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Abstract. In this article, the author endows the functor category [B(Z2),Gpd]
with the structure of a type-theoretic fibration category with a univalent uni-
verse, using the so-called injective model structure. This gives a new model

of Martin-Löf type theory with dependent sums, dependent products, identity
types and a univalent universe. This model, together with the model (devel-
oped by the author in another work) in the same underlying category and

with the same universe, which turns out to be provably not univalent with
respect to projective fibrations, provide an example of two Quillen equivalent
model categories that host different models of type theory. Thus, we provide

a counterexample to the model invariance problem formulated by Michael
Shulman.

1. Introduction

This article is a contribution to the ongoing effort to find models of the Univalent
Foundations [Bor17b] introduced by Vladimir Voevodsky. In particular, Shul-
man [Shu15b, Shu15a, Shu17] with his notion of type-theoretic fibration categories
prompted the development of models of the Univalence Axiom in functor categories.
In [Shu15b] Shulman endowed the functor category [D,C ], where D is an inverse
category and C is a type-theoretic fibration category with a univalent universe,
with the structure of a type-theoretic fibration category with a univalent universe
by using the so-called Reedy model structure. In [Shu15a] Shulman endowed the
category [D, sSet], where D is any elegant Reedy category and sSet is the category
of simplicial sets, with the structure of a type-theoretic fibration category with a
univalent universe, again by using the Reedy model structure. The reader should
note that inverse categories are particular cases of elegant Reedy categories that
are themselves particular cases of (strict) Reedy categories. Since Reedy categories
do not allow non-trivial isomorphism, this kind of index categories has strong lim-
itations. Moreover, it is useful to note that the class of elegant Reedy categories
is precisely the class of index categories for which the Reedy model structure and
the so-called injective model structure on a functor category are the same. Thus,
despite technical challenges that might be difficult to overcome the injective model
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structure on a functor category seems a reasonable candidate to find models of
the Univalence Axiom in functor categories. However, in [Shu17] Shulman used
a different model structure to give models in EI-diagrams. An EI-category is a
category where every endomorphism is an isomorphism, groups are particular inter-
esting cases. According to Shulman “[He] constructed a model in a certain model
category that presents the homotopy theory of presheaves on an EI-category, but it
is not the injective model structure on a functor category. In the case of [the target
category Gpd of groupoids and the index category] Z/2Z or any other group G, [his]
model specializes to the slice category Gpd/BG, which is well-known to be Quillen

equivalent to, but not identical to, the injective model structure on GpdG” (private
communication). Before Shulman’s work in [Shu17] the author had worked out in
his PhD thesis [Bor15, Ch.5] the details of a type-theoretic fibration category with a
univalent universe using the injective model structure on [B(Z2),Gpd], overcoming
the technical challenge of the presence of a non-trivial automorphism in the index
category at least in the simple but important case of the target category Gpd with
its univalent universe of sets (discrete groupoids).
Moreover, since it is well known that the projective and injective model categories
are Quillen equivalent, our new univalent universe, together with our proof [Bor17a]
that this same universe is not univalent with respect to the projective structure on
the same underlying category, provides a counterexample to the model invariance
problem1 formulated by Michael Shulman (as part of a list of open problems2 in
Homotopy Type Theory): “Show that the interpretation of type theory is independent
of the model category chosen to present an (infinity,1)-category. Of course, the
details depend on the chosen type theory.”. In the present work, we consider a type
theory with a unit type, dependent sums, dependent products, intensional identity
types and a universe type, and by an interpretation of that type theory we mean
precisely Shulman’s notion of a type-theoretic fibration category with a universe
which is intended to give an interpretation of such a type theory.

Acknowledgments. I would like to thank André Hirschowitz, Peter LeFanu Lums-
daine, and Michael Shulman for helpful discussions.

2. The injective type-theoretic fibration structure on GpdZ2

We denote the functor category [B(Z2),Gpd] simply by GpdZ2 . The reader should

note that an object in GpdZ2 is nothing but a groupoid A equipped with an
involution α : A→ A, i.e. an automorphism satisfying the equation α ◦ α = id. A
morphism f : A→ B in GpdZ2 is nothing but an equivariant functor, i.e. f satisfies
f ◦ α = β ◦ f .
We recall the definitions of type-theoretic fibration category [Shu17, Def.7.1], type-
theoretic model category [Shu15b, Def.2.12] and their link [Shu15b, Prop.2.13].

Definition 2.1. A type-theoretic fibration category is a category C with :
(1) A terminal object 1.
(2) A subcategory of fibrations containing all the isomorphisms and all the mor-

phisms with codomain 1. A morphism is called an acyclic cofibration if it
has the left lifting property with respect to all fibrations.

(3) All pullbacks of fibrations exist and are fibrations.

1https://ncatlab.org/homotopytypetheory/revision/model+invariance+problem/1
2https://ncatlab.org/homotopytypetheory/revision/open+problems/43

https://ncatlab.org/homotopytypetheory/revision/model+invariance+problem/1
https://ncatlab.org/homotopytypetheory/revision/open+problems/43
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(4) The pullback functor along any fibration has a right adjoint that preserves
fibrations.

(5) Every morphism factors as an acyclic cofibration followed by a fibration.

Remark 2.2. This category-theoretic structure corresponds roughly3 to an interpre-
tation4 into a category of a type theory with a unit type, dependent sums, dependent
products, and intensional identity types.

Remark 2.3. The condition (4) of the definition 2.1 is slightly stronger than Shulman’s
version in [Shu17, Def.7.1]. Our version is simply more natural from a categorical
point of view and it will be fulfilled in our framework.

Definition 2.4. A type-theoretic model category is a model category M
satisfying the following additional properties.

(i) The pullback functor along a fibration preserves acyclic cofibrations.
(ii) The pullback functor g∗ along a fibration g has a right adjoint Πg.

Proposition 2.5. If M is a type-theoretic model category, then its full subcategory
Mf of fibrant objects is a type-theoretic fibration category.

Proof. Since 1 is a fibrant object, (1) is satisfied. The wide subcategory of Mf with
fibrations as morphisms contains all the isomorphisms between fibrant objects and
by definition all the morphisms with codomain 1, so (2) holds. The fiber product
associated with two fibrations between fibrant objects is fibrant, hence pullbacks of
fibrations still exist and are fibrations. So, (3) is satisfied. Since the middleman in
the factorization of any morphism between fibrant objects by an acyclic cofibration
followed by a fibration is a fibrant object, (5) is still true. Last, by adjunction Πg

preserves fibrations if and only if g∗ preserves acyclic cofibrations, so by (i) we have
(4). �

The goal of this section consists in proving that GpdZ2 equipped with the so-called
injective model structure is a type-theoretic model category, hence (GpdZ2)f is a
type-theoretic fibration category.
We denote by 1 the terminal object in the category Gpd of groupoids, and by a
slight abuse of notation 1 will also denote the terminal object of GpdZ2 , namely
the groupoid 1 together with the identity involution. The letter I will denote the
groupoid with two distinct objects and one isomorphism φ : 0→ 1 between them.
Recall that Gpd has a canonical model structure where the weak equivalences
are the equivalences of groupoids. The fibrations are the isofibrations, namely the
functors with the right lifting property with respect to the inclusion i : 1 ↪→ I. The
cofibrations are the injective-on-objects functors.
Given a combinatorial model category M and a small category I, there exists the
injective model structure on [I,M ] (see [Lur09, A.3.3] for details). In this case a
morphism f ∈ [I,M ] is a weak equivalence (resp. a cofibration) if f is an objectwise
weak equivalence (resp. an objectwise cofibration). A morphism is a fibration if it has
the right lifting property with respect to every acyclic cofibration (i.e. a morphism

3This structure is a non-split type-theoretic fibration category in Shulman’s terminalogy and it

corresponds to a model of type theory up to coherence issues for substitution, see the section 4 of
[Shu15b] for further details.

4In the absence of a proof for Voevodsky’s Initiality Conjecture in type theory, we prefer the
word interpretation over the word model as suggested by Voevodsky (cf. https://groups.google.
com/forum/#!topic/univalent-mathematics/ZyKfwMdQGvQ).

https://groups.google.com/forum/#!topic/univalent-mathematics/ZyKfwMdQGvQ
https://groups.google.com/forum/#!topic/univalent-mathematics/ZyKfwMdQGvQ
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which is simultaneously a weak equivalence and a cofibration). Since Gpd together
with its canonical model structure is combinatorial, there exists the injective model
structure on GpdZ2 . Given a morphism f in GpdZ2 , f will denote its image under
the forgetful functor that maps an equivariant functor to its underlying functor
between groupoids.

Proposition 2.6. Let C be a category together with a distinguished class of mor-
phisms called fibrations and I a small category. Moreover, assume that C is locally
presentable and for every fibration g the pullback functor along g exists and has
a right adjoint. Then for any objectwise fibration g in [I,C ] the pullback functor
along g has a right adjoint.

Proof. Let g : A → B be an objectwise fibration in [I,C ]. Since C is locally
presentable, so are the slices [I,C ]/B and [I,C ]/A. Hence, g∗ : [I,C ]/B → [I,C ]/A
has a right adjoint if and only if it preserves all small colimits. So, let D be any
small category and F : D → [I,C ]/B any functor such that colimF exists. One has
to provide an isomorphism of the form

g∗(colimF ) ∼= colim(g∗ ◦ F ).

Knowing the nature of colimits in a slice category, it is enough to check that
dom(g∗(colimF )) is isomorphic to colim(dom ◦ g∗ ◦ F ). Since colimits in a functor
category are pointwise, it is enough to check that dom(g∗(colimF ))(x) is isomorphic
to colim

d
[dom(g∗(F (d)))(x)] for every x ∈ I. But pullbacks are pointwise in a

functor category, so we have an isomorphism between dom(g∗(colimF ))(x) and
dom((gx)∗ (colimF )x). Since gx is a fibration, by assumption (gx)∗ has a right
adjoint and so it preserves all small colimits. Moreover, one has an isomorphism
of the form (colimF )x ∼= colim

d
F (d)x. As a consequence, one has the following

sequences of isomorphisms

(gx)∗((colimF )x) ∼= (gx)∗(colim
d

F (d)x)

∼= colim
d

[(gx)∗(F (d)x)],

and finally

dom((gx)∗((colimF )x)) ∼= dom(colim
d

[(gx)∗(F (d)x)])

∼= colim
d

[dom((gx)∗(F (d)x))]

∼= colim
d

[dom(g∗ F (d))(x)].

�

Remark 2.7. In the case where C is Gpd and I is B(Z2) an explicit construction
of the right adjoint to the pullback functor has been given in [Bor17a, Theorem
3.7]. This explicit construction is useful to understand the interpretation of the

type-theoretic dependent products in the category GpdZ2 .

Proposition 2.8. Let M be a type-theoretic model category whose underlying model
category is combinatorial and I a small category. The category [I,M ] together with
the injective model structure is a type-theoretic model category.
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Proof. Since a combinatorial model category is locally presentable as a category and
fibrations with respect to the injective model structure are in particular objectwise
fibrations, by 2.6 the pullback functor along a fibration has a right adjoint. Moreover,
since pullbacks are pointwise in a functor category and acyclic cofibrations are
objectwise with respect to the injective model structure, we conclude by (i) for
M . �

Since Gpd together with its canonical model structure is a type-theoretic model
category [Shu15b, Examples 2.16] and is combinatorial as a model category, by

2.8 we conclude that GpdZ2 together with the injective model structure is a type-
theoretic model category. So, by 2.5 (GpdZ2)f is a type-theoretic fibration category.
If we wish to take this model of type theory further, we need a better control on
the fibrations of the injective model structure. This is the topic of the next section.

3. The injective model structure on GpdZ2 made explicit

Notation 3.1. We denote by Ǐ the groupoid I together with the involution that
maps φ to φ−1. Also, we will denote by

`
the groupoid-with-involution that extends

Ǐ and its involution by a third point, fixed under the Z2-action, denoted 2 and
a second non-identity isomorphism ψ : 1 → 2 whose image by the involution is
ψ ◦ φ (there are only three non-identity isomorphisms in

`
, namely φ, ψ and their

composition). The morphism i′ : Ǐ ↪→
`

is the corresponding inclusion.

Remark 3.2. Note that i′ is an objectwise acyclic cofibration, hence it is an acyclic
cofibration with respect to the injective model structure. Moreover, note that the
morphism Ǐ→ 1 is an objectwise fibration. However, consider the following lifting
problem,

Ǐ � _

��

Ǐ

��` // 1.

A diagonal filler cannot exist, since the fixed point 2 of
`

should be mapped to a
fixed point, but such a fixed point does not exist in Ǐ. So, there exist objectwise
fibrations that are not fibrations with respect to the injective model structure.

Notation 3.3. Remember that {i}, where i is the inclusion 1 ↪→ I, is a set of
generating acyclic cofibrations with respect to the canonical model structure on
Gpd. Moreover, the forgetful functor from GpdZ2 to Gpd has a left adjoint S
that maps a groupoid A to A

∐
A together with the involution that swaps the two

copies of A.

Proposition 3.4. Let f be a morphism in GpdZ2 , the following are equivalent :
(i) f is an acyclic cofibration with respect to the injective model structure.

(ii) f is a transfinite composition of pushouts of elements of the set {S(i), i′}.

Proof. The implication (ii)⇒ (i) is clear, since S(i) and i′ are objectwise acyclic
cofibrations, so they are acyclic cofibrations for the injective model structure.
Moreover, the class of acyclic cofibrations is closed under pushouts and transfinite
compositions.
Conversely, let f : A→ B be an acyclic cofibration. Since f is an objectwise acyclic
cofibration, f is (isomorphic to) the inclusion of a full subgroupoid of B which
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is equivalent to B. Let ((ObB \ ObA)/Z2,6) be the set of orbits of ObB \ ObA
under the Z2-action together with a well-ordering, let λ be the order type of this
well-ordered set, and let g : (ObB \ObA)/Z2 → λ be an order-preserving bijection.
By transfinite recursion we define a λ-sequence X, where we add the elements of
ObB \ObA to A by following our well-ordering. Take X0 := A.
For γ such that γ+ 1 < λ, let s be the element of (ObB \ObA)/Z2 that corresponds
to γ+ 1 under the bijection g. We built Xγ+1 as follows. Assume that s is {x, β(x)},
then f being essentially surjective there exists an isomorphism τ : y → x with y ∈ A.
One can distinguish two cases. Either x = β(x), i.e. x is fixed under the Z2-action,
or x 6= β(x).
In the first case, one defines Xγ+1 as the following pushout

Ǐ //� _

i′

��

Xγ

��` // Xγ+1,

where the upper horizontal morphism maps φ to β(τ)−1 ◦ τ .
In the second case, we define Xγ+1 as the following pushout

S(1) //
� _

S(i)

��

Xγ

��
S(I) // Xγ+1,

where the upper horizontal arrow maps 0 to y (and 1 to α(y)).
Last, if γ is a limit ordinal, then Xγ is colim

δ<γ
Xδ.

For every γ < λ, Xγ is a full subgroupoid of B stable under the involution β on B,
and f is the transfinite composition of the λ-sequence X. �

Proposition 3.5. Let f be a morphism in GpdZ2 , the following are equivalent :
(i) f is a fibration with respect to the injective model structure on GpdZ2 .

(ii) f has the right lifting property with respect to the elements of the set {S(i), i′}.

Proof. Straightforward with 3.4 and the fact that if a class of maps has the right
lifting property with respect to a set J of maps, then it has the right lifting property
with respect to the relative J-cell complexes (i.e. the transfinite compositions of
pushouts of elements of J) [Hir03, Prop.10.5.10]. �

4. A univalent universe in the type-theoretic fibration category
(GpdZ2)f

We recall the notion of a universe [Shu15b, Definition 6.12] in a type-theoretic
fibration category.

Definition 4.1. A fibration p : Ũ � U in a type-theoretic fibration category C is
a universe if the following hold.

(i) Pullbacks of p are closed under composition and contain the identities.
(ii) If f : B � A and g : A� C are pullbacks of p, so is Πgf � C.
(iii) If A� C and B � C are pullbacks of p, then any morphism f : A→ B over

C factors as an acyclic cofibration followed by a pullback of p.
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Definition 4.2. Given a universe p : Ũ → U in a type-theoretic fibration category,
a small fibration, or a U -small fibration, is a pullback of p.

Remark 4.3. A universe in a type-theoretic fibration category interprets a universe
type in type theory.

Also, we recall what it means for a universe in a type-theoretic fibration category to
be univalent (see also [Shu15b, section 7]). Let Type be a universe in the type theory
under consideration. Given two small types, i.e. two elements of Type, there is the
type of weak equivalences between them. In a type-theoretic fibration category with
a universe, this dependent type is represented by a fibration E � U ×U . Moreover,
there is a natural map U → E that sends a type to its identity equivalence. By (5)
one can factor the diagonal map δ : U → U × U as an acyclic cofibration followed
by a fibration in the following commutative diagram,

U //
��

∼

��

E

����
PU // //

::

U × U.

The universe p : Ũ � U is univalent if the map U → E is a right homotopy
equivalence, or equivalently (by the 2-out-of-3 property and the fact that U is
fibrant like any object of a type-theoretic fibration category) if the dashed map is a
right homotopy equivalence.
Given κ an inaccessible cardinal, we recall [Bor17a] below the construction of a

non-univalent universe in the type-theoretic fibration category GpdZ2 together with
the so-called projective model structure.

• The objects of the groupoid Ũ are dependent tuples of the form (A,B, ϕ, a),
where A,B are κ-small discrete groupoids, ϕ : A → B is an isomorphism in
Gpd, and a is an object of A.

• The morphisms in Ũ between (A,B,ϕ, a) and (C,D,ψ, c) are pairs of the form
(ρ : A→ C, τ : B → D) such that ψ ◦ ρ = τ ◦ ϕ and ρ(a) = c.

The composition in Ũ is given by

(ρ′, τ ′) ◦ (ρ, τ) := (ρ′ ◦ ρ, τ ′ ◦ τ).

Note that Ũ is a groupoid. Indeed, the inverse of the morphism (ρ, τ) is given by

(ρ, τ)−1 := (ρ−1, τ−1).

We equip Ũ with the involution υ̃ as follows,

υ̃ : Ũ −→ Ũ
(A,B,ϕ, a) 7−→ (B,A, ϕ−1, ϕ(a))

(ρ, τ) 7−→ (τ, ρ).

One denotes by U the “unpointed” version of Ũ , i.e. objects are of the form (A,B,ϕ)
and morphisms of the form (ρ, τ), with its corresponding involution υ. We define
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the morphism p in GpdZ2 as the projection

p : Ũ −→ U
(A,B,ϕ, a) 7−→ (A,B, ϕ)

(ρ, τ) 7−→ (ρ, τ).

First, we will prove that the morphism p : Ũ → U is a fibration between fibrant
objects with respect to the injective model structure on GpdZ2 .

Lemma 4.4. The morphism p : Ũ → U is a fibration with respect to the injective
model structure.

Proof. Thanks to 3.5 it suffices to prove that p has the right lifting property with
respect to S(i) and i′. We already know that p has the right lifting property against
S(i). Indeed, p is a fibration with respect to the projective model structure, i.e. an
objectwise fibration, and S(i) is a generating acyclic cofibration with respect to that
model structure (see [Bor17a] for details, in particular the beginning of section 2
and lemma 4.5).
Assume we have a lifting problem as follows

Ǐ � _

i′

��

f // Ũ

p

��`
g
// U.

Let f(φ) be the pair (ρ, τ) : (A,B,ϕ, a)→ (B,A,ϕ−1, ϕ(a)). Since f is equivariant,
we have f(φ−1) = υ̃(f(φ)), and one concludes that τ = ρ−1 and τ(ϕ(a)) = a.
By commutativity of the diagram one has p(f(φ)) = g(φ), hence dom(g(ψ)) =
(B,A,ϕ−1). Let g(ψ) : (B,A,ϕ−1) → (C,D, η) be the pair (σ, χ). Since g is
equivariant, g(ψ ◦ φ) is equal to υ(g(ψ)). So, one has the equality σ ◦ ρ = χ.
Moreover, note that g(2) is a fixed point of U , hence D = C and η is an involution.
Now, we define a diagonal filler j as follows. Take j(φ) = f(φ), j(2) = (C,C, η, χ(a)),

and j(ψ) = (σ, χ) seen as a morphism in Ũ from (B,A,ϕ−1, ϕ(a)) to (C,C, η, χ(a))
(indeed, ϕ(a) = ρ(a), hence σ(ϕ(a)) = σ(ρ(a)) = χ(a)). �

Lemma 4.5. The groupoids Ũ and U together with their involutions υ̃ and υ are
fibrant objects of GpdZ2 with respect to the injective model structure.

Proof. We start with U . It suffices by 3.5 to prove that the unique morphism from
U to 1 has the right lifting property with respect to S(i) and i′. First, assume that
we have the following lifting problem

Ǐ � _

i′

��

f // U

��` // 1.

Let f(φ) be the pair (ρ, τ) : (A,B,ϕ) → (B,A,ϕ−1). Since f is equivariant, one
concludes (ρ−1, τ−1) = (τ, ρ). Hence, one has τ = ρ−1. We define a morphism
j :

`
→ U by j(φ) = f(φ), j(2) = (A,A, τ ◦ϕ), and j(ψ) = (ϕ−1, τ ◦ϕ). The reader

can easily check that j is a diagonal filler.
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Second, U is a projective fibrant object and S(i) is a projective acylic cofibration,
so U → 1 has the right lifting property with respect to S(i).
Next, recall from 4.4 that p is a fibration and fibrations are closed under compo-

sition. Thus, we deduce the fibrancy of Ũ from the fibrancy of U in the following
commutative diagram

Ũ

��
p
����
U // // 1.

�

Theorem 4.6. The morphism p : Ũ → U is a universe in the type-theoretic fibration
structure on (GpdZ2)f given in section 2.

Proof. It follows from 4.4 and 4.5 that p is a fibration in (GpdZ2)f with respect
to the injective model structure. Since small fibrations, i.e. pullbacks of p, and
right adjointness, when they exist, are categorical notions they are the same in
the projective and injective settings, hence conditions (i) and (ii) follow from their
counterparts in [Bor17a, Thm.4.11]. Moreover, since projective acyclic cofibrations
are in particular objectwise acyclic cofibrations, (iii) follows from its counterpart
ibid.. �

In the rest of this article we will prove that p is a univalent universe. The first
step consists in constructing specific path objects in GpdZ2 with respect to the
injective model structure. Let f : A→ C be a morphism in GpdZ2 . By the universal
property of the pullback, one gets the diagonal morphism δ as follows

A

δ

##

id

��

id

&&

A×C A //

��

A

f

��
A

f
// C.

We define a groupoid PCA together with an involution πCA as follows. The objects
of PCA are tuples (x, y, ϕ), where ϕ : x→ y is an isomorphism in A such that f(ϕ)
is the identity morphism. A morphism in PCA between (x, y, ϕ) and (x′, y′, ϕ′)
is a pair (ρ, τ), where ρ : x → x′ and τ : y → y′ are isomorphisms in A such that
f(ρ) = f(τ) and ϕ′ ◦ ρ = τ ◦ ϕ. The composition in PCA is given componentwise,
i.e. (ρ′, τ ′) ◦ (ρ, τ) is (ρ′ ◦ ρ, τ ′ ◦ τ) whenever it makes sense. The inverse of (ρ, τ) is
(ρ−1, τ−1). Define the involution πCA as follows

πCA : PCA −→ PCA
(x, y, ϕ) 7−→ (α(x), α(y), α(ϕ))

(ρ, τ) 7−→ (α(ρ), α(τ)),
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where α is the involution on A. We define δ1, δ2 in GpdZ2 as the following morphisms

δ1 : A −→ PCA
x 7−→ (x, x, 1x)
ϕ 7−→ (ϕ,ϕ)

δ2 : PCA −→ A×C A
(x, y, ϕ) 7−→ (x, y)

(ρ, τ) 7−→ (ρ, τ).

The morphisms δ1 and δ2 are equivariant and δ = δ2 ◦ δ1.

Proposition 4.7. Given f : A→ C in GpdZ2 , PCA is a very good path object with
respect to the injective fibration structure on GpdZ2 .

Proof. We have to prove that δ1 is an acyclic cofibration and δ2 is a fibration
w.r.t. the injective model structure. We start with δ1. It suffices to prove that δ1
is an acyclic cofibration of groupoids. Clearly, it is an injective-on-objects functor.
Moreover, δ1 is essentially surjective. Indeed, let (x, y, ϕ) be an element of PCA,
then (ϕ−1, 1y) is an isomorphism in PCA between δ1(y) = (y, y, 1y) and (x, y, ϕ).
It remains to prove that δ1 is a fully faithful functor. But, for every morphism
(ρ, τ) : (x, x, 1x)→ (y, y, 1y) in PCA, one has ρ = τ . We conclude that the induced
map A(x, y)→ PCA(δ1(x), δ1(y)) is a bijection for every pair (x, y) ∈ A2.
Now, we prove that δ2 is a fibration. First, the morphism δ2 has the right lift-
ing property w.r.t. S(i). Indeed, δ2 is a projective fibration, in other words δ2
has the isomorphism-lifting property. Let (ρ, τ) : (x, y) → (x′, y′) be an isomor-
phism in A×C A, ϕ : x→ y an isomorphism such that f(ϕ) is the identity, then
(ρ, τ) : (x, y, ϕ)→ (x′, y′, τ ◦ ϕ ◦ ρ−1) is an isomorphism in PCA above (ρ, τ).
Second, consider the following lifting problem

Ǐ � _

i′

��

g // PCA

δ2

��`
h
// A×C A.

We define a diagonal filler j as follows. Take j(φ) = g(φ). Let us assume that
g(φ) is (ρ, τ) : (x, y, ϕ) → (α(x), α(y), α(ϕ)). Since g is equivariant, note that
(ρ−1, τ−1) = (α(ρ), α(τ)) and α(ϕ) ◦ ρ = τ ◦ ϕ. Moreover, let h(2) be (x′, y′) and
h(ψ) be (ρ′, τ ′) : (α(x), α(y))→ (x′, y′). The reader can easily check that (ρ′, τ ′) is
an isomorphism in PCA from (α(x), α(y), α(ϕ)) to (x′, y′, τ ′ ◦α(ϕ) ◦ ρ′−1), with this
last point being fixed under the involution πCA (indeed, since h is equivariant, note
that α(ρ′) = ρ′ ◦ ρ and α(τ ′) = τ ′ ◦ τ). We take j(ψ) := (ρ′, τ ′).
So, by 3.5 δ2 is a fibration. �

Proposition 4.8. If f : A→ C is a fibration and A is fibrant with respect to the
injective model structure on GpdZ2 , then PCA is a fibrant object.

Proof. First, since the class of fibrations is closed under pullbacks and f is a fibration,
the first projection pr1 : A×C A→ A is a fibration. Then, using the facts that A is
fibrant, the class of fibrations is closed under compositions, and the fact that δ2 is a
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fibration as a result of 4.7, we conclude by considering the following commutative
diagram

PCA

δ2
����

��

A×C A

pr1
����
A // // 1.

�

Remark 4.9. The proposition 4.8 proves, under the assumption that f : A→ C is
a fibration in (GpdZ2)f , that PCA is really a path object for our type-theoretic

fibration structure on (GpdZ2)f .

In the case where C := 1, A := U , and f : A→ C is the unique morphism from U
to 1, U being fibrant P1U lives in (GpdZ2)f as noted in 4.9.
Tracing through the interpretation of type theory as explained in [Shu15b, subsection
4.2], one can unfold the interpretation of the type-theoretic space of equivalences5

between two small types (i.e. two elements of a universe type)

Equiv(A,B) ≡
∑

f :A→B

isEquiv(f),

where

isEquiv(f) ≡

( ∑
s:B→A

∏
b:B

(f(s(b)) = b)

)
×

( ∑
r:B→A

∏
a:A

(r(f(a)) = a)

)
,

with the symbol “=” denoting the identity type. In GpdZ2 , remembering that the
objects of U consist of discrete groupoids, we find that the space E of equivalences
over U × U is isomorphic to P1U . This straightforward computation has been
performed in [Bor15, Proposition 4.6.2].

Corollary 4.10. In the type-theoretic fibration structure on (GpdZ2)f given in

section 2, the universe p : Ũ → U satisfies the univalence property.

Proof. Recall (cf. the beginning of section 4) that we have to prove that the upper
horizontal arrow in the following commutative diagram

U //
��

∼

��

E

����
PU // // U × U,

which maps a small type to its identity equivalence, is a right homotopy equivalence.
But this morphism is isomorphic to δ1, so by 4.7 and 4.5 it is an acyclic cofibration
with a fibrant domain, hence a right homotopy equivalence. �

5See [Shu15b, section 5]
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5. Conclusion

Our new interpretation of the Univalent Foundations in the category [B(Z2),Gpd]
is an incremental progress in the direction of finding new type-theoretic fibration
categories together with a universe satisfying the Univalence Axiom using the
injective model structure on functor categories. This new model together with its
previous twin model using the projective model structure on [B(Z2),Gpd] provides
a counterexample to Shulman’s model invariance problem by showing that two
Quillen equivalent model categories can host different interpretations of type theory.
So, a Quillen equivalence between model categories is not trivial in the context of
type theory and can make a difference with respect to the interpretation of the
type theory under consideration. Last, a conjecture to the effect that “equivalent
homotopy theories have equivalent internal type theories” should not mention
model categories but type-theoretic fibration categories and an adequate notion of
equivalence thereof.
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