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Summary 

The development of the nervous system has so far, to a large extent, been 

considered in the context of biochemistry, molecular biology, and genetics. However, 

there is growing evidence that many biological systems also integrate mechanical 

information when making decisions during differentiation, growth, proliferation, 

migration, and general function. Based on recent findings, I hypothesize that several 

steps during nervous system development rely on or are even driven by mechanical 

cues and forces, including neural progenitor cell differentiation, neuronal migration, 

axon extension, and the folding of the brain. 
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Introduction 

Many processes in development involve growth and motion at different length and 

time scales.  All of these processes are driven by forces; the development of organisms 

and organ systems would not proceed without mechanics.  For example, during 

neuronal development, neurons migrate and extend immature processes (neurites), 

which become axons and dendrites.  Axons then grow in two different phases, both of 

which are distinguished by the nature of the forces that drive the growth.  In the first 

phase, growth cones at the tips of axonal processes actively exert forces on their 

environment (Betz et al., 2011), thus pulling on the processes (Lamoureux et al., 1989).  

In a second phase, after connecting with their target tissue, axons may be passively 

pulled by the increasing distance between target and nervous tissue, resulting in 

considerable growth in length, a process referred to as stretch growth (Weiss, 1941). 

Once the final connectivity is established, tension may develop along neuronal axons, 

which may be involved in neuronal network formation and the folding of the brain.  

Apart from this direct requirement of forces for developmental processes, which has 

been studied to some degree in the past, the mechanical interaction of cells with their 

environment may add an additional level of control to several processes in the 

developing nervous system, including progenitor cell differentiation and cellular 

guidance.   

The idea of an important contribution of mechanics to the development of the 

nervous system has been around for more than a century. However, the last decades 

have seen only little progress in this field when compared to other (e.g. 

electrophysiology, molecular biology, or genetics-based) areas of neuroscience.  

Progress often depends on the availability of appropriate methodology.  Only recently 

has the increasing involvement of physical and engineering approaches in 

interdisciplinary studies of biological systems led to the development of new techniques 

and conceptual approaches that can be used to quantitatively probe and control relevant 

mechanical parameters such as cell and tissue stiffness, cellular forces, and tension. In 

recent years, such tissue mechanics-based studies have resulted in an increasing 

awareness of the importance of physical parameters, particularly in developmental 

biology, where cell systems constantly undergo dramatic rearrangements. These 

rearrangements naturally rely on forces acting on cells (without which there would be 

no motion) and the resistance of cells and cell groups to these forces, which depends on 

their viscoelastic properties and determines, for example, where cells are placed within 

a tissue. These fundamental and important parameters have so far been ignored to a 

large extent, but it is clear that a consideration of these parameters could provide a new 

understanding of developmental processes in general.   

Here, I focus on the potential involvement of mechanics in the development of the 

nervous system.  

 

A brief overview of biomechanics and measurements 

The mechanical interactions between a cell and its environment depend on the 

forces acting on and exerted by the cell, the mechanical properties of the environment, 

and the coupling between the cell and its environment. Below, I highlight some 

mechanical features of cells and tissues, and I also explain how mechanical properties 

and forces can be measured. 

 

Cellular forces and tension 
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Most if not all tissue cells, including neurons and glial cells, exert forces on their 

environment.  Current techniques to determine cellular traction forces measure the 

strain γ (i.e., deformation, see Glossary, Box 1) of a substrate of known compliance to 

calculate the stress σ (i.e., force F per contact area A, see Glossary, Box 1) exerted by cells 

(see Glossary, Box 1). These substrates are chosen to be linearly elastic (see Glossary, 

Box 1), which means that � ∝ �.  In contrast, many biological materials tend to be non-

linearly elastic (see Glossary, Box 1). In traction force microscopy (Munevar et al., 2001; 

Betz et al., 2011; Koch et al., 2012), a compliant substrate is deformed by cells and 

deformation fields are tracked using fluorescent nanoparticles embedded within the 

substrate. In an alternative approach, stiffer elastomeric substrates are structured as 

arrays of needle-like posts (Tan et al., 2003). Cells are cultured on these substrates and 

the deflection of the needle-like posts can be measured.  At a smaller scale, intracellular 

forces can be measured using Förster resonance energy transfer (FRET)-based force 

sensors (Grashoff et al., 2010). Here, a short elastic domain is inserted between two 

fluorophores that undergo FRET; this tension sensor module is inserted into vinculin, a 

protein connecting the actin cytoskeleton with cell adhesion molecules (integrins). Since 

FRET efficiency decreases under tension, piconewton forces across vinculin can be 

measured. 

In contrast to other cell types, neurons extend long processes, which are under 

mechanical tension (i.e., a pulling force, see Glossary, Box 1) (Bray, 1979; Heidemann 

and Buxbaum, 1994; Pfister et al., 2004; Siechen et al., 2009; Suter and Miller, 2011).  

This tension can be measured using calibrated microneedles: forces are applied to 

neurites, and the change in neurite length and the deflection of the needle are measured 

(Dennerll et al., 1988).  At a larger scale, tissues in developing organisms are also under 

tension.  This cortical tension can be measured using laser ablation, whereby a focused 

laser beam is used to cut a tissue, and the subsequent relaxation of the tissue is recorded 

and analyzed  (Mayer et al., 2010). 

 

Measuring cell and tissue mechanics 

Biological cells and tissues are generally viscoelastic (see Glossary, Box 1), i.e., they 

behave partly like a viscous fluid (such as honey) and partly like an elastic solid (such as 

rubber, see Glossary, Box 1).  As such, their response to an applied force depends on the 

time scale over which the force is applied: strain will increase with time if a stress is 

maintained until equilibrium is reached.   

Most techniques that measure mechanical cell or tissue properties externally 

impose stress to the sample and then measure the resultant strain.  The ratio of stress 

and strain (σ/γ) yields an elastic modulus (see Glossary, Box 1), which is a measure of 

stiffness.  If the stress is applied normal to the surface (i.e., tensile or compressive forces), 

the Young’s modulus E (see Glossary, Box 1) is determined; if the stress is applied in 

parallel, the shear modulus G (see Glossary, Box 1) is measured.  In the simplest case, 

biological samples are assumed to be linear elastic materials, which is often a reasonable 

assumption for small deformations occurring over short time scales.  However, more 

complex measurements also take different time scales into account and yield frequency-

dependent moduli that characterize both elastic and viscous properties. 

There has been a flurry of different techniques developed to allow the 

measurement of cell mechanics and to allow mechanical manipulation of cells 

(summarized in Table 1), including atomic force microscopy (AFM), magnetic bead 

twisting, magnetic tweezers, optical traps, micropipette aspiration, cell poking, and 
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microrheology. It should be noted that for non-contact, non-invasive methods (e.g. 

Brillouin microscopy or magnetic resonance elastography) the spatial resolution is 

currently not sufficient for studies at a cellular level. Importantly, almost all single cell 

mechanics methods are difficult, if not impossible, to carry out in situ. 

Compliant substrates made of various hydrogels or rubbers as well as micropillar 

arrays have been used to mimic the mechanical properties of tissues in order to study 

mechanosensitive cell responses in vitro. To better represent the heterogeneous 

mechanical properties of biological tissues, stiffness gradients have been introduced to 

such surfaces using different approaches (Lo et al., 2000; Byfield et al., 2009; Kuo et al., 

2012). 

Finally, cells need to transmit their forces to their environment in order to move 

(and to probe the mechanical properties of the environment).  This is done via adhesion 

complexes (point contacts in neurons, focal adhesions in glial cells), which couple the 

force generating cytoskeleton to the extracellular matrix or other cells.   The adhesion 

strength of individual cells and growth cones can, for example, be quantified using 

calibrated microneedles (Zheng et al., 1994) and AFM (Krieg et al., 2008; Franze, 2011). 

 

 

Mechanical control of early neural development: regulation at the cellular and 

molecular level  

 It has long been established that sensory neurons may respond to mechanical 

stimuli in their environment.  Hearing, balance, touch, and proprioception are all 

mechanical senses, which are directly mediated by neurons.  The majority of cells in the 

nervous system, however, are usually considered to rely on chemical signals only.  

Nevertheless, recent in vitro studies suggest that many neuronal as well as glial cell 

types also respond to mechanical cues throughout their development (reviewed in 

(Franze and Guck, 2010; Moore and Sheetz, 2011; Franze et al., 2013)).  

 The response of nervous tissue cells to mechanical stimuli is particularly 

interesting with respect to their mechanical environment.  Adult nervous tissue is 

mechanically inhomogeneous (Elkin et al., 2007; Green et al., 2008; Christ et al., 2010) 

(for recent reviews on brain mechanics see (Chatelin et al., 2010; Franze and Guck, 

2010; Franze et al., 2013)). Moreover, the stiffness of adult brain tissue changes with age 

(Sack et al., 2009), suggesting that already during development the mechanical 

properties of nervous tissue are prone to alteration, and cells encounter different 

mechanical cues depending on location and developmental stage. 

 

Neurogenesis 

The first event in the development of the nervous system to which mechanics 

could significantly contribute is the maturation of neural precursor cells.  During cortical 

development, radial glial cells first give rise to neurons, and at later stages they 

differentiate into glial cells (Gotz and Huttner, 2005).  Studies have shown that when 

mesenchymal stem cells are cultured on deformable substrates, compliant matrices, in 

contrast to stiffer substrates, promote differentiation into a neuronal phenotype (Engler 

et al., 2006; Keung et al., 2012) (Fig. 1).  Brain tissue belongs to the softest tissues in our 

body, and it stiffens with age. While the mechanical properties of brain tissue were 

never measured at different developmental stages, it is conceivable that it starts 

stiffening already early during development, and at a certain developmental stage 

cortical tissue stiffness might exceed a critical threshold, thus contributing to the shift 

from neurogenesis to gliogenesis. 
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In support of this hypothesis, on compliant substrates neuronal growth is 

promoted over that of glial cells (Georges et al., 2006). Furthermore, in reeler mice, 

which lack the extracellular matrix glycoprotein Reelin, an increase in the number of 

glial fibrillary acidic protein (GFAP)-positive astrocytes is accompanied by a decrease in 

the number of newly generated neurons (Zhao et al., 2007), and recently, it was shown 

that enhanced GFAP expression in retinal glial cells leads to their stiffening (Lu et al., 

2010). The enhanced GFAP expression in the mouse mutants could thus lead to an 

increase in tissue stiffness that causes or at least contributes to the observed decrease in 

neurogenesis.    

Apart from passive mechanical tissue properties, active forces (e.g. tension in the 

tissue) might also influence neuronal development.  For example, the folding of the 

mammalian cortex, which itself is driven by forces (see below), leads to different tissue 

layer dimensions and mechanical stress distributions within the crowns and fundi of 

gyri (outward folds) (Bok, 1959; Welker, 1990; Xu et al., 2009). The differentiation of 

neuroblasts starts sooner in gyral crowns than in fundi, they increase sooner in size and 

shape, and the degree of elaboration of their dendrites is significantly more extensive 

(Welker, 1990), indicating that mechanical stress may be involved in progenitor cell 

development.  In agreement with this hypothesis, mechanical tension in vitro drives 

neural stem cell differentiation towards mature neuronal cells (Chang et al., 2012). 

   

Neuron-glia interactions 

In contrast, the differentiation of Schwann cells and oligodendrocyte precursor 

cells, which are glial cells responsible for providing the myelin sheath for neurons, 

increases with stiffness (Cai et al., 2012; Jagielska et al., 2012).  The interaction of 

neurons and glial cells, for example during myelin sheath or synapse formation, might 

therefore also be influenced by mechanical signaling: neurons, which usually grow well 

on soft substrates (Georges et al., 2006), are stiffer than their neighboring glial cells (Lu 

et al., 2006), which, on the other hand, seem to preferentially grow on stiffer substrates 

(Georges et al., 2006; Moshayedi et al., 2010).  Astrocytes, for example, spread more on 

stiffer substrates, and their F-actin cytoskeleton is more organized compared to 

compliant surfaces (Georges et al., 2006; Moshayedi et al., 2010) (Fig. 1).  The opposing 

mechanical properties and preferences of neurons and glial cell might attract them 

towards each other, and they might explain why neurons in mixed cultures often grow 

on top of glial cells. 

 

Neuronal migration and axonal growth 

In addition to well-established chemical signaling, the speed and direction of 

neuronal and growth cone migration (see also below) also depend on the mechanical 

interaction between cells and their environment.  For example, mechanical tension 

along neurites has been suggested to contribute to the directionality of migrating 

neurons (Hanein et al., 2011).   

The migration of fibroblasts (and few other non-neural cell types) was shown to be 

guided by stiffness gradients in their substrate (“mechanotaxis”) in vitro (Lo et al., 

2000).  Neurons as well as growth cones during axonal pathfinding are likely to 

encounter environments with different mechanical properties as they migrate in situ.  In 

support of this, stiffness gradients have been reported in CNS tissue recently (Elkin et al., 

2007; Franze et al., 2011). Thus, although compelling evidence is still missing, it seems 

likely that neurons in the developing nervous system might be guided by mechanical 

signals, in addition to the battery of established chemical cues.  
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After neurons have arrived at their destination, they send out immature processes.  

One of these processes turns into an axon, which usually grows over long distances, 

while the others become dendrites.  Forces (tension) might not only be involved in the 

generation of axons (Bray, 1984). Many neuronal cell types adapt their morphology, and 

particularly the number, lengths and branching patterns of their neurites, to the stiffness 

of their substrate in vitro, including mammalian dorsal root ganglion cells, spinal cord 

and hippocampal, but not always cortical neurons (Georges et al., 2006; Jiang et al., 

2008; Norman and Aranda-Espinoza, 2010; Koch et al., 2012).  Neurite outgrowth is a 

mechanical process, and as such it might well be influenced by the interaction between 

neurites and the mechanical environment in vivo.   

 

Forces in growth cone motility 

Forces during neuronal growth are generated by growth cones, which are the 

leading tips of developing axons and dendrites.  They are highly motile structures that 

determine the speed and direction of outgrowth. Growth cones are densely packed with 

actin filaments, which are polymerized at their leading edge.  At the same time, myosin II 

motors, which are concentrated at the central zone of the growth cone, pull on actin 

filaments.  These myosin-based forces, together with forces arising from actin 

polymerization, give rise to the well-studied retrograde actin flow observed in neurons 

(Medeiros et al., 2006).  The actin cytoskeleton is also coupled to the substrate via point 

contacts, which are made up of protein complexes containing integrins, vinculin, talin, 

and many others (Renaudin et al., 1999).  These point contacts form molecular ‘clutches’ 

(Suter and Forscher, 1998), which allow growth cones to transmit forces to their 

substrate, which may lead to its deformation (Franze et al., 2009; Betz et al., 2011; Koch 

et al., 2012).  Accordingly, inhibition of actin polymerization leads to a reduction in the 

maximum force and velocity of growth cone protrusion, and a reduction in membrane 

stiffness results in larger forces and increased velocity (Amin et al., 2012). Thus, forces 

exerted by neurons can be controlled by controlling actin polymerization and myosin 

activity.  Furthermore, interactions between actin filaments and microtubules, which 

modify stress distributions in the growth cone, are required for growth cone motility 

and turning (Geraldo and Gordon-Weeks, 2009).  Growth cone traction forces finally 

oppose the tension that is acting along neurites (Bray, 1979; Dennerll et al., 1988; 

Heidemann and Buxbaum, 1994; Ayali, 2010; Suter and Miller, 2011) (see below).  While 

the mechanisms of force application are comparatively well understood, how 

mechanical input is translated into an intracellular, biochemical response 

(“mechanotransduction”) is currently ill-defined. 

 

 

Mechanics during neural circuit formation: tension in neuronal networks 

From the initiation of neurite growth, the establishment of synaptic connections 

with a target cell, to the formation of stable neuronal networks, neuronal processes are 

constantly under tension in vitro (Bray, 1979; Heidemann and Buxbaum, 1994) and in 

vivo (Gilmour et al., 2004; Siechen et al., 2009; Xu et al., 2010). Tension above or below a 

certain threshold stimulates neurite extension or retraction, respectively (Fig. 2) 

(Dennerll et al., 1989).  For excellent recent reviews about neuronal tension see (Ayali, 

2010) and (Suter and Miller, 2011).  Such tensile forces are generated and maintained 

by the growth cone (Lamoureux et al., 1989; Lamoureux et al., 2010), the interaction of 

actin and myosin along the neurite (Dennerll et al., 1988), and by target cells pulling on 

the neurite (Weiss, 1941), and they are potentially involved in many different aspects of 

the development of the nervous system.   
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Towed growth and guidance of axons 

As mentioned above, the towing of axons results in tension, which is very likely to 

be crucially involved in the second phase of axonal growth (Weiss, 1941; Bray, 1984; 

Loverde et al., 2011).  Pfister et al. showed that mechanical tension induces extreme 

"stretch growth" of integrated axon tracts at remarkable rates and extents (8 mm/d) 

(Pfister et al., 2004), indicating that axonal lengthening is mainly limited by tension, or 

rather its relative absence. 

Accordingly, when neurons are cultured on a flexible substrate, neurite extension 

significantly increases with increasing substrate stretching, and neurites preferentially 

align along the stretch direction (Chang et al., 2012). Similarly, muscle contractions in 

zebrafish generate mechanical forces that are required for proper pathfinding of sensory 

axons growing between the muscle and the skin of the fish (Paulus et al., 2009).  Another 

example of the involvement of tension in axonal growth and guidance in vivo is exhibited 

by migrating primordium cells in the developing zebrafish, which not only tow axons of 

sensory neurons but also guide their pathfinding in this way (Gilmour et al., 2004).   

 

Network formation 

Tension along neurites also influences the shape of neuronal somata (Hanein et al., 

2011) and the geometry of neurite branches in vitro (Bray, 1979; Shefi et al., 2004) and 

in vivo (Condron and Zinn, 1997). Differential tension along individual branches at a 

given junction particularly determines the angle between the branches and the 

branches’ diameter. In a similar manner, tension may also influence the final 

morphology of neuronal networks.  Once a neurite is connected to its target, tension 

promotes its stabilization while, at the same time, it causes retraction or elimination of 

collateral neurites (Anava et al., 2009).  Thus, tension might serve as a signal for axonal 

and dendritic survival, and it might, vice versa, contribute to branch pruning (Franze et 

al., 2009).  Accordingly, the orientation of apical dendrites of pyramidal neurons in the 

cortex and the degree of their dendritic and axonal arborization depends on their 

location relative to the curvature of the tissue (Welker, 1990), and thus likely on local 

tension (Xu et al., 2010).  Finally, once the neuronal network is connected, the buildup of 

mechanical tension will lead to a shortening of the involved neuronal processes, thus 

contributing to the compactness of neural circuitry (Van Essen, 1997). 

 

Synapse formation and functioning 

Tension has also been suggested to contribute to synapse formation (Ayali, 2010). 

Recent evidence from in vivo experiments indicates that tension along axons can be 

actively regulated by neurons, and it is even involved in synapse functioning.  Tension in 

Drosophila axons, for example, contributes to the clustering of neurotransmitter vesicles 

at presynaptic terminals at the neuromuscular junction (Siechen et al., 2009), and it 

modulates local and global vesicle dynamics (Ahmed et al., 2012). Hence, mechanical 

tension in and along neuronal axons might contribute not only to neuronal network 

formation but ultimately also in regulating neuronal function. 

 

 

Mechanical control at the macroscopic level: brain folding 

The folding of the mammalian cortex is the ultimate mechanical event in CNS 

development. Cortical folding abnormalities are found in several CNS disorder such as 

Williams syndrome, autism, and schizophrenia (Van Essen et al., 2006; Nordahl et al., 
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2007; White and Hilgetag, 2011), indicating the importance of proper force distributions 

during CNS development. 

The degree of cortical folding increases with brain size; the brains of larger 

animals are usually more convoluted.  It is known that deeper cortical layers are thicker 

in convex gyri than in concave sulci (depressions in the surface of the brain) (Bok, 1959) 

(Fig. 3).  Thus, to conserve the volume of the respective layers of gyri and sulci, neurons 

in different layers maintain their sizes and relative arrangements and rather adapt their 

shape, while glial cells and blood vessels maintain size and shape and change their 

relative arrangements.  Although it is commonly accepted that intrinsic mechanical 

forces drive cortical folding, the origin of these forces is still disputed. 

Numerous active and passive forces act in and on the cortex over different length 

and time scales.  Sulci and fissures form only after all cortical neurons have been 

generated and after neuronal migration has been completed (Goldman-Rakic and Rakic, 

1984), excluding these events as possible sources of the driving forces. Blood vessels, 

which run along sulci, can be excluded as well, as their alignment with the sulci occurs 

secondarily (Welker, 1990).  Furthermore, cerebrospinal fluid shows no pressure 

differential between different brain regions (Welker, 1990), making its involvement 

unlikely. The skull is also not likely to impose mechanical constraints that are important 

for gyrification: its ossification starts only after the brain has stopped growing (Welker, 

1990), and when different parts of the brain are removed during development, the 

remaining brain does not expand into the unoccupied regions of the cavity, while its 

fissuration is unaltered (Barron, 1950).  While these insights disproved some of the 

older theories about cortical folding, currently there are still two major hypotheses to 

explain cortical folding (Fig. 3), as discussed below. 

 

Differential expansion hypothesis 

One hypothesis – the differential expansion hypothesis - assumes a central role for 

compressive forces arising from growth processes during cortical development.  In this 

hypothesis, the tangential expansion of cortical regions, which is driven by the local 

augmented proliferation of cells and changes in cell sizes and shapes, is assumed to be 

the driving force for cerebral convolutional development (Mares and Lodin, 1970; 

Richman et al., 1975; Smart and McSherry, 1986; Ronan et al., 2013).  Thus, forces 

driving brain folding are predominantly intracortical.  In support of this hypothesis, the 

experimental reduction of proliferation in the outer subventricular zone leads to a 

reduction in cortical folding (Reillo et al., 2011).  The application of finite element 

models confirmed that differential cortical growth together with remodeling of the 

subplate might explain cortical folding and the stress patterns found in brain tissue (Xu 

et al., 2010).  Furthermore, it was shown that removal of the cerebral cortex affects the 

folding pattern of the remaining brain (Welker, 1990). In such early cortical ablations, 

gyri and sulci reorient towards the defect.  In contrast, the aspiration of basal ganglia 

and the transection of all thalamocortical connections, does not change folding (Welker, 

1990). 

However, disruptions in neuronal proliferation do not always lead to loss of 

cortical convolutions; failure in cell division often results in smaller brains with 

preserved sulci and gyri (although on a smaller scale) (Neal et al., 2007).  Furthermore, 

while lesions of the frontal lobe result in bilateral changes in sulcal patterns (Goldman 

and Galkin, 1978), lesions of the occipital lobe produce mainly asymmetric changes 

(Goldman-Rakic and Rakic, 1984).  These differences are difficult to explain solely with 

local cellular proliferation in the cortex.  An important difference between these regions 

are prominent callosal connections in the frontal lobe, which are absent in the primary 
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visual areas. It is conceivable that forces could be transferred along these axons 

(between frontal lobes), suggesting that tension might be required for brain folding.  An 

involvement of long-tract connectivity (intrahemispheric and callosal fibers innervating 

the cortical plate) in fissure formation would also explain how the disruption of a small 

part of the cortex results in widespread changes in fissuration of the entire cerebral 

surface of both hemispheres (Goldman-Rakic and Rakic, 1984). 

 

Tension hypothesis 

Tension along axons in the white matter has also been hypothesized to explain 

how the cortex folds (Van Essen, 1997).  Strong cortico-cortical and weak cortico-

subcortical connections were suggested to result in outward folding, while the opposite 

scenario results in inward folding. Or in other words, more densely interconnected 

cortical areas tend to buckle together, thus forming a gyrus. An extension of this 

hypothesis has been suggested recently, taking into account species-specific differences 

in grey matter connectivity through the white matter (Herculano-Houzel et al., 2010).  

According to this model, cortical folding is not driven by the grey matter but by tension 

in the white matter.  This idea was supported by morphological data showing the 

structure and connections of the prefrontal cortices (Hilgetag and Barbas, 2005). 

However, recent microdissection assays revealed that, while axons in the 

developing brain are indeed under significant tension, the patterns of tissue stress are 

not consistent with the tension-based hypothesis.  Tension exists along axons aligned 

radially inside the developing gyri and circumferentially in subcortical white matter 

tracts, but tension is not directed across the developing gyri (Xu et al., 2010).  The 

observed relaxation after cutting was suggested to be attributable to enhanced growth 

in the grey matter compared to white matter (Xu et al., 2009). 

In summary, there is currently no theory that can explain all experimental findings 

and observations relating to cortical folding.  Most current approaches either favor the 

differential expansion or the tension hypothesis, but direct proof for either theory is still 

lacking.  However, these two hypotheses are not mutually exclusive; both mechanisms 

are likely to contribute together to shaping the brain.  Growth in one area of the grey 

matter could, for example, not only generate compression locally, but also tension on 

axons of neurons located within this area, which then transmit these forces and pull on a 

distant part of grey matter.  Future experiments will reveal where, when and how local 

compression and tension along axons provide the forces that drive cortical folding. 

 

 

Mechanosensitivity and mechanotransduction 

While it is evident that forces and the mechanical properties of neuronal cells and 

their environment play a key role in the development of the nervous system, it remains 

unclear how these properties and forces are sensed and transduced by cells to give rise 

to the appropriate output.   

The molecular basis of cell mechanosensitivity, in particular, is still poorly 

understood.  Principally, every cellular element that is involved in transmitting forces to 

the environment is also exposed to the same forces.  These forces across specific 

proteins can now be measured within cells with piconewton (pN) sensitivity (Grashoff 

et al., 2010). Such forces will result in strain of the proteins (and membranes), which, if 

large enough, could cause conformational changes and be the first step in the 

mechanotransduction cascade.  Possible candidates currently discussed as strain 

sensors include stretch-activated ion channels, caveolae, cryptic binding or 

phosphorylation sites, cell adhesion sites (including cell adhesion molecules (CAMs) 
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such as integrins and cadherins, proteins linking CAMs to the cytoskeleton such as 

vinculin and talin, signaling proteins such as focal adhesion kinase (FAK), and adaptor 

proteins such as p130Cas), the cytoskeleton, and the nucleus itself (Fig. 4).  Further 

possible key players in mechanotransduction include direct physical effects, motor-

clutch systems, tension-dependent exo- and endocytosis, and / or the activation of 

transcription factors.  For recent reviews about mechanotransduction in developmental 

systems see (Wozniak and Chen, 2009; Zhang and Labouesse, 2012). 

Mechanotransduction in neurons seems to involve a motor-clutch system (Chan 

and Odde, 2008), which couples the actin cytoskeleton to the substrate. Talin and 

vinculin, which link actin filaments to integrins and are involved in 

mechanotransduction (Margadant et al., 2011), are likely part of such clutches.  During 

axon outgrowth, FAK is mechanically activated, which reinforces interactions between 

growth cones and the guidance cue netrin-1 (Moore et al., 2012).  Netrin-1, in turn, 

positively regulates traction forces via Pak1-mediated shootin1 phosphorylation, thus 

promoting actin-substrate coupling, force generation, and axon outgrowth (Toriyama et 

al., 2013).  Finally, calcium influx through mechanosensitive ion channels, which also 

may affect talin, is involved in the neuronal response to mechanical stimuli (Franze et al., 

2009; Kerstein et al., 2013).   

It is likely that – similar to chemical signaling pathways – more than one 

mechanism is involved in cellular mechanotransduction.  Furthermore, individual 

mechanical and chemical cues might activate similar or the same downstream signaling 

pathways and thus interact with each other. For example, when confronted with the 

chemical attractant netrin-1, advancing neuronal growth cones increased traction forces 

by an order of magnitude, resulting in redirecting the axon (Moore et al., 2009).  

Unraveling the molecular events that enable neurons and glial cells to detect and 

respond to mechanical stimuli will be key to understand the contribution of mechanical 

cues to the development of the nervous system. 

  

Mechanics may even be directly involved in signal transduction.  

Phototransduction in microvillar photoreceptor cells of Drosophila, for example, is 

mediated by a G protein–activated phospholipase C, which hydrolyses the membrane 

lipid PIP2 (Hardie and Raghu, 2001).  PIP2 hydrolysis  has recently been shown to alter 

the physical properties of the microvillar membrane, most likely increasing membrane 

tension and reducing crowding, which results in a contraction of the microvilli (Hardie 

and Franze, 2012).  The light sensitive transient receptor potential (TRP) channels seem 

to respond to the mechanical forces generated by PIP2 hydrolysis rather than to 

chemical messengers, suggesting that mechanics is used as second messenger in 

metabotropic signal transduction (Hardie and Franze, 2012).  TRP channels are also 

found in many different neurons and glial cells, and it is intriguing to speculate whether 

a similar, mechanical mechanism is involved in TRP channel activation in other parts of 

the nervous system.  Such a mechanism could have tremendous impact on different 

aspects of the development of the nervous and other organ systems. 

 

Conclusions 

Many events during the development of the nervous system seem to be controlled 

by mechanics.  Forces acting over different length and time scales drive motion and 

shape changes, and the cellular susceptibility to mechanical stimuli may be exploited as 

an additional level of control of developmental processes and a fundamental way of 

dealing with a changing environment.  Understanding mechanics, which is very likely 
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intimately linked to biochemistry, will thus be required to gain a more complete picture 

of development. 

In recent years, technological progress has enabled the analysis and measurements 

of nervous tissue mechanics with ever increasing resolution, as well as first insight into 

neuronal and glial cell mechanosensitivity and mechanotransduction pathways.  

However, we are only beginning to understand when, where, and how mechanical 

processes take place in the nervous system in vivo.  Recently developed mechanics 

techniques need to be combined with cutting edge biological tools to investigate the 

interplay of mechanics and biochemistry and to illuminate mechanotransduction in 

more detail.  We also need new techniques that take in vitro studies a step further. For 

example, the mechanical 3D environment that cells encounter in vivo is currently 

difficult to reproduce in cell culture systems.  Cell cultures with locally and reversibly 

tuneable mechanical properties would be a great asset to study cellular 

mechanosensitivity.  Ultimately, mechanics measurements will have to be performed in 

vivo, which poses a big challenge.  

Furthermore, we likely also need to go back and re-visit fundamental questions in 

nervous system development using newly developed techniques.  For example, most 

textbooks still ascribe a mechanical function to glial cells: to provide structural support 

to neurons.  However, using AFM, glial cells were shown to be twice as soft as their 

neighboring neurons (Lu et al., 2006), which should significantly limit the structural 

support they can offer.  An involvement of mechanical signaling in neuronal 

development, migration and/or guidance, in signal transduction cascades, or neuronal 

network formation would revolutionize our understanding of the development of the 

nervous system.  
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Figures 

 

Fig. 1: Mechanosensitivity of nervous tissue cells. 

(A, B) Only when mesenchymal stem cells are cultured on ‘soft’ neurogenic 

substrates with a compliance similar to that of brain tissue do they assume a neuronal 

phenotype and express the neuronal cytoskeletal marker β3-tubulin (green). Scale bar: 

5 µm. Nuclei are shown in blue. Adapted from (Engler et al., 2006) with permission from 

Elsevier. (C) When primary glial cells (astrocytes) are cultured on substrates with a 

stiffness comparable to that of muscle tissue (‘stiff’), they spread and assume a 

morphology similar to that observed when they are cultured on tissue culture plastics. 

(D) However, when the same cells in the same chemical environment are cultured on 

softer substrates whose compliance is similar to that of brain tissue (‘soft’), their cellular 

morphology changes drastically, and they extend star-like processes and resemble their 

in vivo appearance. Scale bar: 10 µm. 

 

Fig. 2: Tension along neuronal processes. 

(A) Neurites are under tension. (B) When they are pulled to one side with a 

microneedle, forces redistribute and, as a consequence, neurites change their direction 

of growth (C).  (D) After removing the microneedle, initially relaxed neurites build up 

tension again, straighten, and resume growth away from the rest of the cell, changing 

direction again.  Scale bar: 50 µm.  Adapted from (Bray, 1979), permission pending. (E, 

F) Schematic drawing of force distributions in neurite extension. (E) Initially, the growth 

cone moves (black arrow) in a direction opposite to the tension acting along the neurite 

(red arrow). (F) When the neurite is deflected (grey arrow), the force redistributes and 

the neurite changes its outgrowth direction to again oppose the tension. 

 

Fig. 3: Forces in brain folding. 

During development of the brain, mechanical forces lead to the folding of the 

cortex.  These forces are currently hypothesized to be either due to differential 

expansion (green arrows) of certain regions/cell types, or to tension (blue arrows) 

along neuronal axons (blue).  As a consequence of the folding, the deeper cortical layers 

are thicker in gyri than in sulci.  The volume of the cortex is maintained in the respective 

layers of gyri and sulci (indicated by lines crossing the layers).  Image adapted from 

(Bok, 1959), permission pending. 

 

Fig. 4: Cellular mechanosensitivity. 

Every cellular element that is involved in transmitting forces is exposed to the 

same forces, resulting in strain that possibly can be detected and serve as first step in 

mechanotransduction.  Possible strain sensors include stretch-activated ion channels, 

caveolae, cryptic binding or phosphorylation sites, cell adhesion/connection sites, the 

cytoskeleton, and the nucleus itself.  Further possible key players in 

mechanotransduction include direct physical effects, motor-clutch systems, tension-

dependent exo- and endocytosis, or the (slower) activation of transcription factors. 
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Box 1: Terminology of mechanical parameters 

 

Elastic modulus: The ratio of stress σ to strain γ; a constant describing a material’s 

resistance to deformation. Unit: Pa. 

Elasticity: The property of a material to deform in response to a force and to return to 

its original state once the force is removed. 

Linear elasticity: Stress and strain are proportional; the elastic modulus is independent 

of the strain. 

Non-linear elasticity: Biological materials usually show non-linear elasticity. Their 

elastic modulus changes with strain. Cytoskeletal and extracellular matrix networks, for 

example, stiffen when they are increasingly deformed. 

Poisson’s ratio (νννν): Negative ratio of transverse to axial strain.  For most materials, 

0 ≤ � ≤ 0.5.  Biological materials often have a Poisson’s ratio between 0.4 and 0.5; for 

incompressible materials such as water ν=0.5. 

Shear modulus (G): Quantifies the elastic resistance of a material to deformation in 

shear (stress is applied parallel to the surface). Unit: Pa.  Can be transformed into 

Young’s modulus via Poisson’s ratio: G=E/(2(1+ν)). 

Strain (γ)γ)γ)γ): Relative deformation of a material under stress.  Dimensionless. 

Stress (σ)σ)σ)σ): The force exerted normalized by the area over which the force is applied. 

Unit: Pa (N/m2 = pN/µm2). Depending on the direction of stress application: 

compressional, extension, or shear stress. 

Tension: A pulling force (not a stress). Unit: N. 

Viscoelasticity: Combining viscous and elastic properties. Materials with viscoelastic 

properties partly recover their initial shape after stress application (elastic 

contribution) but also continue to flow (or increase strain; viscous contribution) as long 

as the stress is applied, until they either reach a plateau (viscoelastic solids) or slowly 

flow (or creep) without limit (viscoelastic liquids or viscoplastic materials).  The 

viscoelastic response of a material to stress depends on the time scale. 

Viscosity (η)η)η)η): Resistance of a fluid to stress; the ratio of stress σ to strain rate dγ/dt (or 

flow rate). Unit: Pa•s. 

Yield stress (σσσσ y): Maximum stress that can be applied before a sample ruptures. 

Young’s modulus (E): Quantifies the elastic resistance of a material to elongation or 

compression (stress is applied normal to the surface). Unit: Pa.  Can be transformed into 

shear modulus via Poisson’s ratio: E=2G(1+ν). 
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Table 1: Cell mechanics measurement tools 

 

Technique Forces Main applications  Pros Cons 

Atomic force 

microscopy 

(AFM) 

pN – mN, 

compressive 

and tensile 

forces 

molecular, cell, and 

tissue stiffness 

measurements, protein 

unfolding, cell adhesion 

measurements, stress 

application to biological 

samples, surface 

scanning 

high spatial and 

temporal 

resolution, 

combination 

with other 

techniques, 

working range 

over several 

scales 

restricted to 

surfaces, no 

high 

throughput 

Cell poking  nN - µN, 

compressive 

forces 

cell stiffness 

measurements 

easy to set up restricted to 

surfaces, 

limited force 

and spatial 

resolution 

Magnetic bead 

twisting 

pN – nN, 

shear forces 

cell rheology, stress 

application to cell 

surface receptors 

high throughput, 

good force 

resolution 

restricted to 

surfaces, 

binding may 

cause 

secondary 

effects 

Magnetic 

tweezers 

pN – nN, 

tensile forces 

cell stiffness 

measurements 

easy to set up requires 

magnetic 

beads to be 

taken up by or 

bound to cells 

Micropipette 

aspiration 

10s of pN – 

µN, tensile 

forces 

cell stiffness, 

membrane tension 

measurements 

easy to set up limited spatial 

and force 

resolution 

Microrheology passive 

method (no 

forces 

actively 

applied) 

cell rheology easy to set up, 

high throughput, 

in vivo 

measurements 

possible 

position of the 

particles 

difficult to 

control 

Optical 

stretcher 

pN, tensile 

forces 

cell deformation assays high throughput, 

contact-free 

limited spatial 

resolution and 

force, heating 

of the sample 

Optical 

tweezers 

pN, tensile, 

compressive, 

shear forces 

stress application to 

cells and molecules 

high temporal 

and spatial 

resolution 

limited force, 

often µm sized 

beads have to 

be attached to 

the sample, 

heating  

 


