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Statistical inference in stochastic/deterministic epidemic

models to jointly estimate transmission and severity

Alice Corbella

Abstract

This thesis explores the joint estimation of transmission and severity of infectious

diseases, focussing on the specific case of influenza. Transmission governs the speed

and magnitude of viral spread in a population, while severity determines morbidity

and mortality and the resulting effect on health care facilities. Their quantification

is crucial to inform public health policies, motivating the routine collection of data

on influenza cases.

The estimation of severity is compromised by the high degree of censoring affect-

ing the data early during the epidemic. The challenge of estimating transmission

is that each influenza data source is often affected by noise and selection bias and

individually provides only partial information on the underlying process.

To address severity estimation with high censored data, new methods, inspired

by demographic models and by parametric survival analysis, are formulated. A

comprehensive review of these methods and existing methods is also carried out.

To jointly estimate transmission and severity, an initial Bayesian epidemic model

is fitted to historical data on severe cases, assuming a deterministic severity process

and using a single data source. This model is then extended to describe a more

stochastic and hence more realistic process of severe events, with the data generating

process governed by hidden random variables in a state-space framework. Such

increased realism necessitates the use of multiple data sources to enhance parameter

identifiability, in a Bayesian evidence synthesis context. In contrast to the literature

in the field, the model introduced accounts for dependencies between datasets. The

added stochasticity and unmeasured dependencies result in an intractable likelihood.

Inference therefore requires a new approach based on Monte Carlo methods.

The method proposed proves its potential and usefulness in the concluding ap-

plication to real data from the latest (2017/18) epidemic of influenza in England.
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There is nothing like looking,

if you want to find something [. . . ].

You certainly usually find something,

if you look, but it is not always

quite the something you were after.

J. R. R. Tolkien, The Hobbit

This thesis is dedicated to my families in England, who opened their homes and shared this

adventure with me.
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process of severe events, with the data generating process governed by hidden random variables

in a state-space framework. Such increased realism necessitates the use of multiple data sources

to enhance parameter identifiability, in a Bayesian evidence synthesis context. In contrast to the

literature in the field, the model introduced accounts for dependencies between datasets. The

added stochasticity and unmeasured dependencies result in an intractable likelihood. Inference

therefore requires a new approach based on Monte Carlo methods.

The method proposed proves its potential and usefulness in the concluding application to

real data from the latest (2017/18) epidemic of influenza in England.
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Preface

Most of the work presented in this thesis will be published or has already been published in

scientific journals. Specifically:

• The case study employed to illustrate transmission models in Section 3.3 has been pub-

lished in BMC Public Health in 2018 (Corbella et al., 2018).

• The work contained in Section 4.4, where an extension of standard sequential Monte

Carlo (SMC) methods is proposed, will be further extended with derivation of the results

presented, proof of the validity of the algorithm and, possibly, further applications and

examples. It will then be submitted to a statistics journal.

• The models, methods and the simulation study presented in Chapter 5 will be further

extended with a comparison on real data and submitted to a statistics journal.

• The work presented in Chapter 6 is self contained, providing a complete analysis of in-

fluenza severity and transmission during the 2017/18 epidemic. The content of this chapter

will be submitted to an epidemiology journal or a science dissemination journal.
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Chapter 1

Introduction

The importance of the analysis of infectious diseases from a public health perspective is sum-

marised in the devastating consequences of epidemics.

Precisely 100 years ago the epidemic of Spanish Flu emerged and 50 to 100 million people

are estimated to have died (Patterson and Pyle, 1991); the AIDS epidemic is estimated to have

caused 35.4 million deaths until 2017 (UNAIDS, 2018) and the more recent Ebola epidemic in

west Africa in 2014 resulted in more than 10 thousand deaths (WHO, 2016). These are just few

examples that motivate the effort to estimate and predict infectious diseases’ transmission, with

an ultimate aim of informing public health decisions to mitigate and/or prevent epidemics.

Besides, there are many reasons for which the investigation of epidemics has gathered atten-

tion of statistician and mathematical modellers. Niels G. Becker, in his 1989 book summarised

them saying that:

“Firstly, infectious disease data are not the result of planned experiments, but arise from

naturally occurring epidemics. Secondly, infectious disease data are highly dependent because

infected cases are the cause of further infected cases. Thirdly, the infection process is generally

only partially observable” (Becker, 1989)

Motivated by these stimuli and by the public health need, the literature on epidemic models

and their inference has proliferated in the last two centuries (Heesterbeek et al., 2015).

1.1 Influenza virus and public health response

1.1.1 A public health threat

This year marks the centenary of the Spanish influenza pandemic. Since the emergence of this

virus in the human population, pandemic events and seasonal epidemics have threatened world

health almost continuously.

Brief history of influenza pandemics

Influenza outbreaks can be broadly classified into seasonal epidemics and pandemics; the latter

being defined as epidemics of worldwide spread. Often a pandemic event takes place when the

majority of the population does not have immune defences against the circulating virus.

There have been four human pandemics in the last century, in correspondence with reassort-

ment events and contacts across species, as illustrated in Figure 1.1.

1
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Figure 1.1: Representation of the pathogen evolution in the population of influenza A virus

and its sub-types currently present in the population (image from Trevor Bedford, Course in

Pathogen evolution, selection and immunity, Seattle 2016).

A hundred years ago the Spanish ’flu invaded all nations worldwide. This pandemic is

estimated to have infected 1/3 of the world population, causing over 50 million deaths, and

is thought to have emerged straight from bird to human contact (Taubenberger and Morens,

2006). The sub-type of the Spanish ’flu was H1N1 and this strain disappeared in 1957 when a

shifted virus (H2N2) was transmitted from birds to humans. The same event happened a decade

later and led to the current circulating H3N2 virus (Palese, 2004). Ten years ago a new variant

of the H1N1 virus emerged in Mexico. Despite being of the same sub-type as the Spanish ’flu,

this particular strain was the result of years of between and within species evolution, towards

which only few individuals had immunity (Neumann, Noda, and Kawaoka, 2009).

Influenza A/H1N1/Pdm9 and influenza A/H3N2 are currently circulating seasonally, to-

gether with influenza B that is present only in humans. This characteristic prevents antigenic

shift, practically granting no influenza B pandemic.

Current burden of the disease

Influenza might resolve in an asymptomatic infection or result in mild symptoms such as fever

or feverishness, headache, muscle pain, general feeling of ill-health, runny nose, sore throat and

non-productive cough. Moreover, in the most at risk groups, severe symptoms might arise,

potentially leading to hospitalization, Intensive Care Unit (ICU) admission or death (ECDC,

2018).

Seasonal influenza has been recently shown to be the infectious disease with the highest

burden on health systems in Europe (Cassini et al., 2018). This result is due both to the

high incidence of influenza in the population and to the high mortality within cases, as can be

observed in Figure 1.2 from Cassini et al. (2018).

1“One DALY can be thought of as one lost year of healthy life. The sum of these DALYs across the population,

or the burden of disease, can be thought of as a measurement of the gap between current health status and an ideal

health situation where the entire population lives to an advanced age, free of disease and disability.” (Definition

from WHO (2014))

https://bedford.io/projects/sismid/pathogens/slides.html#/28
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Figure 1.2: Bubble chart of the burden of selected infectious diseases in terms of mortality and

incidence, EU/EEA countries, 2009-2013. The diameter of the bubble reflects the number of

DALYs 1per 100,000 population per year. Figure taken from Cassini et al. (2018).

Disparate interventions exists to lighten the load of influenza on public health systems,

including: vaccination policies (Baguelin et al., 2010); school closures to reduce transmission in

a pandemic (Te Beest et al., 2015; Vynnycky and Edmunds, 2008); reinforced use of antiviral

drugs (Ferguson et al., 2006); or changes in hospital management policies.

The magnitude of influenza burden and the need to assess the potential effectiveness of these

public health policies motivated the quantification and prediction of the number of infected

people at different levels of severity. Indeed many health facilities are put under pressure during

influenza epidemics: the flow of influenza-like illness (ILI) patients into General Practitioner

(GP) clinics increases, the beds in hospital, particularly in ICUs cases would be highly occupied

by ’flu severe cases etc. Inference and prediction of the transmission and severity of each influenza

epidemic is therefore key to support preparedness and response so that hospitals may free beds

to admit a high number of cases, GP clinics might be ready for the increasing demand etc.

The reason why influenza is still present in humans, after so many years of active fight by

public health systems, is to be found in its biologic characteristics and extremely rapid evolution

(Palese, 2004) which are illustrated below.

1.1.2 Biology and classification of the influenza virus

The influenza virus is a single-strand RNA virus of the family of Orthomyxoviridae (Tauben-

berger and Morens, 2008). Influenza viruses are divided into four types (A, B, C and D)

according to their genetic and biological composition. Influenza A and B are the types currently

causing most epidemics and are very similar in their virion structure (WHO, 2018b). The RNA

(i.e. the genetic material to be replicated during infection) is enclosed in a lipid envelope covered

with Haemagglutinin (HA) and Neuraminidase (NA) proteins (Figure 1.3). There exist several

different types of these proteins.

These external proteins are key for the infection process: once a virion enters the organism,

HA proteins allow it to lock to the external membrane of the cell, to enter it via endocitosis
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and to move towards the cell nucleus for replication. Once the virus RNA has multiplied, child

viruses invade the cell and eventually, thanks to the action of NA proteins, are released to infect

other cells of the organism (Webster et al., 2013).

Figure 1.3: Representation of an influenza A virion (image from Trevor Bedford, Course in

Pathogen evolution, selection and immunity, Seattle 2016).

The immune system responds to infection by producing antibodies that operate on the HA

proteins. Once the virus is identified, antibodies bind with HA proteins, preventing the virion

from entering the host cell or from releasing genetic material (NIAID, 2012).

The antibody response is compromised by the continuous evolution of the influenza virus so

that antibodies are not able to bind to its HA proteins any more. There are three ways in which

a virus can evolve. An antigenic shift takes place when the HA or NA type changes. This event

usually corresponds to an interaction of different species and the consequent adaptation of the

virus to a new specie. Antigenic shifts happen only for influenza A and lead to its classification

into sub-types according to the type of HA and NA protein, which is indicated by the ordered

number of their discovery; for example, influenza A/H1N1, which was the first influenza virion

to be observed, or influenza A/H3N2. An antigenic drift is more common and corresponds to a

punctual mutation in one or more of the amino acids of the HA or NA proteins and can take place

every time the virus is replicated within the organism. These mutations give rise to different

lineages of influenza within the same sub-type and they are identified by the location where

the virus was first observed or by the respective pandemic event (e.g. influenza B/Victoria,

influenza A/H3N2/Panama, influenza A/H1N1/pdm09) (Treanor, 2004). A last key mutation

is genetic reassortment, that takes place when two different viruses are jointly present within

the same organism. If this is the case the genetic material is merged and this leads to a new

strain of influenza.

Once an organism is fully infected he might infect other organisms. Transmission takes

place via mainly three routes: droplets, aerosol and direct contact. When an infected individual

sneezes or coughs he produces expiratory sprays made of small particles that might be inhaled

and reach the upper respiratory tract (droplets), and of even smaller particles that might reach

the lower respiratory tract (aerosol). In direct contact instead, particles are transferred to

https://bedford.io/projects/sismid/pathogens/slides.html#/23
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another organism directly or via a contaminated object/person, that is, indirectly (Killingley

and Nguyen-Van-Tam, 2013).

1.2 Measuring an influenza epidemic

The incidence and mortality of an infectious disease are determined by its transmission and

severity. Quantities defining these two features are proposed here, for which the goal is inference.

1.2.1 Characterizing severity

An individual infected with the influenza virus might experience more or less severe symptoms

and events, which are often one subsumed in the other.

The severity process can be thought as a pyramid, such as the one represented in Figure

1.4 (De Angelis and Presanis, 2018). The quantities of interests are then the probability of

specific severe events (e.g. the probability of death given hospitalization or the probability

of hospitalization given infection etc.). However, the probability of death conditional on the

individual’s status is one of the most relevant and studied severity measures.

Infected

Symptomatic

Hospitalised

ICU

Dead

Figure 1.4: Severity of influenza as a pyramid.

This quantity is often called the case fatality risk (CFR), which is defined as the probability

that a person dies from the infection given that he is a case. The literature has not agreed yet on

the computation of this quantity as it depends on which individuals are categorized as “cases”

(Lipsitch et al., 2015). Several studies focus on estimating the infection fatality risk (IFR), i.e,

the probability of death given infection. However, this quantity is difficult to determine because,

on the one hand, the number of infected people is not available (mainly due to asymptomatic

cases and under reporting), and on the other hand, registers may misclassify infection-related

death. Other measures of severity are the symptomatic CFR (i.e. the probability of death

among patients with symptoms) and the hospitalized CFR (i.e. the probability of death among

hospitalized patients).

This thesis approaches the general estimation of the probability of a severe event conditionally

on a less severe condition. Nevertheless, the main application of the methods to estimate severity

will be the quantification of the hospitalization/intensive-care CFR.
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1.2.2 Characterizing transmission

The influenza virus, similarly to many other infectious diseases, makes the infected host undergo

a latent period, when the virus spreads within the host body, and an infectious period, when the

host might spread the virus to other individuals, before recovering and becoming immune to the

specific strain of influenza that infected him. Consecutive events of this type (i.e. infections)

make an epidemic take off; quantifying the transmission means measuring the magnitude and

speed of the epidemic spread within a population.

Mechanistic models assume the infection process described above, with factors that determine

transmission of a virus being: (i) the rate of effective contacts within the population, where an

effective contact is a contact close enough to potentially lead to infection; (ii) the probability

of infection given contact; and (iii) the length of the infectious period. While the first factor

is a characteristic of the population, the latter two are determined by biological properties of

the circulating virus (Keeling and Rohani, 2011). A key quantity to measure transmission that

depends on these three factors is the basic reproduction number R0, defined as the average

number of new infections generated by an infectious individual when introduced in a population

fully susceptible to the virus. The level of immunity in the population also affects the spread of

the disease and is accounted for in another index targeted by this thesis: Re(0), defined as R0

in a population with a specific level of immunity. An illustration of the spread of the disease for

specific values of these parameters is reported in Figure 1.5.
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Figure 1.5: Cartoon of the spread of a disease with R0 = 4 and average infectious period of two

days. An infectious individual ( ) is introduced in a fully susceptible population (left panel)

and in a population where 75 % of the individuals are immune to the virus ( ) and 25%

are susceptible ( ) (right panel). Figure freely adapted from Vynnycky and White (2010),

Chapter 1.

1.3 Statistical methods for modelling and inferring severity and

transmission

To perform inference of severity and transmission some choices must be made of the model to

approximate the data-generating process and on the inferential approach. The branches of statis-

tics that are used to model transmission and severity and to infer the quantities summarising

each, are briefly reviewed here.

1.3.1 Modelling approaches

In each specific context and depending on the type of data available, disparate methods can be

used.

Mechanistic epidemic models are a useful tool for modelling the spread of a virus in a

population. There is a substantial breadth of literature regarding these models alone that will

be reviewed in Chapter 3. Mechanistic epidemic models are specific cases of stochastic processes

(Chiang, 1975), where there is dependence across states. In particular, the number of new

infections at the next time point will depend on the current number of infectious and susceptible

individuals. They can also be approached within a state space models (SSMs) perspective, where
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SSMs are themselves special cases of stochastic processes (Schön and Lindsten, 2017).

Non-mechanistic models can be also used to analyse infectious disease data. The HHH

model (Held, Höhle, and Hofmann, 2005) is based on decomposing the variability of the data

into an epidemic component, which is modelled through auto-regression terms, and an endemic

component, which is usually modelled via trends and seasonality of the time series. Other

types of phenomenological models are based on flexible Gaussian process regressions (Johnson

et al., 2018) which can be fitted to the data and then used to predict the future evolution of

the epidemic. An ancestor of the phenomenological model is the method of analogues whose

central aim is prediction and is founded on a comparison of the current observations with past

epidemics (Viboud et al., 2003). These non-mechanistic methods are not covered in this thesis

because, despite having shown their predictive power (Pell et al., 2018), they rarely provide clear

estimates of the quantities of interests such as R0 and Re(0) and of other epidemic parameters,

nor do they attempt to quantify the number of underlying infections generating the data.

Regarding severity, the choice of modelling approach heavily depends on the type of data

available. When time-to-event data are available, multi-state models (MSMs) can be adopted

to describe the data in terms of event rates and event probabilities (Andersen and Keiding,

2002). Several sub-fields of MSMs are also considered in the context of the estimation of sever-

ity, including competing risks models (Andersen and Keiding, 2002) and models for dynamic

prediction in survival analysis (Van Houwelingen and Putter, 2011). Alternatively, if count data

on events at different levels of severity are available, counting-processes methods can be used

(Chang and Hsiung, 2005).

1.3.2 Inferential approaches

As for the modelling choices, there is not a unique inferential approach adopted. In cases where

only one data source is available and its likelihood provides straightforward and informative

inference, a frequentist approach is adopted throughout the thesis.

More often the Bayesian paradigm is crucial to tackle intrinsic problems such as: the joint use

of multiple datasets, availability of prior information from external sources, model uncertainty

and the introduction of hidden stochastic quantities that guide the data.

In these cases Bayesian evidence synthesis (Ades et al., 2008; De Angelis and Presanis, 2018)

helps in formulating a full model that exploits all available information. Moreover, Bayesian

computation (Gelman et al., 2013) provides straightforward settings to account for the missing

data, and hidden stochastic quantities of a comprehensive data-generating model.

1.4 Thesis structure

The following two chapters are focused on estimation of severity and transmission respectively.

Chapter 2 illustrates several estimators for the severity of an epidemic. The chapter begins with

a broad introduction to MSMs and their respective counting processes, bridging MSMs with

SSMs. The background introduced in this section is repeatedly used throughout this thesis.

Several estimators proposed in the literature are listed; they are broadly classified according

to the data that they address, either time-to-event data or count data. Two extensions to the

time-to-event estimators are proposed: one adopts parametric survival and the other applies
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a class of model developed for demography, age-period-cohort models, to severity data. These

extensions, together with an investigation of the applicability of the different methods to real

data, are the innovation of this chapter. The chapter ends with some open challenges introduced

by specific data collection schemes.

Chapter 3 covers epidemic models, the most common tool for the inference of transmission.

Elements for specifying an epidemic model are introduced, together with criteria to classify

epidemic models according to assumptions and approximations undertaken. Estimation meth-

ods for transmission and their application to the inference of influenza transmission are briefly

reviewed. To illustrate, a case study of the analysis of severe cases arising from three waves

of seasonal influenza in England is presented. The results reveal that epidemic models can be

usefully applied to severe-case data consisting of small counts. This chapter concludes with

a discussion on the inference of transmission: as shown by the illustrative analysis, a single

data source is often affected by noise and selection bias, providing only partial information

on transmission, and therefore more data sources, informing different aspects of severity and

transmission, should be used jointly.

The challenges discussed in Chapters 2 and 3, call for more advanced inferential methods.

The process of individuals becoming infected and moving across different levels of severity is

in fact a complex process where hidden stochastic quantities govern the data behaviour. For

this reason more advanced methods that allow for this hidden stochasticity in the inference,

e.g. sequential Monte Carlo (SMC) methods, are introduced. Chapter 4 opens with a concise

summary of the methods for state inference and parameter inference in state-space models. SMC

methods are then applied to the estimation of severity to data affected by high censoring. The

application of SMC methods to such complicated data is not straightforward: path degeneracy,

one of the most important obstacles of SMC methods, here comes to a head, with full particle

demise. To solve this problem an extension of the standard sequential importance sampling

algorithm is proposed solving the particle demise problem. Moreover, an epidemic model with

stochastic transmission and stochastic severity is specified in the SSM framework and a standard

SMC method is proposed for approximating its likelihood.

Chapter 5 explores more in detail the layers of hidden stochastic states that can be used to

model the severity process and the consequent inference of transmission and severity parameters.

In this context, the need to jointly exploit multiple data sources is even more meaningful than

when more simplistic epidemic models are used. A challenge to the inference with multiple data

sources is disentangling dependencies between data. In fact, datasets often overlap, leading to

repeated information; the magnitude of the overlap, however, is often unknown. A motivating

example is represented by the severe-case data collected in England. Within this context, a

simulation method is proposed to account for the dependence. A simulation study is carried

out to show the difference between the estimates obtained with the proposed method and the

estimates obtained assuming independence.

Lastly, given all the tools developed in the thesis, transmission and severity of influenza in

England during the 2017/18 season are inferred from multiple sources in Chapter 6.

The final chapter conveys the main discoveries of this thesis and outlines possible future

research and extensions.
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Chapter 2

Estimation of severity

This chapter contains a brief review and some developments of the methods to estimate severity

at the early stages of an epidemic. Section 2.1 reports the statistical models used to describe the

data-generating process. The notation is set generally for the context of time to event processes

and counting processes and is used throughout this thesis. Section 2.2 briefly reviews the most

important severity-estimation methods found in the literature, two of which are analysed in

more depth in Sections 2.3 and 2.5. Section 2.4 instead, extends the method exposed in 2.3,

filling a current gap in the literature. Lastly, section 2.6 draws conclusions on the applicability

of the described and proposed methods.

2.1 Counting processes and multi-state processes

The occurrence of an event can often be interpreted as a transition from one state to another:

an individual dying is a transition from life to death, an individual falling ill with an infectious

disease is a transition from susceptible to infectious and from healthy to at risk of severe events,

etc. Compartmental models (Andersen and Keiding, 2002) (also known as compartment models

in system kinetics (Matis, Wehrly, and Kiffe, 2005)) represent the evolution over time of a

population that can be categorised into disjoint compartments; events are transitions from one

compartment to another.

Data on these transitions might be available at different levels of aggregation. Counting-

process models are used to analyse data on the number of people in a compartment or moving

between compartments over time. On the other hand, survival analysis and multi-state models

(MSMs) for event history analysis deal mainly with individual-level data consisting of times to

events and types of events (Putter, Fiocco, and Geskus, 2007). According to the available data,

the statistician decides which method to use and, by assuming a population or survival model, he

decides on an approximation of the underlying phenomenon. Counting processes for population

dynamics are described in Subsection 2.1.2, and Subsection 2.1.3 contains an introduction to

multi-state processes for individual-level data.

Whether the model refers to a single individual changing states over his time at risk, or to the

change over time in the composition of a population, the model is approximating the evolution

of a system over time. Therefore almost all the models used in this thesis might be interpreted

as state space models (SSMs) which are introduced in Section 2.1.1 below, and whose inference

11
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will be extensively treated in Chapter 4.

2.1.1 A general framework: state-space models

SSMs are one of the most widely used models for dynamical systems (Commandeur, Koopman,

and Ooms, 2011; Lindsten, 2013), i.e. systems that evolve over a specific domain (e.g. space,

calendar time, survival time). This section focuses on the specific case of a system evolving

over time, and often observed in the form of a time series, which is the context of our research

question. Hence, the domain considered is discrete time, composed of equally spaced intervals

indexed by t = 0, 1, 2, . . . .

Many definitions of SSMs are given across the different fields in which these models are used

(weather forecasts, signal processes, statistics, etc.). One of the most general is:

Definition 1. A SSM is a stochastic process that makes use of a latent variable representation

to describe dynamical phenomena (Schön and Lindsten, 2017).

Definition 1 provides the essence of these models: a multivariate stochastic process that

comprises a latent, unobserved, process {Xt}t≥0 representing the underlying dynamics, and a

process of observable components {Yt}t≥1.

The properties of this model change according to assumptions on the domain and the de-

pendence of the stochastic processes. The unobserved process is often defined on a more dense

domain than the observed process (constrained by data collection schemes); moreover the initial

state of the latent process is often fully unobserved (i.e. X0 exists but there is no observa-

tion Y0). Regarding the dependence across variables of the SSM, the state process is often

assumed Markovian over time. Then the SSMs considered can also be called partially observed

Markov processs (POMPs) (King, Nguyen, and Ionides, 2016) or hidden Markov models (HMMs)

(Churchill, 2005).

A parameter-driven Markovian SSM,can be defined through the state equation (Equation

2.1) and the observation equation (Equation 2.2)

Xt|(Xt−1,Θ) ∼ p(xt|xt−1,θ) (2.1)

Yt|(Xt,Θ) ∼ p(yt|xt,θ) (2.2)

both characterised by a vector of parameters θ (Birrell, De Angelis, and Presanis, 2018; Brock-

well and Davis, 2016). Such a model is illustrated in Figure 2.1.

X0 X1 X2 . . . Xt . . .

Y1 Y2 Yt

Figure 2.1: Graphical model for the SSM in (2.1), (2.2). Each r.v. is represented as a node,

where grey nodes correspond to variables that are observed and white nodes are latent variables.

The arrows express the dependence among the variables.

A simple example of a SSM is the Linear Gaussian SSM (Commandeur, Koopman, and Ooms,

2011; Durbin and Koopman, 2012), where the state process and the observational process are
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generated by linear transformations (A and C) and Gaussian noises (Vt and Et). Consider finite

discrete time indexed by t = 0, 1, 2 . . . , where 0 indexes the first (unobserved) interval, denote

by σ and τ the variance of the unobserved and observed processes, respectively, and by α the

mean of the state process at time 0; the model is defined by:

Xt = AXt−1 + Vt

Yt = CXt + Et

Vt ∼ N(0, σ)

Et ∼ N(0, τ) ∀t = 1, 2, . . .

X0 ∼ N(α, σ)

Several phenomena can be modelled with an SSM. The MSMs introduced in Section 2.1.3

with specific distributions, might be interpreted as SSMs.

Within this thesis, SSM notation is used only when referring to counting processes and the

data arising from their observation. In our examples the latent state Xt is often composed only

of the counts of individuals in a specific compartment (prevalence counts) or moving from a

compartment to another in a specific interval (incidence counts). Yt is an often noisy and biased

observation of the incidence or prevalence counts at time t.

2.1.2 General counting processes

In this section counting processes, a special case of stochastic processes, are briefly introduced.

The results reported below make intensive use of properties of r.v.s and stochastic processes.

The aims of this section are: to introduce some elements of counting-process theory, to set

a general notation and to report properties that will be used further on. The proofs of the

following statements can be found in the major books on stochastic processes (e.g. Kingman

(1992), Chiang (1980)).

A stochastic process {X(t); t ∈ [0,∞)} is a family of r.v.s describing an empirical process,

whose development is governed by probability laws.

A counting process is a stochastic process where X(t) takes values in the natural set X(t) ∈
0, 1, 2, . . . (Chiang, 2007).

An arrival process is a sequence of increasing r.v.s 0 < S1 < S2 < . . . which represent the

times at which some repeating phenomenon occurs.

The Sn are called arrival epochs. We can also equivalently specify the arrival process by

specifying either the interarrival intervals

Xn = Sn − Sn−1 ∀n = 1, 2, . . .

(and therefore Sn =
∑n

i=1Xi), or the counting process

{N(t); t > 0}

that represents the number of arrivals in the interval (0, t]. This process is related to the epochs

by:

{Sn ≤ t} = {N(t) ≥ n}

A particular case of an arrival process is the renewal process.

A renewal process is an arrival process for which the sequence of interarrival times X1, X2, . . .

is a sequence of independent and identically distributed (iid) r.v..
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A special counting process: the Poisson process

Definition 2. A homogeneous Poisson process is a renewal process in which the interarrival

intervals have an Exponential distribution function; i.e., for some rate λ > 0, each Xi has the

density fX(x) = λe−λx for x ≥ 0.

The main properties of this process are:

P1 homogeneous Poisson processes have stationary increments;

P2 homogeneous Poisson processes have independent increments;

P3 the arrival epochs S1, S2, . . . for a homogeneous Poisson process are distributed according

to an Erlang distribution

fSn(t) =
λntn−1e−λt

(n− 1)!

P4 a r.v. N(t), in the counting process {N(t); t > 0}, denoting the number of arrivals in (0, t],

is a Poisson r.v. with probability mass function

fN(t)(n) =
(λt)ne−λt

n!

These properties follow from the definition of a homogeneous Poisson process. We report

below two alternative definitions of the Poisson process.

Definition 3. A homogeneous Poisson counting process {N(t); t > 0} is a counting process that

satisfies property P4 (i.e., has the Poisson probability mass function) and has the independent

and stationary increment properties.

Following Definition 3, consider the number of arrivals in a very small interval (t, t + δt].

Given property P1, N(t, t+ δt) has the same distribution as N(δt) and therefore:

P{N(t, t+ δt) = 0} = e−λδ ≈ 1− λδ + o(δ)

P{N(t, t+ δt) = 1} = λδe−λδ ≈ λδ + o(δ)

P{N(t, t+ δt) ≥ 2} ≈ o(δ)

(2.3)

From which Definition 4 follows:

Definition 4. A homogeneous Poisson counting process is a counting process that satisfies

Equation 2.3 (i.e. the probability of having more than one event in a small interval approaches

0 as δ approaches 0) and has the stationary and independent increment properties

The Poisson process can be extended in a number of ways.

A thinned Poisson process can be constructed as follows. Let {N(t); t > 0} be a Poisson

counting process of rate λ and let {N1(t); t > 0} and {N2(t); t > 0} be two counting processes

constructed as follows. Suppose that each arrival in {N(t); t > 0} is sent to the first process

N1(t) with probability p and to the second process N2(t) with probability 1−p. We are therefore

combining a Poisson(λ) process with a Bernoulli(p) process. The resulting processes {N1(t); t >

0} and {N2(t); t > 0} are also two Poisson processes with rates pλ and (1 − p)λ respectively.

The two Poisson processes can be proved to be independent.
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A non-homogeneous Poisson process is a Poisson process whose rate λ is non constant over

time. A non-homogeneous Poisson process with time varying arrival rate λ(t) is defined as a

counting process {N(t); t > 0} that for all t > 0, λ(t) > 0 also satisfies:

P{N(t, t+ δt) = 0} = e−
∫ t+δ
t λ(u)du ≈ 1− λ(t)δ + o(δ)

P{N(t, t+ δt) = 1} =

(∫ t+δ

t
λ(u)du

)
e−

∫ t+δ
t λ(u)du ≈ λ(t)δ + o(δ)

P{N(t, t+ δt) ≥ 2} ≈ o(δ)

Which means that over intervals of a small length (where the variation of λ(t) is small), the

number of arrivals in an interval of length δ is still a Poisson r.v. with parameter λ(t)δ, since it

is assumed that
∫ t+δ
t λ(u)du = λ(t)δ. This result is very useful for simulating Poisson processes.

Let us note that for the non-homogeneous Poisson process, all the properties listed above hold,

except for the stationarity of the increments. However, using the Mapping theorem reported in

Kingman (1992) (page 18), it can be proven that a transformation of the domain of the process

allows to rewrite a non-homogeneous Poisson process as a homogeneous Poisson process, with

both stationary and independent increments.

Poisson processes are intensively used in queue theory, i.e. the study of waiting lines. Let

{N(t); t > 0} be a Poisson process with rate λ. Imagine that upon arrival, every individual is

independently assigned an Exponential distribution with rate µ (i.e. the mean lifetime is 1/µ)

after which he is served. This is known as an immigration-death process or, in queuing theory,

the M/M/∞ queue. Let us now consider {R(t), t > 0} to be the prevalent cases, i.e. the people

who have arrived and are waiting to be served. Given the arrival Poisson process, R(t) increases

at a rate λ and, given the Exponential distribution of the waiting times, R(t) decreases at a

rate ν(t) = r(t)µ, where r(t) is the realization of the arrival process R(t). The service process

S(t) inherits the Poisson properties of the arrival process, since, in a small interval of length

δ, it can be seen as a sum (convolution) of thinned Poisson processes (those that describe the

individuals that arrived at t and waited a time τ before service). It follows that {S(t); t > 0} is

a non-homogeneous Poisson process with rate ν(t) = r(t)µ.

2.1.3 Multi-state processes

A multi-state process is a stochastic process {X(t), t ∈ [0, τ ]} with a finite state space S =

1, . . . , p, used for event history analysis (Andersen and Keiding, 2002).

An individual multi-state process is defined by the initial distribution of the states πh(0) =

P (X(0) = h), with h ∈ S indexing the possible states, and by the transition probabilities, i.e.

the probability of moving from state h to state j (h, j ∈ S) during the interval from s to t

(s, t ∈ [0, τ ] and s ≤ t):
qhj(s, t) = P (X(t) = j|X(s) = h,Xs−)

where Xs− denotes the history of the process X(·). We assume the existence of transition

intensities that can be obtained by derivatives:

αhj(t) = lim
∆t→0

qhj(t, t+ ∆t)

∆t

Multi-state models represent these processes and can be visualized through boxes, each one

identifying one state in S, and arrows representing the possible events, as shown in Figure 2.2.
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(a) Graphical representation of a MSM with p states. Every

arrow represents a possible transition and is labelled with

its intensity.

Alive Dead
αad(t)

(b) Graphical representation of a survival

(two-state) model: individuals can only

make one transition a → d. The inten-

sity αad(t) is called the hazard function in

the survival literature.

Figure 2.2: Graphical representation of (a) a generic MSM and (b) of a two-state model for

survival data.

A simple example: survival model

It is useful to introduce one of the most employed models in this class: the survival model

represented in Figure 2.2 (b). It has two states (Alive and Dead) and the only possible transition

is from the former to the latter.

It is useful to name the specific functions that are used to characterise this model and that

are just transformations of the general transition probabilities and intensities defined for the

MSM. Let T be the r.v. that defines the time elapsed from a defined origin 0 (e.g. birth, study-

entry) to death with distribution function F (t). The r.v. T is often characterised by the survival

function S(t) = P (T > t) = 1− F (t).

In the MSM notation the transition can be defined as:

qad(s, t) = P (T < t|T ≥ s)

and the transition intensity, named in the survival literature the hazard rate is defined by:

α(t) = lim
∆t→0

P (T ≤ t+ ∆t|T ≥ t)
∆t

which is, by definition of the survival function, equal to −d logS(t)
dt and leads to the parametriza-

tion of the survival function according to the hazard rate:

S(t) = exp

(
−
∫ t

0
α(u)du

)

2.1.4 Likelihood of multi-state processes

We can build a counting process on this multi-state process. Assume Xi(t) is a multi-state

process such as the ones just described and it is observed over the interval [0, τi], with i = 1, . . . , n

labelling the individual to whom the process refers. Denote by N i
hj(t) with h 6= j the number of

direct transitions h→ j during the interval time [0, t] for individual i, and by T ikhj the respective

ordered transition times, where k = 1, . . . , N i
hj(τi) counts the ordered transitions h → j for

individual i.

A graphical representation of an instance of these r.v.s for a univariate MSM with space

S = a, b, c, d is drawn in Figure 2.3; here all the transitions among states are possible.
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(a) Time spent in the states by individual i and
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(b) Count of the transitions a → b for individ-

ual i (y axis) and associated transitions times (x

axis).

Figure 2.3: A realization of (a) the multi-state process of individual i and (b) its associated

counting and transition-time processes.

Denote with Yh(t) the number of individuals in state h at time t−:

Yh(t) =
n∑
i=1

Y i
h(t)

where Y i
h(t) = I{Xi(t−)=h} denotes whether individual i is at risk of moving out from state h.

Ideally, a complete dataset would consist of: the initial states Xi(0), the transition times T ikhj ,

the individuals at risk Y i
h(t) (and the number of direct transitions N i

hj(t) that can be derived

from T ikhj and Y i
h(t)) for events h 6= j, for individuals i = 1, . . . n and for transition count k.

The static parameters of the model consist of: the intensities αihj(t) and the initial probabilities

πih(0), for events h 6= j, for individuals i = 1, . . . n.

The likelihood of the full data conditionally on the model parameters is defined in Equation

2.4:

L(Y1:n,T1:n,N1:n|α1:n,π1:n) =

n∏
i=1

πiXi(t)(0)
∏
h6=j

N i
hj(τi)∏
k=1

αihj(T
ik
hj)e

−
∫ τi
0 αihj(t)Y

i
h(t)dt (2.4)

where for i = 1, . . . , n, the following sets can be defined: Yi =
{
Y i
h ;h ∈ S

}
,

Ti =

{
T i1h,j , . . . T

iN i
h,j

h,j ;h, j ∈ S, h 6= j

}
, Ni =

{
N i
h,j ;h, j ∈ S, h 6= j

}
, αi =

{
αih,j ;h, j ∈ S, h 6= j

}
and πi =

{
πih;h ∈ S

}
.

However this model is never adopted in practice, both due to the unavailability of the full data

and to the high number of parameters. More likely some assumptions are made. For example,

the intensities are often assumed to be not individual-specific: αihj(t) = αhj(t),∀i = 1, . . . n; or

constant over time, i.e. αhj(t) = αhj . Moreover the model is often assumed to be Markovian,

i.e. αhj(t) depends only on the current state X(t). These assumptions allow a significant

simplification of the likelihood 2.4 and will be often adopted when using MSMs in this thesis.

2.2 Literature review

Accurate estimates of the risk of severe outcomes are necessary for policy planning in epidemic

responses (Van Kerkhove et al., 2010). Measures of the severity of an epidemic have been
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introduced in Chapter 1; the proportion of fatal cases given a specified condition has been

mentioned as the quantity of interest that goes under the name of Case Fatality Rate, Case

Fatality Ratio or Case Fatality Risk (Nishiura et al., 2009; Porta, 2008). It is usually expressed as

a percentage and, albeit its name might refer to a person-time measure (rate/ratio), it expresses

a probability; therefore the notation of Wong et al. (2013a) is adopted in this thesis, naming

this quantity the case fatality risk (CFR).

2.2.1 Methods for severity

Multiple indexes of severity exist, according to the aspect that is to be described. This chapter

focuses on the hospitalised case fatality risk (hCFR), that is the probability of death given

hospital admission. However, this literature review covers also other measures of severity, such

as the infection fatality risk (IFR) or the symptomatic case fatality risk (sCFR), which are the

fatality within infected and symptomatic cases respectively, since they have been often estimated

together with the hCFR while describing the entire severity process.

The IFR is one of the most interesting severity measures because it represents the actual

mortality in the whole population of infected individuals. The IFR is rarely computed via

direct estimation of the number of infections and number of deaths in the population. The

UK Department of Health, together with the Health Protection Agency (HPA) (now Public

Health England (PHE)) achieved the goal of obtaining estimates of both the numerator and

the denominator during the 2009 influenza A/H1N1 pandemic (Donaldson et al., 2009). This

was possible due to the combination of data from several surveillance schemes rapidly activated

during the pandemic. Other studies have estimated the IFR during the 2009 H1N1 pandemic.

Presanis et al. (2009) used Bayesian evidence synthesis to obtain estimates of the IFR from data

of two cities of the USA. They adopted a pyramid approach, estimating the IFR by combining

estimates of the probabilities of reaching different stages of severity (e.g. probability of having

symptoms given infection, probability of hospitalization given symptoms, . . . ). Moreover their

model accounted for specific testing and reporting probabilities for the different stages of severity.

During the following years the group applied the same methodology to estimate the severity

in the UK (Presanis et al., 2011; Presanis et al., 2014). Similar analyses were performed in

New Zealand (Baker et al., 2009), in Finland (Shubin et al., 2014) and in the whole southern

hemisphere (Baker, Kelly, and Wilson, 2009) where, thanks to a wide range of surveillance

schemes already active from 2008, the infected population and the sCFR could be estimated.

This was achieved by combining sentinel data on symptomatic cases from General Practitioner

(GP) consultations with population data on GP consultations and with experimental studies.

Another approach to estimate the IFR is to infer the excess mortality due to an infection. A

simple model is applied by Murray et al. (2006) to analyse the influenza pandemic of 1918-1920.

The authors calculated the average mortality rate in 1915-17 and 1921-23, and subtracted this

average from mortality in 1918-20. This simple computation gave an estimate of the mortality

due to influenza under the assumption that all excess deaths are truly associated with influenza.

A more complex model is formulated in Wong et al. (2013b) to estimate the IFR of the 2009

influenza A/H1N1 pandemic Virus in Hong Kong. They derived a proxy of the total influenza

activity (in terms of weekly incidence rates of pH1N1 infections) from weekly influenza-like illness

(ILI) data and weekly proportions of specimens that tested positive for influenza. Statistical
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models (namely, linear regression, time-series regression and Poisson regression) are used to

model mortality from 2003 to 2009. Mortality is regressed on the proxy of 2009 influenza

A/H1N1 pandemic activity and other covariates including other seasonal influenza proxies and

weather variables such as temperature and humidity.

Serfling models (Serfling, 1963) are a sub-family of excess mortality methods that describe

the excess of deaths (in counts) by comparing time series and including trigonometric functions

to model seasonality. However all these excess mortality models rely on the assumption that the

excess mortality is due to the virus we are analysing. Therefore, in the case of a mildly severe

epidemic, or when other causes can increase mortality (other diseases, wars, . . . ) the estimates

of the IFR are biased.

This consideration, together with the fact that data on both the numerator and the denom-

inator of the IFR are rarely available, motivates the focus on the hCFR, hereby denoted only

by CFR, in the following analysis of severity.

2.2.2 Methods for estimating the Case Fatality Risk

The World Health Organization (WHO) proposed the following estimator of the CFR in the

case of an epidemic (WHO, 2015):

ĈFR
(who)

(s) =
cumulative number of deaths(s)

cumulative number of (hospitalised) cases(s)
(2.5)

with s ∈ (0, S) being the time of analysis. Estimator 2.5 assumes constant CFR and it is

well known to be biased until the end of the epidemic, here denoted by S (Lipsitch et al.,

2015). This bias is due to right censoring that happens when the analysis is carried out at

time s < S, when some patients at risk have not experienced any event such as death or

recovery yet. To understand the effect of right censoring on the estimator 2.5 a simulated

dataset has been plotted in Figure 2.4. This dataset contains the time from hospitalization to

death and recovery generated using a parametric survival model for death and recovery from

simulated hospitalization counts mirroring the counts of cases during 2012/13 epidemic. When

analysed early, for example on the 100th day from the beginning of the epidemic, the number

of hospitalizations is increasing according to the epidemic dynamics, and many individuals have

not experienced the final event yet.

Several papers have addressed this problem and most of them have used survival analysis

approaches, both parametric and non-parametric.

The problem of estimation of the CFR from survival data has been addressed under two

perspectives. The first one assumes that the data-generating process is a mixture model for

survival data (Farewell, 1982): the individuals belong to the group of people that die with

probability CFR and to the group of people that survive with probability 1-CFR. Their time-to-

event is then defined conditionally on the group to which the individuals belong. This approach

has been adopted by Donnelly et al. (2003) within a parametric-survival context. The other

approach takes a prospective perspective and assumes that the data-generating parameter is a

competing risk process (which is a special case of MSMs introduced in Section 2.3.1). Ghani

et al. (2005) and Jewell et al. (2007) proposed an estimator for the CFR in this context. Garske

et al. (2009) briefly reviewed the underestimation error of the CFR estimates and the solutions

proposed by Donnelly et al. (2003) Ghani et al. (2005) and Jewell et al. (2007).
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(a) Simulated survival data during

an epidemic.
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(c) Estimated CFR at several time

points during the epidemic.

Figure 2.4: A simulated dataset with daily flu-related hospitalizations, deaths and recovery.

In Panel (a) and (b) the x axis is the calendar time from the beginning of the epidemic and

the y axis is the ordered (by hospital admission date) number of individuals. Panel (b) is the

bottom left corner of Panel (a), when data are only observed until day 100. Panel (c) reports

in green the estimator 2.5 calculated at times s = 60, 80, . . . ,220 from the beginning of the

epidemic and in red the true value used to generate the data.

Estimators of the CFR starting from count data have been proposed by Yip et al. (2005b) and

Yip et al. (2005a), using a counting process approach and relaxing the assumption of constant

CFR on which survival data estimators are based. In the same context, Lam et al. (2008)

proposed a test for constant CFR in the case of an emerging epidemic.

The papers listed above differ mainly in the data they analyse (individual time-to event data

vs population count data) but also in their assumptions on the CFR (constant versus time-

varying). However, a point in common is that they all attempt to overcome the problem of the

biased estimators due to right censoring.

2.3 Analysis of survival data

Donnelly et al. (2003), Ghani et al. (2005) and Jewell et al. (2007) all address the estimation of

the CFR from time-to-event data, which are often called “survival data”. An initial introduction

to these data and the models to describe them, the MSMs, has been given in Section 2.1.3.

To correct for the bias that affects Estimator 2.5, MSMs are applied under the hypothesis of

competing risks.

MSMs with competing risks are introduced in Subsection 2.3.1 below; they are then applied to

the estimation of the CFR in Subsection 2.3.2, essentially recalling the same estimator proposed

in Ghani et al., 2005. Lastly in Subsection 2.3.3 these methods are extended to the parametric-

survival setting, to increase the precision of the estimator.

2.3.1 Analysis of survival times with competing events

Competing-risks models are a subset of MSMs, developed in the context of the investigation of

cause-specific mortality and therefore this example is used to illustrate the model. However,
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many other situations can be described by competing-risks models, including death within hos-

pitalised flu cases, as shown below. The process {X(t), t ∈ [0, τ ]} with space S = 0, . . . , k has

one transient state (0: alive) and k absorbing states, each state h = 1, . . . , k corresponding to

death from cause h (Andersen and Keiding, 2002), and it is represented in Figure 2.5. If death

for cause h happens, none of the other events is possible.

0

1

2

. . .

k

α01(t)

α02(t)

α0k(t)

Figure 2.5: Graphical representation of a competing-risks MSM representing death for multiple

(k) causes. Every arrow represents a possible transition and it is labelled with its intensity.

Since all the transitions span from state 0 this index is dropped and the transition probabil-

ities and intensities are simply indexed by the cause of death h:

qh(s, t) = P (X(t) = h|X(s) = 0,Xs−)

αh(t) = lim
∆t→0

qh(t, t+ ∆t)

∆t

As shown in Subsection 2.1.3, the process can be described by the time to event (also called

“survival time” or “time to failure”) T and by the cause of failure D. The intensity function

αh(t) takes the name of cause-specific hazard function in this context and can be interpreted as

the hazard of failing from a given cause in the presence of competing events (Putter, Fiocco,

and Geskus, 2007), i.e.:

αh(t) = lim
∆t→0

P (t ≤ T ≤ t+ ∆t,D = h|T > t)

∆t

The competing-risks model has been considered in the past as a multivariate failure time

model, where individuals were assumed to have potential survival times for each cause of death

but only the shortest was observed. This modelling approach was discarded, early on, both

for the unrealistic interpretation and for identifiability issues (Prentice et al., 1978). The ap-

proach used here instead exploits only the cause-specific hazard without defining a cause-specific

survival.

Denote by A(t) the cumulative cause-specific hazard defined by

Ah(t) =

∫ t

0
αh(s)ds

for h = 1, . . . , k. The overall survival, i.e. the probability of not having failed for any of the k

causes of death, is defined as follows

S(t) = e−
∑k
h=1 Ah(t) (2.6)

The cumulative intensity function of cause h, Ih is the probability of failing from cause h at

or before time t and it depends on all the other causes of death through the survival function,
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hence:

P (T ≤ t;D = h) = Ih(t) =

∫ t

0
αh(s)S(s)ds

The cumulative intensity function is not a cumulative probability function as it does not converge

to 1. Its limit for the time going to infinity is however very useful since it denotes the overall

probability of death for cause h, i.e.:

lim
t→∞

Ih(t) = P (D = h) (2.7)

Assuming that the only possible causes of death are the k causes considered,∑k
h=1 limt→∞ Ih(t) = 1.

Methods for estimating cause-specific hazards, overall survival functions and cumulative

intensity functions can be found in Putter, Fiocco, and Geskus (2007) and are derived simply

by using the Kaplan-Meier (KM) estimator (Kaplan and Meier, 1958).

2.3.2 Estimation of the Case Fatality Risk using survival analysis with com-

peting events

Ghani et al., 2005 exploit competing risks models to formulate an estimator for the CFR. Set

k = 2 and define a competing-risks process for the time from hospitalization to death or recovery

(h = D,R), as illustrated in Figure 2.6.

H

D

R

αd(t)

αr(t)

Figure 2.6: Competing-risks model for death and recovery: h, d and r represent respectively,

the hospitalized, death and recovered states. αd(t) is the hazard of death at time t since

hospital admission and αr(t) is the hazard of recovery at time t since hospital admission.

Let calendar time be indexed by s (s ∈ [0, S], with S the time of the end of the epidemic) and

let the time since hospital admission (i.e. the time-to-event) be indexed by t ∈ [0, T ]. Assume

that the CFR is constant over calendar time.

Let:

αd(t) = lim
∆t→0

P (t<T≤t+∆t,h=D|T≥t)
∆t be the cause-specific hazard function of death;

αr(t) = lim
∆t→0

P (t<T≤t+∆t,h=R|T≥t)
∆t be the cause-specific hazard function of recovery;

tmax(s) be the maximum observed time from hospital admission to death or recovery that has

occurred by time s;

S(t) be the overall survival function, i.e. the survival if both endpoints are treated as a single

composite endpoint;

Id(t) =
∫ t

0 S(u)αd(u)du be the cumulative intensity function of death, i.e. the probability of

death at or before time t.
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Ir(t) =
∫ t

0 S(u)αr(u)du be the cumulative intensity function of recovery, i.e. the probability of

recovery at or before time t.

Then the overall probability of death before or at calendar time s can be estimated by the

cumulative intensity function computed at the maximum observed time:

θd(s) = Id(tmax(s)) =

∫ tmax(s)

0
S(t)αd(t)dt (2.8)

and the probability of recovery before or at calendar time s can be estimated by:

θR(s) = Ir(tmax(s)) =

∫ tmax(s)

0
S(t)αr(t)dt (2.9)

Note that for t→ +∞, Id(t) represents the overall probability of death, following from Equation

2.7

CFR = lim
t→+∞

Id(t)

and therefore if data are available for a tmax(s) large enough, θd(s) approximates the overall

probability of death. This event happens certainly if the epidemic is complete (s = S), because

there cannot be any t > tmax(S) and everyone has either died or recovered. In this setting,

the only alternative events are death and recovery; at and after the largest time-to-event S no

individual is at risk, everyone had an event and, since death and recovery form a partition,

θD(S) + θR(S) = 1

from which follows that

CFR = θd(S)

Therefore to derive an estimate of the CFR, estimates of the cumulative intensity functions

for both events must be obtained from the data on the whole epidemic (until its end S) and

evaluated at the maximum observed survival time tmax(S):

ĈFR = θ̂d(S)

To illustrate the use of the cumulative intensity function to estimate the CFR, estimates of

the cumulative intensity functions obtained from the analysis of the whole survival datasets of

Figure 2.4 are plotted below.

Approximating the CFR before the end of the epidemic

During the epidemic θd(s) + θr(s) < 1 because individuals can have recovered, died , but also

be in the hospital without having had any event. Before the end of the epidemic, when s ≤ S,

tmax(s) ≤ tmax(S), from which follows that the probability of death at or before time s is smaller

or equal than the probability of death at or before S, which is the CFR. The same reasoning

can be made for its inverse, the probability of recovery, so that:

θd(s) ≤ θd(S) ≤ 1− θr(s)

This inequality can be observed in Figure 2.7, where the empirical cumulative intensity function

of death at S, drawn in yellow, is shown to lie always between the empirical cumulative intensity

function of death at s and 1 minus the empirical cumulative intensity function of recovery at s.
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Figure 2.7: Results from the competing-risks analysis of the time to death and recovery. The

x axis is the time to event, the green curves are the empirical cumulative intensity function of

death and 1 minus the cumulative intensity function of recovery. The limit of the cumulative

intensity function of death for s → ∞ is approximated by the cumulative intensity function

of death at the highest survival time S, which is drawn in yellow. The value of CFR used to

generate the data is drawn in red and denoted by pd.

Under the assumption that patients who remain in the hospital between s, the observation

time, and S, the end of the epidemic, experience a CFR equal to those who had an event up to

time s:

θ̂d(S) =
θd(s)

θd(s) + θr(s)
(2.10)

Estimates of θd(s) and θr(s) can be obtained using parametric survival to estimate the cu-

mulative intensity functions. They can then be plugged into Equation 2.10 which allows the

estimation of θd(S), the probability of dying over all the epidemic (i.e. during [0, S]) which

approximates the CFR.

Estimating the CFR

The steps to obtain estimates of the cumulative intensity function using standard KM methods

are summarised below. Consider the discrete time from hospitalization indexed by j = 1, 2, . . . J ,

for example days. Given an analysis time s, denote by:

ddj(s) : number of deaths on day j from admission to hospital;

drj(s) : number of recoveries on day j from admission to hospital;

nj(s) : number remaining at risk j days after admission to hospital;

J(s) the maximum observed number of days from hospital admission to death or recovery that

has occurred by time s (i.e. J(s) is a discrete version of tmax(s)).

The overall survival probability is computed with the KM formula considering both endpoints.

Ŝj(s) =

j∏
r=1

(
1− dd(s) + dr(s)

nr(s)

)
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The discretised version of the hazard of dying is:

αdj = P (J = j, i = D|J > j − 1)

where i indexes the event and at analysis time s, it can be estimated by:

α̂dj(s) =
ddj(s)

nj(s)

Then the overall probability of death before or at calendar time s can be approximated by the

cumulative intensity function for death computed at the maximum observed time t = J(s):

θ̂d(s) =

J(s)∑
j=1

Ŝj−1(s)α̂dj(s) (2.11)

Similarly, the overall probability of recovery before or at calendar time s is

θ̂r(s) =

J(s)∑
j=1

Ŝj−1(s)α̂rj(s) (2.12)

An estimator for the CFR at an early stage of the epidemic can be obtained by plugging 2.11

and 2.12 in 2.10:

ĈFR
(ghani)

= θ̂D(S) =
θ̂D(s)

θ̂D(s) + θ̂R(s)
(2.13)

This estimator was computed at several time points during the simulated epidemic reported

in Figure 2.4. On this dataset alone the correction of Ghani’s estimator is not particularly evident

(Figure 2.8 (a)). However, if a set of simulations is carried out and the median behaviour of the

estimator is analysed, the estimator based on competing-risks converges to the true parameter

much earlier than WHO’s estimator (Figure 2.8 (b)).

The estimator proposed by Ghani et al. (2005) is very appealing, as it takes a fully non-

parametric approach and it allows correction for right censoring. However, this methods calls

for two improvements. The first edit follows from the fact that, instead of computing the

cumulative intensity function of death at +∞, Id(∞) is approximated by Id(tmax) and therefore

hazard and survival functions are only defined on the observed survival times. This is due to

the fact that a KM estimator is used for the survival function. It seems natural therefore to

extend this estimation method to a parametric setting where, in some cases, limt→+∞ Id(t) can

be solved mathematically, given the estimated cause-specific hazards and the assumed survival

distribution. Moreover, the main disadvantage of this estimator is the assumption of constant

CFR over calendar time s which is not realistic. To relax this hypothesis a time-varying version

of the estimator is also proposed below.

2.3.3 Extension to parametric survival analysis

The parametric version of the CFR estimator proposed is here derived in the most simple case,

when the cause-specific hazards are constant over time, leading to the overall survival time being

Exponentially-distributed.
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Figure 2.8: In Panel (a) and (b) the x axis is the calendar time from the beginning of the

epidemic and the y axis is the CFR. Panel (a) reports in green the estimator 2.13 and in yellow

the estimator 2.5 calculated at times s = 60, 80, . . . 220 from the beginning of the epidemic and

in red the true value used to generate the data. Panel (b) reports median over 500 simulated

datasets, obtained with the simulation scheme of Figure 2.4 and consisting of ≈ 150 cases, of

the same estimators. The shaded area represent the limits where 95% of the 500 estimates lie.

Denote with α(t) the hazard function to any event, which can be shown from 2.6 to be equal

to the sum of the cause-specific hazard functions:

S(t) = e−
∑k
h=1 Ah(t)

A(t) =

k∑
h=1

∫ t

0
αh(u)du

α(t) = αd(t) + αr(t)

In this context data are composed again of time to event and type of event for individual i:

(ti, di).

If the overall survival time follows an Exponential r.v., than the overall hazard is assumed

constant over time. The cause-specific hazards are also assumed to be constant over time such

that

α(t) = α = αd + αr

T ∼ exp(α)

The probability density function of the time to any event is:

f(T = ti) = αe−αti

Given the time to event ti, D is a Bernoulli r.v. (Beyersmann et al., 2009), so the conditional

probability of an event is:

g(D = di|T = ti) =

(
αd

αd + αr

)di ( αr

αd + αr

)1−di

that does not depend on ti thanks to the assumption of constant hazard.
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Every observation (ti, di) determines the following element of the likelihood as follows:

L(ti, di|αd, αr) = P (D = di, T = ti)

= g(D = di|T = ti) · f(T = ti)

=

(
αd

αd + αr

)di ( αr

αd + αr

)1−di
· (αd + αr)e−(αd+αr)ti

The likelihood of the whole sample (t,d) of size n is:

L(t,d|αd, αr) =

n∏
i=1

(
αd

αd + αr

)di ( αr

αd + αr

)1−di
· (αd + αr)e−(αd+αr)ti

with corresponding log likelihood

`(t,d|αd, αr) = log

(
αd

αd + αr

) n∑
i=1

di+

log

(
αr

αd + αr

) n∑
i=1

(1− di) + n log(αd + αr)− (αd + αr)
n∑
i=1

ti

Via equating the Score matrix to 0, maximum likelihood (ML) estimates α̂d and α̂r can be

derived. Given the distributional assumptions on the model, the survival function is:

Ŝ(t) = P (T > t) = e−α̂t

where α̂ is the estimator of the hazard of any event, obtained as the sum of the two estimators

: α̂ = α̂d + α̂r due to invariance property of ML estimators. Similarly, the cumulative intensity

functions can be estimated, as follows:

Id(t) =

∫ t

0
Ŝ(u)α̂ddu

= α̂d

∫ t

0
e−α̂udu

=
α̂d

α̂
− α̂de

−α̂t

α̂

(2.14)

The CFR can be estimated as in the previous section by

θ̂d = lim
t→∞

Id(t) =
α̂d

α̂
=

α̂d

α̂d + α̂r
(2.15)

Equivalent results can be obtained for the competing event

Ir(t) =
α̂r

α̂
− α̂re

−α̂t

α̂

θ̂r = lim
t→∞

Ir(t) =
α̂r

α̂d + α̂r
(2.16)

The estimators 2.15 and 2.16 can be computed at every calendar time s. Then they can be

plugged in 2.10 leading to a parametric version of the estimator proposed by Ghani et al., 2005:

ĈFR
(para)

= θ̂D(S) =
θ̂D(s)

θ̂D(s) + θ̂R(s)
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Figure 2.9 reports the cumulative intensity functions of the form reported in Equation 2.14,

plugging-in the maximum likelihood estimators of the rates. The limiting value of Id(t) (Equa-

tion 2.15) is also plotted.

If a small simulation study is carried out, the parametric estimator slightly outperforms the

estimator proposed by the WHO and, given the assumption of parametric survival, shows a

higher confidence in the results (Figure 2.10 (b))
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Figure 2.9: Results from the parametric competing-risks analysis of the time to death and

recovery. The x-axis is the time to event, the purple curves are the parametric cumulative

intensity function of death and 1 minus the cumulative intensity function of recovery computed

with the plug in estimator. The limit of the cumulative intensity function of death for s→∞
is drawn in yellow. The value of CFR used to generate the data is drawn in red and denoted by

pd. The pale blue lines in the background represent the non-parametric estimated cumulative

intensity function from Figure 2.7 and are plotted for comparison.
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Figure 2.10: In Panel (a) and (b) the x axis is the calendar time from the beginning of the

epidemic and the y axis is the estimated CFR. Panel (a) reports in green the estimator 2.13

and in yellow the estimator 2.5 calculated at times s = 60, 80, . . . 220 from the beginning of the

epidemic and in red the true value used to generate the data. Panel (b) reports median and

confidence intervals of the same estimators computed over 500 simulated datasets.

The parametric formulation considered here is simplistic since the cause-specific hazard func-

tions and the overall hazard function are assumed to be constant over the survival time. The

derivations above show that the properties of the Exponential r.v. allow to derive, not only the

overall survival, but also the two marginal survival distributions. This is not necessarily true

for other distributions.

If other parametric distributions are used to describe survival in a competing-risks setting,

such a neat estimation of the CFR is impossible. However, there exists some parametric-survival-

analysis packages in R (e.g. Jackson, 2015) that, applied to this context, allow the inference of

cause-specific survival functions. Nevertheless, as reported in Appendix B the CFR cannot be

derived.

2.4 Analysis of survival data with time-varying rate

While it might be reasonable to assume constant transition intensities over survival time (i.e.

Exponentially-distributed times to event), it is less reasonable to assume that the death- and

recovery-specific rate would remain constant over calendar time, leading to a constant CFR.

More likely, the mortality risk will change during the course of an epidemic as knowledge is

acquired on the diagnosis and cure of the disease or, for example, due to different age groups

being affected at different times (Yip et al., 2005b).

To further extend the CFR estimator to a time-varying setting, a model developed within

demography, the age-period-cohort (APC) model is considered.
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2.4.1 The age-period cohort model

The APC model is a descriptive tool for observations in a Lexis diagram, which represents the

survival time of an individual with respect to his age, the calendar time at which the event of

interest happens (period) and his date of birth (cohort) (Carstensen, 2007). An illustrative Lexis

diagram is reported in Figure 2.11, drawing survival times of the Danish prime ministers since

the war (Carstensen, 2016). The calendar time is the scale of the x axis, which measures the

cohort (i.e. entry, which in this case is the date of birth) and the period (i.e. the time of event,

in this case death); the scale of the y axis is instead the survival time which measures the age.
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Figure 2.11: Lexis diagram of the time to death of the Danish prime ministers.

Clayton and Schifflers (1987a) and Clayton and Schifflers (1987b) firstly introduced the APC

model to investigate whether the rate of the event of interest (in the example above, death) was

related to the three quantities measured in the Lexis diagram. Age, period and cohort are

mathematically related by the equation

period = cohort + age

The APC model can be seen as an evolution of the age-cohort model and the age-period model.

The three models describe the relationship between log-rates of the event of interest and the

respective time-scale(s).

The model can be formulated in the perspective of the Lexis diagram. Data are tabulated

by first setting a grid on the age (a = 1, 2, . . . , A where a is the index of equally spaced intervals

of age) and on the cohort time scale (c = 1, 2, . . . , C where c is the index of an equally spaced

intervals of cohort). The second grid uniquely determines also a grid for the period denoted by

p = 1, 2, . . . , P . Secondly, for each (a, p) cell, the set of data (di, yi) is recorded, where di is the

indicator function of an event (i.e. di = 1 if individual i has the event of interest, e.g. death,

within the cell (a, p), 0 otherwise) and yi is the time at risk for the individual i in cell (a, p). i

is the index of the patient in cell (a, p) and therefore takes values i = 1, . . . , I(a,p) where I(a,p) is

the total number of individuals within cell (a, p), usually called the risk set. Denote by λ(a, p)

the rate of the event of interest (e.g. death) in age interval a and period interval p.
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Given some functions (e.g. polynomial or splines) f(·), g(·) and h(·), the general form of the

APC model for the rates λ(a, p) (or equally λ(a, c)) is:

log[λ(a, p, c)] = f(a) + g(p) + h(c)

log[λ(a, p)] = f(a) + g(p) + h(p− a)

Over intervals sufficiently small to assume constant λ(a, p), the likelihood contribution of each

(di, ti) is given by:

L(λ(a, p)|di, yi) = e−λ(a,p)yi × λ(a, p)di

with log-likelihood

`(λ(a, p)|di, yi) = di log(λ(a, p))− λ(a, p)yi (2.17)

which is similar to the Poisson distribution with parameter µi = yiλ, i.e. Di ∼ Pois(yiλ):

`(λyi|di) = di log(λyi)− λyi
= di log(λ)− λyi + di log(yi)

The Poisson log-density is equal to Equation 2.17 except for the term di log(yi) which is constant

w.r.t. λ.

Hence, a Generalized Linear Model with Poisson distribution, logarithmic link function and

offset log(yi) can be used to model the count data di. The likelihood under this model can

be maximized leading to ML estimates of the parameters of the functions f(·), g(·) and h(·).
Within the Poisson machinery, several shapes of f(a), g(p) and h(c) can be considered. Age,

period and cohort can be thought of as categorical variables, where in each category, rates are

assumed to be piecewise constant and one estimate per cell is obtained. Alternatively, linear,

polynomial or smooth (spline) relations can be assumed.

The maximization of the Poisson likelihood does not have a unique solution: different com-

binations of coefficients for period and cohort lead to the same fitted values, and therefore one

set of parameters must be fixed to identify the other. This compromises the interpretation of

the parameters and the simpler models formulated in Clayton and Schifflers (1987a) might be

practically more useful. The age-period model investigates the effect of the survival time and of

the current calendar time on the event rate

log[λ(a, p)] = f(a) + g(p)

while the age-cohort model investigates the effect of the survival time and the calendar time of

the entry in the cohort on the event rate

log[λ(a, c)] = f(a) + h(c)

The methods to set the APC, age-period and age-cohort models are implemented in the

R package Epi (Carstensen et al., 2018) and generalized linear models can be fitted to obtain

estimates of the model-parameters.

2.4.2 Estimation of the time-varying Case Fatality Risk with the age-cohort

model

Time-to-event data recording dates of admission to hospital or Intensive Care Units (ICUs) and

date of death or recovery of each individual can be represented by means of a Lexis diagram. A
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dataset of this kind is displayed in Figure 2.12, where some instances of simulated data of daily

admissions to ICU, deaths and recoveries over a seasonal influenza epidemic are plotted against

calendar and survival time. In the simulated data, the rate of death rapidly decreases from soon

after the middle of the epidemic (around calendar day 130).
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Figure 2.12: Lexis diagram of the time to death (red) and recovery (yellow) of influenza cases

admitted to ICU.

In this context, entry into the cohort takes place when an individual is admitted to ICU;

consequently, the age variable is the time since ICU admission and the cohort is the calendar

day of ICU admission, where calendar time is counted from c = 0, the beginning of the epidemic.

The following age-cohort model can be fitted to the data (yi, di) where di is the indicator

function of death and yi is the time of death:

log[λd(a, c)] = fd(a) + hd(c) (2.18)

from which the death-specific hazard rates are estimated. Likewise, a model can be fitted to

estimate the recovery-specific hazard rates.

log[λr(a, c)] = fr(a) + hr(c) (2.19)

The two models were fitted separately, leading to the estimation of age and cohort effect on

cause-specific (i.e. death and recovery) hazard. The shape of the functions fd(·), hd(·), fr(·)
and hr(·), can be chosen according to the data observed, but usually flexible functions, such as

splines, describe well temporal dynamics.

In this context, the estimation of CFR when the epidemic has finished consists, again, of the

evaluation of the cumulative intensity function while the survival time (in the APC notation,

the age) approaches ∞. The estimate of the cumulative intensity function of death as a→ +∞
for individuals admitted to hospital in cohort c is

ĈFR
(apc1)

(c) = Îd(c) =
A∑
a=1

λ̂d(a, c) exp(λ̂d(a, c) + λ̂r(a, c)) (2.20)

where λ̂d(a, c) and λ̂r(a, c) are the predicted death- and recovery-specific hazards obtained by

fitting the age-cohort models (2.18) and (2.19), respectively. Îr(c) can be obtained similarly.

Estimates of the death and recovery rates from a simulated dataset, as well as the estimated

time-varying CFR are plotted below in Figure 2.13. Note that the dataset used here is 5 times

bigger than the dataset used in Sections 2.3 and 2.4: when this method is attempted on smaller
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Figure 2.13: In Panel (a) and (b) the x axis is the calendar time from the beginning of the

epidemic. Panel (a) reports the death and recovery rates, in this analysis they have been

assumed constant over age. Panel (b) reports in green the estimated CFR with this method

and in red the true value.

sample sizes the model performs poorly, not identifying the time-variation of the CFR and giving

very variable estimates.

When the epidemic is still ongoing and data are affected by right censoring, approximation

2.10 can be applied to estimate the CFR at an early stage

ĈFR
(apc2)

(c) =
Îd(c)

Îd(c) + Îr(c)
(2.21)

A comparison with the methods reported in the previous section seems unfair since under a

time-varying-CFR scenario they would be clearly outperformed by the APC method proposed

since they would average out the effect over time.

By contrast, when these methods are used early in the epidemic, when data are sparse, they

perform poorly, since a decent amount of data is required to infer, not only the average CFR

but also its variation over time.
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Figure 2.14: The estimated cohort-varying CFR is here plotted at various truncation times.

The lighter the lines, the more the dataset was truncated as if the epidemic was at its beginning.

2.5 Analysis of count data

If survival data exist, they often inform only a very small sample of the population. This is the

case for the survival data from the UK Severe Influenza Surveillance System (USISS) sentinel

scheme: they describe only the people admitted to ICU in a few sentinel trusts (before 2013)

or only the children admitted in these trusts (after 2013). Models such as the age-cohort model

might lead to misleading results (see Section 2.6 below for an example).

By contrast, count data on a larger population might be available. These data are easier to

collect but they do not carry any information on the time elapsing between events.

2.5.1 Estimation of the Case Fatality Risk using counting processes

The method reviewed below (Yip et al., 2005a,b) assumes that count data arise from a chain-

Multinomial model over discrete time (e.g. days) that is indexed by s on the calendar scale, s =

0, 1, 2, ...S, with s = 0 and s = S being the beginning and the end of the epidemic respectively.

Assume that at each day s, every hospitalized patient can either die, recover or stay in the

hospital according to a Multinomial r.v.. The transitions are determined by the daily probability

of dying and of recovering, that depend only on calendar time s. The CFR is assumed to vary

over time.

Denote by:

pds the probability of dying during day s given that a person is in the hospital at the beginning

of day s;

prs the probability of recovering during day s given that a person is in the hospital at the

beginning of day s;

Nds the number of patients that die during day s;
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Nrs the number of patients that recover during day s;

Hs−1 the number of hospital inpatients at the beginning of s that includes all the new admissions

during day s− 1 and all those that did not die during day s− 1.

Then the chain-Multinomial model assumption is

Nds, Nrs, Nhs|Hs−1 ∼ Multinomial(Hs−1; pds, prs, 1− pds − prs) (2.22)

A graphical representation of what happens at each day s is reported in Figure 2.15.

Hs

Ds

Rs

Nds

Nrs

Nhs

Figure 2.15: Chain-Multinomial model for daily inpatients, deaths and recoveries: hs, ds and

rs represent the number of people in the hospital at the beginning of interval s and Nhs, Nrs,

Nds represent the number people who stay in the hospital, recover or die during day t according

to a Multinomial r.v..

Following the assumption of time varying CFR,the time-varying case fatality risk (tvFR) can

be defined via Equation 2.23, as it is the conditional probability of death given either recovery

or death, denoted by πs:

πs =
pds

pds + prs
(2.23)

Consider one realization of the Multinomial process at a given time s: patients die with

probability pds and recover with probability prs. The remaining proportion will eventually ex-

perience one of the two events. If we assume that this proportion of people still in hospital will

experience the same probabilities pds and prs as those who have already had one event, then πs

would describe exactly the overall probability of death, i.e. the CFR at day s.

To obtain a naive, instantaneous estimator of the tvFR, ML estimators of the daily proba-

bility of each event in the Multinomial distribution are exploited, these are:

p̂ds =
Nds

Hs−1

p̂rs =
Nrs

Hs−1

which, plugged into Equation 2.23, leads to the naive estimator:

tvF̂R
(NAIVE)

= π̂t =
p̂dt

p̂dt + p̂rt
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2.5.2 Smoothing the Case Fatality Risk

The resulting estimator is very variable over time, above all at the start and end of the epidemic

where few events take place.

To smooth tvF̂R
(NAIVE)

, kernel smoothed estimates, p̃ds and p̃rs can computed as a weighted

average of the daily naive p̂dss and p̂rss. This can be done by choosing a kernel bandwidth b

and a kernel function, for example the Epanechnikov kernel function,

K(x) = [3/4] (1− x2)I(|x| < 1)

and the bandwidth kernel function:

Kb(x) = [1/b]K(x/b)

For each s, a vector of weights ws can be computed, where each element wqs is

wqs = [1/b]K

(
s− q
b

)
,

which represent the contribution of the observation at time s to the estimate at time q. For

each s the smoothed estimate p̃ds as a weighted average of the p̂ds with weights wqs is:

p̃ds =

∑S
q=1wqsp̂ds∑T
q=1wqs

and similarly

p̃rs =

∑S
q=1wqsp̂rs∑T
q=1wqs

Plugging both the estimators p̃ds and p̃rs in 2.23, a smoothed version of the tvFR can be

obtained:

tvF̂R
(smooth)

= π̃s =
p̃ds

p̃ds + p̃rs

The optimal level of smoothing of an observed dataset is hard to define, ideally a random

oscillation around a mean should be smoothed, but long-term trend, as well as sudden significant

changes in CFR should be captured.

2.6 Applicability of the methods to the available data

Many methods have been reviewed and this section addresses the possible use of these methods

in the inference of the probability of death within hospitalised or ICU influenza cases in England.

Data on severe influenza cases are collected via the USISS, which comprises a sentinel scheme

(Health Protection Agency, 2011b), that involves a stratified sample of English trusts, and a

mandatory scheme, that collects data from ICUs in all trusts in England (Health Protection

Agency, 2011a).

The former contains individual-level data of confirmed-influenza ICU admissions such as

day of symptom onset, day of hospitalization, day of ICU admission and final outcome (e.g.

death, discharge). Moreover it contains count data on the weekly number of hospitalisations

and deaths. The mandatory scheme instead, contains weekly counts of confirmed-influenza ICU

admissions and deaths.
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For the estimator proposed above in Section 2.3 and 2.4, the only useful data are the

individual-level timings obtained from the sentinel collection scheme. They are survival data

that fit in the competing-risks setting of Section 2.3 and 2.4.

Data collected from the 2013/14 influenza season onwards cannot be used to get a full picture

of the population since they monitor paediatric cases only.

A preliminary exploration of the data from seasons 2010/11, 2011/12 and 2012/13 showed

that the reporting process was not rigorous and a lot of information is missing. The dataset

that was affected by this problem the least was the one collected during the 2012/13 season,

where almost 100 individuals had the variables of interest (ICU admission date, final outcome

and final outcome date) non- missing.

These survival data were analysed using the WHO estimator, Ghani’s estimator, and its

parametric version under the assumption of Exponentially-distributed times to event. When

the epidemic is finished, the WHO estimator led to a CFR of about 20%, and the empirical

cumulative intensity functions points at a value closer to 30% (see Figure 2.16 (a)).

When the estimate is computed over time, Ghani’s estimate oscillates around the final value

as soon as the first deaths are recorded, way earlier than the WHO estimator.
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Figure 2.16: Panel (a) plots the result of the non-parametric competing-risks analysis of the

data: the x axis represent survival time and the y axis the cumulative intensity functions.

Panel (b) reports Ghani’s and the WHO estimates of the CFR computed at different times

from the beginning of the epidemic (x axis).

The parametric version of Ghani’s estimator, at the end of the epidemic, leads to a value

slightly lower than its non-parametric counterpart but it takes slightly more time to arrive at

convergence (see Figure 2.17 (b)), probably due to the poor fitting of the Exponential distribution

for shorter survival times (see Figure 2.17 (a)).

Despite the data being so sparse, an attempt to fit the APC-based estimator was made. A

spline transformation was used and the estimated CFR is reported in Figure 2.18. As expected,

the estimates at the end and at the beginning of the epidemic were extremely variable. Moreover

a steeply increasing trend in severity is detected around the epidemic peak, this might be due to

better reporting of severe events, rather than to an actual increase in the probability of death.

None of the estimators reviewed or proposed in this section is suitable for the analysis of
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beginning of the epidemic (x axis).
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Figure 2.18: Plot of the estimated CFR and its CI from the analysis of real data.

count data collected through USISS. These data are collected on a large population (all the

trusts in England) but they collect only data on ICU admissions and deaths. Information about

the recovery process in completely absent and is required for all the estimators presented above.

A new estimator is needed to exploit the information collected via this scheme correcting for

the underestimation of the WHO estimate. This issue is addressed in Chapter 4.

2.7 Conclusions

This Chapter serves as a review of the currently available methods aimed at estimating severity.

The motivating problem is the fact that the estimator used in practice and suggested by the

WHO underestimates the probability of death (measured by the CFR) while the epidemic is

taking off.

The methods proposed in the literature comprise, among others: (i) one application of

competing-risks theory to the severity setting for the analysis of time-to-event data under the



2.7. CONCLUSIONS 39

assumption of a constant CFR and (ii) another estimator aimed at the analysis count data

relaxing the constant CFR assumption.

Section 2.4 fills the gap in the literature, proposing an estimator that exploits time-to event

data without necessarily assuming a constant CFR.

All the methods proposed and reviewed assume the availability of data on the recovery

process, de facto introducing more information than the one used by the WHO estimator.

Survival data on influenza patients from a sample of ICUs in England are analysed in Section

2.6. This dataset however, is highly affected by missingness and comprises very few patients.

By contrast, count data on the number of ICU admissions and deaths in all the trusts

in England are collected routinely by PHE providing a representative source of information.

Nevertheless, the only estimator that relies on these data alone is still the one proposed by the

WHO and therefore a good alternative is still to be found. A new method to estimate the CFR

with only admission and death counts is proposed in Chapter 4.

A wider look into this problem indicates that extra information might be accounted for while

modelling the severity of influenza. Flu’ cases, both severe and not, will follow over time an

epidemic pattern, increasing when the outbreak is spreading and decreasing while it is fading

away. Hence, it would be useful to approach the analysis of data on ICU/hospital admissions

and deaths within a model that accounts for epidemic dynamics. In this model, other sources of

information might be taken into account to further inform the process that generates case-data

at different levels of severity. The rest of this thesis approaches the investigation of the dynamics

of influenza severe cases within this perspective.
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Chapter 3

Estimation of transmission

This chapter contains an introduction to epidemic models (Section 3.1), to their parameter

estimation (Section 3.2), and an example of their use within the analysis of infectious disease

data (Section 3.3).

The literature on epidemic models is vast and varied, as is reported in Subsection 3.1.1, and

a comprehensive review and classification of these models is beyond the scope of this thesis.

Instead this chapter reports the most common approaches in the field and lists some of their

pitfalls and advantages. In light of the latter, model choices are made with respect to a real-case

study, whose analysis is reported in Section 3.3. The two sections are linked by a part dedicated

to estimation methods for transmission and their application to the case of influenza (Section

3.2).

The chapter ends with a discussion of the models mentioned and the results obtained in the

analysis performed (Section 3.4).

3.1 Epidemic models

There are many reasons for which the investigation of epidemics is intriguing. Niels G. Becker,

in his 1989 book (Becker, 1989) highlights the following three points:

• infectious disease data are not the result of planned experiments, but arise from naturally

occurring epidemics

this aspect discriminates epidemic models from many other statistical models, which rely

on the possibilities of having replicates of the same experiments;

• infectious disease data are highly dependent because infected cases are the cause of further

infected cases

epidemic models need to account for high dependence within data, which lead to each

data-point being informative on the whole process but reduces the amount of independent

information from multiple observations on the same epidemic;

• the infection process is generally only partially observable

this latter feature, on the one hand, encourages the development of new methods to ap-

proximate the likelihood for incomplete/partial data, and, on the other hand, favours the

use of Bayesian methods that exploit other sources of information, where available.

41
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Motivated by these stimuli, the literature on epidemic models and their inference has proliferated

in the last two centuries (Heesterbeek et al., 2015).

A brief summary of the main historical steps of epidemic theory, together with the books

that represent its cornerstones, are contained in Subsection 3.1.1. The following subsections

instead define more formally the theory behind epidemic models and their classification.

3.1.1 Historical background on the analysis of epidemics

The need for a formal analysis of infectious disease data was documented as early as 1840 in a

letter by William Farr addressed to the Registrar General for England and Wales (Farr, 1840).

In the letter, he indicates the seasonal oscillation of some diseases and encourages their biological

and mathematical analysis (Serfling, 1963). Since then an increasing number of analyses of the

temporal pattern of infectious disease cases and deaths have been carried out. Of particular

relevance are the studies by Brownlee (1907), where the temporal pattern was compared to

the Normal distribution, and by Ross (1911) where a first deterministic epidemic model was

formulated, linking the future number of infections to the current number of infected people.

Later in the 20th century the most relevant advances in the field were made. Kermack and

McKendrick wrote a series of papers on the mathematical theory of infectious diseases (Kermack

and McKendrick, 1927, 1932, 1933). In these papers, not only did they define models already

similar to those currently used, but they also studied their behaviour, giving the first definition of

an epidemic threshold, i.e. the composition and size of the population necessary for an epidemic

to take off.

Following in their footsteps, Greenwood and Reed and Frost provided two formulations of

a stochastic epidemic model that allows fluctuations due to chance. The former is documented

in a paper of 1931 (Greenwood, 1931), whereas the latter can only be found in later citations

(Abbey, 1952) or in recorded lectures. A previous use of stochastic epidemic models is attributed

to P. D. En’ko as early as the end of the 19th century (Dietz, 1988).

Closer to the end of the century, books such as Bailey (1975) and Becker (1989) started

the process of collecting the work in this field, creating solid references for the literature that

followed. Work on these topics proliferated, boosted by the occurrence of severe outbreaks such

as the HIV/AIDS epidemic.

Several recently-published books on infectious disease modelling provide a comprehensive

explanation of these models and their application. The language and the complexity of their

content varies according to the targeted audience. Vynnycky and White (2010) give an intuitive

introduction to the models, directed to a broad audience, including public health providers and

managers, whereas Diekmann and Heesterbeek (2000) is aimed at mathematical modellers and

computational biologists, providing insights on the models adopted and derivations of theoretical

results. Keeling and Rohani (2011) can be seen as an hybrid between these two extremes,

adopting a pragmatic and practical approach and justifying some relevant theoretical arguments.

The content of this section is based on the three mentioned books and on some foundation

papers (e.g Britton (2010)). Unfortunately, the notation is not consistent across these books

and within the epidemic models literature (e.g. one should not take for granted that Vynnycky’s

β has the same meaning as Keeling’s β). For this reason all the elements are re-defined below,

ensuring consistency across this thesis.

https://www.youtube.com/watch?v=CmhL4rVLwn0
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Lastly, there are many dimensions on which models could differ: for example time might be

measured continuously or at different discrete times, or the individuals involved in the epidemic

might be aggregated in different ways. The following subsections approach the formulation of

epidemic models from many points of view, proposing multiple classifications.

3.1.2 Model definition

The spread of an infectious disease in a population is characterised by specific processes that

are assumed in many epidemic models, as described by Becker (1979):

“A susceptible may become infected as a result of an adequately close contact with an

infective. The newly infected individual passes through a stage during which he is latent and

then through a stage during which he is infectious, before being removed by isolation, by death

or by naturally losing his infectiousness and becoming immune for the remaining duration of

the epidemic.”

More specifically, at an individual level, an infection takes place when a pathogenic micro-

organism invades a host (WHO, 2018a). Then the disease progresses and the amount of pathogen

increases within the host, stimulating an immune response (Keeling and Rohani, 2011). There

are therefore two different classifications of the host: the first one, according to his infection

status (e.g he might be susceptible, infectious, immune) and a second one according to his

clinical status (e.g. he might be asymptomatic or diseased). An illustration of the growth of the

pathogen within a host is reported in Figure 3.1.

Susceptible Exposed/Latent Infectious Removed INFECTION STATUS

Incubation Diseased MEDICAL STATUS

time from infection

time of infection

immune response

pathogen

Figure 3.1: A representative caricature of the infection process within a host. The dynamics of

the pathogen (green) are associated with infection status (e.g. Susceptible, Exposed, Infectious

and Removed); the immune response instead (magenta) is associated with medical statuses (e.g.

asymptomatic, mildly ill, severely ill). Note that these dynamics are not quantified here (the

y-axis is not labelled), this figure only depicts the temporal dynamics of the pathogen. Figure

freely adapted from Keeling and Rohani (2011).

Following the notation of Section 2.1, the infection status of an individual i over his ageing

time s can be described by a multi-state process. At initial time s = 0, this individual is in

state Xi(0) = xi(0) with xi(0) ∈ {S,E, I,R}, these letters representing susceptible (S), exposed

(E, i.e. infected but not yet infectious), infectious (I) and removed (R). As the ageing time s

progresses he might move to another state a with a rate αixi(0)a(s), with a ∈ {S,E, I,R}. The

multi-state process of the SEIR model is represented in Figure 3.2.
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S E I R
αise(s) αiei(s) αiir(s)

Figure 3.2: Graphical representation of the SEIR infection process for an individual i.

The SEIR model is only one of the many types of models used to describe different infectious

diseases. For example, if the infected individual becomes infectious as soon as the pathogen

enters his body, a SIR model is used to describe the epidemic since there is no latent state. In

the case of no (or ineffective) immune response the R state is discarded, leading to SIS and SEIS

models. If instead, the host becomes immune to the virus, but this immunity fades away with

time, making him susceptible again, the models are called SIRS and SEIRS. Figure 3.3 displays

the multi-state models associated with this assortment of epidemic models.

S I R

(a)

S I

(b)

S I R

(c)

S E I

(d)

S E I R

(e)

Figure 3.3: Graphical representation of the (a) SIR, (b) SIS, (c) SIRS, (d) SEIS and (e) SEIRS

multi-state models.

The structure of the multi-state model (i.e. which compartments to use) is imposed by

the virus under analysis. Since influenza virus development exhibits a latent period and grants

immunity (Carrat et al., 2008), a SEIR model is used throughout this chapter. Extension of the

results presented in Sections 3.1.3-3.1.7 to other epidemic models is straightforward.

3.1.3 From individual to population level: model set-up

The dynamics of an epidemic within a population can be approximated at different levels of

granularity. What happens in reality is that each single individual in the population has his own

history across the epidemic states and the mathematical model used to describe this process can

be more or less realistic.

Agent based models (Ajelli et al., 2010) consider single multi-state processes for each indi-

vidual (named “agent”). This is the maximum resolution that an epidemic model could reach.

The contacts across individuals could be explicitly modelled by a network. The analysis of

the spread of infectious disease on such constructions takes the name of network epidemic models

(Keeling and Eames, 2005) and these models have recently proliferated (Duan et al., 2015).

A further approximation can be made by grouping individuals for which the frequency of

contact, as well as the propensity to infect and be infected can be considered homogeneous. Ag-

gregations of such individuals are commonly named “households” and the models that explicitly

account for them are called meta-population models (Ball et al., 2014).

Finally the population could be considered completely homogeneous (both in contact and
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susceptibility) leading to single population models. Here the information on the history of a single

individual is lost and only the count of individuals moving across compartments is tracked. The

models presented below are single population models (Keeling and Rohani, 2011).

To describe the average dynamics of a population model of, for example, a SEIR epidemic,

a set of differential equations can be used to express the outflow and inflow of individuals in

each of the four compartments defined. Denote by t ∈ [0, T ] continuous time, with 0 and T

denoting the beginning and the end of the epidemic. At time t ∈ [0, T ], denote by S(t) the

number of susceptible individuals, by E(t) the number infected, but not yet infectious, by I(t)

the number infectious and by R(t) the number of people that are removed either by recovering

and becoming immune or dying. Moreover, consider a closed population (i.e. with no birth,

death, immigration or emigration) of fixed size N so that N(t) = N = S(t) +E(t) + I(t) +R(t),

∀t ∈ [0, T ]. Then the system of equations takes the form:

dS(t)

dt
= −βS(t)

I(t)

N
dE(t)

dt
= +βS(t)

I(t)

N
− σE(t)

dS(t)

dt
= +σE(t)− γI(t)

dS(t)

dt
= +γI(t)

(3.1)

where β denotes the transmission rate, which accounts both for the probability of transmission

given contact (κ) and for the contact rate (ν), so that β = κν. The infection rate β I
N also

depends on the proportion of infectious people, I
N , the infection pressure to which the population

is subject. σ and γ denote the rates of exit from the latent and infectious states, respectively

(Keeling and Rohani, 2011).

An epidemic model such as (3.1) can be represented by a plot similar to the multi-state-

model plot of Figure 3.2, though each box represents the number of individuals present in that

compartment at time t, and the arrows represent the people transiting between compartments

and are overlaid by the individual-level transition rates.

S(t) E(t) I(t) R(t)
β I
N σ γ

Figure 3.4: Graphical representation of the SEIR population epidemic model.

3.1.4 Time in epidemic models

Equation 3.1 expresses the temporal variation of the average compartment sizes via differential

equations. However, often, both for computational convenience and interpretation, it is better

to consider discrete time and to use difference equations.

Consider intervals of length δ � 1 so that the t-th interval is defined as [δt, δt+ δ) and the

intervals are indexed by t = 0, 1, 2, . . . , T . Denote the number of susceptible individuals at the

beginning of interval t by St and likewise for the other compartments. Equation 3.1 can be
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approximated as:

St+1 = St − (βδ)StIt/N

Et+1 = Et + (βδ)StIt/N − (σδ)Et

It+1 = It + (σδ)Et − (γδ)It

Rt+1 = Rt + (γδ)It

(3.2)

where two approximations are made:

i The variation of the number of people within an interval is considered irrelevant. This approx-

imation is particularly influential for the formulation of the infection rate: the infection

pressure experienced by the population over the interval [tδ, tδ + δ) is considered equal

to the infection pressure at the beginning of the interval, even though some people might

become infectious or stop being infectious during δ.

ii While a continuous-time system is defined by event rates, i.e. instantaneous probabilities

of events, a discrete-time system is defined by the probabilities of events within each

interval. In Equation 3.2, these probabilities are approximated by the rates thanks to

the assumption of Exponentially distributed inter-event times (see the next subsection for

more exposition on this). For example, the probability of leaving the E state during an

interval of length δ for the ith individual is:

P (T
(i)
EI ≤ δ) = 1− e−σδ

whose Taylor expansion, for a small δ, leads to an approximation given by the rate times

the interval size:

P (T
(i)
EI ≤ δ) = 1− e−σδ = σδ +O(δ2)

If δ is small enough for these approximations to hold the discrete-time model (3.2) can replace

the continuous time model (3.1).

Figure 3.5 shows how the size of δ might affect the approximation. A SEIR deterministic

epidemic on a small population (N = 1000) is evaluated and δ = 1 day and δ = 1/4 day are

used for the discrete-time approximation. The set of parameters used is: β = 0.40, σ = 0.8, γ =

0.2. The colours of the lines identify the compartment (S,E, I and R). The discrete-time

approximation of the compartment sizes (solid line) is delayed, compared to the continuous-

time solution (dashed line), however this delay decreases as δ approaches 0.

Both in a discrete-time and in a continuous-time epidemic, time is said to run from 0 to T ,

but there are multiple ways to define these time-points.

In reality the beginning of an epidemic (t = 0) coincides with the introduction of an infected

person (I(0) = 1), nevertheless it is possible to model the epidemic over a later time-window

and define an arbitrary t = 0, for example the calendar time at which the data collection begins,

and therefore allow I(0) > 1.

Regarding instead the end of an epidemic (t = T ), this takes place when the infection rate

is 0, i.e. when there are either no more infected/infectious or no more susceptible individuals.

Yet, for continuous- and discrete-time deterministic epidemics, the number of people in each

compartment only approaches 0 asymptotically, never reaching the value. In this case the end
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(a) Continuous-time model vs discrete-time

model with δ = 1 day
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(b) Continuous-time model vs discrete-time

model with δ = 1/4 day

Figure 3.5: Average number of susceptible (green), latent (grey), infectious (red) and removed

(purple) people at time t. The dashed line is the continuous-time solution and the solid line is

the discrete-time approximation, with time step of (a) a day and of (b) a quarter of a day.

of an epidemic can be defined either using thresholds for S(t), E(t) and I(t) or, like the definition

of t = 0, by fixing an arbitrary calendar time after which the evolution of the epidemic is not of

interest or relevant (e.g. usual end of seasonal activity).

3.1.5 Stochastic epidemic models

The models introduced in Subsections 3.1.2 to 3.1.4 only approximate the real dynamics of an

epidemic. More realistically, epidemics are probabilistic phenomena formed by a series of discrete

events, and, over the years, several different types of stochastic models have been formulated to

describe them (Greenwood and Gordillo, 2009).

This subsection contains two formulations of stochastic epidemic models in continuous time

and in discrete time, respectively.

Event-driven approach

Consider continuous time t ∈ [0, T ] with t = 0 being the beginning of an epidemic, i.e. the

time at which an infectious individual is introduced, and t = T being the extinction time

of an epidemic, i.e. the time at which there are no more susceptible, exposed or infectious

individuals. A stochastic epidemic model can be defined within the framework of state space

models (SSMs) (Section 2.1.1), where the state process is represented by the number of people

in each compartment at time t:

X(t) =


S(t)

E(t)

I(t)


and, when the population size N is known and fixed, R(t) can be obtained by R(t) = N−S(t)−
E(t)− I(t).
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Conditionally on X(t) = x(t), and under Markovianity, the next event(s) follows a non-

homogeneous Poisson process (Greenwood and Gordillo, 2009). Denote by u the time elapsing

between two events. An infection event consists of the state transition to: X(t + u) = (S(t) −
1, E(t) + 1, I(t)) and happens at rate β I(t)N S(t); a transition out of the latent period consists

of the state transition to: X(t + u) = (S(t), E(t) − 1, I(t) + 1) and happens at rate σE(t); a

recovery consists of the state transition to: X(t+u) = (S(t), E(t), I(t)− 1) and happens at rate

γI(t).

This model can be better understood in terms of the simulation method used to generate

it, which was formulated in Gillespie (1976) for a general compartmental model, and applied to

epidemic models in, e.g., Keeling and Rohani (2011) (Section 6.3).

Consider X(t) as defined above, and denote the random variable (r.v.) of the time until the

next event by U . Denote by α(t) the rate of any event (infection, end of latent state or recovery),

conditionally on the state of the system at t, so that:

α(t) = β
I(t)

N
S(t) + σE(t) + γI(t)

Given the Poisson-process properties (see Section 2.1.2), U is Exponentially-distributed with

rate α(t), hence:

U ∼ Exp(α(t))

The type of event that happens at t+ s has probabilities equal to the contribution of each rate

to α(t), i.e.:

X(t+ u) =


S(t)− 1, E(t) + 1, I(t) w.p. β I(t)N S(t)/α(t)

S(t), E(t)− 1, I(t) + 1 w.p. σE(t)/α(t)

S(t), E(t), I(t)− 1 w.p. γI(t)/α(t)

This model can be expressed as a system of stochastic differential equations with the same

structure as Equation 3.1, where the time and the compartment sizes are r.v.s.

Chain-Binomial approach

A discretised version of the event-driven model is the chain-Binomial model (Becker, 1989).

Consider again intervals of length δ � 1 so that the t-th interval is [δt, δt+δ) and the intervals

are now indexed by t = 0, 1, 2 . . . , T . Denote by At the number of people becoming infected, by

Bt the number of people becoming infectious and by Ct the number of people recovering during

[δt, δt + δ) and define St, Et and It and the rates β, σ and γ as in Subsection 3.1.4. Under

approximation (ii), At, Bt and Ct distribute according to Binomial r.v.s with sizes St, Et and

It, respectively such that

At ∼ Bin

(
St, β

It
N
δ

)
Bt ∼ Bin(Et, σδ)

Ct ∼ Bin(It, γδ)

(3.3)
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and

St+1 = St −At
Et+1 = Et +At −Bt
It+1 = It +Bt − Ct
Rt+1 = Rt + Ct

(3.4)

It is easy to see the Chain Binomial model as a τ -leap approximation of the event-driven model

(see Appendix D.2).

This model, compared to the event-driven model, suffers from the same approximation errors

as the discrete-time deterministic model compared to the continuous-time version; nevertheless

it is still intensively used. As described in Section 3.2, inference in epidemic models is often

simulation- or data-augmentation-based; the adoption of chain-Binomial models leads to a more

efficient application of these simulation methods than the use of event-driven models and this

fact has strongly motivated their use.

Moreover, the first stochastic epidemic models (the Greenwood and the Reed-Frost model)

are special cases of the chain-Binomial model, as shown in Becker (1989).

Stochastic vs deterministic models

There are several advantages in replacing a deterministic model with a stochastic model (Vyn-

nycky and White, 2010). Deterministic models are unrealistic as they allow the compartment

sizes to take non-integer values. More importantly, they are not able to reproduce the differences

in epidemics that can be observed in reality: in a small population and considering the same

infection, latency, and recovery parameters, the introduction of an infectious individual may

cause the occurrence of a major epidemic or likewise, he can recover affecting none (or almost

none).

The outcome of the simulation of a stochastic model can be very different from a deterministic

one, as shown in Figure 3.6. Here a deterministic discrete-time epidemic model (dashed) is

compared with 1000 simulations from a chain-Binomial model. The left column compares the

deterministic discrete-time approximation of the compartment sizes to those of 20 of the 1000

simulations; the right column reports the histograms of the total new infections generated in

[0, T ] in the 1000 chain-Binomial simulations. The set of parameters used is: β = 0.40, σ =

0.8, γ = 0.2. The first row assumes the introduction of 1 infectious and 1 exposed individual in a

population of 998 individuals (N = 1000). The histogram of the number of individuals infected

in [0, T ] is bimodal: some epidemics are minor, and the others are distributed around the final

size of the deterministic epidemic (Figure 3.6a). In the left-column plots, the minor epidemics

can be identified by those trajectories whose number of susceptibles at T is almost equal to

the number of susceptibles at 0. When the same parameters are used and the population at

time 0 is scaled up by 10 and by 100 (S0 = 9980, E0 = 10, I0 = 10, N = 10000 in Figure 3.6b

and S0 = 99800, E0 = 100, I0 = 100, N = 100000 in Figure 3.6c, respectively), the bi-modality

disappears and the final size is distributed around the final size of the deterministic model. The

simulations from the chain-Binomial model are better approximated with a higher population

scale (Figure 3.6c). Lastly, if only the total population is scaled up (N = 10000) and 1 infectious

and 1 exposed are introduced, the bi modality arises again.
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This highlights that the approximation of a stochastic model by a deterministic model is

more reliable after the epidemic has taken off (when the number of infectious individuals is

already high) in large populations. In contrast, when one or few infectious individuals enter a

small population, a deterministic model does not approximate the dynamics well.

Further results on the final size of stochastic epidemic models can be found in Britton (2010).

Despite these clear advantages, the question of which model to use is case specific and an

a-priori decision is never straightforward. Explicit comparison between the fit of a deterministic

model and a stochastic model to the data should help in the decision (Rohani, 2016).

3.1.6 Parameters and transmission measures

The previous sections showed different ways to express and model the temporal dynamics of an

epidemic. In addition to these, an epidemic can be characterized by summary measures that

quantify the whole outbreak.

The most common index to quantify transmission is the basic reproduction number,

denoted by R0 (Macdonald, 1952). R0 expresses the average number of new infections generated

by an infectious individual when introduced in a totally susceptible population. It is related to

the transmission rate β and to the average infectious period 1/γ via Equation 3.5 (Vynnycky

and White, 2010):

R0 = β
1

γ
(3.5)

If instead the population is only partially susceptible, due to an initial immune proportion,

transmission can be measured by the effective reproduction number at time t = 0:

Re(0) = β
1

γ

S(0)

N
= R0

S(0)

N
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(a) N = 1, 000 and 0.2% infected individuals: E0 = I0 = 1
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(b) N = 10, 000 and 0.2% infected individuals: E0 = I0 = 10

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

co
m

p
a
rt

m
en

ts
' 
si

ze

time
0 20 40 60 80 100

D
en

si
ty

Final size

0.0000

0.0005

0.0010

0.0015

78000 80000 82000

(c) N = 100, 000 and 0.2% infected individuals: E0 = I0 = 100
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(d) N = 10, 000 and 0.02% infected individuals: E0 = I0 = 1

Figure 3.6: Left column: Number of susceptible (green), latent (grey), infectious (red) and

removed (purple) people at time t. The dashed line is the discrete-time deterministic model

approximation and the solid lines are 20 realizations of a chain-Binomial model with the same

parameters. Right column: histogram of the final size of 1000 simulated epidemics.
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As an epidemic progresses, fewer people are susceptible and the effective reproduction number

changes accordingly:

Re(t) = R0
S(t)

N

Re(0) is extremely informative because it provides an indication of whether or not a major

epidemic is going to take place.

In a deterministic epidemic model, if Re(0) < 1 the epidemic is not going to spread and

will fade away soon after its start; the case of Re(0) = 1 (not particularly relevant), consists of

the epidemic persisting in the population with a constant number of infectious individuals; if

instead Re(0) > 1, the epidemic will take off.

In a stochastic epidemic model instead, if Re(0) ≤ 1 the probability of a major epidemic is

0 and if Re(0) > 1 there is a positive probability of major epidemics.

Another quantity of interest is the final size of an epidemic, defined as the number of people

that have been infected during [0, T ], i.e. S(T ) − S(0). This is useful to compute the total

attack rate, i.e. the proportion of the population that has been infected over the course of the

epidemic and denoted by TAR:

TAR =
S(T )− S(0)

N

Other transformations of the parameters of an epidemic models might be useful, not only

to characterise the epidemic, but also to better explain particular behaviours of the system or

reduce the dimension of the parameter space. This is the case of the exponential growth rate,

a parameter that might be introduced to model the initial growth of the number of infected and

infectious compartments. They are known to increase exponentially (Keeling and Rohani, 2011)

with rate ψ:

dE

dt
= ψ · E

dI

dt
= ψ · I

Wearing, Rohani, and Keeling (2005) derived the re-parametrization of the initial state (i.e.

S(0), E(0), I(0) and R(0)) of the epidemic and of the transmission parameters that results from

this assumption. Their results, applied to the model considered in Section 3.3, are reported

below.

3.1.7 Observation process

Since an epidemic model can be viewed as a SSM, an appropriate observational model should

be defined to link the underlying transmission process X(t) with t ∈ [0, T ] (or Xt with t =

0, 1, 2, . . . , T ) to one (or, possibly, multiple) time series of observable quantities Yt, t = 0, 1, 2, . . . T .

Once an individual is infected he might experience more or less severe symptoms and he might

seek health assistance. The process that describes this phenomenon in the infected population

is the severity process that has been widely discussed in Chapter 2. Severe events might occur

after some time from infection, and this can be described via an observational delay process.

Only a portion of severe/symptomatic individuals might be detected and registered in the data

Yt, t = 0, 1, 2, . . . T ; this aspect is accounted for in the detection process.
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Despite most aspects of the observational process having been treated in Chapter 2, they

are recalled here in the context and within the language of epidemic models.

The observation process is a process that happens alongside to the transmission process and

there is no one-to-one relation between the two processes. An individual might be asymptomatic

but already infectious (as happens, for example in HIV); he can be in the R state as a result of a

quarantine policy, while still being at a severe stage of the disease; or, as happens for the Ebola

virus, he can reach the most severe state, death, and still be counted in the I compartment due

to infectious contacts during burial ceremonies.

Severity process

Similarly to transmission, severity aspects can also be treated either using a deterministic or

a stochastic approach and with several levels in between these two extremes. Denote by θ the

probability of experiencing a severe event (e.g., the probability of symptoms given infection,

or the probability of seeking health assistance at GP clinics, or the case hospitalization risk).

Conditionally on the transmission evolution, the number of incident severe cases over time could

be described, for example, by a Binomial sample from the incident infections with probability

θ. However stochasticity can be ignored and a simple approximation to the average number of

severe cases can be made. For example, define ∆Ist , the number of individuals that are infected

during the interval (tδ, tδ + δ] and will eventually become severe (s) cases, and approximate it

by:

∆Ist = (S(tδ)− S(tδ + δ)) · θ

Systematic discussion on the level of stochasticity introduced in a severity process and its ap-

proximation are given in Chapter 5.

Observational delays

The delay between infection and severe events can also be modelled with more or less stochastic-

ity. For individuals that develop severe symptoms, the r.v. D denotes the time elapsing between

infection and the occurrence of severe symptoms and detection. D might be approximated by a

parametric distribution with density f(d;ϑ). For routinely collected data, the discrete version

of this distribution is considered, with fd(ϑ) being the probability that the delay experienced is

in the dth interval of length δ, [δd; δd+ δ).

Once a delay distribution has been defined, the time series of severe infections ∆Ist , (t =

1, 2, . . . T ) can be linked to the time series of the severe cases at the time of their diagnosis,

denoted by ∆Cs
t , via convolution:

∆Cs
t =

t∑
d=0

∆Ist−dfd(ϑ) (3.6)

More often, Equation 3.6 denotes the average behaviour of the observed severe cases, with

this average denoted by µst :

µst = E(∆Cs
t ) =

t∑
d=0

∆Ist−dfd(ϑ)

The observations are then distributed randomly around a function of µst (Brookmeyer and Gail,

1994) as explained below.
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Detection and measurement error

The last elements of the observation process to define is the detection process, i.e. the process

through which severe cases are included in the surveillance system.

A choice is to be made about the distribution of the observations. Common choices are

Binomial (Shubin et al., 2016), Poisson (Birrell et al., 2012; Ong et al., 2010) or Negative

Binomial (Birrell et al., 2011; Tuite and Fisman, 2018) distributions, the latter allowing more

flexibility through an over-dispersion parameter.

The data-distributional assumption, in the case of deterministic transmission, severity and

delay models, allows the likelihood of a time series of independent observations to be written

down analytically. When transmission is stochastic and, more pertinently, severity is modelled

stochastically, a dependence across time and states arises. This dependence will be addressed

in Chapter 5.

Remarks on the observation process

In the previous paragraphs, many of the possible aspects of an observational process have been

highlighted. Nevertheless, in reality they are often difficult to disentangle.

The data available are a corrupted and delayed signal of the underlying transmission process

but the amount of corruption imputable to one aspect of the severity process (for example,

the probability of symptoms given infection), or to another (for example, the probability of

hospitalization given severe symptoms), or to a detection element (for example the probability

of a hospitalization being reported) is indistinguishable.

This is one of the challenges mentioned in the opening of this Chapter (Becker, 1989) and

the availability of prior information on the observation process, together with evidence synthesis

methods, might enable the inference of both transmission and severity/observation dynamics

(Birrell, De Angelis, and Presanis, 2018; De Angelis and Presanis, 2018).

3.1.8 Extensions and other modelling schemes

In order to more realistically model epidemic data, a number of extensions to the simple epidemic

models presented can be made.

A very useful extension consists of allowing time-varying transition rates. The infection rate

β(t) can be thought to vary over time due to several different factors. Many infectious diseases

show a seasonal oscillation that is believed to depend on the fluctuation of weather conditions

(Lowen et al., 2007), which might inflate or deflate the magnitude of transmission (Dushoff

et al., 2004). Moreover, the rate of contact within some population groups might depend highly

on calendar time and hence might affect the rate of new infections. An example of this can be

found in the influenza-modelling literature that has been shown to depend highly on the opening

or closure of schools (House et al., 2011; Te Beest et al., 2015; Vynnycky and Edmunds, 2008).

Moreover, time-varying infection rates of SIR-type models can be modelled using structured

time-series, leading to the so called T-SIR model (Bjornstad, Finkenstadt, and Grenfell, 2002;

Finkenstädt and Grenfell, 2000).

Another aspect that has intrigued modellers is the Markovianity assumption. This implies

that the average time spent in each compartment distributes according to an Exponential r.v..
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Some work on non-Markovian models can be found in Streftaris and Gibson (2002). Nevertheless,

there exists a simpler way to allow a more flexible distribution for the time between events,

while still preserving a Markovian model. A compartment (e.g. E) can be divided in multiple

sub-compartments (E1, E2, . . . , Ek); if the time spent in each sub-compartment is Exponentially

distributed, then the total time spent in the E compartment is distributed according to a Gamma

r.v. which is more flexible than an Exponential since it allows waiting time with modes different

than 0 as well as rates varying over time-to-compartment-exit.

3.2 Estimating transmission parameters

Methods for the estimation of transmission in epidemic models are reviewed in this section, in

terms of both statistical inference (Section 3.2.1) and applications to influenza (Section 3.3.2)

3.2.1 Review of estimation methods

Different inferential challenges are posed by different types of data, depending on their charac-

teristics.

A type of data that is not treated in this thesis is final outcome data. They usually consist

of the total number of cases generated within an epidemic. Although final outcome data do

not contain information on the temporal evolution on the disease, they are very useful for the

estimation of quantities such as R0, according to the mathematical relationship between final size

and R0. For a concise reference see Britton (2010) and for proofs and derivations see Andersson

and Britton (2012).

Temporal data instead, consist of time-series referring either to the number of people tran-

siting from one state to another during an interval (incidence data) or to the number of people

in a compartment at a specific time (prevalence data).

Methods for inference from temporal data change according to the assumptions of the trans-

mission and observational models. The transmission process can be modelled in continuous

or discrete time, and as deterministic or stochastic; the severity process is often approximated

by its deterministic formulation and a specific discussion on this approximation is postponed

to Chapter 5; finally, the detection and measurement process are often assumed to follow a

parametric distribution that describes the noise in the data.

A review (O’Neill, 2010) lists the most common methods that relate transmission models to

data. Here a similar, but briefer, attempt is made, which includes more recent development but

without providing a comprehensive enumeration of all the possible approaches.

When a deterministic transmission model is assumed, the average incident/prevalent cases,

incident/prevalent removals, etc are a deterministic function of the transition rates. The de-

terministic model can be used to predict the expected observations, while the data distribution

determines the likelihood of the transmission and observational parameters. Alternatively opti-

mization of some error function can be performed so that the parameters that provide trajecto-

ries that are closest to the data (e.g. that minimize the least squared error) are selected. This

method is sometimes referred to as trajectory matching (Riley et al., 2003).

Nevertheless, inference might be challenging even in these cases where the amount of stochas-

ticity is low. This is because often only data on one compartment or one specific transition are
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available, and information on the initial state of the system is often absent. In this setting

of partial data, the likelihood of the parameters is frequently affected by identifiability issues

(Gustafson, 2010) as is shown in the following chapter.

By dropping the assumption of deterministic dynamics and dealing with stochastic transmis-

sion models, inference becomes even more demanding. In this case, the number of people within

each compartment and moving between compartments can be described, in the SSM setting, as

the state process, of which only a noisy time series is observed. In this context, inference can

be performed using one of the following principles.

• Martingale methods, such as the ones developed in Becker (1993), are based on the for-

mulation of ad-hoc martingales for the counting processes of the transmission systems.

However the high price of complex mathematical formulation is not offset by much gain

since these methods are rarely applicable as they rely on very strict hypothesis (O’Neill,

2010).

• Likelihood free methods have been recently developed, exploiting the availability of power-

ful computational resources and the fact that epidemic models are very easy to simulate.

These methods are usually developed within the Bayesian literature and they might fall in

the wider family of Approximate Bayesian Computation (ABC)(Kypraios, Neal, and Pran-

gle, 2017) or they might be Markov chain Monte Carlo (MCMC) algorithms specifically

tailored for epidemic data (McKinley et al., 2014).

• Data augmentation methods consider the problem of inference within a perspective of

missing data, where the underlying transmission process is also to be estimated. These

methods were developed in the context of continuous-time stochastic epidemic models

where the infection times are unknown since observations are at discrete times and affected

by delays (e.g. incubation time). These methods, combined with the use of MCMC

methods, have been intensively used in the past 25 years (O’Neill and Roberts, 1999).

• Filtering methods are general methods for SSMs from the family of sequential Monte

Carlo (SMC) methods. These methods have been developed both in a frequentist (Ionides,

Bretó, and King, 2006) and in Bayesian frameworks (Andrieu, Doucet, and Holenstein,

2010) and they are based on sequential integration of the state process. Their use in the

estimation of transmission models is becoming more and more frequent (e.g. Birrell et al.

(2017) and Magpantay et al. (2015)).

3.2.2 Review of applications of epidemic models to influenza

This section reviews some studies on the transmission of influenza. The literature on this topic

is copious even when limited to only those studies that use the transmission models described

in Section 3.1.

There are many criteria for classifying the models, e.g. discriminating according to their

time-scale or levels of stochasticity, the data used and the epidemic analysed or the inferential

methodology applied. In this section, the focus is on the latter since the evolution of statistical

methodology has enabled more advanced analysis of infectious disease data. Within each section,
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notable works in the field are highlighted, and for each work the epidemic model used, the data

used and the novelty of the approach are pinpointed.

The first applications of epidemic models to influenza used to consider the process as being

fully observed and therefore explicitly write and maximise the likelihood. An example of this is

Longini (1986), who uses a discrete time epidemic model (specifically, a chain-Binomial model)

to fit data on influenza spreading on small and large populations. The former are data on

households in the United States, the latter are time series of cases in England and Wales.

Other examples of a likelihood-based methods for influenza data are the ones that use tra-

jectory matching, such as Wearing, Rohani, and Keeling (2005), where SIR and SEIR models

are fitted to data on an epidemic of influenza in a boarding school (Anon., 1978). Despite the

problem being relatively simple (with a small population and small observational noise) the

paper explores interesting aspects on the choice of the compartments of the epidemic model and

on the initial evolution of an epidemic. Similarly, Hall et al. (2007) fits, via maximum likelihood,

a deterministic model with Normal noise, to data from a historical flu epidemic, studying the

potential for prediction from early epidemic data. A more modern example of fitting transmis-

sion models via maximum likelihood can be found in Yaari et al. (2016), which exploits both

clinical and environmental data to gain information on the 2009 pandemic in Israel.

The advent of Bayesian reasoning revolutionised the inference of influenza transmission with

epidemic models because, on the one hand, it offers a simple way to integrate previous knowledge

with data and, on the other hand, MCMC provides a way to sample from posterior distributions

that often overcomes problems of complicated, multi-parameter likelihoods. An example of this

analysis can be found in (Birrell et al., 2011) that analyses data on General Practitioner (GP)

consultations from the 2009 pandemic fitting a deterministic discrete-time epidemic model via

MCMC. Dorigatti et al. (2012), Dorigatti, Cauchemez, and Ferguson, 2013 and Te Beest et al.

(2015) perform a similar analysis using a continuous-time model for data from the UK, Italy and

the Netherlands respectively. Likewise, Baguelin et al. (2013) fits a multi-strain deterministic

epidemic model to data on GP consultations for 15 seasons of influenza in England aimed at

informing evaluation policies. In Merl et al. (2009) similar methods are used sequentially on

the aforementioned boarding school data, assuming a stochastic epidemic model with a focus

on intervention evaluation.

Recently, with the advent of more powerful computers, methods heavily based on simula-

tion are increasingly used to model infectious disease data, and, among them influenza data.

Filtering/SMC methods are proliferating in this field: an early example is Ong et al. (2010)

that fits via SMC a chain-Binomial model to GP-consultation data during the 2009 pandemic

in Singapore. This study was followed up by a similar analysis of data from Malta (Marmara,

Cook, and Kleczkowski, 2014). Similarly, Dukic, Lopes, and Polson (2012) uses a sequential

learning algorithm to estimate transmission parameters and states dynamics of a stochastic

transmission model from Google trends data. Ensemble methods are filtering methods based on

the Kalman filtering approximation (Katzfuss, Stroud, and Wikle, 2016), and they have been

widely used, coupled with discrete time transmission models, on observed and predicted GP

consultation data (Shaman et al., 2013) and on Google Flu Trend data (Yang, Lipsitch, and

Shaman, 2015). Other works that have applied SMC methods are Shubin et al. (2016), that

fitted a discrete-time SIR model to hospitalization, death and GP data from the 2009 pandemic
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in Finland, and Birrell et al. (2017) that enhanced classical SMC methods to model pandemic

data with shocks, using the same data of Birrell et al. (2011). Yang, Karspeck, and Shaman

(2014) reviews and compares some of these SMC methods on Google Flu Trend data and GP

consultations during seven influenza seasons in 115 cities in the US.

There is also a moderate literature on review papers. Biggerstaff et al. (2014) collects and

compares all the estimates of R0 available in the literature. Chretien et al. (2014) instead reports

and comments on papers aimed at prediction of future influenza dynamics.

3.3 An epidemic model to estimate transmission from severe

case data

This Section, studying three seasons of influenza in England, has been published in Corbella

et al. (2018). This analysis provides an example application of epidemic models to real influenza

data, illustrating the challenges of such an analysis.

This study fits in the literature presented above by providing a simple way to exploit readily

available data to infer seasonal influenza incidence. Most of the papers cited investigate data such

as GP consultations for influenza-like illness (ILI) (Baguelin et al., 2013; Birrell et al., 2011) or

health-related online queries (Yang, Lipsitch, and Shaman, 2015), which are only loosely related

to the actual burden and are characterized by highly volatile noise. By contrast, more specific

timely data on a sample of confirmed cases (e.g. confirmed influenza hospitalizations) might

be collected routinely by national health systems. An example of these data is the UK Severe

Influenza Surveillance System (USISS) (Public Health England, 2014) that records counts of

the weekly Intensive Care Unit (ICU) and High Dependence Unit (HDU) admissions and deaths

with confirmed influenza in all hospital trusts in England.

Only Shubin et al. (2016), to the knowledge of the author, has attempted to estimate pan-

demic influenza transmission from routinely collected confirmed-case data. Nevertheless, his

work has entailed the development of a highly complex model which is difficult to use in a

seasonal monitoring setting with a prediction goal; when less effort is placed on data collection.

Conversely, here a much simpler model is proposed and applied to seasonal and pandemic

influenza, relying on severe cases data alone, which are promptly available.

In Section 3.3.1 the data used are described. In the following section, transmission, severity

and detection models are chosen. In Section 3.3.3 the methods used to draw inference are stated.

Results are presented in Section 3.3.4 and discussed in Section 3.3.5.

3.3.1 Data

Following the 2009 pandemic, the World Health Organization (WHO) declared the beginning of

a post-pandemic phase (WHO, 2010), encouraging national public health agencies to establish

hospital-based surveillance systems to monitor the epidemiology of severe influenza. In response

to these guidelines, and to understand the baseline epidemiology of severe influenza, the UK de-

veloped a surveillance system to monitor severe cases of influenza, the USISS. After a pilot phase

in 2010/11, USISS has run for each influenza season, providing data on laboratory-confirmed

ICU/HDU influenza cases and on laboratory-confirmed hospitalized cases.
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According to the USISS protocol (Health Protection Agency, 2011a), all National Health

Service (NHS) trusts should report the weekly number of laboratory-confirmed influenza cases

admitted to ICU/HDU and the number of confirmed influenza deaths in ICU/HDU via a web

tool. An ICU/HDU case is defined as a person who is admitted to ICU/HDU and has a

laboratory-confirmed influenza A (including H1, H3 or novel) or B infection.

USISS runs annually from week 40 to week 20 of the following year but, in the event of a

pandemic, it can be activated out of this window and will collect the same data at all levels of

care, not only ICU/HDU.
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Figure 3.7: Weekly ICU/HDU admissions by season, time is measured in week number as

reported on the x axis.

Data are available by age group and influenza type/subtype. However, when stratified by

both, as well as week, many zero counts are observed. The total ICU/HDU admissions by

week only are displayed in Figure 3.7. Each season between 2012 and 2015 is shown, with each

epidemic varying substantially across seasons. In the 2012/13 season, mainly characterized by

influenza B and influenza A(H3N2) outbreaks, the number of admissions peaks early, main-

taining this plateau for several months (Public Health England, 2013). In 2013/14, when the

predominant strain was A(H1N1), the time series displays a smoother increase, a well localized

peak and a subsequent regular decrease (Public Health England, 2014). Lastly, in 2014/15, the

number of ICU admissions peaks earlier and has a dramatic drop at the beginning of the new

year, which is followed by a smaller wave resulting in a time series characterized by a double

peak. During this season, influenza A(H3N2) was the predominant virus circulating and the

total number of ICU admissions was higher; this strain is well-known to lead to more severe

outcomes, particularly in the elderly (Public Health England, 2015).

In addition to the mandatory scheme, a subgroup of NHS trusts in England is recruited every

year to participate in the USISS sentinel scheme (Boddington et al., 2017; Health Protection

Agency, 2011b), which reports weekly numbers of laboratory-confirmed influenza cases hospi-

talised at all levels of care. From this scheme, individual-level data on all ICU/HDU admissions

(until season 2012/13) or on hospital admissions in the young (≤ 17 years old) population (from

season 2013/14 onwards) are available, including clinical details such as date of symptom onset,
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of hospital and ICU admission, and date of discharge from ICU.

These data provide useful information on the process between influenza infection and ICU

admission (e.g. the time elapsing from symptom onset to ICU admission). Further information

on this process (e.g. proportion of symptomatic cases) can be found in the existing literature

about the incubation period of influenza (Tom et al., 2011) and the hospitalization fatality rate

(Presanis et al., 2014).

3.3.2 Model

A deterministic, continuous-time epidemic model is chosen to model the spread of influenza in

England.

The population is divided according to health status into: susceptible (S), exposed (E),

infectious (I) and removed (R) compartments. The E and I compartments are further divided

into two (E1, E2 and I1, I2, respectively) so that the waiting times in the E and I states are

distributed according to Gamma rather than Exponential distributions (Wearing, Rohani, and

Keeling, 2005). The total size of the population is fixed over every season and denoted by

N ≈ 50, 000, 000. The movements between compartments are determined by the transition

rates: λ(t), σ and γ explained below.

The infection rate λ(t) is proportional to the fraction of people in the infectious compartment

at t, I1(t)+I2(t)
N and a time varying transmission rate β(t):

λ(t) = β(t)
I1(t) + I2(t)

N
.

β(t) is a function of time and it allows for a scaling factor κ ∈ (0, 2] that expresses the change

due to school closure, applied to the transmission rate during school opening β0 Te Beest et al.,

2015 as reported in Equation 3.7:

β(t) =

κ · β0, t ∈ school holidays

β0, otherwise.
(3.7)

The transition rates σ and γ are related to the mean latent period, dL, and the mean

infectious period, dI , by:

σ = 2/dL, γ = 2/dI

The system of differential equations that defines the epidemic model is reported in Equation
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3.8:

dS

dt
= −λ(t) · S

dE1

dt
= λ(t) · S − σ · E1

dE2

dt
= σ · E1 − σ · E2

dI1

dt
= σ · E2 − λ · I1

dI2

dt
= λ · I1 − λ · I2

dR

dt
= λ · I2

(3.8)

Exponential growth rate

The model is parametrised with the transition rate parameters (i.e. β, κ, σ, γ) and the initial

state of the epidemic (i.e. S(0), E1(0), E2(0), I1(0), I2(0), R(0)).

The epidemic model can be re-parametrized assuming that the E and I compartments grow

Exponentially with rate ψ (Vynnycky and White, 2010; Wearing, Rohani, and Keeling, 2005):

dE1

dt
= ψ · E1

dE2

dt
= ψ · E2

dI1

dt
= ψ · I1

dI2

dt
= ψ · I2

and, it is possible to equate each line of this system to the respective line of Equation 3.8 at

t=0:

λ(0) · S(0)− σ · E1(0) = ψ · E1(0)

σ · E1(0)− σ · E2(0) = ψ · E2(0)

σ · E2(0)− λ · I1(0) = ψ · I1(0)

λ · I1(0)− λ · I2(0) = ψ · I2(0)

To solve this system, denote by Itot
0 the total number of infectious individuals at t = 0 (i.e.

Itot
0 = I1(0) + I2(0)). The solution of the system is reported in Equation 3.9, where the first

and last line are derived by the assumption of a closed population and the definition of initial
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immunity (1− π), respectively.

S(0) = N − I1(0)− I2(0)− E1(0)− E2(0)−R(0)

I1(0) = Itot
0

1

1 + γ
γ+ψ

I2(0) = Itot
0 − I1(0)

E2(0) = I1(0)

(
γ + ψ

σ

)
E1(0) = E2(0)

(
σ + ψ

σ

)
R(0) = (1− π)N

(3.9)

This result was derived in Wearing, Rohani, and Keeling, 2005 and further used in Birrell et

al., 2011 to model the spread of influenza in the UK. For this reason, it seems a sensible re-

parametrisation for the data we are analysing to reduce the number of parameters of our system:

the number of people in each state at t = 0 (S(0), E1(0), E2(0), I1(0), I2(0), R(0)) is now replaced

by functions of (N,ψ, Itot
0 , π) and (γ, σ), already parameters of (3.8).

Wearing, Rohani, and Keeling, 2005 proved that, under this parametrisation, the basic

reproduction number R0 can be expressed as a function of the rate ψ, of the average infectious

period dI , and of the average incubation period dL:

R0 = ψ · dI ·


(
ψdL

2 + 1
)2

1−
(
ψdI

2 + 1
)−2


A further re-parametrization is given by defining a new parameter λ0 = λ(0), the hazard of

infection at the beginning of the epidemic:

λ0 = β(0) · Itot
0

which leads to a further definition of Itot
0 :

Itot
0 =

dIλ(0)N

R0
(3.10)

Observational model

This transmission model is linked to the data on ICU admissions through an observational

model that defines the time elapsing from infection to ICU admission and the probability of

ICU admission conditional on infection.

Denote with f
ICU|I
w the probability that w weeks elapse from infection to ICU admission,

and with pICU the probability of ICU admission given infection. µw, the average number of ICU

admissions during week w, can be related to the weekly new infections in the previous weeks

via the following convolution:

µw =
w∑
v=0

f
ICU|I
w−v ·∆IvpICU (3.11)

where ∆Iw = (S(w − 7)− S(w)) ·N is the count of the new infections during week w.
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To formulate the likelihood of the data, the observed number of ICU admissions is assumed

to follow a Negative Binomial distribution centred on µw with over dispersion parameter η:

Y ICU
w ∼ NegBin(µw, η),

i.e Y ICU
w has density function:

f(Y ICU
w = y) =

Γ(y + rw)

Γ(y)Γ(y + 1)

(
1

η

)rw (
1− 1

η

)y
with rw = µw

η−1 .

Appendix C contains the full derivation of f
ICU |I
w from the survival data.

3.3.3 Inference

Due to the exponential growth rate parametrization, the transmission model is defined by the

parameter vector θ = (λ0, ψ, π, σ, γ, κ).

The parameters σ and γ are assumed known from previous studies (Birrell et al., 2011; Tom

et al., 2011), as they can be inferred only with detailed information at the individual level.

Likewise, the population size N is assumed known and fixed to the values estimated by the

Office of National Statistics (ONS) (Office of National Statistics, 2012-2015).

Prior distribution

Inference for the remaining parameters is performed under two prior scenarios. In both scenarios

prior distributions are set on the parameter θ, however, most interpretable parameters (e.g. R0

and β) are reported in the table: limits have been set for these quantities and the transformations

listed in the previous section have been used to derive the priors on θ.

In the first scenario, no prior information on the values of the parameters except for lower

and upper bounds is known, hence the prior distributions on all the parameters are flat. Table

3.1 lists the lower and upper limits of some transformations of the parameters and the values

assumed known in this scenario.

In the second scenario, a prior distribution for the initial susceptibility π is formulated using

sero-prevalence data from the 2010/11 season (Hoschler et al., 2012). The use of sero-prevalence

data to describe the immunity of a population could be debatable, since the results may be

generalisable only to seasons with similar predominant strains circulating. Here, sero-samples

were taken during an H1 predominant season: this sub-type was prevalent also in the 2012/13

season, but not in 2014/15. However, combining this prior with the data allows testing of

how much prior knowledge is needed to overcome the lack of information about susceptibility

from the data. An informative prior distribution on pICU is derived by combining estimates

of the probability of hospitalization given infection from a previous severity study Presanis et

al., 2014 with estimates of the probability of ICU/HDU admission given hospitalization from

the aggregate data of the USISS sentinel scheme. Table 3.2 lists the prior distributions of the

two parameters that change in the informative scenario. The remaining parameters are again

assumed to be uniformly distributed.
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Unknown parameters Lower limit Upper limit

Susceptibility π 0 1

Initial number of infectives Itot(0) = (I1(0) + I2(0)) 0 10000

Transmission rate β 0 1.12

Over-dispersion η 1 100

P of ICU admission given infection pICU 0 1

Scaling factor for school closure κ 0 2

Parameters assumed known Value

Rate of becoming infectious σ 1

Rate of recovery γ 0.5797

Population of 2012/13 N2012/13 53,679,750

Population of 2013/14 N2013/14 54,091,200

Population of 2014/15 N2014/15 54,551,450

Table 3.1: Prior distributions of the parameters in the flat scenario.

Parameters Distribution

Susceptibility π ∼ LogNorm(logµ = log(0.401), log σ = 0.2)

P of ICU admission given infection pICU ∼ LogNorm(logµ = log(0.000239), log σ = 1)

Table 3.2: Prior distributions of the parameters that change in the informative scenario.

Inference

For both the prior settings, two types of analysis are carried out: firstly, all the data reported in

Figure 3.7 were considered and analysed retrospectively. Secondly, to assess the predictive ability

of the model, estimation and forecasting is performed assuming only an initial portion of the

data is available. Data up to week w are used as a training dataset to estimate the parameters.

Then, the evolution of the epidemic after week w is predicted, based on the estimates from the

training dataset. The following prediction time points were tested: w = 3, 8, 13, and 18 from

the beginning of the new year.

A Metropolis Hastings (MH) block updated sampling algorithm (Robert, Casella, and Casella,

2010) was formulated to sample from the posterior distribution of θ = (π, λ0, ψ, η, pICU , κ). Val-

ues are proposed by sampling from a truncated Log-Normal random walk. The elements of θ

were very correlated: this was diagnosed while running a preliminary unblocked MH algorithm

on each element of the vector θ, conditional on the others. Σ, the variance covariance matrix

of the parameter vector, was estimated by Σ̂, the observed variance covariance matrix of the

sampled values of θ.

This matrix is used to formulate a blocked MH algorithm that allows the joint sampling

of all the elements of the vector θ (Sherlock, Fearnhead, and Roberts, 2010). In the blocked

MH algorithm, a single sample is drawn from a multivariate Log-Normal distribution for all the

elements of θ:

θ∗ ∼ LogNormal(θ, Σ̂ν)

The proposed θ∗ is accepted with probability ρ, a function of the prior (π(θ)), the likelihood
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(p(y|θ)) and the transition probabilities (q(θ∗|θ), q(θ|θ∗), i.e. the density function of the

proposed value):

ρ =
π(θ∗) · p(y|θ∗) · q(θ|θ∗)
π(θ) · p(y|θ) · q(θ∗|θ)

Finally, ν denotes the scaling parameter, tuned during an adaptive phase of the algorithm in

order to provide an acceptance rate between 0.2 and 0.3 and to allow good mixing of the sampled

chain (Sherlock, Fearnhead, and Roberts, 2010) .

The algorithm is coded using the R programming language (R Core Team, 2018). The system

of differential equations (3.8) is solved using the R package deSolve (Soetaert, Petzoldt, and

Setzer, 2010). The algorithm used is available at the web address http://www.mrc-bsu.cam.

ac.uk/software/miscellaneous-software/.

Likelihood

As introduced above, the posterior distribution of the parameters π, ψ and pICU , conditional

on the full data, are highly correlated. The causes of this can be further explored by investi-

gating the log-likelihood, and detecting regions (i.e. combination of the parameters) where the

log-likelihood is equally maximised (these correspond to the red regions of Figure 3.8). Locally

flat likelihoods, such as those obtained in this study, proved to be a cause of lack of identifia-

bility (Gustafson, 2010), so that only some combinations/functions of these parameters can be

estimated.

0.2 0.4 0.6 0.8

0.2

0.4

0.6
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1.0

1.2

1.4

Loglikelihood

of 2012/13 data

π

ψ

−3000

−2500

−2000

−1500

−1000

−500

Figure 3.8: Contour plot of the log likelihood of the full dataset from season 2012/2013 as a

function of the parameters ψ and π. All the other parameters are set to the median posterior

values.

Parameters are even more affected by this problem when fewer data are available (e.g. at

the beginning of an epidemic). This can be visualized in Figure 3.9: here the two-dimensional

posterior samples from the parameters are plotted as the dataset is updated. The lighter points

in yellow represent the samples of the parameters when data up to week 3 are available, and, as

http://www.mrc-bsu.cam.ac.uk/software/miscellaneous-software/
http://www.mrc-bsu.cam.ac.uk/software/miscellaneous-software/
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more information is acquired, the posterior samples are plotted in darker colours. Other pairs

of parameters (e.g. pICU and κ) were initially very correlated but, as data arrive, they become

identifiable: the correlation between sample-pairs decreases and the two posterior distributions

can be recognised.
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Figure 3.9: Bivariate scatter plot of a sub-sample of the posterior draws of all the parameters

as the data available progress. Darker points are obtained using more data.

In Bayesian reasoning, the other method to resolve posterior distribution identifiability issues

is to inject information via the definition of more-informative prior distributions. The same

scatter plots of Figure 3.9, within the informative scenario, are displayed in Figure 3.10, where

the constraints imposed by the data (i.e. the high correlation) are combined with independent

informative priors on the parameters π and pICU .
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Figure 3.10: Bivariate scatter plot of a sub-sample of the posterior draws of all the parameters

as the data available progress. Darker points are obtained using more data. Informative priors

from Table 3.2 have been used.

3.3.4 Results

Prior to drawing inference from real data the model was tested on 5 simulated datasets. Results,

both in terms of model fit and parameter estimation were satisfactory, hence the model was
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further applied to real data. Results on these tested scenarios are not reported in this thesis;

a comparable and more meaningful analysis of simulated hospital data is reported in Appendix

C and commented upon at the end of this section. This analysis both validates the model used

on real data and shows the consequences of accounting further information available during a

pandemic.

Retrospective analysis

The retrospective analysis of the data is first performed in the uninformative scenario. The

resulting posterior distributions of relevant parameters are displayed in Figures 3.11 and 3.12;

the posterior median and 95% credible interval (CrI)s of these parameters are reported in Table

3.3. Note that the posterior distribution of the basic reproduction number R0 is almost identical

to the prior. This is due to the fact that the information contained in the data is not sufficient

to determine separately the values of the parameters describing both the initial immunity and

the transmission rate. For the same reason the posterior distribution of the parameter π does

not change significantly from its prior, only excluding those small values that would completely

prevent an epidemic to take place. This problem is due to the lack of identifiability (Gustafson,

2010) explored in Section 3.3.3.
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Figure 3.11: Flat scenario - Prior (red) and posterior (blue) distributions of: the total number of

initial infectious Itot0 , the basic transmission rate β, the basic reproduction number R0 and the

effective reproduction number Rn.

Data are much more informative about parameters η, pICU and κ. The highly variable

behaviour of the ICU admissions count in season 2014/15 is reflected by the over-dispersion

parameter η, whose distribution is significantly higher compared to the ones estimated from

the 2012/13 and 2013/14 seasons. The range of the probability of going to ICU given infection,

pICU , is always between 0.004% and 0.04%. Its median is higher in season 2014/15, in agreement
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Figure 3.12: Flat scenario - Prior (red) and posterior (blue) distributions of: the initial suscep-

tibility (π); the infection rate at t = 0 (λ0; the exponential growth rate (ψ) the over-dispersion

parameter (η); the probability of ICU admission given infection (pICU ); and the scaling param-

eter (κ). The results are derived from season 2012/13 (left column), season 2013/14 (centre)

and season 2014/15 (right column).

with the higher severity that was detected during this influenza season (Boddington et al.,

2017). The multiplicative factor κ introduced to allow for a school-closure effect is centred on

1 for season 2013/14 and centred around higher values in the remaining seasons. A possible

explanation for this counter-intuitive phenomenon relies on the age distribution of the sample

population. The analysed data have a different distribution compared to the English population

(Boddington et al., 2017; Office of National Statistics, 2012-2015), with patients over 65 being

over represented and children in school years being under represented. The elderly individuals

might be more likely to meet other potential influenza spreaders (e.g. children) during school

closures, particularly over the Christmas holiday. It makes sense, therefore, to observe an

inverse relationship between school closure and the transmission rate, in contrast to results

that might be expected from a more representative sample of the population (Te Beest et al.,

2015). However, this piecewise increment in transmission rate may incorporate other time-

varying phenomena that affect the force of infection. The Christmas holiday often coincides

with the beginning of a colder and more humid period and changes in vapour pressure, that
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might imply an increasing spread of influenza (Dushoff et al., 2004; Lipsitch and Viboud, 2009).

Lastly the posterior median of the effective reproduction number Rn is equal to 1.152, 1.235,

1.089 in seasons 2012/13, 2013/14 and 2014/15 respectively. Since this parameter contains the

product of transmission-rate parameters and initial-immunity parameters it can be identified

better than R0 and hence it is more representative of the overall transmission of each season.

Season 2012/13 Season 2013/14 Season 2014/15

Parameter Posterior Me (CrI) Posterior Me (CrI) Posterior Me (CrI)

Susceptibility π 0.546 (0.297 - 0.969) 0.589 (0.32 - 0.977) 0.531 (0.28 - 0.968)

Initial number of infectious Itot 4106 (1441 - 11510) 1357 (484 - 3312) 9590 (3053 - 28493)

Transmission rate β 0.611 (0.344 - 1.126) 0.608 (0.367 - 1.118) 0.596 (0.324 - 1.119)

Over-dispersion η 3.204 (1.888 - 6.101) 1.25 (1.011 - 2.096) 17.925 (10.412 - 35.812)

P of ICU given infection picu104 0.841 (0.458 - 1.614) 0.713 (0.419 - 1.338) 1.749 (0.848- 3.745)

Factor for school closure κ 1.185 (0.971 - 1.434) 0.965 (0.841 - 1.1) 1.313 (0.866 - 1.824)

Eff. reproduction number Rn 1.152 (1.093 - 1.211) 1.235 (1.196 - 1.275) 1.089 (0.997 - 1.195)

Table 3.3: Posterior medians and 95% CrIs from the retrospective analysis of the ICU admis-

sions with uninformative priors.

Under a goodness-of-fit perspective, the introduction of the parameter κ allows the flexibil-

ity needed to represent the specific features of each season, even though its posterior predictive

distribution always include the non-effect value 1. This can be observed in the posterior predic-

tive distribution of the weekly ICU admissions reported in Figure 3.13. Specifically in season

2012/13 the posterior predictive distribution manages to reproduce the plateau that takes place

from the end of the Christmas vacation to the February half term. Regarding instead the double

peaking season of 2014/15, the 95% Credible bounds are not narrow, but the timing of the peak

of the distribution is predicted substantially better than in the case of constant infection rate

(results not shown). The high variability of the data considered, combined with the constraint

of a deterministic model, cause an overall weaker fitting of the model to the data of this season.
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Figure 3.13: Flat scenario - Median (blue), 95 % CrI (light green) and quartile (dark green)

of the posterior predictive distributions and observed values (red) for the weekly ICU/HDU

admissions across seasons. The vertical dashed lines represent the breakpoints for the piecewise-

constant transmissibility β∗(t) (i.e. start and end of each school holiday).

The same analysis is performed in the second scenario, i.e. allowing informative priors on the

susceptibility π and on pICU as defined in Table 3.2. The introduction of these prior distributions
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compensates for the lack of information, allowing the identification of π and improving the

precision of the posterior distribution of pICU . This affects also other functional parameters

such as β and R0. However, their posterior distributions are driven by the prior distributions

alone, and they do not learn from the data. In terms of fit there was no improvement. Results

are reported in Appendix C.
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Figure 3.14: Informative scenario - Prior (red) and posterior (blue) distributions of: the initial

susceptibility (π); the infection rate at t = 0 (λ0; the exponential growth rate (ψ) the over-

dispersion parameter (η); the probability of ICU admission given infection (pICU ); and the

scaling parameter (κ). The results are derived from season 2012/13 (left column), season

2013/14 (centre) and season 2014/15 (right column).

Prediction

The prospective analysis of the data in the uninformative scenario results in very wide predictions

of the future dynamics, therefore the informative priors reported in Table 3.2 are used for

predictions. The performance of the model at different times is plotted in Figure 3.15 for each

season.

Season 2013/14, despite displaying the most regular data, is the most difficult to predict:

the well-defined initial growth biases the predictions towards a major outbreak. This leads to

the median and the CrIs of the posterior predictive distribution over-estimating the data until
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Figure 3.15: Informative scenario - The black line displays the analysis time; the blue line

and green shaded area represent median, quartile (dark green) and 95% CrIs (light green) of

the posterior predictive distribution for the training weeks. The pink area displays posterior

quartiles (deep pink) and 95% CrIs (light pink) for the predicted future observations, and the

purple line displays the median; the red dots are the training data and the yellow dots are the

objects of prediction.

mid-march (week 13 from the beginning of the year). For the other two seasons, the median

predicted weekly ICU admissions is always very close to the data points, but the CrIs narrow to

reasonable bounds only towards the end of February (week 8 from the beginning of the year).

Prediction is challenging, as demonstrated by the variability of the predictions. For example,

the 95% CrI of the predicted number of ICU admissions 3 weeks in advance, when the epidemic

is still taking off (i.e. at the third week of January) is as wide as 138 for season 2012/2013 (from

2 to 140 ICU admissions), 52 for season 2013/2014 (from 6 to 58 ICU admissions) and 473 for

season 2014/2015 (from 11 to 484 ICU admissions). Due to the different sizes of the epidemics,

the coefficient of variation (i.e. the ratio of the posterior standard deviation to the posterior

mean) can be used to compare them: it is equal to 0.751 for season 2012/13, 0.491 for season

2013/14, and 0.742 for season 2014/15, highlighting that prediction precision increases when the

epidemic is smaller and less over-dispersed.

In spite of the simplicity of the model presented, the flexibility introduced by the parameter

κ allows for the correction “on the fly” of the prediction, adapting to new peaks (e.g. season
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2014/15) or periods of constant influenza circulation (e.g. season 2012/13).

Nonetheless, similarly to most epidemic models attempting predictions (Birrell et al., 2011;

Ong et al., 2010), results are not useful (i.e. precise enough to determine a health policy response)

until after the epidemic has peaked.

Simulated pandemic scenario

As mentioned in Section 3.3.1, the data-collection scheme is enhanced in the event of a pandemic.

If this is the case, USISS reports also the weekly count of hospital admissions in all the trusts

in England.

A simulated dataset containing the number of hospital admissions at all levels of care is ob-

tained from the parameter set θ = (π = 0.5, λ0 = 0.0001, ψ = 0.2, η = 20, pH = 0.002, κ = 1.5),

where pH replaces pICU and represents the proportion of infections leading to hospitalization,

and η denotes the over-dispersion of hospital data.

Both analysis with flat priors and informative priors were run. For the former scenario, prior

to posterior plots of the values for the parameters are reported in Figure 3.16 and for the latter

scenario they are reported in Figure 3.17.
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Figure 3.16: Flat Scenario - Prior (red) and posterior (blue) distributions of the parameters.

The parameters are: π, ψ, λ0, η, pH and κ. The black vertical lines denote the values used to

simulate the dataset.
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Figure 3.17: Informative Scenario - Prior (red) and posterior (blue) distributions of the param-

eters. The parameters are: π, ψ, λ0, η, pH and κ. The black vertical lines denote the values

used to simulate the dataset.

Despite the increased number of observations, the model performs very similarly to the

case of non-pandemic ICU-counts data. Identifiability issues are diagnosed in the uniform-

priors scenario and predictions are good only when more informative prior distributions (on
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the susceptibility and probability of hospitalization) are assumed. Additional results from this

analysis are reported in Appendix C together with further results on real data.

3.3.5 Discussion

Corbella et al. (2018) proposes a model to estimate and predict influenza outbreaks from rou-

tinely collected data on admissions to ICU/HDU.

The performance of the proposed model is investigated both on simulated and on real data.

By fitting the model to simulated numbers of weekly ICU/hospital admissions, satisfactory esti-

mates of some of the main parameters can be obtained, even with very vague prior information,

including the initial infection rate, the probability of going to ICU/hospital given infection, the

effective reproduction number Rn and the scaling factor for school holidays κ. When information

on the distribution of the average immunity (1 − π) and on pICU is injected, meaningful esti-

mates of the previously unidentifiable parameters are obtained. The evolution of the outbreak

can also be forecast by analysing the first months of the epidemic using data up to the peak of

influenza activity.

The model is applied to real data on the weekly number of ICU admissions from seasons

2012/13, 2013/14 and 2014/15, confirming the performance obtained on the simulated data. The

estimated values of the effective reproduction number Rn are similar to those estimated during

the past decade of seasonal influenza (Baguelin et al., 2013). A scaling parameter allows the

transmission rate to vary between school and holiday/half-term periods, which results in a good

fit of the model to the data for most of the seasons considered. A more complete investigation

of the temporal variation of the transmission rate might improve the flexibility of the proposed

model, and therefore the fit to more anomalous epidemics.

Recently, a similar analysis was performed on the Finnish influenza pandemic of 2009 (Shubin

et al., 2016) using a more elaborate model, analysing confirmed data on both hospitalizations

and GP consultations. Their inclusion of GP data enhances the performance of the inference.

Nevertheless, these data are harder to collect in a larger population (England is almost 10 times

more populated than Finland) and out of pandemic emergencies. By contrast, the inference

performed through the model of Corbella et al. (2018) is driven by few data, though readily

available, even in real time, in seasonal settings. A further advance of the model by Shubin

et al., 2016 is that the transmission parameter is time-varying according to a Gaussian Process:

this allows an accurate description of the past dynamics but makes prediction infeasible, since

this temporal variation cannot be forecast. By contrast, the simple piecewise constant model

presented here is able to forecast well the future trend and it includes enough flexibility to

describe appropriately the present and the past data.

This work has also some limitations: firstly, the transmission model is non-age-specific. The

assumption of homogeneous mixing across regions and age groups is very strong but this was

dictated by the very small sample sizes which did not allow sub-grouping. Secondly, the quality

of some estimates and predictions strongly relies on prior information on the proportion of non-

immune people. As this information is needed to overcome the lack of identifiability in the

parameters, sero-prevalence data following the 2010/11 epidemic were used. This is not likely to

be correct for all the three seasons analysed, as the predominant strain circulating was different

across seasons. Likewise, the model that describes the time elapsing between infection and ICU
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admission, is assumed to be fixed and mostly known, but this assumption is not likely to be

valid. The other element that defines the observational process, i.e. the probability of ICU

admission given infection, is also sensitive to the choice of prior distribution.

The work presented here is a proof of concept of the potential for estimation and prediction

of influenza transmission from USISS data. At the same time, the results highlight the need of

collecting external data to formulate an appropriate prior distribution on the initial immunity

of the population, particularly in the event of a pandemic.

The availability of this information, together with the set-up provided here, allows to ret-

rospectively infer the epidemic parameters from routinely collected data on severe cases during

seasonal outbreaks and to predict the temporal dynamics of new epidemics.

3.4 Conclusions

This chapter provides a brief introduction to epidemic models and an example of their use.

While analysing their essential features, epidemic models appear to be very flexible tools,

adaptable to different levels of stochasticity, granularities of time, patterns of disease, etc. Some

criteria for model choice, prior to the analysis, are exposed in the chapter. However, this list is

not exhaustive: example-specific criteria for model choice (e.g. criteria based on goodness-of-fit

measures or predictive-ability measures) have not been presented since the literature has not

agreed on their use is an epidemic-modelling context yet.

Epidemic models could also be approached within a SSM perspective; this would allow to

better identify the stochastic relationship among r.v.s. Some methods for inference in SSMs are

described and applied to the analysis of epidemic data in the next chapters.

In this context, the model used in Section 3.3 could be made more realistic. The model

presented is fully deterministic and the variability detected in the data is attributed only to the

Negative Binomial observational noise. A more sensible assumption would be to attribute some

noise to the process of severity, which describe the counts of individuals going to ICU given

infection, and the delays between events. This improvement is developed in Chapter 5.



Chapter 4

Sequential Monte Carlo methods for

inference in State Space Models

Chapters 2 and 3 introduced the processes of infected individuals developing severe symptoms

and of the spread of an infectious disease, respectively. Both models can be seen as multi-state

models (MSMs); hence the counts of individuals in the states or moving across the states can

be seen as state space models (SSMs).

The inferential methods used to estimate the parameters governing these systems showed

some pitfalls, above all due to the fact that the available data are only a partial signal from

a much more complex hidden process. Sequential Monte Carlo (SMC) methods have been

developed precisely to deal with partially observed dynamic systems, i.e. SSMs (presented in

more detail in Schön et al. (2018)).

The SSM perspective introduced in Chapter 1 is here presented more in detail (Section

4.1) and some methods for the inference in such dynamic systems are introduced (Sections

4.2 and 4.3). SMC methods are used here to approximate the likelihood of data arising from

an SSM, conditioning on a given value of the parameters of interest. The parameter space is

explored using more classical Monte Carlo (MC) algorithms; hence the literature on SMC for

the sequential exploration of the parameter space is omitted.

Two applications, one investigating a severity process (Section 4.4) and the other exploring

a transmission process (Section 4.5), are also presented.

4.1 State space model specification

A SSM representation of an observable phenomenon has been widely used in many fields, from

indoor positioning problems in engineering (Solin et al., 2018), to environmental studies (Ander-

son, 1996), to epidemic models (Magpantay et al., 2015). Hence, the literature has proliferated

across subjects. Some of the most relevant aspects of SSMs are summarised below; compre-

hensive reviews can be found in volumes on the topic (Brockwell and Davis, 2016), key papers

(Commandeur, Koopman, and Ooms, 2011; Dureau, Ballesteros, and Bogich, 2014) as well as

in recent course material (Schön and Lindsten, 2017).

75
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4.1.1 Elements of a SSM

From Definition 1 (Page 12), a SSM is a stochastic process that makes use of a latent variable

representation to describe dynamical phenomena (Schön and Lindsten, 2017). It has two com-

ponents: a latent process, denoted by {Xt}t≥1 representing the underlying dynamics; and an

observed process denoted by {Yt}t≥1. Without loss of generality, the processes are assumed to

evolve over discrete time since this is the most common form encountered later in applications.

Nevertheless, the following can be extended straightforwardly to other dimensions.

In this thesis, the state process is assumed Markovian over time, hence the subset of SSMs

analysed can be also classified in the category of partially observed Markov processs (POMPs)

(King, Nguyen, and Ionides, 2016) or hidden Markov models (HMMs) (Churchill, 2005). From

now onwards, unless otherwise specified, SSM will refer to Markovian SSM.

A parameter-driven SSM can be defined through the state and the observation equation

Xt|(Xt−1,θ) ∼ p(xt|xt−1,θ)

Yt|(Xt,θ) ∼ p(yt|xt,θ)

both characterised by a vector of parameters θ (Birrell, De Angelis, and Presanis, 2018; Brock-

well and Davis, 2016). To fully define the model, the state process at t = 0 must be also

specified; this can either be a fixed value (which usually is a parameter to estimate), or take its

own distribution: X0|θ ∼ p(x0|θ).

The state process {Xt}t≥0 is often called the dynamic parameter, while θ is often referred to

as static parameter(s) and the observational process {Yt}t≥1 are called the measurements.

The full specification of a SSM is:

Xt|(Xt−1,θ) ∼ p(xt|xt−1,θ)

Yt|(Xt,θ) ∼ p(yt|xt,θ)

X0|θ ∼ p(x0|θ)

(4.1)

which will be adopted from here onwards. Model 4.1 defines the following full probability model:

p(x0:T , y0:T |θ) =

T∏
t=1

p(yt|xt,θ)

T∏
t=1

p(xt|xt−1,θ)p(x0|θ) (4.2)

that describes the joint distribution of measurements and dynamic parameters conditional on

the static parameters. Thanks to Markovianity and conditional independence this distribution

is decomposed: the state density and the observation density can be recognised in the right hand

side of the equation.

A SSM can also be represented by a graphical model which is a probabilistic model where a

graph G = (V, E) represents the conditional independence structure (edges E) between random

variables (r.v.s) (nodes V). A graphical model representing the state and observational process

of a SSM is illustrated in Figure 4.1.

4.1.2 Inference from a SSM: problem set-up

The information carried by the measurements can be used to estimate the state process {Xt}t≥0,

usually conditional on specific values of the static parameter θ, or to infer the static parameter

θ, usually marginally on the distribution of the state process.
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X0 X1 X2 . . . Xt . . .

Y1 Y2 Yt

Figure 4.1: Graphical model for a SSM. Grey nodes correspond to observed variables and

white nodes are latent variables. The arrows express the dependence among the variables.

State inference problems can take any of the following forms (Lindsten, 2013):

• deriving p(xt|y1:t,θ), i.e. the distribution of of the state process at t conditionally on the

data up until t, is called marginal filtering ;

• deriving p(x0:t|y1:t,θ), t = 1, . . . , T , i.e. the distribution of the whole state process up

until t conditionally on the data up until t, is called joint filtering and is often constructed

sequentially;

• deriving p(xt+s|y1:t,θ), t = 1, . . . , T, s = 1, . . . , i.e. the distribution of the state process for

future intervals until time t+ s, conditionally on the data up until t, is called prediction;

• deriving p(x0:t|y1:T ,θ), t ≤ T i.e. the distribution of the whole state process up until T

conditionally on the full data, is called joint smoothing ;

• deriving p(xt|y1:T ,θ), t ≤ T , i.e. the distribution of the state process at t conditionally on

the full data, is called marginal smoothing.

This thesis, and this chapter, mainly addresses filtering problems. Such filtering can be ap-

proached exploiting Bayes’ theorem, conditional independence, and the Markovianity of the

system. The filtering distribution at time t can be expressed in terms of: a normalizing factor

p(yt|y1:t−1,θ); the, so called, measurement update p(yt|xt,θ), that is the data distribution at

time t conditional on the hidden state at time t; and a prediction update p(xt|y1:t−1,θ), i.e. the

distribution of the hidden state at t conditional on the previous data, as follows:

p(xt|y1:t,θ) = p(xt|yt, y1:t−1,θ)

=
p(yt, y1:t−1|xt,θ)p(xt|θ)

p(yt, y1:t−1|θ)

=
p(yt|y1:t−1, xt,θ)p(y1:t−1|xt,θ)p(xt|θ)

p(yt|y1:t−1,θ)(y1:t−1|θ)

=
p(yt|y1:t−1, xt,θ)p(xt|y1:t−1,θ)p(y1:t−1|θ)

p(xt|θ) p(xt|θ)

p(yt|y1:t−1,θ)p(y1:t−1|θ)

=
p(yt|xt,θ)p(xt|y1:t−1,θ)

p(yt|y1:t−1,θ)

(4.3)

The prediction update in the numerator can also be decomposed exploiting Markovianity:

p(xt|y1:t−1,θ) =

∫
Xt−1

p(xt, xt−1|y1:t−1,θ)dxt−1

=

∫
Xt−1

p(xt|xt−1,θ)p(xt−1|y1:t−1,θ)dxt−1

(4.4)
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Plugging Equation 4.4 into Equation 4.3, the filtering distribution becomes:

p(xt|y1:t,θ) =
p(yt|xt,θ)

∫
Xt−1

p(xt|xt−1,θ)p(xt−1|y1:t−1,θ)dxt−1

p(yt|y1:t−1,θ)

A closed-form solution to the integral in the numerator, as well as to the normalizing constant

in the denominator, is only derivable in very rare cases such as the linear Gaussian SSM, whose

solution is the Kalman Filter (Kalman, 1960). More often, the filtering distribution at time t

can be approximated recursively by a two-step procedure that alternates the approximation of

the measurement update and the sampling from prediction update below.

p(xt|y1:t,θ) =
p(yt|xt,θ)p(xt|y1:t−1,θ)

p(yt|y1:t−1,θ)
(Measurement update)

p(xt|y1:t−1,θ) =

∫
Xt−1

p(xt|xt−1,θ)p(xt−1|y1:t−1,θ)dxt−1 (Time update)

The most common among these two-step procedures is presented in Section 4.2.

The problem of parameter inference instead consists of deriving information on the static

parameters θ conditionally on the available observations y1:t. Parameter inference can be ap-

proached either in a Bayesian context (where the parameters are considered as r.v.s Θ with prior

distribution Θ ∼ π(θ), and the posterior distribution Θ|y1:t is to be derived) or in a purely like-

lihood context. In both cases the most challenging task is the computation (or approximation)

of the probability of the measurements conditional on the parameter values: p(y1:t|θ), i.e. the

data distribution.

This distribution can be obtained by marginalizing the joint distribution of the latent states

and the observed measurements (Equation 4.2), with respect to the sequence of the hidden

states:

p(y1:t|θ) =

∫
X0:T

p(x0:T , y1:T |θ)dx0:T (4.5)

which can be either maximised (in a non-Bayesian context) or fully explored together with π(θ)

for the derivation of a posterior distribution.

In either case Equation 4.5 is not available in closed form, except from a few rare SSMs.

4.2 Methods for state inference

Methods for state inference highly exploit basic simulation techniques such as MC integration

and importance sampling, which are briefly recalled in Appendix D. Subsection 4.2.1 contains

the general setting for most of the simulation methods used to derive filtering distributions for

a given parameter θ, and hence acquire insight on the states X0:t. In Subsection 4.2.2 one of

these methods, the bootstrap particle filter (BPF), is illustrated.

Most of the results reported below can be found in common textbooks on MC and/or SMC

methods (Brooks et al., 2011; Robert and Casella, 2013) as well as in key papers (Andrieu,

Doucet, and Holenstein, 2010; Arulampalam et al., 2002; Gilks and Berzuini, 2001).

All distributions in this section are assumed conditional on θ, the static parameter, and

for ease of presentation, this dependence is omitted, denoting p(xt|θ) by p(xt), p(xt|y1:t,θ) by

p(xt|y1:t), etc.
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4.2.1 Sequential importance (re)sampling

Sequential importance sampling (Arulampalam et al., 2002) can be used to approximate the

distribution of the hidden states conditionally on the data, by decomposing the problem into

simpler, lower-dimensional, approximation steps. The sequential importance sampling method

presented below targets the joint filtering distribution p(x0:t|y1:t).

The target distribution at time t can be simplified using the conditional probability definition

and Markovianity:

p(x0:t|y1:t) = p(x0:t|yt, y1:t−1)

=
p(x0:t, yt|y1:t−1)

p(yt|y1:t−1)
, by definition of conditional probability

=
p(yt|y1:t−1, x0:t)p(x0:t|y1:t−1)

p(yt|y1:t−1)
, conditioning on x0:t

=
p(yt|y1:t−1, x0:t)p(xt, x0:t−1|y1:t−1)

p(yt|y1:t−1)

=
p(yt|xt)p(xt|x0:t−1, y1:t−1)p(x0:t−1|y1:t−1)

p(yt|y1:t−1)
, by Markovianity and

definition of conditional probability

∝ p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1), by conditional independence.

To obtain samples from this target distribution, assume that, at time t, a weighted sample{
x

(n)
0:t−1, w

(n)
t−1

}N
n=1

, of the target distribution at t− 1, p(x0:t−1|y1:t−1), is available. Letting δa(x)

define a Dirac point mass in a, the sample provides the following approximation to the target

distribution at t− 1:

p̂(x0:t−1|y1:t−1) =
N∑
n=1

δ
x
(n)
0:t−1

(x)w
(n)
t−1

To propose values for the next approximation step, assume an importance distribution q(x0:t|y1:t)

that is factorisable as follows:

q(x0:t|y1:t) = qt(xt|xt−1, yt)q(x0:t−1|y1:t−1)

= qt(xt|xt−1, yt)qt−1(xt−1|xt−2, yt−1)q(x0:t−2|y1:t−2)

= . . .

= q0(x0)

t∏
s=1

qs(xs|xs−1, ys)

where qt(xt|xt−1, yt) and q0(x0) could be generic importance distributions for xt. A sample

from the importance distribution q(x0:t|y1:t) could then be obtained recursively from the sample

from the importance sample at the previous time step:
{
x

(n)
0:t

}N
n=1

=
{
x

(n)
t , x

(n)
0:t−1

}N
n=1

with x
(n)
t

sampled from qt(xt|x(n)
0:t−1, yt),

{
x

(n)
t−1

}N
n=1

sampled from

qt−1(xt−1|x(n)
0:t−2, yt−1) and so on. Note that usually the importance density is chosen also ac-

cording to the data at time t, to better match with the target density: p(x0:t|y1:t).

The resulting importance weight for the sample
{
x

(n)
0:t

}N
n=1

is obtained by dividing the target
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density by the importance density, i.e.:

ω(x0:t, y1:t) =
p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)

q0(x0)
∏t
s=1 qs(xs|xs−1, ys)

=
p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)

qt(xt|xt−1, yt)q(x0:t−1|y1:t−1)

=
p(yt|xt)p(xt|xt−1)

qt(xt|xt−1, yt)
ω(x0:t−1, y1:t−1)

=
p(yt, xt|xt−1)

qt(xt|xt−1, yt)
ω(x0:t−1, y1:t−1)

(4.6)

Applying recursively this derivation (for t, t − 1, . . . , 1, 0) leads to a weighted sample from the

target distribution p(x0:t|y1:t) as illustrated in the pseudo code of Algorithm 1.

Result:
{
x

(n)
0:t , w

(n)
t

}N
n=1

: a weighted sample from p(x0:t|y1:t)

Input: N ,q0(x), qt(x), p(x0), p(xt|xt−1), p(yt|xt) for t = 0, 1, . . . t

for n = 1, . . . N do

sample

x0
(n) ∼ q0(x)

compute the importance weights

w̃
(n)
0 =

p(x
(n)
0 )

q0(x
(n)
0 )

end

normalize the importance weights

w
(n)
0 =

w̃
(n)
0∑N

i=1 w̃
(n)
0

∀n = 1, . . . N

for s = 1, . . . t do

for n = 1, . . . N do

sample

xs
(n) ∼ qs(x|x(n)

s−1, ys)

compute the importance weights

w̃
(n)
s =

p(ys|x(n)s )p(x
(n)
s |x

(n)
s−1)

qs(x
(n)
s |x

(n)
s−1,ys)

ws−1
(n)

end

normalize the importance weights

w
(n)
s = w̃

(n)
s∑N

i=1 w̃
(n)
s

∀n = 1, . . . N

end

Algorithm 1: Sequential Importance Sampling for p(x0:t|y1:t).

With increasing dimensionality of the target distribution, however, the weights degenerate:

a small number of particles are assigned relatively large weights and most of the particles have

weight zero. To overcome weight degeneracy, resampling steps can be inserted in order to re-

rejuvenate the sequential sample
{
x

(n)
0:s , w

(n)
s

}N
n=1

for s = 1, . . . t.

The sequential importance re-sampling algorithm (Arulampalam et al., 2002), introduces

a resampling step at each time-update of the algorithm, effectively obtaining equally-weighted

samples from the target distribution as reported in Algorithm 2. Hence, the importance weights
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of this algorithm are computed anew at every time step, independently from the weights at the

previous time step.

In the resampling step, the notation x
(n)
s ∼ C

{
x

(i)
s , w

(i)
s

}N
i=1

denotes the sampling of a particle

x
(n)
s from a discrete distribution that takes values x

(1)
s , x

(2)
s , . . . , x

(i)
s , . . ., x

(N)
s with respective

weights w
(1)
s , w

(2)
s , . . . , w

(N)
s . I.e. Xs is distributed as a sum of Dirac point-mass variables:

p(x(n)
s ) =

N∑
i=1

δ
x
(i)
s

(x)w(i)
s .

Result:
{
x

(n)
0:t

}N
n=1

: a uniform sample from p(x0:t|y1:t)

Input: N ,q0(x), qt(x), p(x0), p(xt|xt−1), p(yt|xt) for t = 0, 1, . . . t

for n = 1, . . . N do

sample

x0
(n) ∼ q0(x)

compute the importance weights

w̃
(n)
0 =

p(x
(n)
0 )

q0(x
(n)
0 )

end

normalize the importance weights

w
(n)
0 =

w̃
(n)
0∑N

i=1 w̃
(n)
0

∀n = 1, . . . N

resample the particles with importance weights

x
(n)
0 ∼ C

{
x

(n)
0 , w

(n)
0

}N
n=1

∀n = 1, . . . N

set equal weights

w
(n)
0 = 1

N ∀n = 1, . . . N

for s = 1, . . . t do

for n = 1, . . . N do

sample

xs
(n) ∼ qs(x|x(n)

s−1, ys)

compute the importance weights

w̃
(n)
s =

p(ys|x(n)s )p(x
(n)
s |x

(n)
s−1)

qs(x
(n)
s |x

(n)
s−1,ys)

w̃
(n)
s−1

end

normalize the importance weights

w
(n)
s = w̃

(n)
s∑N

i=1 w̃
(n)
s

∀n = 1, . . . N

resample the particles with importance weights

x
(n)
s ∼ C

{
x

(i)
s , w

(i)
s

}N
i=1

∀n = 1, . . . N

set equal weights

w
(n)
s = 1

N ∀n = 1, . . . N

end

Algorithm 2: Sequential Importance Re-sampling for p(x0:t|y1:t).
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4.2.2 Bootstrap Particle Filter

The BPF is a sequential importance re-sampling algorithm where specific choices of the impor-

tance distribution (and hence of the weights) are made. This algorithm was first introduced by

Stewart and McCarthy Jr (1992) and by Gordon, Salmond, and Smith (1993), taking for the

first time its current name. The BPF targets the joint filtering distribution p(x0:t|y1:t).

The key idea of the algorithm is to generate a set of N particles and apply three steps

sequentially (over times t = 1, 2, . . . ):

• resample to obtain a equally-weighted sample from the target distribution at t− 1:{
x

(n)
0:t−1,

1

N

}N
n=1

• propagate this sample from the importance distribution, chosen to be the state equation

of the SSM:

qt(xt|xt−1, yt) = p(xt|xt−1)

obtaining the sample: {
x

(n)
0:t−1, x

(n)
t

}N
n=1

• weight the proposed sample according to the target and importance density:

ωt =
p(ys, x

(n)
s |x(n)

s−1)

qt(xt|xt−1, yt)
=
p(ys|x(n)

s )p(x
(n)
s |x(n)

s−1)

p(x
(n)
s |x(n)

s−1)
= p(ys|x(n)

s ).

Hence, the BPF is simply a sequential importance re-sampler having the state equation as

importance distribution. The full pseudo-code of the BPF is reported in Algorithm 3.
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Result:
{
x

(n)
0:t , w

(n)
t

}N
n=1

: a weighted sample from p(x0:t|y1:t)

Input: N , p(yt|xt), p(xt|xt−1), for t = 0, 1, . . . t

for n = 1, . . . N do

sample

x0
(n) ∼ p(x0)

propagate: sample

x1
(n) ∼ p(x1|x0

(n))

compute the importance weights

w̃
(n)
0 =

p(y1|x(n)1 )p(x
(n)
1 |x0(n))p(x

(n)
0 )

p(x
(n)
1 |x0(n))p(x

(n)
0 )

= p(y1|x(n)
1 )

end

normalize the importance weights

w
(n)
0 =

w̃
(n)
0∑N

n=1 w̃
(n)
0

∀n = 1, . . . , N

for s = 1, . . . t do

for n = 1, . . . N do

resample to obtain a uniformly weighted sample

xs−1
(n) ∼ C

{
x

(i)
0:s−1, w

(i)
s

}N
i=1

propagate according to the state equation

xs
(n) ∼ p(x|x(n)

s−1, ys)

compute the importance weights

w̃
(n)
s =

p(ys|x(n)s )p(x
(n)
s |x

(n)
s−1)

p(x
(n)
s |x

(n)
s−1)

= p(ys|x(n)
s )

end

normalize the importance weights

w
(n)
s = w̃

(n)
s∑N

n=1 w̃
(n)
s

∀n = 1, . . . , N

end

Algorithm 3: Bootstrap Particle Filter for p(x0:t|y1:t).

There are many flavours that can be added to enhance the basic BPF, such as the use of

auxiliary variables (Pitt and Shephard, 1999) that improves matching between the importance

and target distributions. However, over this thesis, only the algorithms presented in this chapter

have been adopted.

4.3 Methods for parameter inference

Subsection 4.3.1 illustrates how SMC algorithms, such as the sequential importance sampler, re-

sampler and the BPF, provide a method to approximate the likelihood, i.e. the data distribution

conditional on a parameter value θ. The question on how this approximated likelihood can be

used in an estimation context is addressed in Subsection 4.3.2. Since the focus of this section is

the inference of the static parameter, θ is reintroduced in the notation below.
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4.3.1 Approximation of the likelihood via SMC

Given the Markovianity of the model and the conditional independence of the observations, the

data distribution can be factorised into single-time-step densities

p(y1:T |θ) =
T∏
t=1

p(yt|y1:t−1,θ) (4.7)

where each element of the likelihood can be seen as the marginalization over the hidden states

of the joint distribution, and further simplified thanks to conditional independence:

p(yt|y1:t−1,θ) =

∫
X0:t

p(yt, x0:t|y1:t−1,θ) dx0:t

=

∫
X0:t

p(yt, xt|x0:t−1, y1:t−1,θ)p(x0:t−1|y1:t−1,θ) dx0:t

=

∫
X0:t

p(yt, xt|xt−1,θ)p(x0:t−1|y1:t−1,θ) dx0:t

In the final line, the numerator of a sequential importance re-sampler weight can be recognised.

Hence, the integrand can be rewritten as:

p(yt|y1:t−1,θ) =

∫
X0:t

ω(xt, xt−1, yt)qt(xt|xt−1, yt)p(x0:t−1|y1:t−1,θ)︸ ︷︷ ︸
*

dx0:t

In a sequential importance re-sampler (e.g. in the BPF) the trajectories
{
x

(n)
0:t

}N
n=1

=
{
x̆

(n)
t , x

(n)
0:t−1

}N
n=1

are sampled from distribution ∗. This means that the integral can be approximated by vanilla

MC using the observed weights:

≈ 1

N

N∑
n=1

ω(x
(n)
t , x

(n)
t−1, yt)

≈ 1

N

N∑
n=1

w̃
(n)
t

(4.8)

Equation 4.8 can be plugged into 4.7, leading to an approximation of the likelihood of the data

conditionally on the parameter θ, i.e.:

p(y1:T |θ) =
T∏
t=1

p(yt|y1:t−1,θ)

≈
T∏
t=1

1

N

N∑
n=1

w̃
(n)
t

(4.9)

Finally, it is easy to see that this approximation, for the BPF takes the following form:

p(y1:T |θ) ≈
T∏
t=1

1

N

N∑
n=1

w̃
(n)
t =

T∏
t=1

1

N

N∑
n=1

p(ys|x(n)
s )

4.3.2 Inference with the approximated likelihood

There is not a unique way in which this approximated likelihood can be used to drive inference

on the parameter θ.
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Methods belonging to the non-Bayesian literature aim at obtaining the maximum-likelihood

estimate and provide point and interval estimates. These methods include Multiple Iterated

Filtering (Ionides, Bretó, and King, 2006), as well grid-search methods.

Within the Bayesian framework, many iterative algorithms have been developed to sample

from the posterior distribution of interest (Θ|y1:t) when only an approximation of the likelihood

is available. Andrieu, Doucet, and Holenstein (2010) reviews and summarizes the algorithms

used more frequently for parameter inference in SSMs. This paper combines SMC methods with

Markov chain Monte Carlo (MCMC) methods in a non-trivial and non-standard way, which often

includes exploration of the distribution of the latent states. Among the algorithms proposed,

pseudo-marginal approaches can be found: these were introduced previously in Andrieu and

Roberts (2009) and provide a simple way to integrate SMC-based approximation of the likelihood

into MCMC algorithms for Bayesian inference.

Pseudo-marginal algorithms are aimed at exploring only the posterior distribution of the

parameter, marginally from the distribution of the states, and they are based on the classical

Metropolis Hastings (MH) algorithm (Hastings, 1970; Metropolis et al., 1953). Nevertheless,

differently from the original MH algorithm, here the unnormalised posterior distribution is ap-

proximated by the product of the prior and a SMC approximation of the likelihood in the

acceptance ratio.

Two algorithms are employed throughout this thesis: grouped independence Metropolis

Hastings (GIMH) (Beaumont, 2003) and Monte Carlo within Metropolis (MCWM) (Andrieu

and Roberts, 2009). In the former, at iteration i, when a new value θ′ is proposed, an SMC

algorithm is run to estimate the likelihood p̂(θ′), which is plugged into the numerator of the

acceptance ratio, together with prior and proposal density. The denominator is composed of the

previously-retained estimated likelihood for the initial parameter p̂(θi) and the respective prior

and proposal density. Upon acceptance, the proposed parameter θ′ and its estimated likelihood

p̂(θ′) are retained; upon rejection the old parameter θi and its likelihood p̂(θi) are retained.

On the other hand, the MCWM algorithm re-approximates the likelihood of the parameter θi

when computing the acceptance ratio instead of storing it and re-using it every time. GIMH

and MCWM are reported and compared in algorithm 4.

GIMH was proved an exact algorithm in Andrieu and Roberts (2009), targeting the exact

posterior distribution. Moreover, the authors showed that, despite MCWM being biased for

small approximation size N , this bias decreases and becomes irrelevant as N increases (McKinley

et al., 2014). If the likelihood approximation is precise enough, the two algorithms would perform

equally well.

4.4 An application of SMC to data with high missingness

Chapter 2 explored many candidate models and inferential methods to estimate influenza severity

as measured by the hospitalised case fatality risk (hCFR) or the intensive-care case fatality

risk (iCFR). Nevertheless, none of the estimators proposed are applicable to a situation where

only data on the hospital admissions (or Intensive Care Unit (ICU) admissions) and deaths
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Result:
{
θ(n)

}N
n=1

: a sample from p(θ|y1:t)

Input: B iterations; N approximation size ; p̂(y1:T |θ), e.g. estimate 4.9; k(·|θ)

transition kernel; θ initialization

for i = 1, . . . B do

sample

θ′ ∼ k(·|θi)

generate from a SMC algorithm with N particles

GIMH MCWM

p̂(y1:T |θ′) p̂(y1:T |θ′)
- p̂(y1:T |θi)

sample

u ∼ Uniform(0, 1)

compute

α = min
[
1, p̂(y1:T |θ

′)p̂(θ′)k(θi|θ′)
p̂(y1:T |θi)p̂(θi)k(θ′|θi)

]
if u < α then

set
GIMH MCWM

θi+1 = θ′ θi+1 = θ′

p̂(y1:T |θi+1) = p̂(y1:T |θ′) -

else
set

GIMH MCWM

θi+1 = θi θi+1 = θi

p̂(y1:T |θi+1) = p̂(y1:T |θi) -

end

end

Algorithm 4: GIMH and MCWM algorithms

counts are available, with no information on recoveries/discharges. This subsection exploits the

SSM setting and SMC methods to address this problem.

4.4.1 Formulation of the problem

Severity estimators based only on the cumulative counts of ICU admissions and deaths, such as

the one adopted by the World Health Organization (WHO) are biased, since their denominator

includes people whose survival outcome is unknown or censored, due to not having died nor

recovered yet.

Unfortunately, in many settings, information on the number of individuals who have not

had the severe event, in this application death, might not be available. This is the case, for

example, of seasonal influenza in the UK: severity is monitored via the UK Severe Influenza

Surveillance System (USISS), that records the weekly counts of confirmed-influenza ICU admis-

sions and deaths, but not the discharges. Despite these data being very representative (they are

a census and should record all the events), no information is available on the recovery process
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and therefore only biased estimators can be obtained.

Similarly to the formulation of the severity estimator based on counting processes (of Section

2.5), it is useful to see severity as a MSM and consequently as a SSM.

At an individual level every subject, once admitted to hospital/ICU will eventually either

recover or die after some waiting time. If the related counting process is observed in discrete

time, during each interval those in hospital might either recover, die or remain in the hospital

for more time.

Taking weekly time intervals, indexed by t = 1, . . . , T , where T is the end of the epidemic,

denote by ht the number of confirmed influenza admissions to ICU during interval t (which is

deterministic and known at time t); denote with Xt, Yt and Zt the r.v.s representing the number

of patients with confirmed influenza remaining in ICU, dying and being discharged/recovering

during interval t, respectively. Denote with ICUt the number of confirmed influenza patients

present in ICU at the end of interval t. Note that ICUt is just a (deterministic) transformation

of the r.v. Xt since ICUt = Xt + ht.

The state dynamics assumed are the same as Section 2.5. At every interval t, the number

of people who recover, die and stay in ICU (Zt, Yt and Xt respectively) are a Multinomial

sample of the number of people in ICU at the end of the previous interval (icut−1). Denote

the probability of recovery/discharge and death respectively during an interval by the static

parameter θ = {pr, pd}.

(Zt, Yt, Xt|xt−1) ∼ Multi(n=icut−1 = xt−1 + ht−1, p=(pr, pd, (1− pd − pr))) (4.10)

The r.v. Yt, i.e. the weekly count of deaths, is observed exactly, so the SSM can be defined via

the joint distribution of the unobserved and observed processes, where the observation process

depends on the previous value of the unobserved process as in Equation 4.11, differently from

the general notation in (4.1):

Zt, Yt, Xt|(Xt−1 = xt−1,Θ = θ) ∼ p(zt, yt, xt|xt−1,θ) (4.11)

where p(·|xt−1,θ) is the probability mass function of a Multinomial r.v. with probability vector

θ = (pd, pr) and size xt−1 + ht−1. Lastly, let the system at t = 0 have Y0 = 0, Z0 = 0, while

the initial number of people in hospital with confirmed influenza X0 is Poisson distributed with

known rate 1.5:

X0 ∼ Pois(1.5)

The SSM is represented in Figure 4.2.
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ICUt−1 ICUt

YtZt

XtXt−1

X0

ht−1 ht

t = 2, . . . , T

Figure 4.2: Graphical model for the chain Multinomial dynamics. Circles represent r.v.s and

squares represent deterministic quantities. Gray-filled nodes represent observed quantities.

Solid arrows represent random relations and dashed arrows represent deterministic relations.

4.4.2 Proposal of an SMC method for the approximation of the likelihood

To obtain estimates of the system parameters marginalizing over the hidden (recovery) states,

a sequential importance sampler is used to approximate the likelihood of the data given a

parameter value θ, as reported in Algorithm 5.

The importance distribution q1:T for all the hidden states x1:T is chosen to be factorisable in

a Markovian fashion, so that it is composed of conditional distributions on the previous hidden

state xt−1. At each time point, the importance distribution qt depends on: the previous state

of the system x̄
(n)
t−1 (sampled at the previous step); the known number of admissions ht−1; and

the data yt, and it is chosen to have Binomial distribution:

qt(x
(n)
t |yt, x

(n)
t−1) = Binom

(
n=(x

(n)
t−1 + ht−1 − yt), p=

(
1− pr

1− pd

))
This choice is made so that the importance distribution at time t covers the same space as the

likelihood distribution.

The target density is the SSM defined in Equation 4.10.

Algorithm 5 proposes the hidden state of the number of people that remain in hospital every

week; these particles are re-sampled according to the state and observation densities and the

weights are used to approximate the likelihood of parameter θ = (pd, pr).

The proposed algorithm was tested on simulated data. ICU admissions from a seasonal

SEEIIR epidemic were simulated; the consequent death and recovery events were also simulated

assuming parameters θ = (pd = 0.2, pr = 0.4). The complete dataset (including the hidden

number of people recovering/staying in the hospital) is plotted in Figure 4.3.
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input : data vector y1:T ; θ = (pd, pr); number of particles N

output: an approximation of the likelihood p(y1:T |θ)

for n = 1, . . . , N do

x
(n)
0 ∼ Pois(1.5)

initialize the weights:

w
(n)
0 = 1

N

propagate:

x
(n)
1 |x

(n)
0 , y1 ∼ Binom

(
n=(x

(n)
0 + h0 − y1), p=

(
1− pr

1−pd

))
compute the weights:

w̃
(n)
1 =

p(z
(n)
1 ,y1,x

(n)
1 |x

(n)
0 )

qt(x
(n)
1 ,y1|x(n)0 )

end

normalize the weights

w
(n)
1 =

w̃
(n)
1∑N

n=1 w̃
(n)
1

for n = 1, . . . , N

set the weighted sample from the target density to be:{
x

(n)
0:1 , w

(n)
1

}N
n=1

for t = 2, . . . , T do

for n = 1, . . . , N do
resample

x
(n)
1:t−1 ∼ C

{
x

(j)
0:t−1, w

(j)
t−1

}N
j=1

re-set the weights

w
(n)
t−1 = 1

N

propagate

x
(n)
t |x

(n)
t−1, yt ∼ Binom

(
n=(x

(n)
t−1 + ht−1 − yt), p=

(
1− pr

1−pd

))
compute the weights:

w̃
(n)
t =

p(z
(n)
t ,yt,x

(n)
t |x

(n)
t−1)

qt(x
(n)
t ,yt|x(n)t−1)

w
(n)
t−1

end

normalize the weights

w
(n)
t =

w̃
(n)
t∑N

n=1 w̃
(n)
t

for n = 1, . . . , N

set the weighted sample from the target density to be:{
x

(n)
0:t−1, x

(n)
t , w

(n)
t

}N
n=1

and denote it by:{
x

(n)
0:t , w

(n)
t

}N
n=1

=
{
x

(n)
0:t−1, x

(n)
t , w

(n)
t

}N
n=1

end

approximate the likelihood by p(y1:T |θ) ≈
∏T
t=1

1
N

∑N
n=1 w̃

(n)
t

Algorithm 5: Sequential importance re-sampler to approximate the likelihood of severe

data.
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A run of the algorithm at the data-generating parameters is plotted in Figure 4.4. The

importance and filtering particles are plotted, together with the true, latent trajectory of the

process that they approximate.
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Figure 4.4: Importance distribution (red) and filtering distribution(green) of the hidden states

xt for t = 1, . . . , T derived with Algorithm 5 with N = 1000 particles. The grey line is the true

trajectory x0:t.

This algorithm however, has a peculiar pitfall: many simulated values might have weight

0. This happens mostly because the state and observational process is discrete and bounded

(being Multinomial). It might happen that some of the simulated trajectories have probabilities

0, since, within their simulated history, the sampled number of people remaining in ICU is lower

than the observed number of deaths at a following time step (i.e. ∃ t s.t. icut−1 < yt). This

event happens more frequently as the simulated ICU cases become smaller: Figure 4.5 highlights

in yellow time points where a single particle fails and shows a case where all the particles used

in Algorithm 5 have probability 0.

These particle failure events happen more frequently when the counts take low values and

therefore they pose tighter constraints; and when the parameters tested are different from the

data-generating parameters.
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Figure 4.5: Importance distribution (red) and filtering distribution(green) of the hidden states

xt for t = 1, . . . , T derived with Algorithm 5 with N = 1000 particles. The grey line is the true

trajectory x0:t. The vertical yellow bars denote the times when one or more trajectory has

probability 0: in the panel (b) all the sampled trajectories have probability 0 at time t = 14.

Rather than being a pitfall of the sequential importance sampler, this issue is caused by

the SSM defined, which is based on discrete and bounded r.v.s and is highly observed. These

characteristics makes the application of SMC methods non-trivial.

4.4.3 An extension to avoid particle failure

To address the issue of failing particles, an alternative version of Algorithm 5 is formulated.

The key idea consists of preventing a complete failure of all the particles by including at

least one case that always leads to a strictly positive weight. This is the case when everyone

who does not die stays in the hospital: in this case there is no possibility for the trajectory to

propose too many individuals recovering.

This is done by setting deterministically one particle to take value xt = xt−1 +ht−1, this will

be a life belt in case all the others fail. To do so, a new sampling method is introduced.

Deterministic mixture importance sampling

Deterministic mixture importance sampling was first introduced in Veach and Guibas, 1995 and

re-proposed in Owen and Zhou, 1998, together with proofs of unbiasedness. In a more recent

paper (Cornuet et al., 2012), the same importance sampler is reported in its essential elements.

The framework is the same as a classical importance sampler (hence there is no reference

to the sequential aspect and the indexes t are dropped), targeting a distribution f(x) from

which direct sampling is impossible and that can be evaluated point-wise up to a proportionality

constant: f(x) = f̃(x)
z . Instead of choosing an importance distribution q(x), results from different

importance sampling distributions q1(x), q2(x), . . . , qG(x) are pooled together so that the sample
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is drawn as follows:

x
(n)
1 ∼ q1(x) for n = 1, . . . ,N1

x
(n)
2 ∼ q2(x) for n = 1, . . . ,N2

. . .

x
(n)
G ∼ qG(x) for n = 1, . . . ,NG

Let N be the sum of the importance samples: N =
∑G

g=1Ng. Owen and Zhou, 1998 propose

to pool the samples together recomputing the weights as if the total sample was drawn from a

mixture of all the densities q1(x), q2(x), . . . , qG(x):

q̃(x(n)) =
1

N

G∑
g=1

Ngqg(x
(n)
g )

resulting in the deterministic mixture weight:

w(n)
g =

f̃(x
(n)
g )

1
N

∑G
l=1Nlql(x

(n)
g )

Despite the importance samples not being drawn from a mixture distribution, these weights

allow exact MC estimation.

Consider the estimator Î for the expected value µ of a function h(x) where x has probability

density function f(x) (µ = E [h(x)] =
∫
h(x)f(x)dx) reported below

Î =
1

N

G∑
g=1

Ng∑
n=1

h
(
x(n)
g

) f(x
(n)
g )

1
N

∑G
l=1Nlql

(
x

(n)
g

)
The expected value is:

E
[
Î
]

= E

 1

N

G∑
g=1

Ng∑
n=1

h (x)
f(x)

1
N

∑G
l=1Nlql (x)


E
[
Î
]

=
1

N

G∑
g=1

Ng∑
n=1

E

[
h (x)

f(x)
1
N

∑G
l=1Nlql (x)

]
, for linearity of E

TheNg samples are drawn independent and identically distributed (iid) from the g-th importance

distribution, hence:

E
[
Î
]

=
1

N

G∑
g=1

Ng

∫
h (x)

f(x)
1
N

∑G
l=1Nlql (x)

qg (x) dx

=

G∑
g=1

Ng

∫
h (x)

f(x)∑G
l=1Nlql (x)

qg (x) dx

=

∫
h (x) f(x)

G∑
g=1

Ng
qg (x)∑G

l=1Nlql (x)
dx

=

∫
h (x) f(x)dx = µ

and exactness of the estimator is proved. Cornuet et al., 2012 underlines that the samples

obtained are valid importance-sampling approximation for the target f if every sub-sample of
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size Ng is a valid importance sample, i.e. if the support of qg contains the support of f . In this

case, the deterministic mixture importance sampling can be seen as a method that simply pools

importance-sample estimators obtained from many different importance distributions.

However there is at least one case for which it is not strictly necessary for the support of

each of the importance distributions to cover the support of the target distribution. This is the

case when the qgs are defined on a partition of the domain of f , Ω, i.e. the support of qg is

Ωg, for g = 1, . . . , G, with Ω =
⋃G
g=1 Ωg and Ωg

⋂
Ωh = ∅∀g 6= h. In this case, the sum at the

denominator of the weight can be simplified since qg(x
(n)
h ) = 0 ∀g 6= h, hence:

Î =
1

N

G∑
g=1

Ng∑
n=1

h
(
x(n)
g

) f(x
(n)
g )

1
N

∑G
l=1Nlql

(
x

(n)
g

) =
1

N

G∑
g=1

Ng∑
n=1

h
(
x(n)
g

) f(x
(n)
g )

Ng
N ql

(
x

(n)
g

)
The estimator unbiasedness can be derived similarly to before

E
[
Î
]

= E

 1

N

G∑
g=1

Ng∑
n=1

h (x)
f(x)

Ng
N qg (x)


=

G∑
g=1

1

Ng

Ng∑
n=1

E
[
h (x)

f(x)

qg (x)

]

=

G∑
g=1

∫
Ω

f(x)h (x)

qg (x)
qg (x) dx

Before simplification, the integral can be separated in all the disjoint sets of the partition for Ω:

E
[
Î
]

=
G∑
g=1

∫
Ω

f(x)h (x)

qg (x)
qg (x) dx

=
G∑
g=1

[∫
Ω1

f(x)h (x)

qg (x)
qg (x) dx+ · · ·+

∫
Ωl

f(x)h (x)

qg (x)
qg (x) dx+ · · ·+

∫
ΩG

f(x)h (x)

qg (x)
qg (x) dx

]
where qg (x) = 0 for all the sets Ωh with h 6= g, hence:

E
[
Î
]

=

G∑
g=1

∫
Ωg

f(x)h (x)

qg (x)
qg (x) dx

=

G∑
g=1

∫
Ωg

f(x)h (x)dx

=

∫
Ω
f(x)h (x)dx = µ.

Algorithm formulation

Deterministic mixture importance sampling is used at each time step t = 0, 1, . . . , T assuming

G = 2 importance distributions having N1 = N − 1 and N2 = 1. The importance distributions

considered are:

• x(n)
t ∼ q1(x

(n)
t ) for n = 1 . . . , N − 1 where q1(x) is the same Binomial distribution used in

Algorithm 5:

x
(n)
t |x

(n)
t−1, yt ∼ Binom

(
n=(x

(n)
t−1 + ht−1 − yt),p=

(
1− pr

1− pd

))
(4.12)
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• x(n)
t ∼ q2(x

(n)
t ) for n = N where q2(xN ) is a Dirac point mass distribution centred in

the life belt case where all the people who enter the hospital and do not die stay in the

hospital:

x
(N)
t |x

(N)
t−1, yt ∼ δx(N)

t−1+ht−1−yt
(x)

with N1 = N − 1 and N2 = 1.

In the system considered, the domain of the hidden states keeps expanding, taking as upper

limit the value of the lifebelt particle. Nevertheless, the proposed algorithm composes two

distributions that do not fully cover this support. For this reason the current formulation of the

algorithm does not lead to an unbiased approximation. Extension to achieve unbiasedness are

discussed at the end of the current section.

These importance distributions are used in the full algorithm reported in Algorithm 6.

Algorithm 6 performs well in cases when Algorithm 5 was failing, allowing the approximation

of the likelihood of the data given a value for θ, as shown in Figure 4.6.
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Figure 4.6: Importance distribution (red) and filtering distribution(green) of the hidden states

xt for t = 1, . . . , T derived with Algorithm 4 with N = 1001 particles one of which is a life belt

particle whose trajectory is drawn in purple. The grey line is the true trajectory x0:t.
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input : data vector y1:T ; θ = (pd, pr); number of particles N

output: an approximation of the likelihood p(y1:T |θ)

for n = 1, . . . , N − 1 do

x
(n)
0 ∼ Pois(1.5)

w
(n)
0 = 1

N set the weights

x
(n)
1 |x

(n)
0 , y1 ∼ Binom

(
n=(x

(n)
0 + h0 − y1),p=

(
1− pr

1−pd

))
propagate

w̃
(n)
1 =

p(x
(n)
1 ,y1,z

(n)
1 |x

(n)
0 )

q(x
(n)
1 ,y1|x(n)0 )

compute the weights

end

for n = N do

x
(N)
0 ∼ Pois(1.5)

w
(N)
0 = 1

N set the weights

x
(N)
1 |x(N)

0 , y1 = x
(N)
0 + h0 − y1 propagate

w̃
(N)
1 =

p(x
(N)
1 ,y1,z

(N)
1 |x(N)

0 )
1/N compute the weights

end

normalize the weights

w
(n)
1 =

w̃
(n)
1∑N

n=1 w̃
(n)
1

for n = 1, . . . , N

set the weighted sample from the target density to be:{
x

(n)
0:1 , w

(n)
1

}N
n=1

for t = 2, . . . , T do

for n = 1, . . . , N − 1 do

x
(n)
0:t−1 ∼ C

{
x

(j)
0:t−1, w

(j)
t−1

}N
j=1

resample

x
(n)
t |x

(n)
t−1, yt ∼ Binom

(
n=(x

(n)
t−1 + ht−1 − yt), p=

(
1− pr

1−pd

))
propagate

w̃
(n)
t =

p(x
(n)
t ,yt,z

(n)
t |x

(n)
t−1)

q(x
(n)
t ,yt|x(n)t−1)(N−1)

compute the weights

end

for n = N do

x
(N)
0:t−1 =

{
x

(N)
0:t−1, w

(N)
t−1

}
set the life belt trajectory

x
(N)
t = x

(N)
t−1 + ht−1 − yt propagate deterministically

w̃
(N)
t =

p(x
(N)
t ,yt,z

(N)
t |x(N)

t−1)

1/N · w̃(N)
t−1 compute the weight

end

normalize the weights

w
(n)
t =

w̃
(n)
t∑N

n=1 w̃
(n)
t

for n = 1, . . . , N

set the weighted sample from the target density to be:{
x

(n)
0:t−1, x

(n)
t , w

(n)
t

}N
n=1

and denote it by:{
x

(n)
0:t , w

(n)
t

}N
n=1

=
{
x

(n)
0:t−1, x

(n)
t , w

(n)
t

}N
n=1

end

approximate the likelihood by p(y1:T |θ) ≈
∏T
t=1

1
N

∑N
n=1 w̃

(n)
t

Algorithm 6: Sequential importance re-sampler to approximate the likelihood of severe

data with life belt particle.
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4.4.4 Performance assessment

To assess whether the likelihood obtained via SMC could help in estimating the iCFR, a small

simulation study is conducted.

500 datasets from the chain Multinomial model defined in Equation 4.10 are drawn in dif-

ferent scenarios determined by values of the parameters pd and pr. This model can be re-

parametrised as: β1 = pd + pr

β2 = pd
pd+pr

where β1 is the probability of either event happening in a week and β2 is the iCFR.

A grid of values for (β1;β2) is set and the likelihood is approximated via SMC for all the

values on the grid. The observed most-likely value of β2 is then taken as an estimator of iCFR.

This value is compared with the WHO estimator:

iCF̂R(who) =

∑
t yt∑
t ht

and with the unbiased true estimator:

iCF̂R(unbiased) =

∑
t yt∑

t yt + zt

which cannot be derived with information only on deaths and admissions. This analysis is

repeated every 5 weeks from the beginning of the epidemic so that data are censored.

The density-strip plots of the distributions of the three estimators are plotted at the different

stages of the analysis (Figure 4.7) for three simulated scenarios. The distribution of the unknown

gold-standard estimator iCF̂R(unbiased) is plotted in red, while the distribution of iCF̂R(who) is

plotted in yellow and the distribution of the maximum-likelihood estimate according to the SMC

approximated likelihood iCF̂R(smc) is plotted in green. The WHO estimates underestimate the

iCFR especially in the early phase of the epidemic. The estimates based on the SMC likelihood,

instead, better reflect in their high variance the fact that there is a lack of information due to

censoring, moreover the estimates are often centred in the true value (Panel (a)). This effect is

enforced as the censoring effects become bigger due to smaller β1, with the SMC-based estimate

being much more variable than the WHO estimator, accounting for the hidden information

(Panel (b)). In a realistic setting where the iCFR is low and half of the cases recover within

a week the SMC-based estimate and the WHO estimate are close in median but the WHO

estimate is still affected by a misleading low variance, even lower than the one of the unbiased

estimate (Panel (c)).

Findings discussion

The results presented are promising and show that the estimation of severity could benefit from

an SSM perspective and from SMC approaches.

Algorithm 6 addresses the issue of full particle failure proposing one way to prevent this

situation. This algorithm could be potentially extended by using more than one life belt particle

to cover the whole tails of the trajectories space. This extension can be formulated so that the

importance approximation is exact, for example by defining a distribution of life belt particles

on the complement of the support of the non-life belt importance distribution of Equation 4.12.
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Moreover this algorithm could be used in a Bayesian context and combined with external

information on the time to any event β1.
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Figure 4.7: Density-strip and median (dashed) of the unbiased unknown estimator (red), of

the WHO estimator (gold) and of the SMC-based estimator (green) at censoring points t =

5, 10, . . . , 30 in three different scenarios. The true value is denoted by an horizontal black line.

4.5 Application of SMC to epidemics with multiple data sources

The SSM modelling approach and the consequent inference via SMC can be applied to the

evolution and observation of stochastic epidemic models in a natural way. As reported in

Chapter 3, these models are usually Markovian, as the distribution of the state at the next

time only depends on the current state of the system. In this section a stochastic epidemic

model is formulated together with a stochastic severity and detection process. SMC methods

are then used to propose an approximation of the likelihood of the full model.
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4.5.1 State process

Assume a SEIR stochastic model evolving over discrete intervals of length δ, and consider a large

susceptible population, so that the number of people becoming infectious can be approximated

by a Poisson r.v.:

At ∼ Pois

(
Stβ

It
N
δ

)
Bt ∼ Bin(Et, σδ)

Ct ∼ Bin(It, γδ)

and

St+1 = St −At
Et+1 = Et +At −Bt
It+1 = It +Bt − Ct
Rt+1 = Rt + Ct

where, the parameters and r.v.s are represented in Figure 4.8.

St Et It Rt

β It
N σ γ

Figure 4.8: Graphical representation of the SEIR epidemic model assumed here. The boxes

represent each transmission compartment: susceptible St, infected but not yet infectious Et,

infectious It and removed Rt. The arrows represent the possible transitions and are overlaid

by the respective rates: the infection rate, β It
N ; the rate of becoming infectious σ; and the

recovery rate γ.

It is convenient to re-define the system according to another notation. Let k index the

possible compartments (e.g. k = E, exposure, k = I infectious phase, etc). Denote by hXk
t the

r.v. representing number of people moving from compartment h to compartment k . The r.v.s

involved in the transmission model can be then re-written during the tth interval as:

sXe
t ∼ Pois

(
Stβ

It
N
δ

)
eX i

t ∼ Bin(Et, σδ)

iXr
t ∼ Bin(It, γδ)

This means that the number of individuals becoming infected {sXe}t is a doubly stochastic

Poisson process (Kingman, 1992).

The number of people becoming exposed might undertake any of the paths represented in

the MSM process of Figure 4.9, reporting the possible severity states. The events that might

happen to an infected individual are:

• he recovers/dies soon after infection;

• he goes to the General Practitioner (GP) for influenza-like illness (ILI) and then recovers

or dies;
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• he goes to the hospital and then recovers or dies;

• he goes to the GP for ILI, then to hospital and then recovers or dies;

• he goes to the GP for ILI, then to hospital, then to ICU and then recovers or dies;

• he goes to hospital, then to ICU and then recovers or dies.

E

H

G

IC

RD

Figure 4.9: MSM for the severity states of an influenza case.

The recovery/death compartment is an absorbing compartment.

To formulate the severity process it is useful to consider the process within an immigration-

death process perspective (Chiang, 1980). The individuals who become infected sXe
t enter the

compartment E, at time t, which is itself divided into three sub-compartments: those who have

been infected and will visit the GP, those who will visit the hospital and those who will recover

or die without being medically attended. The number of people in these conditions at time t

are denoted by ePg(t), eP h(t) and eP rd(t) respectively, where P stands for prevalent, which

by definition refers to a time point and not to an interval. The number of people that join

the respective prevalence compartment at time t are denoted by e
tX

g, e
tX

h and e
tX

rd and are

distributed according to Multinomial r.v. with size sXe = sxe:(
e
tX

g, etX
h, etX

rd

∣∣∣∣sxet) ∼ Multi (sxet ; (eθg, eθh, 1− eθh − eθh))

where eθg and eθh are the probability of GP consultation and hospitalization given infection,

respectively.

An Exponential distribution is assumed to describe the time elapsing between events: e.g.

the time from infection to GP consultation, conditionally on belonging to the group that will

eventually consult the GP, is distributed according to an Exponential r.v. with rate eλg. The

same assumption is made for the other two waiting times with respective rates eλh and eλic.

According to the Poisson process properties defined in Section 2.1.2, the exit process from the

prevalence compartments are also Poisson distributed, with rate dependent on the individual

rate of events eλg, eλh and eλic; on the number of individuals at risk of the event, i.e. the

prevalent individuals; and on the length of the intervals considered δ:

eXg
t ∼ Pois (eλg · ePg(t) · δ)

eXh
t ∼ Pois (eλh · eP h(t) · δ)

eXrd
t ∼ Pois (eλrd · eP rd(t) · δ)
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The prevalence at the end of the interval can then be updated as a function of the r.v.s of the

individuals entering and exiting the prevalence compartment:

ePg(t+ δ) = ePg(t) + e
tX

g − eXg
t

eP h(t+ δ) = eP h(t) + e
tX

h − eXh
t

eP rd(t+ δ) = eP rd(t) + e
tX

rd − eXd
t

The model for the first severity transitions is reported in Figure 4.10. The in- and out-flow for

ePg

eP h

eP rd

e
tX

g

e
tX

h

e
tX

rd

eXg
t

eXh
t

eXrd
t

Figure 4.10: Compartmental model that describe the incidence of the events following infection

as an immigration death process.

all the other severity compartments can be defined similarly. The full state process is defined

in Equation 4.13 for the case described in Figure 4.9, where the first three lines represent the

stochastic transmission process and the remaining lines the stochastic severity process. The

distribution of the initial state of the system (the number of prevalent people in every severity

state) is omitted for clarity. The model is easily extensible to as many levels of severity as there
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might be.

sXe
t ∼ Pois

(
Stβ

It
N

)
eX i

t ∼ Bin(Et, σ)

iXr
t ∼ Bin(It, γ)(

e
tX

g, etX
h, etX

rd

∣∣∣∣sxet) ∼ Multi (sxet ; (eθg, eθh, 1− eθg − eθh))

eXg
t ∼ Pois (eλg · ePg(t) · δ)

eXh
t ∼ Pois (eλh · eP h(t) · δ)

eXrd
t ∼ Pois (eλrd · eP rd(t) · δ)

ePg(t+ δ) = ePg(t) + e
tX

g − eXg
t

eP h(t+ δ) = eP h(t) + e
tX

h − eXh
t

eP rd(t+ δ) = eP rd(t) + e
tX

rd − eXg
t

(gtX
rd, gtX

h|exgt ) ∼ Multi (exgt ; (gθrs, 1− gθrd))

gXh
t ∼ Pois (gλh · gP h(t) · δ)

gXrd
t ∼ Pois (gλrd · gP rd(t) · δ)

gP h(t+ δ) = gP h(t) + g
tX

h − gXh
t

gP rd(t+ δ) = gP rd(t) + g
tX

rd − gXrd
t(

h
tX

ic, htX
rd

∣∣∣∣exht , gxht) ∼ Multi (exht + gxht ; (eθg, hθrd, 1− hθrd))

hX ic
t ∼ Pois (hλic · hP ic(t) · δ)

hXrd
t ∼ Pois (hλrd · hP rd(t) · δ)

hP ic(t+ δ) = hP ic(t) + h
tX

ic − hX ic
t

hP rd(t+ δ) = hP rd(t) + h
tX

rd − hXrd
t

icXrd
t ∼ Pois (icλrd · icP rd(t) · δ)

icP rd(t+ δ) = icP rd(t) + ic
t X

rd − icXrd
t

(4.13)

This process is Markovian and, given a chosen interval-length δ, can be easily simulated using

the τ -leap approximation (Gillespie, 2001) as described in Appendix D.

4.5.2 Observational process

Consider K datasets D1, D2, . . . DK. These datasets are usually composed of a time series at a

given granularity ∆k,∀k = 1, . . .K. These time series report typically the number of incident

cases moving between two severity states to the following over the interval of length ∆k. The

intervals at which different datasets are recorded can have different lengths; the time-index sk

refers to the sth interval for the dataset k according to its granularity. k here indicates both

the dataset and the severity level entered, assuming that each data stream monitors only the

incidence of one severe event. Again, an example of this data-collection scheme is the collection

of influenza data streams. While the number of hospitalizations (Dh) and ICU admissions (Dic)
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is collected on a weekly basis (∆h = ∆ic = 7 days), counts of GP consultations are monitored

daily (∆gp=1 day).

The average number of people observed by the dataset k during the interval sk covering

[sk; sk + ∆k) can be derived from the incidence of the severity state it refers to

µksk =
∑
t∈sk

∑
j 6=k

jXk
t

 dksk

where dksk denotes the detection parameter of the dataset k, i.e. the probability of being observed

given incidence. The observed cases, conditionally on the hidden states, are assumed to follow

a Negative-Binomial distribution centred around the mean µks with over-dispersion parameter

ηk, i.e.: (
Y k
sk

∣∣∣∣jXk
t

)
∼ NegBinom(µksk , η

k). (4.14)

4.5.3 Bootstrap Particle Filter to approximate the likelihood

Equations 4.13 and 4.14 define the states and the data distribution. The methods illustrated

in Section 4.2 can be used to approximate the likelihood of the available data given a chosen

parameter value.

A BPF is used to approximate the likelihood (the code for the algorithm is reported in

appendix D). An innovation with respect to the majority of the applications present in the

literature is that, given the different granularities of the data, this algorithm iterates over the

intervals and over the data available at intervals of different granularity.

An illustration of how the model performs is reported in Figure 4.11. Here the proposed

particles of the hidden state eXg
t are represented in grey, while the particles re-sampled according

to three different datasets are in colour. The blue dots refer to the time-steps where the particle

set has been re-sampled according to the data on the flu-confirmed GP consultations during a

specific day, while the green and red particles are re-sampled according to weekly hospital and

ICU data respectively.

One of the most important parameters to define is δ, the length of the interval of the state

process. The smaller the interval the better the τ -leap approximation will be, especially at the

beginning and the end of the epidemic when numbers are small. Figure 4.12 reports the same

results of Figure 4.11 adopting an interval of half a day, in the top panel, and of a quarter of

day, in the bottom panel.

4.5.4 Model discussion

SMC methods marry well with epidemic models, due to the dynamical character of the phe-

nomenon and to the timely availability of the data.

The model proposed here is very easy to simulate and, by exploiting Markovianity and

conditional independence of the observations, the dependencies that usually affect epidemic

data are decomposed and acknowledged correctly.

By contrast, the algorithm used for the likelihood approximation of such a model is com-

putationally expensive, which strongly discourages its use within a Bayesian MCMC procedure

such as the MCWM and the GIMH procedures mentioned above. To improve the approximation
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Figure 4.11: Proposed and re-sampled particles of the number of individuals visiting GPs

according to the BPF (legend in text). The bottom panel is just a zoomed image of the top

panel around the epidemic peak.

of the epidemic dynamics, a small time-step for the state process must be chosen. However, by

doing so, the algorithm to approximate the likelihood becomes more and more time-consuming,

prohibiting inference.

4.6 Conclusions

SSMs are shown to provide a valuable set up for both transmission and severity models, de-

scribing dynamic systems and the latent layers of information. Complementary SMC methods

include a vast set of tools that are very flexible and that can be tailored to the assumed system

and the available data.

In this chapter, an SMC algorithm is proposed to approximate the likelihood of the param-

eters of a chain-Multinomial severity system. This set up allows the analysis of data collected
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Figure 4.12: Proposed and re-sampled particles of the number of individuals visiting GPs

according to the BPF (legend in text) zoomed around epidemic peak. In the top panel the

interval step has length half a day and in the bottom panel a quarter of a day.

routinely in England such as the weekly count of confirmed influenza ICU admissions and deaths.

According to the estimators reviewed and formulated in Chapter 2, these data were inadequate

in providing information on the iCFR, since they do not include any information on the recov-

ery process. However, here a SSM is used to account for the hidden stochastic recovery process

and the SMC algorithm formulated here allows for approximation of the likelihood of a given

parameter. Standard SMC has the problem of particle collapse and the traditional algorithm is

amended to guard against this occurrence.

Furthermore, a SSM to model count data on cases at different levels of severity that arise from

an epidemic is here formulated. SMC methods are again used to approximate the likelihood by

simulating and filtering hidden states at successive time points and sequential levels of severity.

Despite providing a simple framework to model and draw inference from multiple epidemic data,

the proposed algorithm is highly computationally intensive. Moreover, in a context such as the
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analysis of seasonal influenza, a fully stochastic transmission model is often unnecessary. A

model that matches a deterministic epidemic dynamic with a stochastic severity process would

be less computationally expensive and realistic enough to model available influenza data. Such

a model is developed in the next chapter.



Chapter 5

Multiple data for stochastic severity

The epidemic model adopted for the case study of Section 3.3 uses a very simplistic formulation

for the severity and detection model. In contrast, Chapter 2 reports several methods to model

the severity dynamics and consequently to infer severity parameters.

The aim of this chapter is to explore the incorporation of more complex and realistic severity

models in the study of a transmission model.

While the model becomes more complex, the inclusion of more data sources is both necessary

and intricate. It is necessary because, with the proliferation of parameters and the inclusion of

layers of stochasticity, a larger amount of information is needed to overcome parameter identi-

fiability problems; it is intricate because these multiple sources might be dependent, not only

within themselves (e.g. due to temporal dependence), but also between each other (e.g. due to

individuals appearing in more than one dataset).

The chapter is structured as follows. Section 5.1 presents possible ways to include layers of

stochasticity and the challenges of its application to multiple data. A model for the analysis

of multiple dependent data is formulated in Section 5.2. Section 5.3 contains arguments on

parameter inference in the context of models with stochastic severity and employs the methods

introduced in Chapter 4 . Section 5.4 contains a comprehensive simulation study to verify the

relevance of the method proposed. The chapter terminates with a summary of the findings.

5.1 Challenges

Corbella et al. (2018), similarly to other works (e.g. Birrell et al. (2011), Te Beest et al. (2015),

Birrell et al. (2017)) combines a deterministic transmission model and a deterministic severity

model with a Negative Binomial observational noise.

Precisely, the number of people being infected during the interval t, ∆It, is a deterministic

function of the initial state of the epidemic and of the parameters:

∆It = S(tδ)− S(tδ + δ) ∀t = 0, 1, . . . , T.

Likewise, the number of infected individuals who will eventually become severe and be admitted

to an Intensive Care Unit (ICU) after being infected at time t is a deterministic function of ∆It,

hence:

∆I icut = ∆It · pICU = (S(tδ)− S(tδ + δ)) · pICU ,

107
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and lastly, the number of people who are admitted to ICU during the t-th interval, the ICU

cases, µicut , can be obtained via convolution:

µicut =

t∑
d=0

∆I icut−dfd(ϑ),

where fd(ϑ) is the probability that the delay between infection and ICU admissions is in the dth

interval of length δ, [δd; δd+ δ).

Around the deterministic and unknown number of ICU admissions, the observations are

assumed to be distributed according to a Negative Binomial random variable (r.v.) with over-

dispersion parameter η:

Y icu
t ∼ NegBin(µicut , η).

While the assumption of a deterministic transmission has been shown reasonable for seasonal

influenza in a large population (see Section 3.1.5 of this thesis), the same cannot be said for

the assumption of a deterministic severity model with observational noise. This model in fact

assumes that the true unknown number of ICU admissions, µicut , is just a deterministic function

of the parameters of the model. This implies that, for example, if the model assumes constant

transmission rates, ICU counts follow tightly the time-pattern of the outbreak, being just a

scaled and delayed version of the epidemic curve of the number of new infections ∆It.

Nevertheless, it seems unreasonable that all the variability seen in the data yicu1:T would be

attributable to detection/observation noise. More likely, the number of infected individuals that

will eventually be admitted to ICU, ∆I icut is a r.v., stochastically dependent on the infected

individuals ∆It and the severity parameters pICU . Similarly, the number of people that have

been infected at interval t and have experienced d intervals of delay cannot be only described

by the proportion ∆I icut fd(ϑ) but the variability of this delay process should also be considered.

Such considerations apply not only to the model of Corbella et al. (2018), but also to any

transmission models for which most of the variability is caused by the severity process.

Section 5.1.1 explores the formulation of a stochastic model for disease severity, and Section

5.1.2 explores the inclusion of multiple data sources within a model with stochastic severity.

5.1.1 More complex model: layers of stochasticity

For the sake of generalizability the notation used to characterize the severity model changes from

the one used at the beginning of this section and in Section 3.1.7, and the process is considered in

a state space model (SSM) perspective. A more general nomenclature is adopted for the severity

parameters as well. The severity SSM is defined in discrete time, through intervals of length δ so

that the t-th interval is defined as [δt, δt+ δ) and the intervals are indexed by t = 0, 1, 2, . . . , T .

Stochastic total number of severe events

Denote by k = 0, 1, 2, . . . ,K the index representing the possible events of increasing severity,

with k = 0 representing the infection and all the others being some events that can be described

by a pyramidal subset structure (i.e. K ⊆ K − 1 ⊆ · · · ⊆ 1 ⊆ 0). Denote by Xk the r.v.

representing the total number of people experiencing severe event k by the end of the epidemic.
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Denote by 0θk the probability of experiencing event k conditionally on infection and by jθk

the probability of experiencing event k conditionally on having already experienced event j.

In a stochastic epidemic model X0, the final size of the epidemic, is a r.v., as are the

numbers of new infections in every interval X0
t , t = 0, 1, 2, . . . , T . In a deterministic epidemic

model such as the one considered here, instead, these numbers are just deterministic functions

of the transmission parameters, for this reason Greek letters are used, as for all the other model

parameters, ξ0 and ξ0t .

0

j

k

Figure 5.1: Two-levels pyramid

structure.

In the deterministic perspective, assumed for example in

Corbella et al. (2018), the number of people experiencing a

severe event is also a deterministic function of the parameter

ξ0 and 0θk or jθk. For example, in a simple and generic pyra-

mid structure such as the one drawn in Figure 5.1 the event

k affects a subset of the population that experienced j, and

therefore 0θk = 0θj · jθk. The number of people experiencing

the event k can be equally derived with

ξk = ξ0 · 0θk

or with

ξk = ξ0 · 0θj · jθk

Taking a stochastic perspective instead, the quantity of interest is the r.v. of the number

people experiencing event k, Xk. This could be, for example, modelled as a Binomial sample

from the number of infected individuals:

Xk ∼ Bin(ξ0, 0θk). (5.1)

Exploiting the pyramidal structure (Figure 5.1) the same quantity can be defined as a chain of

Binomial r.v.s, one conditional on another, as follows:

Xj ∼Bin(ξ0, 0θj)

(Xk|Xj = xj) ∼Bin(xj, jθk).
(5.2)

This equation introduces a dependence across different severity states since individuals at a

higher severity level are a sub sample of individuals at a lower severity level (see, for example,

the models in Presanis et al. (2014)).

The Binomial distribution is the most reasonable and intuitive model, yet other distributional

choices might be made. If the number of infected individuals ξ0 is large, and the probability

of the first severe outcome 0θj is small, Equation 5.2 can be approximated by the Poisson

distribution, leading to:

Xj ∼Pois(ξ0 · 0θj)

(Xk|Xj = xj) ∼Bin(xj, jθk).

The distribution of the number of events at the next level of severity Xk, is still a Binomial

r.v. conditional on Xj, but, from the properties of the Poisson distribution, Equation 5.1 can

be approximated by a Poisson r.v., i.e.:

Xk ∼ Pois(ξ0 · 0θk).
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If the variability in the observations is high and the hypothesis of the equality of mean and

variance of the Poisson r.v. is not realistic, a further parameter ηj can be added to account for

the over-dispersion. In this case Xj can be approximated by a Negative Binomial r.v.:

Xj ∼NegBin(ξ0 · 0θj, ηj).

These are some examples of stochastic processes for the total number of severe events.

Stochastic delays

When these events are analysed over time, similar processes can be considered, though the

notation is to be expanded as follows. Denote by Xj
t the number of people experiencing severe

event j during interval t; by j
tX

k the number of people that will eventually experience severe event

k, having already experienced event j at t; and by j
tX

k
s the number of people that experience

event k at time s, having already experienced event j at t. Thus, the subscript and superscript

on the right side denote the time and type of final events and the ones on the left side denote

the time and type of previous event. When only the right superscript/subscript is reported,

the final events at the subscript time are counted irrespectively (i.e. summing over) the time of

previous event.

A stochastic model for the time series j
1:TX

k of the number of people that have had event j

at time t (t = 1, . . . , T ) and will experience event k can be specified similarly to Equation 5.2,

leading to:

(jtX
k|xjt) ∼ Bin(xjt,

jθk) ∀t = 1, . . . , T, (5.3)

Denote by jfkd (jϑk) the probability that the delay experienced between event j and k is in

the dth interval of length δ, [δd; δd + δ) for d = 0, 1, . . . , D, with D being the largest interval

index for which the delay is relevant (i.e. jfkd (jϑk) ≈ 0 for d > D). jfkd (jϑk) is often a parametric

distribution with appropriate parameter/parameter vector jϑk. To make the notation lighter,
jfkd (jϑk) is replaced by jfkd below, representing both the parametric choice and the parameter

used to describe the delay from j to k.

Under this discrete definition of the distribution of the time to event, and conditionally on
j
tX

k, the introduction of stochastic delays consists of defining the number of people experienc-

ing event k at time s, having already experienced event j at t, j
tX

k
s , as a component of the

Multinomial r.v.:

j
tX

k
t

j
tX

k
t+1
...

j
tX

k
t+d
...

j
tX

k
t+D



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
j
tX

k = j
tx

k ∼ Multi


size = j

tx
k, prob =



jfk0
jfk1

...
jfkd

...
jfkD


,


which can be written in compact form as:

j
tX

k
t:t+D|jtxk ∼ Multi (jtx

k, jfk0:D) .
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The number of people that experience event k at each time t = 1, . . . T can then be obtained by

summing these stochastic terms, i.e.:

Xk
t =

D∑
d=0

t−d
jXk

t (5.4)

The counts of events at a higher level of severity can be modelled likewise.

This form of delay structure introduces a dependence over time besides the one already

mentioned across severity states. This is evident in Equation 5.4, where the number of people

experiencing k at time t depends on r.v.s defined on the previous D intervals.

5.1.2 Multiple data: the problem of dependence

This section reveals the reason why a model such as the one defined above causes problems when

applied to multiple data. The severity dynamics described are again the those represented in

Pyramid 5.1, i.e. two possible severity states after infection, j and k, the latter being a subset

of the former. Moreover, to exploit the properties of the Poisson r.v., the case of a small 0θj

and a large ξ0t is considered, hence:

0
tX

j ∼ Pois(ξ0t · 0θj) ∀t = 1, . . . , T (5.5)

Following the definition of stochastic delay and the pyramidal structure, other conditional quan-

tities can be defined: the number of people that have event j at time t, Xj
t , is a convolution of

the people who have been infected at t− d and experience delay d between infection and event

j, t−d
0Xj

t . Of these, a Binomial sample j
tX

k will experience event k. A further Multinomial r.v.
j
tX

k
t+d denotes the people that have experienced event k after d intervals from j, the convolution

of which leads to Xk
t , the number on individuals experiencing event k at time t. This system

can be defined through the following r.v.:

0
tX

j
t:t+D|0txj ∼ Multi

(
0
tx

j, 0f j0:D

)
Xj
t =

D∑
d=0

t−d
0Xj

t

j
tX

k|xjt ∼ Bin (xjt,
jθk) ∀t = 1, . . . , T

j
tX

k
t:t+D|jtxk ∼ Multi (jtx

k, jfk0:D) Xk
t =

D∑
d=0

t−d
jXk

t

A directed acyclic graph (DAG) representing the severity process in case of no delay and in

case of stochastic delays is reported in Figure 5.2 and 5.3, respectively. In the former the model

of Equation 5.2 is displayed: the node of the number of people at the most severe state, Xk
t ,

depends on the number of people at the previous severity states Xj
t which depends on the number

of infections 0ξt. The latter figure (5.3) represents also all the temporal dependence, with the

Multinomial delays and the convolutions, represented by deterministic (dashed) relations.

If multiple observations of the severity process are available, for example at different levels

of severity, a detection process needs to be defined. A simple modelling assumption might

be to consider Binomially-distributed observations from both severity levels with time-varying

parameters as follows:

Y j
t |Xj

t = xjt ∼ Bin(xjt, ζ
j
t )

Y k
t |Xk

t = xkt ∼ Bin(xkt , ζ
k
t )
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0ξt

Xj
t

Xk
t

jθk θT 0θj

t = 2, . . . , T

Figure 5.2: DAG of a stochastic severity model with two levels of severity and no delay.

for t = 1, . . . , T , with ζjt and ζkt denoting the detection probability of the individuals that have

had event j and k, respectively.

Using the properties of the Poisson r.v. it is easy to derive the marginal distributions of the

observations, found to be Poisson (see Poisson properties reported in Section 2.1.2)

Y j
t ∼ Pois

(
ζj · 0θj ·

D∑
d=0

ξ0t−d · 0f jd

)

Y k
t ∼ Pois

ζk · jθk · 0θj · D∑
d=0

d∑
g=0

ξ0t−d−g · 0f jd · jfkg

 (5.6)

for t = 1, . . . , T . In case each data point of the two severity time series was to be used alone for

inference, the likelihood would be easily specified by the respective line of Equation 5.6.

If instead the data at the two severity levels are used jointly, the model defined above and

represented in Figure 5.3 shows that each severity level shares information within itself over

time for a lag D and between levels, since event k is a sub-sample of event j.

In SSM terms, the observations depend on the same hidden states and therefore, rather than

each informing some hidden states independently, they share information on these hidden states.

This can be understood by thinking about the fact that some individuals will be recorded

both in one dataset and in the other (these would be the people that experience both j and k

and in both cases are observed). Likewise, within one time series of severe cases each observation

will contain information on the infections in the current interval and in the previous ones, being

correlated with the neighbouring observations.

In simpler cases (e.g. with no delays and when only two data points (yj, yk) are considered)

the joint likelihood accounting for the shared hidden state can be shown to be different from the

product of two independent likelihoods (see Appendix E). In Section 5.4, for more complex but

realistic cases with delays and time series of observations, a simulation study is carried out to

show if (and in which scenarios) accounting for this dependence would lead to different results

from adopting an incorrect formulation that assumes independent observations.
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Figure 5.3: DAG of a stochastic severity model with two levels of severity and delays.

5.2 Model construction

In this paragraph a motivating dataset is presented and a model of the kind described in Section

5.1 is formulated.

5.2.1 Motivation: the USISS collection scheme

The UK Severe Influenza Surveillance System (USISS) collects information on severe cases of

influenza in England. Part of its content has been discussed and used in another part of this

thesis (Section 3.3), however here it is briefly recalled in the light of the considerations on

dependent data expressed above.

According to the USISS protocol (Health Protection Agency, 2011a), all National Health

Service (NHS) trusts in England report the weekly number of laboratory-confirmed influenza

cases admitted to ICU and the number of confirmed influenza deaths in ICU. In addition to

this mandatory scheme, a sentinel subgroup of NHS trusts in England, is recruited every year to

participate in the USISS sentinel scheme (Boddington et al., 2017; Health Protection Agency,
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2011b), which reports weekly numbers of laboratory-confirmed influenza cases hospitalised at

all levels of care.

S E I R
ξ0

σ γ

Hospital

H sentinelH obs H non sentinel

IC sentinel IC non sentinel

IC totalIC obs

(a) Flowchart of the possible severe events recoded

in USISS.

0

H

IC

(b) Infection (0), hospitalization (H)

and ICU admission (IC) pyramid

structure.

Figure 5.4: Charts for USISS severity scheme: individuals might be hospitalised and then they

might be admitted to ICU (b). Hospitalizations in sentinel hospitals and ICU admissions in

all hospitals are recorded (a).

Figure 5.4 illustrates with a flow chart and with a pyramid the data collected through the

USISS system. Some individuals might be detected in both datasets, leading to a dependence.

5.2.2 Model formulation

Denote by θ the set of parameters, composed of θT , the parameters of the transmission model

and θS , the parameters of the severity and detection model.

θT = {π, ι, σ, γ, β} consists of the transmission rate β; the exit rates from compartments E

and I, σ and γ respectively; and the initial proportions immune, π, and of infected/infectious,

ι. π and ι, together with σ, γ and the known constant N , the total size of the population,

contribute to the formulation of the initial state of the epidemic.

Since a deterministic model is assumed, the information contained in θT , together with the

known constants, provides the full time series of the number of new infections.

Consider intervals of length δ so that the t-th interval covers the time [tδ, t + δ) and the

intervals are now indexed by t = 0, 1, 2, . . . , T , where t = 0 coincides with the beginning of

the data collection period and t = T is the end of the data collection period. Denote the

number of susceptible individuals at the beginning of interval t by St and likewise for the other

compartments E, I,R. Denote by ξ0
1:T the vector of the number of new infections in interval

t = 0, 1, 2, . . . T .

θS =
{

0θh, hθic, 0fh, hf ic, ζht , ζ
ic
t

}
includes probabilities of severe events conditional on in-
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fection at a previous severity level: 0θh, the probability of hospitalization given infection; and
hθic, the probability of ICU admission given hospitalization. 0fh and hf ic denotes discretised

Exponentially-distributed waiting times for the time from infection to hospitalisation and from

hospital admission to ICU admission, respectively. Lastly, the detection parameters are denoted

by ζht and ζ ict , and are the probability of detecting an hospitalised and ICU case, respectively.

0ξt

Xh
t

X ic
t

Y ic
t

Y h
t

hθic θT 0θh ζh ζ ic

t = 2, . . . , T

Figure 5.5: DAG for two correlated data with no delay. Each r.v. is represented as a node, where

grey nodes correspond to variables that are observed and white nodes are latent variables. The

arrows express the dependence among the variables: dashed arrows represent deterministic

functions and solid arrows stochastic functions.

The model can be described using SSM notation, defining a state process and an observational

process. The former is composed of the distributions of: 0
tX

h , the number of hospitalizations

that were infected at each interval t; Xh
t , the number of hospitalizations at t, obtained via

a convolution of 0
tX

h; the number of hospitalizations that eventually will be admitted to IC

and have been hospitalised at t, h
tX

ic; the number of IC admissions at t, X ic
t obtained by the

convolution of h
tX

ic, for t = 0, 1, 2, . . . , T . The state process is reported in Equation 5.7.(
0
tX

h
)
∼ Pois(0ξ · 0θh)

(
0
tX

h
t+1:t+D|0tXh = 0

tx
h
)
∼ Multi(0

tx
h, 0fh1:D), Xh

t =

S∑
s=1

t−s
0X

h
s

(htX
ic|Xh

t = xht ) ∼ Bin(xht ,
hθic)

(
h
tX

ic
t+1:t+D|htX ic = h

t x
ic
)
∼ Multi(ht x

ic, hf ic1:D), X ic
t =

S∑
s=1

t−s
hX ic

s

(5.7)

for t = 0, 1, . . . , T .

Regarding the observational process, the distributions of two datasets, yh1:T , the count of

hospitalizations, and yic1:T , the count of IC admissions, conditional on the hidden states Xh
1:T
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and X ic
1:T , are assumed to be Binomial with probabilities set to the detection probabilities ζht

and ζ ict respectively, as reported in Equation 5.8

(Y h
t |Xh

t = xht ) ∼ Bin(xht , ζ
h
t )

(Y ic
t |X ic

t = xict ) ∼ Bin(xict , ζ
ic
t )

(5.8)

with t = 0, 1, 2, . . . , T .

Thanks to the Poisson properties, several hidden states and the data distribute marginally

according to a Poisson distribution, as reported in Equation 5.9

Xh
t ∼ Pois

(
0θh ·

D∑
d=0

ξ0
t−d · 0fhd

)

X ic
t ∼ Pois

hθic · 0θh ·
D∑
d=0

d∑
g=0

ξ0
t−d · 0fhd · hf icg


Y h
t ∼ Pois

(
ζht · 0θh ·

D∑
d=0

ξ0
t−d · 0fhd

)

Y ic
t ∼ Pois

ζ ict · hθic · 0θh · D∑
d=0

d∑
g=0

ξ0
t−d−g · 0fhd · hf icg



(5.9)

for t = 0, 1, 2, . . . T .

Despite the two data having simple marginal distributions, they are not independent since

they share information on some individuals (the ones that are detected both in hospital and IC)

as can be seen from the DAG in Figure 5.5, which represents the same data in the specific case

of no delay between consecutive events.

For this reason the joint distribution of (Y h
1:T , Y

ic
1:T ) is non-trivial. The next section describes

two approximations of the joint likelihood.

5.3 Model inference

A simulation algorithm is proposed to approximate the joint likelihood of hospitalization and

IC data. The joint probability distribution can be decomposed in two ways:

p(yh1:T , y
ic
1:T |θ) = p(yh1:T |yic1:T ,θ)p(yic1:T |θ)

= p(yic1:T |yh1:T ,θ)p(yh1:T |θ)

where, in both cases, one of the two factors is available in closed form.

Algorithm 7 exploits the first decomposition, where p(yic1:T |θ) is available in closed form and

a solution is needed for p(yh1:T |yic1:T ,θ) which is obtained by approximating the T -dimensional

integral:

p(yh1:T |yic1:T ,θ) =

∫
Xh

1

· · ·
∫
Xh
T

p(yh1:T , X
h
1:T |yic1:T ,θ)dXh

1 . . . dX
h
T

=

∫
Xh

1

· · ·
∫
Xh
T

p(yh1:T |Xh
1:T , y

ic
1:T ,θ)p(Xh

1:T |yic1:T ,θ)dXh
1 . . . dX

h
T

=

∫
Xh

1

· · ·
∫
Xh
T

p(yh1:T |Xh
1:T ,θ)p(Xh

1:T |yic1:T ,θ)dXh
1 . . . dX

h
T
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Result: p̂(yh1:T , y
ic
1:T |θ)

Input: fixed parameter θ, number of particels N , data yh1:T , yic1:T

compute

p(yic1:T |θ) = f(yic1:T |ζ ict · hθic · 0θh ·
∑D

d=0

∑d
g=0 ξ

0
t−d−g · 0fhd · hf icg )

with f(·) being a Poisson density

for n = 1, . . . , N do

for t = 0, 1, . . . T do

sample

xict
(n) ∼ Pois ((1− ζ ict ) [hθic · 0θh

∑D
d=0

∑d
g=0 ξ

0
t−d−g · 0fhd · hf icg ]) + yicT

sample
h
t−1x

ic
1

(n), . . . , h
t−Sx

ic
S

(n) ∼ Multi(xict
(n), hf ic1:S)

compute
h
t x

ic(n) =
∑S

s=1
h
t x

ic
s

(n)

sample

xht
(n)|ht xic

(n),θ ∼ Pois((1− hθic)[
0θh

∑D
d=0 ξ

0
t−d · 0fhd

]
) + h

t x
ic(n)

end

compute

p(yh1:T |xh1:T
(n),θ) = g(yh1:T |xh1:T

(n), ζht )

with g(·) being a Binomial density

end

p̂(yh1:T , y
ic
1:T |θ) = p(yic1:T |θ) · 1

N

∑N
n=1 p(y

h
1:T |xh1:T

(n),θ)

Algorithm 7: First approximation of the likelihood

by conditional independence of the state space model.

Algorithm 8 approximates the other factor. p(yh1:T |θ) is available in closed from and a solution

is needed for p(yic1:T |yh1:T ,θ).

p(yic1:T |yh1:T ,θ) =

∫
X ic

1

· · ·
∫
X ic
T

p(yic1:T , X
ic
1:T |yh1:T ,θ)dX ic

1 . . . dX ic
T

=

∫
X ic

1

· · ·
∫
X ic
T

p(yic1:T |X ic
1:T , y

h
1:T ,θ)p(X ic

1:T |yh1:T ,θ)dX ic
1 . . . dX ic

T

=

∫
X ic

1

· · ·
∫
X ic
T

p(yic1:T |X ic
1:T ,θ)p(X ic

1:T |yh1:T ,θ)dX ic
1 . . . dX ic

T

It is straightforward to simulate from the hidden states, thanks to the structure assumed: the

delays follow a Multinomial structure while the remaining process is a chain of Binomial and

Poisson r.v.s. Specifically, let:

(X|λ) ∼ Pois(λ)

(Y |θ, x) ∼ Bin(x, θ)

(Y |λ, θ) ∼ Pois(λθ), by property of the Poisson
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The distribution of X|y can be derived as follows:

p(x|y) =
p(y|x)p(x)

p(y)
by Bayes’ theorem,

=

x!
y!(x−y)!θ

y(1− θ)x−y λxx! e
−λ

(λθ)y

y! e−λθ

=
λx−y(1− θ)x−ye−λ(1−θ)

1
(x−y)!

which is the density function of a Poisson with rate λ(1− θ) plus y.

Result: p̂(yh1:T , y
ic
1:T |θ)

Input: θ, N , yh1:T , yic1:T

compute

p(yh1:T |θ) = f
(
yh1:T |ζht · 0θh ·

∑D
d=0 ξ

0
t−d · 0fhd

)
with f(·) being a Poisson density

for n = 1, . . . , N do

for t = 0, 1, . . . T do

sample

xht
(n) ∼ Pois ((1− ζht )0θh

∑D
d=0 ξ

0
t−d · 0fhd ) + yht

sample
h
t x

ic(n)|xht
(n) ∼ Bin(xht

(n), hθic)

sample
h
t x

ic
1:S

(n)|ht xic
(n),θ ∼ Multi(ht x

ic(n), hf ic1:S)

compute

xict
(n) =

∑S
s=1

h
t−sx

ic
s

(n)

end

p(yic1:T |xic1:T
(n),θ) = g(yic1:T |xic1:T

(n), ζ ict )

with g(·) being a Binomial density

end

p̂(yh1:T , y
ic
1:T |θ) = p(yh1:T |θ) · 1

N

∑N
n=1 p(y

ic
1:T |xic1:T

(n),θ)

Algorithm 8: Second approximation of the likelihood

Both the algorithms are very attractive since they use a simple vanilla Monte Carlo (MC)

approximation. However, a better approximation can be obtained when the distribution from

which the samples are drawn (in this case the distribution of the hidden states conditional on the

first data included) matches well with the target distribution (in this case the distribution of the

hidden states conditional on both) (Brooks et al., 2011). This matching improves substantially

when the target distribution is more variable; on opposite, when the mass of the distribution is

highly concentrated on a point, more simulations would result in low weights, hence they will

be wasted. This principle motivates the choice between algorithm 7 and 8 as illustrated below.

For the case of USISS, as well as for many other observational collection schemes, more
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severe cases are monitored more carefully. While only approximately 20% of the hospitalised

cases are recorded in the dataset, almost all ICU cases are reported. The Binomial observational

likelihood of yh1:T (Algorithm 7) is much more variable than the Binomial observational likelihood

of yic1:T (Algorithm 8). Moreover, the distribution from which Algorithm 7 samples, xh1:T |yic1:T

results in 0 for all the sampled values xht
(n) < yht for t = 1, . . . , T . Similarly the distribution

from which Algorithm 8 samples, xic1:T |yh1:T is equal to 0 for all the sampled values xict
(n) < yict

for t = 1, . . . , T . The latter case takes place much more often, due to the high detection of ICU

admissions: for this reason, obtaining a good sample for the MC approximation is much harder

in this case. Hence Algorithm 7 is adopted throughout the chapter.

Both a Monte Carlo within Metropolis (MCWM) and a grouped independence Metropolis

Hastings (GIMH) algorithm have been coded in order to perform parameter inference. While

the former is affected by bias (which disappears for N large enough), the latter presents the

inconvenient feature of bad mixing of the chains, especially when N is small (Andrieu and

Roberts, 2009).

5.4 Relevance of the dependence

A full simulation study is set up to assess whether (and in which situations) accounting for the

dependence makes any difference compared to assuming the two datasets to be independent.

The simulation set-up and the results are showed below.

5.4.1 Simulation study set-up

The simulated data are formulated to reflect a situation similar to the motivating USISS data

on a very small population, chosen in order to reduce the computation time. The datasets are

generated with some common parameters and some scenario-specific parameters.

The common parameters are:{
N = 10000, β = 0.63, π = 0.3, ι = 0.0001, σ =

1

4
, γ =

1

3.5
, 0fh ∼ Exp(0.3), hf ic ∼ Exp(0.4)

}
while the scenario specific parameters are reported in Table 5.1. Each of the severity and detec-

tion parameters can take two values, a small and a large value. The smaller leads to situations

where the probability of being observed in both datasets is low, therefore data are less dependent;

while when parameters take bigger values, there is more overlap between datasets and therefore

more dependence. The probability of hospitalization and the detection of hospitalization in the

small dependence big dependence
0θh 0.1 0.5
hθic 0.1 0.9

ζht = ζh 0.1 0.3

ζ ict = ζ ic 0.1 0.9

Table 5.1: Parameters used to generate the datasets.

big dependence case are smaller than the respective quantities for ICU admission. This choice

is made (i) because usually more severe cases are better monitored, and hence have a higher
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detection and (ii) because the algorithm chosen to approximate the joint likelihood performs

better with smaller values of the hidden state.

The aim of the comparison is to assess whether a misspecified independent likelihood would

affect the inference of the parameters showing different posterior distributions from the ones

obtained with the MC approximation of the joint likelihood assuming dependent data. For this

reason the results presented in the following pages are to be compared within each scenario:

between the ones obtained with the independent misspecified model (often abbreviated with

miss ind) and the ones obtained using the dependent joint model (often abbreviated with joint

dep).

5.4.2 Comparison for transmission parameters

For the parameter inference with the approximated joint likelihood, a MCWM algorithm with

N = 2000 was chosen. In fact, preliminary simulation experiments showed a much better mixing

when the MCWM scheme was used in place of the GIMH and N = 2000 was observed to be large

enough to make the simulation study feasible and the bias of the MCWM algorithm negligible

(i.e. to provide posterior distributions that were indistinguishable from the GIMH ones).

Hence, a MCWM algorithm including approximation of the joint likelihood via Algorithm 7

and a blocked Metropolis Hastings (MH) algorithm using the misspecified independent Poisson

likelihood are used on the same 1000 datasets and the results are compared. 500 datasets

are simulated using the smallest values of the parameters (left column of Table 5.1) and 500

datasets using the largest values (right column of Table 5.1). The only parameters inferred are

the transmission parameters β, ι and π with the severity parameters being fixed at their true,

scenario-specific, value.

In the case of small dependence, the results show that the posterior distributions obtained

with the misspecified independent likelihood are very similar to the ones obtained with the

approximated joint likelihood. Figure 5.6 reports the posterior distributions of the 3 parameters

estimated in 5 datasets randomly sampled from the 500 generated datasets. Moreover, Figure

5.7 displays the distribution of pairwise difference in the variance of the posterior sample:

PWD(Var(α))d = Var(α̂joint dep|yd)−Var(α̂miss ind|yd) α = β, π, . . . ; d = 1, 2, . . . , 500

and the distribution of pairwise difference in the length of the 95% credible interval (CrI) of the

posterior sample:

PWD(R95(α))d = R95(α̂joint dep|yd)− R95(α̂miss ind|yd) α = β, π, . . . ; d = 1, 2, . . . , 500

The figures show an imperceptible difference in the posterior distributions and their precision-

summaries between the two models. This is confirmed by quantities such as the proportion of

datasets in which the pairwise difference in variance is less than or equal to 0, for each of the

parameters reported below. When this quantity is close to 0.5, the variances of the estimates

obtained with the two methods are similar within datasets; when this quantity is close to 1 it

suggests that the variance of the estimates obtained using the misspecified independent likelihood

is systematically larger than the variance of the estimates obtained with the joint likelihood; and

when this quantity is close to 0 it highlights that the former variance is systematically smaller
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Figure 5.6: Posterior distribution of the transmission parameters β (left panel), ι (centre) and

π (right panel) from 5 datasets. The colour of the posterior density identifies the dataset

analysed while dashed lines refer to results from the misspecified independent model and filled

lines to results from the model approximating the joint dependent likelihood.
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Figure 5.7: Distribution of the pairwise difference in variance (green plots) and in 95% CrI

length (red plots) of the posterior distribution of the transmission parameters β (left panel), ι

(centre) and π (right panel).

then the latter. This results is expected, above all in the case of high dependence scenario,

signifying over-precision of the independent-likelihood-driven estimator.

Table 5.2 reports this quantity for each parameter estimated: here there is no evident signal

of systematic difference between methods.

Parameter Proportion of pwd(Var) ≤ 0

β 0.392

π 0.390

ι 0.378

Table 5.2: Proportion of datasets in which the pairwise difference of variance is smaller or

equal to 0 for the three transmission parameters in the scenario with small dependence.

The same analysis is run on the 500 datasets with a big dependence with results reported

in Figures 5.8 and 5.9.

Here there is a notable difference between the results from the two models: the posterior

distributions from the misspecified model that assumes independent data are less variable than

the ones derived using the MC approximation of the joint dependent likelihood.

This result was expected since the misspecified model, by assuming independent data, ac-

counts for more information than is inherent in the data. This leads to an overconfidence that

can be detected in the underestimation of the posterior variance. Results are confirmed by the

proportion of differences less than or equal to 0 for all the parameters (Table 5.3), strongly

suggesting a systematic difference in variability between the two methods. In all the simulated
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Figure 5.8: Posterior distribution of the transmission parameters β (left panel), ι (centre) and

π (right panel) from 5 datasets. The colour of the posterior density identifies the dataset

analysed while dashed lines refer to results from the misspecified independent model and filled

lines to results from the model approximating the joint dependent likelihood.
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Figure 5.9: Distribution of the pairwise difference in variance (green plots) and in 95% CrI

length (red plots) of the posterior distribution of the transmission parameters β (left panel), ι

(centre) and π (right panel).

datasets the variance of the posterior distributions of the parameters are smaller in the analysis

using the misspecified independent model than in the approximate joint model (Figure 5.9).

Parameter Proportion of pwd(Var) ≤ 0

β 0

π 0

ι 0

Table 5.3: Proportion of datasets in which the pairwise difference of variance is smaller or

equal to 0 for the three transmission parameters in the scenario with big dependence.

5.4.3 Results for transmission and severity parameters

The same kind of comparison is carried out in a context where inference is drawn both for the

transmission and the severity parameters. Here, since more quantities are estimated and due

to the high correlation of the parameters of epidemic models, a difference between the results

from the two models may be more difficult to spot. Moreover, in this multi-parameter context,

convergence is sometimes compromised, particularly in the big-dependence scenario.

The results within a scenario with small dependence are reported in Figure 5.10 and

in Figure 5.11. Neither in the transmission parameters nor in the newly estimated severity

parameters, can a large difference be seen.

The proportions of pairwise differences less than or equal to 0 confirm the non-difference in

the variance of the posterior distributions (Table 5.4).
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Figure 5.10: Posterior distribution of the transmission and severity parameters from 5 datasets.

The colour of the posterior density identifies the dataset analysed while dashed lines refer to

results from the misspecified independent model and filled lines to results from the model

approximating the joint dependent likelihood.

Parameter Proportion of pwd(Var) ≤ 0

β 0.498

π 0.464

ι 0.348
0θh 0.466
hθic 0.778

Table 5.4: Proportion of datasets in which the pairwise difference of variance is smaller or

equal to 0 for the transmission and severity parameters in the scenario with small dependence.

The same results within a scenario with big dependence are plotted in Figures 5.12 and

5.13. The only notable difference can be seen in the distribution of hθic: this parameter is what

links the two datasets, since it defines the probability of ICU admission conditional on hospi-

talization. When the two datasets are jointly analysed, they both contribute to the estimation

of hθic, with hospital data informing the Binomial size in Equation 5.8 and ICU data inform-

ing the proportion of people in the more-severe state. When the two datasets are considered

independently, the hospital data do not play any role in the inference of hθic.

The proportions of pairwise differences less than or equal to 0 confirm the observations above:

the variance of the posterior sample of the parameter hθic is always lower when inference is drawn

with the approximation to the joint dependent likelihood compared to when the misspecified

independent model is adopted (Table 5.5).

The remaining parameters, do not show any significant difference in the variance of their

posterior distributions.
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Figure 5.11: Distribution of the pairwise difference in variance (green plots) and in 95% CrI

length (red plots) of the posterior distribution of the transmission and severity parameters.
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Figure 5.12: Posterior distribution of the transmission and severity parameters from 5 datasets.

The colour of the posterior density identifies the dataset analysed while dashed lines refers to

results from the misspecified independent model and filled lines to results from the model

approximating the joint dependent likelihood.

Parameter Proportion of pwd(Var) ≤ 0

β 0.554

π 0.546

ι 0.202
0θh 0.566
hθic 1

Table 5.5: Proportion of datasets in which the pairwise difference of variance is smaller or

equal to 0 for the transmission and severity parameters in the scenario with big dependence.
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Figure 5.13: Distribution of the pairwise difference in variance (green plots) and in 95% CrI

length (red plots) of the posterior distribution of the transmission and severity parameters

from all the datasets.

5.4.4 Influential parameters

As a final comparison a further investigation into the main cause of the difference is undertaken.

Starting from the small-dependence scenario, one at a time, each parameter of Table 5.1 is

allowed to take the larger value in simulating the 500 datasets.

Estimates of the five parameters are then obtained according to the misspecified independent

and the joint dependent model. The posterior distributions and the plots of the precision

statistics are reported in Appendix E. While a detectable difference in the results is observed

when all the parameters affecting the level of dependence vary, the same cannot be said when

each parameter increases alone. Differences are less evident, with the probability of detection in

ICU being the most influential parameter, as shown in Table 5.6, where each column corresponds

to a scenario where all the parameters but the header of the column are assumed small.

Increased Parameter 0θh hθic ζh ζ ic

Parameter Proportion of pwd(Var) ≤ 0

β 0.468 0.454 0.296 0.490

π 0.450 0.454 0.214 0.496

ι 0.342 0.082 0.052 0.032
0θh 0.476 0.458 0.290 0.464
hθic 0.682 0.940 0.072 0.994

Table 5.6: Proportion of datasets in which the pairwise difference of variance is smaller or

equal to 0 for the transmission and severity parameters in the scenario with small dependence

except for the respective column-name parameter.
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5.5 Conclusions

This chapter formulates a model for multiple correlated epidemic data and proposes an algorithm

for its inference. The model proposed is innovative in that it merges a deterministic model for

transmission, which is often a good approximation when seasonal epidemics are analysed, and

a stochastic model for severity and detection.

The assumption of a deterministic transmission model breaks the dependence over time, with

the exception of the delay between consequent severe events. This allows the formulation of a

simple MC algorithm to approximate the likelihood. This method, is not only more intuitive,

but also faster than a sequential importance procedure, for which weighting and sampling are

to be computed at each time-step. Moreover, since it is possible to sample directly from the

hidden distribution of interest, the problem of choosing an importance distribution is overcome.

A misspecified model that assumes independent data could be used in place of the proposed

algorithm leading to a faster inference. However, a simulation study shows that the misspecified

model leads to overly precise results in the estimation of the transmission parameters when

the dependence is large. Furthermore, the parameter connecting the two severity states to

which the data refer, is estimated with less precision when the misspecified model is assumed.

The dependence between data instead is relevant in many situations, requiring the use of the

algorithm proposed. These situations include the data on severe influenza cases collected in

England, for which some individuals are likely to be detected twice, above all due to the high

detection rate of the cases admitted to ICU.

While the model proposed is innovative and comprehensive, the estimation procedure might

be extended in a number of ways, principally to enhance its efficiency since, as with many pseudo-

marginal algorithms, the analysis takes a lot of time. The algorithm used to approximate the

likelihood at each time step of the Markov chain Monte Carlo (MCMC) can be parallelised,

potentially exploiting big computational resources such as high performance computers. The

choice of using the MCWM algorithm is also dangerous: while preliminary simulation experi-

ments have shown that the bias related to this methods should not affect the reported results,

these are not highly generalizable. When applying this method to other scenarios, more particles

might be needed in order to make the MCWM bias negligible; alternatively, a GIMH algorithm

might be chosen in order to ensure unbiasdness of the likelihood approximation. Moreover,

MCMC methods might not be the most appropriate match for MC-based approximations which

require a big computational effort at every iteration. Alternative exploration of the parameter

space (e.g. by sequential Monte Carlo (SMC) samplers (Del Moral, Doucet, and Jasra, 2006))

might be a more suitable match.



Chapter 6

Application to influenza in England

This chapter provides a comprehensive application of the methods illustrated in the previous

chapters to multiple data on seasonal influenza in England.

The last season of influenza (during winter 2017/18) resulted in a moderate to high burden

on health facilities (Public Health England, 2018). Many researchers at Public Health England

(PHE) engaged in an estimation and prediction exercise exploiting a multiplicity of data to

characterise the seasonal epidemic while it was ongoing. In light of the methods proposed

in Chapter 5 for the joint analysis of multiple, possibly dependent, data sources, a model is

proposed here, to synthesize information provided by several data streams.

The goal of the analysis is the joint estimation of transmission and severity parameters for

a broad description of the epidemic. In what follows the available data are illustrated (Section

6.1); a model for transmission, severity and detection is proposed (Section 6.1) and results from

real data are derived (Section 6.3). The chapter concludes with a discussion commenting both

on the novelty of the model proposed and on the public-health value of the results provided.

6.1 Data

The annual monitoring of influenza activity in England is based on a number of data streams:

consultations for influenza-like illness (ILI) at General Practitioners (GPs); virological testing

of swabs from samples from GP consultations; serological data; and admissions to hospitals and

Intensive Care Units (ICUs) from the UK Severe Influenza Surveillance System (USISS).

6.1.1 Hospital and ICU admissions

The USISS scheme, as described elsewhere in this thesis (Section 3.3.1), collects the weekly

count of ICU admissions with confirmed influenza, in principle from all trusts in England, and

the weekly count of hospitalizations with confirmed influenza in a stratified sentinel sample of

the trusts.

Data on weekly ICU admissions are plotted in Figure 6.1, together with the proportion of

the catchment population of the participating trusts over the population of England. The x axis

refers to time, measured from week 40 of 2017, i.e. the beginning of the data-collection scheme.

The observed number of ICU admissions peaks at week 15 (which corresponds to mid-January

2018), however the profile of the observations is peculiar: the number of admissions does not
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Figure 6.1: ICU data- Weekly number of ICU admissions (green) and proportion of the popu-

lation that was monitored each week (shaded grey).

decrease steadily after the peak, but instead shows a plateau followed by a moderate decline in

the cases.

The sentinel trusts participating to USISS cover only ≈20% of the population in England.

The weekly number of reported hospitalizations at all level of care is plotted in Figure 6.2. The

number of observations peaks again at week 15; with a second peak circa one month and a half

later.

6.1.2 GP consultations for ILI

The daily GP ILI data come from the PHE’s national influenza surveillance system which collects

daily ILI consultations stratified by, amongst other things, age group and National Health

Service (NHS) region. The PHE surveillance data result from the combination of databases

owned by EMIS (Harcourt et al., 2012) and The Phoenix Partnership (The Phoenix Partnership,

2013) and cover on average 35% of the population of England.

The GP data are reported in Figure 6.3: the x axis refers to the time in days starting

from the Monday of week 40 of 2017. Data are characterised by a weekly pattern with higher

counts on Mondays and much lower counts during weekends. Nevertheless, the data still show

an epidemic pattern, peaking during mid-January, similarly to the USISS data.

6.1.3 Virological positivity and serology

To identify the proportion of the reported ILI counts that are genuine cases of influenza infection,

additional information collected by the Royal College of General Practitioners (RCGP) is used.

RCGP primary-care surveillance is augmented with virological monitoring (Health Protection
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Figure 6.2: Hospital data- Weekly number of hospital admissions (green) and proportion of

the population that was monitored each week (shaded grey).

Agency, 2014), which involves taking respiratory swabs from a randomly selected subset of the

patients consulting for ILI. Polymerase chain reaction (PCR) testing identifies swabs positive

for the presence of influenza strains as well as for other respiratory virus infections. These data,

plotted in Figure 6.4, consist of the counts of the tests taken and the number of positive tests

obtained.

An additional source of information is provided by a cross-sectional serological survey data

on the presence of immunity-conferring antibodies in the general population. If available at the

beginning of the season, this could inform the susceptibility of the population before seasonal

virus circulation. These data have not been analysed directly in this thesis but estimates of

the average level of immunity in the population was provided to all the people involved in the

influenza-monitoring exercise (Charlett, 2018).
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Figure 6.3: GP ILI data- Daily number of ILI GP consultations (green) and proportion of the

population that was monitored each day (shaded grey).

0 50 100 150 200

0

20

40

60

80

100

120

Virology Tests

Time (in days)

C
ou

nt
 o

f t
he

 p
os

iti
ve

s/
te

st
s

count tests
count positives

Figure 6.4: RCGP data - Daily number of positive tests for influenza (green) and number of

tests sampled each day (grey).
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6.2 Model formulation

A model for the joint analysis of GP consultations, virology, hospitalizations and ICU admissions

data is here proposed. A few considerations are needed in order to motivate the model choices

made in this section.

Firstly, GP-consultation data are highly affected by background noise (e.g. Birrell et al.

(2011)) since they include both influenza- and non-influenza endemic ILI cases. These data need

to be combined with data on virology that inform the proportion of influenza-positive ILI cases.

In addition, these two components are related to the observed counts using an endemic/epidemic

model (Held, Höhle, and Hofmann, 2005).

Secondly, while ICU and hospital data are highly dependent, elements that needs to be

accounted in the inference, these two USISS datasets and the GP consultation data can be

assumed independent: people admitted to hospital with confirmed influenza are likely to be

emergency admissions and differ from mild cases.

Finally, the epidemic under analysis is a single wave of seasonal influenza. It is expected to

take off every winter and to involve a large portion of the England population. For this reason,

a deterministic transmission model is adopted to describe the underlying infection process. This

deterministic model is then coupled with a fully-stochastic severity and detection model.

6.2.1 Notation and time

As described in Section 5.1, denote by 0θk the probability of experiencing event k conditionally

on infection and by jθk the probability of experiencing event k conditionally on having already

experienced event j. Denote by jfkd the probability of experiencing a delay d between event j

and k. Denote by Xj
t the number of people that have experienced event j at time t; by j

tX
k

the number of people that will experience event k having had event j at time t; and by j
tX

k
s the

number of people who have experienced event k at s having had event j at t.

Consider two different units of time, day and week, defining the discrete time of a process.

Consider discrete time defined by intervals of length δ = 1 day so that the u-th interval is defined

as [δu, δu+ δ) and the intervals are indexed by u = 0, 1, 2, . . . , U . Consider discrete time defined

by intervals of length δ = 7 days so that the t-th interval is defined as [δt, δt+δ) and the intervals

are indexed by t = 0, 1, 2, . . . , T . The weekly quantities could be defined as sums of the daily

quantities. However, in what follows both time scales are tracked, since both weekly and daily

data are available.

6.2.2 Distributional assumptions

Transmission and first severity layer

Denote by ξ0
u the number of new infections generated during the uth interval. According to the

assumption of a deterministic transmission model, this quantity is a function of the parameters

π, ι, β, σ, γ, κ , representing the proportion of individuals initially immune; the proportion of

initially infected/infectious individuals;the transmission rate; the rate of becoming infectious;

the recovery rate; and the school-closure effect, respectively. The number of new infections

generated at week t from the beginning of the epidemic, denoted by ϕ0
t , can be defined by
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ϕ0
t =

7t∑
u=7(t−1)

ξ0
u.

Denote by 0
uX

s the number of people that seek care (either going to the GP or going to

hospital) and that have been infected on day u. These people are a Binomial sample of the

new infections generated at u with probability 0θs. Since this probability is very small, the

Binomial distribution can be approximated by a Poisson distribution. So that the number of

new care-seekers infections results from a time non-homogeneous Poisson process, with rate

varying according to ξ0
u and 0θs, i.e.:(
0
uX

s|ξ0
u,

0θs
)
∼ Pois(ξ0

u · 0θs) for u = 0, 1, . . . , U

A number 0
uX

h of these people is admitted to hospital, while the remaining part, 0
uX

f, seeks

care at a GP clinic due to flu symptoms. This classification is assumed to happen according to a

Binomial experiment from the total care seekers 0
uX

s with probability sθh. From the properties

of the Poisson distribution, 0
uX

h and 0
uX

f are distributed according to two independent Poisson

processes with respective rates (1− sθh) · 0θs · ξ0
u and sθh · 0θs · ξ0

u.

Since the parameters sθh and 0θs will always appear in such products, a re-parametrization

can be made:

0θh = 0θs · sθh

0θf = 0θs · sθf

where 0θh and 0θf represent the probability of hospitalization and flu-related GP visit given

infection, respectively.

The daily processes of hospital admissions and flu-related GP consultations, are then de-

scribed by the following equations:(
0
uX

h

∣∣∣∣ξ0
u,

0θh
)
∼ Pois

(
0θh · ξ0

u

)
for u = 0, 1, . . . , U(

0
uX

f

∣∣∣∣ξ0
u,

0θf
)
∼ Pois

(
0θf · ξ0

u

)
for u = 0, 1, . . . , U

(6.1)

While the hospitalised cases might experience another level of severity (ICU admission), the

flu-related GP consultations occur after some delay and are observed with some noise.

Flu related GP-consultation

Let 0ff0:C =
(

0ff0 ,
0ff1 , . . .

0ffC
)

denote the vector of the probabilities of 0, 1, . . . , C days elapsing

between infection and the visit to the GP, respectively. The number of individuals 0
uX

f
u+c

infected at u and visiting the GP after c days, with c = 0, 1, . . . C, can then be thought as the

realization of a Multinomial random variable (r.v.):(
0
uX

f
u:u+C

∣∣∣∣0uxf, 0ff0:C

)
∼ Multi(0

ux
f, 0ff0:C) for u = 0, 1, . . . , U

From this, the number of flu-related GP visits at time u, Xf
u, can be expressed as a convolution

of the Multinomial’s components:

Xf
u =

C∑
c=0

u−c
0X

f
c for u = 0, 1, . . . , U
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which, from the properties of the Poisson, is also distributed according to a time non-homogeneous

Poisson process: (
Xf
u

∣∣∣∣0θf, ξ0
1:U ,

0fh0:C

)
∼ Pois (µfu) for u = 0, 1, . . . , U

where µfu = 0θf ·
∑C

c=0 ξ
0
u−c · 0ffc . The variability of the flu-related GP cases is further affected

by the uncertainty on the parameter 0θf, which can be described by a Gamma prior distribution

with mean ιf and variance 1
εf (

0θf
∣∣∣∣ιf, εf) ∼ Gamma(ιfεf, εf) (6.2)

Background ILI GP consultation

GP-consultation data also include background cases which are cases not related to the influenza

virus but that present symptoms similar to the flu-related cases. The background, endemic,

cases are often assumed to follow a yearly seasonality, peaking around the same time as the

seasonal influenza epidemic (Paul, Held, and Toschke, 2008).

The number of background cases at time u is here denoted by Xb
u and assumed to follow a

Poisson distribution with time varying rate µbu. This rate is assumed to be distributed according

to a Gamma r.v. with mean bu and variance 1
εb =

∑C
c=0 ξ

0
u−c

0ffc
εf . The choice of a prior-variance

increasing with the number of influenza cases, ξ0
u, and with the variance of 0θf, 1

εf , is made for

pragmatic reasons that will become clear in the formulation of the model for virological data.

The above results in the following:(
Xb
u

∣∣∣∣µbu) ∼ Pois (µbu) for u = 0, 1, . . . , U(
µbu

∣∣∣∣bu, εb) ∼ Gamma(buε
b, εb) for u = 0, 1, . . . , U

(6.3)

The seasonality pattern of the endemic cases is modelled by a weekly-varying sine-cosine oscil-

lation of the mean of the background process, bu:

bu = exp

{
ν1 + ν2 cos

(
2πtu
52

)
+ ν3 sin

(
2πtu
52

)}
which is constant for all the days u in the same week tu.

GP consultation data distribution

The total number of GP consultations includes both influenza-related cases and endemic back-

ground cases. The sum of these two processes is denoted here by Xg
u

Xg
u = Xf

u +Xb
u for u = 0, 1, . . . , U

This process is Poisson-distributed with time-varying rate µfu + µbu:(
Xg
u

∣∣∣∣µfu, µbu) ∼ Pois (µfu + µbu) for u = 0, 1, . . . , U (6.4)

The probability of detecting an ILI case, conditionally on visiting the GP is proportional to

the day-specific catchment population of the practices participating in the collection scheme on

day u, here denoted by ζgu .
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Moreover, the probability of attending a GP practice is affected by weekly fluctuations,

caused by the weekend closure of GP practices, so that patients affected by ILI symptoms

further delay their visit until the earliest days of the following week. This is a day-of-the-week

distortion that can be modelled by a day-of-the-week factor shrinking the weekend rate and

inflating the weekday rates as proposed in Birrell et al. (2016). This day-of the week fluctuation

can be detected from the data as shown in Figure 6.5.
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Figure 6.5: Observed of ILI GP consultations by day of the week.

Let b·c denote the day-of-the-week operator that assigns the week-day (1=Mon, 2=Tue,

3=Wed, 4=Thu, 5=Fri, 6=Sat, 7=Sun) to each day u. The day-of the week effect is then

denoted by the parameter ωbuc, for buc = 1, 2, 3, 4, 5, 6, 7. Interpreting ωbuc as a distortion

factor, for identifiability reason, it is useful to assume that its geometric mean over the 7 days

is equal to 1, so that the rate of GP consultation is only re-distributed over the 7 week days

according to the opening time of the GP practices, leading to:∏
i∈{1,2,3,4,5,6,7}

ωi = 1

The reported number of GP consultations for ILI at time u, Y G
u is therefore assumed to be

distributed according to a Binomial r.v. having size equal to the cases Xg
u and with probability

ζgu · ωbuc: (
Y g
u

∣∣∣∣xgu, ζgu , ωbuc) ∼ Bin
(
xgu; ζguωbuc

)
for u = 0, 1, . . . , U

Given Equation 6.4 and the properties of the Poisson distribution, Y g
u , conditionally on the

parameters composing µfu and µbu, is also Poisson-distributed around the overall mean µgu, i.e.:(
Y g
u

∣∣∣∣0θf, ξ0
1:U ,

0ff0:C , µ
b
u, ζ

g
u , ωbuc

)
∼ Pois

(
ζguωbuc (µfu + µbu)

)
∼ Pois

(
ζguωbucµ

f
u + ζguωbucµ

b
u︸ ︷︷ ︸
)

∼ Pois ( µgu )

(6.5)
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for u = 0, 1, . . . , U . Given the two Gamma priors on the parameters 0θf and µbu (Equation 6.3

and 6.2), the rate of this Poisson, µgu, can be approximated by a Gamma (Stewart et al., 2007)

with the following parameters (derivation shown in Appendix F.1):(
µgu

∣∣∣∣ξ0
1:U ,

0ff0:C , ζ
g
u , ωbuc, ι

f, εf, gu, ε
b

)
∼ Gamma

(
εfιf +

buε
f∑C

c=0 ξ
0
u−c

0ffc
;

εf

ζguωbuc
∑C

c=0 ξ
0
u−c

0ffc

)

for u = 0, 1, . . . , U . A Poisson r.v. centred on a Gamma-distributed rate results in a Negative Bi-

nomial r.v. (see Appendix A). Therefore, a final formulation of the data distribution, depending

on the hyper-parameters is:(
Y g
u

∣∣∣∣ξ0
1:U ,

0ff0:C , ζ
g
u , ωbuc, ι

f, εf, gu, ε
b

)
∼ NegBinom

(
εfιf +

buε
f∑C

c=0 ξ
0
u−c

0ffc
; 1 +

ζguωbuc
∑C

c=0 ξ
0
u−c

0ffc
εf

)

for u = 0, 1, . . . , U ; with parametrization NegBinom(r, η) as in Appendix A.

Virology data distribution

The virology data are exploited to uncover the proportion of ILI cases actually affected by the

influenza virus. The number of positive tests at each day u, Y v
u , is assumed to be a Binomial

sample from the number of tests taken Nv
u . The probability of each sample being positive is

equal to µfu
µfu+µbu

, i.e. the rate of flu ILI during day u, over the rate of any ILI during day u. So:(
Y v
u

∣∣∣∣Nv
u , µ

f
u, µ

b
u

)
∼ Binom

(
Nv
u ,

µfu
µfu + µbu

)
for u = 0, 1, . . . , U

As µfu and µbu are assumed Gamma-distributed with the same rate parameter εf∑C
c=0 ξ

0
u−c

0ffc
(this

follows from Equations 6.2 and 6.3 as shown in Appendix F), the quantity µfu
µfu+µbu

is distributed

as a Beta r.v. (see Appendix A):(
µfu

µfu + µbu

∣∣∣∣bu, ξ0
1:U ,

0ff0:C , ι
f, εf

)
∼ Beta

(
ιfεf, bu

εf∑C
c=0 ξ

0
u−c

0ffc

)
for u = 0, 1, . . . , U

This results in the virology data distribution to be rewritten as the Beta-Binomial distribution:(
Y v
u

∣∣∣∣Nv
u , bu, ξ

0
1:U ,

0ff0:C , ι
f, εf

)
∼ BetaBin

(
Nv
u , ι

fεf, bu
εf∑C

c=0 ξ
0
u−c

0ffc

)

for u = 0, 1, . . . , U .

Hospitalization and ICU admissions data distribution

A model for the hospitalizations and ICU-admissions data is proposed in Chapter 5, with the two

data streams analysed jointly, since they are intrinsically dependent: the model equations are

reported again below. Denote by hθic the probability of ICU admission given hospitalization; by
0fhd and hf icd the discrete probability of d weeks elapsing between infection and hospitalization

and hospitalization and ICU admission, respectively; by ζht and ζ ict the probability of being

detected in hospital and in ICU, respectively.

The data-generating process can be expressed as a series of Binomial and Multinomial steps

from the initial Poisson process of the infections 0
tX

h that will be hospitalised (Equation 6.1):
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(
0
tX

h
t:t+D

∣∣∣∣0txh, 0fh0:D

)
∼ Multi(0

tx
h, 0fh0:D) , Xh

t =
D∑
d=0

t−d
0X

h
d(

h
tX

ic

∣∣∣∣xht , hθic) ∼ Bin(xht ,
hθic)(

h
tX

ic
t:t+D

∣∣∣∣ht xic, hf ic0:D

)
∼ Multi(ht x

ic, hf ic0:D) , X ic
t =

D∑
d=0

t−d
hX ic

d(
Y h
t

∣∣∣∣xht , ζht ) ∼ Bin(xht , ζ
h
t )(

Y ic
t

∣∣∣∣xict , ζ ict ) ∼ Bin(xict , ζ
ic
t )

for time t = 1, . . . , T . This model leads to the two marginal data distributions:

(
Y h
t

∣∣∣∣ζht , 0θh, ξ0
0:T ,

0fh0:D

)
∼ Pois

(
ζht · 0θh ·

D∑
d=0

ϕ0
t−d · 0fhd

)
(
Y ic
t

∣∣∣∣ζht , 0θh, ξ0
0:T ,

0fh0:D,
hθic, 0f ic0:D

)
∼ Pois

ζ ict · hθic · 0θh · D∑
d=0

d∑
g=0

ϕ0
t−d−g · 0fhd · hf icg


As in Chapter 5, to compute the joint distribution of (Y h

t ;Y ic
t ) for t = 1, . . . , T , Algorithm 7

is adopted: the marginal distribution of the ICU admissions Y ic
1:T is computed from the Poisson

distribution above and the distribution of the hospitalizations Y h
1:T conditionally on ICU data is

approximated via Monte Carlo (MC) integration.

Note that hospitalization data tend to have a further level of variability compared to ICU

data. Both datasets are affected by reporting noise (i.e. the hospitals that should report do

not always comply), but hospitalization data are also affected by a further under ascertainment

and noise due to the fact that only sentinel trusts are selected, possibly compromising the

representativeness of the data. For this reason the parameter of detection of hospitalised cases,

ζht , is assumed to be distributed according to a Beta r.v. around the observed proportion of the

catchment population of the trusts reporting at time t over the population of England, denoted

by dht (Equation 6.6). The probability of detection in ICU admissions, instead, is assumed to

be exactly equal to the observed proportion of the catchment population of the ICUs reporting

at time t over the population of England: ζ ict = dict . Thus,(
ζht

∣∣∣∣dht , εh) ∼ Beta

(
dht

1− dht
εh, εh

)
(6.6)

Whilst introducing the Beta prior on ζht , the data distribution of the hospitalizations data

conditionally on the hospitalised cases,

(
Y h
t

∣∣∣∣xht , dht , εh), can be rewritten as:

(
Y h
t

∣∣∣∣xht , dht , εh) ∼ BetaBin

(
xht ,

dht
1− dht

εh, εh
)

which can be included straightforwardly in the final approximation step of Algorithm 7 of Chap-

ter 5.
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6.2.3 Prior distributions

The prior distributions on the parameters involved in the model are described below and further

summarised in Table 6.1.

• In the transmission model, uniform priors are assumed for the transmission rate, β,

and the initial proportion of exposed/infectious individuals, ι. The initial proportion of

immune people, π, is assumed to be distributed as a Beta r.v. centred in 0.375; this result

was obtained from the analysis of serological data at the end of the previous season by

collaborators at PHE (Charlett, 2018). The average latent period is assumed to be Log-

Normally distributed with mean 2 days and the average infectious period is assumed known

and equal to 3.14 days; these two values are taken from Birrell et al. (2011). The holidays

factor, κ, models the increase or decrease in infection rate during school closure as follows:

St+1 = St − (1 + κ) · βδSt
It
N

for t ∈ school holidays

κ can take any value between -1 and +∞, with negative values indicating a decrease of

infectiousness during school holidays and positive values indicating an increase of infec-

tiousness during school closure. This parameter is assigned a shifted Log-Normal prior

distribution centred on 0. Lastly, other parameters involved in the transmission process

are: the population size, fixed to the latest available data from the Office of National

Statistics (ONS), N = 55268100, i.e. the mid-2016 estimates (Office of National Statis-

tics, 2017); and the length of the interval at which the discrete-time transmission model

is evaluated, which is set to δ = 0.25 day.

• The main severity parameters are 0θf, 0θh and hθic. The first probability of flu-related

GP consultations, 0θf, has hyper-parameters ιf and εf. The former is given a Uniform

prior between 0 and 1 and the precision εf is given a Uniform prior between 0 and 5000.

Sampling directly from the priors leads to a Uniform-like distribution between 0 and 1 for
0θf (see plots in the result section). 0θh and hθic are both given Uniform priors between

0 and 1.

• The discrete waiting-times between consecutive severe events are assumed known. The

distribution of the time from infection to flu-related GP consultation,0ff0:C , is obtained by

discretising in days the density of a Gamma (3.41,0.83) (taken from the sum of the prior

distributions assumed in Birrell et al. (2011)). The distribution of the time from infection

to hospitalization, 0fh0:D, and from hospitalization to ICU admission, hf ic0:D, are obtained

by discretising in days two Exponential distributions with rate 0.32 and 0.4, respectively

(from the analysis of individual data from the USISS sentinel scheme).

• The mean of the background ILI consultations is centred on a sine-cosine transformation

of the weeks. The parameters ν1, ν2 and ν3 specifying this behaviour are assigned an

informative prior obtained from fitting an HHH model (Held, Höhle, and Hofmann, 2005)

to GP data from January 2015 to September 2017. This analysis is reported in Appendix

F.2. The posterior samples of the endemic parameters are used to formulate independent

Normal prior distributions on ν1, ν2 and ν3.
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• Six parameters for the day of the week effect are to be estimated (ω4, the effect of

Thursday, can be derived from the others thanks to the condition of the geometric mean

being equal to 1). The parameter vector (ω1, ω2, ω3, ω5, ω6, ω7) is assigned multivariate

Log-Normal prior centred in 1, implicitly assuming no effect of the day of the week, and

every log(ω) is given variance equal to 0.4.
ω1

ω2

ω3

ω5

ω6

ω7

 ∼ Log-Normal(log(1), Vω)

Vω is formulated so that the equality of variances is preserved also for the parameter

ω4 = 1

/∏
i∈1,2,3,5,6,7 ωi. The derivation, reported in in Appendix F.3 and in Birrell et al.

(2016), leads to:

Vω = 0.16



1 −1/6 −1/6 −1/6 −1/6 −1/6

−1/6 1 −1/6 −1/6 −1/6 −1/6

−1/6 −1/6 1 −1/6 −1/6 −1/6

−1/6 −1/6 −1/6 1 −1/6 −1/6

−1/6 −1/6 −1/6 −1/6 1 −1/6

−1/6 −1/6 −1/6 −1/6 −1/6 1


• The detection parameters are mainly informed by the catchment population of the

reporting trusts or GP clinics, as a proportion of the population of England, denoted by

dgu for GP data, dht for hospital data and dict for ICU data. Specifically: ζgu = dgu and

ζ ict = dict , while ζht , as mentioned above, is given a Beta prior with hyper-parameters dht ,

fixed, and εh, influencing the precision of the data, being assigned a uniform prior between

0 and 100.
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Parameter Name Support Prior

Transmission rate β [0,∞) Uniform(0,4)

Initial immunity π [0, 1] Beta(37.5,62.5)

Initial exposed/infectious ι [0, 1] Uniform(0, 0.1)

Average latent period dL = 2/σ [0.5,+∞) Log-Normal(log(2),0.5)

Average infectious period dI = 2/γ - PP at 3.14

Total population N - PP at 55268100

Factor for holidays κ [−1,+∞) shifted Log-Normal(0,1)

Mean of Case flu-symptoms risk ιf [0, 1] Uniform(0,1)

Precision of Case flu-symptoms risk εf [0,+∞] Uniform(0,5000)

Case hospitalization risk 0θh [0, 1] Uniform(0,1)

Hospital ICU admission risk hθic [0, 1] Uniform(0,1)

Prob. of time infection → flu visit 0ff0:C - PP Gamma (3.41,0.83)

Prob. of time infection → hospitalization 0fh0:C - PP Exp (0.32)

Prob. of time hospitalization → ICU hf ic0:C - PP Exp (0.4)

HHH model parameter 1 ν1 (−∞,+∞) Norm(4.66, 0.17)

HHH model parameter 2 (sin) ν2 (−∞,+∞) Norm(-0.2, 0.11)

HHH model parameter 3 (cos) ν3 (−∞,+∞) Norm( 0.99, 0.08)

Monday, Tuesday, Wednesday,

Friday, Saturday, Sunday effect


ω1

ω2

ω3

ω5

ω6

ω7

 [0,+∞) Log-Normal(log(1),Vω)

Thursday effect ω4 - 1

/∏
i∈1,2,3,5,6,7 ωi

GP consultation detection ζgu - PP at observed dgu

Mean of hospitalization detection - - PP at observed dhu

Shape parameter of hospitalization detection εh [0,+∞) Uniform(0,100)

ICU admission detection ζ icu - PP at observed dicu

Table 6.1: Prior distributions of all the parameters of the model. The parameters in grey are assumed

known and fixed while the others are estimated. PP stands for Point Prior.
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6.3 Results

A retrospective analysis of all the available data is performed. The goal of this analysis is to

obtain the joint posterior distribution for the unknown parameter vector: θ = (β, π, ι, dL, κ, ι
f,

εf, 0θh, hθic, ν1, ν2, ν3, ε
h, ω1, ω2, ω3, ω5, ω6, ω7).

Specifics of the algorithm used to sample from the joint posterior distribution, as well as

results and model assessment are reported below.

6.3.1 Specifics of the inference

All the elements of θ are transformed to lie in (−∞,+∞), and a bespoke Metropolis Hastings

(MH) sampler is coded to carry out the analysis.

The analysis is composed of two phases: firstly a Gibbs-sampler-like algorithm samples each

element of the vector θ conditional on the others and in the second block-update phase the whole

parameter vector θ is sampled jointly. In the Gibbs sampling, a Normal random walk is run on

the transformed parameter space of θ; the proposal Normal distributions have parameter-specific

standard deviations sβ, sπ, sι, and so on.

The first phase comprises: 10,000 adaptation iterations, where the values sβ, sπ, sι, . . . , sεf are

adapted to lead to a desirable acceptance rate (between 0.2 and 0.3); 50,000 burn-in iterations,

discarded; and 100,000 sampling iterations, saved with a thinning factor of 500. Three parallel

chains are run, resulting in 6,000 samples for each parameter.

The samples are used to estimate S, the variance-covariance matrix for the 19-variate Normal

proposal for the second block-update phase: the observed variance-covariance matrix of the

sample is multiplied by a factor which is adapted for the first 100,000 iterations of the block-

update algorithm; 100,000 iterations are then discarded as burn-in; 1,000,000 iterations are

sampled with a thinning factor of 200. Three parallel chains are run, resulting in 15,000 samples

for each parameter.

The MH algorithm was coded in R (R Core Team, 2018). However the most computationally-

expensive step is the evaluation of the joint likelihood of the hospital and ICU data, for which

the MC algorithm proposed in Chapter 5 and coded in Rcpp (Eddelbuettel and François, 2018)

is used.

The whole analysis ran on a low-performance laptop due to confidentiality constraints given

by the data provider, taking in total twenty days.

6.3.2 Parameter estimation

In what follows, unless specified otherwise, prior distributions are represented in red and poste-

rior distributions are represented in green. Summary statistics of the posterior distributions are

reported in Table 6.2.

Transmission

Figure 6.6 reports the prior-to-posterior plots of the five parameters of the transmission model.

As already shown in Chapter 3, some parameters are highly (or uniquely) informed by the prior

distributions. This is the case for the initial immunity π, for which the posterior distribution
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coincides with its prior, and the average latent period, that is also highly influenced by its prior.

Data are characterised by a sudden increase in cases at the end of December and by a prolonged

influenza-peak activity. These characteristics result in a shift of dL towards higher values, which

leads to a longer epidemic, and by posterior values for κ, the school holiday factor, higher than

one, allowing transmission to increase during the Christmas break.
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Figure 6.6: Prior (red) and posterior (green) distributions of the transmission parameters: the

transmission rate β, the initial immunity π, the initial proportion of exposed/infectious ι, the

average latent period dL, the factor for school holidays κ.

The basic and effective reproduction numbers, R0 and Re(0), are useful summaries of the

transmission intensity over the season. Their prior-to-posterior plots are reported in Figure 6.7,

both during school periods and school holidays. During school holidays, transmission becomes

more intense, but also more variable, given the uncertainty around the parameter κ.

Finally, to have an overall picture of transmission over the course of the epidemic, the 95%

credible intervals (CrIs) for the daily number of new infections are plotted in Figure 6.8. The

trajectories clearly show the breakpoints in transmission.
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Figure 6.7: Prior (red) and posterior (green) distribution of the basic and effective reproduction

number during school periods (top panels) and during holiday periods (bottom panels).
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Figure 6.8: Median (red) and 95% CrIs (green) for the daily number of new infections. The grey

areas represent the days corresponding to school holidays. 20 randomly selected trajectories

are also computed and plotted as thin green lines.
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Severity

The severity parameters include: ιf and εf, i.e. the mean and the precision of the probability

of GP consultation given infection, 0θf; the probability of hospitalization given infection, 0θh;

and the probability of ICU admissions given hospitalization, hθic.
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Figure 6.9: Prior (red) and posterior (green) distributions of the severity parameters: ιf, the

mean of the case-GP-consultation risk 0θf; its precision εf; the case hospitalization risk 0θh;

and the probability of ICU admission given hospitalization hθic.

The interpretation of the magnitude of 0θf (and the related ιf and εf) necessitates some

caution because GP visits are also affected by the day-of-the-week effect. As shown below in

the results on the day-of-the-week effect, the risk of GP visit can become four times bigger or

20 times smaller according to the day of the week at which the visit takes place.
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Figure 6.10: Distribution of 0θf under the posterior (left) and prior (right) distribution of the

parameters ιf and εf

The prior-to-posterior plots of the parameters describing severity are reported in Figure 6.9.

All the parameters are highly informed by the data and the posterior distributions give a clear

picture of the severity during the 2017/18 influenza epidemic. The probability of hospitaliza-
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tion given infection is around 0.3% and the probability of ICU admission given hospitalization

stretches between 6 and 7%.

To interpret the results on ιf and εf, it is useful to draw the distribution of 0θf under the

prior and posterior distributions of these two parameters. Figure 6.10 shows that the prior

knowledge on 0θf was null compared to a well-informed posterior distribution.

Background ILI

The prior-to-posterior plots of the three parameters describing the background, non-flu-infected,

ILI GP visits are reported in Figure 6.11.
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Figure 6.11: Prior (red) and posterior (green) distributions of the three parameters of the HHH

model.

The resulting average of the background-ILI GP visit process is drawn in Figure 6.12. Com-

paring the posterior distribution with the prior, the incidence is slightly delayed but has similar

magnitude.
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Figure 6.12: Median (solid line) and 95% CrIs (shaded area) of the prior (red) and posterior

(green) for the mean of the rate of the daily number of non-influenza ILI GP consultations.
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Day-of-the-week effect

The prior-to-posterior plots of the day-of-the-week parameters are reported in Figure 6.13. Mon-

day is the day with highest consultation rate (4 times bigger than the weekly average), while

Sunday has the smallest rate (20 times smaller than the average).
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Figure 6.13: Prior (red) and posterior (green) distributions of the day-of-the-week parameters.

The posterior distributions of these parameters, together with the distribution plotted in

Figure 6.10, allow to compute the day-specific risk of GP consultation for influenza cases, plotted

in Figure 6.14.
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Figure 6.14: Density strips of the day-specific probability of GP consultation for influenza

cases.
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Parameter Name Median (95% CrI)

Transmission rate β 0.6189 (0.5284-0.747)

Initial immunity π 0.3744 (0.2836-0.4709)

Initial exposed/infectious ι 1.519·10−4 (7.1756·10−5-2.668·10−4)

Average latent period dL = 2/σ 3.5437 (1.3458-6.2044)

Factor for holidays κ 0.4273 (0.2523-0.6311)

Mean of Case flu-symptoms risk ιf 0.0025 (0.0018-0.0038)

Precision of Case flu-symptoms risk εf 544.5252 (350.1071-804.3077)

Case hospitalization risk 0θh 0.0032 (0.0022-0.0049)

Hospital ICU admission risk hθic 0.0667 (0.0574-0.078)

HHH model parameter 1 ν1 6.7618 (6.6705-6.8495)

HHH model parameter 2 (sin) ν2 -0.008 (-0.0987-0.0792)

HHH model parameter 3 (cos) ν3 0.7789 (0.6742-0.8862)

Monday effect ω1 4.067 (3.6789-4.5025)

Tuesday effect ω2 3.0727 (2.7635-3.4208)

Wednesday effect ω3 2.9227 (2.6261-3.2603)

Friday effect ω5 2.9043 (2.5997-3.2598)

Saturday effect ω6 0.0939 (0.0781-0.1122)

Sunday effect ω7 0.0375 (0.0291-0.0479)

Shape parameter of hospitalizations detection εh 25.2376 (13.863-44.1221)

Table 6.2: Medians and 95% CrIs of the posterior distribution of all the parameters.

Reporting

The posterior distribution of the shape parameter of the hospitalization detection is reported in

Figure 6.15. The consequent posterior predictive distribution of the detection parameter ζh1:T is
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Figure 6.15: Prior (red) and posterior (green) distributions of the shape parameter of the

detection of influenza hospitalizations.

reported in Figure 6.16, where the high variability of this parameter can be seen.
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Figure 6.16: Median (red) and 95% CrIs (green) for the probability of detecting an hospitalised

influenza case. 20 trajectories are also simulated and plotted as thin green lines.

6.3.3 Performance assessment

The goodness of fit of the model is evaluated graphically. Figure 6.17 plots the predictive

posterior distribution of the observed GP consultations for ILI versus the data both on the

natural and on the logarithmic scale.

The model describes well the epidemic during its beginning and its end, however the peak

of the data is not well reproduced. The variability of the predictions is particularly high in

the middle of the epidemic, reflecting the high variability assumed in the severity model and

the uncertainty that characterizes the prior distributions of many parameters. The day of the

week effect, instead, reflects well the shifts of the observations during weekends, compared to

weekdays.

Virology data are much better modelled (Figure 6.18): the peak of the epidemic is reproduced

well and the median predicted number of positives always lies close to the observed data.

Hospital and ICU data are to be considered together. While the model proposed above ac-

counts for extra sources of variability for the hospital data (with the Beta prior distribution), the

ICU data are assumed affected by Poisson noise only. Dropping this assumption will compromise

the possibility of direct sampling of the hidden states in Algorithm 7. However, over-dispersion

parameters have often been found useful, if not essential, to the modelling of infectious-disease

data (Bretó, 2018). As a result, the ICU data are not reproduced well by the model (see Figure

6.20).

By contrast, the predictive distributions of the hospital data are more variable and the CrIs

always include the observed value. Moreover, the median trajectory shows a second peak in

correspondence with the observed second peak in the data.
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Figure 6.17: Median and 95% CrIs (green) for the posterior predicted distribution of the

number of daily GP consultations on the natural (top panel) and logarithmic (bottom panel)

scale. Red points are data.
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Figure 6.18: Median and 95% CrIs (green) for the posterior predicted distribution of the

number of daily influenza-positive tests. Red points are data.
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Figure 6.19: Median and 95% CrIs (green) for the posterior predicted distribution of the

number of weekly hospital admissions. Red points are data.
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Figure 6.20: Median and 95% CrIs (green) for the posterior predicted distribution of the

number of weekly ICU admissions. Red points are data.

6.4 Discussion

This chapter reports the analysis of the latest epidemic of seasonal influenza and the inference of

its transmission and severity. Multiple data streams are used, each monitoring cases at different

levels of severity. The model accounts for two important features of the data streams: counts

can be dependent across different data streams and counts can include non-influenza cases.

The analysis provides sensible results. Firstly, the model fits well to most of the data

analysed, with posterior predictive credible intervals often covering the observed data. When

mismatch between predictions and data exists, this might be due either to the rigid temporal

structure of the underlying transmission model or to conflicting information across the data

sources or to both. Secondly, many transmission severity and detection parameters are well

informed by the data. Despite epidemic models being often affected by identifiability issues,

in this analysis a high number of parameters is investigated and only few of them are notably

affected by unidentifiability: most of the posterior distributions, instead, are well identified and

distinguishable from the prior.

To further improve fitting, the model could be extended in a number of ways. The first would

be to consider a more flexible temporal structure for transmission, for example by assuming a

Gaussian process for the rate β similarly to Shubin et al. (2016). Another important point

would be to better model heterogeneity in contact and transmission by adopting an age-specific

and strain-specific model. Under the inference perspective instead, the analysis could benefit

from the use of more adequate hardware and computational-efficiency could be enhanced by

parallelizing the algorithms (e.g. in the MC approximation for the hospital/ICU data).
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To the knowledge of the author however, such a complex amount of data has never been

synthesized by coupling a fully stochastic severity and detection model with a deterministic

transmission model.

More often a fully stochastic state space model (SSM) is defined, with unnecessary waste of

computational time for a stochastic epidemic model which might be easily approximated by a

deterministic epidemic model (Marmara, Cook, and Kleczkowski, 2014; Ong et al., 2010; Shubin

et al., 2016). Alternatively, people have used deterministic transmission and severity models

attributing all the data noise to over-dispersion due to detection (Birrell et al., 2011), though

this is not likely to be the only source of variability.

Hence, the model proposed here is very innovative because it merges multiple data, still

accounting for many layers of variability and for plausible dependencies.

Moreover, in the future, this work can be approached under a value-of-information perspec-

tive (Jackson et al., 2017) and questions such as: which data carries which information? or

what amount of variability is attributable to the hidden state x ? can be addressed. Answers to

these questions are key to future data collection planning.
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Chapter 7

Conclusions

Pippin: I didn’t think it would end this way.

Gandalf: End? No, the journey doesn’t end here.

J. R. R. Tolkien, The Lord of the Rings

About 100 years ago the emergence of a new variant of the influenza virus, called influenza

H1N1, led to the Spanish Flu pandemic reducing the world’s population by at least 50 million

and making life expectancy drop by, on average, 12 years (The Influenza Epidemic of 1918 ).

Since then, pandemic and seasonal epidemics have threatened global health, so much so that in

the UK, the National Risk Register of Civil Emergencies lists an outbreak of pandemic influenza

as the greatest non-terrorism risk faced by the country (Cabinet Office, 2015).

To detect pandemics and, above all, to monitor seasonal influenza epidemics, many countries

have developed surveillance schemes of influenza activity (WHO, 2013).

Exploiting the available data to quantify severity and transmission is, therefore, key for

health policies aimed at allocating resources. This thesis focuses on the estimation of severity

and transmission using surveillance data.

From a statistical point of view, this topic is particularly interesting: the data collected are

only partial snapshots of a very complex unobserved phenomenon; this phenomenon evolves over

time as a stochastic process; the data often come from multiple sources, possibly affected by

dependencies; and further information might be available in the form of expert prior knowledge.

Hence, the inference of influenza severity and transmission is here addressed within a Bayesian

evidence synthesis framework.

7.1 Main Findings

This work is placed at the interface of public health, epidemic/dynamic models and Bayesian

methods and computation. Advances are made in the three fields: from a public health point

of view, relevant estimates of transmission and severity are provided to Public Health England

(PHE); epidemic models with new features are formulated and applied to data never or only

partially exploited before; and algorithms are extended and applied to new contexts.
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7.1.1 Severity

Chapter 2 provides a detailed description of some of the existing methods for the estimation

of the hospitalization case fatality risk (CFR). Rather than putting together a systematic and

comprehensive review, the focus of the chapter is on showing the applicability of existing methods

to the data collected in England.

A new model is proposed that allows the estimation of the time-varying case fatality risk

(tvFR) from time-to-event data. However, like many of the other estimators reviewed, sensi-

ble estimates can be obtained only when large/complete time-to-event datasets are available.

Time-to-event data on influenza severe events collected in England are rarely large and they

often contain missing observations. By contrast, count data on the number of admissions and

deaths alone are available but no estimator, apart from the one suggested by the World Health

Organization (WHO) which is biased and over-precise, can infer the CFR from these data.

Aiming to exploit available count data, the process of severity is framed within the state

space model (SSM) scheme in Section 4.4 and a sequential Monte Carlo (SMC) algorithm to

approximate the likelihood is proposed. The SMC algorithm used works on a very constrained

space so an extension is proposed to allow samples from the boundaries of the constrained space

to be included. The proposed algorithm can be used to estimate the CFR in the early phases of

an epidemic, and it is shown to provide better estimates than the ones derived with the WHO

estimator.

7.1.2 Transmission from one source

Chapter 3 provides a review of epidemic models, their formulation and classification. The

analysis of three seasons of influenza in England is presented as a case study. Transmission is

inferred from data on the weekly counts of Intensive Care Unit (ICU) admissions.

Here the major obstacles of epidemic modelling arise: lack of parameter identifiability

strongly compromises the inference and one data source alone might not be sufficient to es-

timate the whole process. Nevertheless, quantification of useful characteristics, such as the

effective reproduction number and the probability of ICU admission given infection, are pro-

vided. Likewise, a prediction exercise is carried out assuming that counts become available in

real time. Long term predictions can be drawn from soon after the epidemic peak.

7.1.3 Transmission from multiple sources

While exploring transmission from multiple sources, particular care should be taken in integrat-

ing information from possibly dependent data.

If a stochastic transmission model is used and combined with a stochastic severity model

(as in Section 4.5), classical SMC techniques can be used to approximate the likelihood of the

observed data. Conditional independence and Markovianity are explicitly modelled in the as-

sumed SSM and therefore a classical bootstrap particle filter (BPF) can be used. The innovation

of the model of Section 4.5 is that it approaches the severity process as an immigration-death

process, accounting for the delay between events of different levels of severity, which distinguish

this work from other applications of SMC methods to stochastic epidemic models (Marmara,

Cook, and Kleczkowski, 2014).
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If, as is realistic for the case of seasonal influenza, a deterministic epidemic model can be used,

the stochasticity and the dependence between multiple data sources are embedded in the severity

and observational process. Chapter 5 focusses on formulating a deterministic-transmission and

stochastic-severity model that allows for dependent data. The relevance of the dependence is

further investigated with a simulation study that shows that, for data that are assumed highly

dependent, ignoring the dependence between data sources might cause significant over-precision

in the estimates.

Lastly in Chapter 6 a model that jointly analyses four different data sources collected in

England is formulated. This model combines a deterministic epidemic model with a stochastic

severity and observational model. The key achievement of this chapter is the construction of

a unique model that gives a comprehensive picture of influenza in England, simultaneously

modelling severe cases (ICU and hospital admissions), mild cases (influenza-related General

Practitioner (GP) consultations) and background, non influenza-related, GP consultations for

influenza-like illness (ILI). Estimates of relevant quantities are obtained, including: the case-GP

consultation risk, the case-hospitalization risk, the hospital to ICU admission risk, the basic and

effective reproduction numbers. The model shows a fair fit to the data analysed, as well as some

glimpse of possible conflict of information across data sources.

7.2 Future work

This thesis, while providing some answers to the questions posed at the beginning of the PhD,

opens new research directions to be explored in the future.

Some of the future work should be aimed at extending and improving the models proposed

in this thesis, as well as focussing on the wider methodological aspects that have arisen.

7.2.1 Model extensions

Multiple strains

In the introduction, the influenza virus was characterised as a highly-mutating virus; nevertheless

none of the analyses presented in this thesis have included information on the type or sub-type

of influenza. The counts of influenza cases used in Chapters 3 and 6 might also be available at

the type or sub-type level but no clear formulation of how the different types of virus interact

is available yet. Similarly, serology data are often collected for all the circulating viruses but

whether a previous infection from a virus might grant immunity to a different type/sub-type is

still to be explored (Wikramaratna et al., 2015).

Structured epidemics

As explained in Chapter 3, structures in the population might lead to inhomogeneous transmis-

sion dynamics. These structures might be due to spatial aggregation, age grouping, etc. (Birrell

et al., 2016). Moreover, individuals belonging to different groups might have different propensity

to acquire infection or to develop severe symptoms (Presanis et al., 2014). This aspect has not

been addressed by the models presented in this thesis and constitutes a natural evolution of this

work.
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Time varying rates and probability

The only temporal structure present in the models used here is the difference in transmission

during school opening and school closure and the day of the week effect. The transmission rate,

as well as many other parameters, is likely to change over time following unknown trends and

oscillation. Parameters have not been allowed to vary over time yet; this would be an interesting

extension to make models more realistic (Shubin et al., 2016).

7.2.2 Model comparison and model choice

Both stochastic and deterministic models have been proposed. Combinations of the two aspects

(e.g. stochastic transmission and stochastic severity, deterministic transmission and stochastic

severity) are abundant and these models can achieve a high level of granularity and stochasticity.

However, there is not a unique criteria to choose between one model and another: one model

might result in a very good fit to the data but provide unreliable forecasts (Shubin et al., 2016);

another could provide precise and unbiased forecasts at the expense of long computational time,

which would prevent a timely use of the model; or again, a candidate model can fit the data

very well but lead to non-interpretable parameters, preventing the comparison of the analysed

epidemic with historical outbreaks (Brooks et al., 2015; Johnson et al., 2018).

A review of the statistical methodology for model evaluation/choice that can be applied to

epidemics is presented in Gibson, Streftaris, and Thong (2018). Despite providing a considerable

set of indexes and criteria, this paper does not deal with model evaluation based on predictive

ability (Czado, Gneiting, and Held, 2009) and does not provide criteria to discriminate between

models when the goal of the analysis is explicit (e.g. when there is a prediction goal compared

to when the goal is retrospective fit of data).

Moreover, to the author’s knowledge, these methods have never been applied in real time: as

the data become available, a model chosen in an early stage of the epidemic might be replaced by

a different, possibly more complex, model. Computationally-efficient models might be combined

with concurrent model-choice criteria in order to achieve sequential adaptation of the whole

analysis.

7.2.3 Value of information

A joint model for transmission and severity exploiting multiple data sources is proposed in Chap-

ter 6. An interesting aspect that has not been addressed yet is the amount of information that

is carried by each dataset and whether the introduction of a specific data source improves some

aspects (and which aspects) of the inference. This requires a value-of-information perspective

of the analysis (Jackson et al., 2017), which might suggest focussing resources on the collection

of informative datasets and discontinuing less valuable collection schemes.

7.2.4 Modern computation methods in infectious disease inference

Advances in the field of computational methods, and more specifically Monte Carlo (MC) al-

gorithms, are highly related to the possibility of performing faster and better inference. The

inferential methods used in this thesis are classical Bayesian methods exploiting standard al-

gorithms (e.g. Metropolis Hastings (MH)) or techniques that have already been around for
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more than two decades (e.g. SMC algorithms such as the BPF). New MC methods should be

experimented in the context of infectious disease analysis. Methods such as Hamiltonian Monte

Carlo (HMC) (Neal, 2011) or algorithms based on piecewise deterministic Markov processes

(Bierkens et al., 2018) have the promising potential of exploring a parameter space according to

the geometry of the system (Betancourt, 2017) and this is particularly appealing for dynamical

systems.

The application of these algorithms to the context of infectious disease seems an exciting

follow-up to the work presented in this thesis.
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Shubin, M., A. Lebedev, O. Lyytikäinen, and K. Auranen (2016). “Revealing the True Incidence

of Pandemic A(H1N1)pdm09 Influenza in Finland during the First Two Seasons - An Anal-

ysis Based on a Dynamic Transmission Model”. In: PLoS Comput. Biol. 12.3, pp. 1–19. issn:

15537358. doi: 10.1371/journal.pcbi.1004803.

Soetaert, K., T. Petzoldt, and R. W. Setzer (2010). “Package deSolve : Solving Initial Value

Differential Equations in R”. In: J. Stat. Softw. 33.9, pp. 1–25. issn: 15487660. doi: 10.

18637/jss.v033.i09.

Solin, A., M. Kok, N. Wahlstrom, T. B. Schon, and S. Sarkka (2018). “Modeling and Interpo-

lation of the Ambient Magnetic Field by Gaussian Processes”. In: IEEE Trans. Robot. 34.4,

pp. 1112–1127. issn: 15523098. doi: 10.1109/TRO.2018.2830326. arXiv: 1509.04634.

Stewart, L and P McCarthy Jr (1992). “The use of Bayesian belief networks to fuse continu-

ous and discrete information for target recognition, tracking and situation assessment”. In:

Proc SPIE 1699 Signal Process. Sens. Fusion Target Recognit. July 1992, pp. 177–184. issn:

00396028. doi: 10.1117/12.138224.

Stewart, T., L. Strijbosch, H. Moors, and P. van Batenburg (2007). “A Simple Approximation

to the Convolution of Gamma Distributions ( Revision of DP 2006-27)”. In: Cent. Discuss.

Pap. 2007-70.

Streftaris, G. and G. J. Gibson (2002). “Statistical inference for stochastic epidemic models”.

In: Proc. 17th Int. Work. Stat. Model. Chania January 2002, pp. 1–8.

Taubenberger, J. K. and D. M. Morens (2006). “1918 Influenza: The mother of all pandemics”.

In: Emerg. Infect. Dis. 12.1, pp. 15–22. issn: 10806059. doi: 10.3201/eid1209.05-0979.

Taubenberger, J. K. and D. M. Morens (2008). “The Pathology of Influenza Virus Infections”.

In: Annu. Rev. Pathol. Mech. Dis. 3.1, pp. 499–522. issn: 1553-4006. doi: 10.1146/annurev.

pathmechdis.3.121806.154316.

Te Beest, D. E., P. J. Birrell, J. Wallinga, D. De Angelis, and M. van Boven (2015). “Joint mod-

elling of serological and hospitalization data reveals that high levels of pre-existing immunity

and school holidays shaped the influenza A pandemic of 2009 in the Netherlands.” In: J. R.

Soc. Interface 12.103, p. 20141244. issn: 1742-5662. doi: 10.1098/rsif.2014.1244.

The Phoenix Partnership (2013). Real-time Syndromic Surveillance. url: www.researchone.

org/public-health-monitoring/ (visited on 12/03/2018).

Tom, B. D. M., A. J. van Hoek, R Pebody, J McMenamin, C Robertson, M Catchpole, and D

De Angelis (2011). “Estimating time to onset of swine influenza symptoms after initial novel

A(H1N1v) viral infection.” In: Epidemiol. Infect. 139.9, pp. 1418–1424. issn: 1469-4409. doi:

10.1017/S0950268810002566.

Treanor, J. (2004). “Influenza Vaccine — Outmaneuvering Antigenic Shift and Drift”. In: N.

Engl. J. Med. 350.3, pp. 218–220. issn: 0028-4793. doi: 10.1056/NEJMp038238.

Tuite, A. R. and D. N. Fisman (2018). “The IDEA model: A single equation approach to the

Ebola forecasting challenge”. In: Epidemics 22, pp. 71–77. issn: 18780067. doi: 10.1016/j.

epidem.2016.09.001.

UNAIDS (2018). Fact sheet - Latest statistics on the status of the AIDS epidemic. 2017 GLOBAL

HIV STATISTICS. url: http://www.unaids.org/en/resources/fact-sheet (visited on

07/30/2018).

https://doi.org/10.1371/journal.pcbi.1004803
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.1109/TRO.2018.2830326
http://arxiv.org/abs/1509.04634
https://doi.org/10.1117/12.138224
https://doi.org/10.3201/eid1209.05-0979
https://doi.org/10.1146/annurev.pathmechdis.3.121806.154316
https://doi.org/10.1146/annurev.pathmechdis.3.121806.154316
https://doi.org/10.1098/rsif.2014.1244
www.researchone.org/public-health-monitoring/
www.researchone.org/public-health-monitoring/
https://doi.org/10.1017/S0950268810002566
https://doi.org/10.1056/NEJMp038238
https://doi.org/10.1016/j.epidem.2016.09.001
https://doi.org/10.1016/j.epidem.2016.09.001
http://www.unaids.org/en/resources/fact-sheet


BIBLIOGRAPHY 171

Van Houwelingen, H. and H. Putter (2011). Dynamic prediction in clinical survival analysis.

CRC Press.

Van Kerkhove, M. D. et al. (2010). “Studies Needed to Address Public Health Challenges of the

2009 H1N1 Influenza Pandemic : Insights from Modeling”. In: PLoS Med. 7.6, pp. 1–6. issn:

1549-1676. doi: 10.1371/journal.pmed.1000275.

Veach, E. and L. J. Guibas (1995). “Optimally combining sampling techniques for Monte Carlo

rendering”. In: Proc. 22nd Annu. Conf. Comput. Graph. Interact. Tech. - SIGGRAPH ’95,

pp. 419–428. issn: 00978930. doi: 10.1145/218380.218498.

Viboud, C., P. Y. Boëlle, F. Carrat, A. J. Valleron, and A. Flahault (2003). “Prediction of the

Spread of Influenza Epidemics by the Method of Analogues”. In: Am. J. Epidemiol. 158.10,

pp. 996–1006. issn: 00029262. doi: 10.1093/aje/kwg239.

Vynnycky, E and W. J. Edmunds (2008). “Analyses of the 1957 (Asian) influenza pandemic

in the United Kingdom and the impact of school closures”. In: Epidemiol. Infect. 136.2,

pp. 166–179. issn: 0950-2688. doi: 10.1017/s0950268807008369.

Vynnycky, E. and R. White (2010). An introduction to infectious disease modelling. Oxford

University Press.

WHO (2010). H1N1 in post-pandemic period. url: http://www.who.int/mediacentre/news/

statements/2010/h1n1_vpc_20100810/en/.

WHO (2013). Global Epidemiological Surveillance Standards for Influenza. Tech. rep.

WHO (2014). Metrics: Disability-Adjusted Life Year (DALY). Quantifying the Burden of Disease

from mortality and morbidity. url: http://www.who.int/healthinfo/global_burden_

disease/metrics_daly/en/ (visited on 10/20/2018).

WHO (2015). A manual for estimating disease burden associated with seasonal influenza. World

Health Organization.

WHO (2016). Ebola Situation Report - 30 March 2016. url: http://apps.who.int/ebola/

current-situation/ebola-situation-report-30-march-2016 (visited on 07/30/2018).

WHO (2018a). Health topics. Infectious diseases. url: http://www.who.int/topics/infectious_

diseases/en/ (visited on 07/31/2018).

WHO (2018b). Influenza (Seasonal). url: http://www.who.int/news-room/fact-sheets/

detail/influenza-(seasonal) (visited on 10/19/2018).

Wearing, H. J., P. Rohani, and M. J. Keeling (2005). “Appropriate models for the management

of infectious diseases”. In: PLoS Med. 2.7, pp. 0621–0627. issn: 15491277. doi: 10.1371/

journal.pmed.0020174.

Webster, R. G., A. S. Monto, T. J. Braciale, and R. A. Lamb, eds. (2013). Textbook of Influenza.

Oxford, UK: John Wiley & Sons, Ltd. isbn: 9781118636817. doi: 10.1002/9781118636817.

Wikramaratna, P. S., A. Kucharski, S. Gupta, V. Andreasen, A. R. McLean, and J. R. Gog

(2015). “Five challenges in modelling interacting strain dynamics”. In: Epidemics 10, pp. 31–

34. issn: 18780067. doi: 10.1016/j.epidem.2014.07.005.

Wong, J. Y., H. Kelly, D. K. M. Ip, J. T. Wu, G. M. Leung, and B. J. Cowling (2013a). “Case

Fatality Risk of Influenza A (H1N1pdm09): A Systematic Review Jessica”. In: Epidemiology

24.6, pp. 830–841. issn: 1044-3983. doi: 10.1097/EDE.0b013e3182a67448.

Wong, J. Y. et al. (2013b). “Infection fatality risk of the pandemic a(H1N1)2009 virus in Hong

Kong”. In: Am. J. Epidemiol. 177.8, pp. 834–840. issn: 00029262. doi: 10.1093/aje/kws314.

https://doi.org/10.1371/journal.pmed.1000275
https://doi.org/10.1145/218380.218498
https://doi.org/10.1093/aje/kwg239
https://doi.org/10.1017/s0950268807008369
http://www.who.int/mediacentre/news/statements/2010/h1n1_vpc_20100810/en/
http://www.who.int/mediacentre/news/statements/2010/h1n1_vpc_20100810/en/
http://www.who.int/healthinfo/global_burden_disease/metrics_daly/en/
http://www.who.int/healthinfo/global_burden_disease/metrics_daly/en/
http://apps.who.int/ebola/current-situation/ebola-situation-report-30-march-2016
http://apps.who.int/ebola/current-situation/ebola-situation-report-30-march-2016
http://www.who.int/topics/infectious_diseases/en/
http://www.who.int/topics/infectious_diseases/en/
http://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
http://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
https://doi.org/10.1371/journal.pmed.0020174
https://doi.org/10.1371/journal.pmed.0020174
https://doi.org/10.1002/9781118636817
https://doi.org/10.1016/j.epidem.2014.07.005
https://doi.org/10.1097/EDE.0b013e3182a67448
https://doi.org/10.1093/aje/kws314


172 BIBLIOGRAPHY

Yaari, R., G. Katriel, L. Stone, E. Mendelson, M. Mandelboim, and A. Huppert (2016). “Model-

based reconstruction of an epidemic using multiple datasets: understanding influenza A/H1N1

pandemic dynamics in Israel.” In: J R. Soc Interface 13.116, pp. 92–92. issn: 17425662. doi:

10.1098/rsif.2016.0099.

Yang, W., A. Karspeck, and J. Shaman (2014). “Comparison of Filtering Methods for the Mod-

eling and Retrospective Forecasting of Influenza Epidemics”. In: PLoS Comput. Biol. 10.4.

issn: 15537358. doi: 10.1371/journal.pcbi.1003583.

Yang, W., M. Lipsitch, and J. Shaman (2015). “Inference of seasonal and pandemic influenza

transmission dynamics”. In: Proc. Natl. Acad. Sci. 112.9, pp. 2723–2728. issn: 0027-8424.

doi: 10.1073/pnas.1415012112.

Yip, P. S. F., E. H. Y. Lau, K. F. Lam, and R. M. Huggins (2005a). “A chain multinomial

model for estimating the real-time fatality rate of a disease, with an application to severe

acute respiratory syndrome”. In: Am. J. Epidemiol. 161.7, pp. 700–706. issn: 00029262. doi:

10.1093/aje/kwi088.

Yip, P. S. F., K. F. Lam, E. H. Y. Lau, P. H. Chau, K. W. Tsang, and A. Chao (2005b).

“A comparison study of realtime fatality rates: Severe acute respiratory syndrome in Hong

Kong, Singapore, Taiwan, Toronto and Beijing, China”. In: J. R. Stat. Soc. Ser. A Stat. Soc.

168.1, pp. 233–243. issn: 09641998. doi: 10.1111/j.1467-985X.2004.00345.x.

https://doi.org/10.1098/rsif.2016.0099
https://doi.org/10.1371/journal.pcbi.1003583
https://doi.org/10.1073/pnas.1415012112
https://doi.org/10.1093/aje/kwi088
https://doi.org/10.1111/j.1467-985X.2004.00345.x


Appendix A

Some parametric distributions

Several parametric distributions benefit of multiple formulations and parametrizations. To avoid

misunderstanding, the density function of the distributions used in this thesis are listed below.

A.1 Gamma

A Gamma random variable (r.v.) X > 0 is a continuous r.v.. The Gamma distribution is

parametrised in terms of:

α > 0, the shape parameter

β > 0, the rate parameter

and is denoted by

X ∼ Gamma(α, β)

The probability density function of X is

f(x|α, β) =
βα

Γ(α)
xα−1e−βx

with

E(X) =
α

β

Var(X) =
α

β2

A property of the Gamma distribution is that if X ∼ Gamma(α, β) and given a positive real

number c, then the r.v. Y = cX is also Gamma-distributed with parameters α and β
c :

Y ∼ Gamma

(
α,
β

c

)

A.2 Negative Binomial

A Negative Binomial r.v. X > 0 is a discrete r.v. that models the number of successes in a

sequence of independent and identically distributed (iid) Bernoulli trials before a specified (non-

random) number of failures occurs. The Negative Binomial distribution is parametrised in terms

of:
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r > 0, the number of failures

p ∈ (0, 1), the probability of success

and is denoted by

X ∼ NegBin(r, p)

The probability mass function of X is

f(x|r, p) =

(
x+ r − 1

x

)
px(1− p)r

=
Γ(x+ r)

Γ(x+ 1)Γ(r)
px(1− p)r

with

E(X) =
rp

(1− p)

Var(X) =
rp

(1− p)2

A.2.1 Re-parametrization

In this thesis, as well as in the literature on Negative Binomial regression, a re-parametrization

is adopted. Denote by η the over-dispersion parameter and let:

η =
1

1− p

The Negative Binomial distribution is then denoted by

X ∼ NegBin(r, η)

with density function

f(x|r, η) =
Γ(x+ r)

Γ(x+ 1)Γ(r)

(
1− 1

η

)x(1

η

)r
This parametrization allows r to be expressed as a function of the mean, denoted here by

µ = rp
(1−p) , and the over-dispersion parameter η:

r =
µ

η − 1

having Var(X) = ηµ. This parametrization can also be expressed as: X ∼ NegBin(µ, η).

A.2.2 Poisson-Gamma formulation

The Negative Binomial r.v. can also be obtained from a Poisson r.v. with Gamma-distributed

rate. Let

X|(Λ = λ) ∼ Pois(λ)

Λ|α, β ∼ Gamma(α, β)
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The distribution of X|α, β can be derived as follows

f(x|α, β) =

∫ ∞
0

e−λλx

x!

βα

Γ(α)
λα−1e−βλdλ

=
βα

Γ(α)x!

∫ ∞
0

e−λλxλα−1e−βλdλ

=
βα

Γ(α)Γ(x+ 1)

∫ ∞
0

e−λ(β+1)λx+α−1dλ

=
βα

Γ(α)Γ(x+ 1)

Γ(x+ α)

(β + 1)x+α

=
Γ(x+ α)

Γ(x+ 1)Γ(α)

(
β

β + 1

)α( 1

β + 1

)x
which can be recognised as a Negative Binomial probability distribution:

X ∼ NegBin

(
r = α, p =

1

β + 1

)
or, in the re-parametrization above:

X ∼ NegBin

(
r = α, η = 1 +

1

β

)

A.3 Beta

The Beta r.v. X ∈ [0, 1] is a continuous r.v.. The Beta distribution is parametrised in terms of:

α > 0, the first shape parameter

β > 0, the second shape parameter

and is denoted by

X ∼ Beta(α, β)

The probability density function of X is

f(x|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

with

E(X) =
α

α+ β

Var(X) =
αβ

(α+ β)2(α+ β + 1)

The probability density function can be rewritten by defining the beta function:

B(α, β) =
Γ(α+ β)

Γ(α)Γ(β)

as:

f(x|α, β) = B(α, β)xα−1(1− x)β−1

A property of the Beta distribution is that if X ∼ Gamma(α, β) and Y ∼ Gamma(θ, β) then

the r.v. Z = X
X+Y has the following distribution

X

X + Y
∼ Beta (α, θ)
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A.4 Beta Binomial

The Beta Binomial r.v. X ∈ {0, 1, . . . , n} is a discrete r.v.. The Beta Binomial distribution is

parametrised in terms of:

n ∈ N the number of trials

α > 0, the first shape parameter

β > 0, the second shape parameter

and is denoted by

X ∼ BetaBin(α, β, n)

The probability mass function of X is

f(x|n, α, β) =

(
n

x

)
B(x+ α, n− x+ β)

B(α, β)

=
Γ(α+ n+ β)

Γ(x+ α)Γ(n− x+ β)

Γ(α+ β)

Γ(α)Γ(β)

with

E(X) =
nα

α+ β

Var(X) =
nαβ(α+ β + n)

(α+ β)2(α+ β + 1)

The Beta Binomial distribution can be obtained as the conjugate distribution of a Binomial

with Beta-distributed probability parameter:

X|n, θ ∼ Bin(n, θ)

θ|α, β ∼ Beta(α, β)

X|n, α, β ∼ BetaBin(α, β, n)



Appendix B

Additional results to the analysis of

Severity

This appendix reports a further exploration of the application of parametric survival analysis

to the context of case fatality risk (CFR) estimates.

B.1 Other distributional assumptions

The R package flexsurv (Jackson, 2015) allows the fit of several parametric distributions to

observed data within a competing-risks setting.

The package works by fitting, via maximum likelihood, a chosen parametric model to cause-

specific times to event.

Many parametric distributions can be fitted to the data, namely: Exponential, Weibull,

Gamma, Log-Normal, Gompertz, Log-Logistic, and Generalised Gamma. Each of these distri-

butions has its own parametrization.

As explained in the the introduction to competing-risks models in Section 2.3.1, the most

useful quantity is the cumulative intensity function, Ih(t), defined as:

P (T ≤ t;D = h) = Ih(t) =

∫ t

0
αh(s)S(s)ds (B.1)

Two challenges arise when attempting to estimate this quantity in a parametric setting.

(i) The hazard function αh(s) must have an explicit parametric form.

This is true for only a few of the parametric functions considered, among which Exponential

and Weibull; however, for most of the distributions used for survival data, a specific formula

for

αh(t) = lim
∆t→0

P (T ≤ t+ ∆t;D = h|T ≥ t)
∆t

= −d logSh(t)

dt

cannot be derived.

(ii) The overall survival function, which is defined as:

S(t) = e−
∑k
h=1 Ah(t), with Ah(t) =

∫ t

0
αh(s)ds (B.2)

cannot be simplified into a solvable function.
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These challenges prevent the computation of the exact limit of the cumulative intensity function

of death for t→∞ and hence the application of other parametric distributions for the inference

of the CFR.



Appendix C

Appendix to Section 3.3

This appendix contains further information to the study presented in Section 3.3. Most of the

content of this appendix is published as Supplementary Information to Corbella et al. (2018).

Section C.1 contains the derivation of the observational model (Equation 3.11 of the main text).

Section C.2 reports all the results obtained on the analysis of real data. Lastly, in Section C.3

additional results from the analysis of simulated pandemic data are reported.

C.1 Estimation of the observational model

The density function of the time from infection to Intensive Care Unit (ICU) admission plays

a crucial role in the computation of the likelihood of the UK Severe Influenza Surveillance

System (USISS) data, as can be seen from Equation 3.11 of the main text:

µw =

w∑
v=0

f
ICU|I
w−v ·∆IvpICU .

f
ICU|I
w denotes the probability of waiting w weeks between infection and ICU admission. This

information, combined with the number of new infections ∆Iv and the probability of ICU ad-

mission given contact pICU allows the computation of the average number of ICU admission

at a given week w, denoted by µw. The process is represented in figure C.1 and comprises the

random variable (r.v.) Y , representing the incubation time, and the r.v. Z representing the time

from symptom onset to ICU admission.

The distribution of Y was estimated by Tom et al., 2011 via parametric survival analysis of

individual-level data, and resulted in the following approximation:

Y ∼ Gamma(α = 0.678, β = 0.417). (C.1)

Data form the USISS sentinel scheme were used to approximate the distribution of Z, the

time from symptom onset to ICU admission. The patients admitted to ICU in the sentinel trusts

were asked to report the day of their first symptoms. Several parametric survival curves are

fitted to the data on 120 patients admitted to ICU during influenza seasons 2011/12 and 2012/13

and the model with lowest Akaike information criterion (AIC) (Akaike, 1987) was selected.

The fitted distributions are reported in Figure C.2 and the results are reported in Table C.1.

In conclusion, Z was approximated by:

Z ∼ LogNormal(µlog = 0.607, σlog = 1.022) (C.2)
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S(t) E1(t) E2(t) I1(t) I2(t) R(t)
λ(t) σ σ γ γ

Symp

ICUv

Y

Z

Figure C.1: Extended observational model of ICU/HDU admissions. Transmission

model is linked to ICU/HDU admissions thought the r.v.s Y , the incubation time,

and Z, the time from symptom to ICU admission.

model par1(SE) par2(SE) logL AIC

Exponential rate = 0.32 (se= 0.028 ) / -280.3059 562.6118

Weibull shape = 0.976 (se= 0.062 ) scale = 3.087 (se= 0.293 ) -280.2274 564.4549

LogNormal meanlog = 0.607 (se= 0.089 ) sdlog = 1.022 (se= 0.063 ) -268.2563 540.5126

Gompertz shape = -0.047 (se= 0.023 ) rate = 0.377 (se= 0.043 ) -277.837 559.6741

Gamma shape = 1.074 (se= 0.118 ) rate = 0.344 (se= 0.047 ) -280.0966 564.1933

Table C.1: Estimates of the parameters and AICs of the parametric models used to

fit data on the time from symptom onset to ICU admission.

The probability density functions of the two r.v.s X and Y are reported in Figure C.3.

To compute fICU |I(w) for week w = 0, 1, 2, . . . the cumulative distribution function of the

r.v. T , the time in days from infection to ICU admission, is defined as the convolution of Y and Z.

Denoted by FX(x) the cumulative distribution function of a general r.v. X (FX(x) = P(X ≤ x))

and by fX(x) its probability density function (fX(x) = P(X = x)). The convolution for T can

be obtained by

FT (t) = P (T ≤ t) =

∫ t

y=0
fY (y) · Fz(t− y)dy (C.3)

FT (t) is computed by numerical integration for t = 7, 14, 21, . . . so that the probability of w

week elapsing from infection to ICU admission can be simply calculated using equation C.4 and

its values for small number of weeks are reported in Table C.2.

f ICU|I
w = FT (w · 7)− FT ((w − 1) · 7) (C.4)
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Figure C.2: Fitted parametric distributions to the time form symptom onset to ICU

admission. Dotted lines represent 95% CI.
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Figure C.3: Estimated density function for the incubation time Y and the time from

symptoms to ICU admission Z.
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week fICU |I(w)

1 0.81128

2 0.15180

3 0.02546

4 0.00670

5 0.00242

6 0.00106

7 0.00052

8 0.00028

9 0.00016

. . . . . .

Table C.2: Estimated probability function of the convolution over weeks of the

incubation time Y and the time from symptom onset to ICU admission Z.
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C.2 Supplementary results

This section reports the results from all the analyses. There is significant overlap with the main

text but repetitions were allowed for the sake of completeness of this appendix.

C.2.1 Results on the full datasets

In this section all the results obtained from the analysis of real data are reported. Results

are divided according to the priors used: firstly, results from the uninformative scenario, with

Uniform priors for all the parameters, are given. Table C.3 lists the priors and the values

assumed known and fixed. Secondly, the results of the analyses within the informative scenario

are shown, all the parameters except for pICU and π are assumed to be Uniformly distributed.

pICU and π are distributed as specified in the main text and reported in Table C.4.

Unknown parameters definition Parameter Distribution

Susceptibility π ∼ Unif(0, 1)

Initial infection rate λ0 ∼ Unif(0, 0.000241)

Exponential growth rate ψ ∼ Unif(0, 0.39)

Over-dispersion η ∼ Unif(1, 100)

Probability of ICU admission given infection pICU ∼ Unif(0, 1)

Parameters assumed known Parameter Value

Rate of becoming infectious σ 1

Rate of recovery γ 0.5797

Mean time from infection to ICU admission µICU |E 5.708

Variance of time from infection to ICU admission σ2
ICU |E 18.24

Population of 2012/13 N2012/13 53,679,750

Population of 2013/14 N2013/14 54,091,200

Population of 2014/15 N2014/15 54,551,450

Table C.3: Flat prior distributions and fixed parameters.

Parameter Distribution

π ∼ LogNorm(logµ = log(0.401), log σ = 0.2) Hoschler et al., 2012

pICU ∼ LogNorm(logµ = log(0.000239), log σ = 1) Presanis et al., 2014

Table C.4: Informative prior distributions from previous findings.

Results with uniform priors

To obtain these results 3 independent chains of 1.1 million iterations of the blocked Metropolis

Hastings (MH) algorithm were run. Of these, the first 100,000 iterations were used adaptively

to tune the algorithm (i.e. to estimate the mixing parameter ν) and the following 200,000

were discarded as burn-in period. Moreover, a thinning factor of 100 was used, saving only one

iteration every 100.
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Figure C.4 displays the chains of the 6 parameters of the system. Despite all the parameters

showing convergence, the chains of some of them (namely π and ψ) are moving over a uniform

distribution and they are severely correlated. The plots of the prior and the posterior distribu-
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Figure C.4: Flat scenario - The three independent chains are plotted here with three different colours

(red, blue and green). The parameters are (in order, from top to bottom): the initial susceptibility

π, the initial infection rate λ0, the exponential growth rate ψ, the over-dispersion parameter η,

the probability of ICU admission given infection pICU , and the scaling parameter κ. The results

are derived from season 2012/13 (left column), season 2013/14 (centre) and season 2014/15 (right

column).

tions of all the parameters are reported in Figure C.5. Similarly, Figure C.6 contains the plots

of the prior and posterior distributions of the other functional quantities of interest commented

in the main text.

Table C.5 reports median and 95% credible intervals (CrIs) of all the parameters.
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Figure C.5: Flat scenario - Prior (red) and posterior (blue) distributions of the parameters. The

parameters are (in order, from top to bottom): π, λ0, ψ, η, pICU and κ. The results are derived from

season 2012/13 (left column), season 2013/14 (centre) and season 2014/15 (right column).

2012/13 2013/14 2014/15

π 0.557 (0.298 - 0.969) 0.599 (0.323 - 0.978) 0.53 (0.28 - 0.968)

ψ 0.471 (0.271 - 0.842) 0.152 (0.091 - 0.248) 1.046 (0.549 - 1.921)

λ0 0.18 (0.039 - 0.374) 0.179 (0.053 - 0.371) 0.178 (0.024 - 0.374)

η 3.204 (1.886 - 6.129) 1.251 (1.011 - 2.088) 17.947 (10.429 - 35.711)

pICU 0.083 (0.046 - 0.16) 0.07 (0.042 - 0.133) 0.175 (0.085 - 0.375)

κ 1.186 (0.974 - 1.437) 0.964 (0.84 - 1.099) 1.312 (0.864 - 1.82)

Itot
0 4219.9 (1482.5 - 11510.8) 1386.2 (493 - 3328.4) 9568.6 (3052.3 - 28529)

β 0.6 (0.345 - 1.121) 0.598 (0.366 - 1.111) 0.597 (0.324 - 1.119)

R0 2.071 (1.189 - 3.868) 2.063 (1.263 - 3.834) 2.058 (1.116 - 3.859)

Rn 1.152 (1.093 - 1.209) 1.235 (1.196 - 1.275) 1.089 (0.997 - 1.195)

Table C.5: Flat scenario - Posterior medians and 95% CrIs form the retrospective analysis of the ICU

admissions over the three years considered.
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Figure C.6: Flat scenario - Prior (red) and posterior (blue) distributions of: the total number of

initial infectious Itot0 , the basic transmission rate β, the basic reproduction number R0, and the

effective reproduction number Rn.

Results with informative priors

The same analysis was performed assuming prior information on some of the parameters as

reported in Table C.4.

To obtain these results, 3 independent chains of 1.1 million iterations of the blocked MH

algorithm were run. Of these, the first 100,000 iterations were used adaptively to tune the

algorithm (i.e. to estimate the mixing parameter ν) and the following 200,000 were discarded

as burn-in period. Moreover, a thinning factor of 100 was used, saving only one iteration every

100.

Figure C.7 displays the chains of the 6 parameters of the system. All the chains have

converged but correlation persists.

The plots of the prior and the posterior distributions of all the parameters are reported in

figure C.8. Similarly, Figure C.9 contains the plots of the prior and posterior distributions of

the functional quantities of interest.

The lack of information of the data has been compensated by the introduction of prior of

information. Due to the very high correlation that is affecting the system, by putting a prior on

π and pICU other parameters, such as ψ, β and R0 are also affected. The posterior distributions

of these parameters are mainly driven by the prior distribution on π and pICU . As a signal of

this problem the posterior distributions looks almost identical across the different seasons (i.e.

with different data).

Table C.6 reports median and CrIs of all the parameters.

Lastly, Figure C.10, reports the posterior predictive distribution of the number of ICU admis-

sions. There is no significant improvement compared to the same result within the uninformative



C.2. SUPPLEMENTARY RESULTS 187

2012/13 2013/14 2014/15

π 0.4 (0.3 - 0.581) 0.403 (0.316 - 0.58) 0.406 (0.292 - 0.588)

λ0 0.405 (0.242 - 0.681) 0.128 (0.082 - 0.201) 0.916 (0.508 - 1.601)

ψ 0.278 (0.167 - 0.373) 0.297 (0.188 - 0.379) 0.256 (0.147 - 0.364)

η 3.188 (1.889 - 6.039) 1.248 (1.012 - 2.113) 17.503 (10.323 - 33.765)

pICU 0.114 (0.077 - 0.162) 0.104 (0.071 - 0.137) 0.22 (0.138 - 0.358)

κ 1.184 (0.97 - 1.433) 0.966 (0.842 - 1.097) 1.318 (0.883 - 1.825)

Itot
0 2603.2 (1318.1 - 5533.9) 787 (431 - 1558.3) 6408.2 (2928.1 - 14205.3)

β 0.835 (0.572 - 1.117) 0.888 (0.617 - 1.135) 0.778 (0.532 - 1.089)

R0 2.882 (1.974 - 3.853) 3.065 (2.129 - 3.916) 2.684 (1.834 - 3.757)

Rn 1.153 (1.093 - 1.213) 1.235 (1.196 - 1.276) 1.089 (0.997 - 1.194)

Table C.6: Informative scenario - Posterior medians and 95% CrIs form the retrospective analysis of the

ICU admissions over the three years considered.

scenario (Figure 3.13 of the main text).
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Season 2012/13 Season 2013/14 Season 2014/15
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Figure C.7: Informative scenario - The three independent chains are plotted here with three different

colours (red, blue and green). The parameters are (in order, from top to bottom): π, λ0, ψ, η, pICU

and the scaling parameter, κ. The results are derived from season 2012/13 (left column), season

2013/14 (centre) and season 2014/15 (right column).
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Season 2012/13 Season 2013/14 Season 2014/15
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Figure C.8: Informative scenario - Prior (red) and posterior (blue) distributions of the parameters.

The parameters are (in order, from top to bottom): π, λ0, ψ, η, pICU and κ. The results are derived

from season 2012/13 (left column), season 2013/14 (centre) and season 2014/15 (right column).
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Season 2012/13 Season 2013/14 Season 2014/15
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Figure C.9: Informative scenario - Prior (red) and posterior (blue) distributions of (from top to bot-

tom): the total number of initial infectious Itot0 , the basic transmission rate β, the basic reproduction

number R0, and the effective reproduction number Rn.
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Figure C.10: Informative scenario - Median (blue), 95 % CrI (light green) and quartile (dark green)

of the posterior predictive distributions and observed values (red) of the weekly ICU/HDU admis-

sions across seasons. The vertical dashed lines represent the breakpoints for the piecewise-constant

transmissibility β∗.
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C.2.2 Results on the datasets updated every five weeks

The sequential learning of the parameter via inclusion of more and more data has already been

discussed in the main text. For this reason, only the predictive performance of the model in the

uninformative scenario is reported here, for the sake of comparison with the results presented

in Figure 3.15 of the main text. This is reported in Figure C.11 and it highlights the extreme

need of informative priors in order to obtain useful predictions.
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Figure C.11: Flat scenario - The black line displays the analysis time; the blue line and green shaded

area represent median, quartile (dark green) and 95% CrIs (light green) of the posterior predictive

distribution for the training weeks. The pink area displays posterior quartiles (deep pink) and 95%

CrIs (light pink) for the predicted future observations, and the purple line displays the median; the

red dots are the training data and the yellow dots are the objects of prediction.

C.3 Simulation of a pandemic

The simulated data on the number of hospital admissions during an epidemic described in the

main text are plotted in Figure C.12.

C.3.1 Results on the full datasets

Results with uniform priors

3 independent chains of 1.1 million iterations of the blocked MH algorithm were run. Of these,

the first 100,000 iterations were used adaptively to tune the algorithm (i.e. to estimate the



192 APPENDIX C. APPENDIX TO SECTION 3.3

0
40

0
80

0
14

00

Pandemic

weeks

40 45 50 3 8 13 18

Figure C.12: Simulated data in the case of a pandemic.

mixing parameter ν) and the following 200,000 were discarded as burn-in period. Moreover, a

thinning factor of 100 was used, saving only one iteration every 100.

Figure C.13 displays the chains of the 6 parameters of the system. Despite all the parameters

showing convergence, the chains of some of them (namely π and ψ) are moving over a uniform

distribution and their chains are particularly correlated. This shows that, despite the numbers

being higher in the case of a pandemic, the identifiability issue is not solved
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Figure C.13: Flat scenario - The three independent chains are plotted here with three different colours

(red, blue and green). The parameters are: the initial susceptibility π, the initial infection rate λ0,

the exponential growth rate ψ, the over-dispersion parameter η, the probability of hospital admission

given infection pH , and the scaling parameter κ. The black horizontal lines denote the values used

to simulate the dataset.

The plots of the prior and the posterior distributions of all the parameters are reported in

figure C.14. Figure C.15 contains the plots of the prior and posterior distributions of the other

quantities of interest.

Table C.7 reports median and 95% CrIs of all the parameters.
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Figure C.14: Flat scenario - Prior (red) and posterior (blue) distributions of the parameters. The

parameters are: π, λ0, ψ, η, pH and κ. The black vertical lines denote the values used to simulate

the dataset.
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Figure C.15: Flat scenario - Prior (red) and posterior (blue) distributions of: the total number of

initial infectious Itot0 , the transmission rate β, the basic reproduction number R0, and the effective

reproduction number Rn.

Median (95% CrI)

π 0.523 (0.282 - 0.961)

λ0 1.183 (0.804 - 1.662)

ψ 0.182 (0.028 - 0.375)

η 17.665 (10.677 - 32.4)

pH 1.996 (1.072 - 3.747)

κ 1.356 (1.238 - 1.481)

Itot
0 10721 (4104 - 25973.6)

β 0.605 (0.329 - 1.123)

R0 2.087 (1.136 - 3.873)

Rn 1.092 (1.064 - 1.12)

Table C.7: Flat scenario - Posterior medians and 95% CrIs form the retrospective analysis of the hospital

admissions.

Results with informative priors

Figure C.16 displays the chains of the 6 parameters of the system from the analysis with in-

formative priors. Despite all the parameters showing convergence, the chains of some of them

(namely π and ψ) are still very correlated.

The plots of the prior and the posterior distributions of all the parameters are reported in
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Figure C.16: Informative scenario - The three independent chains are plotted here with three different

colours (red, blue and green). The parameters are: π, λ0, ψ, η, pH and κ. The black vertical lines

denote the values used to simulate the dataset.

figure C.17. Figure C.18 contains the plots of the prior and posterior distributions of the other

quantities of interest.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

π

n

0.00000 0.00010 0.00020

0
10

00
0

25
00

0

λ0

n

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
2

4
6

ψ

n

D
en

si
ty

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

η

0.000 0.001 0.002 0.003 0.004 0.005

0
20

0
60

0

pH

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

κ

D
en

si
ty

Figure C.17: Informative scenario - Prior (red) and posterior (blue) distributions of the parameters.

The parameters are: π, λ0, ψ, η, pH and κ. The black vertical lines denote the values used to simulate

the dataset.
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Figure C.18: Informative scenario - Prior (red) and posterior (blue) distributions of: the total number

of initial infectious Itot0 , the basic transmission rate β, the basic reproduction number R0, and the

effective reproduction number Rn.

Table C.8 reports median and 95% CrIs of all the parameters.
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Median (95% CrI)

π 0.409 (0.293 - 0.591)

λ0 1.05 (0.802 - 1.37)

ψ 0.254 (0.148 - 0.362)

η 17.462 (10.574 - 31.958)

pH 2.539 (1.744 - 3.596)

κ 1.357 (1.24 - 1.482)

Itot
0 7412.1 (4260.8 - 13170)

β 0.774 (0.535 - 1.082)

R0 2.671 (1.845 - 3.732)

Rn 1.092 (1.065 - 1.12)

Table C.8: Informative scenario - Posterior medians and 95% CrIs form the retrospective analysis of the

Hospital admissions.

C.3.2 Results on the datasets updated every five weeks

The results on the predictive performance of the model is described here. Informative prior

distributions are assumed on the parameters π and pH .

Posterior predictive distributions are reported in Figure C.19. On the one hand, the precision of

the predictions has increased a lot, making the results more useful; on the other hand, predictions

could be precise and wrong, as shown in the second panel, where the future number of hospital

admissions is underestimated.
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Figure C.19: Informative scenario - The black line displays the analysis time; the blue line and green

shaded area represent median, quartile (dark green) and 95% CrIs (light green) of the posterior

predictive distribution for the training weeks. The pink area displays posterior quartiles (deep pink)

and 95% CrIs (light pink) for the predicted future observations, and the purple line displays the

median; the red dots are the training data and the yellow dots are the objects of observation.



Appendix D

Appendix to Chapter 4

D.1 Monte Carlo methods

This appendix contains the foundations of many simulation methods on which sequential Monte

Carlo (SMC) algorithms are based.

Vanilla Monte Carlo

Let X be a random variable (r.v.) with density function f(x), called the target density. The

goal is to compute the expected value A(φ) of a function φ(x) with respect to the distribution

of X, i.e.:

A(φ) = Ef [φ(x)] =

∫
X
φ(x)f(x)dx (D.1)

Under the assumption that it is possible to simulate directly from f(x), the integral in (D.1)

can be approximated by:

A(φ) = Ef [φ(x)] ≈ 1

N

N∑
n=1

φ(x(n))

where
{
x(n)

}N
n=1

is a sample of size N from f(x). This sample can also be used to obtain a

Monte Carlo (MC) approximation of the target distribution:

f̂MC(x) =
1

N

N∑
n=1

δx(n)(x) (D.2)

where δa(x) is a Dirac point-mass in a

δa(x) =

1 if x = a

0 otherwise

so that

ÂMC(φ) =

∫
X
φ(x)

N∑
n=1

δx(n)(x)dx =
1

N

N∑
n=1

φ(x(n))

Unfortunately, in many of the cases considered below it would be impossible to sample directly

from the target distribution. A common alternative scenario occurs when f(x) can be evaluated

point-wise (up to proportionality), then importance sampling might be a feasible solution.

197
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Importance sampling

Importance sampling (Marshall, 1954) explores the target distribution f(x) by introducing a

new distribution q(x), called the importance or proposal distribution which is easy to sample

from and whose support must contain the support of the target density.

Integral D.1 can hence be re-written as:

A(φ) = Ef [φ(x)] =

∫
X
φ(x)f(x)

=

∫
X
φ(x)

f(x)

q(x)
q(x)dx

=

∫
X
φ(x)ω(x)q(x)dx

= Eq [φ(x)ω(x)]

where ω(x) = f(x)
q(x) is called the weight function. Since a sample

{
x(n)

}N
n=1

can be drawn from

the importance distribution q(x), the integral can be approximated by vanilla MC integration:

ÂIS(φ) =
1

N

N∑
n=1

φ(x(n))ω(x(n))

where ω(x(n)) is the observed weight, denoted w(n).

Self-normalised importance sampling deals with the situation when the target distribution

is only known up to a normalising constant: f(x) = f̃(x)
Zf

. In this case the non-normalised weight

function can be defined as:

ω̃(x) =
f̃(x)

q(x)

and computed at the sampled values ω̃(x(n)) = w̃(n), which can then be normalised:

w(n) =
w̃(n)∑N
i=1 w̃

(n)

and plugged in Equation D.1. Similarly to Equation D.2, an approximation of the target distri-

bution can be obtained by the weighted samples as follows:

f̂ IS(x) =

N∑
n=1

w(n)δx(n)(x) (D.3)

The pseudo-code to obtain N samples of values x(n), often called particles, and N weights w(n)

that approximate the target distribution f(x) is reported in Algorithm 9.
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Result:
{
x(n), w(n)

}N
n=1

Input: N , f̃(x), q(x)

for n = 1, . . . N do

sample

x(n) ∼ q(x)

compute the importance weights

w̃(n) = f̃(x(n))

q(x(n))

end

normalize the importance weights

w(n) = w̃(n)∑N
i=1 w̃

(n)
∀n = 1, . . . , N

Algorithm 9: Self-normalised Importance Sampling

The accuracy of importance-sampler-based approximations to Equation D.1 increases with

N and, more importantly, with appropriate choices of the distribution q(x): the greater the

similarity between target and importance distribution, the better the approximation is. Finding

suitable importance distributions, and approximating the target distribution via importance

sampling, becomes more difficult with increasing dimensionality.

D.2 Simulating a dynamic system

The Severity process assumed in 4.4 is just a set of time non-homogeneous Poisson processes,

where the event rates are often dependent on the number of prevalent individuals in a com-

partment. This is highly studied in chemical kinetics. In this section two algorithms are listed;

these can be used to simulate data arising from a dynamic process that can be seen as a time

non-homogeneous Poisson process with rates dependent on the prevalence of the state.

Standard Gillespie Algorithm

Consider a system X where v chemical reactions might happen. This system is assumed to

behave as a Markov jump process. The hazard of each reaction hi, ∀i = 1, . . . v, depends on

a constant rate ci and the current state of the process x; i.e. hi = h(ci, x). To simulate this

process Gillespie proposed the following algorithm (Gillespie, 1976).

1. Initialise the system at t = 0 with constants rates c1, c2, . . . , cv and initial numbers of

molecules for each species, x1, x2, . . . , xu;

2. For each i = 1, 2, . . . , v, calculate hi(x, ci) based on the current state x;

3. Calculate h0(x, c) =
∑v

i=1 hi(x, ci), the combined reaction hazard;

4. Simulate time to next event, t′, as an Exp(h0(x, c)) random quantity;

5. Put t := t+ t′;

6. Simulate the reaction index, j, as a discrete random quantity with probabilities hi(x,ci)
h0(x,c) , i =

1, 2, . . . , v;
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7. Update x according to reaction j;

8. Output x and t;

9. If t < Tmax, return to step 2.

This algorithm gives exact simulation of the Markov Jump process.

τ-leap Gillespie Algorithm

The standard Gillespie algorithm is very slow when the number of reactions that happen is high.

In 2001 he proposed an approximated version of the algorithm that relies on the leap condition.

Definition 5. Leap Condition: Require τ to be small enough that the change in the state during

[t, t+ τ ] will be so slight that no propensity function (i.e. hazard) will suffer an appreciable (i.e.,

macroscopically non-infinitesimal) change in its value.

If the Leap condition holds the simulation of the standard Gillespie algorithm can be ap-

proximated by the following (Gillespie, 2001):

1. Initialise the system at t = 0 with rate constants c1, c2, . . . , cv and initial numbers of

molecules for each species, x1, x2, . . . , xu;

2. For each i = 1, 2, . . . , v, calculate hi(x, ci) based on the current state, x;

3. Simulate Ri(t; t+τ), the number of reactions of type i that happen in the interval (t; t+τ)

from: Ri(t; t+ τ) ∼ Poisson (τhi(x, ci));

4. Update t = t+ τ and x at t+ τ accordingly;

5. If t+ τ < Tmax, return to step 2.

This simulation scheme is significantly more efficient than the classical Gillespie algorithm, above

all when the rate of any reaction is high.

D.3 Code for the Bootstrap Particle Filter in Section 4.5

BPF <- function(data, # list of elements, each containing

# a time series of data

delta.dsets, # vector of same length as data, each elements

# says the timescale in days of

# the data used (eg 7=weekly data)

Xts.dsets, # vector of same length as data, each elements

# contains a character vector stating the components

# of X on which the data are centered

Theta, # list of paramters, thhe first 15 elemnts are

# the named Xproc paramteres and the last two

# are the Yobs paramter: a list of verctor with
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# the detection probabilities and a vector

# containing the overdispersion of each dataset

NP, # number of particles

dt, # time step at which to run the Xstate process

X0, # state in 0: a list with as first element a

# vector of length 3 containing the number of

# people in each SEI state at 0 and all the other

# elements contain the prevalence of the severity

# states at 0

N # total population size

){

...

for (d in 1:length(data)){

if(round(tday[t], 5) %in% DayData[[d]]){

# select the ts for mu

tfm <- which(tday>DayData[[d]][tday[t]/delta.dsets[d]]&

tday<=DayData[[d]][tday[t]/delta.dsets[d]+1])

if (length(tfm)>1){

xtdt <- apply(Xpar[,tfm,

Xts.dsets[[d]]]

,MARGIN = c(1,2), sum)

muts <- apply(xtdt, MARGIN = 1, sum)

}else if (length(tfm)==1){

muts <- apply(as.matrix(Xpar[, tfm, Xts.dsets[[d]]]), MARGIN = 1, sum)

}

rts <- ifelse((muts*Theta$det.dsets[[d]][tday[t]/delta.dsets[d]])/

(Theta$eta.dsets[d]-1)>0,

(muts*Theta$det.dsets[[d]][tday[t]/delta.dsets[d]])/

(Theta$eta.dsets[d]-1),

1)

wts <- dnbinom(data[[d]][tday[t]/delta.dsets[d]],

mu=muts, size=rts, log=T)

...

}

}

return(list("lL"=LL,

"Rtraj"=Xpar))

}
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D.4 Simulation study

The scenarios considered are listed in Table D.1

pD pR β1 β2

Scenario 1 0.1 0.1 0.2 0.5

Scenario 2 0.1 0.2 0.3 0.333

Scenario 3 0.1 0.4 0.5 0.2

Scenario 4 0.1 0.8 0.9 0.111

Scenario 5 0.2 0.1 0.3 0.667

Scenario 6 0.2 0.2 0.4 0.5

Scenario 7 0.2 0.4 0.6 0.333

Scenario 8 0.2 0.8 1 0.2

Scenario 9 0.4 0.1 0.5 0.8

Scenario 10 0.4 0.2 0.6 0.667

Scenario 11 0.4 0.4 0.8 0.5

Scenario 12 0.8 0.1 0.9 0.889

Scenario 13 0.8 0.2 1 0.8

Table D.1: Values assumed to simulate the scenarios.

The results for all the simulated scenarios are displayed below.
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Appendix E

Appendix to Chapter 5

E.1 Independent versus dependent likelihood: toy example

A simple model to describe how the observation of the mandatory and the sentinel UK Severe

Influenza Surveillance System (USISS) schemes can be generated is exposed here. This is a

simplistic model: the timely-aspect of the data is not considered, assuming that only the total

number of cases detected by the sentinel and by the mandatory scheme is to be modelled.

Denote: by N the total cases; by H the hospitalizations; by Hs the hospitalizations in a

sentinel trust; by Is the Intensive Care Unit (ICU) admissions in a sentinel trust; by In the

ICU admissions in non-sentinel trusts; by ym the cases reported to the mandatory scheme; and

by ys the cases reported in the sentinel scheme. These quantities can be expressed as a chain

of Binomial random variable (r.v.) with parameters: pH|E , the probability of hospitalization

given infection; pSent, the probability of being in a sentinel trust given hospitalization; pI|H , the

probability of ICU admission given hospitalization; ds, the probability of being detected in the

sentinel scheme given hospitalization; and dm the probability of being detected in the mandatory

scheme given ICU admission. The r.v.s describing the dynamics are:

(a) H ∼ Binom(N, pH|E)

(b) Hs ∼ Binom(H, pSent)

(cI) Is ∼ Binom(Hs, pI|H)

(cII) In ∼ Binom(H −Hs, pI|H)

(d) ys ∼ Binom(Hs, ds)

(e) ym ∼ Binom(Is + In, dm)

(E.1)

The two data ym and ys overlap. Let yms be the number of people registered in the mandatory

but not in the sentinel scheme, yms the number of people registered in the sentinel but not in

the mandatory scheme and yms the overlap (i.e. the people registered in both).

A graphical representation of the disjoint sets that sum up to the number of cases N is

reported in Figure E.1. Where the red compartment represent the people detected only by

the mandatory scheme yms; the yellow compartment represent the people detected only by the

sentinel scheme yms; the blue compartment represent the people detected by both the mandatory

and the sentinel scheme yms; and the grey compartment represent the people undetected. The
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probabilities of these disjoint sets are:

p1 =pH|E · pSent · pI|H · dm · ds
p2 =pH|E · pSent · ds ·

[
(1− pI|H) + pI|H · (1− dm)

]
p3 =pH|E · dm · pI|H · [(1− pSent) + pSent · (1− ds)]

p4 =1− p1 − p2 − p3 =
[
1− pH|E

]
+ pH|E · (1− pSent) ·

[
(1− pI|H) + pI|H · (1− dm)

]
+ pH|E · (pSent) · (1− ds) ·

[
(1− pI|H) + pI|H · (1− dm)

]
(E.2)

And therefore the disjoint sets are distributed according to a Multinomial r.v.:(
yms, yms, ymS , U

)
∼ multinom(N, p1, p2, p3, p4) (E.3)

Figure E.2 relates these disjoint quantities to the observed data ym and ys.

The two data ym and ys are, marginally, a Binomial sample of the N cases, and therefore,

under the hypothesis of independence, their likelihood would be the product of the two Binomial

densities:

ys ∼ Binom (N ; ps = (p1 + p2))

ym ∼ Binom (N ; pm = (p1 + p3))
(E.4)

which would lead to a likelihood of the following form:

p(ys, ym|N, p1, p2, p3) =

(
N

ys

)
[ps]y

s

[1− ps](N−y
s) ·
(
N

ym

)
[pm]y

m

[1− pm](N−y
m) (E.5)

If instead, the data are allowed to be dependent, and the joint Multinomial distribution of

Equation E.3 is adopted, the likelihood takes the form of a convolution over the unknown

overlap between the two datasets as follows:

p(ys, ym|N, p1, p2, p3) =

min(ys,ym)∑
m=0

p


ys −m
ym −m

N − ys − ym +m

∣∣∣∣∣∣∣∣N −m;

p2
1−p1
p3

1−p1
(1−p3−p2−p1)

1−p1


× p(m|N, p1)

=

min(ys,Y m)∑
m=0

(N −m)!

(ys −m)!(ym −m)!(N − ys − ym +m)!
×

(
p2

1− p1

)(ys−m)( p3

1− p1

)(ym−m)((1− p3 − p2 − p1)

1− p1

)(N−ys−ym+m)

×
(
N

m

)
(p1)m(1− p1)(N−m)

(E.6)

The two likelihoods reported in Equations E.5 and E.6 are not equal.

A very simple case of two simulated data is proposed below.

ym and ym have been generated with the parameter-set: p1 = 0.3, p2 = 0.2, p3 = 0.1. The

log-likelihood curve for each parameter, conditional on the others being equal to the generating

parameters and given the data ym and ym, is drawn below in Figure E.3.

The curves are nor the same, and therefore the inference drawn according to the independent

Binomial likelihood is misspecified since it does not account for the overlap between datasets.
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ds1− ds(1− dm)(1− ds)
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Figure E.1: Multinomial model. Where N,H, I are as defined above and H, I are the infected-non-

hospitalised and the hospitalised-non-ICU-admitted people respectively. The superscript following the

compartment letter (?)s, (?)n denotes the people admitted to Sentinel, or Non-sentinel trusts respectively.

The superscript preceding the compartment letter denotes the scheme that detected those people: sm(?)

, detected by the mandatory and the sentinel scheme, sm(?), detected by the sentinel but not by the

mandatory scheme, etc.

N

yms yms yms U=yms

ys

ym

p1 p2 p3 p4

Figure E.2: Multinomial representation of the disjoint quantities composing the data.
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Figure E.3: Log-likelihood curve for the three parameters according to Equation E.5 (red) and

E.6.

E.2 Specifics of the simulation study in Section 5.4

The simulation study is run on 500 datasets per scenario. On each dataset both an analysis using

a product of two independent Poisson densities and an analysis accounting for dependence is run.

In the latter a Monte Carlo within Metropolis (MCWM) algorithm is used: in the acceptance

ratio of each step of the Markov chain Monte Carlo (MCMC) a set of N=2000 particles is used

to approximate the likelihood.

The wrapping algorithm used to produce the sample is identical for dependent and indepen-

dent case, except for the formulation of the likelihood. All the parameters of the system have

been transformed to lie in (−∞; +∞). A block-update Metropolis Hastings (MH) algorithm with

multivariate-Normal proposal is used to explore the parameter space. The variance-covariance

matrix of the proposal is estimated in previous Gibbs-sampling steps where independent uni-

variate Normals is used as proposal distributions.

The Gibbs-sampling steps consists of 3 independent chains that run an adaptive phase of

10,000 iterations and a further sampling phase of 55,000 iterations, of which the first 5,000 are

discarded as burn-in period.

The block-update phase consists of 3 chains that ran an adaptive phase of 20,000 iterations

and a sampling phase of 110,000 iterations, of which the first 10,000 are discarded as burn-

in period. A thinning factor of 100 is used so that the final approximation of the posterior
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distribution consists of 3,000 samples.
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E.3 Further results of the simulation study in Section 5.4

E.3.1 Increasing 0θH
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Figure E.4: Posterior distribution of the transmission and severity parameters from 5 datasets. The

colour of the posterior density identifies the dataset analysed while dashed lines refer to results from

the misspecified independent model and filled lines to results from the model approximating the joint

dependent likelihood.
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Figure E.5: Distribution of the pairwise difference in variance (green plots) and in 95% CrI length (red

plots) of the posterior distribution of the transmission and severity parameters from all the datasets.
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E.3.2 Increasing HθIC
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Figure E.6: Posterior distribution of the transmission and severity parameters from 5 datasets. The

colour of the posterior density identifies the dataset analysed while dashed lines refer to results from

the misspecified independent model and filled lines to results from the model approximating the joint

dependent likelihood.
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Figure E.7: Distribution of the pairwise difference in variance (green plots) and in 95% CrI length (red

plots) of the posterior distribution of the transmission and severity parameters from all the datasets.
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E.3.3 Increasing ζH
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Figure E.8: Posterior distribution of the transmission and severity parameters from 5 datasets. The

colour of the posterior density identifies the dataset analysed while dashed lines refer to results from

the misspecified independent model and filled lines to results from the model approximating the joint

dependent likelihood.
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Figure E.9: Distribution of the pairwise difference in variance (green plots) and in 95% CrI length (red

plots) of the posterior distribution of the transmission and severity parameters.
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E.3.4 Increasing ζIC
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Figure E.10: Posterior distribution of the transmission and severity parameters from 5 datasets. The

colour of the posterior density identifies the dataset analysed while dashed lines refer to results from

the misspecified independent model and filled lines to results from the model approximating the joint

dependent likelihood.
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Figure E.11: Distribution of the pairwise difference in variance (green plots) and in 95% CrI length (red

plots) of the posterior distribution of the transmission and severity parameters.
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Appendix F

Appendix to Chapter 6

F.1 Derivation of the distribution of µG

u

To simplify notation, in what follows the incidence of influenza cases convolved over the delay

from infection to General Practitioner (GP) consultation is denoted by:

Υu =
C∑
c=0

ξ0
u−c

0ffc

Moreover, all the indexes referring to the day u are dropped: Υ stands for Υu; µf stands for µfu

etc.

The goal is to derive the distribution of µg = ζgα(µf + µb) = ζgωµf + ζgωµb that follows

form the two following prior distributions:

0θf ∼ Gamma(ιfεf, εf) (F.1)

µb ∼ Gamma

(
b
εf

Υ
,
εf

Υ

)
(F.2)

From the properties of the Gamma random variable (r.v.) reported in Appendix A, µf = Υ · 0θf

still distributes as the following Gamma:

µf = Υ · 0θf ∼ Gamma

(
ιfεf,

εf

Υ

)
(F.3)

Likewise the two quantities ζgωµf and ζgωµb distribute as follows

ζgωµf ∼ Gamma

(
ιfεf,

εf

Υζgω

)
ζgωµb ∼ Gamma

(
b
εf

Υ
,

εf

Υζgω

) (F.4)

Where ζgωµf has mean:

M1 =
ιfεf

εf

Υζgω

= ιfΥζgω (F.5)

and variance

V1 =
ιfεf

( εf

Υζgω )2
=
ιf

εf
(Υζgω)2 (F.6)
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and ζgωµb has mean

M2 = b
εf

Υ

Υζgω

εf
= bζgω (F.7)

and variance

V2 = b
εf

Υ

(
Υζgω

εf

)2

=
bΥ

εf
(ζgω)2 (F.8)

Stewart et al. (2007) shows by simulation that if X and Y distribute according to a Gamma

with respective means µx and µy and variances σ2
x and σ2

y , then their sum can be approximated

by a Gamma with mean µx + µy and variance σ2
x + σ2

y . Therefore, µg = ζgωµf + ζgωµb can be

approximated by a Gamma r.v. with mean and variance:

M1 +M2 = ιfΥζgω + bζgω

= ζgω (ιfΥ + b)

V1 + V2 =
ιf

εf
(Υζgω)2 +

bΥ

εf
(ζgω)2

=
Υ

εf
(ζgω)2 (ιfΥ + b)

(F.9)

From which the shape and rate parameter of the Gamma can be derived:

αµg =
(M1 +M2)2

V1 + V2
=

(ζgω)2 (ιfΥ + b)2

Υ
εf (ζgω)2 (ιfΥ + b)

=
(ιfΥ + b) εf

Υ

= ιf +
bεf

Υ

(F.10)

βµg =
(M1 +M2)

V1 + V2
=

(ζgω) (ιfΥ + b)
Υ
εf (ζgω)2 (ιfΥ + b)

=
εf

Υ(ζgω)

(F.11)

If the original notation is adopted again, the shape and rate parameters used in Equation 6.2.2

can be recognised.

F.2 Prior distribution for the background influenza-like illness

(ILI)

Data on the weekly count of GP consultations for ILI from the first of January 2015 to the first

of September 2017 are analysed.

An HHH model is fitted to the data. Observations are assumed to be Negative-Binomially

distributed around a mean that comprises an epidemic autoregressive component and an endemic

component, i.e.:

Yt ∼ NegBinom (µ = exp(αYt−1) · bt, η)

bt = exp

{
ν1 + ν2 cos

(
2πt

52

)
+ ν3 sin

(
2πt

52

)}
The fit of the model to the data is reported in Figure E.1.
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Figure F.1: Endemic/epidemic model of ILI-consultations counts.

F.3 Derivation of prior variance for ω4

This derivation is taken from (Birrell et al., 2016).

A prior distribution is defined so that ω1, . . . ω7 are Log-Normally distributed.

Let

α1 = log(ω1)

α2 = log(ω2)

α3 = log(ω3)

α5 = log(ω5)

α6 = log(ω6)

α7 = log(ω7)

(F.12)

and

α4 = log(ω4)

= log

1

/ ∏
i∈1,2,3,5,6,7

ωi


= −

∑
i∈1,2,3,5,6,7

αi

(F.13)
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Let

α1 ∼ Norm(0, σ2)

α2 ∼ Norm(0, σ2)

α3 ∼ Norm(0, σ2)

α5 ∼ Norm(0, σ2)

α6 ∼ Norm(0, σ2)

α7 ∼ Norm(0, σ2)

(F.14)

So the variance of the remaining parameter is

Var(α4) = Var

− ∑
i∈1,2,3,5,6,7

αi


=

∑
i∈1,2,3,5,6,7

Var(αi) + 2
∑
i 6=j

Cov(αi, αj)

assume equal covariances Cov(αi, αj) = c

= 6σ2 + 2 (15c)

(F.15)

This parameter is imposed to have the same variance as all the others:

6σ2 + 2 (15c) = σ2 (F.16)

from which:

c = −1

6
σ2 (F.17)

so that 

α1

α2

α3

α5

α6

α7


∼ Norm


0;σ2



1 −1/6 −1/6 −1/6 −1/6 −1/6

−1/6 1 −1/6 −1/6 −1/6 −1/6

−1/6 −1/6 1 −1/6 −1/6 −1/6

−1/6 −1/6 −1/6 1 −1/6 −1/6

−1/6 −1/6 −1/6 −1/6 1 −1/6

−1/6 −1/6 −1/6 −1/6 −1/6 1




(F.18)

F.4 Convergence assessment

The Markov chain Monte Carlos (MCMCs) samples of all the parameters are displayed below.
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