencies.

1.1 Contributions

In this dissertation, I make four principal contributions:

1. My first contribution is showing how the Precision Time Protocol (PTP), through a
software implementation PTPd [PTP18], can be used to measure network latency
and estimate packet loss in data centres. I propose PTPmesh, which uses PTPd, as a
tool for cloud tenants to measure network conditions in data centres (see Chapter 3 and
Chapter 4).

2. My second contribution is a measurement study of network conditions in several data
centres across different cloud providers (Amazon Web Services 1, Google Cloud Plat-
form 2, Microsoft Azure3) using PTPmesh. The study reveals different profiles in terms
of latency magnitude, latency variance and packet loss across data centres and cloud
providers (see Chapter 4).

3. My third contribution is showing that small network delays in the order of tens or
hundreds of microseconds can impact substantially application performance. I study
how network latency affects application performance for a wide range of applications,
from a simple Domain Name System (DNS) client application to complex data pro-
cessing and machine learning frameworks (Spark [Spa], STRADS [KHL+16], Tensor-
flow [ABC+16]). I do this through custom experiments where I inject artificial delay in
the networked system. Furthermore, I model the relationship between application perfor-
mance and network latency, building functions that predict application performance
dependent upon network latency (see Chapter 5).

4. My fourth contribution is a latency-driven, application performance-aware, cluster
scheduling policy that exploits dynamic network latency measurements between pairs
of hosts combined with application performance predictions dependent upon network

1https://aws.amazon.com/
2https://cloud.google.com/
3https://azure.microsoft.com/en-gb/

https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/en-gb/


22 1.2. DISSERTATION OUTLINE

latency to place or migrate applications in the data centre, with the goal of providing
improved application performance. I implemented the NoMora cluster scheduling archi-
tecture as an extension of the Firmament cluster scheduler framework [GSG+16]. I show
that the policy improves overall average application performance (see Chapter 6).

All of the measurement experiments, algorithms, implementations and analysis described are
results of my own work. The ideas, experiments and results presented in this dissertation have
been discussed with my supervisor, Dr. Andrew Moore, who provided guidance throughout the
work. Malcolm Scott provided invaluable assistance for setting up the experimental testbeds
in the Computer Laboratory’s model data centre. Salvator Galea helped me with setting up
an experimental testbed used in Chapter 3. Noa Zilberman developed the NRG tool [NZM17]
(§2.1.4), which I use in Section 2.5 and Chapter 5. Many of the plots presented in this disser-
tation were generated using the matplotlib library starting from scripts initially written by
Ionel Gog and Malte Schwarzkopf.

1.2 Dissertation outline

This dissertation is structured as follows:

• Chapter 2 gives an overview of the background related to the work presented in this
dissertation, and describes my preliminary experiments supporting the work done in this
dissertation. The chapter first introduces general notions about network measurement,
classical network monitoring tools and techniques, and network emulation and simula-
tion tools. Next, it describes mechanisms for time synchronisation between computers
over the network. The chapter then reviews the most important data centre network ar-
chitectures, data centre applications, data centre network traffic characteristics, and data
centre network monitoring systems. Further, the chapter presents my preliminary study
of network latencies in data centres, and my experiments showing that network latency
impacts application performance. Additionally, it presents a principled analysis of the
baseline latency contributors at the end-host and in the network. Lastly, the chapter dis-
cusses the characteristics of cluster and cloud workloads, and summarises the traits of
cluster schedulers.

• Chapter 3 presents my investigation of PTP’s ability to measure network latency and
packet loss through a set of experiments conducted on local testbeds. First, it presents the
validation of the use of one-way delay as a measure of network latency. It then presents
my definition for a metric for computing packet loss ratio over a defined period of time
depending on the number of messages exchanged between the PTP master and the PTP
client.



CHAPTER 1. INTRODUCTION 23

• Chapter 4 introduces PTPmesh, which uses PTPd as a building block, as a monitoring
tool for cloud tenants. PTPmesh is deployed in data centres of three cloud providers
(Amazon AWS, Google Cloud Platform, Microsoft Azure). An analysis of the collected
data is carried out, offering insights into the characteristics of network latency magnitude,
latency variance and packet loss in different data centres.

• Chapter 5 describes the experimental setup and the set of experiments carried out for
different cloud-based applications to see how they react to increased network latency.
Further, the chapter presents functions that predict application performance depending on
network latency, which are constructed based on the experimental results.

• Chapter 6 describes the cluster scheduling architecture NoMora, which combines dy-
namic network latency measurements between hosts and application performance pre-
dictions dependent upon network latency constructed in the previous chapter, to place
or migrate applications in a data centre. It then evaluates the cluster scheduling policy,
showing that it improves overall average application performance for a well-known clus-
ter workload [RTG+12].

• Chapter 7 draws conclusions arising from the work of this dissertation, and presents
directions for future work.

1.3 Related publications

Parts of the work described in this dissertation are part of the following peer-reviewed publica-
tions:

[PM18a] Diana Andreea Popescu, Andrew W. Moore, “A First Look At Data Center Network
Conditions Through The Eyes of PTPmesh“, In: Proceedings of the 2018 IFIP/IEEE 2nd Net-
work Traffic Measurement and Analysis Conference, Vienna, Austria, 26-29 June 2018.

[PM17] Diana Andreea Popescu, Andrew W. Moore, “PTPmesh: Data Center Network Latency
Measurements Using PTP“, In: Proceedings of the 2017 IEEE 25th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS),
Banff, Canada, 20-22 September 2017.

[ZGP+17] Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Neelakandan Manihatty-
Bojan, Gianni Antichi, Marcin Wójcik and Andrew W. Moore, “Where Has My Time Gone? “,
In: Proceedings of the Passive and Active Measurement: 18th International Conference, PAM
2017, Sydney, NSW, Australia, March 30-31, 2017.



24 1.3. RELATED PUBLICATIONS

Parts of the work described in this dissertation are part of the following technical report and in
submission publication:

[PZM17] Diana Andreea Popescu, Noa Zilberman, Andrew W. Moore, “Characterizing the
impact of network latency on cloud-based applications’ performance“, In: Technical Report,
Number 914, UCAM-CL-TR-914, ISSN 1476-2986, November 2017, Computer Laboratory,
University of Cambridge, UK.

[PM18b] Diana Andreea Popescu, Andrew W. Moore, “NoMora: Latency-Driven, Application
Performance-Aware, Cluster Scheduling“, 2018

Parts of the related work described in the Background chapter (Chapter 2) of this dissertation
are part of the following peer-reviwed publication and in submission publication:

[PM16] Diana Andreea Popescu, Andrew W. Moore, “Reproducing Network Experiments in a
Time-controlled Emulation Environment“, In: Proceedings of The 8th International Workshop
on Traffic Monitoring and Analysis (TMA 2016), 7-8 April 2016, Louvain-La-Neuve, Belgium

[KPK+18] Jan Kucera, Diana Andreea Popescu, Andrew W. Moore, Jan Korenek, Gianni An-
tichi, “Elastic Trie: Enabling Event Triggered Monitoring in the Dataplane“, 2018

During the course of my PhD, I have also co-authored the following publications that do not
contribute directly to the work described in this dissertation:

[PAM17] Diana Andreea Popescu, Gianni Antichi and Andrew W. Moore, “Enabling Fast Hi-
erarchical Heavy Hitter Detection using Programmable Data Planes“, In: Proceedings of ACM
SOSR ’17 Proceedings of the Symposium on SDN Research, Santa Clara, CA, USA, April 3-4,
2017 (extended abstract)

[PM15] Diana Andreea Popescu and Andrew W. Moore, “Omniscient: Towards realizing near
real-time data center network traffic maps“, In: Proceedings of ACM CoNEXT Student Work-
shop’15, Heidelberg, Germany, December 1, 2015 (extended abstract)

[PG16] Diana Andreea Popescu, Rogelio Tomas Garcia, “Multivariate Polynomial Multipli-
cation on GPU“, In: Proceedings of the International Conference on Computational Science
2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA



Chapter 2

Background

In this chapter, I present the background relevant to my dissertation. Firstly, I present the basic
network measurement definitions and network monitoring techniques and tools, and then net-
work emulation and simulation tools (§2.1). Secondly, I describe mechanisms for timekeeping
on computers (§2.2). Thirdly, I present the network architecture of today’s data centres, the
typical applications that run in data centres, the characteristics of network traffic in data centres,
and data centre network monitoring systems (§2.3). Next, I present a preliminary measure-
ment study of latencies in data centres (§2.4), and my preliminary experiments of the impact
of network latency on application performance (§2.5). Furthermore, I discuss the latency va-
lues observed in today’s networked systems (end-host and in-network) (§2.6). Lastly, I present
the characteristics of cluster workloads, and describe the state-of-the-art for cluster scheduling
(§2.7).

2.1 Network measurement

2.1.1 Network measurement definitions

In my dissertation, I look at Internet Procotol (IP) [Pos81] networks, with the Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) [Bra89] as transmission protocols.
Before looking into measurement techniques, I give a brief overview of traffic properties which
are usually measured, as presented in [CK06].

Packet delay is an additive metric and is the sum of routing delay (time spent inside a router),
transmission delay (time needed to put a packet onto a link) and propagation delay (time needed
by a packet to traverse the link from one end to another). Further, the routing delay can be
decomposed into packet processing delay (time to determine the output port for the packet),
queueing delay (time spent waiting in router’s output queues) and other additional delay, such
as marshalling and unmarshalling. The queueing delay can be seen as a measure of congestion
on the output link. Another property is the rate of packet loss: the phenomenon which occurs

25



26 2.1. NETWORK MEASUREMENT

when a network device drops the packet due to congestion, or because the packet is identified
corrupted and then dropped. Throughput is the rate at which traffic flows through the network
and is measured in bits per time unit. Packet jitter represents the variability of packet interarrival
time. An important property for application performance is goodput, which is the rate at which
the application endpoint successfully receives data. There are other properties that can be used
to characterise the traffic: time series of byte counts (to quantify the workload represented
by traffic), and the distribution of packet sizes encountered. Another property is the ON/OFF
activity in network traffic (ON state represents activity, OFF state means silence). The activity
can be viewed at three different levels: the packets themselves are an ON/OFF process, packets
form trains from a source to a destination (defined by a given interarrival threshold), and a
collection of trains form a session.

A flow can be defined as a set of packets having the same predefined properties, and that are
exchanged between two endpoints.

There are two types of measurement methods: active and passive methods [CK06]. Active
measurement methods imply injecting additional packets into the network and observing their
behaviour. The best known active measurement tools are ping and traceroute (see Table 2.1).
Network latency from a source host to a destination host is often measured as Round-Trip Time
(RTT) using ping. A disadvantage of active methods is that they create additional network load
and can thus bias the measurements. On the other hand, passive measurement methods rely
solely on observing the traffic without generating additional traffic.

2.1.2 Network monitoring techniques and tools

Table 2.1 presents classical network monitoring techniques and tools, and the measurements
they offer. One of the most well known method to get network statistics is through the Sim-
ple Network Management Protocol (SNMP) counters [CFS+90]. The information that can be
obtained by polling these counters regularly is the number of bytes received and sent on each
interface of the network device or the number of packets received and sent on each interface.
Although maintaining these counters does not have a significant performance overhead on the
network device, they offer only a course-grained view of the network traffic, because they are
limited by the polling interval (typically 300s), and by imprecise timestamps. The timestamp is
supplied externally, and it is limited in numerical range, leading to the need to detect roll over.
SNMP’s resolution is sufficient for low throughput traffic.

Packet sampling, as used in NetFlow [Cisc], sFlow [sFl], PSAMP [JQC09], entails capturing
only a subset of packets to reduce the number of records [CK06]. Packet sampling can be
done using a constant or variable sampling rate. In the case of constant sampling, there are
several possibilities: i) random sampling (packets are sampled with a fixed probability 0 < p <

1); ii) deterministic sampling (packets are sampled periodically, meaning every Nth packet is
sampled); iii) stratified sampling (packets are first divided into subsets, and then sampling is



CHAPTER 2. BACKGROUND 27

Tool Measurement
Ping RTT; packet loss ratio
Traceroute route ’guess’; RTT
SNMP [CFS+90] switch port counters
NetFlow [Cisc] flow counters
sFlow [sFl] packet sampling
iperf [ESn] throughput
Cisco IP SLA [Cisb] RTT (average); one-way delay; packet loss
Port mirroring [Cisa] copies of all packets from a port
NTP [MBK+10] round-trip delay
PTP [IEE08] master-to-slave delay; slave-to-master delay; estimated one-way delay

Table 2.1: Classical network monitoring tools.

applied within each subset). Another type of sampling is trajectory sampling [DG01; CK06].
In this technique, if a packet is selected for sampling at some device in the network, then it will
be selected at all the other devices in the network. Amongst the uses of trajectory sampling are
obtaining packet delays (important for SLAs), or tracing denial of service attacks.

NetFlow [Cisc] is a standard introduced by Cisco to monitor IP flows, which are usually identi-
fied by the 5 tuple (source and destination IP address, source and destination port and protocol
number). The active TCP and UDP flows are kept in a cache. When a packet is received at
the switch, NetFlow checks to see if the packet pertains to a cached flow by matching on the
header fields. If it does, then the associated flow counters are incremented, and if it does not,
a new flow entry is created in the cache. For deciding when to send flow records to the col-
lector for analysis, several policies can be configured: i) on a TCP flow completion, which can
be detected when seeing a packet with a FIN or RST flag; ii) when a flow has been idle for a
configured timeout; iii) if a hard timeout is configured; iv) when the cache is full and an entry
must be evicted. Timeouts can be specified at granularity of seconds. Sampled NetFlow [Cisd]
can sample 1 in N consecutive packets that traverse the switch.

sFlow [sFl] is a standard implemented in most new switches to provide packet sampling and
port counter sampling. For packet sampling, a switch selects 1 in N packets on each input port.
The sampled packets’ headers are forwarded to a collector along with metadata that includes
the sampling rate, the switch ID, the timestamp of capture, the input and output port numbers.

Port mirroring [Cisa] involves copying all packets seen on a switch port to a different switch
port for further analysis.

2.1.3 Network monitoring in SDN-enabled networks

Software Defined Networking (SDN) is a paradigm in which the control plane is separated from
the data forwarding plane, enabling the centralisation of network control and offering the pos-
sibility of programming the network. The control plane is represented by a controller and the



28 2.1. NETWORK MEASUREMENT

data plane consists of networking devices, such as switches and routers. This separation is made
possible by a programming interface, which allows the controller to communicate with the for-
warding devices, for example to install forwarding rules at switches. OpenFlow [MAB+08] is
the most popular such application programming interface (API). In an OpenFlow network, the
controller can collect statistics about the flows (duration, number of packets, number of bytes)
by polling the switches. These statistics can be either per-flow values or aggregates across mul-
tiple flows that match a rule. SDN monitoring tools use flow events that the controller receives
(new flow - PacketIn message; termination of a flow - FlowRemoved message) and the
statistics collected by the controller. I discuss several such tools in the following paragraphs.

OpenTM [TGG10] is a traffic matrix (TM) estimator for OpenFlow networks. It determines the
current active flows in the network based on flow initiation and termination events. OpenTM
uses routing information from the OpenFlow controller to discover the flow paths, and then
it periodically polls switches on the flow path, obtaining byte and packet counters. OpenTM
assumes that all the packets of a flow follow the same path in the network.

FlowSense [YLZ+13] is a monitoring tool that uses OpenFlow control messages to determine
average link utilisation in OpenFlow-enabled networks. When a flow expires, the controller re-
ceives information about the duration and size of that flow. The link utilisation is computed only
at certain times, e.g., when all the flows on a link have expired. In the case of long flows, or if
rules have large timeouts, the link utilisation is rarely computed. While the FlowSense approach
does not present any overhead in terms of additional messages injected in the network, the delay
between obtaining average link utilisation estimates can be 10 seconds with 90% accuracy. For
proactive rules, PacketIn messages are not triggered. Wildcard rules result in a smaller number
of FlowRemoved messages. As a result, these two types of rules limit the frequency of the link
utilisation computation. Given these limitations, an adaptive monitoring method was proposed
in PayLess [CBA+14], which uses the PacketIn and FlowRemoved messages in a similar fa-
shion to FlowSense, but it additionally polls the switches using FlowStatisticsRequest
messages. In doing so, it obtains flow statistics more often than FlowSense, which gathered
statistics only when a flow terminated. The switches are polled at an interval determined by
the byte count of the flow. If the flow does not change much, the polling timeout is increased,
while if there is a significant difference between the byte count at two polling times, the polling
timeout is decreased. This method can be used to determine link utilisation, and is more accu-
rate than FlowSense. It is less accurate than polling at a fixed interval, but the total number of
OpenFlow messages used is lower.

DREAM [MYG+14] is a network-wide measurement architecture that uses OpenFlow to co-
ordinate the measurement devices. DREAM implements an algorithm for allocating switch
memory resources depending on the measurement task needs, traffic and expected accuracy,
multiplexing the resources both temporally and spatially.

OpenSketch [YJM13] is a measurement architecture inspired by the software-defined network-
ing paradigm, dubbed software-defined traffic measurement. In the switch data plane, a packet



CHAPTER 2. BACKGROUND 29

goes through 3 basic blocks: hashing (certain packet fields are hashed), classification (ma-
tching on fields according to predefined rules), and counting (gathering statistics). The control
plane manages the data plane, and configures the measurement tasks according to available
resources. OpenSketch uses sketches, data structures from streaming algorithms, to store infor-
mation about packets. Sketches have two main advantages compared to flow-based counters:
low memory usage and the possibility of setting the desired accuracy in relation to the memory
used.

The information and the granularity provided by OpenFlow counters is limited, hence other
approaches sought to use known ways of acquiring statistics from the network (e.g., sam-
pling [SKD+14], port mirroring [RSD+14]). Still, SDN monitoring has some benefits. It offers
the possibility of greater control and reduced human overhead for configuring each switch indi-
vidually to collect network statistics. Another benefit of SDN for monitoring is the centralised
view of the network, which allows for a better allocation of network resources [MYG+14] to
gather data. Also, the centralised view can help in reducing the collection of redundant data
(e.g., the same flow being sampled at several places in the network).

The monitoring approaches presented do not have the granularity necessary for data centres.
This drawback lead to the increasing use of programmable switches for monitoring tasks
[LMK+16a; LMK+16b; LMV+16; HW16; PAM17; SNR+17; YJL+18; HLB18; GHC+18].
FlowRadar [LMK+16a] keeps track of all the flows in the network with their associated coun-
ters, and exports this information periodically to a remote collector, which ultimately uses them
for different monitoring applications targeted to datacenters. UnivMon [LMV+16], ElasticS-
ketch [YJL+18] and SketchLearn [HLB18] use sketch-based data structures in the dataplane
to record network traffic statistics that are exported at fixed time intervals to the control plane
that processes them to perform different measurement tasks. HashPipe [SNR+17] and [PAM17]
focus on determining the largest flows (heavy hitters). Sonata [GHC+18] proposes a query in-
terface for network telemetry, uses sketches in the dataplane, and the controller zooms-in the
network traffic of interest by refining the network query.

2.1.4 Network simulation and emulation frameworks

To understand the impact of network latency on application performance, one has to have the
ability to recreate diverse network conditions. In this context, network simulation and emulation
frameworks represent powerful tools for researchers, as they offer the possibility of replicating
controlled and diverse network conditions, and of setting up experimental environments similar
to real testbeds. However, the experimental results obtained on such frameworks are not always
accurate due to different factors.

Simulation based frameworks, such as ns-2 [IH08], ns-3 [HRF+06] or OMNET++ [VH08], are
often employed by researchers in order to evaluate their prototypes. These popular examples
employ an event-driven simulation clock, and simplified models for hardware and network pro-



30 2.1. NETWORK MEASUREMENT

tocols. Simulations are usually lengthy in time, because they have to simulate every event,
leading to serialisation of events for the case in which events were run in parallel in the real run.
Also, the more realistic the simulation is, the longer the simulation runtime will be, with more
events to run. However, not all simulators are event-driven, having deterministic behaviour.
Some are stochastic, meaning that the simulation needs to be run repeatedly to obtain sound
results. Most often, the simulator’s experimental fidelity is simplified due to the use of network
models.

Emulation brings more realism to the experimental results by replicating one or more parts of
a system under study. This allows the use of unmodified applications and operating systems.
Network link emulators, such as NetEm [Hem] and DummyNet [CR10], are essential tools used
in network emulations. They vary different properties such as bandwidth, delay, jitter, packet
loss, packet duplication, or packet reordering, on the outgoing interface. These tools also serve
as building blocks for large-scale network emulators (DieCast [GVM+11], Mininet [HHJ+12],
or SELENA [PRM14]), or in testbeds to change the network conditions. As such, their accuracy
in replicating various network conditions is very important.

NetEm NetEm [Hem] is an enhancement of the Linux traffic control facilities, built using
the existing Quality of Service (QoS) and Differentiated Services (diffserv) facilities in the
Linux kernel. An important feature of NetEm for the work in this dissertation is the ability to
artificially delay packets. The delay can be constant, or it can follow a predefined distribution
(uniform, normal, Pareto, Pareto-normal), or a user defined one. Additionally, NetEm can
limit the bandwidth using the Token Bucket Filter from the Linux traffic control (TC). Several
studies [NR09; SMA+10; JLH+11; HF15] have shown that NetEm does not accurately introduce
the specified delay. The values introduced have high variance (because of e.g., operating system
(OS) scheduling, interrupts), impacting the accuracy of small delays less than several hundreds
of microseconds, typical for data centres. NetEm by default can only delay the packets on the
outgoing interface. As I am interested in artificially delaying packets that are sent or received to
recreate diverse network conditions, this represents a limitation. To be able to delay packets also
on the incoming interface, an emulated software device must be used, called the Intermediate
Functional Block (ifb) [NR09]. All incoming packets are redirected to this interface, where
the delay is applied. However, this introduces an additional overhead of at least 5µs [NR09],
which is significant considering the current latencies in the cloud, as presented in Section 2.4
and Chapter 4.

An approach to overcome these issues is to use a hardware-based tool rather than a software
one.

NRG The Network Research Gadget (NRG) [NZM17] is a latency appliance that imple-
ments traffic control mechanisms in hardware, replicating the functionality of NetEm [Hem].
The hardware implementation provides higher resolution and better control over latency than



CHAPTER 2. BACKGROUND 31

software-based traffic control systems such as NetEm. The latency injection has a resolution of
5ns and can range from zero to a maximum value dependent on the configured line-rate. The
appliance can add up to 700µs of latency at full 10Gb/s rate, and up to 7s at 100Mbps. In
addition, NRG adds only 700ns of base latency, compared to several microseconds as is com-
monly the case with NetEm. NRG introduces both a constant latency and variable latency to
recreate a predefined latency distribution. The supported latency distributions are: flat, user-
defined, uniform, normal, Pareto, and Pareto-normal distributions. The definitions for the last
three distributions are based upon NetEm’s distributions [Hem]. The user defined distribution
allows the specification of any distribution, and can be used to recreate the latencies measured
in the cloud. Latencies are injected independently for each direction of each port, thus client to
server and server to client added latencies are completely independent, replicating the direction-
independent latency experienced by packets due to in-network congestion. There is no packet
reordering within NRG. A packet P is delayed in a queue inside the appliance for a given amount
of time d chosen randomly from a given delay distribution. The packet delay d within the queue
is independent of the inter-packet gap. The per-packet added latency presumes independence of
each arrival. This provides a simplification that permits practical implementation. NRG can be
deployed on the NetFPGA SUME board [ZAC+14].

Given my focus in this dissertation on data centre latency scale, in the order of tens or hundreds
of microseconds, I use NRG in Section 2.5 and Chapter 5.

2.2 Timekeeping on computers

Having the clocks of computers that communicate over the network synchronised has been of
great importance since the beginning of computer networks. Clients and servers of distributed
file systems, such as the Network File System, need a common time to have an ordering of the
operations done on the files. Distributed databases (e.g., Spanner [CDE+12]) leverage time-
stamps to order transactions, with the transaction latency being bounded by the clock’s uncer-
tainty. Another example is the make utility’s behaviour. When doing an incremental build,
the make utility uses the system time and the time the object files were created to determine
which source files have been modified in order to avoid recompiling all the files. In the case
that a program is compiled on a computer, and later the source and object files are transferred
to a different computer and recompiled there, if the system times of the two computers are
different, make will detect the difference and report it as a warning to the user. The user then
will have to remove the old files and build everything from scratch. Having the clocks of the
two computers synchronised would have solved this issue. With the switches and hosts clocks
synchronised, correlating the events detected at different locations in the network can be used
to detect network-wide traffic events [MYG+14; MYG+16; HCG+18]. Network latency from
a source host to a destination host is often measured as RTT (e.g., the ping utility) [GYX+15;
ALZ16]. If the hosts clocks are synchronised, then the one-way delay (OWD) can be measured



32 2.2. TIMEKEEPING ON COMPUTERS

just by sending a packet from the source host to the destination host. These are all examples of
situations that would benefit from having synchronised clocks.

2.2.1 Terminology

Clock synchronisation defines the process of adjusting a clock to a different clock’s value. The
clock offset defines by how much a clock’s value is different from another clock’s value.

The accuracy of a clock defines how close the clock’s value is to the true time, while the
precision defines the bound for the difference between the clocks’ values.

A clock is driven by a quartz oscillator at a given frequency. The frequency of the clock can
change, meaning it does not run at the same rate as another clock, desynchronising from each
other. This phenomenon is called clock drift, and it can be caused by heat, poor quality materi-
als, or vibration.

Clock synchronisation uses four timestamps: two from the client (clock to be adjusted) and two
from the server (reference clock), determined through packet exchanges. These four timestamps
can be processed in different ways [MBK+10; IEE08; LWS+16; GLY+18].

2.2.2 The Network Time Protocol (NTP)

The first protocol for timekeeping on computers was the Time Protocol [PH83]. It is a simple
protocol, where a computer connects to a server over TCP or UDP to query the time. The
server sends back its current time, and closes the connection. Unix-based operating systems
used the rdate utility to synchronise their clocks, which can set the time of the computer to the
time received from the server. The sudden change in system time can affect certain programs’
behaviour. Because of this, the Network Time Protocol (NTP) [MBK+10] was introduced. In
NTP, the clock is adjusted gradually. NTP offers a monotonic count, meaning that the clock
does not go backwards when corrected.

The Network Time Protocol (NTP) [MBK+10] synchronises hosts and routers clocks over the
network. NTP’s best case accuracy is in the low tens of milliseconds over the Internet, and
sub-millisecond over LANs. NTP uses UDP as a transport protocol. Commonly, NTP is im-
plemented in software as a daemon process ntpd, so its precision is affected by different OS-
related artefacts (e.g., context switching, software timestamps).

An NTP client regularly polls several NTP servers. A client sends a packet at timestamp T1

(originate timestamp). The server’s receive timestamp is T2. The server then sends a response
packet at T3 (transmit timestamp), which is received by the client at T4 (destination timestamp).
The protocol has two modes: in the one-step mode, the transmit timestamps are sent in the
transmitted packets (Figure 2.1). In the two-step mode, they are sent in the next transmitted



CHAPTER 2. BACKGROUND 33

Figure 2.1: NTP protocol one-step mode.

packet. Based on these timestamps, the client computes the clock offset θ and the round-trip
delay δ .

θ =
[(T2 −T1)+(T3 −T4)]

2
(2.1)

δ = (T4 −T1)− (T3 −T2) (2.2)

The offset and delay samples go through a filtering algorithm. The sample with the minimum
delay amongst the last eight samples is selected. This sample remains selected until a different
sample with lower delay appears.

The clock discipline algorithm adjusts the phase (coarse adjustment) and frequency of the clock,
and it is described in detail in [Mil10]. The discipline is implemented as a feedback control
whose inputs are the timestamp of a reference clock and the timestamp of the system clock.
The difference between the two timestamps enters the clock filter (described in the previous
paragraph), whose output is fed into the phase correction and frequency predictor stages. The
frequency predictor stage uses a hybrid algorithm that combines a phase-lock loop (PLL) and
frequency-lock loop (FLL). The frequency predictions of the two components are weighted
differently depending on the conditions, with the PLL prediction being more important under
increased network jitter (caused by network congestion), and the FLL prediction being more
important under oscillator wander (caused by temperature variations). In PLL mode, the phase
predictor is the offset amortised over time, while in FLL mode the phase predictor is not used.
The phase error is upper bounded by half of the RTT between the client and the server [CK06].
In PLL mode, the frequency predictor is an integral of the offset over past updates, while in
FLL mode the frequency predictor is a fraction of the current offset divided by the time since
the last update. A client sends messages to each server with a poll interval of 2τ seconds. The
poll exponent τ is dynamically adjusted to maintain clock accuracy and to minimise network
overhead, and ranges from 4 (16s) to 17 (131072s).



34 2.2. TIMEKEEPING ON COMPUTERS

Figure 2.2: PTP protocol.

2.2.3 The Precision Time Protocol (PTP)

The IEEE 1588 Precision Time Protocol (PTP) [IEE08] is a standard protocol used to synchro-
nise clocks over a network and it can achieve sub-microsecond precision. The master clock
provides the reference time for the slave clocks. A grandmaster is chosen from the available
clocks in the network. The grandmaster will be the root of a tree formed out of devices that are
PTP-enabled. Each element of the tree is both a slave to its parent and a master for its children.

There are several types of PTP clocks. The simplest type is the ordinary clock, which is an end
device that has only one network connection, and can act as a master or a slave. A boundary
clock has a slave port, receiving the time from the master clock, and master ports, disseminating
the time to other slaves. Another type of clock is the transparent clock, which timestamps
incoming and outgoing messages and updates the correction field in the messages to account
for the delay across the device. The mechanisms used by the last two types of clocks ensure the
scalability of PTP networks.

The PTP protocol message sequence is depicted in Figure 2.2. A PTP master sends a Sync
message. The time when the Sync message was sent (T1) is recorded at the master and sent to
the slaves. If the master does not have the ability to embed T1 in the Sync message, it sends
an additional message after the Sync message, Follow_Up, that contains T1. A PTP slave, or
client, records the time when it received a Sync message (T2). The difference between the send
and receipt times represents the master-to-slave delay, dm2s:

dm2s = T1 −T2 (2.3)

A PTP slave sends a Delay Request message. The slave records the time when the Delay Re-
quest message was sent (T3), while the master records the receipt time (T4). The difference
between the send and receipt times of the Delay Request messages represents the slave-to-
master delay, ds2m. The master will reply with a Delay Response message which contains the
receipt time T4, thus:

ds2m = T3 −T4 (2.4)

By assuming that the propagation delays master-to-slave and slave-to-master are symmetric,



CHAPTER 2. BACKGROUND 35

which usually translates to paths being symmetric, the one-way delay is computed as half of the
sum of the two delays.

OWD =
dm2s +ds2m

2
(2.5)

The time difference between the master and slave clocks represents the clock offset from master
and is computed as a difference between the master-to-slave delay and the one-way delay.

offset = dm2s −OWD =
dm2s −ds2m

2
(2.6)

In the case that the master-to-slave and slave-to-master delays are asymmetric (due to network
congestion for example), the clock offset will suffer perturbations and the precision of the clock
synchronisation will be affected.

The messages sent by PTP fall in two categories: event and general. Messages like Sync
and Delay Request message are event messages, whose send and receipt timestamps are used
to compute the adjustment of the slave clocks, and thus the timestamps need to be accurate.
Messages like Announce, Follow-up and Delay Response are general messages, and do not
require accurate timestamps. Event messages are sent on port 319, while general messages
are sent on port 320. PTP messages are sent using multicast messaging [Dee89], but devices
can negotiate unicast transmission if desired. PTP messages are usually sent over UDP. PTP
supports two delay measurement mechanisms: peer-to-peer and end-to-end. In the peer-to-peer
mechanism, each network device is PTP-aware, and the time synchronisation operates between
the end-host and the network device. In the end-to-end mechanism, which I use in this work,
only the end nodes need to be PTP-aware.

The send and receipt timestamps for the PTP packets can be generated either by the host o-
perating system’s kernel (software timestamping), or by a dedicated hardware unit (hardware
timestamping). The first type of timestamping has the advantage of being widely available, but
the timestamps generated are less precise due to variable interrupt servicing latencies [CB06].
The second type of timestamping is precise, but requires special hardware. For example, So-
larflare network interface card (NIC) [Solb] generates hardware timestamps for PTP packets
using a dedicated time stamping unit which is driven by an oscillator. On the arrival or depar-
ture of a PTP packet, the unit generates a hardware timestamp which is passed by the NIC to the
network device driver. Additionally, a PTP stack enabled by the NIC is running on the server
to discipline the NIC’s precision oscillator. A user space application can access the hardware
timestamps for the received packets using the SO_TIMESTAMPING socket option available in
the Linux kernel.

PTP uses various mechanisms to ensure that there is no interference in the clock synchronisa-
tion. Firstly, PTP can use hardware timestamping to eliminate the end-host delay caused by the
network stack and variance due to interrupt service latencies [OLS08]. Secondly, PTP-enabled



36 2.2. TIMEKEEPING ON COMPUTERS

switches that run as transparent clocks can modify a field in the PTP messages to account for
the delay incurred across the switches. In this work, I do not use transparent clocks, as I want to
leverage PTP’s measurements to infer the actual network latency, which is affected by network
conditions like congestion.

Software implementations of the PTP protocol are PTPd [PTP18] (open source) or Time-
Keeper [Tim] (commercial). In Section 2.2.4, I describe PTPd, which I use in Chapters 3 and 4
as a building block for a data centre monitoring system.

2.2.4 PTPd

PTPd is a software-based system that uses software timestamps. It runs as a background user-
space process. PTPd is lightweight, its CPU resource utilisation being less than 1% [CB06].
PTPd’s precision is determined by the precision of sent and received messages timestamps.
PTPd uses the Linux kernel’s software clock. It adjusts the clock using the adjtimex()

interface for clock tick-rate adjustment.

The PTPd clock discipline [CB06] was designed to counter the jitter determined by various
factors (interrupt servicing, network queueing). A proportional-integral (PI) controller produces
a tick-rate adjustment for the slave clock. The proportional term corrects the offset between the
slave clock and the master clock, while the integral term corrects the rate difference between
the slave clock and the master clock. The input to the PI is filtered using a Finite Impulse
Response (FIR) low-pass filter for the offset to master (a two sample average), and a first-order
Infinite Impulse Response (IIR) low-pass filter for the one-way delay (a modified exponential
smoothing with a two sample average added), with a stiffness factor that controls the cutoff and
phase of the filter. The FIR attenuates the high frequency noise from the input.

2.2.5 Other clock synchronisation mechanisms

Global Positioning System (GPS) [PEA+96] receiver antennas can be used for nanosecond-level
precision clock synchronisation. GPS receivers provide Pulse-Per Second (PPS) and time en-
conding to NICs that can process the signal. However, only a few servers are equipped with
PPS-capable devices. Due to data centre scale, it would be extremely expensive to have a full
deployment in all data centres where GPS signals are provided directly to thousands of ma-
chines.

Attempts to address the data centre scale issue are the Datacentre Time Protocol (DTP) [LWS+16]
and Huygens [GLY+18]. DTP [LWS+16] is a protocol that uses the physical layer (PHY) to syn-
chronise the hosts clocks, with a single hop clock precision of 25.6ns and achieving 153.6ns
clock precision for a data centre with six hops. It exploits the observation that a transmitter
and a receiver are already synchronised in the PHY. It uses the gap between frames defined in
the IEEE 802.3 standard to send messages for clock synchronisation. DTP is not immediately



CHAPTER 2. BACKGROUND 37

deployable, since it requires PHY modifications in the hardware in the network data centre. Its
advantages are the fact that the network load does not affect the clock synchronisation, and it
also does not generate any additional network traffic. Huygens [GLY+18] is a software clock
synchronization system that achieves synchronisation to within a few tens of nanoseconds. Be-
ing a software system, it is immediately deployable in data centres. Huygens uses NIC time-
stamps, but it does not require specialised switches to remove the network queueing delays. It
uses statistical methods (Support Vector Machines (SVMs)) to remove the queueing delays and
timestamp noise. Every server probes 10-20 other servers, and each server uses 5Mb/s band-
width for probes. Huygens uses packet pairs, called coded probes. If the spacing between the
packets at the receiver is close to the one at the sender, then the pair is retained. Another impor-
tant factor that helps in achieving such a good precision is that Huygens leverages the network
effect: it does not synchronise each pair individually, but instead it synchronises multiple pairs
by looking at differences between clocks of servers that form a loop in the probing graph. Each
client runs the coded probes and SVMs on the filtered probes to determine the clock offset and
drift. A master gathers this information from each client, applies the network effect, computes
a consensus of the time, and then distributes it to all the clients.

2.3 Data centres

2.3.1 Data centre network architecture

A data centre network architecture is comprised of the topology of the network that intercon-
nects the servers, of the switches deployed in the network, of the end-host network configuration
and of the communication protocols used. Companies do not reveal full details of their data cen-
tre architectures, since the performance given by their infrastructure can be an advantage over
competitors, especially in the cloud computing business.

Network hardware and topology The most common topology used for data centres is fat
tree [ALV08], which is based on Clos networks [Clo53]. Clos networks, originally designed
for telephone circuit switches, are multi-stage circuit-switching networks, with three stages:
the ingress stage, the middle stage, and the egress stage. Clos networks are strict-sense non-
blocking networks, meaning that any input can be connected to an unused output without having
to rearrange existing connections. Fat trees, on the other hand, are rearrangeable non-blocking
networks, meaning that with a certain arrangement of the connections, any input can be con-
nected with any unused output. An important feature of a network topology is the bisection
bandwidth. The bisection bandwidth of a network is the bandwidth available between the two
partitions when the network is partitioned in half. Full bisection bandwidth means that any input
can communicate with any unused output at full line-rate. Non-blocking networks provide full
bisection bandwidth. The edge of the network is usually oversubscribed. Fat tree topologies
can offer full bisection bandwidth, but it may be difficult to achieve this while also avoiding



38 2.3. DATA CENTRES

packet reordering in TCP flows [ALV08].

Figure 2.3: A data centre fat-tree topology.

Google [SOA+15], Microsoft [GJK+09] and Facebook [And14] data centre network topologies
follow the fat tree design. A k-ary fat tree, shown in Figure 2.3, has 3 layers of k-port switches:
core (the top layer), aggregation (the middle layer) and edge (the lowest layer, which is con-
nected to the host layer). The hosts are grouped into racks, and are connected to edge switches,
called Top-of-Rack (ToR) switches. The fat tree has k pods, and a pod contains two layers of
switches, each layer having k

2 switches, and k2

4 hosts. A k-port switch from the edge layer is con-
nected to k

2 hosts and to k
2 switches from the aggregation layer. The fat tree topology has ( k

2)
2

core switches. A k-port core switch is connected to every pod, having its i-th port connected
to the i-th pod such that an aggregation switch is connected to k

2 consecutive core switches.
The fat tree topology provides multiple equal cost paths between every two hosts. Switches use
Equal Cost Multipath routing (ECMP) [Hop00] to decide on which of the equal cost paths a
flow should be sent. ECMP hashes the 5-tuple (IP source and destination address, source and
destination port and protocol ID) of a packet, and based on the hash determines which path the
flow will take.

The Google [SOA+15] network has evolved over the years. Google develops their own switches
using 16× 40Gb/s merchant silicon. In the Jupiter network, a ToR switch has 48× 40Gb/s
connections to hosts in the rack and 16×40Gb/s to the aggregation switches. Four such switches
form a Middle Block (MB), which serves as building block in the aggregation block. The logical
topology of an MB is a 2-stage blocking network, with 256×10Gb/s connections to ToRs and
64× 40Gb/s connections to the spine. Each ToR connects to eight MBs with dual redundant
10Gb/s links. An aggregation block has 512×40Gb/s or 256×40Gb/s links towards the spine
blocks. A spine block has six switches with 128Gb/s ports to the aggregation blocks. There are
64 aggregation blocks.

The Facebook data centre architecture [And14] has four planes of spine (core) switches. Each
plane can accommodate up to 48 spine switches. Each fabric (aggregation) switch of each



CHAPTER 2. BACKGROUND 39

pod connects to each spine switch within its plane. A pod has 48 server racks, with each pod
being served by four fabric switches, one from every plane. A rack can have up to 192 hosts.
Each ToR has 4× 40Gbs/s uplinks. End-host have 10Gb/s connections. There is a 4:1 fabric
oversubscription from rack to rack, with 12 spine switches per plane. Facebook also develops
their own switches.

VL2 [GJK+09] is a 3-tier architecture where the core tier and the aggregation tier form a folded
Clos topology. Other proposed data center network designs include Dcell [GWT+08], BCube
[GLL+09], CamCube [ACR+10], Jellyfish [SHP+12], Xpander [VSD+16]. BCube [GLL+09]
is a data centre network architecture based on a hyper-cube topology. Jellyfish [SHP+12] is a
random graph topology designed to support easy incremental expansion of the data centre.

Hardware resource disaggregation is an emerging trend that will see the traditional rack re-
placed by pools of different resources (CPU, DRAM, disk) [GNK+16; SHC+18; Int18a] com-
municating over a high-speed network. This architecture presents several benefits: improved
resource utilisation, failure isolation, and flexibility in adding or removing resources.

Network protocols The data centre protocol stack is based on the traditional TCP/IP stack,
but it has evolved to deal with the challenges inherent to this type of environment: scale, cost,
competing demands of applications (high throughput vs. low latency), unpredictable network
traffic patterns. Most of the data centre operators today are using IP version 4 (IPv4) within
their networks. Facebook uses only IP version 6 (IPv6) in their internal networks1.

Traditional broadcast mechanisms such as Address Resolution Protocol (ARP) [Plu82] do not
scale in data centres [GJK+09; NPF+09]. To solve this issue, data centres are managed via IP
layer routing protocols, such as the Border Gateway Protocol (BGP) [RL95]. For example,
Facebook uses BGP4, which is complemented by a centralised BGP controller that is able to
override routing paths. Google developed its own protocol, named FirePath [SOA+15], which
is a custom Interior Gateway Protocol (IGP). FirePath implements a centralised topology state
distribution, and a distributed forwarding table computation. Microsoft’s data centre protocol
is thought to be similar to that of VL2 [GJK+09]: traffic originating from the edge switches is
forwarded first to a randomly selected intermediate switch and then to the actual destination.

TCP’s congestion control algorithm is not optimal for environments which have the charac-
teristics of a data centre network (high-bandwidth, low latency). Consequently, TCP’s perfor-
mance suffers because of different issues, such as incast, bursty packet drops, and large queue
buildup [AGM+10]. Thus, different TCP variants customised for data centres were developed
over the years [AGM+10; AKE+12; VHV12]. The first such transport protocol variant was
DCTCP [AGM+10]. DCTCP signals queue buildup earlier on through the use of the Explicit
Congestion Notification (ECN) feature supported by certain switches. Source end-hosts es-
timate the fraction of packets marked through ECN, and deduce the amount of congestion.
Google’s data centres run a variant of DCTCP [SOA+15].

1Private communication



40 2.3. DATA CENTRES

Moreover, clean slate designs have been proposed in this space [POB+14; HRA+17]. Fast-
pass [POB+14] is a centralised packet scheduler that aims to reduce in-network queueing. It pro-
poses a timeslot allocation algorithm to determine when each packet is sent, along with a path
assignment algorithm for each packet. Fastpass moves the queueing at end-hosts. NDP [HRA+17]
is a radically different approach that requires a new end-host stack and new switches. It uses
switches with small buffers. The senders send a full window from the start, with no initial
handshake. When congestion occurs, the switches trim packets, removing their payload. The
headers are sent to notify the receiver of which senders wish to send to it. Then, the receivers
pull data from the senders who want to send to them, since the receivers have received the
headers and know from whom to expect data.

2.3.2 Data centre applications

A key role in the data centre ecosystem is played by the applications that produce network
traffic. Due to the scale of the input data and of the user demands, data centre applications are
distributed. Data centre applications can be split in the following categories:

• Control and management applications: clock synchronisation (e.g., Precision Time Pro-
tocol daemon [PTP18]), consensus and locking (e.g., Chubby [Bur06]), and cluster man-
agement (e.g., Borg [VPK+15]).

• Data storage and retrieval: distributed file systems (e.g., GFS [GGL03]), distributed
database systems (e.g., Spanner [CDE+12]), key-value stores (e.g., Memcached [Mem18]).

• Applications serving users’ needs: data processing frameworks (MapReduce [DG04]
style processing, graph processing (e.g., Apache Giraph [Gir], Pregel [MAB+10]), stream
processing (e.g., Apache Storm [Sto]), machine learning analytics (e.g., Tensorflow [ABC+16]),
Web traffic [Pro18], search engine and social network backends. In addition to these, ten-
ant applications running in VMs, which can be any of the previous applications or custom
applications, have to be mentioned.

There are two aspects of the applications that are important for determining their networking
requirements: the communication pattern of the application (which can be mapped to the un-
derlying network) and the properties of representative workloads.

Communication patterns The most common communication patterns [CS12; KPT+12] are
MapReduce [DG04], partition-aggregate (search engine and social networks backend) [AGM+10;
KPT+12; CS12], dependent-sequential (constructing a user’s home page in a social networking
application) [KPT+12], star-like (machine learning parameter server [LAP+14]), and Bulk Syn-
chronous Parallel (BSP) (e.g., Pregel [MAB+10]).

In the MapReduce [DG04; ZCD+12] pattern, a mapper reads its input from the distributed file
system, performs computations on the input read and then writes its intermediate result to disk.



CHAPTER 2. BACKGROUND 41

A reducer reads the intermediate result from different mappers (the shuffle phase), performs
computations on the data, and writes the output to the distributed file system. In the shuffle
phase there are xy flows if there are x mappers and y reducers, and at least y flows for writing
the final results.

In the partition-aggregation pattern [AGM+10; KPT+12], in order to provide an answer to
a request received from a user, several responses from workers need to be aggregated. The
aggregation tree can have multiple levels, with the leafs being the workers and the root being
the final aggregator. The dependent-sequential pattern [KPT+12] entails that the next request is
dependent on the previous request’s results. These patterns are common in applications such as
Web search and social network content backends.

A Bulk Synchronous Parallel (BSP) computation, named superstep, consists of concurrent com-
putation, communication between worker processes, and barrier synchronisation. This pattern
is common in graph processing frameworks [MAB+10; Gir].

Machine learning (ML) applications represent a common workload for data centres [HBB+18;
ABC+16]. In general, an ML application fits a model to input data, and requires multiple itera-
tions until the model’s parameters convergence. Due to the huge amount of input data that has
to be processed, ML frameworks have a distributed architecture [LAP+14; ZCD+12; KHL+16;
XHD+15; ABC+16]. A machine learning framework usually has server nodes that store the
globally shared parameters (parameter servers), and worker nodes that do local computations
on their part of data or of the model, depending on the chosen approach. In a data parallel
approach, the input data is partitioned across the machines and the ML model is shared. In a
model parallel approach, the ML model is partitioned across the machines and the input data
is shared. In the data parallel approach, each worker node can read and update all the model
parameters, while in the model parallel approach, each worker node can access and update only
its model parameter partition. In this context, the network plays an important role due to the
inherent synchronisation between worker nodes and server nodes to update the model. If the
computation is synchronous, after each iteration, the parameter serves aggregate the parameters
from the workers. For example, if one of the workers is unreachable over the network or is slow
to reply, the overall training time increases due to the wait for that worker’s parameter updates.
To lessen the importance of communication latency to the completion time of the training, some
frameworks [ABC+16; KHL+16] use asynchronous communication, or bounded staleness syn-
chronisation [XHD+15], where a certain degree of staleness in the parameters (meaning using
parameters from previous iterations) is tolerated, but this can potentially lead to slower converge
of the model [KHL+16].

Workloads There are a few studies which analyse the workloads of some data centre appli-
cations. One such study is the analysis and modelling of Memcached workloads based on
data provided by Facebook [AXF+12]. The authors describe an analytical model that can be
used to generate synthetic workloads whose properties are similar to the real world workloads,
and which is implemented in the Mutilate load generator [LK14]. MapReduce workloads from



42 2.3. DATA CENTRES

Facebook and Cloudera are discussed in [CAK12], providing insights about job size, storage ac-
cess patterns, and cluster load. ML applications usually can be tested with well-known datasets,
e.g., MNIST dataset [LC10] for handwritten digit recognition, ImageNet [DDS+09] dataset for
image classification tasks.

2.3.3 Data centre network traffic characteristics

Data centres network traffic characteristics are seen as sensitive information by companies,
as they could reveal details about their network infrastructure to their competitors. As such,
there is little information available on this topic. Still, there are three main studies [KSG+09;
BAM10; RZB+15] which shed some light on this matter. Additionally, several papers [GJK+09;
AGM+10; MPZ10; CZM+11; HKP+11] (see Table 2.2 and Table 2.3) present limited measure-
ment studies from different data centres.

Benson et al. [BAM10] present a study of the network traffic characteristics of 10 data centres
(3 university data centres, 2 private enterprise data centres, 5 commercial cloud data centres).
The data sets used in characterising the network traffic are the following: network topology,
packet traces from switches and SNMP polls. The data was collected over several weeks. There
are several important findings. Firstly, perhaps predictably, the applications that run in the data
centres depend on the organisation. There is a wide range of applications in each data centre:
Web services, MapReduce, file storage, authentication, business applications, custom software
applications, email and messaging. Secondly, there are important findings regarding flow sizes
and interarrival times, as well as traffic locality. The number of active flows per second is
under 10,000 per rack. 80% of the flows are smaller than 10KB in size. 80% of the flows have
interarrival times of less than 1ms in private enterprise data centres, while 80% of the flows
in university data centres and in most data centres have interarrival times between 4ms-40ms.
80% of flows are less than 11s long. Traffic originating from a rack has an ON/OFF pattern with
properties that fit heavy-tailed distributions, and traffic that leaves the edge switches is bursty.
In cloud data centres, 80% of the traffic coming from servers stays within the rack, because
administrators colocate dependent applications, whereas in the case of university and private
enterprise data centres 40-90% of the traffic leaves the rack. Link utilisation is higher in the
core layer, while the edge layer is lightly utilised. A maximum of 25% of the core links are
highly utilised (hot-spots). Losses are not correlated with high link utilisation, but are due to
temporary bursts. Lastly, time of day/week influences link utilisation, especially in the core,
and to a moderate degree in the other levels of the data centre.

The second main study about data centre traffic is [KSG+09]. Over 1 PB of measurement
data was collected from 1,500 servers. The workloads were MapReduce style jobs using the
Cosmos distributed file system. The servers were instrumented, and then socket level logs were
collected along with user application logs. Similarly to the characteristics found in [BAM10]
for cloud data centres, jobs that require high bandwidth are placed near each other (on the same



CHAPTER 2. BACKGROUND 43

server, in the same rack, in the same VLAN) by the internal placement algorithm. Regarding
traffic locality, the paper observes that there is a probability of 89% that servers within the same
rack do not exchange traffic and 99.5% in the case of servers in different racks. Regarding
congestion, 86% of the links have congestion periods of at least 10s, while 15% of the links
have congestion periods of at least 100s. Over 90% of the congestion periods are less than 2s,
but more than 1s. Regarding flow sizes, like the previous study [BAM10], most flows were
short, 80% of the flows lasting less than 10s. Less than 0.1% last longer than 200s. However,
more than half of the bytes are found in flows that last less than 25s. Another observation is
that there is significant variability in the traffic matrix, both in magnitude and in the pairs of
servers which exchange data. Even if the total traffic exchanged remains the same, the pairs
of servers involved in this exchange change considerably. Moreover, the traffic experiences
periodic short-term bursts, with the interarrival time 15ms at servers and ToR switches. The
median arrival rate of all flows is 100 flows/ms. Lastly, there was no evidence of incast in the
cluster.

The most recent study is on Facebook’s data centre network traffic characteristics [RZB+15].
The data was collected using Fbflow (an internal monitoring system that samples packet headers
with a sampling rate of 1:30,000), through port mirroring on the ToR, and mirroring of all traffic
from one server. The traffic is one of the following: Web, MapReduce, MySQL, or traffic served
from cache servers (leader and follower). Network traffic characteristics regarding flow sizes
and traffic locality for Hadoop jobs are similar to the ones found by the previously mentioned
studies. However, the traffic patterns for the other types of applications differ substantially from
the ones described in [KSG+09; BAM10]. The majority of traffic is intra-cluster (57.5%, from
caching follower servers), with only 12.9% intra-rack. Also, there is a significant portion of
intra-datacentre and inter-datacentre traffic, in particular from the caching leader servers. The
Hadoop traffic is more rack-local than other types of applications. Frontend traffic has minimal
rack-local traffic, but significant intra-cluster traffic. Overall, the locality patterns are stable
over time periods ranging from seconds to days. Regarding flow sizes, most Hadoop flows are
short, while for the other types of services, they are long-lived, but internally bursty and do not
carry a significant number of bytes. Cache flows are larger than Hadoop flows, and Web server
flows are between the two. Facebook’s use of load balancing is effective. It distributes the traffic
across hosts, except in the case of Hadoop servers, which see jobs of different sizes, and traffic
demands are quite stable over sub-second intervals. Consequently, heavy hitters’ sizes are not
much larger than the median flow sizes, and they change rapidly, making it hard to predict them.
Packet sizes are small, median length for non-Hadoop traffic being less than 200 bytes, while
for Hadoop the distribution is bimodal (1500 bytes or TCP ACKs size). The traffic does not
exhibit ON/OFF arrival behaviour, unlike the traffic in the previous studies [KSG+09; BAM10].
Web servers and cache servers have 100s to 1,000s of concurrent connections, while Hadoop
nodes have 25 concurrent connections on average, similar to the values reported in [KSG+09].
Median flow interarrival times are 2ms for Hadoop, and 3ms and 8ms for cache leaders and
followers respectively. Cache followers and leaders communicate with 175-350 different racks



44 2.3. DATA CENTRES

Study Data centre Duration Workload Measurements Flow sizes
[BAM10] 10 data centres (3 univer-

sity data centres, 2 pri-
vate enterprise data cen-
tres, 5 commercial cloud
data centres)

several
weeks

Web services, MapRe-
duce, file storage, au-
thentication, business
applications, custom soft-
ware applications, email
and messaging

• network topol-
ogy;
• packet traces
from switches;
• SNMP

• 80% of the flows are
smaller than 10KB in size.
• 80% of flows are less
than 11 seconds long.

[KSG+09] 1500 servers 1 PB of
measurement
data

• MapReduce style jobs;
• Cosmos distributed file
system

• socket level
logs;
• user application
logs;

• most flows are short,
80% of the flows lasting
less than 10s
• only less than 0.1% last
longer than 200s
• more than half of the
bytes are found in flows
that last less than 25s

[GJK+09] 1500 node cluster - data mining on petabytes
of data

• SNMP
• NetFlow

• 99% of flows are smaller
than 100MB
• 90% of bytes are in flows
whose lengths are between
100MB and 1 GB

[AGM+10] 6000 servers in over 150
racks

1 month; 150
TB

web search and other ser-
vices

• socket level
logs;
• packet level
logs;
• application
level logs

• most background flows
are small, but most of the
bytes in background traffic
come from large flows

[HKP+11] • pre-production cluster
with O(1K) servers run-
ning Dryad (Cosmos)
• production cluster with
O(10K) servers where the
web search index is stored
and where search results
are assembled (IndexSrv)

76 hours and
114 terabytes
of data

• a data mining workload
for a large web search en-
gine + jobs which are a
mix of repetitive produc-
tion scripts (e.g., hourly
summaries) and jobs sub-
mitted by users
• web search (latency sen-
sitive)

estimate demand
matrices and de-
termine hotspot
occurrence and
predictability

• medium-sized flows

[MPZ10] IBM Global Services
• DC 1: 17000 VMs
• DC 2: 68 VMs

10 days - latency measure-
ments between
each two servers;
TCP incom-
ing/outgoing
connections

-

[RZB+15] Facebook data centres brief periods
of time

Web services, MapRe-
duce, MySQL, caching

• sampled traffic;
• packet traces
from switches;
• packet traces
from host

• Hadoop flows are short;
• for other type of ap-
plications, flows are long-
lived, internally bursty and
do not carry a significant
number of bytes.

Table 2.2: Data centre network traffic characteristics - part 1.

concurrently, while Web servers communicate with 10-125 racks. However, most of the traffic is
destined to only a few 10s of racks. Link utilisation on links between hosts and the ToR is quite
low, with the average 1-minute link utilisation less than 1%. Load varies significantly between
clusters, a Hadoop cluster being five times more loaded than a Frontend cluster. The median
utilisation between the ToR and aggregation switches is between 10-20% across clusters. At
this level, the difference between clusters is not as significant as in the previous case, with the
most loaded clusters being three times more loaded than the lightly loaded ones. Between the
aggregation and core switches the utilisation is even higher.

To sum up, data centre traffic characteristics depend on the type of applications deployed, e.g.,



CHAPTER 2. BACKGROUND 45

Hadoop, Web, caches, on diurnal patterns, and on the data centre operators’ strategies for ap-
plication placement and load balancing.

Table 2.3: Data centre network traffic characteristics - part 2.

Table 2.3 Beginning of table
Study Concurrent flows Interarrival times Link utilisation Communication

between servers
Other

[BAM10] • the number of
active flows per
second is under
10,000 per rack

• 80% of the flows
have interarrival times
of less than 1 ms in
private enterprise DCs
• 80% of the flows in
university DCs and in
most DCs have inter-
arrival times between
4ms-40ms.
• traffic originating
from a rack has an
ON/OFF pattern with
properties that fit
heavy-tailed distribu-
tions
• traffic that leaves
the edge switches is
bursty.

• link utilisation is
higher in the core,
while the edge is
lightly utilised
• a maximum of 25%
of the core links are
highly utilized (hot-
spots)
• losses are not cor-
related with link high
utilisation, but are due
to temporary bursts.

• in cloud data centres,
80% of the traffic com-
ing from servers stays
within the rack
• in the case of uni-
versity and private en-
terprise data centres
40%-90% of the traffic
leaves the rack.

• time of day/week in-
fluences link utilisation
especially in the core
and moderate in the
other levels of the DC.

[KSG+09] - • periodic short-term
bursts
• interarrival time
15ms at servers and
ToR switches
• the median arrival
rate of all flows is 100
flows/ms

• 86% of the links have
congestion periods of
at least 10 seconds
• 15% of the links have
congestion periods of
at least 100 seconds
• over 90% of the con-
gestion periods are less
than 2 seconds and
more than 1 second.

• jobs requiring high
bandwidth are placed
near each other (on
the same server, in the
same rack, in the same
VLAN)
• probability of 89%
that servers within
the same rack do not
exchange traffic and
99.5% in the case of
servers in different
racks.

• significant variability
in the traffic matrix,
both in magnitude and
in the pairs of servers
which exchange data
• no evidence of incast

[GJK+09] - • a machine has 50% of
the time about 10 con-
current flows

- - • lack of traffic pre-
dictability, no stable
traffic matrix

[AGM+10] • median number
of concurrent flows
per server is 36
• 99.99th percentile
number of con-
current flows per
server is more than
1600

• the variance in in-
terarrival time is very
high, with a very heavy
tail; spikes occur; large
number of outgoing
flows happen periodi-
cally

- - • division between
query traffic (latency
critical) and back-
ground traffic

Continued on next page



46 2.3. DATA CENTRES

Table 2.3 Continued from previous page
Study Concurrent flows Interarrival times Link utilisation Communication

between servers
Other

[HKP+11] - - • only a few ToR pairs
send or receive a large
volume of traffic
• these ToRs exchange
much of their data with
few of the other ToRs
• over 60% of the
demand matrices have
fewer than 10% of their
links hot at any time
• hot links are associ-
ated with a high fan-in
(or fan-out)
• fewer than 10% of hot
links repeat

- -

[MPZ10] • 80% of VMs have
average traffic rate
(over two-week
period) less than
800 KBytes/min
• 4% of VMs
have average
traffic rate (over
two-week period)
8000KBytes/min

- - - • overall stable per-
VM traffic at large
timescales (> 15 min)
for more than 82% of
the VMs
• weak correlation be-
tween traffic rate and
latency

[RZB+15] • Web servers and
cache servers have
100s to 1000s of
concurrent connec-
tions;
• Hadoop nodes
have 25 concurrent
connections on
average;

• median flow interar-
rival times are 2ms for
Hadoop;
• median flow interar-
rival times are 3ms and
8ms for cache leaders
and followers;

• between hosts and
the ToR is quite low;
• the median utilisation
between the ToR and
aggregation switches
is between 10-20%
across clusters;
• between the aggrega-
tion and core switches
the utilisation is even
higher;
• load varies sig-
nificantly between
clusters;

• cache followers and
leaders communicate
with 175-350 different
racks concurrently;
• Web servers com-
municate with 10-125
racks concurrently;
• most of the traffic is
destined to only a few
10s of racks;

• load balancing is
effective;
• traffic demands are
stable over intervals as
long as 10 seconds;
• heavy hitters’ sizes
are not much larger
than the median flow
sizes, and they change
rapidly;
• packet sizes are
small, median length
for non-Hadoop traffic
< 200 bytes.

End of table

2.3.4 Data centre network monitoring systems

In this section, I review the most important tools to measure network latency and packet loss in
data centres. Measuring network conditions within a data centre is notoriously difficult, since
the tools used need to satisfy several properties: be lightweight, always-on, not load the net-
work, so as to not degrade users’ application performance, offer information that can be quickly
acted upon, and be easy to use and configure by network operators or users. Such a custom



CHAPTER 2. BACKGROUND 47

data centre network monitoring tool can take advantage of the data centre’s known topology,
and hardware and software configuration. Furthermore, the measurement techniques must be
complemented by a highly scalable storage and analysis system that can alert operators about
issues within the network, such as high latency, packet loss, but also to provide historical data
to understand trends. The systems designed for data centres are based on active measurement,
and can be complemented by passive techniques, such as exploiting the timestamps carried in
the TCP headers when these are enabled [Str13]. Passive measurement of TCP RTT [Str13] is
comparable in accuracy with ICMP measurement. If losses occur, the application will expe-
rience higher latencies due to TCP’s in-order delivery semantics. The segments received that
appear after the lost segment must wait for the lost segment to be retransmitted and received
before they can be delivered to the application. Thus, the application level RTT is greater than
the one measured at the TCP layer. Another way to monitor network latency in a data centre,
though costly, is to have each host equipped with a common clock, such as a GPS receiver, and
run one-way delay measurements between hosts.

Table 2.4 compares the properties of systems used to measure network latency and packet loss
in data centres, including PTPmesh, which is presented in Chapter 4. The comparison looks
at aspects related to type of measurements taken, their frequency and coverage, availability,
implementation, deployment, and data storage and analysis of collected measurements. A pair
is defined by two hosts: one that sends a probe, and another that receives the probe and sends an
answer. Ping and traceroute are the traditional tools to perform such measurements, however,
these lack the precision, the flexibility and the scale of custom purpose built tools for data centre
monitoring. Cisco IP SLA [Cisb] monitors network performance by sending probe packets. It
runs on Cisco switches and it can collect data about one-way latency, jitter, packet loss and
other metrics. The measurements can be accessed through SNMP or command-line interface,
being stored in the switches.

Large-scale monitoring systems, such as NetNORAD [ALZ16], Everflow [ZKC+15],
Pingmesh [GYX+15], or VNET Pingmesh [RBB+18], have originated from companies and
cloud providers. NetNORAD [ALZ16] is a system used in Facebook’s data centres to mea-
sure RTT and packet loss ratio by making servers ping each other, for different Quality-of-
Service (QoS) classes of traffic. The system runs measurements at data centre, region and
global level. Everflow [ZKC+15] is a system that monitors all control packets and special TCP
packets for all flows (TCP SYN, FIN, RST), and supports guided probing by injecting crafted
packets. Their behaviour is monitored through the network, and can be used to measure link
RTTs. Pingmesh [GYX+15] is an always-on tool that runs RTT measurements between every
two servers in data centres. The system measures inter-server latencies at three levels, Top-
of-Rack switch, intra data centre and inter data centre. Pingmesh also reports the packet drop
rate, which is inferred based on the TCP connection setup time. An extension to Pingmesh
is VNET Pingmesh [RBB+18], which monitors latency for tenant virtual networks (VNETs),
whereas Pingmesh performed bare-metal host monitoring. The TCP probes are sent from the
virtual switch at the end-host. Unlike Pingmesh which measured latency from userspace, VNET



48 2.3. DATA CENTRES

Pingmesh measures the latency from the kernel, but the measured values can be negatively af-
fected by increased CPU utilisation, disk I/O operations and caching effects. SLAM [YLS+15]
is a latency monitoring framework for SDN-enabled data centres, which sends probe packets in
order to trigger control messages from the first and last switches of a network path. SLAM uses
the arrival times at the controller of the control messages to compute a latency distribution for
that network path and is able to detect increases in latency of tens of milliseconds on a path.

In a large-scale measurement system, probing is normally done between chosen pairs of servers
at defined time intervals. Since a data centre has tens of thousands of hosts, a server does not
ping every other host, but instead a subset of servers is selected to ensure the best coverage,
while minimising the number of redundant probes and reducing the network traffic incurred.
Another challenge associated with probing is the multi-path nature of the data centres coupled
with the use of ECMP, making it hard to know which network path the probes are taking, unless
tracing the trajectories of packets through embedded identifiers is used [PM15; TAL15]. In
Pingmesh [GYX+15], all of the servers under a ToR switch form a complete graph for pinging
each other, and similarly all of the ToR switches form a complete graph through designated
servers from all racks, and all of the data centres form a complete graph using the same pro-
cedure. Unlike Pingmesh, VNET Pingmesh [RBB+18] covers only the network paths between
tenant VMs. NetNORAD [ALZ16] deploys a small number of pingers in each cluster and
responders on all of the machines. All of the pingers use the same global target list, which con-
tains at least two machines from every rack. deTector [PYW+17] uses an algorithm to minimise
the number of probes sent for detecting and localising packet losses and latency spikes.

Programmable switches [BGK+13] enable more sophisticated operations for network monitor-
ing, allowing the measurement of latency and packet loss directly in-network. Examples are
Inband Network Telemetry (INT) [HW16], LossRadar [LMK+16b], Marple [NSN+17]. The
disadvantage of these frameworks is that programmable switches must be deployed in the net-
work, with legacy networks not being able to run these frameworks. INT [HW16] measures
the end-to-end latency between virtual switches. Each network element on the path appends
their per-hop latency to a packet that flows between the two virtual switches located at the
ends of the path. The end-to-end latency is computed by adding the per-hop latencies, and it
assumes that switching and queueing delays dominate, while the propagation delays are negli-
gible. LossRadar [LMK+16b] is a system that can detect packet losses in data centres within
10s of milliseconds, reporting their switch locations and the 5-tuple flow identifiers. It keeps
specific data structures at switches, which are periodically exported to a remote collector and
analyser. It does not perform latency measurements. Marple [NSN+17] uses programmable key-
value stores on switches to compute different metrics, such as a moving exponentially weighted
moving average (EWMA) over packet latencies per flow, packet loss rate per connection, or to
capture packets experiencing high end-to-end queueing latency.

A common goal of most of these large scale measurement systems is fault localisation. For
example, NetNORAD is used in conjuction with fbtracert [ALZ16], which traces multiple
paths between two endpoints in the network in parallel to determine the location of the fault.



CHAPTER 2. BACKGROUND 49

M
ea

su
re

m
en

t
Pr

ob
e

Ty
pe

Pr
ob

e
Fr

e-
qu

en
cy

Av
ai

la
bi

lit
y

C
ov

er
ag

e
D

ep
lo

ym
en

t
D

at
a

St
or

ag
e

an
d

A
na

ly
si

s
Pi

ng
R

T
T;

pa
ck

et
lo

ss
ra

tio
IC

M
P

-
si

ng
le

m
ea

su
re

-
m

en
t

ta
rg

et
ed

pa
ir

H
yp

er
vi

so
r

or
V

M
lo

ca
lly

;
an

al
ys

e
in

-
de

pe
nd

en
tly

Tr
ac

er
ou

te
R

T
T

IC
M

P
E

C
H

O
/

T
C

P
SY

N
-

si
ng

le
m

ea
su

re
-

m
en

t
ta

rg
et

ed
pa

ir
H

yp
er

vi
so

r
or

V
M

lo
ca

lly
;

an
al

ys
e

in
-

de
pe

nd
en

tly
C

is
co

IP
SL

A
[C

is
b]

R
T

T;
on

e-
w

ay
de

la
y

(r
eq

ui
re

s
sy

nc
hr

o-
ni

se
d

cl
oc

ks
);

pa
ck

et
lo

ss

IC
M

P/
U

D
P/

T
C

P/
H

T
T

P/
D

N
S

be
tw

ee
n

1
an

d
60

48
00

se
co

nd
s

al
w

ay
s-

on
ta

rg
et

ed
pa

th
C

IS
C

O
sw

itc
he

s
lo

ca
lly

;
an

al
ys

e
in

-
de

pe
nd

en
tly

Pi
ng

m
es

h
[G

Y
X

+
15

]
R

T
T;

pa
ck

et
lo

ss
ra

tio
T

C
P/

H
T

T
P

m
in

im
um

10
s

se
co

nd
s

al
w

ay
s-

on
in

te
r-

se
rv

er
s

in
a

ra
ck

,
in

te
r-

To
R

s,
in

te
r-

da
ta

ce
nt

re

H
yp

er
vi

so
r

C
os

m
os

an
d

SC
O

PE
[C

JL
+
08

]

N
et

N
O

R
A

D
[A

L
Z

16
]

R
T

T;
pa

ck
et

lo
ss

ra
tio

U
D

P
co

nfi
gu

ra
bl

e
al

w
ay

s-
on

al
lp

ai
rs

H
yp

er
vi

so
r

or
V

M
Sc

ri
be

an
d

Sc
ub

a
[A

L
Z

16
]

E
ve

rfl
ow

[Z
K

C
+
15

]
lin

k
R

T
T

pa
ck

et
m

ar
ke

d
w

ith
de

bu
g

bi
t

-
si

ng
le

m
ea

su
re

-
m

en
t

ta
rg

et
ed

pa
th

sw
itc

he
s

an
d

co
n-

tr
ol

le
r

cu
st

om
an

al
ys

er
an

d
SC

O
PE

[C
JL

+
08

]
SL

A
M

[Y
L

S+
15

]
ne

tw
or

k
pa

th
la

te
nc

y
di

st
ri

bu
tio

n
cr

af
te

d
pr

ob
e

-
si

ng
le

m
ea

su
re

-
m

en
t

ta
rg

et
ed

pa
th

O
pe

nF
lo

w
sw

itc
he

s
co

nt
ro

lle
r

IN
T

[H
W

16
]

en
d-

to
-e

nd
la

te
nc

y
cr

af
te

d
pr

ob
e

-
si

ng
le

m
ea

su
re

-
m

en
t

ta
rg

et
ed

pa
th

pr
og

ra
m

m
ab

le
sw

itc
he

s
la

st
sw

itc
h

on
pa

th
;

an
al

ys
e

in
de

pe
n-

de
nt

ly
L

os
sR

ad
ar

[L
M

K
+
16

b]
pa

ck
et

lo
ss

es
at

sw
itc

he
s

no
pr

ob
es

10
m

s
al

w
ay

s-
on

co
ve

ra
ll

pa
th

s
pr

og
ra

m
m

ab
le

sw
itc

he
s

cu
st

om
co

lle
ct

or
an

d
an

al
yz

er
de

Te
ct

or
[P

Y
W

+
17

]
pa

ck
et

dr
op

U
D

P
10

pa
ck

et
s/

se
c

al
w

ay
s-

on
se

le
ct

ed
pa

th
s

en
d-

ho
st

,
ce

nt
ra

l
co

nt
ro

lle
r

cu
st

om
an

al
ys

er

00
7

[A
C

C
+
18

]
pa

ck
et

dr
op

T
C

P
an

d
tr

ac
er

-
ou

te
pe

rfl
ow

al
w

ay
s-

on
al

lp
at

hs
en

d-
ho

st
cu

st
om

an
al

ys
is

ag
en

ta
te

nd
-h

os
t

Pa
th

D
um

p
[T

A
L

16
]

pa
ck

et
dr

op
no

pr
ob

es
pe

rp
ac

ke
t

al
w

ay
s-

on
al

lp
at

hs
en

d-
ho

st
an

d
sw

itc
he

s
cu

st
om

se
rv

er
st

ac
k

an
d

co
nt

ro
lle

r
M

ar
pl

e
[N

SN
+
17

]
pa

ck
et

dr
op

no
pr

ob
es

pe
rfl

ow
al

w
ay

s-
on

al
lp

at
hs

en
d-

ho
st

,
pr

o-
gr

am
m

ab
le

sw
itc

he
s

pr
og

ra
m

m
ab

le
ke

y-
va

lu
e

st
or

e

V
N

E
T

Pi
ng

m
es

h
[R

B
B

+
18

]
R

T
T;

pa
ck

et
lo

ss
ra

tio
T

C
P

m
in

im
um

10
s

se
co

nd
s

al
w

ay
s-

on
V

N
E

T
fu

ll
m

es
h

vi
rt

ua
l

sw
itc

h
at

en
d-

ho
st

C
os

m
os

an
d

SC
O

PE
[C

JL
+
08

]
PT

Pm
es

h
[P

M
17

](
ch

ap
te

r4
)

on
e-

w
ay

de
la

y
(e

st
i-

m
at

e)
;

pa
ck

et
lo

ss
ra

-
tio

U
D

P
up

to
12

8
pr

ob
es

pe
r

se
co

nd

al
w

ay
s-

on
m

ul
tip

le
pa

ir
s

H
yp

er
vi

so
r

or
V

M
lo

ca
lly

;
an

al
ys

e
in

-
de

pe
nd

en
tly

Ta
bl

e
2.

4:
C

om
pa

ri
so

n
be

tw
ee

n
sy

st
em

s
us

ed
to

m
ea

su
re

ne
tw

or
k

la
te

nc
y

an
d

pa
ck

et
lo

ss
in

da
ta

ce
nt

re
s.



50 2.4. LATENCY IN DATA CENTERS

Pingmesh is used to detect switch silent packet drops. NetPoirot [ACL+16] presents a clas-
sification algorithm that identifies the root cause of failures using TCP statistics collected at
one of the endpoints. The work in [RZB+17] looks from the end-host to identify the faulty
links and switches, by correlating anomalies in end-host statistics with the network path of
the packets. 007 [ACC+18] tracks the path of TCP connections that display retransmissions
through traceroute, and identifies the links with the most retransmissions as the faulty ones.
PathDump [TAL16] traces packets through data centre networks, and can report poor TCP per-
formance when the number of consecutive packet retransmissions is above a certain threshold
for a flow. [ZLZ+17] presents a sampling framework which can poll a subset of switch counters
at microsecond-level granularity to determine microbursts in data centres.

To sum up, a data centre network monitoring tool should offer useful measurements, be lightweight,
easy to configure and deploy, highly available, and offer sufficient coverage of the network.

2.4 Latency in data centers

End-host                                            Network
10-1

100

101

102

103

104

105

106

107

108

La
te

nc
y 

[n
s]

Register access
L1 cache hit

Branch mispredictL2 cache hit

L3 cache hit

DRAM access

Intel Optane access
NVMe SSD I/O

SATA SSD I/O

HDD I/O

PCIe
NIC

Switch layer 1

Cut-through switch

Store-and-forward switch

1m
vacuum

1m
copper

1m
fibre

Data centre
network

Figure 2.4: System events and their latencies.

The fact that network latency impacts performance is well known for wide-area networks
(WAN) [Lid08; SCK+09; SCG+14; BAC+17], as it is implicitly a part of rate computations for



CHAPTER 2. BACKGROUND 51

Event Latency Range
Nanosecond events

Register access [Lev09] 0.4ns
L1 cache hit [Lev09] 1ns

Branch mispredict [Lev09] 3ns
L2 cache hit [Lev09] 4ns
L3 cache hit [Lev09] 12ns-40ns

DRAM access [Lev09] 100ns
Switch Layer 1 [Exa18a] 2.4ns-4.6ns

Switch Layer 2 (cut-through) [Pao10; Neta] 330ns-500ns
PCIe Interconnect [NAZ+18] 400ns-900ns

1m vacuum 3.3ns
1m copper 4.3ns
1m fibre 4.9ns

Microsecond events
NIC [Exa18b] 880ns-1.2µs

Switch Layer 2 (store-and-forward) [Netb] <4µs
Data centre network propagation delay [MLD+15] 1µs-10µs

Intel Optane memory access [Int18e] <10µs
NVMe SSD I/O [Int18d] 18µs-77µs
SATA SSD I/O [Int18c] 36µs-37µs

Millisecond events
HDD I/O [AA15] 6ms-13.2ms

London-San Francisco RTT 152ms

Table 2.5: System events and their latencies.

TCP. The latency for WANs is in the order of tens of milliseconds to hundreds of milliseconds.
However, a significant part of the communication today takes place within data centres, where
latency values are far below the WAN scale. Likewise, host and network components within
the data centre are several orders of magnitude faster than millisecond scale, being mostly in
the order of hundreds of nanoseconds to tens of microseconds [BMP+17]. In Figure 2.4 and
Table 2.5, I present typical latency values for common system events and network compo-
nents. Storage access latencies have reduced dramatically over the years, going from traditional
mechanical disks latencies of 10ms to NVMe SSD latencies [Int18d] in the order of tens of
microseconds. Cut-through switch latencies have sub-microsecond transit latencies, and store-
and-forward switches have transit latencies in the order of microseconds. What is interesting
to note is that the latency of a switch is now at the same magnitude as the latency of traversing
100m one way within the data centre over fibre. This means that the architecture and topology
of the network within the data centre can significantly vary between cloud operators, exposing
users to different data centre latency magnitudes and variances. Data centre network fat-tree
topology (§2.3) caters to general workloads. Besides the inherent differences due to the data
centre network architecture, different network latencies between hosts can arise also because of
link failures, network congestion, or load imbalance caused by ECMP’s handling of flows of



52 2.4. LATENCY IN DATA CENTERS

different sizes.

To get a preliminary understanding of the scale and distribution of latency as experienced by
a user in a data centre, I measure the RTT between multiple VMs rented from different cloud
operators. For each of three cloud operators, I choose one data centre from US and one from Eu-
rope, and I rent four VMs in each. The VM’s type is the default type from each cloud operator,
running Ubuntu 16.04. Since the VMs’ performance may be affected by other colocated VMs
and the network traffic within the data centres may be different due to diurnal and weekly pat-
terns, I run measurements over several days, totalling 100 million RTT measurements between
each VM pair. Information regarding the hop count between the rented VMs is not available,
and traceroute does not reveal any useful information.

One of the VMs, operating as a client, measures the RTT to the three other VMs (operating as
servers). The client VM sends a UDP packet to the first server VM and waits for a reply from it,
measuring the time between the sending of the packet and the receipt of the reply. In one round,
the client makes 100,000 such measurements. Once a round finishes, the client VM waits 10
seconds before moving to the next server VM, and so on. The measurements are performed
sequentially in a round robin fashion. Taking into account the time of each measurements
round, the latency of each VM pair is measured approximately once per minute, for a thousand
consecutive minutes.

The UDP latency measurement methodology and source code are based on the tool utilised
in [ZGP+17]; it is intended for accurate low latency measurement, and sends a single measure-
ment probe at a time, rather than a train of packets. As a result, the latency measurements only
observe the state of the network and do not congest it. The latency measurements use the CPU’s
Time Stamp Counter (TSC). TSC is a 64-bit register present on recent Intel x86 processor. It
counts the number of cycles since reset, and provides a resolution of tens of nanoseconds (due
to CPU pipeline effects) [ZGP+17]. Access to TSC is done using the rdtsc x86 assembly in-
struction. The RTT is measured on the client VM by computing the difference between two
rdtsc reads: one just before the request is sent, and one as it is received. Using the rdtsc in-
struction results in an error within VMs running in Microsoft Azure, so I use the less precise
clock_gettime function with the CLOCK_MONOTONIC parameter instead.

The RTT CDFs for Amazon EC2, Google Cloud Platform and Microsoft Azure are presented
in Figure 2.5. I also present in each CDF an aggregate plot using all the RTTs measured by a
single VM to the three other VMs within the same data centre. It can be observed that there
are differences between cloud operators, but on the other hand, the measured latencies within
data centres of the same cloud operator share the same characteristics. I ran the measurements
between 10 and 13 December 2016, and then repeated them between 8 and 10 May 2017 (Fi-
gure 2.6). While changes can be observed between the two measurements campaigns, the ranges
of medians are similar, with one exception only, where the median latency decreased (Amazon
EC2 US data centre). These changes can be the result of any of the following factors: different
VM placement, hardware or software upgrades, or different network utilisation.



CHAPTER 2. BACKGROUND 53

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(a) Amazon EC2 US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(d) Amazon EC2 Europe

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(b) Google Compute Engine US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(e) Google Compute Engine Europe

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(c) Microsoft Azure US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(f) Microsoft Azure Europe

Figure 2.5: Measured RTTs within data centres for Amazon EC2, Google Compute
Engine and Microsoft Azure in December 2016.



54 2.4. LATENCY IN DATA CENTERS

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(a) Amazon EC2 US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(d) Amazon EC2 Europe

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(b) Google Compute Engine US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(e) Google Compute Engine Europe

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(c) Microsoft Azure US

0 100 200 300 400 500 600 700

Round-Trip Time[µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

VM-Pair1
VM-Pair2
VM-Pair3
VM-All

(f) Microsoft Azure Europe

Figure 2.6: Measured RTTs within data centres for Amazon EC2, Google Compute
Engine, and Microsoft Azure in May 2017.



CHAPTER 2. BACKGROUND 55

2.5 Network latency impact on application performance

Network latency can affect a user’s experience in a significant manner. For some applications,
performance can decrease when subjected to increases in network latency. Figure 2.7 illustrates
the impact of increases in latency on application performance for several common data centre
applications.

0.
0

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0
Added Delay [µs]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

Pe
rfo

rm
an

ce

Apache
Memcached
TPCC MySQL

Figure 2.7: Network latency effect on application performance.

Using an experimental configuration described in Section 2.6.1, Figure 2.7 illustrates experi-
mental results for three application benchmarks. Each benchmark reports results for an ap-
plication specific performance metric. The three benchmarks I use are: Apache benchmark
ab [Proa] reporting mean requests per second (with the Apache web server [Pro18]), Mem-
cached benchmark memaslap [Prob] reporting queries per second (QPS) (with the Memcached
server [Mem18], and TPC-C MySQL benchmark [Lab17] reporting New-Order transactions per
minute, where New-Order is one of the database’s tables (with the MySQL database [Ora18]).
These results are normalised in order to compare the applications with respect to how latency-
sensitive they are.

Between the two hosts of the experimental configuration described in Section 2.6.1, I insert
the NRG latency-injection appliance (§2.1.4) that allows the injection of arbitrary latency into
the system, as shown in Figure 2.8. The advantages of using a hardware-based approach over a
software-based one were described in Section 2.1.4. The injected latency values range from 0µs
to 100µs, which is the lower range of measured latency values in data centres from different
cloud providers (§4.5 and Chapter 4).

Each test begins by measuring a baseline, which is the performance of each benchmark under
the default setup conditions, taking into account the base latency introduced by the latency-



56 2.6. END-HOST AND IN-NETWORK BASELINE LATENCY CONTRIBUTIONS

Host A Host B
Latency 
injection
device

+dsend

+dreceive

Figure 2.8: Network latency is injected between the two hosts in both directions
(send and receive) by the hardware device.

injection appliance. Latency is then artificially inserted by the appliance, and the application-
specific performance is measured. The impact on experiments of the artificially inserted latency
can be derived by removing the baseline measurement. Figure 2.7 shows the effect of added
latency for the three benchmarks. Each benchmark was run 100 times for the baseline and
for each added latency value. The figure illustrates the average values, and standard errors are
omitted for clarity, as their values are small. In one run, the Apache benchmark sends 100,000
requests and the Memcached benchmark sends 10 million requests. The TPC-C benchmark runs
continuously for 1,000 seconds, with an additional time of 6 minutes of warm-up, resulting in
100 measurements over each 10 seconds period.

The application most sensitive to latency is Memcached: the addition of 20µs latency leads to a
performance drop of 25%, while adding 100µs will reduce its throughput to 25% of the baseline.
The TPC-C benchmark is the least sensitive to latency, although still exhibits some performance
loss: 3% reduction in performance with an additional 100µs. Finally, the Apache benchmark
observes a drop in performance that starts when 20µs are added, while adding 100µs leads to
a 46% performance loss. TPC-C is not sensitive to these small latencies, since a transaction
completion time is in the order of tens to hundreds of milliseconds, unlike Memcached and
Apache, for which request-response request latencies are in the order of tens of microseconds
in the case of Memcached, and hundreds of microseconds in the case of Apache.

While these results are obtained under optimal setup conditions, within an operational data cen-
tre worse results could be expected, as latency is further increased under congestion conditions
and as applications compete for common resources. The results of Figure 2.7 clearly show that
even a small increase in latency can significantly affect an application’s performance.

2.6 End-host and in-network baseline latency contributions

While network latency values in WANs are in the order of milliseconds, masking end-host la-
tency, latencies in data centres are in the order of tens to hundreds of microseconds (Section 2.4,



CHAPTER 2. BACKGROUND 57

Chapter 4), making end-host latency values an important component of the end-to-end latency
experienced by applications within the data centre. Furthermore, due to the distributed nature of
data centre applications, tail latencies have dramatic effects on application performance [Bar14].

To understand where improvements can be made to reduce the end-to-end latency experienced
by applications, authors in [ZGP+17], a paper of which I am also an author, perform a decom-
positional analysis of latency from the application level down to the wire. The analysis spans
the latency between the time a request is issued by an application to the time a reply is received
by the application. The work studied a system under ideal conditions, hence these results repre-
sent the baseline latency of networked systems. The different latency contributors are explored
using a set of carefully designed experiments. The experiments focus on commodity hardware
and Ethernet-based networking.

I restate the results presented in [ZGP+17], and I put them in the context of the work done in
this dissertation. I first present the test setups (§2.6.1) on which the experiments are run. Next,
I present the results of the experiments for in-host latency (§2.6.2), and for in-network latency
(§2.6.3). The complete results are presented in Table 2.6. Each experiment is annotated with
the corresponding entry number in Table 2.6.

2.6.1 Tests setup

The test setup uses two identical hosts running Ubuntu server 14.04LTS, kernel
version 4.4.0-42-generic. The host hardware is a single 3.5GHz Intel Xeon E5-2637 v4 on
a SuperMicro X10-DRG-Q motherboard. To minimise interference, all CPU power-saving,
hyper-threading, and frequency scaling features are disabled throughout the tests. The host
adapter evaluation is done on commodity NICs, Solarflare SFN8522, and Exablaze X10, using
both standard driver or a kernel bypass mode. For determining the minimum latency, the in-
terrupt hold-off time is set to zero. Both hosts have identical NICs in each experiment. Only
Ethernet-based communication is considered. As illustrated in Figure 2.10, an Endace 9.2SX2
DAG card (7.5ns timestamping resolution) [End] and a Net Optics passive-optical tap [Opt]
are used to intercept client-server traffic, allowing for independent measurement of client and
server latency.

2.6.2 End-host latency contributors

Figure 2.9 presents the different elements contributing to the latency experienced within the
host. The results of the experiments are presented in Table 2.6. The results are generalisable
also to other platforms and other Linux kernel versions. This observation is made based on
evaluation on Xeon E5-2637 v3, i7-6700K and i7-4770 based platforms, and Linux kernels
ranging from 3.18.42 to 4.4.0-42.



58 2.6. END-HOST AND IN-NETWORK BASELINE LATENCY CONTRIBUTIONS

User
Space

OS

Driver

PCIe

NIC / 
NetFPGA

Entire Host Latency

Interconnect Latency

User Space+ OS Latency

User Space Latency

Host

Figure 2.9: End-host tests setup [ZGP+17].

DAG

User
Space

OS

Driver

PCIe

NIC

Client-Server, Kernel Bypass

Client-Server User
Space

OS

Driver

PCIe

NIC
TAP

Client Server

TAP

Figure 2.10: Client-server tests setup [ZGP+17].

Timestamp counter latency (1) To accurately measure latency, a baseline for the methods
employed is made. The latency measurements are based on the CPU’s Time Stamp Counter
(TSC). TSC is a 64-bit register, present on the processor, it counts the number of cycles since
reset and thus provides a resolution of approximately 288ps-per-cycle, although realistically the
resolution is tens of nanoseconds due to CPU pipeline effects. Access to TSC is done using the
rdtsc x86 assembly instruction. In order to understand hidden latency effects, and following the
Intel recommendations for TSC access [Pao10], two register read operations were conducted
consecutively. This simple TSC read operation is repeated a large number of times (order of
1010 events), and the time gap measured between every pair of consecutive reads. Results are
saved into previously allocated and initialised buffers, and access to the buffers is outside the
measurement code.

This experiment is conducted in three different modes: firstly, Kernel Cold Start (1a) which
serves as an approximation of a bare metal test. Kernel Cold Start measures very early within
the kernel boot process, before the scheduler, multiprocessing and multicore support have been
started. The second test, Kernel Test (1b), runs from within the kernel, and represents an en-
hanced version of the recommended test described in [Pao10]. The third test, User Space Test
(1c), provides high-accuracy timestamping measurement from within a user-space application.
The application is pinned to a single CPU core and all other tasks and interrupts are moved to



CHAPTER 2. BACKGROUND 59

other cores. This is representative of real-time application operation. In contrast with the Kernel
Test, interrupts, such as scheduling preemption, are not disabled so as to represent the runtime
conditions of real applications. As a result, some of the long time gaps measured for the third
configuration are the result of OS scheduling.

Virtualised environment (1d) The contribution of a virtualised environment is examined by
repeating the TSC tests from within a VM. The hypervisor used is VirtualBox [Ora] version
4.3.36, with an Ubuntu VM which has the same version as the base operating system. The VM
was configured to run the guest OS on a single dedicated CPU core with no co-located native
OS activities.

Up to the 99th percentile the latency is in the order of 10ns for the TSC measurements. Beyond
this, TSC latencies can be in the order of microseconds or hundreds of microseconds, in both
kernel and user space, and in the order of milliseconds for VMs. The authors state that the most
prominent cause of long maximum (tail) latency events observed during the TSC experiments
is not running an application in real time or pinned to a core.

User space + OS latency (2) This experiment investigates the combined latency of the (user-
space) application and the operating system. The test sets up two processes and opens a data-
gram socket between them, measuring the RTT for a message sent from a source process to the
destination process, and back. TSC is used to measure the latency and the time is measured by
reading TSC before and after the message reply is received. While this does not fully exercise
the network stack, it does provide useful insight into the kernel overhead.

Host interconnect (3) To evaluate the latency of the host interconnect (e.g., PCI-Express),
the authors use the NetFPGA SUME platform [ZAC+14], which implements x8 PCIe Gen3
interface. The DMA design is instrumented to measure the interconnect latency. As the network
hardware and the processor use different clock sources, the one-way latency can not be directly
measured. Instead, the round trip latency of a read operation (a non-posted operation [SA99]
that incorporates an explicit reply) is measured. Every read transaction from the NetFPGA to
the CPU is timestamped at 6.25ns accuracy within the DMA engine when each request is issued
and when its reply returns. The cache is warmed up before the test, to avoid additional latency
due to cache misses, and the memory address is fixed. The measured latency does not include
the driver latency, as neither the driver nor the CPU core participate in the PCIe read transaction.

The resuls show that the PCIe is low latency, with the minimum value of 552 ns for the smallest
packet size and 976 ns for the largest packet size. The maximum latency values are 50 ns
larger than the minimum latency values, showing that the latency distribution has low variance.
Additionally, it can be observed that the variance is not dependent on packet size.



60 2.6. END-HOST AND IN-NETWORK BASELINE LATENCY CONTRIBUTIONS

Host latency (4) To measure the latency of an entire host, a bespoke request-reply test is used,
which measures the latency through the NIC, PCIe interconnect, kernel and network stack, the
application level, and back to the NIC. In contrast to the User Space + OS Latency experiment,
here packets traverse the network stack only once in each direction. As illustrated in Figure 2.9,
packets are injected by a second host, and using the DAG card, the host latency is isolated,
measuring the latency from the packet’s entrance to the NIC and until it returns from the NIC.

Kernel bypass (5) The latency contribution of the OS kernel and the impact of kernel bypass
upon latency are compared. Similar tests to those used for the Host Latency (4) experiment are
used with kernel bypass enabled and disabled. Two NICs are used in the experiments: X10
and SFN8522. Each experiment is run with both NICs of the same type. The latency values
obtained in this experiment are in the order of nanoseconds compared to the ones without kernel
bypass, which are in the order of microseconds. Additionally, the maximum latency value is
substantially lower in this experiment compared to the one without kernel bypass.

Client-server latency (6) The experiments are extended from a single host to a pair of net-
work hosts as shown in Figure 2.10. The two servers are directly connected to each other.
Using a test method based upon that described in the Host Latency (4) experiment, authors add
support for request-reply at both hosts. This allows them to measure the latency between the
userspace application of both machines. This experiment is further extended to measure the
latency of queries (both get and set) under the Memcached benchmark [Prob], indicative of
realistic userspace application latency.

The results for this experiment show that a more complex application has larger tail latency
values, 20 ms for Memcached compared with 200 µs for the simple UDP application.

 0

 20

 40

 60

 80

 100

Minimum Median 99.9%

La
te

nc
y 

Co
nt

rib
ut

io
n[

%
]

TSC
VM
PCIe
Kernel
Application

Figure 2.11: End-host latency contribution [ZGP+17].

Taking a holistic approach, Figure 2.11 shows the breakdown of latency within the host for the
different percentiles. The latency of operations within user and kernel space is on the order of
nanoseconds, whereas other operations take from hundreds of nanoseconds to microseconds.



CHAPTER 2. BACKGROUND 61

Experiment Minimum Median 99.9th Maximum Observation Period
1a TSC - Kernel Cold Start 7ns 7ns 7ns 11ns 1 Hour
1b TSC - Kernel 9ns 9ns 9ns 6.9µs 1 Hour
1c TSC - From User Space 9ns 10ns 11ns 49µs 1 Hour
1d TSC - From VM User Space 12ns 12ns 13ns 64ms 1 Hour
2a User Space + OS (same core) 2µs 2µs 2µs 68µs 10M messages
2b User Space + OS (other core) 4µs 5µs 5µs 31µs 10M messages
3a Interconnect (64B) 552ns 572ns 592ns 608ns 1M Transactions
3b Interconnect (1536B) 976ns 988ns 1020ns 1028ns 1M Transactions
4 Host 3.9µs 4.5µs 21µs 45µs 1M Packets
5 Kernel Bypass 895ns 946ns 1096ns 5.4µs 1M Packets
6a Client-Server (UDP) 7µs 9µs 107µs 203µs 1M Packets
6b Client-Server (Memcached) 10µs 13µs 240µs 20.3ms 1M Queries
7a NIC - X10 (64B) 804ns 834ns 834ns 10µs 100K Packets
7b NIC - SFN8522 (64B) 960ns 985ns 1047ns 3.3µs 100K Packets
8a Switch - ExaLINK50 (64B) 0α 2.7ns α 17.7ns α 17.7ns α 1000 Packets
8b Switch - ExaLINK50 (1514B) 0α 2.7ns α 17.7ns α 17.7ns α 1000 Packets
8c Switch - 7124FX (64B) 512ns 534ns 550ns 557ns 1000 Packets
8d Switch - 7124FX (1514B) 512ns 535ns 557ns 557ns 1000 Packets

Table 2.6: Summary of Latency Results. Entries marked α return results that are
within DAG measurement error-range.

This means that for an application running on the host, for the common case, approximately
half of the time is spent in the application, and approximately 40% is spent in the kernel and
network stack. At the tail the application contributes nearly 80% of the latency. The takeaway
is that there is no single component that contributes overwhelmingly to end-host latency: while
the kernel (including the network stack) has an important contribution, the application level also
has a significant contribution to latency as applications incur overheads due to user space/kernel
space context switches.

2.6.3 In-network latency contributors

Next, the three components that contribute to network latency, namely networking devices
within the network (switches, routers), cabling (e.g., fibre, copper), and networking devices
at the edge, are measured. The network device at the edge is represented by the NIC. The net-
working devices within the network considered are electronic packet switches (EPS), as they
are the most common used networking devices within data centres. Networking devices such as
routers will inherently have a latency that is the same or larger than a switch, but are not covered
by these measurements.

Cabling The propagation delay over a fibre is 4.9ns per meter, and the delay over a copper
cable varies between 4.3ns and 4.4ns per meter, depending on the cable’s thickness and material



62 2.6. END-HOST AND IN-NETWORK BASELINE LATENCY CONTRIBUTIONS

used. These numbers were derived by sending packet trains over varying lengths of cable and
measuring using DAG the latency between transmit and receive. The authors note that the
resolution of the DAG of 7.5ns puts short fibre measurements within this margin of error.

NIC latency (7) At least three components contribute to the measured NIC latency: the NIC’s
hardware, the Host Bus Adapter (a PCI-Express interconnect in this case) and the NIC’s soft-
ware device driver. There are two ways to measure the latency of a NIC: the first is injecting
packets from outside the host to the NIC, looping the packets at the driver and capturing them
at the NIC’s output port. The second is injecting packets from the driver to the NIC, using a
(physical or logical) loopback at the NIC’s ports and capturing the returning packet at the driver.
Neither of these ways allows to separate the hardware latency contribution from the rest of its
latency components or to measure one way latency.

The authors chose the second method, injecting packets from the driver to the NIC. A loopback
test provided by Exablaze with the X10 NIC is used. The test writes a packet to the driver’s
buffer, and then measures the latency between when the packet starts to be written to PCIe
and when the packet returns. This test does not involve the kernel. A similar open-source test
provided by Solarflare as part of Onload (eflatency) [Sola], which measures RTT between two
nodes, is used to evaluate SFN8522 NIC. The propagation delay on the fibre is measured and
subtracted from the NIC latency results.

Switch latency (8) The authors measure switch latency using a single DAG card to timestamp
the entry and departure time of a packet from the switch under test. The switch under test is
statically configured to send packets from one input port to another output port. There is no other
traffic going through the switch. They vary the size of the packets sent from 64B to 1514B. The
tests evaluate two switches, both of them cut-through switches: an Arista DCS-7124FX layer 2
switch, and an ExaLINK50 layer 1 switch (this switch allows dynamic reconfiguration of the
network topology). The latency reported is one way, end of packet to end of packet.

Latest generation cut-through switching devices, such as Mellanox Spectrum and Broadcom
Tomahawk, have lower latency than what the authors measure, in the order of 330ns, as de-
scribed by industry analysis [Ent16].

The contribution of different latency components within the network depends greatly on the net-
work topology. The authors explore four typical networking topologies, depicted in Figure 2.12,
and use the median latency results listed in Table 2.6 for different network elements (NICs, fi-
bres, switches). For the store-and-forward spine switch, they assume a latency comparable to
that of the Arista-7500R switch [Netb], under 4µs latency for 64 bytes packet. It should be
noted that this analysis to determine the in-network latency does not seek to evaluate aspects
such as queueing and buffering, or congestion.



CHAPTER 2. BACKGROUND 63

Figure 2.12: Different network topologies [ZGP+17].

The first topology is a single rack, where the hosts are connected using a cut through Top-of-
Rack switch with 2 m fibres, and the link speed is 10Gb/s. The second topology is common in a
high-frequency trading setting. The hosts are connected by a layer 1 switch, and the link speed
is 10Gb/s. The third and fourth topologies are instances of the fat tree topology [ALV08]. In
the third topology, the links are all 10Gb/s and use cut through switches across all layers of the
topology. The fibres length are 2 m between the host and the Top-of-Rack switch, 5 m between
the Top-of-Rack switch and the aggregation switch, and 10 m between the aggregation and core
switches. In the fourth topology, store-and-forward spine switches are used in the core, with
100Gbit/s link speed and 100 m long fibres.

Figure 2.13: Network latency contributions [ZGP+17].

Figure 2.13 shows the relative latency contribution within each network topology. The latency
contributon of the NIC and switching differs significantly for each use case, from the switching
being 1/10th of the total HFT latency case, to switching taking up almost 70% of the time in the
big data centre scenario. Furthermore, the significant impact of the NIC on the overall latency



64 2.7. CLUSTER SCHEDULING

should be noted, which means that there still is room for improvement for NIC latency. The
latency of the fibres has a magnitude of microseconds in big data centres, being a significant
contributor to the overall latency.

The experiments (§2.6.1) were designed to isolate the contribution of each component in the
end-host and in network. The authors examined in their work only best-case scenarios. How-
ever, operational effects on the end-to-end latency (e.g., network congestion, queueing) can
make the overall latency worse. The results of the experiments (§2.6.2, §2.6.3) highlight how
challenging it is to reduce end-to-end latency in data centres, as there are multiple contributors to
the overall latency. Several conclusions can be drawn from these results. At the end-host, kernel
bypass can substantially reduce the overall latency and latency variance, and this approach has
been deployed by different cloud providers to improve end-to-end latency [FPM+18; DSA+18].
In large data centres [SOA+15], the impact of cable length is significant, the aggregated latency
being in the order of microseconds. As a result, the network topology and the placement of
jobs taking into account the end-to-end latency become important factors that can lead to bet-
ter application performance. These two directions ought to be explored in order to reduce the
network latency contribution to the overall latency. The first direction is currently explored
through rack-scale computing [CBR+15]. Rack-scale computing implies resource dissagrega-
tion [GNK+16; Int18b], where resources (compute, storage, memory) are grouped in pools, no
longer being confined to a server, and they communicate over a fast network. I explore the sec-
ond direction in Chapter 6 by proposing latency-driven, performance-aware cluster scheduling,
and I describe the NoMora cluster scheduling architecture, which aims to minimise the impact
of network latency on application performance.

2.7 Cluster scheduling

I start by defining common terms used in the cluster scheduling literature. An application is
called a job. A job may have multiple tasks. A task is an application instance of the job
represented by one or multiple processes that run inside a container or virtual machine, usually
on a single core. The tasks of a job must be placed on the available machines. A cluster
scheduler decides on which machines to place the tasks of the jobs. Cluster scheduling in its
simplest form is bin-packing of tasks on the available machines. However, this simple allocation
mechanism might not yield the optimal performance for applications due to lack of adequate
resources, or possible interference between tasks that share the underlying host hardware and
network. These issues can be solved by respecting the job’s resource demands or by defining
placement constraints. Resource demands usually comprise the number of cores, the amount of
memory, disk throughput, or network bandwidth that a task needs. Placement constraints can be
defined to avoid colocation between tasks that might interfere, or to allocate a task to a machine
with certain characteristics. Solving these issues has given rise to a large body of work on how



CHAPTER 2. BACKGROUND 65

to best map job demands and constraints to job allocation systems.

In the following sections, I first review the main characteristics of publicly available cluster
workloads (§2.7.1), and emphasizing their shortcomings. Next, I give an overview of the most
important cluster schedulers developed by industry and researchers (§2.7.2), highlighting the
cluster scheduling mechanisms that consider network resources in their placement decisions.
Finally, I put in context my cluster scheduling policy that seeks to improve application perfor-
mance taking into consideration an application’s network latency demands.

2.7.1 Cluster workloads

In this subsection I discuss the characteristics of the main cluster workloads released by com-
panies in the past years [RTG+12; CBM+17; APG+18].

Google workload The most well-known cluster trace is from Google [RTG+12]. It is a 2011
cluster trace from a 12,500 machines cluster. The Google workload is a 29-day trace of jobs that
run on bare-metal hosts. The trace does not represent a cloud workload. Task runtimes are not
uniform, with 80% of tasks running for less than 12 minutes [APG+18]. A similar observation
can be done with regards to task resource requests, where 90% of the smallest jobs request 16
CPU cores or fewer [APG+18]. The trace has sub-second job interarrival times.

Microsoft Azure workload The Microsoft Azure VM workload [CBM+17] is the first of its
kind publicly released. It spans three months, and it includes first-party workloads (internal
VMs and first-party services offered to third-party customers), and third-party workloads (VMs
created by external customers). More than 90% of VMs run for less than a day, and a small
percentage of long-running VMs use up more than 95% of the total core hours. In terms of
VM core count, almost 80% of VMs have a maximum of two cores, with almost 60% of VMs
using only one core. In terms of memory, 70% of VMs use less than 4 GBytes. In terms of
deployment sizes, around 40% have a single VM and 80% have at most 5 VMs. Regarding VM
workloads, 68% of core hours are categorised as delay-insensitive (batch workloads, internal
workloads), and around 28% are interactive, while the remaining 4% are not categorised. The
VM arrival times are bursty and diurnal, and there are less VMs running during the weekend.

Both Google and Azure workloads have a high number of tasks placed (more than 140K tasks)
at the beginning of the trace (timestamp 0) to setup the cluster state. Afterwards, the average
number of task arrivals per hour is between 1800-3500 for the Azure trace (Figure 2.14), and
40K-70K for the Google trace [APG+18].

Two Sigma and Los Alamos National Laboratory workloads These traces share some of
the characteristics of the Google workload. They have sub-second job interarrival times, re-
quiring sub-second scheduling decisions. On the other hand, they display diurnal patterns in
job submissions, similar to the Microsoft Azure workload, but not present in the Google work-
load. While most of the jobs have short durations and request a small number of cores in the



66 2.7. CLUSTER SCHEDULING

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

1000

2000

3000

4000

5000

6000

7000

Ta
sk

su
bm

is
si

on
s

average
25th percentile
75th percentile

Figure 2.14: Azure workload number of task arrivals per hour - average, 25thand
75thpercentiles.

Google workload, this is not true for the Two Sigma and LANL traces. The median Google job
is 4− 5× times shorter, and requests 3− 406× fewer CPU cores. Similarly, most of the VM
deployments in the Microsoft Azure workload are small, with 80% of VMs having a maximum
of two cores. Regarding job duration, 80% of Google jobs are less than 12 minutes, whereas
in the other traces the same fraction of jobs are several hours long (2-6 hours). The Google
workload has a long tail, with some jobs running for at least the duration of the whole trace.

A commonality of the cluster workloads released is that they do not include information related
to networking demands, e.g., network bandwidth, or how latency-sensitive the application is.
The closest that is available is the Microsoft Azure workload, which mentions which VM work-
load is interactive. Still, this information is insufficient, since it does not offer a quantifiable
metric, e.g., what is the job’s SLO. Therefore, this lack of information represents a challenge
when developing new cluster scheduling policies that try to improve application performance
while considering networking demands. To overcome this challenge, I augment the cluster
traces with application performance predictions dependent upon network latency determined
experimentally in Chapter 5. This represents a first step towards a comprehensive cluster work-
load which includes not only the usual information (CPU, RAM, etc.), but also information
related to network resources required, thus offering a full picture of the applications deployed.



CHAPTER 2. BACKGROUND 67

2.7.2 Cluster schedulers

Most of the cluster schedulers take into account any other constraints but those related to net-
working requirements or the state of the network. These constraints generally represent the
needs of a job with respect to the number of cores, CPU utilisation, memory, affinity with other
tasks, data locality, placement constrains, and low placement latency. I call these cluster sche-
dulers conventional. Gog [Gog17] and Schwarzkopf [Sch16] give a comprehensive overview
of these conventional cluster schedulers. In Section 2.7.2.1, I discuss the features of the most
important conventional cluster schedulers.

Few cluster schedulers consider the networking demands of the applications and the network
conditions in the data centre. Managing the network traffic to achieve short flow completion
times is left to data centre transport designs [AGM+10; AYS+13; GNK+15; GSG+15; HRA+17]
and flow schedulers [POB+14], this happening after the applications have been scheduled to run
in the data centre. In Section 2.7.2.2, I discuss the main developments for cluster schedulers to
guarantee applications network bandwidth and tail latency.

I conclude the section by discussing application performance-aware cluster schedulers. Instead
of meeting the job’s resource requirements, I consider meeting the job’s performance require-
ments. However, given the current network conditions, the optimal performance may not be
achievable. In this case, if the tenant whose job has to be scheduled is content with their job
running with less than optimal performance, then the job is admitted into the system with the
best achievable performance given the limits of the current network conditions. Otherwise,
admission control is performed, the job being scheduled only if it can run with optimal perfor-
mance.

2.7.2.1 Conventional cluster schedulers

Gog [Gog17] and Schwarzkopf [Sch16] identify the most important features of cluster sche-
dulers: architecture, multi-dimensional resource allocation, resource allocation and dynamic
adjustment, task interference, constraint handling, data locality and low placement latency.

Scheduler architecture There are several types of cluster scheduler architectures.

Centralised schedulers, such as Borg [VPK+15], Bistro [GSW15], Quincy [IPC+09], Firma-
ment [GSG+16], TetriSched [TZP+16], have the advantage of having access to all of the in-
formation related to the cluster’s state (e.g., where the tasks are running, which tasks should
be scheduled, and which machines have free cores). Consequently, these schedulers compute
high-quality task placements. On the other hand, task placement latency can be significant be-
cause the computation delay grows in proportion to the cluster size [IPC+09]. Significant task
placement latency can be detrimental for short-running tasks that might end up waiting to be
scheduled for a time greater than their actual duration.



68 2.7. CLUSTER SCHEDULING

Distributed schedulers (Apollo [BEL+14], Sparrow [OWZ+13]) can solve this issue, but since
they do not have the full view of the cluster state, they trade off high-quality task placements
for lower task placement latency.

Hybrid schedulers’ architecture is comprised of a centralised scheduler and one or more dis-
tributed schedulers. Examples of hybrid schedulers are Hawk [DDK+15], Eagle [DDD+16],
Mercury [KRC+15]. The long-running tasks are usually placed by the centralised scheduler,
while the short tasks are placed by the distributed schedulers.

Another architecture is that of two-level schedulers (Mesos [HKZ+11], YARN [VMD+13]),
which have an application-level scheduler that maps the tasks to the resource allocations deter-
mined by a resource scheduler. For example, the MapReduce jobs are scheduled by YARN’s
job manager, while resources are allocated by YARN’s resource manager.

Multi-dimensional resource allocation Nowadays complex data centre applications have dif-
ferent resource requirements (§2.3.2). Some cluster schedulers [IPC+09; FBK+12; OWZ+13;
DDK+15; KRC+15; DDD+16] allocate the same amount of resources to all tasks regardless of
their needs, and this may hurt application performance. Other schedulers [HKZ+11; VMD+13;
SKA+13; DK14; GSW15; BEL+14; GAK+14; TZP+16; VPK+15] support specifying job re-
source requirements.

Resource allocation and dynamic adjustment In most cases, users can specify their jobs’
resource requirements [VPK+15], but often overestimate their requirements [Gog17], or they
do not know how much to request [MK15]. This can be solved in several ways: i) profiling
the job before the actual execution [DK14], ii) decreasing or redistributing the initial resource
allocation after an observation period [VPK+15; GCA+16], or iii) analysing historical traces of
jobs to build a performance model of the expected performance depending on the job resource
allocation [FBK+12; JCM+16; VYF+16; ALC+17; PBC+18]. Some performance models were
developed for specific types of jobs (MapReduce and Dryad in Jockey [FBK+12], deep learning
jobs in Optimus [PBC+18]). Also, techniques such as Bayesian optimisation [ALC+17] or
non-negative least square [VYF+16; PBC+18] have been used to build performance models for
different applications.

To draw a parallel with the work in my dissertation, in Chapter 5, I determine experimentally
the relationship between network latency and application performance for typical cloud appli-
cations. This is similar to the profiling phase of applications and building a performance model
done by different cluster schedulers, but these frameworks did not consider network latency
demands in their profiling phase, nor in their performance model.

Task interference To achieve high cluster utilisation, multiple tasks are colocated on each ma-
chine. But tasks compete for the same resources (memory, cache, disk, network), and they
may then interfere with each other, causing a decrease in application performance. As a conse-
quence, some schedulers (Paragon [DK13], Quasar [DK14]) first determine whether the tasks
waiting to be scheduled interfere with each other, and only then place the tasks based on the
result.



CHAPTER 2. BACKGROUND 69

Constraint handling Tasks can have different placement constraints. For example, an appli-
cation’s performance would benefit from running on a certain type of hardware, e.g., machine
learning tasks require specialist hardware such as General Purpose Graphics Processing Units
(GPGPUs) or Tensor Processing Units [JYP+17] (TPUs). Constraints can be hard (mandatory),
soft (not mandatory) or complex (combination of soft and hard constraints).

Hard constraints must be satisfied, the tasks not being scheduled until machines that satisfy
these constraints are available. Hard constraints usually refer to hardware architecture and
kernel version [SCH+11]. In the Google cluster workload, approximately 6% of all tasks have
hard constraints.

Soft constraints, on the other hand, are not mandatory, and tasks can be scheduled to run even
if their constraints are not met. Quincy [IPC+09] and Firmament [GSG+16] model the cluster
scheduling problem as a min-cost max-flow optimisation over a flow network. The nodes in
the flow network represent the tasks that are submitted and the machines of a cluster. The task
and machine nodes are connected through task placement preference arcs which represent soft
constraints. A min-cost max-flow algorithm run over the flow network computes task place-
ments. In Medea [GKP+18] the constraints are soft by default, and weights can be assigned to
the constraints to rate their importance. In Kubernets [HBB17], one can specify if a constraint
is hard or soft.

Complex constraints are a combination of hard and soft constraints, and involve satisfying the
requirements of multiple tasks or machines. They are supported by few schedulers, an exam-
ple of such scheduler being TetriSched [TZP+16]. An important type of complex constraint is
task affinity or anti-affinity. Task affinity refers to placing two or more tasks that have a depen-
dency on the same resource. In contrast, task anti-affinity means placing the tasks on different
resources. Kubernetes [HBB17] supports affinity/anti-affinity constraints.

Satisfying constraints generally increases task placement latency [SCH+11] and limits the sched-
uler’s scalability.

Data locality Data locality used to be an important feature of cluster schedulers [IPC+09;
JBM+15], since disk throughput is higher than network bandwidth, it is desirable for the data to
be stored as close as possible to the application that uses it. However, the current data centre net-
works can provide one Pbps of bisection bandwidth [SOA+15] and the recent trend in resource
disaggregation in data centres [GNK+16; SHC+18] make this feature less important, since the
data is now accesible over a very fast network. Nevertheless, generating less network traffic by
reading from local disks in a traditional server architecture lowers network utilisation, and thus
reduces network congestion, providing more predictable application performance [GSG+15].

Low placement latency The time it takes to compute a placement for a task is an important
feature for a cluster scheduler. A low placement latency favours high cluster utilisation, and
reduces the waiting time of the tasks before being scheduled. Cluster schedulers that support
complex constraints may be slow in placing tasks, but they compute high-quality task place-
ments. Quincy’s algorithm [IPC+09], for example, can take minutes for the Google workload



70 2.7. CLUSTER SCHEDULING

on a cluster with 12,500 machines [GSG+16]. This runtime is too large for workloads that have
sub-second job interarrival times (§2.7.1), and it can lead to an increase in task wait time, which
is especially detrimental for short-running tasks. On the other hand, Firmament’s algorithm
runtime [GSG+16] is sub-second for the same scenario, achieving both high-quality placements
and low placement latency. Other cluster schedulers use less complex algorithms which take
less time, but do not offer high-quality task-placements, since they do not take into account the
tasks’ constraints. Such an example is Sparrow [OWZ+13], which places short-running tasks in
a random manner.

2.7.2.2 Network-aware cluster schedulers

In general, incorporating network demands within the cluster scheduler has been treated as a
separate problem from cluster schedulers that take into account only the host resources required
by a job. Table 2.7 describes the mechanisms to allocate network bandwidth between tenants
and to provide tail latency guarantees to ensure predictable performance.

Network bandwidth guarantees In the past, network throughput variability in cloud providers
was an important issue, with bandwidth varying by a factor of five in some cases [BCK+11],
leading to uncertain application performance and, consequently, tenant cost. The throughput
variability was the result of different factors, such as network load, tenant VM placement, and
oversubscribed data centre networks.

Nowadays, data centre networks often utilise full bisection bandwidth [SOA+15; CBM+17].
Also, cloud providers’ commercial offerings list the expected network bandwidth for each type
of VM, be it an exact value (Microsoft Azure, Google Cloud Platform) or qualitative estimate
(Amazon EC2). These changes fit with the observation that network bandwidth guarantees
have improved in recent years. Recent studies have shown that cloud providers like Amazon
EC2 [PMB+15b] and Microsoft Azure [PMB+15a] see less throughput variability. In the case
of Microsoft Azure, larger VMs and which are placed within the same affinity group or virtual
network have better network throughput and observe small variability, whereas medium sized
VMs experience higher variability regardless of the policy applied, with some regions offering
better performance than others. On the other hand, 60% of the tenants of Microsoft Azure use
the smallest VM size (1 core) and 20% the medium VM size (2 cores) [CBM+17], which means
that most of the tenants do not have strict network bandwidth guarantees even in today’s data
centres. In the case of Amazon EC2 [PMB+15b], the network throughput is stable over time
regardless of VM size, larger VMs can achieve higher throughput compared to smaller ones,
and there was no difference between regions observed.

Allocating network bandwidth between endpoints was first described in the context of Virtual
Private Networks (VPN) [DGG+99]. In the cloud computing model, the VPN customers can
be assimilated with the tenants from the cloud, and a VPN endpoint’s equivalent is a VM. The
customer-pipe model is the allocation of bandwidth on paths between source-destination pairs



CHAPTER 2. BACKGROUND 71

of endpoints of the VPN. In this model, a full mesh between customers is required to satisfy the
SLAs. In the hose model, an endpoint is connected with a set of endpoints, but the bandwidth
allocation is not specified between pairs. Instead, the aggregate bandwidth required for the
outgoing traffic to the other endpoints and the aggregate bandwidth required for the incoming
traffic from the other endpoints in the hose is specified. These two models served as basis
for bandwidth allocation in the cloud, with the hose model being frequently used [GLW+10;
RST+11; BCK+11; JAM+13]. SecondNet [GLW+10] introduces an abstraction called virtual
data centre (VDC) and multiple types of services (type 0 guaranteed bandwidth between VMs,
type 1 per ingress/egress bandwidth reservation for VM, and best effort). Gatekeeper [RST+11]
supports the hose model and sets minimum bandwidth guarantees for sending and receving
traffic for a VM, which can be increased up to a maximum rate if unused capacity is available.
It also proposes an extension to the hose model by composing multiple hoses for a VM to
incorporate application communication patterns. EyeQ [JAM+13] uses a similar mechanism to
Gatekeeper.

Several works extend the hose model. ElasticSwitch [PYB+13] provides minimum bandwidth
guarantees by dividing the hose model guarantees into VM-to-VM guarantees, and taking the
minimum between the guarantees of the two VMs. It rate limits the traffic from a VM to the
specified guarantee or higher if there is available capacity. The unused capacity on a link is
allocated proportionally to the bandwidth guarantees of the VM pairs using that link. Okto-
pus [BCK+11] uses the hose model (named virtual cluster, where all the VMs are connected
through a single switch) and virtual oversubscribed cluster model (groups of virtual clusters
connected through a switch with an oversubscription factor). Proteus [XDH+12] authors anal-
yse the traffic patterns of several MapReduce jobs, finding that there is no need to allocate a
fixed network bandwidth from the start to the end of the job, because the network demands of
the applications change over time. They propose a time-varying network bandwidth allocation
scheme: temporally interleaved virtual cluster, which is a variant of the hose model. Cloud-
Mirror [LTL+14] derives a network abstraction model, tenant application graph, based on the
application’s communication pattern. The applications considered in this work usually have
multiple tiers or components, and each tier/component is formed of a number of VMs. Band-
width within the component is allocated using the hose model. Bandwidth between components
is allocated by guaranteeing each VM in a component C1 a send bandwidth to send traffic to
the VMs in a component C2, and each VM in component C2 is guaranteed a receive bandwidth
to receive traffic from VMs in component C1. Pulsar [ABK+14] provides end-to-end isolation
for VMs and appliances (e.g., load balancing, storage, monitoring). It forms a virtual data cen-
tre out of dedicated appliances connected to VMs through virtual switches, where each link
between VMs and appliances has a throughput guarantee.

Implementation-wise, most of the works enforce rate limits at the end-host’s hypervisor.

Profiling applications to determine their network throughput and keeping historical network
throughput values are two aspects that can help to allocate bandwidth in a more efficient man-
ner [XDH+12; LMB+14]. This is similar to modeling the relationship between application per-



72 2.7. CLUSTER SCHEDULING

BW Guarantees Work-
conserving

Topology Adaptabil-
ity

Commu-
nication
Pattern

Implementa-
tion

Latency
Guar-
antees

VM
place-
ment

SecondNet
[GLW+10]

Yes, Hose, VM-
to-VM

No No No No Hypervisor,
Source routing,
MPLS, Central
Controller

No Yes

Gatekeeper
[RST+11],
EyeQ
[JAM+13]

Yes, Hose Yes No conges-
tion in the
core

Yes Yes Hypervisor No No

Seawell
[SKG+11]

No Yes No No No Hypervisor No No

Oktopus
[BCK+11]

Yes, Hose,
Virtual oversub-
scribed cluster

No Tree No No Hypervisor,
Central Con-
troller

No Yes

Proteus
[XDH+12]

Yes, Tempo-
rally interleaved
virtual cluster

No Tree Yes Yes Profiling, Cen-
tral controller

No Yes

NetShare
[LRP+12]

No Yes No No No Central
Controller,
Switches

No No

PS-P
[PKC+12]

Yes, Hose,
Virtual oversub-
scribed cluster

Yes Tree, Fat-
tree

No Number of
VMs that
communicate
with a VM

Switches No No

Elastic-
Switch
[PYB+13]

Yes, Hose Yes No Yes Yes Hypervisor No No

Hadrian
[BJK+13]

Yes, Hose Yes Tree No Yes Hypervisor,
switches, cen-
tral controller

No Yes

Choreo
[LDG+13]

Yes, Hose, VM-
to-VM

No Yes No Yes Profiling,
measurement,
placement
components

No Yes

Cloud-
Mirror
[LTL+14]

Yes, Tenant Ap-
plication Graph

No Tree No Yes Central con-
troller, Elastic-
Switch

No Yes

Pulsar
[ABK+14]

Yes, Virtual data
centre

Yes No Yes No Central con-
troller, Hyper-
visor

No No

Cicada
[LMB+14]

No No No Yes Yes Hypervisor,
Switches

No Yes

Silo
[JSB+15]

Yes No Tree No No Central con-
troller, End-
host rate limiter

Yes, tail Yes

QJump
[GSG+15]

Yes No No No No End-host rate
limiter

Yes, tail No

SNC-
Meister
[ZBH16]

Yes No No No Yes, traces Centrall con-
troller and
end-host rate
limiter

Yes, tail Yes

Table 2.7: Systems providing network bandwidth and tail latency guarantees in data
centres.

formance and network latency based on experimental data, as I have done in Chapter 5. Using
real-time measurements of the network conditions, in particular throughput, has been employed
to improve VM placement [LDG+13]. Choreo [LDG+13] measures the network throughput be-
tween VM pairs through packet trains, estimates the cross traffic, and locates bottleneck links.
Based on the network measurements and application profiles (number of bytes sent), it makes
VM placement decisions to minimise application completion time. The Choreo system is the
closest system to the NoMora cluster scheduling architecture presented in Chapter 6, in which I



CHAPTER 2. BACKGROUND 73

use network latency measurements between pairs of hosts and application performance predic-
tions dependent upon current network latency to decide where to place tenants’ VMs .

VM placement to provide network bandwidth guarantees starts by looking at subtrees in the
topology to place the VMs, and goes upward in the tree to find a suitable allocation [BCK+11;
XDH+12; BJK+13; LTL+14]. This naturally leads to the VMs being allocated within the same
rack or within the same pod, which may hurt application availability if the links to the servers
that run the application fail [LTL+14]. To mitigate this, CloudMirror [LTL+14] additionally
incorporates an anti-affinity (anti-colocation) constraint in the VM placement algorithm. Sec-
ondNet [GLW+10] builds a bipartite graph whose nodes are the VMs on the left side and the
physical machines on the right side, and then finds a matching based on the weights of the
edges of the graph using min-cost max-flow. The weights are assigned based on the available
bandwidth of the corresponding server. Hadrian [BJK+13] provides bandwidth guarantees for
inter-tenant communication. The VM placement algorithm builds a flow network to express
the VMs communication patterns and minimum bandwidth constraints. It then uses a greedy
first-fit algorithm that respects the constraints to provide placement locality (a tenant’s VMs are
placed close to VMs it communicates with) and places a tenant’s VMs in the smallest subtree
possible. These approaches are similar to Quincy [IPC+09] and Firmament [GSG+16], which
also model the scheduling problem as a min-cost max-flow problem. Firmament’s network-
aware policy avoids bandwidth oversubscription at the end-host by incorporating applications
network bandwidth demands into the flow graph. [MPZ10] proposes an algorithm for traffic-
aware VM placement that takes into account the traffic rates between VMs, and studies how
different traffic patterns and data centre network architectures impact the algorithm’s outcome.

Tail network latency guarantees Tail latencies have been recognised as a source of significant
performance degradation [KPT+12; DB13; ZDM+12; XMN+13]. Several systems [JSB+15;
GSG+15; ZBH16] have been developed in response. Silo [JSB+15] controls tenant’s bandwidth
to bound network queueing delay through packet pacing at the end-host. It then places VMs us-
ing a first-fit algorithm, while trying to place a tenant’s VMs on the same server, in the same rack
or further in the same pod, minimising the amount of network traffic that the core links have to
cary. QJump [GSG+15] computes rate limits for classes of applications, ranging from latency-
sensitive applications for which it offers strict latency guarantees to throughput-intensive ones
for which latency can be variable. These systems provide worst-case latency guarantees. On the
other hand, SNC-Meister [ZBH16] bases its design on the observation that tenants do not need
worst-case guarantees, and that instead they require latency guarantees for lower percentiles,
e.g., 99.9thpercentile. SNC-Meister leverages this observation to admit more tenants in a data
centre while keeping their (lower percentile) latency guarantees.

Application performance guarantees All of these approaches have looked at providing net-
work bandwidth and (tail) latency guarantees, and, as a result, the application meets its perfor-
mance guarantees. In my work, I change the point of view: if the tenant wants a certain per-
formance for their application, what network conditions does the application need in terms of
latency? If we know how the application reacts to latency and the current network conditions,



74 2.7. CLUSTER SCHEDULING

then we can place the tenant’s application in the data centre ensuring the best performance
achievable under the current network conditions. Furthermore, network bandwidth demands
could be incorporated in the placement decision. Alternatively, one of the previously described
systems or an orthogonal network bandwidth allocation framework [KJN+15] can be used to
meet them.



Chapter 3

Measuring network conditions with the
Precision Time Protocol (PTP)

While some data centre applications simply process and transfer data, many applications are
latency-sensitive, such as Web search [AGM+10; KPT+12], social networking [AGM+10; KPT+12],
ML frameworks [ABC+16] or key-value stores [AXF+12] (§2.3.2). These applications have
stringent latency requirements, due to being interactive (search engine, social network) or due
to their synchronous communication. Changes in network latency can lead to significant drops
in application performance for latency-sensitive applications, as shown in Chapter 5 and Sec-
tion 2.5 [BMP+17].

In this chapter, I investigate the use of the Precision Time Protocol (PTP) through an open
source software implementation PTPd [PTP18], to measure network conditions in order to use
it as a building block for a data centre network monitoring system in Chapter 4. PTPd offers
measurements such as the master-to-slave delay, the slave-to-master delay, and an estimated
one-way delay computed as average of the previous two delays (§2.2.4). RTT/2 is often not
a good approximation for the one-way delay, as asymmetries often arise in networks [Pax06],
caused by network congestion, data centre architectures, or link failures [ZTZ+14], leading to
different latency values on the forward and reverse path.

I seek to answer the following questions:

1. What is the relationship between the one-way delay (OWD) metric reported by PTPd and
the RTT reported by other tools?

2. How are the PTPd measurements affected by network congestion?

3. How are the PTPd measurements affected by virtualisation?

4. Can the PTPd measurements be used to determine other network information, e.g., com-
pute packet loss ratio?

75



76 3.1. EXPERIMENTAL SETUP AND METHODOLOGY

Host 1 
(Iperf client)

Host 2
(Memcached 
benchmark) 

Host 5 
(Memcached 

server)

Host 4
(Iperf server)

Host 6 
(PTPd master)

Host 3 
(PTPd slave)

Figure 3.1: Testbed to analyse PTPd’s behaviour under different network condi-
tions.

5. How are the PTPd measurements affected by other network traffic originating from the
same host?

3.1 Experimental setup and methodology

I use two testbeds for the experiments in this chapter. The first testbed in Figure 3.1 consists
of six servers Intel Xeon E5-2430L v2 running at 2.40GHz, with Ubuntu 16.04, kernel version
4.4.0.64-generic, equipped with 10Gb/s Intel X520 NICs with two SFP+ ports. The servers
are connected using two Arista 7050Q switches, and all network links are 10Gbps. This testbed
does not have PTP-enabled NICs with hardware timestamping (§2.2.3). The experiments in this
chapter use the default NIC settings. The two hosts running PTPd do not send or receive any
other network traffic, thus the PTPd measurements can be affected only by the traffic originating
from the four other hosts in the testbed (Memcached and iperf traffic).

For most of the experiments I do not use PTP-enabled NICs, because this type of NIC is not
available to the tenants to access in cloud data centres. However, I additionally run experiments
using PTP-enabled NICs to compare the results obtained in this second approach to the ones
obtained using the testbed without PTP-enabled NICs. The second testbed is formed out of two
hosts directly connected, running Ubuntu server 14.04 LTS, kernel version 4.4.0-62-generic.
The host hardware is a single 3.5 GHz Intel Xeon E5-2637 v4 on a SuperMicro X10-DRG-Q
motherboard, equipped with a Solarflare SFN8552 Network Interface Card (NIC) supporting
PTP [Solb] with hardware timestamping (§2.2.3).

PTPd logs measurements such as the clock offset, the master-to-slave delay, the slave-to-master
delay, and the one-way delay (§2.2.4). The interval for sending Sync and Delay Request mes-
sages can be configured in PTPd, up to 128 messages per second for each, expressed as log2

values between −7 and 7. The default setting is 0, which means sending 1 message per second
of both Sync and Delay Request message types, and 2−7 means 7.8125ms between messages,



CHAPTER 3. MEASURING THE NETWORK CONDITIONS 77

0 100 200
Time since start [sec]

-40
-30
-20
-10

0
10
20
30
40

C
lo

ck
of

fs
et

[µ
s]

Figure 3.2: The slave’s clock offset is within 20µs of the master’s clock after less
than five minutes after PTPd’s start-up.

0 100 200 300
Time since start [sec]

-100
-80
-60
-40
-20

0
20
40
60
80

100

C
lo

ck
of

fs
et

[n
s]

Figure 3.3: The slave’s clock offset is within 40ns of the master’s clock after less
than five minutes after Solarflare’s PTP daemon start-up.

with 128 messages per second. I call the number of messages sent per second message fre-
quency in order to distinguish the name from message rate, since in the case of PTP, there
is a set time interval between the messages exchanged, the messages being sent with a given
frequency.

In all of the experiments, I wait for an initial period to reach a stable state before making
changes to the system, e.g., starting other applications that send traffic. After PTPd starts up, it
performs an initial clock reset if the clock is off by one second. Then the slave clock gradually



78 3.2. MEASURING NETWORK LATENCY

synchronises with the master clock. Thus, before this convergence period ends, the system is
not in a stable state, and this may distort the results of the experiments. Next, I measure on my
first testbed the convergence period when using a message frequency of 1 message per second.
I verify that five minutes are sufficient for the PTPd master and PTPd client to synchronise to
within 20µs of each other (Figure 3.2). Allowing more than five minutes for convergence did
not decrease the margin between the two clocks’ values, with the clocks remaining within 20µs
of each other. For the second testbed which uses PTP-enabled NICs, the clocks are synchronised
within 40ns in less than five minutes (Figure 3.3). Hence, I wait for five minutes before running
any intended experiment.

The results in the following sections represent sample runs of the experiments.

3.2 Measuring network latency

The experiments in this section aim to answer the first question posed in the introduction,
namely to compare the one-way delay value computed by PTPd with the RTT values measured
by two other measurement tools.

I measure the RTT in the first testbed between the PTPd master and PTPd slave hosts, using ping
and the UDP-based tool [ZGP+17] that uses the Time Stamp Counter (TSC), and I compare the
values obtained divided by two with the one-way delay reported by PTPd. For PTPd, I set
the message frequency for Sync and Delay Request messages to 1 per second, and I run the
clock synchronisation for 15 minutes. For the two other experiments, I run 1 million RTT
measurements with the UDP-based tool, and 30,000 ping probes. There is no other network
traffic in the testbed, and each test is conducted separately.

The network latency CDF is presented in Figure 3.4. Intuitively, one would have expected the
one-way delay to be half of the values reported by the UDP-based tool, however this was not
the case in the default configuration (Figure 3.4b). I investigated why this happened, and I
found that changing the interrupt rate of the NIC at both the master and the slave by setting
to zero the number of microseconds to wait before raising an RX interrupt after a packet has
been received gives the expected results for the one-way delay reported by PTPd (Figure 3.4a).
This experiment shows the drawbacks of software timestamping, and reinforces the importance
of using hardware timestamping for obtaining precise measurements. Additionally, PTPd’s
message frequency can affect the OWD value, and this is discussed in detail in Chapter 4,
Section 4.3.1.

Once the two clocks are synchronised, the one-way delay reported by PTPd is stable; there
is no long tail for the reported one-way delay, due to filtering of abnormal values (§2.2.4).
On the other hand, the RTT CDFs produced by the two other tools exhibit a long tail due
to OS scheduling artefacts [ZGP+17]. The one-way delay reported by PTPd and the RTT/2
reported by the UDP-basel tool is approximately half of the median ping RTT/2 values. This



CHAPTER 3. MEASURING THE NETWORK CONDITIONS 79

0 20 40 60 80 100 120

One-way delay [µs]

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

PTPd
UDP-tool/2
ping/2

(a) Setting rx-usecs to 0

0 20 40 60 80 100 120

One-way delay [µs]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

PTPd
UDP-tool/2
ping/2

(b) Setting rx-usecs to 1

Figure 3.4: RTT/2 reported by ping and the UDP-based tool that uses the
TSC [ZGP+17], and one-way delay reported by PTPd

difference may be due to how the ICMP traffic is treated in the network and at the end-host
network stack [PCV+13]. Furthermore, ping may not be appropriate as a measurement tool for
network latency in the cloud, because of the possibility that ICMP packets are treated differently,
e.g., being redirected for security checks [WN10].

3.3 The effect of network congestion on PTPd measurements

The experiments in this section aim to answer the second question posed in the introduction,
namely how network congestion affects the PTPd measurements.

3.3.1 Concurrent network traffic

I study the effect of network congestion on the measurements reported by the PTPd slave using
the testbed in Figure 3.1. In each test, I allow a clock synchronisation phase of 5 minutes for
PTPd, before starting concurrently the two other applications, Memcached [Mem18] (with its
corresponding benchmark memaslap [Prob]) and iperf in TCP mode. Memcached is a latency-
sensitive application, for which increases in network latency lead to significant performance
loss (§5.4). In this specific experiment, I set the interval for the Sync and Delay Request mes-
sages to 0.25 seconds (message frequency of 4 messages per second), but the results are similar
for different message intervals. I run two experiments: i) a 5s iperf stream running (Figure 3.5a)
and ii) three 5s iperf streams with 5s breaks between them (Figure 3.5b).

The first experiment (Figure 3.5a) shows that the congestion episode determined by iperf leads
to an increase in the slave-to-master delay (on the iperf stream’s direction). PTPd packets are
queued in switches behind iperf’s packets, thus it takes longer for the packets from the slave to
reach the master, hence the increase in the slave-to-master delay. Consequently, the one-way
delay increases. The PTPd slave interprets these changes as clock offset from the master clock,



80 3.3. THE EFFECT OF NETWORK CONGESTION ON PTPD MEASUREMENTS

2000 2500 3000 3500 4000

Messages since start

−400

−200

0

200

400

600

800

1000

1200

O
ne

-w
ay

D
el

ay
[µ

s]

clock offset
−400

−200

0

200

400

600

800

1000

1200

C
lo

ck
of

fs
et

[µ
s]

master-to-slave delay
slave-to-master delay
one-way delay

(a) A 5s iperf stream starts running at second 300.

2000 2500 3000 3500 4000

Messages since start

−400

−200

0

200

400

600

800

1000

1200

O
ne

-w
ay

D
el

ay
[µ

s]

clock offset
−400

−200

0

200

400

600

800

1000

1200

C
lo

ck
of

fs
et

[µ
s]

master-to-slave delay
slave-to-master delay
one-way delay

(b) Three 5s iperf streams start running at second 300s, 310s and 320s,
respectively, with 5 seconds breaks between streams.

Figure 3.5: Network congestion effect on PTPd measurements.

then corrects its clock accordingly, and as a result changes also appear in the master-to-slave
delay. After TCP exits the startup phase and reaches the steady state, and assuming that the iperf
stream continues to run after this state is reached, the slave’s clock will gradually reconverge,
with the clock offset nearing zero. However, the one-way delay will still reflect an increased
delay determined by the iperf traffic.

The second experiment (Figure 3.5b) shows that if there are several congestion episodes before
the slave clock manages to resynchronise with the master clock, the one-way delay reported by
the slave is not indicative of the actual delay, but it still indicates that there is an event (network
congestion, link failure) on that network path. In this experiment, the first congestion episode
caused by iperf has the same effect as in the first experiment. The next two intervals of iperf
traffic produce further deviations to the slave-to-master delay, because the two clocks did not
have time to resynchronise before the start of the next iperf stream. The figure illustrates how



CHAPTER 3. MEASURING THE NETWORK CONDITIONS 81

(a) Clock offset and OWD for
Memcached, PTPd and iperf

(b) Clock offset and OWD for
Memcached, PTPd and periodic iperf

0 500 1000 1500 2000 2500 3000
Request-response latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

baseline
+iperf

(c) memaslap with iperf
request-response latencies

0 500 1000 1500 2000 2500 3000
Request-response latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0

baseline
+periodic iperf

(d) memaslap with periodic iperf
request-response latencies

Figure 3.6: Network congestion effect on PTPd measurements and on memaslap’s
performance.

the delays are gradually going back to the baseline values, but before this can fully happen, a
new iperf stream starts. While this experiment shows that the one-way delay does not provide
the true value of the latency between hosts at all times, the approach still has merits, and with
appropriate data post-processing the accuracy of the OWD measurement could be increased.

I perform similar experiments as the ones presented in the previous paragraph to relate the effect
that network congestion has on the PTPd measurements with the application performance of a
latency-sensitive application, Memcached. These experiments show that the changes observed
in the PTPd measurements can serve as an indicator that the performance of other applications
running on the same network may suffer. Firstly, I run an experiment with the benchmark in
parallel with the PTPd clock synchronisation, and no other competing traffic, to measure the
baseline request-response latency of the Memcached benchmark, memaslap [Prob]. Next, I
run iperf in parallel with the benchmark for 150 seconds. The PTPd measurements deviate
from the normal values, due to queue buildup in switches, as illustrated in Figures 3.6a. After
the TCP stream reaches steady state, the slave’s clock resynchronises with the master clock.
The OWD increases for the duration of the iperf stream, while the clock offset reconverges
to normal values close to zero. After the iperf stream ends, the OWD returns gradually to
its previous value. It should be noted that there is a period during which the slave clock is



82 3.3. THE EFFECT OF NETWORK CONGESTION ON PTPD MEASUREMENTS

again desynchronised, after the iperf stream ends. The return to the previous clock offset and
OWD values happens gradually due to PTPd’s clock servo algorithm (§2.2.4). Figure 3.6c
shows increased request-response latencies due to the iperf traffic. In the third experiment,
iperf runs for periods of 30 seconds alternating with breaks of 30 seconds (Figure 3.6b), PTPd
measurements displaying the same behaviour as in Figure 3.5b. Similarly, Figure 3.6d shows
an increase in request-response latencies due to iperf, but less than in the previous experiment,
as iperf runs for a total shorter period of time.

3.3.2 Changing the message frequency of the Sync and Delay Request
messages

This experiment explores the time resolution at which network congestion affects the PTPd
measurements by changing the interval at which messages are exchanged between the PTPd
master and PTPd client. I perform the same experiment with iperf and memaslap concurrently
running with PTPd, but iperf runs for a duration of 1s. I vary the interval at which the Sync
and Delay Request messages are sent, from 1s down to 7.8125ms, meaning from 1 messager
per second to 128 messages per second. This allows detection of congestion periods at millisec-
onds resolution. Increasing the message frequency beyond 128 messages per second would
allow detection at an even higher resolution. In Figure 3.7a, it can be seen that iperf does not
produce any change in the PTPd measurements, since the interval between messages is the
same as iperf’s runtime, hence it is not running long enough to delay the PTP packets. How-
ever, when the interval is decreased (Figures 3.7b and 3.7c), the iperf traffic leads to deviations
in the PTPd measurements, and an increase in the one-way delay, similar to Figure 3.5a. The
clock offset, master-to-slave and slave-to-master delays oscillate between larger values when
the Sync and Delay Request interval is smaller (comparing the width of the lines in Figure 3.7b
and Figure 3.7c). This may happen because of software timestamping, or because of PTPd
clock servo algorithm’s settings (§2.2.4). The one-way delay does not exhibit such significant
oscillations, as it is computed as the average of the master-to-slave and slave-to-master delays.

3.3.3 Convergence period for the PTPd measurements after network con-
gestion

This experiment explores how long it takes for the PTPd measurements to return to the same
values they had before network traffic that caused congestion was injected in the network. The
experiment is performed for different intervals at which messages are exchanged between the
PTPd master and PTPd client.

As shown in Section 3.3.1, the PTPd measurements do not instantly go back to their values
after a network congestion period. Figure 3.8 illustrates how the one-way delay is affected by
network congestion determined by a stream of iperf of 1s for different message frequencies.



CHAPTER 3. MEASURING THE NETWORK CONDITIONS 83

0 200 400 600 800 1000 1200 1400 1600

Messages since start

−400

−200

0

200

400

600

800

1000

O
ne

-w
ay

D
el

ay
[µ

s]

clock offset
−400

−200

0

200

400

600

800

1000

C
lo

ck
of

fs
et

[µ
s]

master-to-slave delay
slave-to-master delay
one-way delay

(a) 1s interval for Sync and Delay request messages. A 1s iperf stream
starts running at second 300, PTPd measurements do not detect it.

0 2000 4000 6000 8000 10000 12000 14000

Messages since start

−400

−200

0

200

400

600

800

1000

O
ne

-w
ay

D
el

ay
[µ

s]

clock offset
−400

−200

0

200

400

600

800

1000

C
lo

ck
of

fs
et

[µ
s]

master-to-slave delay
slave-to-master delay
one-way delay

(b) 125ms interval for Sync and Delay request messages. A 1s iperf
stream starts running at second 300, PTPd measurements detect it.

0 50000 100000 150000 200000

Messages since start

−400

−200

0

200

400

600

800

1000

O
ne

-w
ay

D
el

ay
[µ

s]

clock offset
−400

−200

0

200

400

600

800

1000

C
lo

ck
of

fs
et

[µ
s]

master-to-slave delay
slave-to-master delay
one-way delay

(c) 7.8125ms interval for Sync and Delay request messages. A 1s iperf
stream starts running at second 300, PTPd measurements detect it.

Figure 3.7: Changing the interval for the Sync and Delay Request messages.



84 3.4. MEASURING NETWORK LATENCY IN VIRTUALISED ENVIRONMENTS

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of messages since start

0

50

100

150

200

250

300

350

400

O
ne

-w
ay

de
la

y
[µ

s]

1
2
4
8
16
32
64
128

Figure 3.8: Number of messages needed for the one-way delay to return to nor-
mal values after network congestion caused by an iperf stream of 1s for different
message frequencies.

# msg/s # msgs Approximate
for convergence convergence period

1 - -
2 255 63.75s
4 298 37.25s
8 428 26.75s

16 454 14.18s
32 536 8.37s
64 605 4.72s

128 684 2.67s

Table 3.1: Approximate number of messages needed to converge to the baseline
OWD and how long it takes to reach the baseline OWD.

The experiment is run for 15 minutes. For 1 message per second, the one-way delay is not
affected at all. The one-way delay increases with the message frequency, since with a lower
message frequency the congestion period may actually be missed or not fully captured in the
one-way delay. I count the number of samples greater than the baseline OWD value for the first
testbed in Section 3.2 to determine how many messages are needed before the OWD returns to
this baseline value after iperf finished running. The results are presented in Table 3.1, and it can
be seen that the higher the message frequency is, the shorter the reconvergence time will be.

3.4 Measuring network latency in virtualised environments

The experiments in this section aim to answer the third question posed in the introduction,
namely what is the impact of virtualisation on PTPd measurements.



CHAPTER 3. MEASURING THE NETWORK CONDITIONS 85

0 100 200 300 400 500 600
One-way delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

bare metal 128 msg/s
bare metal 1 msg/s
virtualisation 128 msg/s
virtualisation 1 msg/s

Figure 3.9: One-way delay reported by a PTPd client on a bare metal host and with
virtualisation for different message frequencies.

Min Average Median 99th 99.9th Max Std. dev.
Bare metal 1msg/s 80.85µs 82.59µs 82.68µs 84.06µs 84.15µs 84.15µs 0.8µs

Virt. 1msg/s 273.96µs 286.7µs 285.98µs 295.72µs 295.9µs 295.92µs 5.27µs
Bare metal 128msg/s 51.28µs 64.54µs 64.7µs 69.97µs 71.12µs 72.1µs 2.65µs

Virt. 128msg/s 201.69µs 253.33µs 253.59µs 271.21µs 284.86µs 327.25µs 7.62µs

Table 3.2: One-way delay reported by a PTPd client on a bare metal host and with
virtualisation for different message frequencies.

All of the previous experiments were performed without virtualisation, on bare-metal hosts. In
order to be able to interpret the measurement data collected in the cloud in the next chapter,
where virtualisation is the norm, I run an experiment on the first local testbed to quantify the
overhead of virtualisation on PTPd measurements, more specifically on the OWD, with the
PTPd master and PTPd client running in VMs. The hypervisor used is Oracle VM VirtualBox
version 5.0.40 Ubuntu r115130. The results of the two experiments are shown in Figure 3.9
and Table 3.2, and show that virtualisation adds almost 200µs of overhead and causes increased
jitter to the OWD compared to a non-virtualised setting. Even so, the standard deviation of
the OWD is not significant. These issues can be solved by using PTP-enabled NICs which
provide hardware timestamping. Additionally, OS bypass through a custom software packet
processing path [DSA+18] or through custom hardware [FPM+18] alleviates these issues. Also,
some cloud providers (Amazon AWS) offer bare metal instances [AWS18b], thus the virtual
switch overhead does not exist in this case.

To sum up, these results show that the OWD increases due to virtualisation, but the results
are demonstrative of the OWD’s stability, the OWD having low standard deviation even in the
presence of virtualisation, making PTPd a convenient way to estimate network latency.



86 3.5. ESTIMATING PACKET LOSS RATIO

3.5 Estimating packet loss ratio

The experiments in this section aim to answer the fourth question posed in the introduction,
namely can the PTPd measurements be used to measure other network conditions, such as
packet loss.

Packet loss increases the latency perceived by the user, since dropped packets need to be retrans-
mitted [GYX+15]. It is thus important to keep track of the packet loss ratios, as these can be
correlated with the observed application performance. Additionally, tracking packet loss helps
to uncover software or hardware faults in the network.

PTPd records the number of messages sent and received (Announce, Sync, Followup, Delay
Request, Delay Response), and it is possible to export these numbers periodically. The counters
can be reset after they are exported. On the slave side, a difference between the number of
Delay Request and Delay Response messages would indicate packet loss. The packet loss ratio
over a defined interval of time can be approximated as:

pkt_loss_ratio = 1− #Delay_Response_messages
#Delay_Request_messages

(3.1)

Normal operation should see the same number of Delay Request and Response messages or
a difference of at most one message. One disadvantage of computing the packet loss ratio in
this way is that it does not account for the Announce, Sync and Followup messages that were
potentially lost, as well as other types of packets that may be lost (ARP packets for example).

I verify if the proposed metric can be used as a coarse estimation for the packet loss ratio by
artificially introducing packet loss in the network. I use NetEm [Hem] (§2.1.4), an enhancement
of the Linux traffic control facilities, to emulate packet loss on the outgoing network interface
of the host which runs the PTPd master. In this scenario, none of the Delay Request messages
are lost, although in practice this may happen. Since outgoing PTPd packets are looped back
via the IP_MULTICAST_GROUP [OLS08], loss conditions are applied on both the physical
interface and the loopback interface. I use the loss random option of NetEm, which adds an
independent loss probability to the packets outgoing on the chosen network interface. I use
packet loss ratios of 1%,5% and 10%, and I compute the packet loss ratio as described above
to see if it matches the induced loss ratios. I run the clock synchronisation for 50 minutes with
a packet loss of 1%, 10 minutes with a packet loss of 5%, and 5 minutes with a packet loss of
10%, and for each loss ratio I perform 5 runs. The results are presented in Table 3.3. It can
be seen that the metric I defined can serve as a coarse estimate of the packet loss ratio over a
defined interval of time.



CHAPTER 3. MEASURING THE NETWORK CONDITIONS 87

NetEm packet loss Max. sample size Packet loss median Packet loss
ratio (Delay_Request messages) std. deviation
1% 2961 1.08% 0.23%
5% 571 5.43% 0.74%

10% 285 9.47% 0.34%

Table 3.3: Packet loss ratio computed based on the number of Delay Request and
Delay Response messages reported at the PTPd slave.

3.6 PTP-enabled NICs

NICs supporting PTP are becoming increasingly available. The measurements performed by a
PTP implementation that leverages this support do not suffer from end-host interference caused
by other network traffic that originates from the same host. Furthermore, this type of NIC
also removes the delay associated with the end-host network stack or virtualisation layer from
measurements, the measurements thus reporting only the actual network latency.

I run experiments to see if PTPd measurements are adversely affected by other network traffic
that originates from the same host to answer the fifth question posed in the introduction. This
might happen because of end-host packet processing delays under increased load. On the second
testbed described in Section 3.1, I compare the clock offset and one-way delay obtained from
sfptpd, Solarflare NIC [Solb] PTP daemon which uses hardware timestamping (see Figure 3.10,
note: ns y-scale), and from PTPd (see Figure 3.11, note: µs y-scale), which uses software
timestamping, with and without running an iperf TCP stream between the hosts. One host is
the PTP master, while the other acts as a PTP slave. It can be seen from the two figures that the
clock offset reported by sfptpd is not affected by the iperf traffic. However, in the case of PTPd,
the clock offset deviates when the iperf stream starts and ends. Furthermore, it should be noted
that for hardware timestamping the clock offset’s magnitude is nanoseconds, while for software
timestamping it is microseconds.



88 3.7. SUMMARY

0 100 200 300 400 500 600 700 800
Messages since start

−300

−200

−100

0

100

200

300

C
lo

ck
of

fs
et

[n
s]

sfptpd
sfptpd+iperf

Figure 3.10: The clock offset reported by sfptpd is not affected by the iperf traffic,
since it uses NIC hardware timestamping.

Figure 3.11: The clock offset reported by PTPd is adversely affected by the iperf
traffic because of end-host interference.

3.7 Summary

In this chapter, I conducted an analysis to investigate and validate the use of PTP, through a
software implementation PTPd, for measuring network conditions: network latency and packet
loss. I first conducted experiments to determine how to use the one-way delay measurement
offered by PTPd to estimate network latency (§3.2). I then showed that network congestion
events are captured by the OWD measurement (§3.3). Next, I performed experiments on a vir-
tualised testbed to determine the overhead of virtualisation on the OWD measurement, finding



CHAPTER 3. MEASURING THE NETWORK CONDITIONS 89

that the OWD increases, but the standard deviation of the OWD does not change significantly
(§3.4). Furthermore, I defined a metric to estimate packet loss ratio based on the number of mes-
sages exchanged between the PTPd slave and the PTPd master, and I verified that the metric
can provide a coarse estimation for packet loss ratio (§3.5). Finally, I conducted experiments
on a testbed with PTP-enabled NICs with hardware timestamping to show that the OWD is
not affected by concurrent network traffic originating from the end-host when using hardware
timestamping, but it is when using software timestamping (§3.6). The experiments in this chap-
ter show that while PTP with software timestamping has drawbacks, it can offer estimates of
network latency and packet loss that are useful for monitoring network conditions.



90 3.7. SUMMARY



Chapter 4

Measuring the cloud network with
PTPmesh

Network latency matters for certain distributed applications even in small amounts, affecting
their application performance. Even though in recent years network performance has im-
proved substantially in the cloud, network latency variability is still common in data centres
(§2.4) [MK15]. In order to ensure the best application performance, one needs to be able to
continuously measure the network latency across paths in data centres. Having up-to-date net-
work latency values helps in tracking network SLAs for applications and in quickly finding
failures [GYX+15; ALZ16]. These monitoring challenges can be addressed using a network
monitoring system for data centres (§2.3.4). The system should be able to measure network
latency across network paths and to detect packet losses, as these have a huge negative impact
on application performance [GYX+15; ALZ16].

In the previous chapter, I validated the use of the Precision Time Protocol (PTP) through small-
scale experiments for estimating network latency and packet loss. In this chapter, I propose
PTPmesh as a network monitoring tool for data centres (§2.3.4). PTPmesh’s building block is
PTPd [PTP18], whose measurement capabilities were analysed in Chapter 3. To validate the
use of PTPmesh under real data centre network traffic, I carry out a measurement study in diffe-
rent cloud providers (Amazon AWS, Google Cloud Platform, and Microsoft Azure) in ten data
centres in different regions across the world, highlighting their characteristics regarding latency
magnitude, latency variance and packet loss.

PTPmesh is easy to deploy on cloud tenants’ VMs, making it a feasible tool for cloud tenants to
obtain network performance statistics without significant overhead and without needing access
to any custom hardware at the end-host or in the network from the cloud providers (§2.3.4,
Chapter 3).

91



92 4.1. DEPLOYMENT SCENARIOS

4.1 Deployment scenarios

I consider two possible deployment scenarios for a system based on PTP in data centres [ALV08].
In the first scenario, the cloud provider deploys PTPd [PTP18] (or a different software im-
plementation for PTP) in the hypervisor, possibly alongside a separate clock synchronisation
mechanism. Several PTPd clients can run on the same machine in different PTP domains, and
thus they do not interfere with each other. In the second scenario, the tenants themselves run
PTPd inside their VMs and use the reported measurements to check the network conditions.
PTPmesh’s design follows the second scenario. In both scenarios, the PTP traffic should not be
prioritised, and switches in the network should not be PTP-aware, otherwise the measurements
would not be indicative of the actual network latency.

Since ECMP is used in data centres to load balance the traffic across the available network paths
between two servers, the PTP traffic between the servers may not follow the same network
path as other network traffic that exists between these two servers. To mitigate this issue, a
similar approach to the one used in Pingmesh [GYX+15] and NetNORAD [ALZ16] can be
used, specifically changing the port numbers on which PTPd is running. PTP uses port numbers
319 and 320 (§2.2.3). Since the port number is part of the ECMP hash computation, for every
port number a different ECMP hash value is obtained. As a result, ECMP may select different
network paths to route the PTP packets for different port numbers. Looping over a range of port
numbers would ensure that the PTP traffic is sent over each distinct network path between two
servers [GYX+15; ALZ16]. Moreover, if the cloud operator knows how ECMP is implemented
on their switches and they do not use randomness in the ECMP hash function [GC13], then the
cloud operator can define a list of port numbers for PTPd to ensure that each distinct network
path between the two hosts is covered. Alternatively, if the trajectory of the packets can be
traced using techniques such as the ones described in [TAL15; RZB+17], then it would be
straightforward to verify whether all network paths between two servers are covered when using
a range of port numbers for PTPd. I try the first approach in Section 4.8.

4.2 Measurement methodology

I use PTPd v2 2.3.1 [PTP18], with the latest source code from the public repository. I measure
the one-way delay between multiple VMs from different cloud providers. In cloud computing
terminology, a region is a geographical location where compute resources can be deployed, and
it comprises one or more zones 1. Usually, a region has three or more zones. For each of the
three cloud platforms, Amazon AWS EC2 2, Google Cloud Platform - Compute Engine 3, and
Microsoft Azure 4, I choose several zones, as illustrated in Figure 4.1. I deploy two, four or

1https://cloud.google.com/compute/docs/regions-zones/
2https://aws.amazon.com/ec2/
3https://cloud.google.com/compute/
4https://azure.microsoft.com/en-gb/

https://cloud.google.com/compute/docs/regions-zones/
https://aws.amazon.com/ec2/
https://cloud.google.com/compute/
https://azure.microsoft.com/en-gb/


CHAPTER 4. MEASURING THE CLOUD NETWORK WITH PTPMESH 93

                     Azure-USW                                Azure-UKW & Azure-UKS                                Azure-KS

                     EC2-USW       EC2-USE                      EC2-EUW  

      GCE-USW & GCE-USW2                                      GCE-EUW

Figure 4.1: The zones in which PTPmesh was deployed to take measurements from
different cloud providers.

ten VMs in each zone. The VMs run Ubuntu 16.04. I run the PTPd master on one VM, while
the other VMs act as PTPd slaves, running simultaneously. The VMs’ types, specifications and
underlying hardware are described in Table 4.1. It should be noted that the latency measure-
ments collected may be influenced by the underlying server hardware, as shown by previous
research [NAZ+18].

Since currently multicast either requires additional configuration and expenses in the case of
Amazon AWS [AWS] or is not supported at all in the case of Google Compute Engine [Pla] and
Microsoft Azure [Azu], I used PTPd in unicast mode for the cloud deployment, with unicast
negotiation and end-to-end delay measurement (§2.2.3). PTPd supports up to 2,048 unicast
destinations, and it scales up to 1,000 slaves with high message frequencies of 32 messages per
second5.

I list the zones along with an assigned name to identify the traces collected. For Amazon AWS
EC2, I run measurements in regions Ireland zone eu-west-1a (EC2-EUW), Northern California
zone us-west-1b (EC2-USW) and Ohio zone us-east-2a (EC2-USE). For Google Compute En-
gine, the measurements are run in us-west1-b (GCE-USW) and europe-west1-b (GCE-EUW),
and between us-west1-b (GCE-USW) and us-west1-d (GCE-USW2). For Microsoft Azure, I
use UK West (Azure-UKW), UK South (Azure-UKS), US West (Azure-USW) and Korea South
(Azure-KS). In the UK South, the VM type I use is the Standard D2s v3 and Standard_E16s_v3
or Standard_E32s_v3 (with Azure Accelerated Networking [FPM+18] enabled), while in the
other zones I use the Standard D1 v2. I will refer to a zone as a data centre in the rest of the
dissertation, but the underlying network topology and configuration of a zone is not disclosed
by the cloud providers.

5https://github.com/ptpd/ptpd/blob/master/INSTALL

https://github.com/ptpd/ptpd/blob/master/INSTALL


94 4.3. MEASUREMENT CALIBRATION

Cloud Instance vCPU CPU Mem Storage Storage #NICs Network
provider type (Intel) (GB) (GB) Type used bandwidth

AWS t2.micro 1 Xeon 1 10/30 Elastic 1 moderate
Block Store [AWS18a]

GCE n1-standard-1 1 Intel 3.75 10 Standard 1 ≤ 2Gbps
Sandy Bridge/ Persistent Disk

Ivy Bridge/
Haswell/

Broadwell/
Skylake

Azure Standard D1 v2 1 Haswell 3.50 50 Local SSD 1 moderate
E5-2673 v3

Azure Standard D2s v3 2 Haswell 8 50 Local SSD 1 moderate
E5-2673 v3

Azure Standard_E16s_v3 16 Broadwell 128 256 Local SSD 1 high
E5-2673 v4

Azure Standard_E32s_v3 32 Broadwell 256 512 Local SSD 1 high
E5-2673 v4

Table 4.1: VM types and specifications for the three cloud providers studied.

4.3 Measurement calibration

4.3.1 Message frequency impact

According to the PTP standard, the interval between messages can be set between 2−7 to 27

seconds, which means a maximum of 128 messages per second. PTPd’s experimental imple-
mentation allows message frequencies of up to 230 messages per second. I perform several
experiments where I vary the number of messages between 1 to 27 per second to determine
whether a different message interval yields different one-way delay values. I vary the message
frequencies of both the Sync and Delay Request messages exchanged between the master and
the slave, and I use the same message frequency for both.

I perform an experiment with a PTPd master and a single PTPd client running in the Azure-KS
data centre with different message frequencies. Figure 4.2 shows the OWD CDF for diffe-
rent message frequencies. As the message frequency increases, the OWD decreases, going
from median 262.92µs and 99thpercentile 286.6µs for 1 message per second, to 191.49µs and
99thpercentile 237.85µs for 128 messages per second. It is speculated that the cause of this be-
haviour is that, when the message frequency increases, the code that performs the timestamping
remains in the cache, leading to smaller OWD values 6. Another cause might be due to the way
the interrupts are coalesced at the NIC, since messages are not timestamped by the NIC, but by
the kernel.

While increasing the message frequency leads to better accuracy for the one-way delay mea-
surements, the CPU utilisation and network bandwidth consumption increase. Since the initial
goal was to have a low-overhead measurement system that runs as a service in a VM or in the
hypervisor, choosing the message frequency implies a tradeoff between host and network re-
sources consumption and measurement accuracy. I run measurements using the same setup in
the Azure-KS data centre for each message frequency from 1 message per second to 230 mes-

6Private communication with George Neville-Neil, developer of PTPd.



CHAPTER 4. MEASURING THE CLOUD NETWORK WITH PTPMESH 95

0 50 100 150 200 250 300 350 400

One-way delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F 1
2
4
8
16
32
64
128

Figure 4.2: OWD measured using PTPd for periods of 15 minutes between two
VMs in Azure-KS.

Figure 4.3: CPU utilisation of the PTPd master running on a VM in the Azure-KS
data centre synchronising with one PTPd client.

sages per second for 15 minutes to monitor the average CPU utilisation (using top), memory,
and send and receive network bandwidth (using iftop). Figure 4.3, Figure 4.4, Figure 4.5 and
Figure 4.6 present the results for CPU utilisation and network bandwidth used by the PTPd
master depending on the message frequency.

Figure 4.3 shows that it takes approximately 100 seconds to reach a value close to the maximum



96 4.3. MEASUREMENT CALIBRATION

Figure 4.4: Receive network bandwidth of the PTPd master running on a VM in
the Azure-KS data centre synchronising with one PTPd client.

Figure 4.5: Send network bandwidth of the PTPd master running on a VM in the
Azure-KS data centre synchronising with one PTPd client.

CPU utilisation of the PTPd master. CPU utilisation is less than or equal to 0.7% for message
frequencies up to 27 messages per second. The CPU utilisation doubles with the doubling of
the message frequency, the maximum CPU utilisation being less than 10%. When using two
PTPd clients, the average CPU utilisation reported by the PTPd master increases to 0.4% for
32 messages per second, 0.7% for 64 messages per second, 1% for a message frequency of



CHAPTER 4. MEASURING THE CLOUD NETWORK WITH PTPMESH 97

100 101 102 103 104 105 106 107 108 109 1010

#Messages/s

0

2

4

6

8

10

C
P

U
ut

ili
sa

tio
n

(%
)

CPU

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

dw
id

th
(K

bp
s)

Bandwidth

Figure 4.6: CPU and network bandwidth of the PTPd master running on a VM in
the Azure-KS data centre synchronising with one PTPd client.

128 messages per second, and approximately 14% for high message frequencies of over 212

messages per second. For a frequency of 1 message per second, the average CPU utilisation is
almost 0% and the average network bandwidth consumption is 0.65Kb/s (receive) and 2.13Kb/s
(send). For a frequency of 27 messages per second, the average CPU utilisation is 0.7% and the
average network bandwidth consumption is 68.77Kb/s (receive) and 223.7Kb/s (send). From
212 upwards, due to the end-host’s limited packet processing capabilities, and the fact that the
protocol operates in a request-response manner and taking into account the latency on the net-
work, the message frequency does not actually achieve the set message frequency. The VM
has a network bandwidth of 0.75 Gb/s, which is not reached for message frequencies greater
than 212, the maximum bandwidth consumed being less than 10 Mb/s. Since these values are
reported for a single slave, when synchronising with multiple slaves, it is expected that the net-
work bandwidth will increase proportionally. For example, if using 1,000 slaves, the average
network bandwidth at the PTPd master would be 6.87 Mb/s (receive) and 22.37 Mb/s (send).
The memory usage for the PTPd master is the same regardless of the message frequency, being
0.1% when using a VM with 1.6 GB RAM. However, the number of PTPd clients has an impact
on the amount of memory used by the master [PTP18], with the maximum number of clients
(unicast destinations) supported being 2048.

Table 4.2 presents the CPU utilisation and network bandwidth for different message frequen-
cies. The results show that the accuracy of the OWD measurements improves as the message
frequency increases with the average OWD decreasing, while the precision of the measurements
stays roughly the same, the standard deviation for different message frequencies being almost
the same. It should be noted that the OWD measurements may have been affected by concur-
rent network traffic within the data centre. On the other hand, the CPU and network resources
double as the message frequency doubles.

To sum up, depending on the available resource budget, more accurate OWD measurements



98 4.3. MEASUREMENT CALIBRATION

# msg/s CPU Average network Average network Average Std.dev.
utilisation bandwidth (receive) bandwidth (send) [µs ] [µs ]

[%] [Kb/s] [Kb/s]
1 0 0.65 2.13 262.11 21.54
2 0 1.12 3.88 255.88 19.15
4 0 2.21 7.38 240.63 14.1
8 0 4.35 14.38 232.42 13.19

16 0.1 8.68 28.44 221.02 13.21
32 0.2 17.35 56.53 214.7 13.56
64 0.4 34.43 112.12 203.67 18.4

128 0.7 68.77 223.7 193.37 17.56

Table 4.2: The setup has one PTPd master and one PTPd client. CPU utilisation
and network bandwidth double as the message frequency doubles. OWD average
goes down, while standard deviation is roughly the same.

can be obtained, but at the expense of more CPU and network resources. Memory requirements
for running the PTPd master are consistently low. There is a tradeoff between measurement
accuracy and resource consumption that should be considered when choosing the message fre-
quency. A lightweight network monitoring system should not incur significant overhead on the
end-host or the network. For example, Pingmesh [GYX+15] uses less than 45MB memory,
the average CPU usage is less than 0.26%, and it sends only tens of Kb/s. Thus, based on the
Pingmesh resource usage and depending on the number of PTPd clients that synchronise with
one PTPd master, the message frequency for PTPd, and thus for PTPmesh, should be chosen
between 1 and 32.

In Section 4.5, I conduct most of the latency measurements using a message frequency of 1
message per second on a setup with one PTPd master and three PTPd clients as part of PTPmesh.
I choose this value in order to have similar CPU utilisation and network bandwidth consumption
as Pingmesh. I additionally perform measurements with a message frequency of 128 messages
per second for higher OWD measurements accuracy.

4.3.2 Number of concurrent PTPd clients

Another aspect that needs to be taken into account is the number of slaves a master can synchro-
nise with before the end-host becomes overloaded because of processing too many messages,
which may affect the measurement accuracy. To see if the number of clients affects significantly
the OWD values, I perform a suite of experiments with PTPmesh on a local testbed with ten
bare-metal hosts, using one PTPd master and a maximum of nine PTPd clients, and a similar
experiment in EC2-USE (one VM PTPd master and up to nine VM PTPd clients), using 128
messages per second. Using the local testbed from Chapter 5, I found that the reported OWD is
not affected by the number of clients, with median values between 18.5µs and 19µs, with stan-
dard deviations less than 1µs and a maximum value of 20µs across runs with different numbers



CHAPTER 4. MEASURING THE CLOUD NETWORK WITH PTPMESH 99

0 100 200 300 400 500 600
One-way delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F
1 client
2 clients
3 clients
4 clients
5 clients
6 clients
7 clients
8 clients
9 clients

Figure 4.7: Varying the number of PTPd clients that synchronise with the PTPd
master in EC2-USE.

of clients. In contrast, Figure 4.7 shows the OWD between one pair of VMs when varying the
number of concurrent PTPd clients synchronising with the same PTPd master. The variations
in the OWD when having up to four clients are not related to the number of clients. However,
adding another client leads to an increase in the median latency of 7 µs. Having six or seven
clients leads to increases in the OWD by approximately 10 µs. For eight clients, the median
OWD is larger by approximately further 7µs. For nine clients, the median OWD is approxi-
mately larger by 20µs. In data centres from the two other cloud providers (GCE and Azure) I
did not see any noticeable impact when using a maximum of four VM clients. I hypothesise that
this is related to the hypervisor, since the ten hosts testbed is composed of bare metal hosts, but
the results can also be influenced by competing network traffic in the cloud, whereas in the local
testbed there was no other traffic. Given that all measurements were taken using a maximum
of three simultaneous VM clients, my measurements were not affected by this behaviour. To
mitigate this issue, the current infrastructure of PTPmesh can be extended to perform measure-
ments between VMs independently in pairs. Alternatively, all VMs can be visited in a round
robin manner with measurements running for several minutes per VM client to allow the VM
client’s clock to synchronise with the VM master.



100
4.3.

M
E

A
SU

R
E

M
E

N
T

C
A

L
IB

R
A

T
IO

N
Trace #Msgs Start time Duration Avg.(µs) 50th(µs) 99th(µs) 99.9th(µs) Max(µs) Std.dev.(µs) #L.s.

EC2-EUW-1 1204053 2017-11-06 14:43:20 7d00h03m10s 304.87µs 289.57µs 415.18µs 516.5µs 2.69ms 49.71µs 19
EC2-EUW-2 879099 2017-11-06 14:43:22 5d15h12m50s 352.77µs 345.17µs 481.53µs 2.32ms 14.36ms 192.57µs 90
EC2-EUW-3 906750 2017-11-06 14:43:24 5d17h28m36s 352.17µs 350.97µs 459.5µs 616.3µs 3.16ms 50.68µs 48
EC2-USW-1 934978 2017-11-07 12:56:48 5d10h08m30s 259.63µs 256.93µs 335.08µs 486.3µs 1.73ms 33.18µs 7
EC2-USW-2 953109 2017-11-07 12:56:50 5d12h50m25s 279.22µs 275.86µs 361.42µs 474.35µs 1.25ms 29.08µs 12
EC2-USW-3 870190 2017-11-07 12:56:52 5d01h04m16s 287.82µs 283.44µs 363.88µs 429.06µs 686µs 24.15µs 5
GCE-EUW-1 1208861 2017-10-16 14:11:06 7d00h00m00s 138.32µs 97.1µs 1.2ms 2.74ms 7.72ms 223.32µs 237
GCE-EUW-2 1069898 2017-10-16 14:10:59 6d04h45m41s 138.29µs 87.34µs 1.44ms 3.48ms 6.58ms 268.65µs 216
GCE-EUW-3 1208306 2017-10-16 14:10:51 7d00h03m09s 132.78µs 82.97µs 1.38ms 3.6ms 8.83ms 275.73µs 243
GCE-USW-1 1210156 2017-10-16 16:38:32 7d00h02m57s 81.05µs 76.9µs 120.34µs 981.94µs 4.57ms 60.64µs 16
GCE-USW-2 1210507 2017-10-16 16:39:15 7d00h02m14s 72.07µs 71.35µs 92.24µs 119.22µs 531µs 8.65µs 1
GCE-USW-3 1209171 2017-10-16 16:41:33 6d23h59m56s 79.7µs 78.79µs 104.34µs 128.65µs 396µs 8.03µs 1

GCE-USW2-1 42907 2017-04-07 23:58:42 0d05h59m28s 191.65µs 180.66µs 526.84µs 908.27µs 1.21ms 63.04µs 5
Azure-UKW-1 1206919 2017-09-13 15:51:29 6d23h45m10s 441.37µs 447µs 529.27µs 570.62µs 1.38ms 47.4µs 2380
Azure-UKW-2 1160593 2017-09-13 15:51:33 6d17h11m17s 432.95µs 441.3µs 522.88µs 565.55µs 1.01ms 48.7µs 3979
Azure-UKW-3 1208739 2017-09-13 15:51:40 6d23h59m59s 412.59µs 419.62µs 483.48µs 521.42µs 827µs 39.96µs 134
Azure-USW-1 1203300 2017-09-13 15:26:09 6d23h08m41s 313.42µs 315.14µs 357.72µs 379.86µs 549µs 22.78µs 1
Azure-USW-2 1208955 2017-09-13 15:26:11 7d00h00m00s 282.46µs 281.21µs 330.64µs 362.23µs 717µs 15.31µs 3
Azure-USW-3 1208849 2017-09-13 15:26:16 6d23h59m59s 357.83µs 358.46µs 415.68µs 449.11µs 732µs 22.22µs 4

Azure-UKS-N1 108073 2018-02-22 20:11:00 0d16h37m07s 268.49µs 261.31µs 363.22µs 481.65µs 598µs 25.16µs 2
Azure-UKS-A1 96635 2018-02-22 22:18:24 0d13h54m09s 95.7µs 94.54µs 139.79µs 212.75µs 268µs 11.08µs 0

EC2-USE-1 21864606 2018-02-19 17:27:23 0d23h59m48s 181.96µs 172.05µs 291.55µs 411.82µs 2.04ms 30.71µs 139
EC2-USE-2 21864606 2018-02-19 17:27:23 0d23h59m49s 197.33µs 190.08µs 293.74µs 390.46µs 1.77ms 27.14µs 79
EC2-USE-3 21891242 2018-02-19 17:27:23 0d23h59m49s 188.53µs 196.83µs 301.86µs 406.26µs 1.48ms 30.65µs 86
GCE-USW-1 19378393 2017-12-22 22:31:59 1d10h04m00s 65.48µs 64.33µs 89.08µs 106.15µs 451µs 7.14µs 0
GCE-USW-2 21161197 2017-12-22 22:32:17 1d09h17m34s 70.4µs 69.47µs 92.8µs 106.11µs 295µs 8.35µs 0
GCE-USW-3 20854143 2017-12-22 22:32:29 1d07h52m56s 58.47µs 57.94µs 76.02µs 86.28µs 286µs 6.33µs 0
Azure-UKS-1 20164042 2018-02-17 22:12:21 0d23h59m48s 286.58µs 269.34µs 684.45µs 884.02µs 1.22ms 74µs 2235
Azure-UKS-2 21111652 2018-02-17 22:12:21 0d23h59m48s 271.41µs 249.55µs 724.43µs 907.24µs 1.37ms 84.65µs 4747
Azure-UKS-3 17427943 2018-02-17 22:12:21 0d23h59m48s 340.02µs 322.17µs 760.13µs 949.7µs 1.29ms 81.7µs 2793

Azure-UKS-A2 5043445 2018-02-23 12:47:02 0d05h54m20s 83.23µs 82.28µs 118.92µs 178.79µs 459µs 9.11µs 0

Table 4.3: Traces collected in data centres across the world from three cloud
providers. The last column represents the number of latency spikes (l.s.) (> 500µs)
observed throughout the trace.



CHAPTER 4. MEASURING THE CLOUD NETWORK WITH PTPMESH 101

4.4 Datasets

I collect several datasets whose characteristics are presented in Table 4.3. A trace represents the
measurements taken between two VMs (master and client). The trace is the log of a PTPd client
running in a VM. I list the start time and duration of the trace. Each trace is identified by the
assigned name of the data centre and a number. For the first part of the table, the low message
frequency was used (see Section 4.5.1), while in the second part of the table, the high message
frequency was used (see Section 4.5.2). These traces are indicative for the temporal perspective
of network conditions in data centres, as they have been captured for periods of up to a week.
The spatial perspective is limited, since I use a maximum of three VM PTPd clients at the same
time, hence I do not capture the full scale of conditions in the studied data centre. All datasets,
except one, contain measurements taken between VMs that are located within the same data
centre (zone). One dataset (GCE-USW-2) contains measurements taken between VMs that are
located in different data centres (zones) within the same region (§4.2).

4.5 One-way delay (OWD) measurements

In the first instance, I set the number of Sync and Delay Request messages to 1 per second,
since this is the default value configured in PTPd, which will be named in the rest of the chapter
as the low message frequency. I run a full week of measurements in six data centres using the
low message frequency. Additionally, I perform measurements in three data centres for one day
using a higher message frequency of 27 messages per second, which will be named in the rest of
the chapter the high message frequency. The challenge with using a higher message frequency
is, on one hand, the increased CPU utilisation and network bandwidth at the end-host, while on
the other, the amount of data collected for which additional storage is needed if measurements
are performed for an extended period of time. The advantages of using a higher frequency are
better OWD accuracy (§4.3.1) and detection of possible network congestion events with a higher
resolution. Regardless of the message frequency used, the OWD values offered by PTPmesh
can serve as reference for normal network conditions and can be used to detect anomalies.

4.5.1 Low message frequency measurements

Latency magnitude. Table 4.3 lists the average, median, 99thand 99.9thpercentiles, maximum,
standard deviation for the OWD values, and the number of latency spikes (a sudden increase in
latency to values over 500µs) for the trace. OWD values are higher in the EU data centres than
the US data centres for EC2 and Azure. The GCE-EUW data centre OWD values are similar
to the ones in the GCE-USW data centre, the difference coming from the extended period of
increased latency that can be seen in Figure 4.9b. Most of the traces have maximum observed



102 4.5. ONE-WAY DELAY (OWD) MEASUREMENTS

OWD values in the order of milliseconds. Figure 4.8 shows the CDFs of the one-way delay for
the traces.

In Figure 4.9a, in the EC2-EUW-2 trace multiple latency spikes can be observed, with a ma-
ximum of 14.364ms. In the GCE-EUW trace, the OWD values are less or slightly higher
than 100µs up to the 90thpercentile, with a maximum 99thpercentile of 1.44ms and maximum
99.9thpercentile of 3.6ms amongst the three VM pairs. In contrast, for GCE-USW data centre,
the maximum 99this 120.34µs, and only in the case of the trace between VM1 and VM2 the
99.9thpercentile is higher, 981.945µs, compared to the traces for the two other VM pairs. The
timeline of the measurements between VM1 and VM2 (Figure 4.10) shows multiple latency
spikes, being different than the two other pairs (Figure 4.9h). The traces captured in the GCE-
EUW data centre stand out in comparison to the other traces collected, since they contain major
disruptions for latency values over a prolonged period, accompanied by a high packet loss ratio.
Between 2017-10-17 09:25 and 2017-10-18 05:16 the OWD reported varied greatly, reaching
a maximum value of 8.83ms, with a significant part of the latency spikes of over 500µs tak-
ing place during this interval. These millisecond-scale latencies indicate switch queueing and
packet loss [RBB+18]. These events can be noticed for all three VM pairs, which can lead to
the hypothesis that these events were data centre-wide, or that the VMs were placed within the
same rack or on the same host. While the median latencies within the same data centre are
between 71 and 97 µs, the median latency between two data centres in the same region is 180
µs (GCE-USW2-1), almost double compared to the one ones within a data centre.

The Azure-UKW data centre traces show a decrease of the OWD values of approximately 100µs
towards the end of the trace (Figure 4.9c), which corresponds to the network traffic for Sunday.
The last part of the trace was captured on Monday, showing an increase in the OWD values
back to the values before Sunday, except for the VM1-VM3 pair. In the case of the Azure-USW
data centre (Figure 4.9i) in the second day of measurements (after 172800 messages), a sudden
decrease by approximately 50µs in OWD can be noticed for all three pairs for a period of time,
followed by an increase for the OWD to values higher by approximately 50µs than the ones
before the dip. It is interesting to see that the traces share similar characteristics for certain
changes in the OWD values, meaning that the events were data centre-wide or that the VMs
were placed within the same rack or the same host. I also perform experiments using more po-
werful machines in Azure-UKS (Azure-UKS-N1), the median latency is in similar ranges to the
ones obtained using slower machines. I additionally perform experiments with VMs with the
new feature [FPM+18] enabled, which removes most of the software-based networking stack
into FPGA-based smartNICs, and found that the one-way delay reported is significantly lower
than the other reported values, with median values of 94.54µs with low message frequency
(Azure-UKS-A1) and 82.28µs with high message frequency (Azure-UKS-A2). Recently, EC2
has started offering a similar option using SR-IOV [Ama18], but I have not performed measure-
ments using it.

Latency variance. An important aspect of network latency is latency variance [DB13], as it
can cause a decrease in application performance. If the variance is low, then the application per-



CHAPTER 4. MEASURING THE CLOUD NETWORK WITH PTPMESH 103

0 100 200 300 400 500 600
One-way delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

VM1-VM2
VM1-VM3
VM1-VM3

(a) EC2-EUW

0 100 200 300 400 500 600
One-way delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

VM1-VM2
VM1-VM3
VM1-VM4

(b) EC2-USW

0 100 200 300 400 500 600
One-way delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

VM1-VM2
VM1-VM3
VM1-VM4

(c) GCE-EUW

0 100 200 300 400 500 600
One-way delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

VM1-VM2
VM1-VM3
VM1-VM4

(d) GCE-USW

0 100 200 300 400 500 600
One-way delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

VM1-VM2
VM1-VM3
VM1-VM4

(e) Azure-EUW

0 100 200 300 400 500 600
One-way delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

VM1-VM2
VM1-VM3
VM1-VM4

(f) Azure-USW

Figure 4.8: CDF of OWD in different data centres using the low message frequency.

formance will be determined by the median latency observed, essentially reducing the problem
to improving the static component of latency in data centres (Chapter 5). To this end, I compute
the standard deviations of the OWD measurements over different intervals of time. The his-
tograms in Figure 4.11 show the standard deviations of the OWD for intervals of 1 minute, 10
minutes and 1 hour, binned in bins of size 1, truncated to 100. The distributions for the standard
deviations OWD are skewed to the right, towards small values, with a few values that are larger



104 4.5. ONE-WAY DELAY (OWD) MEASUREMENTS

0

86
40

0
17

28
00

25
92

00
34

56
00

43
20

00
51

84
00

60
48

00
69

12
00

77
76

00
86

40
00

Number of messages since start

0

2000

4000

6000

8000

10000

12000

14000

16000

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(a) EC2-EUW OWD

0

86
40

0
17

28
00

25
92

00
34

56
00

43
20

00
51

84
00

60
48

00
69

12
00

77
76

00
86

40
00

95
04

00
10

36
80

0

Number of messages since start

0

1000

2000

3000

4000

5000

6000

7000

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(b) GCE-EUW OWD

0
86

40
0

17
28

00
25

92
00

34
56

00
43

20
00

51
84

00
60

48
00

69
12

00
77

76
00

86
40

00
95

04
00

10
36

80
0

11
23

20
0

Number of messages since start

0

200

400

600

800

1000

1200

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(c) Azure-UKW OWD

0 20 40 60 80 100 120

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(d) EC2-EUW pkt.loss ratio

0 20 40 60 80 100 120 140

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(e) GCE-EUW pkt.loss ratio

0 20 40 60 80 100 120 140 160

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(f) Azure-EUW pkt.loss ratio

0

86
40

0
17

28
00

25
92

00
34

56
00

43
20

00
51

84
00

60
48

00
69

12
00

77
76

00
86

40
00

95
04

00

Number of messages since start

0

200

400

600

800

1000

1200

1400

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(g) EC2-USW OWD

0
86

40
0

17
28

00
25

92
00

34
56

00
43

20
00

51
84

00
60

48
00

69
12

00
77

76
00

86
40

00
95

04
00

10
36

80
0

11
23

20
0

12
09

60
0

Number of messages since start

0

100

200

300

400

500

600

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(h) GCE-USW OWD
0

86
40

0
17

28
00

25
92

00
34

56
00

43
20

00
51

84
00

60
48

00
69

12
00

77
76

00
86

40
00

95
04

00
10

36
80

0
11

23
20

0

Number of messages since start

0

100

200

300

400

500

600

700

800

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(i) Azure-USW OWD

0 20 40 60 80 100 120

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(j) EC2-USW pkt.loss ratio

0 20 40 60 80 100 120 140 160

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(k) GCE-USW pkt.loss ratio

0 20 40 60 80 100 120 140 160

Interval number

0

10

20

30

40

50

P
kt

lo
ss

ra
tio

x
1
0
−

4

(l) Azure-USW pkt.loss ratio

Figure 4.9: OWD and packet loss ratios over 1-hour intervals between VM1-VM3
in EU and US data centres over one week.

than the rest.

The histograms for the two AWS EC2 data centres are similar. When looking at periods of
1 minute, the standard deviations fall mostly between 0µs and 10µs (medians 5.44µs and
4.59µs). When looking at periods of 10 minutes, the standard deviations fall between 10µs
and 20µs (medians 15.34µs and 12.42µs), while when looking at periods of 1 hour, the stan-
dard deviations fall between 10µs and 30µs (medians 22.67µs and 18.31µs).

The histograms for the two GCE data centres are similar, but they are different from the two
other cloud providers, in that the standard deviations of the OWD values are smaller. For the
GCE-USW trace, for 1 minute intervals, most of the values are between 0µs and 1µs (median
0.759µs). When looking at periods of 10 minutes, the standard deviations are between 0µs
and 5µs (median 2.84µs). For 1 hour intervals, most of the values are between 1µs and 10µs
(median 4.63µs). The median values for the GCE-EUW trace are slightly higher, due to the
increase in the OWD for a long period of time (1.5 days).



CHAPTER 4. MEASURING THE CLOUD NETWORK WITH PTPMESH 105

0
86

40
0

17
28

00
25

92
00

34
56

00
43

20
00

51
84

00
60

48
00

69
12

00
77

76
00

86
40

00
95

04
00

10
36

80
0

11
23

20
0

12
09

60
0

Number of messages since start

0

1000

2000

3000

4000

5000

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

Figure 4.10: Measured OWD between VM1 and VM2 in GCE-USW data centre.

On the other hand, there are differences between the two Azure data centres. In the case of
the Azure-UKW trace, for 1 minute intervals, most of the values are between 1µs and 15µs
(median 7.42µs). When looking at periods of 10 minutes, the standard deviations are between
10µs and 20µs (median 16.6µs). For 1 hour intervals, most of the values are between 10µs
and 30µs (median 20.29µs). In the case of the Azure-USW data centre, the values are slightly
lower. For 1 minute intervals, most of the values are between 0µs and 10µs (median 4.49µs).
When looking at periods of 10 minutes, the standard deviations are between 5µs and 15µs
(median 9.63µs). For 1 hour intervals, most of the values are between 10µs and 20µs (median
12.17µs).

The results show that the OWD in GCE has the lowest variance. EC2 and Azure are similar,
with more variance seen for EC2. When enabling [FPM+18], the Azure latency variance profile
becomes similar to the GCE one. Having less variance for OWD is better, since tail latencies
can lead to a decrease in application performance [DB13].

4.5.2 High message frequency measurements

Latency magnitude. The OWD values measured using high message frequency are lower than
the ones measured using the low message frequency (§4.3.1). The EC2-USE OWD median va-
lues are between 172µs and 196µs (Figure 4.12a). The GCE-USW OWD values have medians
between 58µs and 69µs (Figure 4.12b). In GCE, the low message frequency measurements
may have been redirected through switch gateways (due to the low throughput of the mea-
surements run, less than 20kbps), whereas the high message frequency ones may have been
sent host-to-host [DSA+18]. The median OWD values for Azure-UKS are between 271µs and
340µs (Figure 4.13). The three traces are correlated, displaying periods of increased latency at
the same time and having the same shape.



106 4.5. ONE-WAY DELAY (OWD) MEASUREMENTS

Latency variance. In the case of GCE-USW, the latency variance profile is similar to the one
obtained using the low message frequency. The EC2-USE latency variance profile is simi-
lar to the EC2-USW one, and the Azure-UKS one is similar to the Azure-UKW one, even if
EC2-USW and Azure-UKW latency variance profiles have been obtained using the low mes-
sage frequency.

4.5.3 High value OWD events timescale

After analysing the general characteristics of the traces, I take a closer look at the timescale of
high OWD events, as these are important in the context of latency-driven performance-aware
cluster scheduling. If the OWD is stable, then the VM placement decision will have a lasting
effect throughout the execution of the application. On the other hand, admitting more applica-
tions into the data centre can lead to increased network utilisation, and hence increased network
latency. If the OWD is not stable, it might be better for certain applications to be preempted and
migrated to a different placement.

Long timescale events are considerable changes in latency during several hours or days. These
types of events are evident in the week-long Azure traces, where the latency decreases during
the weekend. Similarly, the GCE EU traces display significant increases in latency for more
than one day. Also, in the Azure-KS data centre, after restarting the VMs, I consistently got
substantial latencies (median 1.391ms) compared to previous values (median 191.486µs), that
I kept on measuring even after several VM restarts, and across almost one month of measure-
ments. The first time I observed these large latency values was on the 29th of December 2017,
and the last time I performed measurements in this data centre was 23rd of January 2018. In
this case, it might be better to migrate the application to a different data centre.

Short timescale events are transient latency spikes. The difference between the measured
median latency and the maximum latency observed during the spike should be substantial
(e.g., more than 500µs). For example, while performing the EC2-USE measurements, the la-
tency has suddenly increased substantially from median 200µs to median 1.75ms, as seen in
Figure 4.14. It can be noticed that the latency values return for a brief period of time (2s, with
high message frequency) to the previous values, but then the latency increases again. Similarly,
the Azure-UKS traces (Figure 4.13) display several short latency spikes. In this case, if the
OWD is not stable and suffers from frequent changes, it may be better for the application to be
migrated to a different placement.



CHAPTER 4. MEASURING THE CLOUD NETWORK WITH PTPMESH 107

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
std dev OWD

(a) EC2-EUW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
std dev OWD

(b) EC2-EUW 10 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
std dev OWD

(c) EC2-EUW 1 hour

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
std dev OWD

(d) EC2-USW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
std dev OWD

(e) EC2-USW 10 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
std dev OWD

(f) EC2-USW 1 hour

0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6
std dev OWD

(g) GCE-EUW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20
std dev OWD

(h) GCE-EUW 10 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25
std dev OWD

(i) GCE-EUW 1 hour

0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
std dev OWD

(j) GCE-USW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
std dev OWD

(k) GCE-USW 10 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25
std dev OWD

(l) GCE-USW 1 hour

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
std dev OWD

(m) Azure-EUW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
std dev OWD

(n) Azure-EUW 10 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10
std dev OWD

(o) Azure-EUW 1 hour

0 10 20 30 40 50 60 70 80 90 100
0.00

0.05

0.10

0.15

0.20

0.25
std dev OWD

(p) Azure-USW 1 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
std dev OWD

(q) Azure-USW 10 min

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12
std dev OWD

(r) Azure-USW 1 hour

Figure 4.11: Histogram of standard deviation values for OWD computed for diffe-
rent intervals of time (1 minute, 10 minutes, and 1 hour) for different data centres.



108 4.5. ONE-WAY DELAY (OWD) MEASUREMENTS

0.0 0.5 1.0 1.5 2.0

Number of messages since start ×107

0

500

1000

1500

2000

2500

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(a) VM1-VM2 timeline EC2-USE

0.0 0.5 1.0 1.5

Number of messages since start ×107

0

100

200

300

400

500

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(b) VM1-VM2 timeline GCE-USW

Figure 4.12: Measured OWD between VM1 and VM2 using the high message
frequency.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Number of messages since start ×107

0

200

400

600

800

1000

1200

1400

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(a) Timeline

0 50000 100000 150000 200000

Number of messages since start

0

200

400

600

800

1000

1200

1400

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

(b) First 15 minutes of timeline

Figure 4.13: Measured OWD between VM1 and VM2 in Azure-UKS using the
high message frequency.

0 10000 20000 30000 40000 50000

Number of messages since start

0

500

1000

1500

2000

2500

O
ne

-W
ay

D
el

ay
[µ

s]

OWD

Figure 4.14: Measured OWD between VM1 and VM10 in EC2-USE data centre.



CHAPTER 4. MEASURING THE CLOUD NETWORK WITH PTPMESH 109

Data center 1 hour 1 day
min average median max stddev min average median max stddev

AWS-EUW 0.0 2.028 0.161 11.198 2.511 0.886 1.737 1.679 2.548 0.461
AWS-USW 0.0 1.06 0.0 8.324 1.74 0.116 0.779 0.777 1.617 0.373
GCE-EUW 0.0 2.96 0.0 46.961 7.081 0.109 2.95 0.463 14.082 4.56
GCE-USW 0.0 0.476 0.0 8.373 1.158 0.0 0.154 0.0 0.81 0.256

Azure-UKW 0.0 2.45 2.758 16.533 2.806 1.273 2.405 2.197 3.707 0.633
Azure-USW 0.0 1.244 0.0 11.123 1.9 0.116 0.843 0.753 1.618 0.417

Table 4.4: Packet loss ratio ×10−4 over one week.

4.6 Packet loss ratio measurements

I investigate packet losses in six data centres over a week for each of the VM pair. I log the
number of Delay Request and Delay Response messages exchanged between the clients and the
master in PTPmesh for the measurements with the low message frequency. Using the metric
I defined for computing packet loss ratio in Section 3.5, I compute the packet loss ratio over
intervals of 1 hour and 1 day over one week. In Table 4.4, I show the minimum, average, me-
dian, maximum and standard deviation for all the 1-hour and 1-day intervals across all pairs.
Interestingly, all EU data centres have higher packet loss ratios than the US data centres across
all cloud providers. Figure 4.9 presents timelines over one week for packet loss ratios computed
over 1 hour intervals for one VM pair in EU and US data centres, respectively. The ratios com-
puted depend on the message frequency, but they can serve as baseline for normal conditions,
and to determine anomalies when deviating from these baseline values.

In general, the packet loss ratios have low values for all data centres, with most of the 1-hour
intervals having no loss or having 1-4 messages lost per hour (out of 3600), which is at most
approximately 11.1× 10−4. For AWS EC2, the number of messages lost per hour is at most
four (Figure 4.9d and Figure 4.9j), with more losses observed in the EU data centre. High
packet loss values of up to 46.96× 10−4 appear in the first part of the GCE-EUW data centre
traces (Figure 4.9e), and significant increases in network latency can be seen in Figure 4.9b,
but later in the trace the values are normal, with at most three messages lost per hour. In the
GCE-USW data centre (Figure 4.9k), the number of messages lost per hour is at most two,
being the data centre with the smallest packet loss ratio. For Azure-EUW (Figure 4.9f), slightly
higher packet loss ratios can be observed, while for Azure-USW (Figure 4.9l) the maximum
number of messages lost per hour is four.

4.7 Path symmetry

PTPd reports the master-to-slave and slave-to-master measured delays. These two measure-
ments can be used to determine if the paths from the master to the slave and from the slave to
the master are symmetric, but with some caveats, as these two metrics incorporate the offset
between the two slave and master clocks and possible congestion effects. I am interested in



110 4.7. PATH SYMMETRY

-100 0 100 200 300 400 500 600 700 800 900
Delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

m-to-s
s-to-m
OWD

(a) EC2-EUW VM1-VM3

-100 0 100 200 300 400 500 600 700 800 900
Delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

m-to-s
s-to-m
OWD

(b) EC2-USW VM1-VM3

-100 0 100 200 300 400 500 600 700 800 900
Delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

m-to-s
s-to-m
OWD

(c) GCE-EUW VM1-VM3

-100 0 100 200 300 400 500 600 700 800 900
Delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

m-to-s
s-to-m
OWD

(d) GCE-USW VM1-VM3

-100 0 100 200 300 400 500 600 700 800 900
Delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

m-to-s
s-to-m
OWD

(e) Azure-EUW VM1-VM3

-100 0 100 200 300 400 500 600 700 800 900
Delay [µs]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

m-to-s
s-to-m
OWD

(f) Azure-USW VM1-VM3

Figure 4.15: CDF for the master-to-slave (m-to-s) delay, slave-to-master (s-to-m)
delay and OWD in different data centres.

determining whether the simplifying assumption that the OWD can be computed as half of the
measured RTT holds true in data centres. Note here that the values of the two delays can be
negative, due to the differences between the master and slave clocks.

Figure 4.15 shows the master-to-slave and slave-to-master delays for the VM1-VM3 pair in six
data centres. The plots for the other pairs and data centres are similar. Based on the collected
data, EC2 and GCE forward and reverse paths are symmetrical, while the paths in Azure are



CHAPTER 4. MEASURING THE CLOUD NETWORK WITH PTPMESH 111

not. Azure data centres (Figures 4.15e and 4.15f) display significant differences between the
master-to-slave and slave-to master delay CDFs (different curve shapes), leading to the conclu-
sion that the forward and reverse paths between the VMs are not symmetrical. In the case of the
GCE-EUW trace (Figure 4.15c), the long congestion period is reflected in a vertical translation
of the master-to-slave and slave-to-master delay CDFs, but this does not mean that the paths are
asymmetrical.

4.8 Identifying different network paths within data centres

I patch PTPd in order to be able to specify the port number on which the PTP event and general
messages are sent and received. Since the PTP event messages’ send and receive timestamps are
the ones used in the computation, I change only the port number used for this type of messages.
I run PTPd using different port numbers to see if the one-way delay reported by PTPd changes
significantly between runs, possibly signalling that a different network path was used due to
ECMP hashing on a different header. The results in the Azure-KS data centre collected using
50 different ports with a 10 minutes run for each did not show any indication that could lead to
this conclusion. This means either that the network paths of the PTP packets were similar in
delay, or that the packets were taking the same path, which is unlikely, given that Pingmesh and
NetNORAD use the port number changing strategy to cover as many paths as possible.

4.9 Discussion

PTPmesh offers end-to-end measurements, including the intermediate virtualisation layer. The
one-way delay latency values offer insights with respect to end-host overhead, in-network con-
gestion and data centre network architecture. When combining these measurement results in
data centres and the virtualisation overhead measurements from Section 3.4 with the network
latency contributions percentages presented in Section 2.6, I arrive at the same conclusion as
prior research: the end-host, with the hypervisor, is a significant contributor to the overall mea-
sured latency from within the VM. The other significant contributor is network queueing at
switches. When looking at the network latency contributors in Section 2.6, it can be noticed
that switching in the data centre fat tree topology takes up almost 75%, which is approximately
15µs in this analysis, while the rest is taken up by NICs and fibre length, with an estimate of
20µs. This analysis represents baseline contributions. On top of this, the hypervisor’s overhead
can be added, which based on my measurements from Section 3.4 is 200µs when using a low
message frequency, and 190µs when using a high message frequency, giving a median OWD
baseline of 220µs and 210µs, respectively. This back-of-the-envelope calculation shows that
the remaining latency may come from in-network congestion, traffic bursts from other colocated
VMs, transparent VM live migration, when it is observed for short periods, or from sustained



112 4.10. LIMITATIONS

increased network utilisation (whose cause may be bulk network transfers across the data cen-
tre, competing traffic from other colocated VMs, cluster drains), when it is observed over longer
periods of time. Smaller values than this baseline may mean that the OS is bypassed [DSA+18;
FPM+18], or that the VMs may be colocated on the same host, or that there is a shorter network
path between VMs.

4.10 Limitations

End-to-end measurements The network latency measurements presented in this chapter rep-
resent end-to-end measurements from within the VMs, which include the virtualisation layer.
Cloud tenants usually do not have access to advanced features of the underlying hardware,
e.g., hardware timestamping. If access were provided, the precision of the network latency
measurements would be improved due to the removal of the end-host network stack latency
contribution from the measured network latency [RBB+18] (§2.6). On the other hand, end-to-
end measurements offer a more accurate value of the latency that the application experiences,
encompassing also the end-host network stack latency contribution. Determining the cause of
latency spikes (end-host issue or network fault) may be difficult without access to the internal
cloud infrastructure, and even then, finding the root cause may still prove tedious [RBB+18].

Spatial analysis The measurement study conducted in this chapter does not cover the spatial
analysis of the data centres. However, my results show that, in some cases, small groups of VMs
are clustered together, observing the same network conditions. This means that, to measure
the data centre network across the core and aggregation switches, one would have to rent a
substantial number of VMs to ensure they are not placed within the same rack or on the same
machine. On the other hand, this might not hold true for all cloud providers. For example,
Microsoft Azure’s tenant VMs are placed randomly within a cluster, or they can even be spread
across data centres in a region [RBB+18].

Scalability PTPmesh’s design implies that O(n2) measurements are taken for n VMs. This
can quickly become a bottleneck both at the end-host (in terms of CPU resource consumption)
and in the network (in terms of network bandwidth taken up by the messages exchanged be-
tween VMs). Thus, it is important to choose an appropriate message frequency, as discussed
in Section 4.3.1. However, even if a tenant has a small number of VMs, as it is often the
case [CBM+17], the combined resource usage of PTPmesh across different tenant networks
can be a burden to the data centre infrastructure. To mitigate part of this issue, the PTPd mas-
ter could be consolidated to run in the hypervisor or in the virtual switch, similar to VNET-
Pingmesh [RBB+18]. For example, if the hypervisor used is Xen [BDF+03], the PTPd master
should run in Dom0. This design decision has some tradeoffs. While the CPU and network
resources used are smaller than in the current design, the network latency measured does not
express the latency experienced by the user applications within a VM [RBB+18] (§2.6).



CHAPTER 4. MEASURING THE CLOUD NETWORK WITH PTPMESH 113

4.11 Summary

In this chapter, I first discussed different deployment scenarios in the cloud for PTPmesh (§4.1).
Next, I gave an overview of the experimental setup and methodology used for collecting the PTP
measurement data by PTPmesh (§4.2). Following, I calibrated PTPd in the cloud by performing
several experiments to determine the overhead that PTPd has when running in a VM and how
the number of concurrent PTPd clients impacts the OWD measurement (§4.3). I then presented
the datasets collected (§4.4) and analysed several interesting traits concerning one-way delay
measurements (§4.5) and packet loss ratios in ten data centres from three cloud providers (§4.6).
I also looked at inferring network path symmetry (§4.7) and at finding different paths between
VMs in data centres (§4.8). I presented an analysis of latency contributors of the PTPmesh
end-to-end-measurements (§4.9). Finally, I discussed the limitations of PTPmesh (§4.10).

Through my work in Chapter 3 and Chapter 4, I show that PTPmesh provides a majority of
the features needed by a data centre network monitoring system (§2.3.4). PTPmesh uses PTP
measurements to estimate one-way delay and packet loss ratio. The number of probes sent is
configurable, it can provide continuous measurements, and does not have significant overhead.
Furthermore, it is easy to deploy within VMs by tenants themselves. PTPmesh can infer net-
work conditions for tenant deployments in the cloud. It can keep track of the latency within
the data centre and inter-data centre, and can help in detecting network congestion and packet
loss.



114 4.11. SUMMARY



Chapter 5

Characterising the network latency impact
on cloud-based applications performance

Cloud computing has revolutionised the way businesses use computing infrastructure. Instead
of building their own data centres, companies rent computing resources from cloud providers
(e.g., Amazon AWS, Google Cloud Platform, or Microsoft Azure), and deploy their applica-
tions on cloud provider hardware. Previous work [WN10; BS10; XMN+13; MK15] and mea-
surements presented in Sections 2.4 and Chapter 4 have shown that network latency variability
is common in multi-tenant data centres. As even small amounts of delay, in the order of tens of
microseconds, may lead to significant drops in application performance (§2.5), there is a need
to quantify the impact of network latency on typical cloud-based applications’ performance.
While past work has provided comprehensive performance studies of the effect of CPU cache,
memory, OS or virtualisation upon application performance (e.g., [WN10; ZTH+13; MWH14;
XLJ+14]), a significant gap exists in evaluating the impact of networking resources, and in
particular network latency, upon application performance.

This chapter first presents an experimental methodology to measure application performance
under arbitrary changes in network latency. This involves injecting network latency in the
network between hosts. Software-based latency injection tools do not provide the required
microsecond-granularity, as explained in Section 2.1.4. Thus, I use a custom hardware appli-
ance, NRG, described in Section 2.1.4, that allows per-packet latency control with a precision on
the order of tens of nanoseconds. The methodology allows testing different latency magnitudes,
and also different variance magnitudes and distributions. The injected latency may represent de-
lay due to increased cabling length which translates into increased propagation delay, or delay
caused by the end-host, or queueing within switches due to network congestion.

In this chapter, I study the impact of network latency on application performance through
the methodology previously described for a set of cloud applications: domain name system
(DNS) [Moc87], key-value store (Memcached) [Mem18] and machine learning applications
running on different frameworks (STRADS [KHL+16], Spark [Spa], Tensorflow [ABC+16]).

115



116 5.1. EXPERIMENTAL SETUP

I discuss the results of my measurement study on how the performance of these cloud-based
applications changes under a range of latency magnitudes chosen based on the values measured
in Sections 2.4 and Chapter 4. Further, I model the relationship between network latency and
application performance.

5.1 Experimental setup

The methodology enables characterising the effect of network latency on applications’ perfor-
mance using a small scale, controlled, environment. It is based on the observation that each
host’s experience of the network can be collapsed to the link connecting it to the ToR switch.
By modifying the properties of the traffic arriving through this link, the host can experience dif-
ferent latency values, as if it were located in different data centres or different locations within
a data centre, or as if it were running during different time periods, all of these being conditions
which affect the network latency, as shown in Chapter 3.

In each scenario an application component is selected to be run on a host in the setup from
Figure 5.1. The application component can be the server (DNS, Memcached), the master
(STRADS, Spark, Tensorflow) or a client (Memcached). Between the selected application
component’s host and the other hosts of the setup, I use the NRG appliance to inject a con-
trolled latency value into the system. NRG abstracts the network topology as a single queue,
represented by the delays injected in the network. From the selected host’s perspective, this
queue introduces delay through the link that connects the server to the remaining network. The
injected network latency encompasses the different sources of latencies that are present in a
networked system: static latencies, e.g., propagation delay, or variable latencies, e.g., end-host
delay, and queueing in switches. The measurements I perform in this chapter use a latency
injection model that presumes a constant latency between the server/master and client/worker
pairs. In this work I do not consider the impact on performance of variable latency amongst the
client-server/worker-master pairings.

The experimental setup in Figure 5.1 is composed of 10 hosts, but the methodology does not
depend on this number of hosts. Each host has an Intel Xeon E5-2430L v2 Ivy Bridge CPU
with six cores, running at 2.4GHz with 64GB RAM. To ensure experimental reproducibility
and reduce variance, CPU-power saving, hyper-threading and frequency scaling features are
disabled. The hosts run Ubuntu Server 16.04, kernel version 4.4.0-75-generic. Each host is
equipped with an Intel X520 NIC with two SFP+ ports, and is connected at 10Gbps using 2m
long Direct-Attach copper cables through an Arista 7050Q switch.



CHAPTER 5. CHARACTERISING THE NETWORK LATENCY IMPACT 117

Client/Worker

Client/Worker

Latency 
Appliance Server/Master

Client/Worker

Figure 5.1: Experimental setup to evaluate application performance under changing
network latency.

5.2 Selected cloud-based applications

I select five applications whose performance can be analysed on my setup (see Section 5.1). The
choice of applications is intended to explore different distributed operating models (server-client
and master-worker). The selection does not represent all common data centre applications, and
most of the chosen applications are network intensive.

5.2.1 Domain Name System (DNS)

This is the simplest application studied, while being widely used in the cloud. It provides
a domain name lookup service. For the server, I use NSD (Name Server Daemon) [Lab18],
which is an open source name server, authoritative only. DNSPerf [Nom18] (version 2.1.0.0)
is used on the client side to generate requests. For the application performance metric I use the
number of requests per second that the name server can achieve. This number is dependent on
how the server and client are implemented: if pipelining is used, then the number of requests per
second will not be dramatically affected by the injected network latency, but the query latency
will be. DNS follows a client-server model, and I focus on the effect of network latency on
performance as observed by the server and the client.

5.2.2 Key-value store: Memcached

Memcached [Mem18] is a widely used, in-memory, key-value store for arbitrary data. Clients
can access the data stored in a Memcached server remotely over the network. Memcached offers
an interface that resembles that of a hash table: the most widely-used operations are insertion
(SET command) and retrieval (GET command). Memcached then uses a Least-Recently-Used
(LRU) policy to evict items when running out of server memory. I use the open-source version
of the Memcached server 1.4.25.



118 5.2. SELECTED CLOUD-BASED APPLICATIONS

I use the Mutilate [Lev14] Memcached load generator in my evaluation of the impact of network
latency on Memcached’s application performance, measured in queries per second (QPS). The
workload generator is based on a closed system model [SWH06]; that is, each workload gene-
rator waits for a reply before sending the next request. I use two workloads generated by the
Mutilate benchmark: i) a read-only workload: the requests follow an exponential distribution,
the key size is 30 byte, and the value size is 200 bytes; the keys are accessed uniformly [LK14];
ii) the Facebook “ETC” workload, taken from [AXF+12], which is considered representative of
general-purpose key-value stores; the ratio SET:GET is 1:30 ratio. The configuration parame-
ters used in my experiments match the ones in [AXF+12]. I do not use multi-GET requests. I do
not use the pipelining option for requests, in order not to introduce delays at the server or in the
network. If pipelining were used, then the number of queries per second would be less affected
by the additional network latency. Memcached follows a client-server model, and I focus on the
effect of network latency on performance as observed by the server and the client pool.

5.2.3 Machine Learning applications

STRADS Lasso Regression STRADS [KHL+16; KHL+18] is a distributed framework for
machine learning algorithms targeted to moderate cluster sizes between 1 and 100 machines.
The STRADS framework uses one coordinator, one scheduler and requires at least two workers.
In my setup, the coordinator and the scheduler run on the master machine from Figure 5.1. I
evaluate the impact of network latency on the sparse Lasso (least absolute shrinkage and se-
lection operator) Regression [Tib11] application implemented in this framework. The Lasso
Regression application works in the following way. Firstly, each worker receives its data par-
tition at the beginning of the run. Then, in each iteration, the scheduler computes the set of
parameters that each worker will operate on during that iteration, using their data partition; at
the end of an iteration, the scheduler aggregates the results from the workers. The network
communication pattern can be represented as a star, with a central coordinator and scheduler on
the master server, while workers communicate only with this master server.

The application performance metric is the objective function value (convergence metric) versus
time (seconds), also referred to as convergence time [KHL+16]. I do not use pipelining, which
means executing an iteration of the algorithm with some or all of the parameters stale (from
previous iterations). While pipelining reduces the impact of network latency by overlapping
network communication with computation, due to the usage of stale parameters and the poten-
tial for dependencies between iterations, it may lead to a slower convergence rate [KHL+16].
Since I do not allow the use of stale parameters and the injected network latency does not change
the scheduling of the parameters (not influencing the objective function value), the application
performance metric can be represented by the job completion time, named in the next sections
the training time.

The input to the application is represented by a N-by-M matrix and a N-by-1 observation vector,
while the model parameters are represented by a M-by-1 coefficient vector. I use a synthetic



CHAPTER 5. CHARACTERISING THE NETWORK LATENCY IMPACT 119

workload that I generated, with a number of 10K samples and 100K features, and a total of
500M non-zero values in the matrix, the input data size being 9.5GB.

Spark GLM Regression I use Apache Spark [Spa]’s machine learning library (MLlib), on
top of which I run benchmarks from Spark-Perf [Dat18]. I run Spark 1.6.3 in standalone mode.
Spark follows a master-worker model. Spark supports broadcast and shuffle, which means that
the workers do not communicate only with the master, but also between themselves. I use as
application performance metric the training time, e.g., the time taken to train a model.

Tensorflow MNIST Tensorflow [ABC+16] is a widely used machine learning framework. I
use the MNIST dataset [LC10] for the handwriting recognition task as input data, and Softmax
Regression for the training of the model. Tensorflow follows a master-worker model. The ap-
plication performance metric used is the training time, similarly to Spark’s performance metric.
I use the synchronise replicas option, which means that the parameter updates from
workers are aggregated before being applied in order to avoid stale gradients. This option is
similar to not using the pipeling option in STRADS.

5.2.4 Other applications

Besides the four applications described previously, I also explore the effect of latency on the
performance of other applications. In Section 2.5, I studied the effect of static latency on the
Apache Benchmark [Proa] for a single client-server pair. However, for this use case, Apache
easily saturates the link, making network bandwidth the bottleneck of the system. In this sce-
nario, even two clients are competing for network resources, thus the study of the latency
effect is contaminated by other network effects. I also studied the effect of latency on the
TPC- C MySQL benchmark [Lab17] for a MySQL database reporting New-Order transactions
per minute as the performance metric (where New-Order is one of the database’s tables for the
benchmark). Further, I also explore a set of applications for the Spark framework, including
e.g., K-Means, Gaussian Mixture Models. I omit those for brevity, as they behave similarly to
the GLM Regression application.

5.3 Baseline application performance

Table 5.1 describes the settings of each application. I run each application a sufficient number
of times for reproducibility for each latency configuration. I first determine the baseline per-
formance of each application, which is the maximum achievable performance for the selected
host. The baseline setup achieves this performance using a minimum number of hosts. The
selected host’s resources (acting as a server, worker or client) should be saturated, but without
overloading the host. There is no other network traffic in the setup.



120 5.3. BASELINE APPLICATION PERFORMANCE

Application Host’s role #Hosts Performance Runtime Dataset Dataset
Metric Target Size

DNS [Moc87] Server 1 Queries/sec 10M requests A record 10M requests
Memcached [Mem18] Server 5 Queries/sec 10 seconds FB ETC [AXF+12] see [AXF+12]
Memcached [Mem18] Client 1 Queries/sec 10 seconds FB ETC [AXF+12] see [AXF+12]
STRADS Coordinator 6 Training 100K Synthetic 10K samples,
Regression [KHL+16] time iterations 100K features
Spark Master 8 Training 100 Spark-perf 1 100K samples,
Regression [Spa] time iterations generator 10K features
Tensorflow [ABC+16] Master 9 Training 20K MNIST 2 60K

time iterations examples

Table 5.1: Workloads Setup. #Hosts indicates the minimum number of hosts re-
quired to saturate the selected host for which I measure the application performance,
or the number of hosts for which I determine the best training time when no latency
is added.

0 1 2 3 4 5 6 7 8 9
Number of clients

0.0

0.2

0.4

0.6

0.8

1.0

Q
P

S
x

10
6

(a) QPS

0 200 400 600
Request-response latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

2 clients
3 clients
4 clients
5 clients
6 clients
7 clients
8 clients
9 clients

(b) Request-response latency

Figure 5.2: Baseline analysis to determine the maximum QPS that can be achieved
by the Memcached server.

For example, in the case of a client-server application, where the peak performance of the server
is N queries per second, the minimum number of clients required to achieve this performance
is k. Any number of clients above k can still achieve N queries, but not more. What I seek
is to understand the effect of network latency on the server using k clients, where any loss of
performance will be due to latency rather than end-host processing or storage. If I had chosen
a number of clients greater than k, the host could have maintained a performance of N queries
per second, but the sensitivity to the network would not have been exposed.

For each of the workloads, I conduct multiple experiments required to determine the aforemen-
tioned baseline. An example of such baseline analysis is provided in Figure 5.2 for Memcached
using the read-only workload. The results are similar for the Facebook “ETC” workload. I vary
the number of client machines from 1 to 9, and one of these clients, called the master client,
also takes QPS and request-response latency measurements. In this configuration, Memcached
achieves a maximum of approximately 1.05M QPS (Figure 5.2(a)) using five clients machines
(180 connections total). I use 6 threads and 6 connections per host, thus one client machine
creates 36 connections. Increasing further the number of threads or connections per host does



CHAPTER 5. CHARACTERISING THE NETWORK LATENCY IMPACT 121

0 10 20 30 40 50

Time [sec]

0.0200

0.0202

0.0204

0.0206

0.0208

0.0210

0.0212

0.0214

O
bj

ec
tiv

e
va

lu
e

6 workers
7 workers

8 workers
9 workers

Figure 5.3: Baseline analysis to determine how many worker machines are needed
to complete the STRADS Lasso Regression training in minimal time.

not yield any increase in the achieved QPS. From Figure 5.2(a), it can be observed that, as
the maximum compute power of the Memcached server is reached, increasing the number of
client machines beyond five does not increase the maximum throughput achieved by the sys-
tem. However, using more than five client machines leads to an increase in the request-response
latency per client due to queueing delay at the server (Figure 5.2(b)). This happens because
when the server is fully loaded, the epoll_wait function used by the Memcached server
code returns hundreds of file descriptors, which are processed sequentially, taking a substantial
time to process any request [LK14]. This also leads to delays for the new requests that have
arrived in the meantime [LK14]. Another cause is L3 cache interference when the server is fully
loaded [LK14]. Based on these results, I select the setup that yields maximum performance un-
der minimal request-response latency: five client machines to generate load, including a client
machine that takes QPS and latency measurements, and a sixth machine for the selected host
acting as a server.

Similarly, when having a master-worker application, I determine the minimum number of work-
ers needed to minimise the training time. The STRADS framework uses one coordinator, one
scheduler, and requires at least two workers. The coordinator and the scheduler run on the mas-
ter server (in Figure 5.1), while the other 9 machines act as workers, each worker uses 6 threads,
and the scheduler uses 6 threads as well. Under the given configuration, it is not possible to use
less than 6 workers. I vary the number of available workers from 6 to 9 to determine the best
configuration. The application runs for 100,000 iterations. Figure 5.3 shows the objective value
(metric for convergence for the ML application model) versus job completion time for various
number of workers. Since there is no substantial decrease in execution time, nor a substantial
difference in the achieved objective value, I choose to run the experiments using 6 workers. I
also explored setting different numbers of threads for the scheduler and workers, however, the



122 5.4. THE EFFECT OF STATIC LATENCY ON APPLICATION PERFORMANCE

described configuration is the one that offers the best performance on the test setup.

5.4 The effect of static latency on application performance

Static latency most often represents latency due to the distance between two machines, mostly
the propagation delay on the fibre, but it may also represent other fixed delays, such as the
inherent delay within network apparatus, e.g., NICs, switches. This type of delay can be as-
similated mostly to the median latency values within data centres, while the higher percentile
values refer to the latency variance. The injection of constant latency can thus be translated to a
placement problem, e.g., what is the maximal distance between processing nodes that will not
affect the performance of an application. As every 100m of fibre is equivalent to ≈1µs of RTT,
application performance could be improved through the design of different network topolo-
gies that reduce propagation delays, or through better cluster scheduling to support application
placement constraints related to network latency demands (Chapter 6).

After the baseline performance is determined for each application, I introduce a constant latency
value between the selected host and the other hosts using NRG in both directions, client to server
(request) and server to client (response), sweeping the range of values between 1µs and 500µs.
Thus, the total latency values introduced range between 2µs and 1000µs. These values are in
addition to the baseline latency of the networked system. I chose values in this range based
on the network latency values that I measured in different cloud providers (§2.4, §4.5). The
application performance is measured for each injected latency value. This methodology can be
deployed in the public clouds as well, either through using a software-based emulator such as
NetEm (§2.1.4), or by leveraging the FPGAs deployed in the data centres by the different cloud
providers, for example the Catapult project [CCP+16] from Microsoft Azure or Amazon EC2
F1 instances 3.

I first discuss the results for each application in turn, and then I compare the applications’
response to injected latency in terms of performance.

Domain Name System (DNS) The results for DNS are presented in Figure 5.4. The baseline
performance obtained on my setup is approximately 270,000 QPS. Injected latencies of up to
100µs do not affect application performance. Inserting higher latency values leads to drops
in performance: 150µs brings 13%performance loss, while 200µs and 300µs lead to 26%
performance loss compared to the baseline. Injecting 500µs leads to 44% performance loss,
and 1ms leads to 66% performance loss, reaching a QPS of around 91,000.

Figure 5.4b shows the average query latency for each latency value injected in the setup. The
query latency increases as the QPS decreases. The baseline average latency is 344µs, while the
average latency when injecting 1ms is 1.1ms. It is interesting to note that the request latency

3https://aws.amazon.com/ec2/instance-types/f1/

https://aws.amazon.com/ec2/instance-types/f1/


CHAPTER 5. CHARACTERISING THE NETWORK LATENCY IMPACT 123

0 2 4 10 14 20 50 10
0

15
0

20
0

30
0

40
0

50
0

60
0

80
0

10
00

Added delay [µs]

0

50000

100000

150000

200000

250000

300000

Q
P

S

(a) Queries per second

0 2 4 10 14 20 50 10
0

15
0

20
0

30
0

40
0

50
0

60
0

80
0

10
00

Added delay [µs]

0

200

400

600

800

1000

1200

A
ve

ra
ge

R
eq

ue
st

La
te

nc
y

[µ
s]

(b) Average query latency

Figure 5.4: DNS QPS and average query latency for static latency injection.

does not increase by the exact amount of latency injected in the network. This is related to the in-
terplay between architectural components (CPU, cache, memory) and OS operations [ZGP+17],
masking part of the effects of injected latency.

Key-value store: Memcached In Figure 5.5a, a slight drop from a baseline of 990K QPS
for the Facebook “ETC” workload appears with the addition of 40µs, and then a further 6.6%
performance drop from the baseline when adding 50µs. Adding a total of 250µs reduces the
QPS value to nearly half of the baseline. When adding 1ms, Memcached achieves only 17% of
the baseline performance. The baseline request-response latency is at the median 179µs, with
additional delay of 500µs it is 575µs at the median, and with 1ms it is 1064µs at the median
(Figure 5.5b). Similar to the DNS case, the request-response latency does not increase with the
exact amount of latency injected, with the interplay between architectural components (CPU,
cache, memory) and OS operations [ZGP+17] masking part of the effects of injected latency.



124 5.4. THE EFFECT OF STATIC LATENCY ON APPLICATION PERFORMANCE

0 10 20 30 40 50 10
0

20
0

30
0

40
0

60
0

80
0

10
00

Added delay [µs]

0.0

0.2

0.4

0.6

0.8

1.0

Q
P

S
[x

10
6
]

(a) Queries per second

0 200 400 600 800 1000
Request-response latency [µs]

0.0

0.2

0.4

0.6

0.8

1.0 0µs
2µs
4µs
10µs
14µs
20µs
30µs
40µs
50µs
100µs
150µs
200µs

250µs
300µs
350µs
400µs
450µs
500µs
550µs
600µs
700µs
800µs
900µs
1000µs

(b) CDF of request-response latencies

Figure 5.5: Memcached QPS and request-response latency for the Facebook “ETC”
workload for static latency injection.

The read-only workload yields very similar results. Memcached’s performance drops slightly
starting with an injected latency of 20µs. Adding 30µs lowers the throughput by approxi-
mately 35K QPS from the 1.05M QPS baseline, while 50µs of additional delay reduces the
QPS achieved by more than 100K QPS compared to the baseline performance. Larger in-
jected network latency values lead to a further drop in performance: 250µs of additional latency
makes Memcached achieve approximately half of the baseline, while with 1ms added latency it
achieves only 16% of the baseline performance.

It is important to note the small amount of network latency that impacts application perfor-
mance, between 20µs and 40µs, while significant throughput drops appear from 50µs addi-
tional delay.

STRADS Lasso Regression The results are presented in Figure 5.6. Injecting only 20µs of
latency increases the training time by approximately 2s from a baseline of 50s, while injecting



CHAPTER 5. CHARACTERISING THE NETWORK LATENCY IMPACT 125

0.
0

2.
0

10
.0

20
.0

50
.0

10
0.

0
15

0.
0

20
0.

0

40
0.

0
60

0.
0

80
0.

0
10

00
.0

Added delay [µs]

0

50

100

150

200

250

Tr
ai

ni
ng

tim
e

[s
ec

]

Figure 5.6: STRADS Lasso Regression training time for static latency injection.

100µs increases the training time by 10s, 400µs doubles the training time, reaching approxi-
mately 100s. Further, 1ms of network latency leads to a training time of 172s.

Spark GLM Regression In the first set of experiments, the latency is injected only between
the master and the workers. Network latencies of up to 200µs do not have an impact on ap-
plication performance, as observed from Figure 5.7. An additional latency of 500µs leads to a
small increase in the training time of 4.4%, while 1 ms results in an increase of 9%, to a runtime
of 18.86s compared to the baseline of approximately 17.14s. My results are in line with pre-
vious work [ORR+15], which showed that network resources do not have a significant impact
on Spark’s performance. This is due to a bottleneck in serialisation and deserialisation in the
Spark framework that leads to under-utilisation of the network. I also experiment with different
numbers of input examples (100,000, 1 million) and iterations (20, 100) for the application,
however the behaviour is similar.

Unlike in a parameter server design, workers in Spark also communicate with each other. Thus,
I conduct a second set of experiments where I introduce delay also between the workers, not
only between the master and the workers. To avoid the complexity of having a NetFPGA
SUME card [ZAC+14] installed at each server to deploy NRG, I instead introduce latency with
NetEm at each host’s incoming and outgoing interfaces. As described in Section 2.1.4, this
approach has drawbacks over the hardware-based one. Even so, the results obtained are similar
to the experiment where latency was introduced only between the master and the workers: the
application performance is not affected for injected latency values of below 500µs RTT.



126 5.4. THE EFFECT OF STATIC LATENCY ON APPLICATION PERFORMANCE

0 10 20 10
0

20
0

50
0

10
00

Added delay [µs]

0

5

10

15

20

25

Tr
ai

ni
ng

tim
e

[s
ec

]

Figure 5.7: Spark GLM Regression training time for static latency injection.

0.
0

20
.0

40
.0

10
0.

0

20
0.

0

40
0.

0
60

0.
0

80
0.

0
10

00
.0

Added delay [µs]

0

50

100

150

200

250

Tr
ai

ni
ng

tim
e

[s
ec

]

Figure 5.8: Tensorflow handwritten digit recognition training time for static latency
injection.

Tensorflow MNIST Figure 5.8 shows the results for Tensorflow handwriting recognition
task 4. The baseline training time is approximately 151s. As little as 40µs affect slightly
the application performance. A performance degradation of 3.3% can be noticed for 100µs
additional delay. With 600µs additional delay the training time reaches 182s, and 1ms leads to
a drop in performance of 27.5%, reaching 208s training time.

4https://github.com/tensorflow/tensorflow/tree/master/tensorflow/
examples/tutorials/mnist

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/mnist
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/mnist


CHAPTER 5. CHARACTERISING THE NETWORK LATENCY IMPACT 127

5.4.1 Understanding the effect of static latency on application performance

It is important to understand why applications react differently to network latency. The nature of
the application and its purpose define how latency-sensitive the application is. Furthermore, on-
line analysis frameworks, such as SnailTrail [HLL+18], can help to determine for a distributed
application the amount of time spent on computation, serialisation, deserialisation or communi-
cation between workers, and, more importantly, if or how these periods of time change because
of increased network latency.

Latency-sensitive distributed applications are usually synchronous, meaning that the application
blocks on waiting to receive data from a different host over the network before proceeding
with the next step. This is the case for the different machine learning frameworks studied in
this chapter, such as STRADS or Tensorflow. They follow the parameter server design, with
workers that exchange messages with the parameter server over the network. These frameworks
are generally synchronous: they use, in the current iteration, the parameters computed during
the previous iteration. This pattern makes them highly dependent on the network, and especially
on network latency. On the other hand, if a degree of parameter staleness is tolerated, the impact
of network latency can be mitigated through the use of paradigms like eager stale synchronous
parallel (ESSP) [XHD+15], or even asynchronous communication.

Key-value stores, like Memcached, are generally very latency-sensitive. This type of application
serves as an intermediate caching layer between the client and the storage system, meaning that
the request-response latency is very important, since the store needs to provide fast access to the
data. The overall throughput of the Memcached server will decrease when additional latency is
injected in the network. To keep the throughput constant on the server side, more requests can
be issued by the clients through pipelining (or more clients can be deployed in the system), but
this does not change the fact that the additional latency increases the latencies of the requests
issued by the clients.

Another aspect defining how latency-sensitive the applications are is how well they are written.
The applications should be written to take advantage of all resources. In the case of Spark,
small amounts of network latency do not matter, since it has a bottleneck in the serialisation and
deserialisation of data, which leads to under-utilisation of the network [ORR+15].

Applications that are throughput intensive, such as Hadoop MapReduce [DG04], are not latency-
sensitive, since they are not sensitive to per-packet delivery times [AKE+12]. I conducted ex-
periments with Hadoop MapReduce on the same testbed, and using an application that performs
natural join [GSG+15] of two datasets. I found that additional latencies up to 1ms do not in-
crease the job completion time for this application.



128 5.4. THE EFFECT OF STATIC LATENCY ON APPLICATION PERFORMANCE

0.
0

2.
0

5.
0

10
.0

15
.0

20
.0

50
.0

10
0.

0

15
0.

0
20

0.
0

30
0.

0
40

0.
0

50
0.

0
60

0.
0

80
0.

0
10

00
.0

Added Delay [µs]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

Pe
rfo

rm
an

ce

DNS
Memcached Server
Spark GLM Regression
STRADS Lasso Regression
Tensorflow MNIST
Memcached Client

Figure 5.9: The effect of injected static latency on typical cloud applications’ per-
formance.

5.4.2 Comparison between applications’ performance in relation to net-
work latency

To compare the effect of static latency on the applications, I normalise the performance of each
application with respect to its baseline performance by dividing each performance value to the
baseline performance value. In the case of Memcached and DNS, the performance curve is de-
scending when injecting more latency, while for Spark, STRADS and Tensorflow the curve is
ascending when injecting more latency. To compute the percentage by which the performance
decreases when the amount of injected latency increases, I treat the performance values and
baseline performance value as inverse proportional values. To have a descending curve for all
the applications, in the second case I divide the baseline performance value to each performance
value. The baseline performance is marked as 1, and the ratio between the measured perfor-
mance at each latency point and the baseline performance is shown in Figure 5.9. The x-axis is
the static latency added (in µs, for total latency injected in both directions), while the y-axis is
the normalised performance. It must be noted that each application has a different performance
metric, as described in Table 5.1.

The results show that all applications are sensitive to latency, though on very different scales.
For STRADS Lasso Regression, performance degradation can be observed when as little as
20µs are added to the RTT between hosts, while GLM Regression on Spark is not affected
by less than 500µs RTT. The Memcached sever is also very sensitive to latency: 100µs are
enough for over 20% performance degradation, and the performance is halved for 250µs. DNS
is also affected by latency at the scale of hundreds of microseconds. Tensorflow MNIST is
also latency sensitive, although to a smaller degree when compared to DNS, Memcached and



CHAPTER 5. CHARACTERISING THE NETWORK LATENCY IMPACT 129

0.
0

50
.0

10
0.

0

25
0.

0

50
0.

0

10
00

.0

Added Delay [µs]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

Pe
rfo

rm
an

ce

Memcached
Spark-GLM
Tensorflow-MNIST

Figure 5.10: The effect of injected static latency on typical cloud applications’
performance running on cloud hardware.

STRADS Lasso Regression. On the other hand, Spark is not dramatically affected by network
latency, meaning that Spark applications have more choices for their physical placement in a
data centre, being less influenced by the network conditions.

For completeness, I also study a different scenario, where I inject static latency between only
one Memcached client and the Memcached server. Figure 5.9 shows that in this situation there
is a small reduction in the overall aggregated performance of the five clients. As it can be seen
from Figure 5.2, for five clients, the first client contributes more than one fifth of the total QPS,
while the rest of the four clients contribute less than a fifth of the total QPS. This explains why
the reduction in the achieved performance is smaller than a fifth when one client’s requests are
delayed, considering that the client still sends requests contributing to the overall performance,
even if these requests are delayed.

This sensitivity to latency demonstrates two orders of magnitude difference between applica-
tions. As previous work has shown 10µs to be the scale of latency between two hosts connected
back-to-back (§2.6) [ZGP+17; ERW+14], it follows that DNS, Memcached, and STRADS
Lasso Regression are very sensitive to their physical host allocation. These applications need a
high degree of network locality. Thus, the components of these distributed applications should
be ideally placed close to each other, preferably within the same rack.

While the impact of latency on performance evaluated in Section 5.4 is conducted on a specific
setup, the results offer an intuition on the application behaviour that can be generalised to other
setups and scenarios as well. Even though there are differences between computing platforms,
the results have the same scale and follow the same trends. I exemplify this statement by eval-
uating three of the selected applications (Memcached, Spark GLM Regression and Tensorflow



130 5.5. PREDICTING APPLICATION PERFORMANCE

MNIST) on a different setup in a data centre in Microsoft Azure. The setup has one server/mas-
ter VM and five clients/workers VMs. The VM type is Standard E16s v3 with 16 virtual CPUs
and 128 GB memory. I insert network latency with NetEm at every host. Given that NetEm is
not suitable to inject small latencies of tens of microseconds, as described in Section 2.1.4, I use
only larger latencies of over 100µs. The general trend in Figure 5.10 is the same as in Figure 5.9
for the selected applications. In the case of Spark GLM Regression and Tensorflow MNIST, the
drop in performance on this setup is steeper than on my local testbed. On the other hand, the
Memcached server is less affected on this setup compared with the local testbed. These differ-
ences can be the result of any or all of the following factors: virtualisation, different number
of hosts, host specifications, different network topology, varying network utilisation due to the
shared network in the cloud, latency injection through software emulation instead of through a
hardware-based solution. To cover more scenarios resulted from the interplay between all these
factors, a system that benchmarks the application performance under different configurations
and network conditions could be developed.

5.5 Functions that predict application performance based upon
network latency

The relationship between network latency and application performance can help cloud cus-
tomers to determine the performance their application can achieve under certain network con-
ditions and can guide cloud operators in selecting the network latency ranges that best suit the
needs of their customers. By measuring dynamically the network latency in the data centre and
having a model of the application performance dependent upon network latency, the expected
application performance under the measured network conditions can be determined. Using
the normalised performance curves built in Section 5.4.2, I construct a function that predicts
application performance dependent upon network latency for each application. To model the
relationship between network latency and application performance, I use SciPy5’s curve_fit
function, which uses non-linear least squares to fit a function p to the experimental data. The
curve_fit returns optimal values for the parameters, so that the sum of the squared error of
p(x_data, parameters)− y_data is minimised. The function has one independent variable, the
static latency, and the dependent variable is the application’s performance metric. I additionally
use the standard deviation of the results as a parameter for the curve_fit function.

The relationship between network latency and application performance for Memcached and
DNS can be constructed as

QPS = p(static_latency) (5.1)

For the other applications (STRADS, Spark, Tensorflow), the training time is the application
performance metric, thus the relationship between network latency and application performance

5https://www.scipy.org/

https://www.scipy.org/


CHAPTER 5. CHARACTERISING THE NETWORK LATENCY IMPACT 131

0 200 400 600 800 1000
Added Delay[µs]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

is
ed

 P
er

fo
rm

an
ce

Model
Actual

Figure 5.11: Polynomial function fitted to Memcached experimental data.

is:
Training_time = p(static_latency) (5.2)

However, I model the relationship between network latency and normalised application perfor-
mance:

Normalised_per f ormance = p(static_latency) (5.3)

Memcached I fit a polynomial function based on the results shown in Figure 5.9, where the
independent variable is the static latency, and the dependent variable is the application perfor-
mance. The resulting model is shown in Figure 5.11 and in Equation 5.4. This model does not
capture the baseline performance, nor small static latency values. Therefore, the model needs to
have two functions: a constant function, whose value is the baseline performance, and a poly-
nomial function fit on the experimental data. The first function gives the performance up to the
threshold latency value beyond which the application performance starts to drop, e.g., 40µs.
The Figure 5.11 does not show the first function.

p(x) =

1,x < 40

1.067−3.093×10−3 × x+4.084×10−6 × x2 −1.898×10−9 × x3,x ≥ 40
(5.4)

STRADS Lasso Regression I fit a polynomial function to the results shown in Figure 5.9,
where the independent variable is the static latency, and the dependent variable is the normalised
performance. The results are shown in Figure 5.12 and in Equation 5.5. The first function is the
constant baseline performance up to 20µs.



132 5.5. PREDICTING APPLICATION PERFORMANCE

0 200 400 600 800 1000
Added Delay[µs]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

is
ed

 P
er

fo
rm

an
ce

Model
Actual

Figure 5.12: Polynomial function fitted to STRADS Lasso Regression experimen-
tal data.

p(x) =

1,x < 20

1.009−2.095×10−3 × x+2.571×10−6 × x2 −1.232×10−9 × x3,x ≥ 20
(5.5)

Spark GLM I fit a linear function to the results shown in Figure 5.9, where the independent
variable is the static latency, and the dependent variable is the normalised performance. The
results are shown in Figure 5.13 and in Equation 5.6. The first function is the constant baseline
performance up to 200µs.

p(x) =

1,x < 200

−1.161×10−4 × x+1.0199,x ≥ 200
(5.6)

Tensorflow MNIST I fit a polynomial function to the results shown in Figure 5.9, where the
independent variable is the static latency, and the dependent variable is the normalised perfor-
mance. The results are shown in Figure 5.14 and in Equation 5.7. The first function is the
constant baseline performance up to 40µs.

p(x) =

1,x < 40

1.005−5.146×10−4 × x+5.837×10−7 × x2 −3.46×10−10 × x3,x ≥ 40
(5.7)

Finding a general relationship between an application’s performance and network latency is not



CHAPTER 5. CHARACTERISING THE NETWORK LATENCY IMPACT 133

0 200 400 600 800 1000
Added Delay[µs]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

is
ed

 P
er

fo
rm

an
ce

Model
Actual

Figure 5.13: Polynomial function fitted to Spark GLM experimental data.

0 200 400 600 800 1000
Added Delay[µs]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

is
ed

 P
er

fo
rm

an
ce

Model
Actual

Figure 5.14: Polynomial function fitted to Tensorflow handwritten digit recognition
experimental data.

easy. I sought to limit the influence of other factors (OS impact on application, number of cores,
number of machines in the setup) on the measured application performance, leaving only the
effect of network latency on the application performance.

5.6 Summary

The rapid increase in cloud computing use makes it important to consider how network con-
ditions in data centres affect an applications performance. In this chapter, I studied the effects
of network latency on typical cloud applications, ranging from DNS to distributed machine
learning applications (§5.2). I performed extensive measurements by artificially injecting con-
trolled network latency in an experimental setup described in §5.1, quantifying the impact of



134 5.6. SUMMARY

network latency on application performance (§5.4). The results of the experiments show that
different applications react differently to changing network latency (§5.4.2). The fact that net-
work latency affects performance is well known [Che96; Bar14; DB13], yet the results of the
experiments performed in this chapter show the extent of sensitivity to latency for some appli-
cations: 10µs latency in each direction enough to have a noticeable effect, and 50µs latency
in each direction enough to significantly negatively impact the performance. Given that only a
few years ago this was the scale of latency within the host alone [ROS+11], it means optimising
end-host latency continues to be of importance. A second noteworthy aspect is the distance
between servers. With the longest cable length reaching 900m [GBQ+14], equivalent to 9µs
RTT on the fibre alone, and expected to grow, performance can be noticeably affected. Scaling
the data centre comes at the cost of additional hops between servers, which means that passing
through more switches increases latency further. This has ramifications for workload placement
when trying to meet application performance guarantees. In the next chapter, I show how pre-
dictions of the application performance (§5.5) aid cluster management software to schedule the
applications to ensure optimal application performance given the current network conditions.



Chapter 6

NoMora: latency-driven, application
performance-aware, cluster scheduling

With more and more businesses and government institutions moving their operations to the
cloud, a lot of attention has been devoted to providing a fast data centre network with pre-
dictable application performance for customers. An important factor in achieving predictable
application performance is understanding the networking requirements of the application in
terms of bandwidth and latency. Once these requirements have been determined, they have to
be incorporated into the data centre management stack. This can be done in-network, through
scheduling [ARR+10; BAA+11; POB+14] or prioritising [GSG+15; AYS+13; DKB+14; CZS14]
the application’s flows, and-or at the end-host, through bandwidth allocation [KJN+15]. In these
situations, the placement of the application’s tasks is assumed to be known before incorporating
its network resource demands. If the tasks’ placements are not known a priori or if they can be
changed, the network resource demands can be incorporated at a higher level in the data cen-
tre management stack, namely in the cluster scheduler. In Section 2.7, I summarised previous
work that incorporated network bandwidth and tail latency demands in the cluster scheduler’s
decisions. However, none of the cluster schedulers have placed an application’s tasks according
to their expected performance as predicted by the current network conditions.

In Chapter 5, I demonstrated that network latency affects typical cloud applications’ perfor-
mance through experiments performed on a custom testbed, and I showed how the experimental
results can be used to build functions that predict application performance based upon network
latency for typical cloud applications. These functions can be abstracted in a way in which they
can be understood by a cluster scheduler.

In this chapter, I use these functions in a cluster scheduling architecture, NoMora1, extend-
ing the Firmament [GSG+16] cluster scheduling framework. The core of NoMora is a cluster
scheduling policy that places the tasks of an application (job) taking into account the expected

1mora means delay in Latin, so the name refers to applications being scheduled to not have network delay
affecting their performance

135



136 6.1. BACKGROUND

performance based on the measured network latency between pairs of hosts in the data center.
Furthermore, if a tenant’s application experiences increased network latency due to unexpected
conditions, e.g., network congestion, and thus lower application performance, their job’s tasks
may be migrated to a better placement. As shown in Chapter 4, network latency values can
change substantially over time, meaning that applications can achieve better performance if
their placement within the data centre takes into account the current network conditions.

While incorporating network latency demands at the cluster scheduler level can be viewed as
being a coarse-grained solution compared to the granularity offered by in-network flow manage-
ment solutions, I show that such an approach is feasible for improving application performance.

6.1 Background

NoMora extends the Firmament cluster scheduler [GSG+16]. I chose to extend Firmament
because it is a centralised scheduler that considers the entire workload across the whole cluster,
making it straightforward to incorporate the network latency measured between every pair of
hosts in the cluster, and due to its low latency (sub-second) task placement (§2.7.2.1).

6.1.1 The cluster scheduling problem modelled as a flow network

In this section, I give an overview of how the cluster scheduling problem is mapped to the
minimum-cost maximum-flow optimisation problem, as described in Quincy [IPC+09] and Fir-
mament [GSG+16].

6.1.1.1 Flow network

Firstly, I provide a high-level overview of the structure of the flow network, which can be seen
in Figure 6.1. By flow network I refer to a directed graph where each arc has a capacity and
and a cost to send flow across that arc. Each submitted task Ti, j, representing task j of job Ji,
is represented by a vertex in the graph, and it generates one unit of flow. The sink S drains the
flow generated by the submitted tasks. A task vertex needs to send a unit of flow along a path
composed of directed arcs in the graph to the sink S. The path can pass through a vertex that
corresponds to a machine (host) Mm, meaning the task is scheduled to run on that machine, or it
can pass through a special vertex for the unscheduled tasks of that job Ui, meaning that the task
is not scheduled. In this way, even if the task is not scheduled to run, the flow generated by this
task is routed through the unscheduled aggregator to the sink.

The graph can have an arc between every task and every machine, but this would make pro-
hibitive the computation of an optimal scheduling solution in a short time, as the graph would
scale linearly with the number of machines in the cluster. To reduce the number of arcs in the



CHAPTER 6. NOMORA CLUSTER SCHEDULING 137

T1,1

U2

 X

R1

R2

U1

M1

M2

M3

M4

T1,2

T2,1

T2,2

T2,3

S

C, 0

C, 0

C, 0

C, 0

1, a1,1 

1, a1,2

1, b1,1

1, b1,2

1,b2,1 

1,b2,2

1,b2,3

1,a2,1

1,a2,3

1,a2,2

1, c1,1,1

1, d1,1,1

1,d1,1,4

F1  - E1 , 0

F2  - E2 , 0

C, 0

mC, 0

mC, 0

C, 0

C, 0

C, 0

Figure 6.1: A general flow network with annotated capacities and costs on arcs.
Job J1 has tasks T1,1 and T1,2. Job J2 has tasks T2,1, T2,2 and T2,3. The unsched-
uled aggregator is U1. The machines in the cluster are M1, M2, M3 and M4. Rack
aggregators are R1 and R2. The cluster aggregator is X . The sink vertex is S.

graph, a cluster aggregator X and rack aggregators Rr have been introduced in Quincy, inspired
by the topology of a typical data centre. The cost of the arc between a task and the cluster
aggregator is the maximum cost across all of the machines in the cluster. Similarly, the cost of
the arc between a task and a rack aggregator Rr is the maximum cost across all of the machines
in that rack. It can be easily seen that the costs to the cluster and rack aggregators serve as a
conservative approximation, providing an upper bound for a set of resources that are grouped
together.

The cluster and rack aggregators are implemented as equivalence classes in Firmament. Firma-
ment defines the notion of equivalence classes for elements whose behaviour is similar, and can
be defined for both tasks and machines. The benefit of defining equivalence classes is that it
reduces the number of arcs for a pair of equivalence classes with sizes n and m from O(nm) to
O(n+m).

To summarise, the flow network has the following types of vertices:

1. task vertices Ti, j - a task that is submitted, it can be scheduled or unscheduled,

2. machine vertices Mi - a machine in the cluster,

3. aggregator vertices - unscheduled aggregator vertices Ui (there is one for each job, all the
unscheduled tasks in the job are connected to the unscheduled aggregator), rack aggre-
gator vertices Ri (which connects all machines in a rack), the cluster aggregator vertex X
(all the rack aggregators are connected to it), and



138 6.1. BACKGROUND

4. a sink vertex S - the flow coming from the task vertices is drained in the sink vertex.

The flow network has the following types of directed arcs:

1. an arc from a task to a resource (machine, rack aggregator or cluster aggregator), referred
to as preference arcs,

2. an arc from a task to a machine on which the task is running,

3. an arc from a task to the unscheduled aggregator of the job’s task,

4. an arc from a resource to another resource (cluster aggregator to rack aggregator, rack
aggregator to machine, machine to machine), and

5. an arc from a machine or from an unscheduled aggregator to the sink.

6.1.1.2 Capacity assignment

Each arc in the flow network has a capacity c for flow, bounded by cmin and cmax. In Firmament
and Quincy, cmin is usually zero, while cmax depends on the type of vertices connected by the
arc and on the cost model. Given that the minimum capacity is zero, it is omitted from here
onwards [Sch16], with only the maximum capacity values being presented.

The capacity of an arc between a task and any other vertex is 1. If a machine has C cores and a
rack has m machines, the capacity of an arc between a rack aggregator and a machine is C, and
the capacity of an arc between the cluster aggregator and a rack is C×m = Cm. The capacity
of an arc between a machine and the sink is C.

The capacity between an unscheduled aggregator Ui and the sink S is represented by the differ-
ence between the maximum number of tasks to run for a job Ji, Fi, and the minimum number
of tasks to run for job Ji, Ei, with 0 ≤ Ei ≤ Fi ≤ Ni, where Ni is the total number of tasks in job
Ji. These limits can be used to ensure a fair allocation of runnable tasks between jobs [IPC+09;
Sch16].

6.1.1.3 Cost assignment

The cost on an arc represents how much it costs to schedule any task that can send flow on this
arc on any machine that is reachable via this arc.

Task to machine arc The cost on the arc between a task vertex Ti, j and a machine vertex Mm is
denoted by di, j,m, and is computed according to information regarding the task and machine. In
most cases, this cost is being decreased by how much the task has already run, βi, j .

Task to resource aggregator arc The cost on the arc between a task vertex Ti, j and a rack
aggregator vertex Rr, denoted ci, j,r, represents the cost to schedule the task on any machine



CHAPTER 6. NOMORA CLUSTER SCHEDULING 139

within the rack, and is set to the worst case cost amongst all costs across that rack. The cost
on the arc between a task vertex Ti, j and the cluster aggregator X , denoted by bi, j, represents
the cost to schedule the task on any machine within the cluster, and is set to the worst case cost
amongst all costs across the cluster.

Task to unscheduled aggregator arc The cost on the arc between a task vertex Ti, j and the
unscheduled aggregator Ui, denoted by ai, j, is usually larger than any other costs in the flow
network. The cost on this arc increases as a function of the task’s wait time, in order to force
the task to be scheduled, and it is scaled by a constant wait time factor ω, which increases the
cost of tasks being unscheduled.

Preemption If preemption is enabled, the scheduler can preempt a task that it is running on a
machine, which means the flow pertaining to that task is routed via the unscheduled aggregator,
or migrate the task to a different machine, meaning that the flow is routed via that new machine’s
vertex. If preemption is not enabled, then a scheduled task will have in the flow network only
the arc to the machine that it is currently running on, with all the other arcs being removed once
the task is scheduled.

6.1.2 Firmament overview

I present in Figure 6.2 the architecture of Firmament as described in [Gog17], and I briefly
describe its main components. A coordinator process runs on each machine in the cluster.
Its roles are scheduling tasks, monitoring tasks, and collecting resource utilisation statistics
and information about the machine’s hardware specifications. This information is sent to the
master coordinator process. The master coordinator process schedules the tasks and assigns
them to worker coordinator processes that run on machines. It also aggregates the information
received from the worker coordinator processes, storing the information into the knowledge
base. The master coordinator process builds a cluster resource topology based on the machines’
hardware specifications. The knowledge base also stores information for each task and builds
task profiles. The task profiles and the resource topology are used by the master coordinator’s
scheduler in scheduling policies to make placement decisions.

Firmament exposes an API to implement scheduling policies, that may incorporate different
task constraints. A scheduling policy defines a flow network representing the cluster, where
the nodes define tasks and resources, as described in Section 6.1.1.1. The policy can also use
task profiles to guide the task placement through preference arcs to machines that meet the
criteria desired by the task. Events such as task arrival, task completion, machine addition to
the cluster, or machine removal from the cluster, change the flow network. When cluster events
change the flow network, Firmament’s min-cost flow solver computes the optimal flow on the
updated flow network. The updates to the flow network caused by the cluster events are not
applied while the solver runs, but only after the solver finishes computing the optimal solution.
After the solver finishes running, Firmament extracts the task placements from the optimal flow,



140 6.2. NOMORA

Task table

Knowledge base

Resource topology

Scheduling policy

Flow graph

Min-cost flow solver

Scheduler

Master coordinator

Coordinator

Task Task

Machine

Coordinator

Task Task

Machine

... ...
...

Figure 6.2: Firmament architecture.

and applies these changes in the cluster.

Firmament 2 supports several cost models: trivial cost model (random placement), load-spreading
policy (load balance the tasks across machines), Whare-Map cost model (avoids interference
and exploits machine heterogeneity), coordinated co-location (CoCo) cost model (extends the
Whare-Map cost model), green cost model (uses power consumption as input) and network
bandwidth-aware cost model (avoids oversubscribing the end-host network interface).

6.2 NoMora

6.2.1 Architecture

I combine the following three elements in the NoMora cluster scheduling architecture, as seen
in Figure 6.3, where (1) and (2) offer inputs to (3):

1. functions that predict application performance dependent upon network latency;

2. network latency measurement system;

3. the latency-driven application performance-aware cluster scheduling policy implemented
on top of the Firmament cluster scheduler.



CHAPTER 6. NOMORA CLUSTER SCHEDULING 141

Network Latency 
Measurement System (2)

Network Latency - 
Application Performance 
Functions (1)

NoMora policy on 
Firmament (3)

Figure 6.3: NoMora architecture.

The functions that predict application performance dependent upon network latency were deter-
mined in Chapter 5. The second component of the architecture is the network latency measure-
ment system. Systems such as PTPmesh [PM17] (described in Chapter 4), Pingmesh [GYX+15]
or NetNORAD [ALZ16] can provide the most recently measured network latency between
hosts. Due to the scale of data centres, these systems do not send probes between every pair
of hosts, but instead choose fewer hosts to ensure the largest coverage. Additionally, they set a
minimum probing interval to bound the network traffic generated. The data collected by these
systems is fed to the cluster scheduler to aid in making task placement or migration decisions.
Default latency values can be determined based on the network topology of the data centre to
be used instead of the actual measured latencies if these are unavailable. The third component
of the system, the policy, is discussed in the following section.

6.2.2 Latency-driven, application performance-aware, policy

I propose a new latency-driven, application performance-aware, policy whose goal is to place
distributed applications in a data centre in a manner that gives them improved application per-
formance. This generally leads to grouping tasks as close as possible, in a rack or on the same
machine, for the applications for which latency matters, such as Memcached or machine learn-
ing frameworks (STRADS, Tensorflow). For the tasks that do not fit within the same rack or
on the same machine, the policy finds the machine that offers the best application performance
amongst the available placements. On the other hand, applications like Spark, for which addi-
tional latency of up to one millisecond does not affect substantially its performance, will have
more freedom when being placed within the data centre. Furthermore, if the network conditions

2https://github.com/camsas/firmament

https://github.com/camsas/firmament


142 6.2. NOMORA

change, a task whose performance degrades can be migrated to a better placement.

Since the applications I studied in Chapter 5 are client-server applications or worker-master
applications, I consider that the server/the master has a special role, because it has to be running
before the clients/workers. I call the server (for client-server applications) / the master (for
master-workers applications) the root task. Thus, the policy needs to schedule the root task
first. The root task is scheduled immediately in any place available in the cluster. The other
tasks of the job (clients/workers) are not scheduled until the root task is scheduled. While this
adds delay in scheduling for these tasks, the delay is minimal, since they will be scheduled
in the next scheduling round based on the placement of the root task. In my policy, a task’s
placement does not depend on a machine’s architectural properties (CPU, RAM, etc.) or on the
properties of the other tasks that run on the machine, but on the placement of another task (the
root task), and on the network latency between a machine considered for the task’s placement
and the root task’s placement. My policy uses, for assigning costs to arcs, the application
performance predictions and network latency measurements between hosts to determine the
expected application performance.

In summary, the placement of a task follows these steps:

1. the root task is scheduled on any available machine;

2. if a task that is not a root task enters the system at the same time as the root task, or before
the root task is scheduled, it will not be scheduled, waiting instead;

3. if the root task is scheduled, then a new task’s placement is determined based on the appli-
cation performance prediction, and current network latencies to the root task’s placement.

6.2.2.1 Flow network

The flow network can be seen in Figure 6.4. Arcs are defined between a task and the potential
machines on which it can run, and each arc has a cost computed using the application perfor-
mance predictions dependent upon network latency for each application.

When a job is submitted, the root task Ti,0 is assigned a single arc to the cluster aggregator,
with a cost of 0, which means that the root task will be scheduled immediately on any available
machine. After it is scheduled, the root task will have an arc from the root task to the machine it
is running on. The other tasks of the job will wait for the root to be scheduled first, and they do
not have any arcs initially. After the root task is scheduled, each task Ti, j will have preference
arcs to the cluster aggregator X , to rack aggregators Rr and machines Mm based on the cost to
schedule the task on those resources and on the parameters of the policy.



CHAPTER 6. NOMORA CLUSTER SCHEDULING 143

T1,1

U2

 X

R1

R2

U1

M1

M2

M3

M4

T1,2

T2,1

T2,2

T2,3

S

C, 0

C, 0

C, 0

C, 0

1, a1,1 

1, a1,2

1, b1,1

1, b1,2

1,b2,1 

1,b2,2

1,b2,3

1,a2,1

1,a2,3

1,a2,2

1, c1,1,1

1, d1,1,1

1,d1,1,4

1, 0

1, 0

C, 0

mC, 0

mC, 0

C, 0

C, 0

C, 0

Figure 6.4: NoMora flow network with annotated capacities and costs on arcs.

6.2.2.2 Cost assignment

The cost assignment is also called cost model [GSG+16]. NoMora’s cost assignment is similar
to Quincy’s cost assignment [IPC+09]. The Quincy policy considers in the cost computation
data locality, task wait time (the time a task waits before being scheduled) and how much time
a task has run before being preempted (preemption cost). These factors are considered because
having good data locality reduces the job’s runtime in the scenario considered by Quincy, but
finding a good placement can mean waiting more time until a suitable machine is free (the task
wait time increases), or preempting a task that is already running (if this task is restarted from
the beginning on another machine, then the time the task has already run is lost). Instead of
considering data locality, in NoMora I consider the cost to the root task computed based on
application performance prediction dependent upon network latency for a job (as built in Chap-
ter 5, Section 5.5), combined with measured network latency between the root task machine and
the machine under consideration. Similarly to the Quincy cost model, in NoMora I also factor
the task wait time when computing the cost of the arc to the unscheduled aggregator, and, if
preemption is enabled, the preemption cost in the arc cost computation.

Table 6.1 provides on overview of the costs NoMora assigns to different arcs.

Assuming the root task is running on machine Mroot and a task j, Ti, j, of job Ji can be scheduled
on machine Mm, then the cost of the arc from Ti, j to Mm is:

di, j,m = cost(Ti, j,Mm) =
1

p(max(latency(Mroot ,Mm)))
(6.1)



144 6.2. NOMORA

Arc Capacity Value Cost
Ti, j →Ui 1 ai, j Cost of leaving Ti, j unscheduled
Ti, j → X 1 bi, j Cost of scheduling Ti, j on the worst machine
Ti, j → Rr 1 ci, j,r Cost of scheduling Ti, j on the worst machine in rack Rr
Ti, j → Mm 1 di, j,m Cost of scheduling Ti, j or continuing to run on machine Mm

X → Rr mC 0 -
Rr → Mm C 0 -
Mm → S C 0 -
Ui → S 1 0 -

Table 6.1: Arcs in the NoMora flow network with their capacities and costs.

where p(max(latency(Mroot ,Mm))) is the expected application performance for the measured
network latency between machine Mroot and machine Mm, as determined in Section 5.5. I
invert the performance because, when the performance is smaller, the cost assigned to the arc
is higher, making the machine to which the arc points to less desirable for running the task on.
Since in data centres typically there are multiple paths between two machines, in order to be
conservative, I use the maximum latency value measured between the two machines because,
due to ECMP, I cannot know which of the available paths the application’s flows will take.

Preempting a task presents a trade-off between migrating the task to a better placement and the
amount of time the task has already run (on the current machine or on a different one) [ASR+10].
If preemption is enabled, the amount of time the task has already run, βi, j, can be subtracted
from the cost(Ti, j,Rr). This leads to less task migrations happening, because it becomes less
advantageous to preempt a task and restart it on another machine after migration the more time
the task is running, essentially wasting the work that has already been done.

di, j,r = cost(Ti, j,Mm)−βi, j (6.2)

Similarly, the cost of the arc from Ti, j to rack Rr is the cost to the worst cost machine in rack r:

ci, j,r = cost(Ti, j,Rr) = max
m∈r

1
p(max(latency(Mroot ,Mm)))

(6.3)

where p(max(latency(Mroot ,Mm))) is the expected normalised application performance for the
measured network latency between machine Mroot and a machine Mm in rack r. Similarly, to be
conservative due to ECMP, I take the maximum value of the latencies between Mroot and Mm.

The cost to the cluster aggregator X is the cost to the worst cost rack, which is obtained by
taking the maximum of the costs to racks.

bi, j = max
r

ci, j,r (6.4)



CHAPTER 6. NOMORA CLUSTER SCHEDULING 145

The cost to the unscheduled aggregator Ui is computed using the task’s wait time, αi, j, scaled
by a constant factor ω (§6.1), to which a constant cost factor γ , that is larger than any other
possible arc costs, is added.

ai, j = ω ×αi, j + γ (6.5)

The costs on the arcs are rounded to two significant digits, and then multiplied by a factor of
100, since the costs must be integer numbers for the solver to understand. For a normalised
performance of 1, the cost is 1

1 × 100 = 100. For a normalised performance of 0.1, the cost is
1

0.1 × 100 = 1000. The cost to the unscheduled aggregator is offset by γ , greater than all the
other possible costs.

Since the network latency is not constant in a data centre, as shown in Chapter 4, the costs
associated with the arcs are updated based on the latest measured network latency values, and
as a result, the preference arcs for the tasks are updated. If preemption is enabled, the cost of
the arcs for a running task will also be updated.

6.2.2.3 Cost model parameters

The cost model has two main parameters:

• threshold for the cost on an arc to a machine in order for that machine to be on the
preferred list of machines on which the task can run, pm,

• threshold for the cost on an arc to a rack in order for that rack to be on the preferred list
of racks in which the task can run, pr.

The first preference list comprises the machines on which the application may run to achieve the
desired performance. This list should be kept small for the task scheduling to take a reasonable
amount of time. But having a small preference list means the application’s placement options
are limited. To mitigate this, the second preference list, which comprises the racks on which
the application may run, was introduced. The second list is smaller than the first one, since the
number of racks is smaller than the number of machines. This allows a bigger threshold to be
set for the second parameter of the model, offering more placement options for the application’s
tasks, while keeping the first preference list small.

6.3 NoMora evaluation

I evaluate NoMora in simulation, using the same simulator as for Firmament’s evaluation, ex-
tended to provide network latency measurements between pairs of machines, and to update
them during the simulation. Secondly, I added application performance predictions dependent



146 6.3. NOMORA EVALUATION

upon network latency per job and per task (same function for all tasks of a job). Finally, I im-
plemented the policy that uses these predictions and the latency measurements to compute task
placements.

Cluster workloads As explained in Section 2.7.1, no information about the network communi-
cation patterns between a job’s tasks, nor about their sensitivity to network latency are provided
in public cluster workloads. Thus, I have assigned the network latency to application perfor-
mance functions determined in Chapter 5, Section 5.5 to the jobs in the Google workload. I
did not include the single task jobs, as they do not communicate with any other task. I used 24
hours of the trace.

Application performance predictions dependent upon network latency The predictions are
discretised in steps of 10µs, and are stored in a hash table for each job. The network latency
value between two machines is rounded to the nearest latency value for which the prediction
function has an entry in the hash table. For the latency values in the used traces that are outside
the interval of defined values, I use the smallest performance value defined for that function. The
different prediction functions are assigned randomly in different proportions to the jobs. For the
experiments presented in this section, 50% of the jobs use the Memcached prediction, 25% of
the jobs use the STRADS prediction and 25% the Tensorflow prediction. This scenario is one
of the most challenging, as Memcached is the most latency sensitive application that I studied.
I did not use the Spark prediction, which is almost constant, as it would not be challenging to
place such jobs. Given the functions built in Chapter 5, for which the normalised performance
does not drop below 0.1, I set γ = 1001 for the simulation.

Network latency measurements The simulator leverages the network latency measurements
collected in Chapter 4. With 18 week-long traces collected, I further divide each trace in 7 (for
each day of the week), and I assign them to machine pairs considering the physical distance
between servers as a criterion. Assuming a typical fat-tree topology for a data centre [ALV08]
and based on the latency values measured in Microsoft Azure by [RBB+18], I use the traces
with the lowest values for machine pairs located in the same rack (6 traces - GCE), the traces
with intermediate values for machine pairs located within the same pod (6 traces - Azure), and
the traces with the largest values for machines located in different pods (6 traces - EC2). These
traces are used to provide the latency values between hosts for the duration of the simulation,
which is one day. Since I do not have different traces for each machine pair, I scale the values of
each trace using a coefficient between 0.8 and 1.2, selected randomly for intra-pod and inter-pod
values. For the traces within the rack, I scale them between 0.5 and 1. For the latency values
between cores on the same server I use a small constant. Latency values from traces are provided
every second in the simulation, in total 86,400 per day between every pair of hosts in the cluster.

Topology I use the Google trace which has 12,500 machines [RTG+12]. The machines used
in the workload are grouped into racks and pods at the beginning and during the simulation. I
set the number of machines per rack to 48, and the number of racks per pod to 16. The results
will be influenced by the number of hosts per rack and the number of racks per pod due to the



CHAPTER 6. NOMORA CLUSTER SCHEDULING 147

assignment of the different cloud latency traces. These two numbers were chosen to reproduce
a small cluster. However, if there are more hosts per rack and more racks per pod, then there
will be a greater chance to fit all the tasks of a job in the same rack or in the same pod, meaning
the job will have a good overall application performance. The size of a job in terms of tasks
should thus be taken into consideration when designing novel data centre topologies.

I performed experiments with the settings of the Facebook data centre topology (192 hosts
per rack and 48 racks per pod) [And14], but for a cluster of only 12,500 machines as the one
presented in the Google trace, it means there is only one complete pod and an incomplete one,
with a total of approximately 260 racks. The overall application performance in this case is very
high due to the small network latencies assigned between the hosts within the same rack.

Adjusting job runtime in simulation In Table 5.1, I presented the performance metric of each
application. For some applications (Memcached, DNS) I use the number of queries per second,
while for the rest (Spark, STRADS, Tensorflow) I use the training time, which is equivalent to
the job’s runtime. In the second case, it it hard to adjust in simulator the expected job runtime
based on the measured latency at every second. As such, I do not adjust the job runtimes. I use
instead the normalised value of the application performance as performance metric for all jobs,
and I adjust this performance metric based on the current network conditions.

6.3.1 Evaluation metrics

Through the evaluation of the NoMora cluster scheduling policy, I seek to answer the following
questions:

• does NoMora’s placement improve application performance compared to a random place-
ment policy and a load-spreading policy?

• how long does it take to compute a placement solution?

• how long does a task have to wait before starting to run?

In order to know if my policy improves application performance compared to other policies, I
compute the average application performance. This metric measures NoMora’s task place-
ment quality. It is computed as the application performance determined by the network latency
in every measurement interval divided by the maximum application performance that could be
achieved in every measurement interval, and it is computed for the job’s total runtime.

The next two metrics used to evaluate NoMora were also used to evaluate Firmament.

The algorithm runtime is the time it takes for Firmament’s min-cost max-flow algorithm to
run. The Flowlessly solver is the min-cost max-flow library utilised in Firmament, and com-
bines several techniques to reduce the solver runtime. I compare my policy’s runtime with other
Firmament policies’ runtimes to ensure that my policy is scalable when run by a centralised



148 6.3. NOMORA EVALUATION

cluster scheduler. Additionally, the time it takes to compute the applications’ placements in a
round gives an indication of the time interval that is needed between latency measurements.
For example, if the algorithm runtime would be in the order of minutes, running latency mea-
surements every few seconds would not be useful, since the measurements accumulated over
the scheduler’s runtime would not be used by the scheduler. On the other hand, if the algo-
rithm runtime is in the order of milliseconds, running latency measurements every second or
few seconds is useful, the scheduler being able to use the most recent measurement data.

The task placement latency is the time between task submission and task placement. This
metric includes the task wait time, which should be as short as possible, but also the time it takes
for Firmament to update the flow network, Flowlessly’s runtime and the time to iterate over the
placements computed by Flowlessly. In the context of my policy, the metric also captures by
how long the tasks are delayed when they are waiting for their root task to be placed first before
them.

Another metric that I looked at is the task response time, which is the time between a task’s
submission and its completion.

6.3.2 Placement quality

I compare the NoMora policy, using different parameter values for the cost model (§6.2.2.3),
with a random policy that uses fixed costs (tasks always schedule if resources are idle), and a
load-spreading policy that balances the tasks across machines. I enable preemption only for
the NoMora policy, since the two other policies would not benefit from preemption due to their
different scheduling goals. The random policy schedules tasks if resources are available, thus
migrating a task does not make sense, since the task is already running. The load-spreading
policy schedules tasks based on current task counts on machines, thus potential task load im-
balance can be handled by scheduling new tasks on less loaded machines instead of migrating
already running tasks on the less loaded machines.

The results for the average application performance for different policies can be seen in Fi-
gure 6.5. I compute the area marked by the y-axis, the CDF, and the straight horizontal line
with y = 1, for each policy. According to this computation, the maximum area corresponding
to the maximum average application performance across applications is 100%, and it would be
obtained for a vertical line at x = 100%. Next, I subtract from the NoMora policies areas the
random and load-spreading areas to assess the placement improvement given by the NoMora
policy. The total area for the random policy is 47.2%, while for the load-spreading policy it
is 46.8%. For the NoMora policy with parameters pm = 105 and pr = 110 the area is 60.2%,
NoMora with parameters pm = 105 and pr = 110 and preemption enabled is 59%, NoMora with
parameters pm = 110 and pr = 115 is 51.85%, and finally, NoMora with parameters pm = 105
and pr = 110, and preemption enabled with βi, j = 0, is 89.6%. The maximum overall im-
provement without preemption enabled is 13% over the random policy and 13.4% over the



CHAPTER 6. NOMORA CLUSTER SCHEDULING 149

0 20 40 60 80 100
Average Application Performance [%]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

random
load-spreading
NoMora-105-110
NoMora-105-110-preempt
NoMora-110-115
NoMora-105-110-preempt-no-executed-time

Figure 6.5: Average application performance for different policies on the Google
workload.

load-spreading policy, and is obtained for NoMora with parameters pm = 105 and pr = 110.
If preemption is enabled and βi, j = 0 (the time already executed by a task is not considered in
the arc cost computation), the improvement is considerable, 42.4% over the random policy, and
42.8% over the load-spreading one.

The improvement in average application performance is not substantial when preemption is not
enabled because of the root task’s random placement, and also because of a smaller number
of available places a task can be scheduled because of long-running jobs that are set up at the
beginning of the trace. The tasks of the jobs are placed in the best available slots in relation
to the root task’s placement. In this way, I constrain the available placements, and the policy
searches for placements in relation to a known location rather than trying to find the a placement
for all the tasks of a job simultaneously. I further explain the reason behind this design decision
and its implications in Section 6.4.

It can be seen that the CDF of NoMora with preemption enabled has a different shape than
the other policies. This is due to task preemption, which can correct the initial placement
if it is not good (because of the random placement of the root task), and it can also migrate
tasks when their current placement is not good anymore. The improvement provided by the
NoMora policies without preemption is evident from Figure 6.5, but it can also be seen that
the CDFs start at approximately the same value (27%-28% average application performance),
and have an initially similar shape to the random and load-spreading CDFs. On the other hand,



150 6.3. NOMORA EVALUATION

for NoMora with preemption enabled, the minimum average application performance is 44%
and 84% respectively, which means that the improvement in application performance happens
across all jobs due to migration to better placements.

6.3.3 Algorithm runtime

The algorithm runtime depends on the number of arcs from each task to the resources, but
also on the cluster size. As the number of arcs or the cluster size increases, so does the algo-
rithm runtime. The two parameters of the cost model (§6.2.2.3) influence the number of arcs
the graph has between task nodes and machine nodes or rack nodes, and hence the algorithm
runtime, which depends on the flow network size and on the number of tasks considered per
scheduling round. If the thresholds are lower, the preference lists will be smaller. In this case,
the applications’ performance will be higher (only high-quality placements considered), but
they will have less placement options to be scheduled, and thus the wait time may increase.
The tasks will have to wait for the machines that offer the performance desired to have empty
slots. However, setting a high threshold means the preference lists will be larger, which could
lead to an increase in the algorithm runtime. On the other hand, more placement options will
be available for the tasks to be scheduled, reducing their wait time. In practice, the algorithm
runtime may not necessarily increase. With more placement options available, the tasks may be
scheduled sooner, thus leading to less tasks being scheduled per round, resulting in a decrease
in the algorithm runtime per scheduling round.

Figure 6.6 presents results for the algorithm runtime for the load-spreading policy, random pol-
icy and for the NoMora policy with and without preemption on the Google workload. The
two parameters of the cost model are set as in the previous experiment. The random and load-
spreading policies have a similar algorithm runtime, with a median runtime of 108ms-109ms.
However, the two policies differ at the tail: for the random policy the 99thpercentile is 661ms
and a maximum of 18.89s, while for load-spreading policy the 99thpercentile is 974ms and a
maximum of 25.88s. For NoMora with parameters pm = 105 and pr = 110, the median algo-
rithm runtime is 93ms (99thpercentile is 248ms, and maximum is 6.13s), an improvement of
1.61× for the median runtime, and 2.66× and 3.92× at the 99thpercentile, compared to the
baselines. For NoMora with pm = 110 and pr = 115, median runtime is 72ms (99thpercentile
is 486ms, and maximum is 39.55s). On the other hand, the maximum value for the algorithm
runtime is considerable larger in the case of NoMora policies.

NoMora with parameters pm = 105 and pr = 110 with preemption enabled takes a considerable
longer amount of time, because of the higher number of arcs in the flow network compared to
the case when preemption is not enabled (the arc preferences of the tasks that are running are
not removed, unlike when preemption is not enabled), and the updates made to the flow graph
(adding or changing running arcs to resources), further resulting in a larger number of tasks con-
sidered per scheduling round. This also translates into a larger task placement latency (§6.3.4).



CHAPTER 6. NOMORA CLUSTER SCHEDULING 151

1 10 100 1000 10000 1000001000000
Duration [ms]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

al
go

ri
th

m
ru

nt
im

es

random
load-spreading
NoMora-105-110
NoMora-105-110-preempt
NoMora-110-115
NoMora-105-110-preempt-no-executed-time

Figure 6.6: Algorithm runtime for different policies on the Google workload.

As can be seen from Figure 6.7, the percentage of migrated tasks in the first case (NoMora with
preemption enabled and already executed time for a task considered in the arc computation) is
on average 0.022% per scheduling round, with a 99thpercentile of 0.5%. If βi, j = 0 (already
executed time is not considered in the arc computation), a considerable number of task migra-
tions take place: an average of 7.1% per scheduling round, with a 99thpercentile of 10.07%.
This happens because the time a task has already run is ignored in the arc cost computation,
meaning that the cost is based solely on the expected application performance under the given
network conditions. The median algorithm runtime time is 373ms, the 99thpercentile is 511s
and the maximum is 1719s, which is 3.45× larger than the baseline for the median runtime, and
773× larger than the baseline for the 99thpercentile. In the second case (βi, j = 0), the median
running time is 1532s, the 99thpercentile 6610s, and the maximum is 7118s. This significant
algorithm runtime means that preemption should be used with care. For example, only cer-
tain applications that explicitly demand to be migrated should be migrated, or migration can be
triggered only if the application performance drops below a certain threshold.

6.3.4 Task placement latency

Figure 6.8 presents the task placement latency, which is at the median 436ms, 90thpercentile
is 312ms and 99thpercentile is 1.9s for the random policy; median is 498ms, 90thpercentile is
4.3s and 99thpercentile is 25s for the load-spreading policy, median is 278ms, 90thpercentile is
1.23s and 99thpercentile is 5.8s for the NoMora policy with parameters pm = 105 and pr = 110;



152 6.3. NOMORA EVALUATION

1 2 3 4 5 6 7 8 9 10
Task migrated [%]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

executed-time
no-executed-time

Figure 6.7: Percentage of migrated tasks for NoMora policy with preemption (pa-
rameters 105 and 110) on the Google workload.

1 10 100 1000 10000
Task placement latency [sec]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
of

ta
sk

pl
ac

em
en

tl
at

en
cy

random
load-spreading
NoMora-105-110
NoMora-105-110-preempt
NoMora-110-115
NoMora-105-110-preempt-no-executed-time

Figure 6.8: Task placement latency for different policies on the Google workload.



CHAPTER 6. NOMORA CLUSTER SCHEDULING 153

1 10 100 1000 10000
Task response time [sec]

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

random
load-spreading
NoMora-105-110
NoMora-105-110-preempt
NoMora-110-115
NoMora-105-110-preempt-no-executed-time

Figure 6.9: Task response time for different policies on the Google workload.

median is 185ms, 90thpercentile is 1s and 99thpercentile is 5.6s for the NoMora policy with
parameters pm = 110 and pr = 115; median is 519s, 90thpercentile is 1484s and 99thpercentile is
2458s for the NoMora policy with preemption enabled and parameters pm = 105 and pr = 110;
and median is 4812s, 90thpercentile is 13077s and 99thpercentile is 16251s for the NoMora
policy with preemption enabled, βi, j = 0 and parameters pm = 105 and pr = 110.

The NoMora policy with parameters pm = 105 and pr = 110 improves the median task place-
ment latency by 1.56× compared to the random policy and by 1.79× compared to the load-
spreading policy. The NoMora policy with parameters pm = 110 and pr = 115 improves the
median task placement latency by 2.35× compared to the random policy and by 2.69× com-
pared to the load-spreading policy.

In Figure 6.9, it can be seen that the NoMora policy with preemption degrades the task response
time, because of longer task placement latencies (Figure 6.8). The CDF is truncated to 10,000s,
because the trace includes long-running jobs that span the whole trace.

6.4 Limitations

Root task placement In the current NoMora policy, the root task is placed before the other tasks
in any available slot in the cluster. This can negatively impact the overall job performance, but
without gang scheduling it is difficult to decide where to place the root task, since what actually



154 6.5. SUMMARY

needs to be placed is the whole task graph. With gang scheduling, the root task would not be
placed independently of the other tasks, but instead would be placed at the same time. The
current implementation considers that a job has only one root task, but it is straightforward to
extend it to place multiple root tasks, and to compute the placement of the other tasks based on
the best root task placement of all root tasks.

Changes in network traffic NoMora accounts for the latency changes introduced by the traffic
from tasks already placed in previous rounds. It does not account for the changes produced by
tasks placed in the same round, e.g., the network latency measurements are not updated during
the scheduling algorithm runtime. If a task’s placement proves to be suboptimal due to the
traffic generated by the tasks placed in the same scheduling round, the task can be migrated to a
better placement. Still, the scheduler runs in an online fashion, meaning it runs as soon as a task
enters the system. If the scheduler algorithm runtime is low, then the number of tasks scheduled
in a round will be kept small. If there is a significant number of tasks that arrive concurrently,
then the policy may place tasks suboptimally. Gog [Gog17] analysed the workload in the public
Google cluster trace to determine how many tasks the scheduler must deal with in a scheduling
round depending on how fast the scheduler runs. Gog found that a scheduler algorithm that
completes every 0.5s has to process less than ten events in over 60% of cases, and less than
100 events in 95% of cases. NoMora’s policy median runtime is less than 100ms (Section 6.3),
which means that in most cases the scheduler deals with a small number of tasks per scheduling
round.

As the scheduler places more tasks that send traffic, the latency between hosts might increase
due to higher network utilisation. Conversely, when tasks finish running, latency between hosts
might decrease due to lower network utilisation. The current simulator does not account for
these changes in the network’s state. A correction component can be added to the simulator to
model these changes. I note that the traces collected in different data centres over a week already
include the changes observed in network latency in a real-world setting, but these changes are
not correlated with the arrivals and departures of the jobs in the traces I use for the simulation.
Thus, the simulation is subject to the limitations of the cloud measurements collected.

6.5 Summary

In this chapter, I introduced latency-driven, application performance-aware cluster scheduling,
and NoMora, a cluster scheduling framework that implements this type of policy. It exploits
functions that predict application performance based upon network latency and dynamic net-
work latency measurements between hosts to place tasks in a data centre, providing them with
improved application performance. I first gave an overview of cluster scheduling modelled as
minimum cost maximum flow optimisation over a flow network, and of the Firmament cluster
scheduler framework (§6.1). Next, I presented NoMora, a cluster scheduling architecture, and I
described its cost policy (§6.2). I described the metrics for evaluating NoMora, and I presented



CHAPTER 6. NOMORA CLUSTER SCHEDULING 155

the results of the evaluation (§6.3). Finally, I discussed the limitations of my approach (§6.4).

The overall application performance improvement given by NoMora depends on the workload,
network topology and on the network conditions in the data centre. Using the Google workload
augmented with cloud latency measurements from Chapter 4 and with predictions from Chap-
ter 5, I show that the NoMora policy improves the overall average application performance by
up to 13.4% compared to the baselines, and improves the task placement latency by a factor
of 1.79× and the median algorithm runtime by 1.16× compared to the baselines (§6.3). This
demonstrates that application performance can be improved by exploiting the relationship be-
tween network latency and application performance, and the current network conditions in a
data centre, while preserving the demands of low-latency cluster scheduling.



156 6.5. SUMMARY



Chapter 7

Conclusions and future work

With the growth of the cloud business, it is of paramount importance to provide tenants with
predictable application performance. In this dissertation, I made several important contributions
towards enabling application performance-aware data centres through network measurements
by considering the impact of network latency on application performance when scheduling
applications on hosts.

• In Chapter 3, I investigated through experiments how the Precision Time Protocol (PTP)
through an open-source software implementation, PTPd, can be used to measure network
conditions, network latency and packet loss.

I showed that PTPd represents a practical approach for measuring network conditions,
offering estimated one-way delay and packet loss ratio measurements. PTPd is a widely
available software, easy to deploy, and it should be noted that a hardware-enabled PTP
implementation would perform even better.

• In Chapter 4, I introduced PTPmesh, a network monitoring tool for cloud tenants, which
uses the PTPd software as building block. I deployed PTPmesh in several data cen-
tres across the world from different cloud providers (Amazon AWS, Google Compute
Platform, Microsoft Azure), where I conducted measurement campaigns. I presented a
detailed analysis of the measurement data, revealing different latency magnitude, latency
variance and packet loss characteristics for data centres from different geographical re-
gions and from different cloud providers. Normal latencies in data centres vary between
tens to hundreds of microseconds, while unusual conditions can lead to latencies of mil-
liseconds.

I showed that PTPmesh, a network monitoring tool for cloud customers, can be deployed
in different cloud providers. PTPmesh performed measurements in data centres across
different cloud providers, identifying considerable latency variance between data centres.

• In Chapter 5, I showed that even small amounts of network latency in the order of tens or
hundreds of microseconds can impact negatively the application performance for certain

157



158 7.1. FUTURE WORK

typical cloud applications (DNS, key-value store, machine learning frameworks). I stu-
died the effect of injecting different amounts of latency in the network on several typical
cloud applications’ performance through experiments conducted on a custom testbed. I
showed that DNS, Memcached, STRADS, and Tensorflow are sensitive to increases in
latencies of only tens of microseconds, while Spark is not affected by up to 500µs. I
built predictions of application performance dependent upon network latency based on
the experimental results.

I showed that network latency is an important factor to consider for the performance of
distributed applications of the style used in data centres, and I built functions that predict
application performance dependent upon network latency for these applications.

• In Chapter 6, I introduced and described the NoMora cluster scheduling architecture,
which extends the Firmament cluster scheduling framework. NoMora uses functions that
predict the application performance based upon network latency, combined with network
latency measurements between pairs of hosts in a data centre offered by a measurement
system, to place or migrate applications in order to provide them with improved applica-
tion performance. I showed using a Google cluster trace that NoMora improves overall
average application performance by up to 13.4%, while decreasing task placement latency
by a factor of 1.79×.

I showed that latency-driven, application performance-aware, cluster scheduling has util-
ity in data centres, leading to improvement in overall average application performance.

7.1 Future work

Alongside my contributions, I have also identified a number of opportunities for future work.

7.1.1 Extending PTPmesh

Data storage and analysis The network measurement data collected must be aggregated in
order to extract meaningful information. Systems such as Pingmesh [GYX+15] and NetNO-
RAD [ALZ16] have additional components for data storage (Cosmos [CJL+08] in the case of
Pingmesh, Scribe [Joh08] in the case of NetNORAD) and analysis (SCOPE [CJL+08] in the
case of Pingmesh, Scuba [Abr12] in the case of NetNORAD). Currently, PTPmesh’s data pro-
cessing takes place separately at each client, but the data storage and analysis components of
Pingmesh and NetNORAD can be adapted to aggregate and process PTPd data logs.

Furthermore, PTP measurement data could be post-processed to remove the anomalies in the
one-way delay values introduced by the PTP convergence time period, offering more accurate
one-way delay measurements.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 159

Hierarchical design PTPmesh could be provided as a data centre-wide service. In this case,
its design would resemble that of Pingmesh or NetNORAD. The probing scheme would not
be linked to tenant networks, but to the underlying physical network infrastructure. It could
additionally use PTP-enabled NICs. PTPmesh’s design would be hierarchical: probing would
take place between the each pair of servers under a ToR, between each pair of ToRs (through
designated servers below ToRs), and at a higher level between each pair of data centres (§2.3.4).

Root cause analysis As already stated, determining the root cause of latency spikes, end-host
issue or network fault, is difficult [RBB+18]. Access to the virtualisation layer would be needed
to discern between these two types of issues. Collecting different types of measurement data,
both at the end-host and in-network [ACL+16], could be a promising approach to solving this
challenge. Additionally, the use of monitoring algorithms implemented on programmable data
planes [PAM17; NSN+17; LMK+16a; LMK+16b] could make troubleshooting the network sig-
nificantly easier.

7.1.2 Extending the application performance prediction

Measuring application performance under different network conditions A system that
benchmarks the application performance under different configurations and network conditions
(different latency magnitudes and variances) would help in building a complete application per-
formance profile. Such a system would be used to predict the application performance under
different circumstances. The predictions can then be used to inform cloud operators and users
in order to find the optimal placement under given network conditions. Such systems have been
proposed in the past, which consider the application semantics, application communication pat-
tern, and also network bandwidth used by the application [EDC+09; VCC11; HB11; JBC+12;
JKW15; OAB15; VYF+16], but have not included in their predictions the application’s network
latency demands.

Extending the application performance prediction model By fitting a naive model to the
experimental datasets in Section 5.5, I took a first step towards building a more general model.
The model should show how different latency magnitudes and variances influence the applica-
tion performance. More complex models using several features for each application, such as
packet size, packet inter-arrival time, flow duration, or burst length [MZ05], could be derived
using recent machine learning techniques [XHG18]. Going further, other aspects, such as type
of CPU, core count, memory requirements, disk throughput, network bandwidth demands could
be incorporated in the model, building a comprehensive application performance model, with
the help of the data obtained from a benchmark system as the one described in the previous
paragraph.



160 7.1. FUTURE WORK

7.1.3 Extending NoMora

Task constraints The NoMora cost model does not incorporate other constraints, such as task
interference, or constraints about other resources needed by the task, such as CPU, memory,
disk throughput, or network bandwith. The cost model can be extended with other Firmament
cost models to accommodate such constraints. For example, the cost function for determining
costs on arcs could compute an aggregate cost over all the constraints related to resources.

Gang scheduling Gang scheduling means all the application’s tasks are placed simultaneously.
Certain applications (e.g., Spark, Tensorflow, STRADS) whose computation is done by all tasks
together would benefit from having all their tasks placed simultaneously, reducing the task wait
time and overall job runtime. Firmament supports gang scheduling, where all task nodes are
connected to an aggregator node, and this aggregator node is connected to the rest of the flow
network as in the usual case.

In the current NoMora policy, the root task is placed first, and the optimal placement of the
other tasks is computed based on the placement of the root task. With gang scheduling, all
tasks must be placed at the same time, so the cost between the root task and the other tasks is
not known beforehand. Thus, the cost determined by the network latency between every two
machines in the data centre must be encoded in the flow network. One way to do this would
be to have equivalence classes that comprise machines whose network latency between each
other is within a certain range. If a job is gang scheduled in such an equivalence class, then all
the tasks of the job will be experiencing the network latency of the equivalence class. All the
tasks of a job can be gang scheduled in one equivalence class if its size is sufficient, or across
multiple equivalence classes. Since the network latency between machines is not constant, the
equivalence classes would change frequently, meaning the flow network would also change
frequently, which would add additional overhead to computing task placement.

Flow scheduling NoMora can be coupled with approaches like FastPass [POB+14] to choose
amongst the network paths that are available to a placed applications’ packets. Due to the exis-
tence of multiple network paths between hosts in data centres, my policy utilises the maximum
network latency in the cost computation to be conservative. But once an application is placed,
the packets of the application can be assigned one of the paths with the lowest latency amongst
the ones that are available to the application using a centralised allocator such as FastPass. Fast-
Pass computes the time when each packet will be sent and the path the packet will take. With the
network latency on paths known, these values can serve as an additional input for the FastPass
computation to chose paths for an application’s packets which would offer the best application
performance.

Varys [CZS14], Baraat [DKB+14], Aalo [CS15] are systems for coflow scheduling. A coflow is
formed of flows that originate from the same task, and whose flow scheduling is done together
to improve application performance. These systems can optimise the scheduling of the tasks’
coflows after the job’s tasks had been placed by NoMora [JBM+15]. Moreover, approaches



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 161

such as pFabric [AYS+13] or QJump [GSG+15] can be used to futher improve the performance
for certain applications by assigning higher priorities to their network traffic.

Lastly, an integration of the cluster scheduler and network flow scheduler into a single monolith
scheduling architecture could be designed.

7.2 Concluding remarks

Network latency is important for cloud customers’ application performance [MK15], but it is
often an unaddressed issue. Recalling the thesis of this dissertation, I sum up the contributions
I made:

1. I investigated the use of PTP measurements for estimating one-way delay and packet loss
ratio in data centres. I showed that PTPd measurements can be used to measure network
conditions in data centres.

2. I presented PTPmesh, a practical and easily deployable monitoring tool for tenants to
access one-way delay and packet loss ratio measurements, and I showed that it can be
deployed in different cloud providers to gain insights into current network conditions.
Furthermore, I conducted a measurement study of network conditions in data centres
from multiple cloud providers using PTPmesh, showing differences in latency magnitude,
latency variance and packet loss ratios between data centres.

3. I showed that network latency in the order of tens to hundreds of microseconds matters for
typical data centre distributed applications, and I built functions that predict application
performance dependent upon network latency.

4. I demonstrated notable application performance improvement by combining application
performance prediction functions with a network latency measurement infrastructure in a
practical cluster scheduling architecture, NoMora.



162 7.2. CONCLUDING REMARKS



Bibliography

[AA15] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems:
Three Easy Pieces. 0.91. Arpaci-Dusseau Books, May 2015 (cited on page 51).

[ABC+16] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, et al. “TensorFlow: A System for Large-scale Machine
Learning”. In: Proceedings of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation. OSDI’16. Savannah, GA, USA: USENIX As-
sociation, 2016, pp. 265–283 (cited on pages 21, 40–41, 75, 115, 119–120).

[ABK+14] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno
Thereska. “End-to-end Performance Isolation Through Virtual Datacenters”. In:
Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation. OSDI’14. Broomfield, CO: USENIX Association, 2014, pp. 233–
248 (cited on pages 71–72).

[Abr12] Lior Abraham. Under the hood: Data diving with Scuba. https://www.
facebook.com/notes/facebook- engineering/under- the-

hood-data-diving-with-scuba/10150599692628920/. [Online;
accessed December 2018]. Facebook, Apr. 2012 (cited on page 158).

[ACC+18] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang (Harry) Liu,
Jitu Padhye, Boon Thau Loo, et al. “007: Democratically Finding the Cause of
Packet Drops”. In: 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). Renton, WA: USENIX Association, 2018, pp. 419–
435 (cited on pages 49–50).

[ACL+16] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff Outhred.
“Taking the Blame Game out of Data Centers Operations with NetPoirot”. In:
Proceedings of the 2016 ACM SIGCOMM Conference. SIGCOMM ’16. Floria-
nopolis, Brazil: ACM, 2016, pp. 440–453 (cited on pages 50, 159).

[ACR+10] Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea, and Austin
Donnelly. “Symbiotic Routing in Future Data Centers”. In: SIGCOMM Comput.
Commun. Rev. 40.4 (Aug. 2010), pp. 51–62 (cited on page 39).

163

https://www.facebook.com/notes/facebook-engineering/under-the-hood-data-diving-with-scuba/10150599692628920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-data-diving-with-scuba/10150599692628920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-data-diving-with-scuba/10150599692628920/


164 BIBLIOGRAPHY

[AED+14] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan,
Kevin Chu, Andy Fingerhut, Vinh The Lam, et al. “CONGA: Distributed Congestion-
aware Load Balancing for Datacenters”. In: Proceedings of the 2014 ACM Con-
ference on SIGCOMM. SIGCOMM ’14. Chicago, Illinois, USA: ACM, 2014,
pp. 503–514 (cited on page 20).

[AGM+10] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, et al. “Data Center TCP (DCTCP)”.
In: Proceedings of the ACM SIGCOMM 2010 Conference. SIGCOMM ’10. New
Delhi, India: ACM, 2010, pp. 63–74 (cited on pages 39–42, 44–45, 67, 75).

[AKE+12] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vah-
dat, and Masato Yasuda. “Less is More: Trading a Little Bandwidth for Ultra-low
Latency in the Data Center”. In: Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation. NSDI’12. San Jose, CA:
USENIX Association, 2012, pp. 19–19 (cited on pages 39, 127).

[ALC+17] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkatara-
man, Minlan Yu, and Ming Zhang. “Cherrypick: Adaptively Unearthing the Best
Cloud Configurations for Big Data Analytics”. In: Proceedings of the 14th USENIX
Conference on Networked Systems Design and Implementation. NSDI’17. Boston,
MA, USA: USENIX Association, 2017, pp. 469–482 (cited on page 68).

[ALV08] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A Scalable, Com-
modity Data Center Network Architecture”. In: Proceedings of the ACM SIG-
COMM 2008 Conference on Data Communication. SIGCOMM ’08. Seattle,
WA, USA: ACM, 2008, pp. 63–74 (cited on pages 37–38, 63, 92, 146).

[ALZ16] Aijay Adams, Petr Lapukhov, and James Hongyi Zeng. NetNORAD: Troubleshoot-
ing networks via end-to-end probing. https://code.facebook.com/
posts/1534350660228025/netnorad-troubleshooting-netwo

rks-via-end-to-end-probing/. [Online; accessed December 2018].
2016 (cited on pages 31, 47–49, 91–92, 141, 158).

[Ama18] Amazon. Amazon Enhanced Networking. https://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/enhanced-networking.html.
[Online; accessed December 2018]. 2018 (cited on page 102).

[And14] Alexey Andreyev. Introducing data center fabric, the next-generation Facebook
data center network. https://code.fb.com/production-enginee
ring/introducing-data-center-fabric-the-next-generat

ion-facebook-data-center-network/. [Online; accessed December
2018]. 2014 (cited on pages 38, 147).

https://code.facebook.com/posts/1534350660228025/ netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/1534350660228025/ netnorad-troubleshooting-networks-via-end-to-end-probing/
https://code.facebook.com/posts/1534350660228025/ netnorad-troubleshooting-networks-via-end-to-end-probing/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.fb.com/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/


BIBLIOGRAPHY 165

[APG+18] George Amvrosiadis, Jun Woo Park, Gregory R. Ganger, Garth A. Gibson, Elisa-
beth Baseman, and Nathan DeBardeleben. “On the diversity of cluster workloads
and its impact on research results”. In: 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18). Boston, MA: USENIX Association, 2018, pp. 533–546
(cited on page 65).

[ARR+10] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang,
and Amin Vahdat. “Hedera: Dynamic Flow Scheduling for Data Center Net-
works”. In: Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation. NSDI’10. San Jose, California: USENIX Associa-
tion, 2010, pp. 19–19 (cited on pages 20, 135).

[ASR+10] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper. “Predicting the
Performance of Virtual Machine Migration”. In: 2010 IEEE International Sym-
posium on Modeling, Analysis and Simulation of Computer and Telecommunica-
tion Systems. Aug. 2010, pp. 37–46 (cited on page 144).

[AWS] Amazon AWS. Weave Net Multicast for AWS EC2. https://aws.amazon.
com/marketplace/pp/B071RMCZ1X. [Online; accessed December 2018]
(cited on page 93).

[AWS18a] Amazon AWS. Amazon Elastic Block Store. https://aws.amazon.com/
ebs/. [Online; accessed December 2018]. 2018 (cited on page 94).

[AWS18b] Amazon AWS. Announcing General Availability of Amazon EC2 Bare Metal In-
stances. https://aws.amazon.com/about- aws/whats- new/
2018/05/announcing- general- availability- of- amazon-

ec2-bare-metal-instances/. [Online; accessed December 2018]. 2018
(cited on page 85).

[AXF+12] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
“Workload Analysis of a Large-scale Key-value Store”. In: Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems. SIGMETRICS ’12. London,
England, UK: ACM, 2012, pp. 53–64 (cited on pages 41, 75, 118, 120).

[AYS+13] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKe-
own, Balaji Prabhakar, and Scott Shenker. “pFabric: Minimal Near-optimal Dat-
acenter Transport”. In: Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM. SIGCOMM ’13. Hong Kong, China: ACM, 2013, pp. 435–446
(cited on pages 20, 67, 135, 161).

[Azu] Microsoft Azure. Azure Virtual Network frequently asked questions (FAQ). ht
tps://docs.microsoft.com/en-us/azure/virtual-networ

k/virtual-networks-faq. [Online; accessed December 2018] (cited on
page 93).

https://aws.amazon.com/marketplace/pp/B071RMCZ1X
https://aws.amazon.com/marketplace/pp/B071RMCZ1X
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/about-aws/whats-new/2018/05/announcing-general-availability-of-amazon-ec2-bare-metal-instances/
https://aws.amazon.com/about-aws/whats-new/2018/05/announcing-general-availability-of-amazon-ec2-bare-metal-instances/
https://aws.amazon.com/about-aws/whats-new/2018/05/announcing-general-availability-of-amazon-ec2-bare-metal-instances/
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-faq
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-faq
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-faq


166 BIBLIOGRAPHY

[BAA+11] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. “MicroTE:
Fine Grained Traffic Engineering for Data Centers”. In: Proceedings of the Sev-
enth COnference on Emerging Networking EXperiments and Technologies. CoNEXT
’11. Tokyo, Japan: ACM, 2011, 8:1–8:12 (cited on pages 20, 135).

[BAC+17] Ilker Nadi Bozkurt, Anthony Aguirre, Balakrishnan Chandrasekaran, P. Brighten
Godfrey, Gregory Laughlin, Bruce Maggs, and Ankit Singla. “Why Is the Internet
so Slow?!” In: Passive and Active Measurement: 18th International Conference,
PAM 2017, Sydney, NSW, Australia, March 30-31, 2017, Proceedings. Springer
International Publishing, 2017, pp. 173–187 (cited on page 50).

[BAM10] Theophilus Benson, Aditya Akella, and David A. Maltz. “Network Traffic Char-
acteristics of Data Centers in the Wild”. In: Proceedings of the 10th ACM SIG-
COMM Conference on Internet Measurement. IMC ’10. Melbourne, Australia:
ACM, 2010, pp. 267–280 (cited on pages 42–45).

[Bar14] Luiz André Barroso. “Landheld Computing”. In: IEEE International Solid State
Circuits Conference (ISSCC). Keynote. 2014 (cited on pages 57, 134).

[BCK+11] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. “Towards
Predictable Datacenter Networks”. In: Proceedings of the ACM SIGCOMM 2011
Conference. SIGCOMM ’11. Toronto, Ontario, Canada: ACM, 2011, pp. 242–
253 (cited on pages 70–73).

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, et al. “Xen and the Art of Virtualization”. In: Proceedings of
the Nineteenth ACM Symposium on Operating Systems Principles. SOSP ’03.
Bolton Landing, NY, USA: ACM, 2003, pp. 164–177 (cited on page 112).

[BEL+14] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping
Qian, Ming Wu, et al. “Apollo: Scalable and Coordinated Scheduling for Cloud-
Scale Computing”. In: 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). Broomfield, CO: USENIX Association, 2014,
pp. 285–300 (cited on page 68).

[BGK+13] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, et al. “Forwarding Metamorphosis: Fast Pro-
grammable Match-action Processing in Hardware for SDN”. In: Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM. SIGCOMM ’13. Hong
Kong, China: ACM, 2013, pp. 99–110 (cited on page 48).

[BH18] Luiz Andre Barroso and Urs Hoelzle. The Datacenter As a Computer: Designing
Warehouse-Scale Machines, Third Edition. 3rdst. Morgan and Claypool Publish-
ers, 2018 (cited on page 19).



BIBLIOGRAPHY 167

[BJK+13] Hitesh Ballani, Keon Jang, Thomas Karagiannis, Changhoon Kim, Dinan Gu-
nawardena, and Greg O’Shea. “Chatty Tenants and the Cloud Network Sharing
Problem”. In: Proceedings of the 10th USENIX Conference on Networked Sys-
tems Design and Implementation. nsdi’13. Lombard, IL: USENIX Association,
2013, pp. 171–184 (cited on pages 72–73).

[BMP+17] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
“Attack of the Killer Microseconds”. In: Commun. ACM 60.4 (Mar. 2017), pp. 48–
54 (cited on pages 20, 51, 75).

[Bra89] R. Braden, editor. Requirements for Internet Hosts - Communication Layers.
United States, 1989 (cited on page 25).

[BS10] Sean Kenneth Barker and Prashant Shenoy. “Empirical Evaluation of Latency-
sensitive Application Performance in the Cloud”. In: Proceedings of the First
Annual ACM SIGMM Conference on Multimedia Systems. MMSys ’10. Phoenix,
Arizona, USA: ACM, 2010, pp. 35–46 (cited on page 115).

[Bur06] Mike Burrows. “The Chubby lock service for loosely-coupled distributed sys-
tems”. In: 7th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI). 2006 (cited on page 40).

[CAK12] Yanpei Chen, Sara Alspaugh, and Randy Katz. “Interactive Analytical Processing
in Big Data Systems: A Cross-industry Study of MapReduce Workloads”. In:
Proc. VLDB Endow. 5.12 (Aug. 2012), pp. 1802–1813 (cited on page 42).

[CB06] Kendall Correll and Nick Barendt. “Design Considerations for Software Only
Implementations of the IEEE 1588 Precision Time Protocol”. In: In Conference
on IEEE 1588 Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems. 2006 (cited on pages 35–36).

[CBA+14] S.R. Chowdhury, M.F. Bari, R. Ahmed, and R. Boutaba. “PayLess: A low cost
network monitoring framework for Software Defined Networks”. In: 2014 IEEE
Network Operations and Management Symposium (NOMS). May 2014, pp. 1–9
(cited on page 28).

[CBM+17] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fon-
toura, and Ricardo Bianchini. “Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms”. In:
Proceedings of the 26th Symposium on Operating Systems Principles. SOSP ’17.
Shanghai, China: ACM, 2017, pp. 153–167 (cited on pages 65, 70, 112).

[CBR+15] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. “R2C2: A Network
Stack for Rack-scale Computers”. In: Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication. SIGCOMM ’15. London,
United Kingdom: ACM, 2015, pp. 551–564 (cited on page 64).



168 BIBLIOGRAPHY

[CCP+16] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, et al. “A Cloud-scale Acceleration
Architecture”. In: The 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. MICRO-49. Taipei, Taiwan: IEEE Press, 2016, 7:1–7:13 (cited
on page 122).

[CDE+12] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, et al. “Spanner: Google’s Globally-distributed
Database”. In: Proceedings of the 10th USENIX Conference on Operating Sys-
tems Design and Implementation. OSDI’12. Hollywood, CA, USA: USENIX
Association, 2012, pp. 251–264 (cited on pages 31, 40).

[CFS+90] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin. Simple Network Manage-
ment Protocol (SNMP). United States, 1990 (cited on pages 26–27).

[Che96] Stuart Cheshire. It’s the Latency, Stupid. http://www.stuartcheshire.
org/rants/latency.html. [Online; accessed December 2018]. May 1996
(cited on page 134).

[Cisa] Cisco. Catalyst Switched Port Analyzer (SPAN) Configuration Example. https
://www.cisco.com/c/en/us/support/docs/switches/cata

lyst-6500-series-switches/10570-41.html. [Online; accessed
December 2018] (cited on page 27).

[Cisb] Cisco. Cisco IOS IP SLAs Configuration Guide. http://www.cisco.com/
c/en/us/td/docs/ios/12_4/ip_sla/configuration/guid

e/hsla_c/hsoverv.html. [Online; accessed December 2018] (cited on
pages 27, 47, 49).

[Cisc] NetFlow Cisco. NetFlow. https://www.cisco.com/c/en/us/produ
cts/ios-nx-os-software/ios-netflow/index.html. [Online;
accessed December 2018] (cited on pages 26–27).

[Cisd] Sampled NetFlow Cisco. Sampled NetFlow. https://www.cisco.com/
c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html.
[Online; accessed December 2018] (cited on page 27).

[CJL+08] Ronnie Chaiken, Bob Jenkins, Per Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. “SCOPE: Easy and Efficient Parallel Processing of
Massive Data Sets”. In: Proc. VLDB Endow. 1.2 (Aug. 2008), pp. 1265–1276
(cited on pages 49, 158).

[CK06] Mark Crovella and Balachander Krishnamurthy. Internet Measurement: Infras-
tructure, Traffic and Applications. New York, NY, USA: John Wiley & Sons,
Inc., 2006 (cited on pages 25–27, 33).

[Clo53] C. Clos. “A study of non-blocking switching networks”. In: The Bell System
Technical Journal 32.2 (Mar. 1953), pp. 406–424 (cited on page 37).

http://www.stuartcheshire.org/rants/latency.html
http://www.stuartcheshire.org/rants/latency.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/10570-41.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/10570-41.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/10570-41.html
http://www.cisco.com/c/en/us/td/docs/ios/12_4/ip_sla/ configuration/guide/hsla_c/hsoverv.html
http://www.cisco.com/c/en/us/td/docs/ios/12_4/ip_sla/ configuration/guide/hsla_c/hsoverv.html
http://www.cisco.com/c/en/us/td/docs/ios/12_4/ip_sla/ configuration/guide/hsla_c/hsoverv.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html


BIBLIOGRAPHY 169

[CR10] Marta Carbone and Luigi Rizzo. “Dummynet Revisited”. In: SIGCOMM Com-
put. Commun. Rev. 40.2 (Apr. 2010), pp. 12–20 (cited on page 30).

[CS12] Mosharaf Chowdhury and Ion Stoica. “Coflow: A Networking Abstraction for
Cluster Applications”. In: Proceedings of the 11th ACM Workshop on Hot Topics
in Networks. HotNets-XI. Redmond, Washington: ACM, 2012, pp. 31–36 (cited
on page 40).

[CS15] Mosharaf Chowdhury and Ion Stoica. “Efficient Coflow Scheduling Without Prior
Knowledge”. In: Proceedings of the 2015 ACM Conference on Special Inter-
est Group on Data Communication. SIGCOMM ’15. London, United Kingdom:
ACM, 2015, pp. 393–406 (cited on page 160).

[CZM+11] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, and Ion Sto-
ica. “Managing Data Transfers in Computer Clusters with Orchestra”. In: Pro-
ceedings of the ACM SIGCOMM 2011 Conference. SIGCOMM ’11. Toronto,
Ontario, Canada: ACM, 2011, pp. 98–109 (cited on page 42).

[CZS14] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. “Efficient Coflow Schedul-
ing with Varys”. In: Proceedings of the 2014 ACM Conference on SIGCOMM.
SIGCOMM ’14. Chicago, Illinois, USA: ACM, 2014, pp. 443–454 (cited on
pages 135, 160).

[Dat18] Databricks. Spark-perf benchmark. https://github.com/databricks
/spark-perf. [Online; accessed December 2018]. 2018 (cited on page 119).

[DB13] Jeffrey Dean and Luiz André Barroso. “The Tail at Scale”. In: Commun. ACM
56.2 (Feb. 2013), pp. 74–80 (cited on pages 73, 102, 105, 134).

[DDD+16] Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel. “Job-aware
Scheduling in Eagle: Divide and Stick to Your Probes”. In: Proceedings of the
Seventh ACM Symposium on Cloud Computing. SoCC ’16. Santa Clara, CA,
USA: ACM, 2016, pp. 497–509 (cited on page 68).

[DDK+15] Pamela Delgado, Florin Dinu, Anne-Marie Kermarrec, and Willy Zwaenepoel.
“Hawk: Hybrid Datacenter Scheduling”. In: Proceedings of the 2015 USENIX
Conference on Usenix Annual Technical Conference. USENIX ATC ’15. Santa
Clara, CA: USENIX Association, 2015, pp. 499–510 (cited on page 68).

[DDS+09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-
Scale Hierarchical Image Database”. In: CVPR09. 2009 (cited on page 42).

[Dee89] S. E. Deering. Host Extensions for IP Multicasting. United States, 1989 (cited on
page 35).

[DG01] N. G. Duffield and Matthias Grossglauser. “Trajectory Sampling for Direct Traf-
fic Observation”. In: IEEE/ACM Trans. Netw. 9.3 (June 2001), pp. 280–292 (cited
on page 27).

https://github.com/databricks/spark-perf
https://github.com/databricks/spark-perf


170 BIBLIOGRAPHY

[DG04] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters”. In: OSDI’04: Sixth Symposium on Operating System Design
and Implementation. San Francisco, CA, 2004, pp. 137–150 (cited on pages 40,
127).

[DGG+99] N. G. Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, K. K. Ramakr-
ishnan, and Jacobus E. van der Merive. “A Flexible Model for Resource Manage-
ment in Virtual Private Networks”. In: Proceedings of the Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communica-
tion. SIGCOMM ’99. Cambridge, Massachusetts, USA: ACM, 1999, pp. 95–108
(cited on page 70).

[DK13] Christina Delimitrou and Christos Kozyrakis. “Paragon: QoS-aware Scheduling
for Heterogeneous Datacenters”. In: Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Opera-
ting Systems. ASPLOS ’13. Houston, Texas, USA: ACM, 2013, pp. 77–88 (cited
on page 68).

[DK14] Christina Delimitrou and Christos Kozyrakis. “Quasar: Resource-efficient and
QoS-aware Cluster Management”. In: Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages and Operating
Systems. ASPLOS ’14. Salt Lake City, Utah, USA: ACM, 2014, pp. 127–144
(cited on page 68).

[DKB+14] Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron.
“Decentralized Task-aware Scheduling for Data Center Networks”. In: Proceed-
ings of the 2014 ACM Conference on SIGCOMM. SIGCOMM ’14. Chicago,
Illinois, USA: ACM, 2014, pp. 431–442 (cited on pages 135, 160).

[DSA+18] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman Gupta,
Brian Fahs, Dima Rubinstein, et al. “Andromeda: Performance, Isolation, and
Velocity at Scale in Cloud Network Virtualization”. In: 15th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 18). Renton, WA:
USENIX Association, 2018, pp. 373–387 (cited on pages 64, 85, 105, 112).

[EDC+09] Sameh Elnikety, Steven Dropsho, Emmanuel Cecchet, and Willy Zwaenepoel.
“Predicting Replicated Database Scalability from Standalone Database Profil-
ing”. In: Proceedings of the 4th ACM European Conference on Computer Sys-
tems. EuroSys ’09. Nuremberg, Germany: ACM, 2009, pp. 303–316 (cited on
page 159).

[End] Endance. Endance DAG 9.2SX2 Datasheet. https://www.endace.com/
dag-9.2sx2-datasheet.pdf. [Online; accessed December 2018] (cited
on page 57).

https://www.endace.com/dag-9.2sx2-datasheet.pdf
https://www.endace.com/dag-9.2sx2-datasheet.pdf


BIBLIOGRAPHY 171

[Ent16] Tolly Enterprises. Mellanox Spectrum vs. Broadcom StrataXGS Tomahawk 25GbE
& 100GbE Performance Evaluation - Evaluating Consistency & Predictability.
Technical report 216112. 2016 (cited on page 62).

[ERW+14] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle. “A study of network stack
latency for game servers”. In: 13th Annual Workshop on Network and Systems
Support for Games. Dec. 2014, pp. 1–6 (cited on page 129).

[ESn] Lawrence Berkeley National Laboratory ESnet. iPerf. https://iperf.fr/.
[Online; accessed December 2018] (cited on page 27).

[Exa18a] ExaLINK. ExaLINK 50 - ULTRA LOW LATENCY 50-PORT LAYER 1 MATRIX
SWITCH. https://exablaze.com/downloads/pdf/ExaLINK-
Datasheet_2014.pdf. [Online; accessed December 2018]. 2018 (cited on
page 51).

[Exa18b] ExaLINK. ExaNIC X10 SUB-MICRO TCP HALF RTT DUAL-PORT 10GBE
NETWORK INTERFACE CARD. https://exablaze.com/downloads/
pdf/ExaNIC_X10_Datasheet_2018_1.1.pdf. [Online; accessed
December 2018]. 2018 (cited on page 51).

[FBK+12] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo
Fonseca. “Jockey: Guaranteed Job Latency in Data Parallel Clusters”. In: Pro-
ceedings of the 7th ACM European Conference on Computer Systems. EuroSys
’12. Bern, Switzerland: ACM, 2012, pp. 99–112 (cited on page 68).

[FPM+18] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, et al. “Azure Accelerated Network-
ing: SmartNICs in the Public Cloud”. In: 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). Renton, WA: USENIX Associ-
ation, 2018, pp. 51–66 (cited on pages 64, 85, 93, 102, 105, 112).

[GAK+14] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and
Aditya Akella. “Multi-resource Packing for Cluster Schedulers”. In: Proceedings
of the 2014 ACM Conference on SIGCOMM. SIGCOMM ’14. Chicago, Illinois,
USA: ACM, 2014, pp. 455–466 (cited on page 68).

[GBQ+14] Ali Ghiasi, Rich Baca, Ghiasi Quantum, and LLC Commscope. “Overview of
Largest Data Centers”. In: Proc. 802.3 bs Task Force Interim meeting. May 2014
(cited on page 134).

[GC13] Nicolas Guilbaud and Ross Cartlidge. Localizing packet loss in a large complex
network. https://www.nanog.org/meetings/nanog57/presenta
tions/Tuesday/tues.general.GuilbaudCartlidge.Topology

.7.pdf. [Online; accessed December 2018]. 2013 (cited on page 92).

https://iperf.fr/
https://exablaze.com/downloads/pdf/ExaLINK-Datasheet_2014.pdf
https://exablaze.com/downloads/pdf/ExaLINK-Datasheet_2014.pdf
https://exablaze.com/downloads/pdf/ExaNIC_X10_Datasheet_2018_1.1.pdf
https://exablaze.com/downloads/pdf/ExaNIC_X10_Datasheet_2018_1.1.pdf
https://www.nanog.org/meetings/nanog57/presentations/Tuesday/ tues.general.GuilbaudCartlidge.Topology.7.pdf
https://www.nanog.org/meetings/nanog57/presentations/Tuesday/ tues.general.GuilbaudCartlidge.Topology.7.pdf
https://www.nanog.org/meetings/nanog57/presentations/Tuesday/ tues.general.GuilbaudCartlidge.Topology.7.pdf


172 BIBLIOGRAPHY

[GCA+16] Robert Grandl, Mosharaf Chowdhury, Aditya Akella, and Ganesh Ananthanarayanan.
“Altruistic Scheduling in Multi-resource Clusters”. In: Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation. OSDI’16.
Savannah, GA, USA: USENIX Association, 2016, pp. 65–80 (cited on page 68).

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google File
System”. In: Proceedings of the 19th ACM Symposium on Operating Systems
Principles. Bolton Landing, NY, 2003, pp. 20–43 (cited on page 40).

[GHC+18] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford,
and Walter Willinger. “Sonata: Query-driven Streaming Network Telemetry”. In:
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. SIGCOMM ’18. Budapest, Hungary: ACM, 2018, pp. 357–371
(cited on page 29).

[Gir] Apache Giraph. Apache Giraph. http://giraph.apache.org/. [Online;
accessed December 2018] (cited on pages 40–41).

[GJK+09] Albert Greenberg, Navendu Jain, Srikanth Kandula, Changhoon Kim, Parantap
Lahiri, Dave Maltz, Parveen Patel, et al. “VL2: A Scalable and Flexible Data
Center Network”. In: SIGCOMM. Association for Computing Machinery, Inc.,
Aug. 2009 (cited on pages 38–39, 42, 44–45).

[GKP+18] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun Suresh,
and Sriram Rao. “Medea: Scheduling of Long Running Applications in Shared
Production Clusters”. In: Proceedings of the Thirteenth EuroSys Conference. Eu-
roSys ’18. Porto, Portugal: ACM, 2018, 4:1–4:13 (cited on page 69).

[GLL+09] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, et al. “BCube: A High Performance, Server-centric Network Archi-
tecture for Modular Data Centers”. In: Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication. SIGCOMM ’09. Barcelona, Spain: ACM,
2009, pp. 63–74 (cited on page 39).

[GLW+10] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao Kong, Peng
Sun, Wenfei Wu, et al. “SecondNet: A Data Center Network Virtualization Ar-
chitecture with Bandwidth Guarantees”. In: Proceedings of the 6th International
COnference. Co-NEXT ’10. Philadelphia, Pennsylvania: ACM, 2010, 15:1–15:12
(cited on pages 71–73).

[GLY+18] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosen-
blum, and Amin Vahdat. “Exploiting a Natural Network Effect for Scalable, Fine-
grained Clock Synchronization”. In: 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). Renton, WA: USENIX Asso-
ciation, 2018, pp. 81–94 (cited on pages 32, 36–37).

http://giraph.apache.org/


BIBLIOGRAPHY 173

[GNK+15] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. “pHost: Distributed Near-optimal Datacenter Trans-
port over Commodity Network Fabric”. In: Proceedings of the 11th ACM Con-
ference on Emerging Networking Experiments and Technologies. CoNEXT ’15.
Heidelberg, Germany: ACM, 2015, 1:1–1:12 (cited on pages 20, 67).

[GNK+16] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, et al. “Network Requirements for Resource
Disaggregation”. In: Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation. OSDI’16. Savannah, GA, USA: USENIX
Association, 2016, pp. 249–264 (cited on pages 39, 64, 69).

[Gog17] Ionel Corneliu Gog. “Flexible and efficient computation in large data centres”.
PhD thesis. University of Cambridge, 2017 (cited on pages 67–68, 139, 154).

[GSG+15] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson,
Andrew W. Moore, Steven Hand, and Jon Crowcroft. “Queues Don’T Matter
when You Can JUMP Them!” In: Proceedings of the 12th USENIX Confer-
ence on Networked Systems Design and Implementation. NSDI’15. Oakland,
CA: USENIX Association, 2015, pp. 1–14 (cited on pages 20, 67, 69, 72–73,
127, 135, 161).

[GSG+16] Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and Steven
Hand. “Firmament: Fast, Centralized Cluster Scheduling at Scale”. In: Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and Imple-
mentation. OSDI’16. Savannah, GA, USA: USENIX Association, 2016, pp. 99–
115 (cited on pages 21–22, 67, 69–70, 73, 135–136, 143).

[GSW15] Andrey Goder, Alexey Spiridonov, and Yin Wang. “Bistro: Scheduling Data-
Parallel Jobs Against Live Production Systems”. In: 2015 USENIX Annual Tech-
nical Conference (USENIX ATC 15). Santa Clara, CA: USENIX Association,
2015, pp. 459–471 (cited on pages 67–68).

[GVM+11] Diwaker Gupta, Kashi Venkatesh Vishwanath, Marvin McNett, Amin Vahdat,
Ken Yocum, Alex Snoeren, and Geoffrey M. Voelker. “DieCast: Testing Dis-
tributed Systems with an Accurate Scale Model”. In: ACM Trans. Comput. Syst.
29.2 (May 2011), 4:1–4:48 (cited on page 30).

[GWT+08] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and Songwu
Lu. “Dcell: A Scalable and Fault-tolerant Network Structure for Data Centers”.
In: Proceedings of the ACM SIGCOMM 2008 Conference on Data Communi-
cation. SIGCOMM ’08. Seattle, WA, USA: ACM, 2008, pp. 75–86 (cited on
page 39).



174 BIBLIOGRAPHY

[GYX+15] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, et al. “Pingmesh: A Large-Scale System for Data Center Net-
work Latency Measurement and Analysis”. In: Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication. SIGCOMM ’15.
London, United Kingdom: ACM, 2015, pp. 139–152 (cited on pages 31, 47–49,
86, 91–92, 98, 141, 158).

[HB11] Herodotos Herodotou and Shivnath Babu. “Profiling, What-if Analysis, and Cost-
based Optimization of MapReduce Programs”. In: Proceedings of the VLDB En-
dowment. VLDB’11. 2011 (cited on page 159).

[HBB+18] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M.
Fawzy, et al. “Applied Machine Learning at Facebook: A Datacenter Infrastruc-
ture Perspective”. In: 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). Feb. 2018, pp. 620–629 (cited on page 41).

[HBB17] Kelsey Hightower, Brendan Burns, and Joe Beda. Kubernetes: Up and Running
Dive into the Future of Infrastructure. 1st. O’Reilly Media, Inc., 2017 (cited on
page 69).

[HCG+18] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. “Network-Wide
Heavy Hitter Detection with Commodity Switches”. In: Proceedings of the Sym-
posium on SDN Research. SOSR ’18. Los Angeles, CA, USA: ACM, 2018, 8:1–
8:7 (cited on page 31).

[Hem] Stephen Hemminger. NetEm - Network Emulator. http://man7.org/lin
ux/man-pages/man8/tc-netem.8.html. [Online; accessed December
2018] (cited on pages 30–31, 86).

[HF15] T. Hoßfeld and M. Fiedler. “The unexpected QoE killer: When the network em-
ulator misshapes traffic and QoE”. In: 2015 Seventh International Workshop
on Quality of Multimedia Experience (QoMEX). May 2015, pp. 1–6 (cited on
page 30).

[HHJ+12] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick
McKeown. “Reproducible Network Experiments Using Container-based Emula-
tion”. In: Proceedings of the 8th International Conference on Emerging Network-
ing Experiments and Technologies. CoNEXT ’12. Nice, France: ACM, 2012,
pp. 253–264 (cited on page 30).

[HKP+11] Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David
Wetherall. “Augmenting Data Center Networks with Multi-gigabit Wireless Links”.
In: Proceedings of the ACM SIGCOMM 2011 Conference. SIGCOMM ’11. Toronto,
Ontario, Canada: ACM, 2011, pp. 38–49 (cited on pages 42, 44, 46).

http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html


BIBLIOGRAPHY 175

[HKZ+11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, et al. “Mesos: A Platform for Fine-grained
Resource Sharing in the Data Center”. In: Proceedings of the 8th USENIX Con-
ference on Networked Systems Design and Implementation. NSDI’11. Boston,
MA: USENIX Association, 2011, pp. 295–308 (cited on page 68).

[HLB18] Qun Huang, Patrick P. C. Lee, and Yungang Bao. “Sketchlearn: Relieving User
Burdens in Approximate Measurement with Automated Statistical Inference”. In:
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. SIGCOMM ’18. Budapest, Hungary: ACM, 2018, pp. 576–590
(cited on page 29).

[HLL+18] Moritz Hoffmann, Andrea Lattuada, John Liagouris, Vasiliki Kalavri, Desislava
Dimitrova, Sebastian Wicki, Zaheer Chothia, et al. “SnailTrail: Generalizing Crit-
ical Paths for Online Analysis of Distributed Dataflows”. In: 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18). Renton,
WA: USENIX Association, 2018, pp. 95–110 (cited on page 127).

[Hop00] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. Technical report.
RFC 2992, 2000 (cited on page 38).

[HRA+17] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wójcik. “Re-architecting Datacenter Net-
works and Stacks for Low Latency and High Performance”. In: Proceedings of
the Conference of the ACM Special Interest Group on Data Communication. SIG-
COMM ’17. Los Angeles, CA, USA: ACM, 2017, pp. 29–42 (cited on pages 20,
40, 67).

[HRF+06] Thomas R. Henderson, Sumit Roy, Sally Floyd, and George F. Riley. “Ns-3
Project Goals”. In: Proceeding from the 2006 Workshop on Ns-2: The IP Net-
work Simulator. WNS2 ’06. Pisa, Italy: ACM, 2006 (cited on page 29).

[HW16] Mukesh Hira and LJ Wobker. Improving Network Monitoring and Management
with Programmable Data Planes. http://p4.org/p4/inband-networ
k-telemetry/. [Online; accessed December 2018]. 2016 (cited on pages 29,
48–49).

[IEE08] IEEE. IEEE 1588-2008 Precision Time Protocol. https://www.nist.gov/
el/intelligent-systems-division-73500/introduction-

ieee-1588. [Online; accessed December 2018]. 2008 (cited on pages 27, 32,
34).

[IH08] Teerawat Issariyakul and Ekram Hossain. Introduction to Network Simulator
NS2. 1st edition. Springer Publishing Company, Incorporated, 2008 (cited on
page 29).

http://p4.org/p4/inband-network-telemetry/
http://p4.org/p4/inband-network-telemetry/
https://www.nist.gov/el/intelligent-systems-division-73500/introduction-ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/introduction-ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/introduction-ieee-1588


176 BIBLIOGRAPHY

[Int18a] Intel. Intel Disaggregated Servers Drive Data Center Efficiency and Innovation.
https://www.intel.co.uk/content/www/uk/en/it-manage

ment/intel-it-best-practices/disaggregated-server-ar

chitecture-drives-data-center-efficiency-paper.html.
[Online; accessed December 2018]. 2018 (cited on page 39).

[Int18b] Intel. Intel Rack Scale Design - Data Center Agility At Scale. https://www.
intel.co.uk/content/www/uk/en/architecture-and-tec

hnology/rack-scale-design-overview.html. [Online; accessed
December 2018]. 2018 (cited on page 64).

[Int18c] Intel. Intel SSD D3-S4610 SERIES. https://www.intel.com/content/
www/us/en/products/memory-storage/solid-state-drives/

data-center-ssds/dc-d3-s4610-series/d3-s4610-3-84tb-

2-5inch-3d2.html. [Online; accessed December 2018]. 2018 (cited on
page 51).

[Int18d] Intel. Intel SSD DC P4511 SERIES. https://www.intel.co.uk/con
tent/www/uk/en/products/memory-storage/solid-state-

drives/data-center-ssds/dc-p4511-series/dc-p4511-1tb-

m-2-110mm-3d2.html. [Online; accessed December 2018]. 2018 (cited on
page 51).

[Int18e] Intel. World’s Most Responsive Data Center SSD. https://www.intel.
co.uk/content/dam/www/public/us/en/documents/product-

briefs/optane- ssd- dc- p4800x- brief.pdf. [Online; accessed
December 2018]. 2018 (cited on page 51).

[IPC+09] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and
Andrew Goldberg. “Quincy: Fair Scheduling for Distributed Computing Clus-
ters”. In: Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Sys-
tems Principles. SOSP ’09. Big Sky, Montana, USA: ACM, 2009, pp. 261–276
(cited on pages 67–69, 73, 136, 138, 143).

[JAM+13] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prab-
hakar, Changhoon Kim, and Albert Greenberg. “EyeQ: Practical Network Per-
formance Isolation at the Edge”. In: Proceedings of the 10th USENIX Confer-
ence on Networked Systems Design and Implementation. nsdi’13. Lombard, IL:
USENIX Association, 2013, pp. 297–312 (cited on pages 71–72).

[JBC+12] Virajith Jalaparti, Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant
Rowstron. “Bridging the Tenant-provider Gap in Cloud Services”. In: Proceed-
ings of the Third ACM Symposium on Cloud Computing. SoCC ’12. San Jose,
California: ACM, 2012, 10:1–10:14 (cited on page 159).

https://www.intel.co.uk/content/www/uk/en/it-management/intel-it-best-practices/disaggregated-server-architecture-drives-data-center-efficiency-paper.html
https://www.intel.co.uk/content/www/uk/en/it-management/intel-it-best-practices/disaggregated-server-architecture-drives-data-center-efficiency-paper.html
https://www.intel.co.uk/content/www/uk/en/it-management/intel-it-best-practices/disaggregated-server-architecture-drives-data-center-efficiency-paper.html
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/rack-scale-design-overview.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-d3-s4610-series/d3-s4610-3-84tb-2-5inch-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-d3-s4610-series/d3-s4610-3-84tb-2-5inch-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-d3-s4610-series/d3-s4610-3-84tb-2-5inch-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-d3-s4610-series/d3-s4610-3-84tb-2-5inch-3d2.html
https://www.intel.co.uk/content/www/uk/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-p4511-series/dc-p4511-1tb-m-2-110mm-3d2.html
https://www.intel.co.uk/content/www/uk/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-p4511-series/dc-p4511-1tb-m-2-110mm-3d2.html
https://www.intel.co.uk/content/www/uk/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-p4511-series/dc-p4511-1tb-m-2-110mm-3d2.html
https://www.intel.co.uk/content/www/uk/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-p4511-series/dc-p4511-1tb-m-2-110mm-3d2.html
https://www.intel.co.uk/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-dc-p4800x-brief.pdf
https://www.intel.co.uk/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-dc-p4800x-brief.pdf
https://www.intel.co.uk/content/dam/www/public/us/en/documents/product-briefs/optane-ssd-dc-p4800x-brief.pdf


BIBLIOGRAPHY 177

[JBM+15] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram Rao, Konstantin Makarychev,
and Matthew Caesar. “Network-Aware Scheduling for Data-Parallel Jobs: Plan
When You Can”. In: Proceedings of the 2015 ACM Conference on Special Inter-
est Group on Data Communication. SIGCOMM ’15. London, United Kingdom:
ACM, 2015, pp. 407–420 (cited on pages 69, 160).

[JCM+16] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayana-
murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, et al. “Morpheus:
Towards Automated SLOs for Enterprise Clusters”. In: Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation. OSDI’16.
Savannah, GA, USA: USENIX Association, 2016, pp. 117–134 (cited on page 68).

[JKW15] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. “Response Time Service
Level Agreements for Cloud-hosted Web Applications”. In: Proceedings of the
Sixth ACM Symposium on Cloud Computing. SoCC ’15. Kohala Coast, Hawaii:
ACM, 2015, pp. 315–328 (cited on page 159).

[JLH+11] Audrius Jurgelionis, Jukka-Pekka Laulajainen, Matti Hirvonen, and Alf Inge
Wang. “An empirical study of netem network emulation functionalities”. In:
Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th
International Conference on. IEEE. 2011, pp. 1–6 (cited on page 30).

[Joh08] Robert Johnson. Facebook’s Scribe technology now open source. https://w
ww.facebook.com/notes/facebook-engineering/facebooks-

scribe-technology-now-open-source/32008268919/. [Online;
accessed December 2018]. Facebook, Oct. 2008 (cited on page 158).

[JQC09] Andrew Johnson, Juergen Quittek, and Benoît Claise. Packet Sampling (PSAMP)
Protocol Specifications. RFC 5476. Mar. 2009 (cited on page 26).

[JSB+15] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. “Silo: Predictable
Message Latency in the Cloud”. In: Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication. SIGCOMM ’15. London,
United Kingdom: ACM, 2015, pp. 435–448 (cited on pages 72–73).

[JYP+17] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, et al. “In-Datacenter Performance Analysis of a
Tensor Processing Unit”. In: Proceedings of the 44th Annual International Sym-
posium on Computer Architecture. ISCA ’17. Toronto, ON, Canada: ACM, 2017,
pp. 1–12 (cited on page 69).

[KHL+16] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai, Garth A. Gibson,
and Eric P. Xing. “STRADS: A Distributed Framework for Scheduled Model
Parallel Machine Learning”. In: Proceedings of the Eleventh European Confer-
ence on Computer Systems. EuroSys ’16. London, United Kingdom: ACM, 2016,
5:1–5:16 (cited on pages 21, 41, 115, 118, 120).

https://www.facebook.com/notes/facebook-engineering/facebooks-scribe-technology-now-open-source/32008268919/
https://www.facebook.com/notes/facebook-engineering/facebooks-scribe-technology-now-open-source/32008268919/
https://www.facebook.com/notes/facebook-engineering/facebooks-scribe-technology-now-open-source/32008268919/


178 BIBLIOGRAPHY

[KHL+18] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai, Garth A. Gibson,
and Eric P. Xing. STRADS. https://github.com/petuum/strads.
git. [Online; accessed December 2018]. 2018 (cited on page 118).

[KJN+15] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinadhuni,
Enrique Cauich Zermeno, C. Stephen Gunn, et al. “BwE: Flexible, Hierarchical
Bandwidth Allocation for WAN Distributed Computing”. In: Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication. SIG-
COMM ’15. London, United Kingdom: ACM, 2015, pp. 1–14 (cited on pages 74,
135).

[KPK+18] Jan Kucera, Diana Andreea Popescu, Jan Korenek, Andrew William Moore, and
Gianni Antichi. Elastic Trie: Enabling Event Triggered Monitoring in the Data-
plane. 2018 (cited on page 24).

[KPT+12] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin
Vahdat. “Chronos: Predictable Low Latency for Data Center Applications”. In:
Proceedings of the Third ACM Symposium on Cloud Computing. SoCC ’12. San
Jose, California: ACM, 2012, 9:1–9:14 (cited on pages 40–41, 73, 75).

[KRC+15] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas, Kishore Chali-
parambil, Giovanni Matteo Fumarola, Solom Heddaya, et al. “Mercury: Hy-
brid Centralized and Distributed Scheduling in Large Shared Clusters”. In: 2015
USENIX Annual Technical Conference (USENIX ATC 15). Santa Clara, CA:
USENIX Association, 2015, pp. 485–497 (cited on page 68).

[KSG+09] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ron-
nie Chaiken. “The Nature of Data Center Traffic: Measurements & Analysis”.
In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measure-
ment Conference. IMC ’09. Chicago, Illinois, USA: ACM, 2009, pp. 202–208
(cited on pages 42–45).

[Lab17] Percona Lab. TPCC MySQL benchmark. https://github.com/Perco
na-Lab/tpcc-mysql. [Online; accessed December 2018]. 2017 (cited on
pages 55, 119).

[Lab18] NLNet Labs. NLnet Labs Name Server Daemon. https://www.nlnetlab
s.nl/projects/nsd/. [Online; accessed December 2018]. 2018 (cited on
page 117).

[LAP+14] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, et al. “Scaling Distributed Machine Learning with
the Parameter Server”. In: 11th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 14). Broomfield, CO: USENIX Association,
2014, pp. 583–598 (cited on pages 40–41).

https://github.com/petuum/strads.git
https://github.com/petuum/strads.git
https://github.com/Percona-Lab/tpcc-mysql
https://github.com/Percona-Lab/tpcc-mysql
https://www.nlnetlabs.nl/projects/nsd/
https://www.nlnetlabs.nl/projects/nsd/


BIBLIOGRAPHY 179

[LC10] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. http:
//yann.lecun.com/exdb/mnist/. [Online; accessed December 2018].
2010 (cited on pages 42, 119).

[LDG+13] Katrina LaCurts, Shuo Deng, Ameesh Goyal, and Hari Balakrishnan. “Choreo:
Network-aware Task Placement for Cloud Applications”. In: Proceedings of the
2013 Conference on Internet Measurement Conference. IMC ’13. Barcelona,
Spain: ACM, 2013, pp. 191–204 (cited on page 72).

[Lev09] David Levinthal. Performance Analysis Guide for Intel Core i7 Processor and In-
tel Xeon 5500 processors. Technical report. [Online; accessed December 2018].
2009 (cited on page 51).

[Lev14] Jacob Leverich. Mutilate: high-performance memcached load generator. http
s://github.com/leverich/mutilate. [Online; accessed December
2018]. 2014 (cited on page 118).

[Lid08] James Liddle. Amazon found every 100ms of latency cost them 1% in sales. Aug.
2008 (cited on page 50).

[LK14] Jacob Leverich and Christos Kozyrakis. “Reconciling High Server Utilization
and Sub-millisecond Quality-of-service”. In: Proceedings of the Ninth European
Conference on Computer Systems. EuroSys ’14. Amsterdam, The Netherlands:
ACM, 2014, 4:1–4:14 (cited on pages 41, 118, 121).

[LMB+14] Katrina LaCurts, Jeffrey C. Mogul, Hari Balakrishnan, and Yoshio Turner. “Ci-
cada: Introducing Predictive Guarantees for Cloud Networks”. In: Proceedings
of the 6th USENIX Conference on Hot Topics in Cloud Computing. HotCloud’14.
Philadelphia, PA: USENIX Association, 2014, pp. 14–14 (cited on pages 71–72).

[LMK+16a] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. “FlowRadar: A Bet-
ter NetFlow for Data Centers”. In: Proceedings of the 13th Usenix Conference
on Networked Systems Design and Implementation. NSDI’16. Santa Clara, CA:
USENIX Association, 2016, pp. 311–324 (cited on pages 29, 159).

[LMK+16b] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. “LossRadar: Fast De-
tection of Lost Packets in Data Center Networks”. In: Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and Tech-
nologies. CoNEXT ’16. Irvine, California, USA: ACM, 2016, pp. 481–495 (cited
on pages 29, 48–49, 159).

[LMV+16] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. “One Sketch to Rule Them All: Rethinking Network Flow Moni-
toring with UnivMon”. In: Proceedings of the 2016 ACM SIGCOMM Confer-
ence. SIGCOMM ’16. Florianopolis, Brazil: ACM, 2016, pp. 101–114 (cited on
page 29).

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/leverich/mutilate
https://github.com/leverich/mutilate


180 BIBLIOGRAPHY

[LRP+12] Vinh The Lam, Sivasankar Radhakrishnan, Rong Pan, Amin Vahdat, and George
Varghese. “Netshare and Stochastic Netshare: Predictable Bandwidth Allocation
for Data Centers”. In: SIGCOMM Comput. Commun. Rev. 42.3 (June 2012),
pp. 5–11 (cited on page 72).

[LTL+14] Jeongkeun Lee, Yoshio Turner, Myungjin Lee, Lucian Popa, Sujata Banerjee,
Joon-Myung Kang, and Puneet Sharma. “Application-driven Bandwidth Guar-
antees in Datacenters”. In: Proceedings of the 2014 ACM Conference on SIG-
COMM. SIGCOMM ’14. Chicago, Illinois, USA: ACM, 2014, pp. 467–478 (cited
on pages 71–73).

[LWS+16] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon. “Globally
Synchronized Time via Datacenter Networks”. In: Proceedings of the 2016 ACM
Conference on Special Interest Group on Data Communication. SIGCOMM ’16.
Florianopolis, Brazil: ACM, 2016 (cited on pages 32, 36).

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, et al. “OpenFlow: Enabling Innovation in
Campus Networks”. In: SIGCOMM Comput. Commun. Rev. 38.2 (Mar. 2008),
pp. 69–74 (cited on page 28).

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. “Pregel: A System for Large-scale
Graph Processing”. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’10. Indianapolis, Indiana, USA:
ACM, 2010, pp. 135–146 (cited on pages 40–41).

[MBK+10] Jim Martin, Jack Burbank, William Kasch, and Professor David L. Mills. Net-
work Time Protocol Version 4: Protocol and Algorithms Specification. RFC 5905.
June 2010 (cited on pages 27, 32).

[Mem18] Memcached. Memcached. https://memcached.org/. [Online; accessed
December 2018]. 2018 (cited on pages 40, 55, 79, 115, 117, 120).

[Mil10] David L. Mills. Computer Network Time Synchronization: The Network Time
Protocol on Earth and in Space, Second Edition. 2nd. Boca Raton, FL, USA:
CRC Press, Inc., 2010 (cited on page 33).

[MK15] Jeffrey C. Mogul and Ramana Rao Kompella. “Inferring the Network Latency
Requirements of Cloud Tenants”. In: Proceedings of the 15th USENIX Confer-
ence on Hot Topics in Operating Systems. HOTOS’15. Switzerland: USENIX
Association, 2015, pp. 24–24 (cited on pages 20, 68, 91, 115, 161).

[MLD+15] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, et al. “TIMELY: RTT-based Congestion Control
for the Datacenter”. In: Proceedings of the 2015 ACM Conference on Special

https://memcached.org/


BIBLIOGRAPHY 181

Interest Group on Data Communication. SIGCOMM ’15. London, United King-
dom: ACM, 2015, pp. 537–550 (cited on page 51).

[Moc87] P. Mockapetris. RFC 1035 Domain Names - Implementation and Specification. h
ttp://tools.ietf.org/html/rfc1035. [Online; accessed December
2018]. Internet Engineering Task Force, Nov. 1987 (cited on pages 115, 120).

[MPZ10] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. “Improving the Scalability
of Data Center Networks with Traffic-aware Virtual Machine Placement”. In:
Proceedings of the 29th Conference on Information Communications. INFO-
COM’10. San Diego, California, USA: IEEE Press, 2010, pp. 1154–1162 (cited
on pages 42, 44, 46, 73).

[MWH14] Ilias Marinos, Robert N.M. Watson, and Mark Handley. “Network Stack Spe-
cialization for Performance”. In: Proceedings of the 2014 ACM Conference on
SIGCOMM. SIGCOMM ’14. ACM, 2014, pp. 175–186 (cited on page 115).

[MYG+14] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. “DREAM:
Dynamic Resource Allocation for Software-defined Measurement”. In: Proceed-
ings of the 2014 ACM Conference on SIGCOMM. SIGCOMM ’14. Chicago,
Illinois, USA: ACM, 2014, pp. 419–430 (cited on pages 28–29, 31).

[MYG+16] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. “Trumpet:
Timely and Precise Triggers in Data Centers”. In: Proceedings of the 2016 ACM
SIGCOMM Conference. SIGCOMM ’16. Florianopolis, Brazil: ACM, 2016, pp. 129–
143 (cited on page 31).

[MZ05] Andrew W. Moore and Denis Zuev. “Internet Traffic Classification Using Bayesian
Analysis Techniques”. In: Proceedings of the 2005 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer Systems. SIG-
METRICS ’05. Banff, Alberta, Canada: ACM, 2005, pp. 50–60 (cited on page 159).

[NAZ+18] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. “Understanding PCIe Performance for
End Host Networking”. In: Proceedings of the 2018 Conference of the ACM Spe-
cial Interest Group on Data Communication. SIGCOMM ’18. Budapest, Hun-
gary: ACM, 2018, pp. 327–341 (cited on pages 51, 93).

[Neta] Arista Networks. Arista 7124FX Application Switch. https://www.arist
a.com/assets/data/pdf/7124FX/7124FX_Data_Sheet.pdf.
[Online; accessed December 2018] (cited on page 51).

[Netb] Arista Networks. Arista 7500R Series Data Center Switch Router. https://
www.arista.com/assets/data/pdf/Datasheets/7500RDataSh

eet.pdf. [Online; accessed December 2018] (cited on pages 51, 62).

http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc1035
https://www.arista.com/assets/data/pdf/7124FX/7124FX_Data_Sheet.pdf
https://www.arista.com/assets/data/pdf/7124FX/7124FX_Data_Sheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7500RDataSheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7500RDataSheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7500RDataSheet.pdf


182 BIBLIOGRAPHY

[Nom18] Nominium. DNSPerf. https://www.akamai.com/us/en/products
/network-operator/measurement-tools.jsp. [Online; accessed
December 2018]. 2018 (cited on page 117).

[NPF+09] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,
Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, et al. “PortLand:
A Scalable Fault-tolerant Layer 2 Data Center Network Fabric”. In: Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication. SIGCOMM
’09. Barcelona, Spain: ACM, 2009, pp. 39–50 (cited on page 39).

[NR09] Lucas Nussbaum and Olivier Richard. “A Comparative Study of Network Link
Emulators”. In: Proceedings of the 2009 Spring Simulation Multiconference.
SpringSim ’09. San Diego, California: Society for Computer Simulation Inter-
national, 2009, 85:1–85:8 (cited on page 30).

[NSN+17] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, et al. “Language-Directed
Hardware Design for Network Performance Monitoring”. In: Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. SIG-
COMM ’17. Los Angeles, CA, USA: ACM, 2017, pp. 85–98 (cited on pages 48–
49, 159).

[NZM17] Christos Nikolaou, Noa Zilberman, and Andrew W Moore. “Characterization of
Network Tools for Traffic Generation and Traffic Capture”. In: Proceedings of
ACM Internet Measurement Conference (IMC). ACM. 2017 (cited on pages 22,
30).

[OAB15] L. Ortiz, V. de Almeida, and M. Balazinska. “Changing the Face of Database
Cloud Services with Personalized Service Level Agreements”. In: Proceedings
of the International Conference on Innovative Data Systems Research (CIDR).
CIDR 2015. 2015 (cited on page 159).

[OLS08] Patrick Ohly, David N. Lombard, and Kevin B. Stanton. “Hardware Assisted
Precision Time Protocol. Design and case study”. In: Proc. of the 9th LCI Inter-
national Conference on High-Performance Clustered Computing. Intel GmbH.
2008 (cited on pages 35, 86).

[Opt] Net Optics. Net Optics Network Taps. http://www.nextgigsystems.
com/net_optics/10_100_1000BaseT_Tap.html. [Online; accessed
December 2018] (cited on page 57).

[Ora] Oracle. Oracle VM VirtualBox. [Online; accessed December 2018] (cited on
page 59).

[Ora18] Oracle. MySQL. https://www.mysql.com/. [Online; accessed December
2018]. 2018 (cited on page 55).

https://www.akamai.com/us/en/products/network-operator/measurement-tools.jsp
https://www.akamai.com/us/en/products/network-operator/measurement-tools.jsp
http://www.nextgigsystems.com/net_optics/10_100_1000BaseT_Tap.html
http://www.nextgigsystems.com/net_optics/10_100_1000BaseT_Tap.html
https://www.mysql.com/


BIBLIOGRAPHY 183

[ORR+15] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. “Making Sense of Performance in Data Analytics Frameworks”. In: Pro-
ceedings of the 12th USENIX Conference on Networked Systems Design and Im-
plementation. NSDI’15. Oakland, CA: USENIX Association, 2015, pp. 293–307
(cited on pages 125, 127).

[OWZ+13] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. “Sparrow: Dis-
tributed, Low Latency Scheduling”. In: Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. SOSP ’13. Farminton, Pennsylva-
nia: ACM, 2013, pp. 69–84 (cited on pages 68, 70).

[PAM17] Diana Andreea Popescu, Gianni Antichi, and Andrew W. Moore. “Enabling Fast
Hierarchical Heavy Hitter Detection Using Programmable Data Planes”. In: Pro-
ceedings of the Symposium on SDN Research. SOSR ’17. Santa Clara, CA, USA:
ACM, 2017, pp. 191–192 (cited on pages 24, 29, 159).

[Pao10] G. Paoloni. How to benchmark code execution times on Intel IA-32 and IA-64
instruction set architectures. Technical Report 324264-001. Intel, 2010 (cited on
pages 51, 58).

[Pax06] Vern Paxson. “End-to-end Routing Behavior in the Internet”. In: SIGCOMM
Comput. Commun. Rev. 36.5 (Oct. 2006), pp. 41–56 (cited on page 75).

[PBC+18] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. “Op-
timus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters”.
In: Proceedings of the Thirteenth EuroSys Conference. EuroSys ’18. Porto, Por-
tugal: ACM, 2018, 3:1–3:14 (cited on page 68).

[PCV+13] Cristel Pelsser, Luca Cittadini, Stefano Vissicchio, and Randy Bush. “From Paris
to Tokyo: On the Suitability of Ping to Measure Latency”. In: Proceedings of
the 2013 Conference on Internet Measurement Conference. IMC ’13. Barcelona,
Spain: ACM, 2013, pp. 427–432 (cited on page 79).

[PEA+96] Bradford W. Parkinson, Per Enge, Penina Axelrad, and James J. Spilker Jr. Global
Positioning System: Theory and Applications, Volume II. American Institute of
Aeronautics and Astronautics, 1996 (cited on page 36).

[PG16] Diana Andreea Popescu and Rogelio Tomas Garcia. “Multivariate Polynomial
Multiplication on GPU”. In: Procedia Computer Science 80 (2016). International
Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016, San
Diego, California, USA, pp. 154–165 (cited on page 24).

[PH83] J. Postel and K. Harrenstien. Time Protocol. RFC 868. May 1983 (cited on page 32).



184 BIBLIOGRAPHY

[PKC+12] Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Ion Stoica. “FairCloud: Sharing the Network in Cloud Comput-
ing”. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication. SIG-
COMM ’12. Helsinki, Finland: ACM, 2012, pp. 187–198 (cited on page 72).

[Pla] Google Cloud Platform. Virtual Private Cloud (VPC) Network Overview. http
s://cloud.google.com/vpc/docs/vpc. [Online; accessed December
2018] (cited on page 93).

[Plu82] D. C. Plummer. Ethernet Address Resolution Protocol: Or Converting Network
Protocol Addresses to 48.Bit Ethernet Address for Transmission on Ethernet
Hardware. United States, 1982 (cited on page 39).

[PM15] Diana Andreea Popescu and Andrew W. Moore. “Omniscient: Towards realizing
near real-time data center network traffic maps”. In: Proceedings of the Sympo-
sium on SDN Research. CoNEXT Student Workshop ’15. Heidelberg, Germany:
ACM, 2015 (cited on pages 24, 48).

[PM16] Diana Andreea Popescu and Andrew W. Moore. “Reproducing Network Experi-
ments in a Time-controlled Emulation Environment”. In: Proceedings of The 8th
International Workshop on Traffic Monitoring and Analysis (TMA 2016). TMA
’16. Louvain-La-Neuve, Belgium: IFIP, 2016 (cited on page 24).

[PM17] Diana Andreea Popescu and Andrew W. Moore. “PTPmesh: Data Center Net-
work Latency Measurements Using PTP”. In: 2017 IEEE 25th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS). Sept. 2017, pp. 73–79 (cited on pages 23, 49,
141).

[PM18a] D. A. Popescu and A. W. Moore. “A First Look at Data Center Network Con-
dition Through The Eyes of PTPmesh”. In: 2018 Network Traffic Measurement
and Analysis Conference (TMA). June 2018, pp. 1–8 (cited on page 23).

[PM18b] Diana Andreea Popescu and Andrew William Moore. NoMora: Latency-Driven,
Application Performance-Aware Cluster, Scheduling. 2018 (cited on page 24).

[PMB+15a] V. Persico, P. Marchetta, A. Botta, and A. Pescape. “On Network Throughput
Variability in Microsoft Azure Cloud”. In: 2015 IEEE Global Communications
Conference (GLOBECOM). Dec. 2015, pp. 1–6 (cited on page 70).

[PMB+15b] Valerio Persico, Pietro Marchetta, Alessio Botta, and Antonio Pescapè. “Measur-
ing Network Throughput in the Cloud”. In: Comput. Netw. 93.P3 (Dec. 2015),
pp. 408–422 (cited on page 70).

https://cloud.google.com/vpc/docs/vpc
https://cloud.google.com/vpc/docs/vpc


BIBLIOGRAPHY 185

[POB+14] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. “Fastpass: A Centralized "Zero-queue" Datacenter Network”. In: Pro-
ceedings of the 2014 ACM Conference on SIGCOMM. SIGCOMM ’14. Chicago,
Illinois, USA: ACM, 2014, pp. 307–318 (cited on pages 20, 40, 67, 135, 160).

[Pos81] J. Postel. Internet Protocol. https://rfc-editor.org/rfc/rfc791.
txt. Sept. 1981 (cited on page 25).

[PRM14] Dimosthenis Pediaditakis, Charalampos Rotsos, and Andrew William Moore.
“Faithful Reproduction of Network Experiments”. In: Proceedings of the Tenth
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems. ANCS ’14. Los Angeles, California, USA: ACM, 2014, pp. 41–52
(cited on page 30).

[Proa] Apache HTTP Server Project. ab - Apache HTTP server benchmarking tool. htt
ps://httpd.apache.org/docs/2.4/programs/ab.html. [Online;
accessed December 2018] (cited on pages 55, 119).

[Prob] libMemcached Project. memaslap - Load testing and benchmarking a server.
http://docs.libmemcached.org/bin/memaslap.html. [Online;
accessed December 2018] (cited on pages 55, 60, 79, 81).

[Pro18] Apache HTTP Server Project. Apache HTTP Server Project. https://www.
mysql.com/. [Online; accessed December 2018]. 2018 (cited on pages 40,
55).

[PTP18] PTPd. PTP daemon. https://github.com/ptpd/ptpd. [Online; ac-
cessed December 2018]. 2018 (cited on pages 20–21, 36, 40, 75, 91–92, 97).

[PYB+13] Lucian Popa, Praveen Yalagandula, Sujata Banerjee, Jeffrey C. Mogul, Yoshio
Turner, and Jose Renato Santos. “ElasticSwitch: Practical Work-conserving Band-
width Guarantees for Cloud Computing”. In: Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM. SIGCOMM ’13. Hong Kong, China: ACM,
2013, pp. 351–362 (cited on pages 71–72).

[PYW+17] Yanghua Peng, Ji Yang, Chuan Wu, Chuanxiong Guo, Chengchen Hu, and Zong-
peng Li. “deTector: a Topology-aware Monitoring System for Data Center Net-
works”. In: 2017 USENIX Annual Technical Conference (USENIX ATC 17). Santa
Clara, CA: USENIX Association, 2017, pp. 55–68 (cited on pages 48–49).

[PZM17] Diana Andreea Popescu, Noa Zilberman, and Andrew W. Moore. Characteriz-
ing the impact of network latency on cloud-based applications’ performance.
Technical report UCAM-CL-TR-914. University of Cambridge, Computer Lab-
oratory, Nov. 2017 (cited on page 24).

https://rfc-editor.org/rfc/rfc791.txt
https://rfc-editor.org/rfc/rfc791.txt
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
http://docs.libmemcached.org/bin/memaslap.html
https://www.mysql.com/
https://www.mysql.com/
https://github.com/ptpd/ptpd


186 BIBLIOGRAPHY

[RBB+18] Arjun Roy, Deepak Bansal, David Brumley, Harish Kumar Chandrappa, Parag
Sharma, Rishabh Tewari, Behnaz Arzani, et al. “Cloud Datacenter SDN Monitor-
ing: Experiences and Challenges”. In: Proceedings of the Internet Measurement
Conference 2018. IMC ’18. Boston, MA, USA: ACM, 2018, pp. 464–470 (cited
on pages 20, 47–49, 102, 112, 146, 159).

[RL95] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). United States, 1995
(cited on page 39).

[ROS+11] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and
John K. Ousterhout. “It’s Time for Low Latency”. In: Proceedings of the 13th
USENIX Conference on Hot Topics in Operating Systems. HotOS’13. Napa, Cal-
ifornia: USENIX Association, 2011, pp. 11–11 (cited on page 134).

[RSD+14] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter, Kanak Agar-
wal, John Carter, et al. “Planck: Millisecond-scale Monitoring and Control for
Commodity Networks”. In: Proceedings of the 2014 ACM Conference on SIG-
COMM. SIGCOMM ’14. Chicago, Illinois, USA: ACM, 2014, pp. 407–418 (cited
on page 29).

[RST+11] Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and Dor-
gival Guedes. “Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant
Datacenter Networks”. In: Proceedings of the 3rd Conference on I/O Virtual-
ization. WIOV’11. Portland, OR: USENIX Association, 2011, pp. 6–6 (cited on
pages 71–72).

[RTG+12] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael
A. Kozuch. “Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis”. In: Proceedings of the Third ACM Symposium on Cloud Computing.
SoCC ’12. San Jose, California: ACM, 2012, 7:1–7:13 (cited on pages 23, 65,
146).

[RZB+15] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
“Inside the Social Network’s (Datacenter) Network”. In: Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. SIGCOMM
’15. London, United Kingdom: ACM, 2015, pp. 123–137 (cited on pages 42–44,
46).

[RZB+17] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C. Snoeren. “Passive Re-
altime Datacenter Fault Detection and Localization”. In: 14th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 17). Boston, MA:
USENIX Association, 2017, pp. 595–612 (cited on pages 50, 92).

[SA99] Tom Shanley and Don Anderson. PCI System Architecture (4th Ed.) Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1999 (cited on page 59).



BIBLIOGRAPHY 187

[SCG+14] Ankit Singla, Balakrishnan Chandrasekaran, P. Brighten Godfrey, and Bruce Maggs.
“The Internet at the Speed of Light”. In: Proceedings of the 13th ACM Workshop
on Hot Topics in Networks. HotNets-XIII. Los Angeles, CA, USA: ACM, 2014,
1:1–1:7 (cited on page 50).

[SCH+11] Bikash Sharma, Victor Chudnovsky, Joseph L. Hellerstein, Rasekh Rifaat, and
Chita R. Das. “Modeling and Synthesizing Task Placement Constraints in Google
Compute Clusters”. In: Proceedings of the 2Nd ACM Symposium on Cloud Com-
puting. SOCC ’11. Cascais, Portugal: ACM, 2011, 3:1–3:14 (cited on page 69).

[Sch16] Malte Schwarzkopf. “Operating system support for warehouse-scale comput-
ing”. PhD thesis. University of Cambridge, 2016 (cited on pages 67, 138).

[SCK+09] A. J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante. “Drafting Be-
hind Akamai: Inferring Network Conditions Based on CDN Redirections”. In:
IEEE/ACM Transactions on Networking 17.6 (Dec. 2009), pp. 1752–1765 (cited
on page 50).

[sFl] Consortium sFlow. sFlow. https://sflow.org/. [Online; accessed De-
cember 2018] (cited on pages 26–27).

[SHC+18] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. “LegoOS: A Dis-
seminated, Distributed OS for Hardware Resource Disaggregation”. In: 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). Carls-
bad, CA: USENIX Association, 2018, pp. 69–87 (cited on pages 39, 69).

[SHP+12] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. “Jellyfish:
Networking Data Centers Randomly”. In: Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation. NSDI’12. San Jose,
CA: USENIX Association, 2012, pp. 17–17 (cited on page 39).

[SKA+13] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
“Omega: Flexible, Scalable Schedulers for Large Compute Clusters”. In: Pro-
ceedings of the 8th ACM European Conference on Computer Systems. EuroSys
’13. Prague, Czech Republic: ACM, 2013, pp. 351–364 (cited on page 68).

[SKD+14] Junho Suh, Ted Taekyoung Kwon, Colin Dixon, Wes Felter, and John Carter.
“OpenSample: A Low-Latency, Sampling-Based Measurement Platform for Com-
modity SDN”. In: 2014 IEEE 34th International Conference on Distributed Com-
puting Systems (ICDCS). June 2014, pp. 228–237 (cited on page 29).

[SKG+11] Alan Shieh, Srikanth Kandula, Albert Greenberg, Changhoon Kim, and Bikas
Saha. “Sharing the Data Center Network”. In: Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation. NSDI’11. Boston,
MA: USENIX Association, 2011, pp. 309–322 (cited on page 72).

https://sflow.org/


188 BIBLIOGRAPHY

[SMA+10] Junaid Shaikh, Tahir Nawaz Minhas, Patrik Arlos, and Markus Fiedler. “Evalu-
ation of delay performance of traffic shapers”. In: Security and Communication
Networks (IWSCN), 2010 2nd International Workshop on. IEEE. 2010, pp. 1–8
(cited on page 30).

[SNR+17] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-
nan, and Jennifer Rexford. “Heavy-Hitter Detection Entirely in the Data Plane”.
In: Proceedings of the Symposium on SDN Research. SOSR ’17. Santa Clara,
CA, USA: ACM, 2017, pp. 164–176 (cited on page 29).

[SOA+15] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, et al. “Jupiter rising: A decade of clos topologies and cen-
tralized control in google’s datacenter network”. In: ACM SIGCOMM Computer
Communication Review 45.4 (2015), pp. 183–197 (cited on pages 38–39, 64, 69–
70).

[Sola] Solarflare. OpenOnload. https://support.solarflare.com/index
.php/component/cognidox/?view=categories&id=361. [Online;
accessed December 2018] (cited on page 62).

[Solb] Solarflare. Solarflare PTP Adapters. http://www.solarflare.com/
ptp-adapters. [Online; accessed December 2018] (cited on pages 35, 76,
87).

[Spa] Apache Spark. Apache Spark MLLib. https://spark.apache.org/.
[Online; accessed December 2018] (cited on pages 21, 115, 119–120).

[Sto] Apache Storm. Apache Storm. http://storm.apache.org/. [Online;
accessed December 2018] (cited on page 40).

[Str13] Stephen D. Strowes. Passively Measuring TCP Round-trip Times. https://
queue.acm.org/detail.cfm?id=2539132. 2013 (cited on page 47).

[SWH06] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. “Open Versus Closed:
A Cautionary Tale”. In: Proceedings of the 3rd Conference on Networked Sys-
tems Design & Implementation - Volume 3. NSDI’06. San Jose, CA: USENIX
Association, 2006, pp. 18–18 (cited on page 118).

[TAL15] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. “CherryPick: Tracing
Packet Trajectory in Software-defined Datacenter Networks”. In: Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking Research.
SOSR ’15. Santa Clara, California: ACM, 2015, 23:1–23:7 (cited on pages 48,
92).

[TAL16] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. “Simplifying Datacenter
Network Debugging with PathDump”. In: 12th USENIX Symposium on Opera-
ting Systems Design and Implementation (OSDI 16). Savannah, GA: USENIX
Association, 2016, pp. 233–248 (cited on pages 49–50).

https://support.solarflare.com/index.php/component/cognidox/?view=categories&id=361
https://support.solarflare.com/index.php/component/cognidox/?view=categories&id=361
http://www.solarflare.com/ptp-adapters
http://www.solarflare.com/ptp-adapters
https://spark.apache.org/
http://storm.apache.org/
https://queue.acm.org/detail.cfm?id=2539132
https://queue.acm.org/detail.cfm?id=2539132


BIBLIOGRAPHY 189

[TGG10] Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali. “OpenTM: Traffic
Matrix Estimator for OpenFlow Networks”. In: Proceedings of the 11th Interna-
tional Conference on Passive and Active Measurement. PAM’10. Zurich, Switzer-
land: Springer-Verlag, 2010, pp. 201–210 (cited on page 28).

[Tib11] Robert Tibshirani. “Regression shrinkage and selection via the lasso: a retrospec-
tive”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 73.3 (2011), pp. 273–282 (cited on page 118).

[Tim] Timekeeper. TimeKeeper. http://www.fsmlabs.com/timekeeper.
[Online; accessed December 2018] (cited on page 36).

[TZP+16] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor Harchol-
Balter, and Gregory R. Ganger. “TetriSched: Global Rescheduling with Adap-
tive Plan-ahead in Dynamic Heterogeneous Clusters”. In: Proceedings of the
Eleventh European Conference on Computer Systems. EuroSys ’16. London,
United Kingdom: ACM, 2016, 35:1–35:16 (cited on pages 67–69).

[VCC11] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell. “ARIA: Auto-
matic Resource Inference and Allocation for Mapreduce Environments”. In: Pro-
ceedings of the 8th ACM International Conference on Autonomic Computing.
ICAC ’11. Karlsruhe, Germany: ACM, 2011, pp. 235–244 (cited on page 159).

[VH08] András Varga and Rudolf Hornig. “An Overview of the OMNeT++ Simulation
Environment”. In: Proceedings of the 1st International Conference on Simulation
Tools and Techniques for Communications, Networks and Systems & Workshops.
Simutools ’08. Marseille, France: ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2008, 60:1–60:10 (cited on
page 29).

[VHV12] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. “Deadline-aware Data-
center TCP (D2TCP)”. In: Proceedings of the ACM SIGCOMM 2012 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Com-
munication. SIGCOMM ’12. Helsinki, Finland: ACM, 2012, pp. 115–126 (cited
on page 39).

[VMD+13] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, et al. “Apache Hadoop YARN: Yet
Another Resource Negotiator”. In: Proceedings of the 4th Annual Symposium
on Cloud Computing. SOCC ’13. Santa Clara, California: ACM, 2013, 5:1–5:16
(cited on page 68).

[VPK+15] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. “Large-scale Cluster Management at Google with Borg”.
In: Proceedings of the Tenth European Conference on Computer Systems. Eu-

http://www.fsmlabs.com/timekeeper


190 BIBLIOGRAPHY

roSys ’15. Bordeaux, France: ACM, 2015, 18:1–18:17 (cited on pages 40, 67–
68).

[VSD+16] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. “Xpander:
Towards Optimal-Performance Datacenters”. In: Proceedings of the 12th Inter-
national on Conference on Emerging Networking EXperiments and Technolo-
gies. CoNEXT ’16. Irvine, California, USA: ACM, 2016, pp. 205–219 (cited on
page 39).

[VYF+16] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,
and Ion Stoica. “Ernest: Efficient Performance Prediction for Large-scale Ad-
vanced Analytics”. In: Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation. NSDI’16. Santa Clara, CA: USENIX As-
sociation, 2016, pp. 363–378 (cited on pages 68, 159).

[WN10] Guohui Wang and T. S. Eugene Ng. “The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center”. In: Proceedings of the 29th Con-
ference on Information Communications. INFOCOM’10. San Diego, California,
USA: IEEE Press, 2010, pp. 1163–1171 (cited on pages 79, 115).

[XDH+12] Di Xie, Ning Ding, Y. Charlie Hu, and Ramana Kompella. “The Only Con-
stant is Change: Incorporating Time-varying Network Reservations in Data Cen-
ters”. In: Proceedings of the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication. SIG-
COMM ’12. Helsinki, Finland: ACM, 2012, pp. 199–210 (cited on pages 71–
73).

[XHD+15] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, et al. “Petuum: A
New Platform for Distributed Machine Learning on Big Data”. In: IEEE Trans-
actions on Big Data 1.2 (June 2015), pp. 49–67 (cited on pages 41, 127).

[XHG18] Shihan Xiao, Dongdong He, and Zhibo Gong. “Deep-Q: Traffic-driven QoS In-
ference Using Deep Generative Network”. In: Proceedings of the 2018 Workshop
on Network Meets AI & ML. NetAI’18. Budapest, Hungary: ACM, 2018, pp. 67–
73 (cited on page 159).

[XLJ+14] Fei Xu, Fangming Liu, Hai Jin, and Athanasios V Vasilakos. “Managing perfor-
mance overhead of virtual machines in cloud computing: A survey, state of the
art, and future directions”. In: Proceedings of the IEEE 102.1 (2014), pp. 11–31
(cited on page 115).

[XMN+13] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. “Bobtail:
Avoiding Long Tails in the Cloud”. In: Proceedings of the 10th USENIX Con-
ference on Networked Systems Design and Implementation. nsdi’13. Lombard,
IL: USENIX Association, 2013, pp. 329–342 (cited on pages 73, 115).



BIBLIOGRAPHY 191

[YJL+18] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
et al. “Elastic Sketch: Adaptive and Fast Network-wide Measurements”. In: Pro-
ceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. SIGCOMM ’18. Budapest, Hungary: ACM, 2018, pp. 561–575
(cited on page 29).

[YJM13] Minlan Yu, Lavanya Jose, and Rui Miao. “Software Defined Traffic Measure-
ment with OpenSketch”. In: Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation. nsdi’13. Lombard, IL: USENIX
Association, 2013, pp. 29–42 (cited on page 28).

[YLS+15] Curtis Yu, Cristian Lumezanu, Abhishek Sharma, Qiang Xu, Guofei Jiang, and
Harsha V. Madhyastha. “Software-Defined Latency Monitoring in Data Center
Networks”. In: Passive and Active Measurement: 16th International Conference,
PAM 2015, New York, NY, USA, March 19-20, 2015, Proceedings. Edited by
Jelena Mirkovic and Yong Liu. Cham: Springer International Publishing, 2015,
pp. 360–372 (cited on pages 48–49).

[YLZ+13] Curtis Yu, Cristian Lumezanu, Yueping Zhang, Vishal Singh, Guofei Jiang, and
Harsha V. Madhyastha. “FlowSense: Monitoring Network Utilization with Zero
Measurement Cost”. In: Proceedings of the 14th International Conference on
Passive and Active Measurement. PAM’13. Hong Kong, China: Springer-Verlag,
2013, pp. 31–41 (cited on page 28).

[ZAC+14] Noa Zilberman, Yury Audzevich, G.Adam Covington, and Andrew W. Moore.
“NetFPGA SUME: Toward 100 Gbps as Research Commodity”. In: IEEE Micro
34.5 (Sept. 2014), pp. 32–41 (cited on pages 31, 59, 125).

[ZBH16] Timothy Zhu, Daniel S. Berger, and Mor Harchol-Balter. “SNC-Meister: Admit-
ting More Tenants with Tail Latency SLOs”. In: Proceedings of the Seventh ACM
Symposium on Cloud Computing. SoCC ’16. Santa Clara, CA, USA: ACM, 2016,
pp. 374–387 (cited on pages 72–73).

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, et al. “Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing”. In: Presented
as part of the 9th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 12). San Jose, CA: USENIX, 2012, pp. 15–28 (cited on
pages 40–41).

[ZDM+12] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy
Katz. “DeTail: Reducing the Flow Completion Time Tail in Datacenter Net-
works”. In: SIGCOMM Comput. Commun. Rev. 42.4 (Aug. 2012), pp. 139–150
(cited on page 73).



192 BIBLIOGRAPHY

[ZGP+17] Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Neelakandan Manihatty-
Bojan, Gianni Antichi, Marcin Wojcik, and Andrew W. Moore. “Where Has My
Time Gone?” In: Proceedings of the 18th International Conference on Passive
and Active Measurement. PAM 2017. Sydney, Australia, 2017 (cited on pages 23,
52, 57–58, 60, 63, 78–79, 123, 129).

[ZKC+15] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Maha-
jan, Dave Maltz, et al. “Packet-Level Telemetry in Large Datacenter Networks”.
In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication. SIGCOMM ’15. London, United Kingdom: ACM, 2015, pp. 479–
491 (cited on pages 47, 49).

[ZLZ+17] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. “High-resolution
Measurement of Data Center Microbursts”. In: Proceedings of the 2017 Inter-
net Measurement Conference. IMC ’17. London, United Kingdom: ACM, 2017,
pp. 78–85 (cited on page 50).

[ZTH+13] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John
Wilkes. “CPI2: CPU Performance Isolation for Shared Compute Clusters”. In:
Proceedings of the 8th ACM European Conference on Computer Systems. Eu-
roSys ’13. ACM, 2013, pp. 379–391 (cited on page 115).

[ZTZ+14] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Ar-
jun Singh, and Amin Vahdat. “WCMP: Weighted Cost Multipathing for Im-
proved Fairness in Data Centers”. In: Proceedings of the Ninth European Confer-
ence on Computer Systems. EuroSys ’14. Amsterdam, The Netherlands: ACM,
2014, 5:1–5:14 (cited on page 75).


	Introduction
	Contributions
	Dissertation outline
	Related publications

	Background
	Network measurement
	Timekeeping on computers
	Data centres
	Latency in data centers
	Network latency impact on application performance
	End-host and in-network baseline latency contributions
	Cluster scheduling

	Measuring network conditions with the Precision Time Protocol (PTP)
	Experimental setup and methodology
	Measuring network latency
	The effect of network congestion on PTPd measurements
	Measuring network latency in virtualised environments
	Estimating packet loss ratio
	PTP-enabled NICs
	Summary

	Measuring the cloud network with PTPmesh
	Deployment scenarios
	Measurement methodology
	Measurement calibration
	Datasets
	One-way delay (OWD) measurements
	Packet loss ratio measurements
	Path symmetry
	Identifying different network paths within data centres
	Discussion
	Limitations
	Summary

	Characterising the network latency impact on cloud-based applications performance
	Experimental setup
	Selected cloud-based applications
	Baseline application performance
	The effect of static latency on application performance
	Predicting application performance
	Summary

	NoMora: latency-driven, application performance-aware, cluster scheduling
	Background
	NoMora
	NoMora evaluation
	Limitations
	Summary

	Conclusions and future work
	Future work
	Concluding remarks


