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Excitonic effects play a particularly important role in the optoelectronic behavior of two-
dimensional (2D) semiconductors. To facilitate the interpretation of experimental photoabsorp-
tion and photoluminescence spectra we provide statistically exact diffusion quantum Monte Carlo
binding-energy data for Mott-Wannier models of excitons, trions, and biexcitons in 2D semiconduc-
tors. We also provide contact pair densities to allow a description of contact (exchange) interactions
between charge carriers using first-order perturbation theory. Our data indicate that the binding
energy of a trion is generally larger than that of a biexciton in 2D semiconductors. We provide inter-
polation formulas giving the binding energy and contact density of 2D semiconductors as functions
of the electron and hole effective masses and the in-plane polarizability.

PACS numbers: 78.20.Bh, 31.15.-p, 73.20.Hb, 78.55.-m

The optical properties of two-dimensional (2D) semi-
conductors such as monolayerMoS2, MoSe2, WS2, WSe2,
InSe, and phosphorene have recently attracted a great
deal of interest [1–8]. Numerous observations have
been made of the rich structure of the luminescence
spectra of these 2D materials, in which the most pro-
nounced features have been interpreted in terms of neu-
tral excitons [9–14], charged excitons (trions) [15–20],
and biexcitons [21–23], while recent experiments on
higher-quality monolayer transition-metal dichalcogenide
(TMDC) samples have revealed additional structure in
their spectra [24–27].

In this work we study a Mott-Wannier model of exci-
tons and excitonic complexes in monolayer 2D semicon-
ductors, taking into account the polarizability of the 2D
crystal [28–30] and providing data to allow for a pertur-
bative treatment of contact interactions between carri-
ers. We use the diffusion quantum Monte Carlo (DMC)
approach [31–33] to find the energies of trions and biex-
citons, and we provide approximate formulas for the ex-
citon (U), trion (ET), and biexciton (EXX) binding en-
ergies as functions of the in-plane polarizability and the
electron and hole effective masses, which fit the DMC
data to within 5%. We calculate and report contact pair
densities, enabling the evaluation of perturbative correc-
tions to the energies of charge-carrier complexes, as well
as intervalley scattering, due to contact (exchange) inter-
actions between charge carriers. The strength of the con-
tact interactions could in principle be determined from
first-principles calculations for different 2D semiconduc-
tors; alternatively, the strengths of the contact interac-
tions can be regarded as parameters to be determined
using experimental data in conjunction with the contact
pair densities reported here.

The energy −U − ET of a trion with one hole (h) and

two electrons (e1 and e2) can be found by solving the
Schrödinger equation (in Gaussian units)
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Ψ

= [−U − ET] Ψ, (1)

where me and mh are the electron and hole effective
masses and rij = ri − rj is the position of particle i
relative to particle j. The Keldysh potential U describes
the Coulomb interaction screened by the polarization of
the electron orbitals in the 2D lattice [28–30, 34],

U(r) =
e2

ǫ

∫

d2q

(2π)2
2πeiq·r

q (1 + qr∗)

=
πe2

2ǫr∗
[H0(r/r∗)− Y0(r/r∗)] , (2)

where r∗ = 2πκ⊥ is a parameter directly related to the
in-plane susceptibility κ⊥ of the material, which has di-
mensions of length, and ǫ is the average permittivity of
the media on either side of the 2D semiconductor. The
potential is expressed in terms of a Struve function H0

and a Bessel function of the second kind Y0. Equation (1)
determines the main contribution ET towards the trion
binding energy, which is counted from the exciton binding
energy U . Similar Schrödinger equations can be written
for an exciton and a biexciton.

Numerical solution of the Mott-Wannier Schrödinger
equation for an exciton yields the r∗-dependent binding
energy U (see the inset in Fig. 1), which agrees with the

asymptotic limits [28–30, 35, 36] U(r∗ → ∞) ∼ e2

ǫr∗
ln r∗

a∗

B

and U(r∗ → 0) = −4 R∗
y, as well as the contact pair

density gXeh = 〈δ(reh)〉. Their r∗ dependence was fitted
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by

U/R∗

y ≈ (1 − x) [4− 1.0x ln (1− x)] /
[

1 + 1.31
√
x
]

(3)

gXeh ≈ 8.0

(a∗B)
2

1− x

1 + 20.0
√
x
, (4)

where x = r∗/(a
∗

B + r∗), a∗B = ǫ~2/(µe2) is the exci-
tonic Bohr radius, µ = (memh)/(me+mh) is the reduced
mass, and R∗

y = µe4/(2ǫ2~2) is the excitonic Rydberg.
Here, the

√
x term is not a physical singularity; rather,

it reflects the enhanced contact density of a 2D hydrogen
atom. gXeh is plotted in Fig. 2.

The ground-state solution to Eq. (1) for a trion was ob-
tained using the DMC approach [31, 32], with the trial
wave function being optimized using variational Monte
Carlo (VMC). The trial wave function was of the Jas-
trow form Ψ = exp[J(R)], where the Jastrow exponent
J(R) consisted of a pairwise sum of terms of the form
u0(r) =

[

c1r
2 log(r) + c2r

2 + c3r
3
]

/
(

1 + c4r
2
)

, where
c1, c2, c3, and c4 are optimizable parameters (different
for each particle-pair type), together with two-body and
three-body polynomial terms that are truncated at finite
range [37, 38]. The short-range behavior of u0(r) is such
that the analogs of the Kato cusp conditions for the log-
arithmic interaction are satisfied (see the Supplemental
Material in Ref. [30]). Trial wave functions were opti-
mized by unreweighted variance minimization [39, 40]
and energy minimization [41]. The ground-state wave
functions for these systems are nodeless; hence the fixed-
node DMC algorithm is exact. The DMC calculations
were performed using the casino code [33] with time
steps in the ratio 1 : 4 and the corresponding target con-
figuration populations in the ratio 4 : 1. Afterwards,
the energies were extrapolated linearly to zero time step
and hence, simultaneously, to infinite population. The
resulting DMC trion binding energies, shown in Fig. 1,
agree with the asymptotic binding energies found ear-
lier in the limits of r∗ → ∞ [30] and r∗ → 0 [42].
The trion contact pair densities gTee = 〈δ(re1e2)〉 and
gTeh = 〈δ(re1h) + δ(re2h)〉 were obtained by binning the
radial distances sampled in the VMC and DMC calcu-
lations, evaluating the extrapolated estimate of the pair
density [32], and then extrapolating the pair density to
zero radial separation. The resulting contact pair densi-
ties are shown in Fig. 2. The trion binding-energy data
are fitted (to an accuracy within 5%: see Fig. 1) by the
formula

ET
R∗

y

≈
(

1−
√
x
)

[

(

0.44x2 − 1.16
√
x+ 1.46

)

(2 − y)

−
(

0.64x2 − 2.0
√
x+ 2.4

)
√

1− y
]

,

(5)

�

�

�

�

�

�
� � �

�

�

�

�

�

�

�
� �

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�
� �

m� /m�

� 0.5
� 1.0
� 2.0
� 5.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

�
T
/
R
y
*

�����������

���
����
����

���
����
����

���
����

����

����
����

���

����
�����

��

������
�����

��������
���

���������
��

�

�

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

�
/
R
y*

x

x = r* / (aB
* + r*)

FIG. 1. (color online). Binding energies of trions at different
mass ratios against rescaled in-plane polarizability r∗. The
inset shows the binding energies of excitons against rescaled
r∗. The lines show the fitting formulas of Eqs. (5) and (3).
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FIG. 2. (color online). Contact electron-hole pair densities of
trions and excitons against rescaled in-plane polarizability r∗
at different mass ratios. The black curve is the fitting formula
for an exciton, Eq. (4), while the yellow curve is the fitting for-
mula for a trion, Eq. (6). The inset shows the (much smaller)
contact pair density between the electrons in a negative trion
and the fitting curve (in blue) of Eq. (7).

while the contact pair densities are fitted by

gTeh ≈ gXeh +
0.35

(a∗B)
2
(1− x)3.5 and (6)

gTee ≈
0.11

(a∗B)
2

1−√
x

1 +
√
x

[

1− y2
]

, (7)

where y = µ/mh. The term proportional to
√
1− y in

Eq. (5) describes the contribution to the ground-state
energy due to the harmonic zero-point vibration of two
heavy electrons treated using the Born-Oppenheimer ap-
proximation [42].
Similarly, the binding energies EXX of biexcitons were

calculated using DMC and the results are presented in
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FIG. 3. (color online). Binding energies of biexcitons against
rescaled in-plane polarizability r∗ at different mass ratios.
The lines show the fitting formula of Eq. (8). The left in-
set shows the electron-hole contact pair densities for a biex-
citon and the approximation formula [black curve, Eq. (9)].
Electron-electron contact pair densities for a biexciton are
shown in the right inset, together with the approximation
formula of Eq. (10).

Fig. 3. EXX is the energy required to dissociate a biex-
citon into two separate excitons. A fitting formula with
up to 5% accuracy,

EXX

R∗
y

≈
(

1−
√
x
)

[

1− 1.2
√

y(1− y)
]

×
[

2.0− 17.0x+ 43.0
(

x3/2 − x2
)

+ 15.7x5/2
]

,

(8)

incorporates the fact that the biexciton binding en-
ergy is symmetric under the exchange of electrons and
holes and includes the correct behavior in the Born-
Oppenheimer/harmonic-approximation limit of extreme
mass ratio. The biexciton electron-hole and electron-
electron contact pair densities can be approximated as

gXX
eh ≈ 2gXeh +

0.5

(a∗B)
2
(1− x)2 and (9)

gXX
ee ≈ 1− x

(a∗B)
2
(1− 0.44x)(0.1− 0.064y). (10)

The ratio of the negative-trion to the biexciton bind-
ing energy is plotted against x = r∗/(a

∗

B + r∗) and
y = µ/mh = me/(me + mh) in Fig. 4. Although the
biexciton binding energy is larger than the trion binding
energy for the Coulomb interaction (x = 0), the situation
is generally reversed when the interaction is of logarith-
mic form (x = 1). However, at extreme mass ratios,
especially where the hole is heavy, the biexciton is stabi-
lized with respect to the negative trion. In practice 2D

FIG. 4. (color online). Ratio of negative-trion binding energy
to biexciton binding energy (ET/EXX) as a function of rescaled
in-plane polarizability r∗ and rescaled mass ratio. The thick
black line shows the curve ET = EXX. Experimentally relevant
points for TMDCs are shown using symbols from Table I.

materials typically have x > 0.9 and y ≈ 0.5 (see Table
I), and hence are strongly in the regime in which the trion
binding energy exceeds the biexciton binding energy. The
qualitative form of our predicted trion spectrum is shown
in Fig. 5. The trion peak occurs at lower energy than the
biexciton peak, in stark contradiction to the classifica-
tion of experimental peaks reported in Ref. [43]. In fact
several experimental works [21–23] have reported biex-
citon binding energies of TMDCs that are about twice
as large as the reported trion binding energies [15–20].
However the physical origins of experimentally observed
peaks in optical spectra are not always clear. Our con-
clusion that the trion binding energy is larger than the
biexciton binding energy is robust against large changes
in the values of the effective masses and the susceptibility
and, taken at face value, suggests that the experimental
“trion” and “biexciton” peaks may be misclassified.

In Table I we compare the trion and biexciton binding
energies obtained using Eqs. (5) and (8) with previous
theoretical calculations and experimental results in the
literature for molybdenum and tungsten dichalcogenide
materials. The theoretical results are in good agreement
with each other, and also with experimental results for
the trion. However, for the biexciton, there is a major
disagreement between theory and experiment: the ex-
perimental binding energies are around three times larger
than the theoretical biexciton binding energies. Since our
DMC solution of the Mott-Wannier model is exact, the
quantitative disagreement between the positions of the
theoretical and experimental trion and biexciton peaks
must indicate either a serious inaccuracy in the Keldysh
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FIG. 5. (color online). Expected photoemission spectrum of a
2D semiconductor showing peaks for exciton (X), trion (X−),
and biexciton (XX) complexes. ∆ is the quasiparticle band
gap.

interaction between charge carriers or a misinterpretation
of experimental spectra. One possibility is that contact
(exchange) interactions between charge carriers as well
as intervalley scattering effects could play a significant
role in charge-carrier complexes. Using our contact pair
density data together with ab initio calculations of con-
tact interaction parameters could provide a promising
avenue for improving the quantitative description of the
measured photoemission spectra.

In summary we present exact numerical data for the
ground-state solutions of Mott-Wannier models of trions
and biexcitons in 2D semiconductors in which the charge
carriers interact via the Keldysh interaction. We have
evaluated the contact pair density between charge car-
riers, to permit subsequent perturbative evaluations of
the energy contribution due to contact exchange inter-
actions. Our results suggest that experimental spectra
have been misclassified, because the trion binding energy
should exceed the biexciton binding energy, but they also
indicate that the Keldysh interaction fails to give a quan-
titative description of the observed excitonic properties of
2D TMDCs. The contact pair density data that we pro-
vide will enable the theoretical and experimental explo-
ration of the role played by contact interactions between
charge carriers and intervalley scattering in 2D semicon-
ductors.
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