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Abstract 

Hybrid organic-inorganic perovskites and their inorganic analogues, such as 

MAPbI3 (MA = methylammonium, CH3NH3) and CsPbI3, are currently under 

intense investigation due to their high-power conversion efficiencies and low 

cost for solar cell applications. Herein, we investigate the effect of 

methylammonium and the inorganic A-cations on the elastic and related 

transport properties of halide perovskites using van der Waals (vdW) 

corrected density functional theory (DFT) calculations. For inorganic halide 
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 2

perovskites we find that the bonding within the inorganic framework is mainly 

responsible for their elastic behavior. However, our DFT calculations show 

that when a MA cation is substituted into the structure the combined effects of 

stericity (conformation) and hydrogen-framework interactions improve the 

material’s resistance to deformation. For example, the orientationally-

averaged Young’s modulus of orthorhombic MAPbI3 increases by about 19 % 

compared to the equivalent inorganic series of structures. We also find that, 

within the carrier-acoustic phonon scattering regime, the electron and hole 

carrier mobilities of hybrid halide perovskites are lowered by the hydrogen-

bonding-induced tilting of the inorganic octahedra. Taken together, these 

results can help guide the optimization of the mechanical and transport 

properties of perovskite-based solar cell materials. 

 

1. Introduction 

Over the last few years, hybrid organic-inorganic perovskite-based solar cells 

have received a great deal of attention due to their high electrical power 

conversion efficiencies (PCEs). These PCEs have reached 22.7 % in 20181 

up from 3.8 % in 2009.2 The high PCEs of hybrid perovskites have been 

attributed to their large absorption coefficients, long carrier diffusion lengths, 

high carrier mobilities, and suitable band gaps.3–6 These fundamental 

properties are strongly related to key structural distortions within the 

perovskite unit cell (e.g., tilting of the inorganic octahedra). Previous 

experimental7 and theoretical8–10 studies have shown that the band gaps of 

halide perovskites can be tuned by adjusting the degree of octahedral tilting. 

In particular, the optical band gap increases as the degree of octahedral tilting 
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 3

increases. Furthermore, our own previous work has predicted that octahedral 

tilting increases the effective electron mass, an important quantity affecting 

electrical conductivity.10 In hybrid halide perovskites containing the 

methylammonium cation (MA, CH3NH3), this octahedral tilting is amplified by 

hydrogen-bonding interactions between the amine cation and the inorganic 

framework.10–12 These results indicate that hydrogen-bonding can 

dramatically change the atomic structure within the unit cell, which in turn has 

a significant effect on the fundamental photovoltaic properties of these 

materials. 

 Recently, Motta et al.13 showed that the band gap of cubic MAPbI3 

becomes indirect when the MA cation orients along the [011] direction. This 

indirect band gap is caused by Rashba splitting, a direct result of hydrogen-

bonding-induced inversion symmetry breaking.14,15 In addition, hydrogen-

bonding plays a key role in the photostriction mechanism. According to a 

previous experimental study,16 the photons induce charge transfer from the 

valence band maximum, which is composed of Pb 6s–I 5p hybridized orbitals, 

to the conduction band minimum, composed of Pb 6p orbitals. This transition 

weakens the hydrogen-bonding interactions between the three H ions bonded 

to N in the MA cation and three neighboring I ions due to an electron density 

reduction on the I sites, and then makes the Pb–I interatomic length longer. 

Interestingly, the MA cation itself can also affect the electrical transport 

properties of hybrid halide perovskites without any lattice distortion. In 

particular, Ma and Wang have proposed that the carrier mobility of the 

tetragonal MAPbI3 phase is influenced by the randomly-oriented MA cation, 

causing a fluctuation of the electrostatic potential.17 It is also worth noting that 
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 4

hydrogen-bonding and the structural distortion caused by the MA cation are 

closely related to the material’s elastic properties, although the details have 

yet to be investigated thoroughly. Previous studies18–20 have shown that 

molecular cations dramatically enhance the elastic response of hybrid 

framework materials, particularly those with the perovskite architecture. 

Furthermore, this elastic enhancement can affect the electrical transport 

properties of the material within the acoustic-phonon scattering regime.21–24 

Hence, it is of fundamental importance to clearly elucidate the effect of the MA 

cation on both the elastic and transport properties of hybrid perovskites. 

Despite extensive previous studies,21,22,31–40,23–30 our understanding of the role 

of the MA cation on these properties is still lacking.  

In the present investigation, we use van der Waals (vdW) corrected 

DFT calculations to (i) identify how the MA cation influences the octahedral 

distortion of the structure and (ii) compute and understand the effect of this 

cation on the material’s mechanical and transport properties, namely the 

elastic moduli and carrier mobilities. Here we adopt the orthorhombic 

structural model for all halide perovskites considered since the MA cations are 

ordered in the orthorhombic phase.41 The systems studied are ABX3 and 

MABX3, where A = K, Rb, Cs and Fr, and B = Sn and Pb. The X-site halogens 

are Cl, Br and I. Choosing the orthorhombic model consistently across the 

series allows us to accurately predict the contribution of the MA cation to the 

fundamental properties of these perovskites. We acknowledge that some of 

these materials might not exist experimentally or do not normally adopt the 

orthorhombic perovskite structure, but the aim is to explore trends in behavior. 

Although the MA cations are disordered in the higher temperature tetragonal 
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 5

and cubic phases, our results are relevant to the these phases, too, because 

the MA-induced lattice distortion can dynamically appear in them as well.42,43 

In summary, the main purpose of this contribution is to clarify the above-

mentioned issues using vdW-corrected DFT calculations. We find that the 

combined effects of steric and hydrogen-bonding interactions of the MA 

cations enhance the elastic properties of the hybrid perovskites relative to 

their inorganic counterparts. Moreover, MA-induced octahedral tilting 

increases the effective carrier masses which results in a reduction in carrier 

mobility. 

 

2. Methods 

To quantitatively understand the effect of the MA organic cation, all the DFT 

calculations used the projector augmented-wave (PAW)44,45 pseudopotentials 

as supplied in the Vienna Ab Initio Simulation Package (VASP).46–49 The van 

der Waals functional (optB86b-vdW) was used in the relaxation process and 

calculation of the elastic moduli. This functional reproduces the experimental 

lattice parameters41 of the orthorhombic(o-) MAPbI3 structure better than other 

functionals like PBEsol, vdW-DF2, PBE+TS, and SCAN (see Table S1). The 

fractional coordinates of the atoms also compare well with experimental 

values. The electronic properties, including effective masses and deformation 

potentials, were calculated with the PBE functional along with spin-orbit 

coupling (SOC).50 The following parameters were adopted: a 5×4×5 

Monkhorst-Pack k-point mesh centered at Γ and a 1000 eV plane-wave 

kinetic energy cutoff, leading to a stress tensor converged to 0.1 kbar. The 

number of valence electrons treated explicitly were as follows: 14 for Pb 
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 6

(5d106s26p2), 14 for Sn (4d105s25p2), 7 for I (5s25p5), 7 for Br (4s24p5), 7 for Cl 

(3s23p5), 9 for K (3s23p64s1), 9 for Rb (4s24p65s1), 9 for Cs (5s25p66s1), 9 for 

Fr (6s26p67s1), 4 for C (2s22p2), 5 for N (2s22p3), and 1 for H (1s1). The ions 

were relaxed until the forces on them were less than 0.01 eV Å−1. The 

computed lattice parameters of all ground state structures are given in Table 

S3. In order to be self-consistent we determined the tolerance factor directly 

from our DFT electron density, defining the ionic radii by the volume of a 

sphere which contains 95% of the electron density, following previous DFT 

studies.9,10 The ionic radii and calculated tolerance factors are shown in Table 

S2 and S3. All schematic representations of the crystal structures were 

generated using the VESTA program.51 

The elastic moduli can be obtained from the generalized form of 

Hooke’s law, which describes the relationship between stress σ and strain ε:  

     �� = �����     (1) 

where Cij is the single crystal stiffness tensor. Here the Voigt notation is 

adopted. Cij is calculated using the following procedure: (i) fully relax both the 

unit cell volume and atomic positions and then (ii) apply strains to the 

optimized cell. When applying the strains to the unit cell, six different strain 

types are employed: ε1, ε2, ε3, ε4, ε5, and ε6 (see SI). For each strain, seven 

deformations are used: 0 %, ±0.5 %, ±1 % and ±1.5 %. Then, (iii) relax the 

atoms while fixing the deformed lattice parameters. By doing so, we can get 

stress tensors σij for all applied strains εij. Finally, (iv) Cij are obtained from 

linear least-squares fitting using the stress-strain relationship. The computed 

Cij values are given in Table S4. In order to calculate the polycrystalline 

moduli, we need the single crystal compliance tensor Sij: 
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 7

  

     ��� = ���
�	     (2) 

 

The computed Sij values are given in Table S5. After obtaining Cij and Sij, the 

polycrystalline (orientationally-averaged) elastic moduli, including the Young’s 

modulus E, bulk modulus B, shear modulus G, and Poisson’s ratio ν, can be 

simply estimated as follows, where V denotes the Voigt upper bound and R 

the Reuss lower bound:52  

 

  
� =
	

�
[��		 + ��� + ���� + 2��	� + �	� + ����]   (3) 

   
� =
	

����������������������������
    (4) 

 �� =
	

	�
[��		 + ��� + ���� − ��	� + �	� + ���� + 3���� + ��� + �  �] (5) 

  �� =
	�

���������������������������������!!��""��##�
   (6) 

 

From the upper and lower bounds, the Voigt-Reuss-Hill (VRH) averages can 

be obtained for an isotropic material: 

    
 = 
��$ =
%&�%'

�
     (7) 

    � = ���$ =
(&�('

�
     (8) 

    ) = )��$ =
�%'&*('&*

�%'&*�('&*
    (9) 

    + = +��$ =
�%'&*��('&*

 %'&*��('&*�
    (10) 

Finally, the directional dependence of the Young’s modulus (E(u)) in the ab, 

bc and ca planes of the orthorhombic structure was obtained using 

                                     )�,� = 	

�����
- �,�

=
	

.�/.�0.�1.�2�/012
                              (11) 
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 8

where u is a unit vector and S' is the rotated elastic compliance tensor. 

This index can be used to represent the hydrogen-bonding strength, 

and for the case of hydrogen atoms attached to the nitrogen atom of the MA 

molecule, it can be evaluated as follows:53 

 

H-index =
345678�

�9�$��345�9�$�

345�9�$�
   (12) 

 

where :;<�= − >�  denotes the N–H stretching vibration frequency of a MA 

molecule in isolation (e.g. contained in a large empty supercell) and  :?@ABC�
�= −

>�  refers to the corresponding frequency of a MA molecule experiencing 

hydrogen-bonding interactions with its neighboring I ions (N–H···I) in the PbI3 

framework of an orthorhombic (o-)MAPbI3 unit cell. The equivalent equation 

could be written for the hydrogen atoms attached to the carbon atom of the 

MA molecule, but previous studies11 on o-MAPbI3 have indicated that 

hydrogen-bond interactions are larger on nitrogen. Thus, we can use equation 

(12) as an overall indicator of the hydrogen-bonding strength in a given hybrid 

halide perovskite by simply focusing on nitrogen and taking the mean of the 

three H-indices corresponding to the three hydrogens attached to this atom.  

The charge carrier mobility µij is calculated using the theory of 

deformation potentials54 which considers carrier-phonon coupling in the 

acoustic regime as the dominant charge carrier scattering mechanism: 

 

    D�� =
�EF��/�ℏ!IJ/0

��K/0
∗ �"/��MNO�

�/�P/0
�     (13) 
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 9

where e is the charge and Cij, mij*, and Dij are the stiffness tensor, the 

effective mass tensor, and the deformation potential tensor, respectively. mij* 

is calculated from a numerical second order derivative of the band dispersion 

[Q�)�R�/QR� ]. In order to obtain this, we use five eigenvalues near the 

valence (conduction) band maxima (minima) located at the Γ-point [0, 0, 0], 

from Γ to X = [0.5, 0, 0], Γ to Y = [0, 0.5, 0] and Γ to Z = [0, 0, 0.5] in the first 

Brillouin zone. The number of k-points between two k-points is forty. The 

effect of spin-orbit coupling is considered. Using a linear relationship between 

eigenvalue and strain, Dij can be obtained. We apply the ε1, ε2, and ε3 strains 

to the optimized orthorhombic unit cell and fix all internal coordinates. For 

each strain, five deformations are used: 0 %, ±0.5 % and ±1 %. By doing so, 

we can get Dij values for each of the perovskites considered (see Table S6). 

All eigenvalues are aligned with the 1s core levels of the halogens (X = I, Br, 

Cl). 

 

3. Results and Discussion 

Figure 1(a) depicts the orthorhombic perovskite structure (space group Pnma) 

composed of BX6 octahedra and A-site cations. It is characterized by the 

octahedral tilt pattern (a-b+a-).55 As shown in the figure, there exist two 

different types of X-site ion associated with the BX6 octahedra: (i) an apical X-

site ion along the b-axis in the Pnma setting (labeled XA) and (ii) an equatorial 

X-site ion located on the BX6 octahedral plane (labeled XE). This results in two 

different bond angles between the B sites and the X sites: B-XA-B and B-XE-B. 

In order to capture the effect of octahedral tilting through these bond angles, 

we have computed a weighted average bond angle defined by ST =
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 10

[4S�
 − V@ − 
� + 8S�
 − VX − 
�]/12 . The weighting accounts for the 

relative multiplicity of XA and XE sites. Figure 1(b) shows ST as a function of 

the tolerance factor for all compositions. It is seen that octahedral tilting as 

defined by θw increases as the tolerance factor becomes smaller (θw = 180° 

refers to an untilted structure). This means that steric effects dominate 

octahedral tilting in halide perovskites. More importantly, Figure 1(b) and 

Figure S1 demonstrate that hybrid halide perovskites have octahedra that are 

more tilted compared to inorganic halide perovskites with the same tolerance 

factor. This is because hydrogen-bonding amplifies octahedral tilting in hybrid 

halide perovskites.10,11 Sn-based and Pb-based halide perovskites exhibit 

similar behavior. Thus, one can conclude that the hydrogen-bonding-induced 

octahedral tilting is a common feature of hybrid halide perovskites. This is 

consistent with our previous work.10  

 

 

Figure 1 | Hydrogen-bonding-induced octahedral tilting. (a) The 
orthorhombic Pnma perovskite structure consisting of BX6 octahedra (grey) 
and A site cations (green). (b) Computed weighted average bond angles (θw) 
between B-XA-B and B-XE-B as a function of the tolerance factor. Blue and 
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 11

orange symbols correspond to the o-ABX3 inorganic and o-MABX3 hybrid 
halide perovskites, respectively.  
 

 Figure S1 shows that the angular deviation from the trend line 

increases across the halogen series (I – Br – Cl) due to the increasing 

electronegativity of the X-site halogen anion. The electronegativity increases 

in the sequence I–Br–Cl, and this increase enhances the hydrogen-bonding 

interaction and hence the tilting. The octahedra in the inorganic Pb phases 

are slightly more tilted than in the Sn phases, but the results for the MA 

phases indicate that the hydrogen bonding effect is nevertheless greater for 

Sn compared to Pb, as judged by the distances below the dotted lines for the 

MA systems in Figure S1. The electronegativity of Sn is less than that of Pb56 

and so the X-site halogen anion bonded to Sn tends to have more electron 

density compared to that bonded to Pb. Hence the Sn-based hybrid halide 

perovskites have slightly stronger hydrogen-bonds than the Pb-based hybrid 

halide perovskites. These trends agree well with our computed bond angle ST, 

H-index, and non-covalent interaction calculations (see Figures S1, S2, and 

S3). This hydrogen-bonding-induced lattice distortion and hydrogen-bonding 

itself may affect structural properties and electronic structure. Therefore, it is 

very important to quantitatively understand the effect of the MA cation on the 

elastic and transport properties of hybrid halide perovskites. 
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Figure 2 | Effect of chemical substitution on the isotropic polycrystalline 

elastic moduli of halide perovskites. (a) Young’s modulus E, (b) bulk 
modulus B, and (c) shear modulus G as a function of ST  for the o-ABX3 
inorganic and o-MABX3 hybrid series. Different colors refer to different A-site 
cations.  
 

Having demonstrated how the MA cation influences the lattice 

distortion of the perovskite structure, we now examine the elastic moduli of 

both the inorganic o-ABX3 and hybrid o-MABX3 series. By way of illustration, 
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 13

Figure S4 compares the directionally dependent Young’s modulus E of o-

MAPbI3 and o-CsPbI3. It is seen that both perovskites exhibit highly 

anisotropic moduli but that the shapes of the curves are very similar 

particularly in terms of the directions of the maxima and minima. Any 

differences are due to hydrogen bonding or steric effects as discussed below. 

However, the overall similarity of the curves shows that the PbI3 inorganic 

framework is mainly responsible for the stiffness of o-MAPbI3.  

 Based on this, we address the effect of chemical substitution on the 

elastic properties of the halide perovskites. Figure 2 shows the computed 

polycrystalline (orientationally-averaged) Young’s modulus E, bulk modulus B, 

and shear modulus G as a function of ST. The numerical values are given in 

Table S3. In Figure 2, we can clearly see that the elastic moduli generally 

increase as the X anion is substituted in the sequence I – Br – Cl.25 In addition, 

Sn-based halide perovskites have larger moduli than Pb-based halide 

perovskites. This is because the B-X bond strength increases as the ionic 

radii of the B- and X-site ions decreases. However, the A-site cations do not 

contribute as much to the elastic moduli as the B and X-site cations. 

Interestingly, for o-FrSnBr3 and o-FrSnCl3, all the polycrystalline moduli are 

larger than those of other Sn-based halide perovskites. This is because Fr 

ions fit well into the SnX3 cages compared to other inorganic halide 

perovskites, making their structures more close-packed. The large tolerance 

factors of o-FrSnBr3 and o-FrSnCl3 (over 0.8) and their average bond angles 

ST  (about 170o) also support this. More interestingly, the polycrystalline 

moduli of the hybrid halide perovskites are generally larger than those of the 

inorganic halide perovskites, as seen in Figure 2, where purple squares 
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 14

corresponding to the former are slightly above others in the series. This 

indicates that the MA cation enhances the elastic properties of hybrid halide 

perovskites, which we address in more detail in the next section. 

 

 

Figure 3 | Effect of the MA cation on Young’s modulus E. The 
orientationally-averaged Young’s modulus E versus θw for (a) o-APbI3, (b) o-
APbBr3, (c) o-APbCl3, (d) o-ASnI3, (e) o-ASnBr3, and (f) o-ASnCl3. Blue and 
orange symbols correspond to the o-ABX3 inorganic and o-MABX3 hybrid 
perovskites respectively. 
 

To understand quantitatively how the MA cation influences the elastic 

properties of hybrid halide perovskites, we consider, for each halide series, 

how the three main moduli E, B and G vary as a function of ST. Figure 3 

illustrates the polycrystalline Young’s modulus E where the orange symbols 

distinguish the hybrid perovskites from the inorganic perovskites shown in 

blue. The results for the bulk modulus B and shear modulus G are given in the 

SI (Figure S5 and S6). The values for the hybrid perovskites are similar to 

those computed previously37 as are the trends in behavior, e.g. the elastic 

moduli of the hybrid bromides are greater than the hybrid iodides. Figure 3 
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 15

shows that the Young’s moduli of the hybrid perovskites are always larger 

than those of inorganic perovskites, indicating their relative stiffness. The 

same effect is seen for the bulk and shear moduli showing that hybrid 

perovskites are also more resistant to hydrostatic pressure and shear 

deformation. Focusing on the Young’s moduli, we see that for o-MAPbI3, for 

example, E increases by about 19 % compared to the inorganic trend line at 

the same ST. In fact, this enhancement is caused by a combination of effects, 

one due the stericity (conformation) of the MA cation and the other due 

hydrogen-bonding interactions. Unlike other A-site inorganic cations, the 

shape of the MA cation is not spherical but approximately cylindrical.10 In 

particular, there are six H atoms attached to the C-N bond and these H atoms, 

which point in different directions, have an important affect the perovskite’s 

stiffness. Taking o-MAPbI3 as an example, two of the H atoms forming the MA 

cation are oriented towards the c-axis of the perovskite while the other four 

are oriented towards the b-axis, as shown in Figure S7. Because of this, the 

stiffness components C22 and C33 of o-MAPbI3 are larger than those of the 

inorganic iodide perovskites (see Table S4), and the same is true within the 

other halogen groups as well. Thus, the unique conformation of the MA cation 

makes a significant contribution to the elasticity of hybrid halide perovskites. 

Furthermore, of course, the H atoms forming the MA cations interact with 

neighboring halogens via hydrogen bonds. We suggest that this additional 

interaction also enhances the elastic properties although it is difficult to 

separate hydrogen-bonding effects from steric effects.  Nevertheless, there is 

clear experimental evidence that the organic cation plays an important role. 

For instance, the measured Young’s modulus of cubic MAPbBr3 (15.6-21.4 
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 16

GPa) is significantly larger than that of cubic FAPbBr3 (9.7-12.3 GPa) and this 

can be attributed to the higher symmetry of the FA (CH(NH2)2) cation and its 

weaker hydrogen-bonding interaction.57 

Following the above discussion, we would expect an increase in the 

Young’s modulus of a hybrid halide perovskite to also increase its charge 

carrier mobility. This is based on deformation potential theory,54 which relates 

elastic properties and carrier-phonon interactions to mobility and is 

represented by Eq. (13) above. At the same time, however, hydrogen-

bonding-induced octahedral tilting can reduce the carrier mobility since it 

increases the charge effective mass.10 Therefore, it is important to understand 

how the MA cation affects the charge transport properties of hybrid halide 

perovskites. We address this in more detail in the following section. 

 

 

Figure 4 | Reduction of mobility due to MA-induced octahedral tilting. 
Average electron (e) and hole (h) mobilities along the three crystal axes 
versus ST  for (a) o-APbI3, (b) o-APbBr3, (c) o-APbCl3, (d) o-ASnI3, (e) o-
ASnBr3, and (f) o-ASnCl3. Blue and orange symbols correspond to the o-ABX3 
inorganic and o-MABX3 hybrid halide perovskites, respectively. Arrows 
indicate the reduction in the e and h mobilities of o-MABX3 with respect to 
what they would have been for hypothetical o-ABX3 perovskites having the 
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 17

same size A-site cation. The lengths of the arrows correspond to the 
variations in the inorganic trend lines shown in Fig. S1. The values are 
calculated at 100 K and shown in Table S8. The results obtained at 300 K are 
given in Table S9 and Figure S10. 
 

We have calculated the charge carrier mobilities of all the halide 

perovskites considered in this study within the acoustic phonon scattering 

regime of deformation potential theory.54 The aim is to predict trends in 

behavior with respect to chemical changes rather than reproduce 

experimental values. This is because other scattering mechanisms, such as 

optical phonons, defects, impurities or polarons, could be playing a role. In 

addition, of course, we have adopted the orthorhombic structure for all halide 

perovskites considered since the MA cations are ordered in this phase. 

However, we believe that carrier-acoustic phonon scattering is appropriate at 

low temperatures (~100K) where, for example, the o-MAPbI3 structure is 

stable.  At room temperature, there is evidence that scattering in tetragonal 

MAPbI3 is dominated by carrier-optical phonon scattering.36 Nevertheless the 

topic continues to be discussed both theoretically and experimentally.29,31,36,37 

For example, several studies21–24,28 have highlighted the importance of carrier-

acoustic phonon coupling even at room temperature where mobilities in 

tetragonal MAPbI3 have been observed21,58–60 to be proportional to T-1.2 – T-1.6.  

 In order to compute carrier mobilities (both electron and hole) using 

deformation potential theory, we need to determine the corresponding 

deformation potentials and effective carrier masses along each crystal axis. 

The results for the potentials and masses are given in Tables S6 and S7, 

respectively, and are comparable to values computed previously and 

experimental measurements.23,24,28,31 These values can then be used in Eq. 
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(13), together with the corresponding stiffness tensor components Cij, to 

obtain the electron and hole mobilities for all the halide perovskites 

considered (Table S8). Figure 4 shows the computed mobilities averaged 

along the three crystal axes as a function of ST for each halide series. It is 

clearly seen that the average carrier mobilities increase with increasing 

average bond angle, i.e. decreasing octahedral tilt (recall that θw = 180° refers 

to an untilted structure). This is consistent with measurements in other 

perovskite systems, e.g. doped-LaCoO3, where the carrier mobility is found to 

increase as ST  approaches 180o.61 Figure 4 also shows that the electron 

mobility is always larger than the hole mobility for all halide perovskites. Our 

calculated mobilities are comparable with previous computational studies23,35 

on o-MAPbI3 using deformation potential theory, taking into account 

differences in the temperatures considered. However, as found previously, 

they are much larger than experimental values, e.g.  µe ~232 cm2/V·s for 

MASnI3, ~536 cm2/V·s for CsSnI3, ~66, ~25 and ~38 cm2/V·s for MAPbI3;  µh 

~105 cm2/V·s for MAPbI3.62–64 While this may well be due to the presence of 

other scattering mechanisms or require methods beyond DFT (single-body 

theory), e.g. GW (many-body theory), the purpose of the present study is to 

predict trends in behavior particularly at low temperatures, as noted above.  

An important feature of Figure 4 is the reduction in charge carrier 

mobilities for hybrid halide perovskites. This is illustrated by the black arrows 

which indicate how the mobilities of o-MABX3 perovskites are reduced relative 

to what they would have been for hypothetical o-ABX3 perovskites having the 

same size A-site cation. For o-MAPbI3, for example, the reduction is nearly a 

factor of two (note the log scale) and this is caused by hydrogen-bonding-
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induced octahedral tilting. Although the MA cation increases the 

polycrystalline elastic moduli (except Poisson’s ratio) of hybrid halide 

perovskites, it also increases their average charge effective masses as shown 

in Figure S9. The effect on the average deformation potentials, however, is 

relatively small, particularly for electrons, and decreases for holes (Figure S8). 

According to Eq. (13), the carrier mobility D is proportional to m*-5/2, � and Z�� 

at a given temperature. Since the overall effect of the MA cation is to reduce 

the mobility, it is therefore apparent that the increase in charge effective mass 

is having a controlling influence. Thus, the octahedral tilting induced by the 

MA cation and its hydrogen-bonding interactions is directly affecting the 

masses of the charge carriers, as suggested in our earlier work.10 It is clear, 

therefore, that to maximize the carrier mobility of a hybrid halide perovskite, 

the organic A-cation has to be chosen carefully so as to minimize the 

hydrogen-bonding interaction and the resulting rotation of the inorganic 

octahedra. 

 

Conclusions 

In conclusion, we have systematically calculated the elastic moduli and 

charge carrier mobilities of a series of halide perovskites in an effort to 

understand the effect of the MA organic cation on the mechanical and 

transport properties of hybrid perovskites. We have found that the elastic 

response of halide perovskites is mainly determined by the BX3 inorganic 

frameworks. In addition, the unique steric and hydrogen-bonding effects 

introduced by the MA cation further increase the resistance of hybrid 

perovskites to elastic deformation. The results show that the conformation of 
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the A-site organic cation and the strength of its hydrogen-bonding interactions 

with neighboring inorganic polyhedra play an important role in choosing 

suitable hybrid perovskites for devices with improved mechanical stability. 

However, this improved mechanical stability does not result in improved 

carrier mobility. Using deformation potential theory within the carrier-acoustic 

phonon scattering regime, we have shown that the carrier mobilities of hybrid 

halide perovskites are in fact reduced relative to what they would have been 

for an inorganic perovskite having the same size A-site cation, and that this is 

caused primarily by octahedral tilting and a concomitant increase in charge 

effective mass. Nevertheless, hybrid perovskites still have mobilities 

comparable with inorganic perovskites and their superior mechanical stability 

renders them competitive in the continuing search for the optimal perovskite-

based solar cell material.  
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