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Treating water as a linearly responding dielectric continuum on molecular length scales allows very simple
estimates of solvation structure and thermodynamics for charged and polar solutes. While this approach can
successfully account for basic length and energy scales of ion solvation, computer simulations indicate not only
its quantitative inaccuracies but also its inability to capture some basic and important aspects of microscopic
polarization response. Here we consider one such shortcoming, a failure to distinguish the solvation ther-
modynamics of cations from that of otherwise-identical anions, and we pursue a simple, physically inspired
modification of the dielectric continuum model to address it. The adaptation is motivated by analyzing the
orientational response of an isolated water molecule whose dipole is rigidly constrained. Its free energy sug-
gests a Hamiltonian for dipole fluctuations that accounts implicitly for the influence of higher-order multipole
moments, while respecting constraints of molecular geometry. We propose a field theory with the suggested
form, whose nonlinear response breaks the charge symmetry of ion solvation. An approximate variational
solution of this theory, with a single adjustable parameter, yields solvation free energies that agree closely
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with simulation results over a considerable range of solute size and charge.

I. INTRODUCTION

Water is perhaps the most important solvent, and un-
derstanding the fundamental physical principles that un-
derlie aqueous solvation is essential to a broad range
of disciplines, such as protein structure and dynamics,
desalination, atmospheric chemistry and crystallization.
Despite numerous studies over the past century, major
gaps in our understanding of aqueous solvation still ex-
ist, particularly for small, charged solutes and for envi-
ronments that are spatially heterogeneous. Highlighting
these gaps, active research continues to develop and ap-
ply increasingly sophisticated methods of spectroscopy! 6
and computer simulation” ' in order to clarify the sol-
vation of ions in aqueous systems.

These limits on our understanding are reflected by the
lack of a robust, general, and thoroughly predictive the-
ory for the microscopic structure and thermodynamics
of water’s response to charged solutes. As a promising
and historically significant starting point, dielectric con-
tinuum theory (DCT) — a macroscopic linear response
theory for solvent polarization — can be applied in a mi-
croscopic context. This approach has yielded insights
that inspire modern perspectives on solvation, but its
flaws and limitations are considerable. Among the most
straightforward and important microscopic applications
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of DCT, the Born model of solvation'® caricatures an
ionic solute as a volume-excluding, uniformly charged
sphere of radius R embedded in a continuous, linearly-
responding solvent medium with dielectric constant e.
Reversibly introducing the solute’s charge ¢ in this model
gives a change in free energy
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that explains the basic energy scale of ion solvation and
its sensitivity to solute size and charge, and asserts the
permittivity as an essential determinant of solvent qual-
ity. Its quantitative predictions are roughly correct, pro-
vided that the dielectric radius R is treated as an empir-
ical parameter similar but not identical to the radius Ry
of molecular volume exclusion.

Fig. 1 shows the Born estimate of the charging free
energy Feng(g), alongside results of molecular simula-
tion of the SPC/E model of water,!” as a function of
solute charge for several solute sizes Ryp. (As a mea-
sure of Ry in molecular simulations, we quote values
of the Lennard-Jones diameter for solute-water interac-
tions, which is a reasonable—though not unique—choice
for neutral solutes.'® Effective hard sphere radii for fully
charged ions, as judged from radial distribution func-
tions, are approximately 10-20% smaller. This conven-
tion is used throughout the paper.) Relative to Feng(e),
where e is the charge of an electron, agreement is rea-
sonable even for ions as small as fluoride. But absolute
errors of ~ 50kgT (where T is the temperature and kg
is Boltzmann’s constant) overwhelm the scale of typical
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FIG. 1. Solute charging free energy Fcns vs g for different
solute sizes Ro, as indicated in the legend. Symbols show re-

sults from simulations, while lines show best-fits of Fc(fgom) (q)

(Eq. 1) to Feng. Fc(fgom)(q) largely captures the overall scale
and size dependence of Fie, but it does not describe the

asymmetric solvation® 2 of anions vs cations.

thermal fluctuations. Despite the magnitude of these er-
rors, DCT continues to serve as a basis for quantifying the
thermodynamics of aqueous response in calculations that
cannot afford to represent water molecules explicitly.!?
Motivated in part by such usage, this paper describes
theoretical efforts to improve on DCT while maintaining
the simplicity underlying its appeal.

From a molecular perspective, DCT is remarkably un-
detailed, resolving neither the tetrahedral motifs defining
water’s hydrogen bond network nor the features of molec-
ular geometry that are responsible for it. Significant im-
provement might well require an approach that differs
substantially in both spirit and methodology. Indeed,
there is ample evidence that near-field contributions from
a solute’s immediate environment have a different charac-
ter than contributions from more distant molecules. The
idea that the latter are well described by DCT, while
the former are not, has figured prominently in many
theoretical and computational approaches to describ-
ing aqueous environments. The inner-shell of Marcus
theory,?? for example, acknowledges and empirically ad-
dresses such a distinction in the nature of near-field and
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where I is the identity tensor. This model can be equiva-
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far-field response. More directly relevant to our study,
the multi-state Gaussian model®* of single ion solvation
similarly presumes that local solvent-structure requires
special treatment, while far-field response obeys simple
Gaussian statistics. A precise and systematic computa-
tional framework for range separation in solvation can
be found in the quasi-chemical theory (QCT)72%26 de-
veloped by Pratt and co-workers. These hybrid theories
and methodologies can achieve a high degree of accuracy,
e.g. when QCT is used in combination with ab initio
treatment of electronic structure.?”-?® But they are not
nearly as flexible or generalizable as DCT.

In the next section we describe in detail the specific
and fundamental shortcoming of DCT that inspires our
theoretical development, namely, an inability to distin-
guish between the solvation of cations and anions that
differ only in the sign of their charge. The contrastingly
strong charge asymmetry observed in molecular simu-
lations is then framed in terms of a water molecule’s
higher-order multipole moments, with particular empha-
sis on the molecular quadrupole. Sec. III shows, in
the context of a single water molecule, how integrating
out quadrupole fluctuations renormalizes statistics of the
molecular dipole. The result of that molecular calcula-
tion is then used to motivate a generalized version of
DCT, whose predictions for ion solvation thermodynam-
ics are approximately explored and numerically evalu-
ated in Sec. IV. We end with a discussion and outlook in
Sec. V.

1. BACKGROUND THEORY AND SIMULATION
A. Charge asymmetric solvation

This paper focuses on one key failing of DCT, evident
in Fig. 1 for the solvation of ions in bulk liquid water.
Specifically, in molecular simulations cations and anions
of the same size can have very different solubilities, while
DCT in its simplest form lacks such charge asymme-
try completely. Interfacial solvation provides even more
striking examples of charge asymmetry, with some anions
adsorbing favorably to the liquid’s outermost layer while
their cationic counterparts are strongly depleted. Here
we will consider only the bulk case.

The lack of charge aymmetry in DCT can be readily
appreciated from its basic mathematical structure. As a
linear response theory, DCT in its simplest form can be
cast as a microscopic model for a Gaussian fluctuating
dipole field m,, with energy?®
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lently formulated in continuous space,® but it will later



become more convenient for us to view space discretely.
We therefore take the position vector r to index a lattice
cell with microscopic volume v and m, to be a coarse-
grained representation of the molecular dipole distribu-
tion within v. The coarse-graining transformation could
take many forms, and we will not specify one here. In-
troducing a solute with charge ¢, which we place at the
origin without loss of generality, adds an electrostatic
interaction between m, and the solute’s electric field
Ey(r) = —qVr,

HDCT [mr} = Hdip [mr} - Z Eq (I‘) s My (3)

Volume exclusion is acknowledged in this description only
by restricting the sums in Egs. 2 and 3 to lattice cells that
are not occupied by the solute, a restriction we will leave
implicit. The thermodynamic consequences of evacuat-
ing the solute’s volume, while significant in some cases,
are not considered by DCT and will not be accounted
for here. Our focus on comparing cations and anions of
the same size justifies this neglect, but is not meant to
minimize the complex and interesting coupling between
density and polarization fields, which is particularly im-
portant near interfaces.31 34

The field theoretic Hamiltonian in Eq. 3 is charge sym-
metric: Changing the sign of ¢, while simultaneously in-
verting the dipole field’s orientation, leaves H invariant.
Cation and anion solvation are thus statistically equiv-
alent at this level of theory. The polarization field in-
duced by a cation, under inversion, is identical to that
induced by an anion of the same size. Predicted solu-
bilities of the two ions are equal as a result, as is clear
from the Born energy F C(fgom) (q) (Eq. 1) as an even func-
tion of q. By contrast, computer simulations indicate
that ion solvation in water is significantly charge asym-
metric. In their seminal study of single ion solvation us-
ing molecular simulation, Hummer et al.?® clarified this
charge asymmetry by presenting the average electrostatic
potential (V), at the center of a volume-excluding so-
lute as a function of g. For reference, we recapitulate
those results in Fig. 2a for a solute with Ry = 3.17A
immersed in SPC/E water. Notably, when referenced
appropriately to vapor (see Eq. 24), this potential is neg-
ative even in the case of a neutral solute, ¢ = 0, giving
an impression that liquid water is intrinsically more hos-
pitable to cations than to anions. The physical origins
of this neutral cavity potential®?1:22 (V) are surpris-
ingly challenging to identify precisely; profound ambigu-
ities plague any attempt just to separate contributions of
solvent molecules near the solute and those of a distant
interface.!371%:36-41 Pytting aside the lack of a clear phys-
ical interpretation, the effects of a nonzero neutral cav-
ity potential are straightforward to include in the DCT
framework. Adding an interaction between the solute
and this innate potential,

Hpor[mye; (V)o] = Haipmy] — Z Eqy(r) - my + q(V)o,
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gives a simply modified solvation energy
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Modifying DCT in this simple way has little impact, how-
ever, on the predicted charging free energy, at least on the
scale shown in Fig. 1. Furthermore, simulation results
for Fong(€) — Fong(—e), which compares the solubilities
of fully charged ions, indicate charge asymmetry in the
direction opposite to (V)g, favoring solvation of anions
over cations. Any significant improvements obtained by
including the neutral cavity potential are limited to small
values of ¢,21?? as shown in the Supporting Information
(ST).

Deviations from charge symmetry in SPC/E water
(and similar models) are not at all limited to an offset
in the solvent’s electric potential. The polarization re-
sponse to charging a solute is also distinct for cations and
anions, with more substantial consequences.!?21:22:35,42
Fig. 2a highlights this asymmetric response, which man-
ifests in (V)4 as a nonlinear dependence on ¢. Amend-
ing DCT to account for this nonlinear response is much
more challenging than introducing a background poten-
tial (V). Distinct thermodynamics for charging cations
and anions can be engineered by using different dielectric
radii in the Born model, as Latimer, Pitzer, and Slansky
pursued with quantitative success.?’ More nuanced em-
pirical approaches have been based on the approximately
piecewise-linear character of (V),, in essence asserting
different values of e in different ranges of ¢.22 These ad
hoc descriptions of ion solvation, however, fall short of
the flexible field theory we are seeking. Such a theory
would instead feature a microscopic Hamiltonian that is
anharmonic in the dipole field m,, generating distinct
response to solute fields E; with opposite signs of ¢ as
an emergent behavior. Below we will propose a theory
of this form, motivated directly by the molecular fluctu-
ations underlying polarization response.

B. Multipole expansion of the solvation potential

Charge asymmetric response in liquid water is rooted
in the inequivalent distribution of positive and negative
charge within each individual water molecule. A large
molecular dipole is a characteristic feature of this dis-
tribution, but by itself it is a highly incomplete descrip-
tion. Electrostatic forces that underlie hydrogen bonding
and charge asymmetry are instead encoded in higher or-
der multipoles. Although a detailed description of these
forces requires a multipole expansion to high order, we
will argue that a low-order expansion may in fact be suf-
ficient to correct qualitative flaws of DCT.

In order to isolate important sources of nonlinear po-
larization in computer simulations, we decompose the sol-
vation potential (V') according to multipole moment and
distance from the solute. Anticipating that deviations
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FIG. 2. Average electrostatic potential at the center of a
volume-excluding solute, with size Ry = 3.17A and charge
g, due to the surrounding solvent. (a) All solvent molecules
in the simulation are included (see Sec. VI). The solid and
dashed lines are guides to the eye, suggesting distinct suscep-
tibilities for g/e < —0.2 and g/e > —0.2, respectively. (b)
Average electrostatic potential at the center of the solute due
to molecules in the first coordination shell (those molecules
with oxygen atoms within 3.5 A of the solute’s center). Along
with the full Coulomb potential, the dipolar and quadrupo-
lar contributions are also shown. The dashed green line is a
guide to the eye, suggesting that the dipolar response is ap-
proximately linear. The quadrupolar response, by contrast,
exhibits a ‘kink’ similar to that of the full Coulomb potential.

from linear response are dominated by the near-field en-
vironment, we show in Fig. 2b contributions to (V') from
molecular dipoles and quadrupoles of water molecules in
the solute’s first solvation shell. The nonlinear shape of
the total near-field contribution (Vjear)q indeed strongly
resembles the full potential (V'),. By contrast, contribu-
tions from more distant molecules, presented in the SI,
depend linearly on ¢ to a good approximation, confirming
expectations from previous work that DCT accurately

portrays polarization response on length scales beyond
~ 1 nm,35:43-46
The dipole contribution to (Vyear)q for a solute at po-
sition r is defined as
: >
(6)
|Rj —r|

<Vndel§r = < Z hnear,j Ky
where

1= GaTjo (7)

is the net dipole of the j*" molecule, whose center re-
sides at R;. rj, is the position of site o on molecule j,
whose charge is ¢o. The characteristic function hyear,;
is unity if the oxygen atom of solvent molecule j resides
in the solute’s first solvation shell; otherwise, it vanishes.
Compared with (Viear)q and (V)g, the first-shell dipolar
potential (VdIP), is a remarkably linear function of g.
At large values of ¢, we expect significant nonlinearity in
(Vdip) . due to dielectric saturation, but for |g| < e such
effects are barely apparent on the scale of Fig. 2.

By contrast, the quadrupolar contribution to (Viear)q
exhibits a nonlinearity quite similar to that of the full

potential. We define this contribution as
1
quad _ h K
<Vncar > < Z near,j VV |R _ I“ > (8)

where
K] - Z qo rja -

is the net quadrupole of the j* molecule. The coefficient
multiplying the identity tensor I in Eq. 9 is completely
arbitrary, since I : VV|R; — r|7! = —476(R; — r) and
R necessarily lies outside the solute. We will exploit this
arbitrariness below, freely adding and removing isotropic
contributions to K for convenience. Similar liberties can
be taken with higher order multipoles.

Parsing (Vyear)q as in Fig. 2b requires choosing the
reference point R; that sets the origin of a molecular
coordinate system. The dipole p; is not sensitive to
this choice, but its contribution (VdiP), is. At higher
orders, both the multipole moment (e.g., K;) and its
contribution to the electric potential (e.g., (V;4uad) ) de-
pend on the choice of R;. For (VdP),  and <aneﬁd>q
we find only a weak sensitivity for reasonable choices of
R, i.e., points within the solute’s excluded volume that
lie along the line of symmetry bisecting the hydrogen
atoms and running through the O atom. Throughout
this work we will adopt the molecule’s center of charge

Rg-c) =, 2alrja/ >, |dal, Which is displaced ~ 0.3 A
from the O atom, as the reference point, which is shown
schematically in Fig. 3a. Fig. 3b provides a visual argu-
ment for this choice of molecular reference frame. Isosur-
faces are shown for the corresponding electric potential

1 1
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r — R,

Rj)(rjo —R;) + (const)I  (9)

—pj Ve (10)



i.e., the multipole expansion of the potential generated
by molecule j, truncated at second order. The strong
resemblance to water’s intramolecular geometry suggests
that this low-order expansion captures aspects of charge
asymmetry essential to ion-specific solvation. By con-
trast, an analogous second-order expansion with R; set
at the O atom gives rise to a potential that resembles

J
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The constants a, a’, a”’, etc. are all arbitrary, since the
moments '™ will always appear in contraction with ten-
sors formed from gradients of the electrostatic Green’s
function. As with the quadrupole in Eq. 9, terms in
(") containing an identity in any two components (e.g.
dq4r) are therefore inconsequential. This contraction also
makes the ordering of indices in [I‘(”)]qmtm irrelevant.

C. Elaborating DCT

Extending DCT to describe higher-order multipoles
could be accomplished most simply by adding a Gaussian
quadrupole field Q.. A natural choice for the generalized
Hamiltonian,

1
Hdip+quad [mrv Qr] = Hdip [mr] + F Z QI‘ : Qr
Q r

1 1

1

v — /|

— EVVVV : Qr/] (12)
couples these fields through standard electrostatic inter-
actions, providing a bias that renormalizes dipolar lin-
ear response. Though straightforward (and easily gen-
eralized to octupole density and hexadecapole moments,
etc.), this approach is unsatisfying in several respects.

First, the electrostatic interaction between
quadrupoles (and all higher-order multipoles) di-
verges at short range in a way that is not integrable
in 3 dimensions, unlike the dipole-dipole interaction.
The field theory defined by Eq. 12 would therefore
require regularization, so that the parameter og sets a
finite local quadrupole susceptibility. Second, and more
importantly, this theory preserves the charge symmetry
of standard DCT. Specifically, coupling to a charged
solute gives a total energy

1
Haip+quad — Z Ey(r) -m; — 5 Z VE,(r) : Qr

that is invariant to a simultaneous sign change of ¢, m,,
and Q.. Just as for the Born model, ion solvation en-

that of water much less closely (see SI).

These results encourage amending DCT to account for
fluctuations in local quadrupole density. The approach
we describe below for doing so is straightforward to gen-
eralize for higher-order multipoles. For the sake of gen-
erality, we therefore introduce the n*"'-order multipole
moment of a water molecule as

+ 0grast.. + 0gsan,  + 5rsa;’tm + ... (11)

(

ergies would remain even in solute charge ¢g. Third, the
number of degrees of freedom proliferates in such a gen-
eralization as higher order multipoles are included. At
quadrupole order, the theory involves 12 scalar variables
at each point in space. Imposing expected symmetries of
Q; would reduce this number, but the fact remains that
adding detail (in the form of higher-order multipoles) in-
creases the theory’s dimensionality. By contrast, an indi-
vidual water molecule, modeled as a rigid body, possesses
only 3 non-translational degrees of freedom, regardless of
how exhaustively its electric potential ¢(r) is expanded
in multipole moments. These moments are not entirely
independent variables; they are instead tied together by
molecular geometry. Such constraints among molecular
multipoles, we argue, are key to capturing charge asym-
metry at a field theoretic level.

I1l. DEVELOPING A CHARGE ASYMMETRIC FIELD
THEORY

A. Multipole constraints and dipolar response

The relationships among water’s molecular multipoles
can be easily understood. As an illustration, consider
the dipole and quadrupole of an SPC/E water molecule.
These moments are simply expressed in the coordinate
system of Fig. 3a, p = pft and K = KxX, where p is the
magnitude of the dipole vector, and K is a scalar con-
stant. The unit vectors 1 and X point parallel and per-
pendicular, respectively, to the line of symmetry bisecting
the hydrogen atoms. In the course of free molecular ro-
tation, £t and X can both explore the entire unit sphere,
setting the range of possible realizations of p and K. But
if 1 is fixed, X can explore only a unit circle orthogonal to
[, limiting the range of the tensor xx. Quadrupole fluc-
tuations are thus partially constrained by the dipole’s
orientation, as are all higher-order moments.

We imagine that multipole density fields like m,
and Q, represent a coarse-grained view on a material’s
molecular configuration. The coarse-graining procedure
translates the constraint detailed above between each
molecule’s dipole p; and its quadrupole K; into a re-
lationship between the fields m, and Q, — a connection
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FIG. 3. The molecular structure of the water molecule gives rise to charge asymmetry.

(a) The unit separation vector x

between the two hydrogen atoms is orthogonal to the unit dipole vector 1. The yellow circle represents the multipole expansion

point, i.e., the molecule’s center of charge.

(b) Equipotential surfaces of the molecular dipole and quadrupole.

Summing

contributions of these two lowest order moments (as indicated by the arrows and detailed in Eq. 10) is sufficient to generate a
charge-asymmetric equipotential surface suggestive of a water molecule.

that is less strict and more subtle than that between p;
and K;. We do not attempt here to detail this connection
between coarse-grained fields. Instead, we focus on the
molecular constraint’s influence on the dipolar response
of a single molecule. The result of this molecular cal-

culation will then be used to motivate a modification of
DCT.

1. Dipole statistics of an isolated molecule

Consider a single water molecule, at equilibrium, in an
electric potential @yt (r) that is generated by external
charges. Taking the molecule’s center of charge to be
fixed at a position Ry, a multipole expansion expresses
its energy as

o0
1
B =D

0 0 0
2 [T Oz, Oz Oy - fext(r)

7,8,t,... Ro
(13)

where the n'® term of the expansion involves n spatial

derivatives, indexed by r,s,t,.... We have in mind a
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where (-)i"*#5ed denotes an unbiased orientational aver-
age over X subject to the constraint of fixing 1. We fur-
ther assume that the potential eyt (r) is slowly varying,
so that the sum over n can be truncated at low order.

The symmetry of a water molecule causes many ele-
ments of T'("™) to vanish, regardless of the specific model

n) unblabed]

model with rigid intramolecular geometry, so that the
unit vectors fi and X specify the entire set of multipole
moments T (f1,%). We aim here to integrate over one
intramolecular degree of freedom (%), while holding the
other (f1) fixed, to obtain a free energy

heﬂ(ﬁ') = 7kBT1H/d)A(eiﬁh(ﬂf§() (14)

that depends only on fi. In doing so, we determine an
effective energy heg (ft) for the molecular dipole in which
fluctuations of all higher-order multipole moments have
been taken into account, along with the constraints that
relate them.

The integration in Eq. 14 is analytically intractable,
even for this simplified single-molecule scenario. The
complicated electric field fluctuations generated by a
liquid environment at microscopic scales do not invite
greatly simplifying approximations. We nevertheless in-
troduce two such assumptions, which will allow us to
capture the lowest-order influence of quadrupole (or oc-
tupole, etc.) fluctuations on the statistics of molecular
dipoles. We first make a weak-field approximation,

g 0 0
st... 3$T 3333 Tl‘t cee ¢ext(r) R(),
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considered. The irrelevance of isotropic contributions
(e.g., terms in K that are proportional to I) causes many
other multipole elements to be unimportant. Further-
more, the contraction in Eq. 13 allows the indices of
[T(™],4.. to be permuted arbitrarily. As a result, the
class of elements relevant to h at a given multipole or-



der is not large. Nontrivial contributions to '™ can all
be written in terms of dyadic products involving an even
number 2m of factors X together with n — 2m factors of
o (e.g., pfr and xx at order n = 2, s and fxx at
order n = 3, etc.). Relevant contributions to the average
moments (I‘(")>l“2nbiased in Eq. 15 then follow from results
of straightforward angular integration:

s o\ unbiase 1 A~

(xx)pnbiased — 5 (= fuft),

 n A\ unbiase 3 . .

(i) et = S (L= ) (L= ), .. (16)

where we have exploited the arbitrariness of index or-
dering in [(I‘(")Wﬂ“bi“ed]mtm. Removing isotropic contri-
butions that vanish when contracted with gradients of
dext (r), we finally obtain an effective dipolar energy

o0
her 2 ) bn (1 V)" Gesa (1) (17)
n=1 Ro
The form of this result is general for any SPC model
that has the symmetry of a water molecule. The values
of coefficients b,,, on the other hand, are model-specific;
they are also sensitive to the choice of reference point Ry
defining the multipole expansion. For the case of SPC/E
water and Ry set at the molecule’s center of charge, b; =
1 and by ~ —0.6e~1L.
In constructing a field theory in the next section, we
will focus on a truncation of the sum in Eq. 17 at n = 2,

hgff) (ll’) =M v¢ext + b2(ll/ : V>2¢ext (18)

The first term in h,(jcf) describes direct electrostatic cou-
pling between the molecular dipole and an electric field
external to that molecule. Its coarse-grained analog, ap-
pearing explicitly in Eq. 3 and implicitly in Eq. 2 through
the dipole-dipole interaction, defines the nonlocal inter-
action energy in DCT. Correspondingly, this contribution
is charge symmetric — a potential ¢ey; = ¢/r due to an
external point charge yields an energy that is invariant
to inverting the signs of both ¢ and p.

The second term in h((jf), by contrast, breaks charge
symmetry — it effects response to an external point charge
that is not equivalent for ¢ > 0 and ¢ < 0. This nonlin-
ear contribution originates in fluctuations of x, which
dictates the molecular quadrupole. By integrating out
quadrupole fluctuations, we have thus obtained an effec-
tive dipolar energy that reflects the asymmetric charge
distribution within a water molecule.

Carrying out the summation in Eq. 17 to higher order
generates a series of charge symmetric (n odd) and charge
antisymmetric (n even) terms. If a particular model and
choice of Ry gives by = 0 (as is the case for SPC/E water
if one chooses the oxygen atom as the reference point),
charge asymmetry would emerge first at hexadecapole
order (n = 4). If a particular model features a com-
pletely charge-symmetric intramolecular geometry (e.g.,
BNS water®”) and Ry is set at the center of charge, then
b, = 0 for all even values of n, so that heg is appropri-
ately equivalent for cation and anion response.

B. A constraint-inspired field theory

The analysis of single-molecule response we have pre-
sented suggests important considerations for generaliz-
ing DCT. Foremost, it indicates that the introduction of
quadrupolar fields (or other higher-order multipole mo-
ments), as in Eq. 12, should be accompanied by consid-
eration of constraints dictated by molecular geometry.
The nature of these constraints is clear at the molecular
level, but an appropriate expression in terms of coarse-
grained fields like m, and Q; is not obvious. If one were
to impose strict constraints, such as m, - Q, = 0 at each
position r, then partition functions and response func-
tions could be formulated from Eq. 12 using methods
that have proven effective in other contexts.2??4® This ap-
proach would be analytically challenging, however, since
the nonlinear constraints we have described prevent map-
ping onto a Gaussian theory simply by introducing aux-
iliary fields as in Refs. 29 and 48.

We will follow a different approach. Rather than tak-
ing the constraints themselves from a molecular model,
we instead take the effective dipolar energy (Eq. 18) they
imply when local quadrupole fluctuations are integrated
out. In doing so, we neglect correlated fluctuations in
the quadrupole field, in effect treating Q, and Q,s (with
r # r’) as independent variables for a given realization
of the dipole field. Focusing in this way on quadrupolar
response to m, alone conforms to the spirit of the mul-
tipole expansion on which our perspective is based. The
resulting charge-asymmetric, field-theoretic Hamiltonian
follows from Eq. 18,

Hm,| = Hdip[mr]_z Eq(r)'mr_bz m, m, : VE(r)

(19)
where E = E; + Eqj, is the total electric field at r, in-
cluding contributions from the solute and from the dipole
field,

1
Edip(r) = - ZVV'W -m,

We will not attempt here to derive or motivate a value
for the parameter b, whose connection to the molecular
parameter by is conceptually but not quantitatively clear.

Eq. 19 is the central result of this paper. It defines a
field theory that is charge asymmetric in accord with the
asymmetric response of an isolated water molecule. It
respects the rotational symmetry of the liquid state and
is simple to express, but analysis is made unwieldy by
the final sum in Eq. 19, which features coupling of the
external field to a bilinear functional of the dipole field as
well as cubic, spatially nonlocal interactions among the
field variables. To make exploratory progress, we intro-
duce two additional approximations. First, we replace
the fluctuating total electric field in Eq. 19 with a con-
stant, screened external field, E(r) =~ E,/¢, that would
result on average from linear dielectric response. This
replacement removes a nonlinearity of third order in the



dipole field, while preserving nonlinear response to the
solute’s charge. It also limits the complications we have
added to a spatially local functional of the field m,.

With this simplification, the Hamiltonian in Eq. 19
becomes bilinear in the dipole field, whose statistics
are therefore Gaussian. Analysis remains challenging,
however, because the effective dipolar coupling gener-
ates localized normal modes that are not easily antic-
ipated. The fluctuation spectrum of m, thus changes
as B, is introduced, producing a complicated nonlinear
response that breaks charge symmetry. We simplify fur-
ther by taking a variational approach, introducing a more
tractable reference system

Hret[My] = Haip[my] + (jz m, - Vr! (20)

H.et describes the response of a conventional dielectric
continuum to a solute with effective charge q.

We determine an optimal choice of the variational pa-
rameter ¢ from the Gibbs-Bogoliubov bound,

InZ Z In Zref — B<AH>ref

on the partition function Z and its counterpart Z..¢ for
the reference system. Here, AH = H — Hyer, and (*)yer
denotes an ensemble average in the reference system.
Evaluating (AH).t requires calculating, and appropri-
ately summing, both (m;),es and (m,m,),s. The for-
mer, (My)ef = E4(e — 1)/(4me) is simple to compute
and manipulate, both on- and off-lattice. The latter
involves the response function x(r,r’) = (dm,0my ) ef,
where dm, = m, — (m, ). In the presence of a volume-
excluding solute, x(r,r’) is generally complicated, and in
the off-lattice case it is singular for r = r’. But with
space treated discretely it can be written compactly for
a solute that occupies a single lattice cell. Placing this
solute at the origin, we have?®

303 e—1\°__1 1
)= — VV-.VV-
X(r;x) Be(2e + 1) < 4w > r r
for r # 0. Approximating sums }_ , as integrals
v~ [ g dr, we obtain
q=
1+ Bgq

with B = —b(v/R3)(e — 1)/(4me), and

var ref
F(q) = P () + (AH)rer
:_Lde—l B 3bqksT (e —1)3
2R € 212¢ 241 °

(21)

For simplicity we have taken R = v!/3 /2. Reasonable
alternatives, such as R = (3v/4m)/3 yield similar results.

Eq. 21 includes a term linear in ¢, whose coefficient
could be regarded as a contribution to the neutral cav-
ity potential (V). Since we have made no attempt to

include contributions from distant interfaces, this term
cannot offer a full accounting of charge asymmetry in
the limit ¢ — 0. In the same spirit as the modified Born
model in Eq. 5, we could replace it with the correct neu-
tral cavity potential,

qq e—1
2R €

FS® (g5 (Vo) ~

+a(V)o. (22)
This modification is only significant at very small values
of q. Predictions for fully charged ions (¢ = =+e) are
essentially unaffected.

IV. NUMERICAL RESULTS

Predictions of the variational result in Eq. 22 de-
pend on input parameters R and b, which set the ef-
fective solute size and the strength of nonlinearity due to
quadrupole fluctuations. We will treat these parameters
as we did the dielectric radius R of the Born model in
Sec. IT A. Specifically, we require consistency across ions
with a given volume-excluding radius Ry but otherwise
adjust R and b to obtain the best possible agreement with
results from molecular simulation.

For any physically well-founded theory, we expect the
optimal choice of dielectric radius R to be similar, but
not necessarily identical, to the radius Ry of molecular
volume exclusion. Indeed, Fig. 4a shows that R for our
nonlinear variational theory depends on Ry in almost pre-
cisely the same way as for the Born model. Across the
range of solute sizes considered, we find that dielectric
and volume-excluding radii differ by a nearly constant
offset, R ~ Ry — 1.31A.*° With this offset, R corre-
sponds suggestively to the distance of closest approach
between the solute and the hydrogen atoms of surround-
ing water molecules, as shown in Fig. 4b for ¢ = —e
and Ry = 3.17A (examples for different choices of Ry
are given in the SI). The idea that an optimal dielectric
radius may appear smaller than Ry owing to the longer
reach of water’s hydrogen atoms has been proposed and
discussed before,2° 22 but for the specific case of nega-
tively charged solutes, whose solvation favors molecular
orientations that place hydrogen atoms as close to the
solute as possible. In our case, we stress that the same
dielectric radius is used for cations and anions that have
the same volume-excluding size. Charge asymmetry is
an emergent, rather than engineered, feature of this ap-
proach.

Because the optimal choice of R aligns closely with
that of the Born model, we view the nonlinear theory of
Eq. 19 as adding a single adjustable parameter, namely b.
We anticipate that b, which has units of inverse charge,
should be roughly of order 1/e. We also expect that b
should decay in magnitude as solute size Ry increases,
both because near-field contributions are less prominent
for large ions and because linear response theory is al-
ready successful in this limit. The origin of b in con-
straints of molecular geometry, which are not at all trans-
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FIG. 4. The optimal dielectric radius R is generally smaller
than the radius Ro of a solute’s excluded volume. (a) The
relationship between R and Ry, determined by fitting theo-
retical results to computer simulations, is approximately lin-
ear. The dotted line indicates R = Ry, and the dashed line
shows R = 0.97Ro — 1.31 A. Results are shown for the Born
model (Eq. 5) and for our variational theory (Eq. 22). (b)
The solute-solvent radial distribution function [g(r)] suggests
R roughly corresponds to the distance of closest approach
of water’s hydrogen atoms to the solute. Solid and dotted
lines show solute-hydrogen ¢(r) and solute-oxygen g(r), re-
spectively, for Ro = 3.17 A and ¢ = —e. The vertical dashed
line indicates the best-fit value of R for this solute size.

parent at a field-theoretic level, makes it difficult to de-
velop further a priori expectations. Maximizing agree-
ment of Eq. 22 with simulation results for Feng(g), we
find empirically that b ~ e~1(—0.03 — 3.20R52) to a very
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FIG. 5. (a) The nonlinearity parameter b (see Eq. 19),

determined by fitting theoretical results to computer sim-
ulations, varies linearly with Ry?. The dashed line shows
eb = —0.03 — 3.20R;2. (b) The resulting effective varia-
tional charge § is greater in magnitude for anions than it is for
cations, as shown for a solute with volume excluding radius
Ro =2.70 A (solid line). The dotted line indicates § = q.

good approximation, as shown in Fig. 5a. As a practi-
cal matter, this simple and quantitatively successful fit
allows accurate application of the variational result in
Eq. 22 to arbitrary Ry without any further fitting. Phys-
ically, the observed scaling of b with Ry is intriguing, but
we cannot offer a compelling explanation.

With these fitted values of R and b, the effective vari-
ational charge ¢ is larger in magnitude for ¢ = —e than
for ¢ = e, as shown in Fig. 5b for a solute with volume
excluding radius Ry = 2.70 A. The resulting charge asym-
metry therefore favors solvation of fully charged anions
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chg

sizes, Fc(ggr) significantly improves upon , especially for

q = e (see Fig. 1 and SI).

over cations with the same volume-excluding size, as ob-
served in computer simulations. Fig. 6 shows a detailed
comparison of charging free energies obtained from sim-
ulation and from the nonlinear variational theory. For
all solute sizes considered, and across the entire range
q = —e to ¢ = e, the agreement is excellent. For the
largest solute, Ry = 5.5 A, there is little room for im-
provement over the linear response prediction Eq. 5; a
small but noticeable charge-asymmetric response in sim-
ulation results is nonetheless captured well by our vari-
ational result. For the smaller solutes, Ry = 2.7 A and
Ry = 3.17A, improvement over the Born model is dra-
matic. Discrepancies between simulation and the nonlin-
ear field theory result certainly remain, but the qualita-
tive shortcomings of DCT have essentially been erased.

V. DISCUSSION AND OUTLOOK

Our aim in this article has been to address a key fail-
ing of DCT — a fundamental lack of charge asymmetry
in ion solvation — while preserving its conceptual simplic-
ity. Computer simulations indicate that this asymmetry
originates in induced polarization of the solvent which
is not simply a linear functional of the electric field ex-
erted by a charged solute. Motivated by the influence
of quadrupole fluctuations and constraints of molecular
geometry on statistics of the solvent dipole field, the ef-
fective Hamiltonian presented in Eq. 19 adds the kind of
sensitivity to such nonlinear response that is required to
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capture charge-asymmetric solvation. Our approximate
solution to this model, obtained by a variational proce-
dure, gives a charging free energy (Eq. 22) with the same
basic form as the standard Born model (Eq. 5), but with
an effective ion charge that is renormalized by nonlinear
response. Setting the strength b of the nonlinearity to be
a simple function of ion size, we obtain close quantitative
agreement with results of computer simulations.

While we believe our approach is original, it is cer-
tainly not the only way to achieve charge asymmetric
solvation energies. In many previous efforts, asymmetry
was introduced by hand. Latimer, Pitzer and Slansky?’
amended the Born model by assigning different dielectric
radii for anions and cations of the same size, an approach
that has been adopted in subsequent theoretical studies.
The piecewise-affine response model?? of Bardhan et al.
follows a similar spirit, empirically adjusting the nature
of electrostatic response as a solute’s charge is varied.
We recently demonstrated that an analogous treatment
of interfacial solvation performs reasonably well in de-
scribing ion-specific adsorption to the air-water surface.'®
Also inspired by the constraints between water’s molec-
ular multipoles, Mukhopadhyay et al. introduced charge
asymmetry into both the Born®® and generalized Born®!
models via a scaling factor that depends upon the sign
of the solute’s charge. Similar to our approach, the di-
electric radius is also independent of the solute’s charge.
In all these approaches, however, charge asymmetry was
built in a posteriori, whereas it is an emergent feature of
the model defined by Eq. 19.

Fluctuations in a solvent’s polarization and in its den-
sity are both advanced at microscopic scales by rear-
rangement of discrete molecular structures; they are
therefore tied together intimately. In this paper we have
taken an electrostatic perspective on the nonlinear re-
sponse to solute charging, in which polarization fluc-
tuations are renormalized by degrees of freedom that
can be described in terms of electrostatic multipoles.
Polarization statistics can of course also be compli-
cated by the influence of microscopic density fluctua-
tions, as highlighted by the sensitivity of dielectric sus-
pectibility to volume exclusion.?? Work by Dinpajooh
and Matyushov®? emphasizes that these biases are not
completely distinct, suggesting the interesting possibility
that the quadrupole-mediated response we have analyzed
might be conceived alternatively in terms of microscopic
density fluctuations. More recently, Duignan and Zhao
have found that the degree of charge asymmetry in simple
point charge models can be drastically reduced by shift-
ing the center for volume exclusion on the water molecule
from the oxygen atom toward the hydrogen atoms.?® This
sensitivity is distinct from that discussed in Sec. ITTA 1,
which arises from truncating the sum in Eq. 17 at sec-
ond order. In principle, however, a field theory that is
insensitive to Ry could be constructed by including all
higher order contributions, even if its analysis becomes
intractable.

More generally, the interplay between density and po-



larization response generates a spectrum of solvation be-
haviors, ranging from hydrophobic effects at one extreme
to small ion solvation at the other. A lack of theoretical
methods and tractable models that successfully span this
range stands as a one of the most severe challenges limit-
ing computational biophysics and nanoscience. While re-
search on hydrophobic effects remains active,>* field the-
oretic approaches to the underlying density fluctuations
have matured greatly in recent years.®*>5® The power-
ful tools they provide do not yet have counterparts in
an electrostatic context, a gap that our work seeks to
help fill. While much remains to be done in refining the
nonlinear theory we have formulated and in developing
practical methods to solve it, the work presented here is
in our view a meaningful step towards placing theories
for electrostatic and hydrophobic solvation on compara-
ble footing. As such, it advances the development of
efficient computational techniques that apply across the
entire hydrophobic/hydrophilic spectrum.

VI. METHODS

All simulations used the SPC/E water model!” and
were performed with the LAMMPS simulation package.®?
Simulations comprised 64, 256 or 512 water molecules
plus a single solute, such that the total number density
was p = 0.03333 A=3. Our model solute is a Lennard-
Jones particle,

u(r) = 4e[(Ro/r)™* — (Ro/7)"), (23)

where r is the distance between the center of the so-
lute (where the solute charge is also located) and the
oxygen atom of the water molecule. We set ¢ =
0.1553 kcal/mol (the same as SPC/E water) for all so-
lutes investigated, but varied Ry as indicated through-
out the manuscript. Full 3D periodic boundary condi-
tions with particle-particle particle-mesh Ewald summa-
tion was used throughout,%%:%! with a homogeneous back-
ground charge to neutralize the system. Simulations of
5ns in length, with a periodic cell of side length L, were
performed with ¢/e = —1.0,—-0.9,...,+40.9,41.0. (For
Ry > 4.5A we used ¢/e = —1.0,—-0.8,...,+0.8,+1.0).
The charging free energy Fc(lfg) was then computed us-
ing the MBAR algorithm,%? as described previously in
Ref 45. The quantity F, C(th) suffers from severe finite size

effects.
quantity,

It has previously been shown3>4445 that the

Fchg = Fc(}fg) + g(e c 1>¢Wig + qV;‘urf (24)
accurately estimates the macroscopic limit L — oo, in-
cluding the effects of distant interfaces. In Eq. 24, the
Wigner potential ¢ywig/q is defined as the electrostatic
potential at the site of a unit point charge due to all
of its periodic replicas and a homogeneous background
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charge that acts to neutralize the primitive cell. The
surface potential Vi = —590mV'* was determined by
numerically integrating the solvent’s charge density pro-
file {pso1v(2)) according to Vius = 47 f:;‘;dz {psorv(2)) 2,
where z1iq and zvap, denote locations on either side of a
neat liquid/vapor interface. Nonlinear curve fitting to ob-
tain optimal choices of R and b (see Egs. 5 and 22) was
performed using the True Region Reflective algorithm,%?
as implemented in SciPy’s ‘curve_fit’ routine.*
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Supporting Information

S1. THE EFFECT OF INCLUDING (V) ON F{2™)

chg

In Fig. S1 we present the results of including a term ¢(V)( in the Born model of solvation (Eq. 5). On the scale of

F(Born)

Fig. S1, this has negligible impact on che

pronounced for small q.

. As seen in the insets of Fig. S1, the effect of including ¢{V)¢ is most

S2. CONTRIBUTIONS FROM MORE DISTANT SOLVATION SHELLS

Fig. S2 shows <Vn(92a)r>q and <V153,21.>q, the contributions to (V), from the second and third solvation shells, respectively,
for the same system shown in Fig. 2 in the main text. Denoting the distance between the center of the solute
and the oxygen atom of a water molecule as Rgp, a molecule is deemed to be in the second coordination shell if
354 < Rso <5.5 A, and within the third coordination shell if 5.5 A < Rso <8.5 A. The results indicate that linear
response is a reasonable approximation for the solvent’s dielectric response beyond the first solvation shell.

S3. RESULTS FOR ALL SOLUTE SIZES INVESTIGATED

In Fig. S3 we show F C(}Yar) fitted to Fi,e obtained from simulation for all solute sizes investigated. For the smallest
solutes we see some relatively small discrepancies between the simulation and the theory, but the large degree of
charge asymmetry is nevertheless captured. Also shown in Fig. S3 are results for the same solute in different sized
simulation boxes, indicating the finite size corrections described in the main text are sufficient to obtain an estimate
for the macroscopic charging free energies.

S4. DIELECTRIC RADII

In Fig. S4 we show a plot analogous to Fig. 4b in the main article, but for solute sizes Ry = 2.70 A and Ry = 5.50 A.
In both cases we find that R roughly corresponds to the distance of closest approach for the hydrogen atoms of the
water molecules.

S5. EQUIPOTENTIAL SURFACES

Figures S5 and S6 show equipotential surfaces arising from dipole and quadrupole contributions, with the multipole
expansion respectively performed around the center of charge, and the position of the oxygen atom. Using the center
of charge results in an equipotential surface that more closely resembles that of SPC/E water.
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FIG. S1. Fug vs ¢ for different solute sizes Ro: circles, 2.70 A; squares, 3.17 A; crosses, 5.50 A. Symbols show results from

F(Born)

simulations. (a) As shown in the main article, F;

(¢;0) (Eq. 5) largely captures the overall scale and size dependence of

Feng, but it does not describe the asymmetric solvation of anions vs cations. Lines indicate best-fits of Fc(}l?gom)(q; 0) to Feng.
(¢; (V)o), only has a small effect, as seen by the similarity to panel (a). In both

(b) Including a contribution ¢(V)o, Fc(fgom)
(a) and (b), the effective Born radii are found to be 1.21 A (blue circles), 1.69 A (orange squares) and 3.95 A (green crosses).

Insets: detailed view of the behavior for —0.3 < ¢/e < 0.3 where the effect of adding ¢(V)o is most clear.
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FIG. S2. Contribution to (V)4 from more distant solvation shells. The degree on non-linearity is far less pronounced compared
to the contributions from the first solvation shell (Fig. 2). (a) (Vn@r)q is the contribution from molecules in the second solvation
shell. Inset: same data on a reduced scale, indicating there is still a degree of non-linear response. (b) <Vn(§2r)q is the contribution
from molecules in the third solvation shell.
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FIG. S3. Fug for all solute sizes studied. Circles, squares and crosses indicate data obtained from simulations with 64, 256 and

512 water molecules, respectively. Results for Rg = 2.40 A have been obtained with both 64 and 256 water molecules, while for
Ro = 3.17A, Fong has been computed for all three system sizes: these results indicate that the finite size corrections work as

expected. Solid lines indicate best fits of F| c(;"ar) to the simulation data. While some discrepancies are observed for the smallest
solutes, the theory does a reasonable job at capturing the charge asymmetry.
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FIG. S4. Solute-solvent radial distribution functions for (a) Ro = 2.70 A and (b) Ro = 5.50 A. In both cases ¢ = —e. Solid and

dotted lines show solute-hydrogen ¢(r) and solute-oxygen g(r), respectively. The vertical dashed line indicates R.
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FIG. S5. (a) Equipotential surface of a single water molecule. (b) Equipotential surface resulting from (c¢) dipole and (d)

quadrupole contributions. The center of charge has been used for the multipole expansion.

(a) Full Coulomb

(b)

Dip. + Quad.

()

Dipole

(d) Quadrupole

FIG. S6. (a) Equipotential surface of a single water molecule. (b) Equipotential surface resulting from (c) dipole and (d)

quadrupole contributions. The position of the oxygen atom has been used for the multipole expansion.
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