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Abstract

Applying standard portfolio-sort techniques to bank asset returns for 15 coun-
tries from 2004 to 2018, we uncover a risk premium associated with implicit
government guarantees. This risk premium is intimately tied to sovereign risk,
suggesting that guaranteed banks, defined as those of particular importance to
the national economy, inherit the risk of the guarantor. Indeed, this premium
does not exist in safe-haven countries. We rationalize these findings with a model
in which implicit government guarantees are risky in the sense that they provide
protection that depends on the aggregate state of the economy.
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“Deteriorating fiscal conditions have an adverse impact on the stability

of banking systems everywhere. . . Sovereign risk has emerged as the main

challenge to global financial stability.”

Mark Carney and Fabio Panetta, 2011

“The emergence of doubt about the ability of sovereigns to manage their

debt undermines the perceived soundness of the banks, both directly, because

the latter hold much of the debt of the former, and indirectly, via the

dwindling value of the sovereign insurance.”

Martin Wolf, 2011

1. Introduction

As the recent financial crisis entered a far more virulent phase around the time of Lehman
Brothers’ bankruptcy in late September 2008, the most powerful response of monetary
authorities, in combination with fiscal authorities, took the form of policies that applied to
the financial and banking systems (Mishkin, 2011). Governments made extensive use of bank
bailouts, both collective and individual; some guarantees were explicit, others were implicit;
some financial institutions were bailed out, others were not (e.g., Panetta et al., 2009). It
has been argued that bank bailouts reduced the tail risk of financial institutions, making
them safer, and helped curb the turmoil in financial markets; thus, in safe-haven countries
such as the US, government guarantees generated beneficial effects for banks and helped
reduce bank funding costs (Gandhi and Lustig, 2015; Kelly, Lustig, and Van Nieuwerburgh,
2016). However, such policies might have also contributed to increase banks’ exposures to
aggregate risk, in two ways. First, government support hindered the fiscal capacity of some
sovereigns, and the resulting sovereign fragility, in turn, fed back to the banks (Acharya,
Drechsler, and Schnabl, 2014). Second, guarantees might have made banks exposed to policy
uncertainty, a source of nondiversifiable risk (Pástor and Veronesi, 2013).

Banks are not, however, equally exposed to the risks affecting their guarantor and there-
fore to aggregate risk. For example, Correa et al. (2014) show that sovereign credit rating
downgrades have a large and negative effect on the stock returns of those banks that are
more likely to receive stronger support from their governments. Also, the guarantees seem to
reduce the exposure of bondholders to bank risk, as the spread-to-risk relation weakens with
the too-big-to-fail status (Acharya, Anginer, and Warburton, 2016). These findings, taken
together, suggest that government support makes guaranteed banks exposed to sovereign risk
and less sensitive to measures of intrinsic bank riskiness. Therefore, government guarantees
tend to alter the source of bank risk; for the banks benefiting from guarantees, the amount of
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idiosyncratic risk drops, but that of aggregate risk can potentially increase through their ex-
posure to sovereign risk. We conjecture that this shift in the source of bank risk can impact
on bank risk premiums, possibly attenuating the beneficial effects of government guarantees.
In this paper, building on these earlier studies, we revisit the asset-pricing implications of
government guarantees using an international perspective; put simply, guarantees are not
certain in all countries, and cross-sectional variation in the strength of the guarantees across
countries can, in turn, affect the cross-section of international bank risk premiums.

We develop a tractable theoretical framework to characterize the risk-return trade-off
that government guarantees can generate in bank asset returns. We bring together the
model of Bester and Hellwig (1987) that features risk-taking but no guarantees with a
more recent strand of the theoretical asset-pricing literature on government policies and
guarantees (Pástor and Veronesi, 2013; Acharya, Drechsler, and Schnabl, 2014; Gandhi
and Lustig, 2015; Kelly, Lustig, and Van Nieuwerburgh, 2016). We show that when implicit
guarantees are risky—that is, they vary with the aggregate state of the economy—an increase
in the strength of a bank’s guarantee, for a given riskiness of the bank, has an ambiguous
effect on the risk premium commanded by the bank’s equity and debt claims. On the one
hand, a stronger guarantee ensures a higher payoff to debt and equity holders, which acts to
compress risk premiums. On the other hand, if the implicit support offers higher protection
in “good” than in “bad” states of the world, it can make the payoff of debt and equity claims
more positively correlated with the aggregate state of the economy, raising risk premiums.
These direct effects of the guarantee arise even separately from the indirect effects operating
through risk-taking.

The theoretical framework also shows that stronger implicit support can be associated
with higher risk premiums of the guaranteed claims only if the guarantee is sufficiently risky,
which could be due to sovereign risk or, more generally, to uncertainty about government
support. The theoretical framework illustrates conditions under which an individual bank’s
implicit guarantee depends on the market share of its deposits, paving the way to test the
theoretical predictions. Moreover, the optimally chosen implicit support in our framework
is greater in good than in bad states of the world, even though the government’s willing-
ness to support banks does not vary across states. Intuitively, the procyclicality of the
implicit support relates to the fact that weaker public finances in recessions can constrain
the government’s ability to support banks.

Our empirical analysis is organized around this simple theoretical framework and tests its
predictions on the direct effects of implicit guarantees using data for 88 banks, covering 15
countries, over the sample period from January 2004 to November 2018. We use standard
portfolio-sort techniques: consistent with the theory, to isolate the direct effects of the
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guarantee, we double-sort banks first by bank risk and then by a measure of expected
government support (EGS), namely the deposit-to-GDP ratio, which proxies for the bank
market share of deposits. Intuitively, banks with high deposit-to-GDP ratios benefit from
stronger EGS, as the failures of these banks can adversely affect not only the financial system
but also the real economy. Indeed, we find that banks with higher deposit-to-GDP ratios
are more exposed to sovereign risk than banks with low deposit-to-GDP ratios. Thus, in
both our theoretical framework and empirical analysis, guaranteed banks are characterized
by high levels of deposits relative to the size of the national economy. That is, differently
from the too-big-to-fail literature, we focus on the importance of the guaranteed banks for
the national economy rather than on their systemic importance at the global level. We also
depart from previous studies that use the rating uplift to measure the bank EGS, as we
employ a measure that is more likely to be exogenous to bank asset returns and sovereign
risk, which makes it particularly suitable for testing the theoretical predictions using an
international panel of banks.1

We perform the empirical analysis on a set of reasonably large banks based in developed
countries. In this way, we can exploit the cross-sectional variation in terms of sovereign risk,
complementing the existing literature that typically focuses on the US alone (Gandhi and
Lustig, 2015). For a given country, we select those banks for which senior credit default
swap (CDS) data are available. We then also obtain the equity prices for these banks. In
this way, we can test the theoretical predictions on both bank debt and equity returns; this
combined use of CDS and equity data is also a distinctive feature of our study. The sample
period is constrained by the low liquidity of the CDS market prior to 2004. For this reason,
we carry out the core empirical analysis over the 2004–2018 sample period.

Our empirical results suggest that equity spread portfolios—high minus low deposit-to-
GDP portfolios—deliver economically large and statistically significant returns; this return
can reach 11% per annum. These spread portfolios are the main object of interest, as they
are self-financed and contain banks of similar riskiness, thus isolating the direct effect of EGS
on bank returns. Hence, we can use the spread portfolios to examine the testable predictions
implied by the theoretical framework. Even allowing for a reasonably large set of pricing
factors, we find that these risk factors fail to explain the spread portfolio returns: equity
spread portfolio returns are largely unchanged on a risk-adjusted basis. Thus, based on a set
of standard risk factors, there is a puzzle in bank returns. However, we uncover a clear factor

1The rating uplift is measured as the difference between the bank’s ability to repay its deposit obligations
that also accounts for the EGS (all-in-all rating) and the bank’s intrinsic safety and soundness (stand-alone
rating). In essence, the rating uplift should capture the probability of support conditional on the bank
failing without support. However, this measure increases not only with the market share of deposits of the
bank but also with the intrinsic riskiness of the bank and the solvency of the domestic sovereign. These
latter features make undesirable the use of the rating uplift as sorting variable in our study.
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structure in the risk-adjusted returns of the double-sorted portfolios (i.e., sorted on bank risk
and EGS). In particular, the weights associated with the third principal component (PC)
align well with the equity risk-adjusted returns: they are positive for high deposit-to-GDP
banks and negative for low deposit-to-GDP banks. This finding holds qualitatively both for
equity and CDS portfolios. Thus, the third PC is a natural candidate to complete the set
of pricing factors.

Instead of working directly with the PC factor, in most of the empirical analysis, we
use an EGS return factor. To do so, we simply multiply the double-sorted portfolio excess
returns by the weights associated with the third PC. As a result, the EGS return factor
is tradable by construction so that its expected return (or price of risk given that it has
unit exposure) is simply its mean. We find that it averages about 11% per annum and is
statistically significant. When we repeat the time-series (first-pass) regressions including
this additional factor, a number of interesting results emerge. First, the spread portfolios
load positively on the EGS factor, and these exposures are precisely estimated, for both
equities and CDSs; thus, the EGS risk premium is priced consistently in both markets.
Second, there is no longer a puzzle in bank equity returns given that the alphas on the
equity spread portfolios become small in economic terms, and their statistical significance
either drops substantially or disappears depending on the sample considered.

Moreover, the cross-sectional (second-pass) regressions reveal that, by including the EGS
return factor, we can price a cross-section of 36 test assets, consisting of the double-sorted,
as well as the spread, equity, and CDS portfolios. In particular, when we include the EGS
factor in the pricing model, the R2 increases by roughly 20 percentage points and the mean
absolute error (MAE) halves. Taken together, these findings show that the equity risk
premium associated with the government guarantee is in the range of 5%-9% per annum.
However, the subsample analysis also reveals that this premium is substantially higher when
we exclude the period following the adoption of the bail-in regime by EU members, consisting
of the last five years of our sample. Under the bail-in regime, bondholders and/or depositors,
rather than taxpayers, are forced to bear the burden of bank recapitalizations. In principle,
during a fully operational bail-in regulation, the key mechanism underneath our theoretical
framework should either no longer be at play or be far less prominent. Our findings of a
higher risk premium in the period prior to the bail-in regime show that the adoption of
the bail-in regulation led market participants to reassess this aspect of the sovereign-bank
nexus. We also find that, prior to the onset of the subprime crisis, there was no evidence of
an EGS premium.2

2This evidence is also confirmed when we analyze a sample of equities only (i.e., removing CDS data
from the analysis), which allows us to extend the analysis back to 2000. This finding accords well with the
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These results establish the existence of an EGS risk premium. Moreover, as suggested
by the theoretical framework, an EGS premium appears to exist only when banks can be
bailed out and sovereign risk is nonnegligible. To further characterize the EGS risk-return
trade-off, we show that sovereign risk is central to our results. When we focus on the sample
of banks based in core EU countries, we find that the EGS risk premium is substantially
larger and more precisely estimated. We also show that EU banks drive the result that
such premium is absent in the bail-in regime. By contrast, when we restrict the analysis
to banks based in the safest sovereigns in our sample (US, Germany, Japan, Switzerland),
no such premium exists. These findings are consistent with the theoretical prediction that
more uncertain guarantees are associated with higher risk premiums.

Finally, we complement the analysis of sovereign risk with three additional exercises.
First, we show that the main turning points of the EGS return factor are associated with
key policy events that took place during the sample. It is possible to identify five distinct
phases, which indicate that the premium seems to arise during the 2007–2013 period, when
governments made extensive use of bailouts.3 Second, we illustrate through a simple graph-
ical analysis the main intuition behind the theoretical framework: the EGS return factor
drops when sovereign risk increases and vice versa, confirming that sovereign risk is an im-
portant determinant of the EGS factor. We find that the factor also drops when US economic
policy uncertainty increases. On the contrary, high EGS banks are less exposed to tail risk
than low EGS banks given that the factor comoves positively with innovations to the VIX
index. Thus, although government guarantees offer protection from tail risk, as in Gandhi
and Lustig (2015) and Kelly, Lustig, and Van Nieuwerburgh (2016), they expose banks to
sovereign risk and policy uncertainty. This finding also contributes to the ongoing debate
about the disconnect between VIX and policy uncertainty.4 Third, a horse race shows that
the EGS factor comoves with bank portfolios sorted on variables that reflect sovereign risk,
sovereign exposures, and other proxies for EGS. Taken together, these additional exercises
provide further evidence on the existence of an EGS risk-return trade-off, consistent with the
theoretical framework, which arises when sovereign risk (or uncertainty about government
support) is sufficiently high. Finally, a simple exercise seems to suggest that the indirect
effects of the guarantees on bank risk premiums are less economically relevant than the

fact that rating uplifts were also small prior to the onset of the crisis.
3Refer to Panetta et al. (2009) for a comprehensive assessment of financial sector rescue programs across

the world during the global financial crisis, whereas the European Commission covers the 2008–2015 period
with a focus on Europe (European Commission, 2017. Coping with the international financial crisis at
the national level in a European context. Staff Working Document 4, Directorate-General for Financial
Stability, Financial Services and Capital Markets Union).

4See, e.g., Pástor, Ľ., Veronesi, P., 2017. Explaining the puzzle of high policy uncertainty and low market
volatility. Column, VOX.

5



direct effects.

The sovereign-bank nexus and its implications for financial stability are at the center of
an active debate among policy makers and academics alike. Historically, the link between
the state and the banking system has been umbilical, with causality reversing on a few
occasions.5 Even during the recent global financial crisis, causality has reversed. At first,
system-wide rescue packages led to a transfer of credit risk from the banks to the sovereigns.
Thereafter, the guarantees hindered the fiscal capacity of governments, and such sovereign
fragility eventually fed back to the banks (Acharya, Drechsler, and Schnabl, 2014). Fur-
thermore, banks are not equally exposed to sovereign/aggregate risk (Correa et al., 2014;
Acharya, Anginer, and Warburton, 2016). In this paper, we show that the shift in the type
of bank risk generated by government guarantees can have important asset-pricing implica-
tions given that only the exposure to nondiversifiable risk should command a risk premium.
Indeed, risk-averse investors demand a premium for holding assets whose payoff is positively
correlated with the aggregate state of the economy, as they provide poor insurance in bad
states of nature.

A similar mechanism is also present in Pástor and Veronesi (2013), although their fo-
cus is more generally on government policies. On the one hand, uncertainty about future
government actions could have a positive effect if the government responds adequately to
unanticipated shocks. This effect parallels the protection provided by government guar-
antees to banks. On the other hand, political uncertainty is nondiversifiable by investors
and, for this reason, commands a positive risk premium. A similar mechanism arises in our
framework due to the riskiness of the guarantee. Although our study relates to this stream
of literature, it rests on a different theoretical framework and uses a substantially different
empirical methodology to test the theoretical predictions. A key difference from Pástor and
Veronesi (2013) is that our focus is on cross-sectional differences in bank risk premiums
rather than on the market-wide equity risk premium.6

Our study also closely relates to Gandhi and Lustig (2015) and Kelly, Lustig, and
Van Nieuwerburgh (2016); however, it differs under a number of key dimensions. Kelly,
Lustig, and Van Nieuwerburgh (2016) relate, both theoretically and empirically, the surge
in the basket-index put spread in 2007–2009 to the introduction of collective guarantees.
They argue that in a systemic crisis, and in the absence of such guarantees, the spread
should have otherwise dropped. In Gandhi and Lustig (2015), a realization of a disaster

5Haldane, A. G., Alessandri, P., 2009. Banking on the state. Speech, Bank of England, 6 November.
6More specifically, while in our paper changes in risk premiums are because guarantees alter banks’

exposures to aggregate risk, holding the price of risk constant, in Pástor and Veronesi (2013) political
uncertainty makes the price of market risk state dependent, holding the exposure constant (given that the
effects are evaluated on the market index that has unit exposure by definition).
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event can trigger a collective bailout of larger banks but not of smaller banks: this is why
larger commercial banks have lower risk-adjusted returns. Similarly, in Gandhi, Lustig, and
Plazzi (2017), larger banks benefit from a collective government guarantee, the strength of
which depends on the characteristics of the guarantor; for example, it is taken to be in-
creasing in the fiscal health of the government. Consequently, larger banks in fiscally strong
countries earn lower risk-adjusted returns than smaller banks. However, the guarantee is
not state contingent and has no effect on the risk-taking of banks. We instead show, both
theoretically and empirically, that when the analysis is extended to banks guaranteed by a
risky sovereign, the result can potentially be reversed regardless of any indirect effects due
to the risk-taking of banks. Put simply, while in Gandhi and Lustig (2015) government
guarantees make larger commercial banks less exposed to aggregate risk, in our study, if
the risks associated with guarantees are sufficiently high, they can raise banks’ exposures to
nondiversifiable risk. Thus, we differ from these studies, as in our framework government
guarantees are risky in the sense of providing protection that depends on the aggregate state
of the economy.

Another strand of the literature has examined the presence of a risk-taking channel
associated with the guarantees. A priori, the effect of this channel is ambiguous. On
the one hand, government support reduces market discipline, i.e., the incentive of outside
investors to monitor, and therefore increases the risk-taking of protected banks. On the
other hand, by reducing bank funding costs, government support should increase the charter
value of the bank and as a result diminish the bank’s incentive to take on risk. While the
empirical evidence is mixed for high EGS banks, outright publicly owned banks, as well
as the competitors of banks benefiting from EGS, seem to take on risk (Gropp, Hakenes,
and Schnabel, 2011; Altavilla, Pagano, and Simonelli, 2017; Brandao-Marques, Correa, and
Sapriza, 2018). In our theoretical framework, we model risk-taking à la Bester and Hellwig
(1987) to account for potential indirect effects of the guarantee operating through this
separate channel, although the main focus is on the direct effects of the guarantee on bank
risk premiums.

Finally, a large number of studies has referred to bank holdings of sovereign debt, i.e.,
direct sovereign exposures of banks, to explain how sovereign fragility transmits to banks.
For example, in Gennaioli, Martin, and Rossi (2014) the distressed state of public finances
can endanger the stability of the private domestic banking sector through their holdings
of domestic sovereign debt. Similarly, in Brunnermeier et al. (2016) home bias of banks’
sovereign debt portfolios makes their equity value and solvency dependent on swings in
the perceived solvency and market value of government debt. Our theoretical framework
uncovers a different channel, which does not require banks to hold government debt.
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The paper is organized as follows. We start by presenting the theoretical framework and
its two testable predictions in Section 2. We then present the data and portfolio-sorting
strategy in Section 3. Section 4 reports the main empirical findings. First, we show an
EGS risk premium exists and then that this premium relates to EGS banks’ exposures to
sovereign risk. Finally, Section 5 concludes the paper. The Appendix provides technical
details, and a separate Internet Appendix presents additional robustness exercises.

2. Theoretical framework

Our theoretical examination of the effects of implicit government guarantees on bank risk
premiums builds on the framework of Bester and Hellwig (1987), which features a principal-
agent problem with a focus on risk-taking.7 We deem this to be an important feature, as
risk-taking has been suggested to be directly influenced by government guarantees (Brandao-
Marques, Correa, and Sapriza, 2013, among others). Risk-taking arises in the framework
of Bester and Hellwig (1987) due to a two-dimensional moral hazard problem. The agent
chooses a risk class and an effort level, neither of which can be observed by the principal.
These two dimensions of moral hazard correspond to the agency costs involved in outside
finance identified by Jensen and Meckling (1976): moral hazard taking the form of excessive
risk-taking arises in the presence of debt, while equity finance is associated with moral
hazard involving suboptimal effort.

When considering both debt and equity finance, it is natural to consider a model à la
Bester and Hellwig (1987), combining the two types of moral hazard. In such a model,
managers can compensate for exerting less effort by choosing riskier assets. Due to this
feature, as pointed out by Hellwig (2009, p. 496), “risk choices and effort choices are two
sides of the same coin. It makes no sense to talk about their agency costs separately.” Due
to the two-dimensionality of the moral hazard problem, excessive risk-taking arises as an
equilibrium outcome in Bester and Hellwig (1987) despite the fact that the financing contract
between the managers and the outside investors can take any form. Differently, a model
that considers only one of the two dimensions of moral hazard would not give rise to such
an outcome. Rather, the outside investors would have full control over the choices of the
managers by appropriately specifying the financing contract. As a result, the contracting
problem between the managers and the investors would involve no agency costs. For this
reason, observed financing patterns could no longer be explained as optimal responses to

7Tirole (2006) provides a discussion of the mechanisms present in the framework of Bester and Hellwig
(1987). Hellmann and Stiglitz (2000), Hellwig (2009), and At and Thomas (2017) employ similar frameworks
to study risk-taking and related issues.
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problems arising from agency costs.8

The model of Bester and Hellwig (1987) has the added advantage of speaking to cap-
ital structures that can emerge as responses to problems of asymmetric information. The
second-best financing contract between managers and investors in their framework can be
implemented with a combination of debt and equity. In this sense, their results can be
interpreted to imply a determinate capital structure. Importantly, the framework of Bester
and Hellwig (1987) is also tractable enough to allow for both the introduction of govern-
ment guarantees and the derivation of closed-form expressions for the object of our ultimate
interest, that is, bank risk premiums.9

In Section 2.1, we present the economic environment, which extends Bester and Hellwig
(1987) along two dimensions. First, we specify both the objective and the risk-neutral
probability distribution of the state of the world, which is instrumental to quantify risk
premiums. Second, we introduce government guarantees so that we can study how they
affect risk premiums, both directly through the protection they provide and indirectly by
altering the risk-taking behavior of banks.

In Section 2.2, after having examined the effects of government guarantees on bank risk-
taking, we characterize how they influence bank risk premiums. We first consider the case of
nonstate-contingent guarantees before turning to the more general case of risky guarantees
(i.e., guarantees that vary across the states of the world). These two cases are useful to
illustrate the mechanisms at play in our framework; some of the mechanisms absent from
the framework are discussed at the end of the section. In Section 2.3, we shed light on the
factors that determine the strength of government guarantees, which will help guide the
subsequent empirical analysis. The two main testable predictions, which focus on the direct
effects of the guarantees on bank risk premiums, are stated in Section 2.4.

The analysis reveals two different channels through which implicit government guarantees
can be associated with risk premiums. First, the insurance offered by guarantees makes
investors more “tolerant” to being only partially reimbursed by the banks they finance. As

8Leland (1994) and its many extensions focus explicitly on other determinants of capital structure than
agency costs. Recent contributions to this literature, such as Chen and Kou (2009), show how the optimal
capital structure problem can be solved even under very flexible distributional assumptions. In frameworks
that extend Leland (1994) by introducing risk-taking, such as Leland (1998), risk choices are analyzed in
the context of somewhat less flexible financing contracts than in Bester and Hellwig (1987).

9While introducing risk-taking in models à la Leland (1994) that feature government guarantees, such
as Albul, Jaffee, and Tchistyi (2016) and Chen et al. (2017), would allow for a richer analysis of capital
structure, the effect of government guarantees on risk premiums could not be derived in closed form. A
separate strand of the literature relies on rare disaster models to derive rich predictions on bank risk
premiums in the presence of government guarantees (see, e.g., Gandhi and Lustig, 2015; Kelly, Lustig, and
Van Nieuwerburgh, 2016; and, Gandhi, Lustig, and Plazzi, 2017). However, these models only consider
nonstate-contingent guarantees and abstract from the modeling of capital structure and of risk-taking, as
the value of the bank follows an exogenously specified process.
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a result, bank managers invest in riskier assets, and this is reflected in the risk premium
demanded by the investors. Second, if the implicit guarantee is risky in that its strength
varies across the aggregate states of the economy, it will command a risk premium. In
this case, the risk premium associated with the guarantee is a function of the state of
public finances and potential uncertainty about government support. This second channel
operates even when abstracting from risk-taking (i.e., when comparing risk premiums of
banks of similar riskiness). For this reason, it is the focus of our empirical analysis.

2.1. Economic environment

We consider the following environment in which no arbitrage opportunities are assumed
to exist.

Stochastic environment. The state of the world ω ∈ R is distributed according to a
continuous (objective) probability distribution function F (·). The absence of arbitrage im-
plies the existence of an equivalent risk-neutral probability measure (Dalang, Morton, and
Willinger, 1990). The probability distribution function of the state of the world under the
risk-neutral measure is denoted by G(·), which, by being equivalent to the objective measure,
is also continuous.

Technology and agents. We consider a bank whose managers are subject to double moral
hazard, as in Bester and Hellwig (1987). Namely, the asset payoff of the bank depends on
both the effort exerted by the managers and the risk class of the bank’s assets chosen by
them. Specifically, the managers choose a threshold ω̄ that is such that the assets yield a
positive payoff if and only if ω ≥ ω̄. Thus, for any given threshold ω̄, the risk-neutral proba-
bility of obtaining a positive payoff is equal to 1−G(ω̄) =: p. Due to G(·) being continuous,
equivalently, the managers choose p ∈ [0, 1], with lower values of p corresponding to riskier
assets. Interpreted literally, the probability p determines, in the absence of government sup-
port, the failure risk of the bank. Thus, a decrease in p, which implies a higher failure risk,
is associated with an increase in risk-taking. However, we prefer to interpret the parameter
as pinning down the riskiness of the bank’s assets in a wider sense. This interpretation is
supported by the fact that, as will be shown, the risk premium required by investors of the
bank depends only on ω̄, or equivalently p, chosen by the bank managers. Moreover, under
a mild restriction, the risk premium is decreasing in p. For any p and ω ≥ ω̄, the asset
payoff is proportional to − ln p. This functional form captures the idea that riskier assets
offer higher upside returns and is chosen for the sake of tractability. The bank managers
can increase the payoff by exerting effort. This second dimension of moral hazard makes
it impossible to eliminate excessive risk-taking by adjusting the financing contract between
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the managers and the investors. Moreover, as pointed out by Hellwig (2009), adding the
second dimension delivers a model in which the two types of moral hazard first analyzed
by Jensen and Meckling (1976) are formally combined. When ω ≥ ω̄, a level of effort equal
to a > 0 produces a payoff of (− ln p)aβ, with β < 1, but it involves a cost equal to a for
the managers.10 Thus, the expected asset payoff under the risk-neutral measure, net of the
effort cost, is equal to

p(− ln p)aβ − a. (1)

The managers need to raise an exogenously fixed amount of funds equal to I from outside
investors. This amount can be interpreted as the difference between the size of the balance
sheet of the bank and its internal funds, both of which are determined exogenously. Both
managers and investors maximize their expected payoffs under the risk-neutral measure.11

Financing contract. The investors do not observe the pair (a, p) chosen by the managers
but only the realized asset payoff. Thus, the contract between the investors and the managers
can be contingent only on the realized payoff, which is equal to either zero or (− ln p)aβ.12

The bank managers are protected by limited liability. To control the choices of the managers,
the investors can specify a contract that stipulates a payoff to the managers for each level
of the realized asset payoff. Given the risk class and effort choices associated with each
realized payoff, the investors set the payoffs to be such that the managers choose the pair
(a, p) preferred by the investors. Specifically, the investors can specify a contract that
delivers a positive payoff to the managers only if the realized asset payoff is equal to the
level, denoted by π, preferred by the investors. Denoting the payments to the managers
and the investors in this contingency by πb and πl, respectively, satisfying π = πb + πl, the
managers’ problem becomes

max
{a,p}

p πb − a subject to (− ln p)aβ = π. (2)

This formulation shows that the managers can compensate for exerting less effort by choosing
10We consider this parameterized setting, as the double moral hazard problem formulated more generally

is not tractable (Bester and Hellwig, 1987; Tirole, 2006).
11That is, investors and managers are equally averse to risk; see Philippon and Sannikov (2007) for a

discussion about this assumption.
12Note that without the second dimension of moral hazard (i.e., the effort choice), corresponding to the

case in which β = 0, the positive realization of the payoff would perfectly reveal p chosen by the managers.
Consequently, the investors could have full control over p chosen by the managers. Offering the following
financing contract will constrain the managers to choose the risk class preferred by the investors, say p∗.
The managers obtain a payoff of ε > 0 when the realized payoff is equal to − ln p∗ and 0 otherwise. Were
the managers to choose p 6= p∗, they would obtain a payoff of 0 in all states of the world. This strategy is
dominated by choosing p∗, which yields a strictly positive expected payoff. By letting ε → 0, the investors
can also extract all the surplus, leaving no information rents to the managers. Consequently, the case of
β = 0 involves no agency costs. For this reason, it is uninteresting for our purposes, as agency costs, in the
tradition of Jensen and Meckling (1976), are central to our analysis of risk-taking.
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riskier assets, which is the potential distortion arising from asymmetric information between
the investors and the managers.

Government guarantee. The investors obtain the contractually specified payment πl
whenever ω ≥ ω̄ and are protected by a government guarantee whenever ω < ω̄. Namely,
when the bank’s assets yield a payoff equal to zero, the investors obtain ατ(ω) from the gov-
ernment. We interpret α as measuring the strength of the guarantee, i.e., the government’s
willingness to support the bank, whereas the state-dependent component τ(ω) captures,
among other things, the riskiness of the guarantee, being a function of the guarantor’s ex-
posure to aggregate risk. Although the level of the guarantee clearly depends also on τ(ω),
perturbing the distribution τ(·) in a mean-preserving manner allows us to examine the role
played by the riskiness of the guarantee. While τ(ω) is common to all banks guaranteed by
the same government, thus varying only across countries, α is allowed to vary across both
banks and countries but not across the states of the world. Decomposing the guarantee
into these two components allows us to distinguish between effects due to its strength and
riskiness.13 The investors’ problem is

max
{πb,πl}

α
∫ ω̄

−∞
τ(ω)dG(ω) + p πl − I, (3)

subject to p, and therefore ω̄, being chosen optimally by the managers. While the first term
in Eq. (3) represents the investors’ payoff attributable to the guarantee, the second reflects
the fact that the bank’s assets yield a positive payoff when ω ≥ ω̄. Given that π = πb + πl,
by choosing the two payoffs the investors constrain the choices of the managers.

The timing of actions is such that the implicit guarantee is determined before the fi-
nancing contract is stipulated, which in turn precedes the effort and risk class choices of
the managers. In this way, risk-taking can respond to the government guarantee. Fig. 1
illustrates the timing in the model. Before proceeding further, let us point out that for
F (·) = G(·) and α = 0 the model becomes identical to that of Bester and Hellwig (1987).
This feature makes it straightforward to discern how the presence of the guarantee affects
risk-taking.

13Alternatively, we could set α equal to one and define the strength of the guarantee in terms of the
distribution of τ(·). However, we prefer introducing the parameter α to this solution because the distribution
of τ(·) encodes how the guarantee varies across the states of the world, thus determining the riskiness of
the guarantee. Therefore, we perturb the distribution of τ(·) only when we study how bank risk premiums
depend on the riskiness of government support.
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2.2. Effects of government guarantees

As a prelude to our analysis of risk premiums, we investigate how the guarantee affects
bank risk-taking. In this way, we can better understand the different mechanisms through
which the guarantee influences risk premiums.

2.2.1. Risk-taking

Considering the effect of an increase in the strength of the guarantee α on the managers’
choice of the risk class of the bank’s assets p, we obtain the following result.

Lemma 1. An increase in the strength of the guarantee α leads to the managers choosing a
lower p, corresponding to riskier assets.

Stronger guarantees being associated with more risk-taking is intuitive. The guarantee
makes the investors more tolerant to the bank’s assets yielding a zero payoff. Consequently,
the investors design a financial contract that induces the managers to take more risk (i.e.,
to choose a lower p).

Importantly, as in Bester and Hellwig (1987), the contract between the investors and
the managers can be implemented by a combination of debt and equity finance. Suppose
the investors and the managers stipulate a debt contract specifying a reimbursement and
additionally agree that a share of profits net of interest payments is paid to the investors.
Then, the contract underlying Lemma 1 can be implemented by appropriately choosing the
reimbursement and the share of profits. In other words, we can think of the investors as
holding a portfolio comprising an equity and a debt claim on the bank. In what follows, we
quantify the risk premium on this portfolio held by the investors.

To conclude our analysis of risk-taking, we investigate how the payoff obtained by the
investors when ω ≥ ω̄ varies with the risk class of the bank’s assets p. We obtain the
following result.

Lemma 2. The payoff πl is decreasing in p.

Lemma 2 completes the picture of how the guarantee affects the investor’s claim on the
bank by altering risk-taking behavior. Consequently, we can characterize how the guarantee
influences the risk premium commanded by the claim both directly and indirectly through
its effect on risk-taking, to which we turn next. However, before doing so, we introduce a
natural restriction on the guarantee ατ(ω) for all ω. Namely, we require it to be below the
positive payoff πl obtained by the investors when ω ≥ ω̄. Given that πl is decreasing in p
by Lemma 2, a sufficient condition is that the guarantee ατ(ω) is lower than the payoff πl
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obtained by the investors in the absence of the guarantee.14

2.2.2. Risk premiums

Having derived the implications of the guarantee on risk-taking, we can analyze its effects
on risk premiums. It is, however, useful to first derive the risk premium of the investor’s
claim on the bank in the absence of a government guarantee. This premium can be easily
quantified. Under no arbitrage, the price of any claim is equal to its expected payoff under
the risk-neutral measure, discounted at the risk-free rate. Thus, the price of the investors’
claim is equal to πl [1−G(ω̄)] /R̄, where R̄ is the (gross) risk-free rate. Its expected payoff,
on the other hand, is πl [1− F (ω̄)]. Thus, the risk premium, or excess return, of the investors’
claim in the absence of a government guarantee is

E[Rl]− R̄ = 1− F (ω̄)
1−G(ω̄)R̄− R̄

= G(ω̄)− F (ω̄)
1−G(ω̄) R̄.

(4)

Note that the risk premium depends only on ω̄, which determines the risk class of the bank’s
assets, and not on the effort exerted by the managers. This result is intuitive, as the effort
choice only affects the magnitude of the positive payoff. When the state of the world ω under
the objective measure first-order stochastically dominates ω under the risk-neutral measure,
i.e., F (ω̄) ≤ G(ω̄) for all ω̄, the risk premium in Eq. (4) is always positive. The required
relation of stochastic dominance can be viewed as a sufficient condition for the market risk
premium to be positive (Ross, 2015). We assume throughout that this relation holds. Also
note that the risk premium in Eq. (4) is increasing in ω̄ whenever the state of the world
ω under the objective measure hazard rate dominates ω under the risk-neutral measure.15

Given that hazard rate dominance is only a slightly stronger restriction than first-order
stochastic dominance, this observation further supports the interpretation of higher values
of ω̄ corresponding to riskier assets. We can now turn to analyze the effects of government
support on risk premiums, starting with the simpler case of a nonstate-contingent guarantee.

Case I: Nonstate-contingent guarantee. When the guarantee is constant across the states
of the world, the investors obtain a nonzero payoff also when ω < ω̄. Denoting the non-
state-contingent guarantee by ατ , the expected payoff of the investors’ claim in this case

14In the absence of the guarantee, πl = (1− β2)
[
β2(1 + β)2e−(1+β)] β

1−β .
15Differentiating the risk premium in Eq. (4) with respect to ω̄, one notices that the risk premium is

increasing in ω̄ when G′(ω̄) [1− F (ω̄)]−F ′(ω̄) [1−G(ω̄)] ≥ 0, which is equivalent to the stated condition of
hazard rate dominance.
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is equal to ατF (ω̄) + πl [1− F (ω̄)]. Thus, the risk premium of the investors’ claim on the
bank takes the following form

E[Rl]− R̄ = ατF (ω̄) + πl [1− F (ω̄)]
ατG(ω̄) + πl [1−G(ω̄)]R̄− R̄

= (πl − ατ) [G(ω̄)− F (ω̄)]
ατG(ω̄) + πl [1−G(ω̄)] R̄.

(5)

Note that this risk premium is positive, as F (ω̄) ≤ G(ω̄), by first-order stochastic dominance,
and πl > ατ , by assumption. We are interested in characterizing how Eq. (5) varies with α.
Building on Lemmas 1 and 2, we obtain the following result.

Proposition 1. An increase in the strength α of a nonstate-contingent guarantee has an
ambiguous total effect on the risk premium commanded by the investors’ claim on the bank.

The effect of the guarantee on the risk premium required by the investors is ambiguous,
due to two opposing effects. On the one hand, by Lemma 1, stronger guarantees are asso-
ciated with more risk-taking. The managers of the bank investing in riskier assets, in turn,
has two effects. First, an increase in the payoff πl, obtained by the investors when ω ≥ ω̄,
results in higher variability of the investor’s payoff and, as a consequence, in a higher risk
premium. Second, more risk-taking implies a lower probability that the investors obtain πl;
whenever G′(ω̄) ≥ F ′(ω̄), this effect also leads to a higher risk premium.16

On the other hand, for a given level of risk-taking, the guarantee has a direct negative
effect on the risk premium of the claim held by the investors. This effect arises as the guar-
antee makes the investors less exposed to aggregate risk, as it ensures them a positive payoff
when ω < ω̄. Such a negative effect of the guarantee on the risk premium required by the
investors is also present in Gandhi and Lustig (2015), Kelly, Lustig, and Van Nieuwerburgh
(2016), and Gandhi, Lustig, and Plazzi (2017). Although in substantially different setups,
they consider guarantees that are nonstate-contingent, as we do here.17 As we will show in
what follows, when the guarantee is instead risky, i.e., varies across states of the world, the
direct effect of the guarantee on risk premiums can be of the opposite sign.

Case II: State-contingent guarantee. When the guarantee varies across states of the
world, the risk premium of the investors’ claim on the bank, following analogous steps as

16Intuitively, the condition G′(ω̄) ≥ F ′(ω̄) requires that ω̄ chosen by the managers corresponds to a bad
state of the world, which is deemed to be more likely under the risk-neutral than the objective probability
measure.

17Note that here we simply require the guarantee not to vary across the states of the world rather than
requiring it to be deterministic. Specifically, the guarantee could be nondeterministic as in Kelly, Lustig,
and Van Nieuwerburgh (2016), meaning that in each state of the world the investors obtain a transfer with a
given probability. Indeed, if α were a probability, none of the results presented in this section would change.
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above, can be written as

E[Rl]− R̄ =
{
α
∫ ω̄
−∞ τ(ω)dF (ω) + πl [1− F (ω̄)]

α
∫ ω̄
−∞ τ(ω)dG(ω) + πl [1−G(ω̄)]

− 1
}
R̄. (6)

For future reference, we term the ratio
∫ ω̄
−∞ τ(ω)dF (ω)/

∫ ω̄
−∞ τ(ω)dG(ω) the risk premium

of the guarantee, that is, the risk premium commanded by the transfer attributable to the
guarantee obtained by the investors, 1{ω<ω̄}ατ(ω). Due to the state contingency of the
guarantee, its direct effect on risk premiums is no longer necessarily negative. In other
words, stronger guarantees can imply higher risk premiums even when abstracting from any
indirect effects of the guarantee operating through risk-taking. Such a positive association
requires the guarantee to be sufficiently risky, as measured by the risk premium of the
guarantee, which in turn reflects the exposure of the guarantor to aggregate risk.

Proposition 2. Both the direct and the total effect of an increase in the strength α of a state-
contingent guarantee on the risk premium commanded by the investors’ claim on the bank
are ambiguous.

Intuitively, the possibility of the direct effect of the guarantee being positive arises from
the guarantee being risky. More specifically, if the guarantee is procyclical in the sense of
providing higher protection in good than in bad states of the world, it commands a positive
risk premium. Thus, an increase in the strength α of the guarantee can, by making the
investors more exposed to aggregate risk, lead to an increase in the risk premium of the
investors’ claim. The guarantee could be procyclical, for instance, because weaker public
finances in recessions can constrain the government’s ability to support banks and make
bailouts harder to justify to taxpayers.

Also note that if the guarantee is risky, its indirect effect, operating through risk-taking,
is more ambiguous. This finding relates to the fact that an increase in πl due to more risk-
taking lowers the risk premium of the investor’s claim if the guarantee is riskier than the
underlying unguaranteed claim.18 Thus, the overall effect due to risk-taking is less clear cut
in this case.

Proposition 2 has the following corollary, which will allow us to formulate an additional
testable prediction.

Corollary 1. Holding constant the level of risk-taking, an increase in the strength of the
guarantee can lead to an increase in the risk premium commanded by the investors’ claim
only if the guarantee is sufficiently risky.

Corollary 1 is derived by assuming that the risk class of the bank’s assets does not respond
18The term multiplying dπl

dα in Eq. (A.17) is negative when the risk premium of the guarantee exceeds
that of the underlying unguaranteed claim.
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to an increase in the strength of the guarantee, that is, when the mechanism revealed by
Lemma 1 does not operate. This mechanism would be absent, for instance, when the risk
class of the asset is chosen before the change in the strength of the guarantee takes place.
We make this assumption to be able to isolate the direct effect of the guarantee on bank
risk premiums, as we do in the empirical analysis by controlling for risk-taking.

One can think of the riskiness of the guarantee as depending primarily on the riskiness of
the sovereign granting it. An alternative interpretation is that increased uncertainty about
which banks and under which conditions will be supported makes implicit guarantees riskier.
In Section 2.3, we shed more light on how a guarantee granted by a sovereign depends on
its fundamentals and, in particular, on its riskiness.

Discussion. Before turning to the determinants of the implicit government support, let
us discuss some potential limitations of our framework. First, our static model abstracts
from any effects operating through charter value. A stronger government guarantee, by
lowering refinancing costs, can raise the guaranteed bank’s charter value (Gropp, Hakenes,
and Schnabel, 2011) and therefore temper the managers’ incentives for risk-taking (Keeley,
1990). Thus, in the presence of this mechanism, stronger guarantees would not necessarily
imply more risk-taking.

Second, guarantees could influence risk-taking through general equilibrium effects, which
our partial equilibrium framework is not able to capture. In principle, providing support to
a bank can affect the stochastic discount factor (SDF) in a number of ways, thus having an
effect on the risk-neutral distribution of the state. Note that in our framework, the SDF is
given by ϕ(ω) = g(ω)

f(ω)
1
R̄
. Suppose, for instance, that government support involves a transfer

from the taxpayers to the marginal investors. In such a setting, an increase in the strength of
the guarantee could lead to a decrease in the SDF in states of the world in which government
support is provided.19 Alternatively, the SDF could be affected through changes in banks’
risk-taking, induced by increases in the strength of their guarantees. Such an effect would
arise if the SDF depended on whether banks are able to repay the investors. Specifically,
an increase in the strength of the government support of a bank could lead to an increase
in the SDF in the states in which the bank is no longer able to honor its obligations. These
two effects on the SDF, taking opposite signs, could in turn influence bank risk premiums
but in a priori ambiguous manner. Future research can formally examine these potential
mechanisms.

Finally, although the model we employ allows for the coexistence of debt and equity, it
19In a framework in which the SDF is a function of the marginal utility of the investors, this would be the

case if investors’ consumption were increasing in the strength of the support. More generally, any transfer
that leads to a change in aggregate consumption, due, for example, to differing propensities to consume of
the agents involved, would affect the SDF.
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is not possible to obtain a clear-cut characterization of their risk premiums if considered
separately. The reason is that, when implementing the contract between the managers and
the investors with a combination of debt and equity finance, their weights in the investors’
portfolio vary in a nontrivial manner with the strength of the guarantee. Therefore, it
remains a question for future theoretical work whether stronger effects should be expected
on debt or equity claims, which could be interesting in light of the previous literature showing
that both the return on debt and equity is affected by government guarantees (e.g., Acharya,
Anginer, and Warburton, 2016 and Gandhi and Lustig, 2015). We will return to the risk
premiums of debt and equity claims in Section 4.1.4.

2.3. Determinants of implicit guarantees

To examine the factors that could determine the implicit guarantee granted by a sovereign
to a bank, we augment the framework described above with the following elements. Let the
country in which the bank operates be populated by a representative agent who, as in Romer
(1985), has preferences defined over aggregate consumption C and aggregate deposits D,
represented by the utility function u(C,D). The function u(·, ·) is increasing in both of its
arguments. The bank under consideration, in addition to raising funds from the investors and
investing in risky assets, issues deposits amounting to d to the representative agent. When
ω < ω̄ and the bank’s assets yield a payoff of zero, the investors can initiate the bankruptcy
proceedings, forcing the bank to close doors. In this case, its customers lose access to their
deposits.20 However, if the investors receive a transfer ατ(ω) from the government, they
refrain from legal action, allowing the bank to remain open. The government of the country
is benevolent and can levy lump-sum taxes on the representative agent. Thus, a transfer
amounting to ατ(ω) to keep the bank operating, which is required to prevent customers
from losing their deposits, is optimal if

u (C(ω)− ατ(ω), D) ≥ u (C(ω), D − d) . (7)

In other words, the government provides the transfer if the utility loss due to the reduction
in the aggregate amount of deposits available to the representative agent that would take

20Banks’ total deposits comprise both uninsured deposits and insured deposits (i.e., deposits guaranteed
up to some threshold via deposit insurance schemes that are in place in the countries examined in our
empirical analysis). Even if these deposit insurance schemes were fully credible (riskless), the impact of the
loss of uninsured deposits in the case of bankruptcy of a bank is of first-order importance for the national
economy. For example, for the largest US commercial banks, uninsured deposits represent more than half of
their total deposits, and cross-sectional variations in total deposits are driven largely by changes in uninsured
deposits (Egan, Hortaçsu, and Matvos, 2017). Thus, even in the presence of a deposit insurance scheme,
and regardless of the degree of risk associated with it, total deposits provide a meaningful empirical measure
of the loss inflicted on the national economy by the failure of the bank.
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place if the bank were to close doors is larger than the utility loss attributable to the lump-
sum taxes that reduce consumption. Note that the representative agent is assumed not to
benefit from the transfer directly, which is the case if their only significant claim on the
bank consists of deposits.

Because u(·, ·) is increasing in each of its arguments, the highest transfer the government
is willing to provide to the investors, ατ ∗(ω), satisfies

u (C(ω)− ατ ∗(ω), D) = u (C(ω), D − d) . (8)

We interpret ατ ∗(ω) as the implicit support of the bank by the government.
For the purposes of examining the determinants of τ ∗(ω), we need to make some assump-

tions about u(·, ·). Feenstra (1986) and Croushore (1993), in studying the microfoundations
of the money-in-the-utility-function model, find that relatively weak assumptions imply re-
strictions about second partial derivatives of the utility function with real balances as the
second argument. Using these restrictions in our formulation with deposits in the utility
function, we obtain the following result.

Lemma 3. If ucc ≤ 0, udd ≤ 0, and ucd ≥ 0, then τ ∗(ω) is increasing in C(ω) and in d/D.

The fact that the implicit support of the bank ατ ∗(ω) varies positively with aggregate
consumption is intuitive. Due to decreasing marginal utility of consumption, the higher the
level of consumption is, the lower the utility cost of funding the transfer to the investors is.
The positive dependence of ατ ∗(ω) on C(ω) shows that the support optimally chosen by the
government is procyclical.

Implicit support varying positively with d/D arises from two effects. First, the larger
the deposits of the bank are, the higher the utility cost of letting it close doors is. Sec-
ond, due to the decreasing marginal utility of deposits, the higher the level of aggregate
deposits in the economy is, the smaller the utility gain from keeping the bank open is. Con-
sequently, banks whose deposits represent a larger share of the aggregate deposits benefit
from stronger implicit supports. Therefore, for a given C(ω), d/D determines the willingness
of the government to support the bank (i.e., the strength of the guarantee).

To illustrate how the riskiness of the sovereign shapes that of the implicit support, it is
useful to consider a functional form for the utility function. Namely, we assume that the
representative agent’s preferences can be represented by the function u(C,D) = CγD1−γ,
considered in the analysis of Poterba and Rotemberg (1986). For this functional form, which
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satisfies the restrictions in Lemma 3, one immediately obtains

ατ ∗(ω) =
1−

(
1− d

D

) 1−γ
γ

C(ω). (9)

Thus, in this case, the implicit support of the bank, for a given level of aggregate deposits,
is a linear function of aggregate consumption. Note that with this functional form, both
the bank-specific strength of the guarantee α and the component that is common to all
banks guaranteed by the same government are unambiguously defined. Namely, α = 1 −(
1− d

D

) 1−γ
γ , and τ ∗(ω) = C(ω). In our empirical analysis, we employ the expression for α

to construct a measure of the strength of implicit support. This measure is a function of
the relative size of banks’ deposits, as we interpret banks with a larger deposit base as those
that are more important for the national economy and hence more likely to benefit from
strong government guarantees. In contrast, the too-big-to-fail literature focuses on absolute
bank size to capture a bank’s systemic importance at the global level.

Given that aggregate consumption also represents the tax base in this framework, it is
natural to interpret an increase in the volatility of C as an increase in the riskiness of the
sovereign. This interpretation is also consistent with Jeanneret (2015), showing that the
volatility of the fundamentals is a key determinant of sovereign risk.21 For these reasons,
we maintain that the riskiness of an implicit guarantee is increasing in the riskiness of the
sovereign granting it, allowing us to translate Corollary 1 to a testable prediction, stated in
what follows.

2.4. Testable predictions

Let us conclude the theoretical analysis by translating some of the results to empirically
testable predictions. While the framework is rich enough to deliver multiple predictions, we
focus on the predictions that lend themselves most readily to empirical investigation and,
at the same time, have not been previously evaluated. For this reason, we do not study the
effects of the guarantees on bank risk-taking as such, which are the focus of several recent
papers (see, e.g., Brandao-Marques, Correa, and Sapriza, 2018). Instead we concentrate on
the direct effects of government guarantees on bank risk premiums, which is the most novel
aspect of our theoretical analysis. Yet the theory suggests that to isolate such direct effects,
we need to control for the presence of the indirect effects. Therefore, empirically we should

21Similarly, Hilscher and Nosbusch (2010) find that sovereign credit spreads depend to a significant extent
on the volatility of fundamentals. This finding is analogous to the strong link between corporate bond yield
spreads and asset volatility, as proposed by Merton (1974) and empirically shown by Campbell and Taksler
(2003).
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consider a cross-section of banks with similar riskiness (i.e., same level of risk-taking). In
this way, any resulting differences in risk premiums in the cross-section of banks can be
attributed solely to direct effects of government guarantees.

Based on Proposition 2, we formulate the following prediction:

Prediction 1: Among banks of similar riskiness, bank risk premiums can either increase or
decrease with the strength of the implicit guarantee that they benefit from.

This prediction is important, as the previous literature suggests that stronger guarantees
are always associated with lower risk premiums.

With regard to the riskiness of implicit support, from Corollary 1 and the discussion on
the determinants of implicit guarantees, we obtain the following additional prediction:

Prediction 2: Among banks of similar riskiness, those that are guaranteed by riskier sovereigns
should offer higher risk premiums.

Next we turn to testing the above two predictions arising from the theoretical framework
by applying suitable portfolio-sort techniques; in essence, we evaluate the risk premiums
associated with the direct effects of government guarantees and study the risks reflected in
these premiums.

3. Data and empirical strategy

This section describes the sample selection criteria, the asset return data, the sorting
techniques used to construct the portfolios, and the econometric methods employed. We
also provide some descriptive statistics.

3.1. Sample selection

Our goal is to test the predictions implied by the theoretical framework on data for bank
debt and equity returns. We use CDS contracts, rather than corporate bonds, to examine
the impact of the guarantees on the cost of bank debt. CDS contracts are standardized, with
the terms set by the International Swaps and Derivatives Association (ISDA). While CDS
spreads largely reflect the credit risk of the underlying entity, corporate bond yield spreads
are often affected by microstructure, tax, and illiquidity effects (Elton et al., 2001; Berndt
and Obreja, 2010). Therefore, CDS-implied returns can be easily computed and compared
across banks of different countries.

21



We use five-year CDS contracts with modified restructuring clause for senior unsecured
debt. For European banks, we use the euro-denominated contracts, whereas for the remain-
ing banks we use the USD-denominated contracts. As a result, we use the most liquid CDS
contracts. The CDS data are obtained from Credit Market Analytics (CMA) through S&P
Capital IQ, covering daily mid quotes for the period from January 2004 to November 2018.22

The starting date is dictated by the low liquidity of the CDS contracts before that date.
We select those entities that S&P Capital IQ categorizes as banks, regardless of whether

a bank is a subsidiary or a parent company, and for which CDS contracts are available. We
restrict the analysis to developed countries’ banks. Although CDS contracts are generally
written on larger banks, we filter out those banks with assets in place less than 10 USD
billion. In this way, we organize our empirical analysis around a group of reasonably large
banks, following, for example, Beltratti and Stulz (2012), who identify large banks as those
with assets in excess of $50 billion, thus via an even more restrictive filter. In total, our
sample contains 88 banks. The banks’ names, along with their available assets, are given in
the Internet Appendix (Table A1). We also collect equity prices for the selected banks from
S&P Capital IQ. Although many banks have publicly traded equity but no CDS contracts,
the opposite can also happen for some banks. This fact slightly limits the sample of banks
for which both equity prices and CDS contracts are available.

3.2. Equity and CDS returns

Equity returns are computed simply as the daily log-difference of the total return price
index. By contrast, there are no time-series data on actual transaction prices for a specific
CDS contract (Berndt and Obreja, 2010). Indeed, default swap contracts with constant
maturity are reported at market spreads. It is standard to translate the spread on a newly
issued CDS into a one-day return. To do this, we follow, among others, He, Kelly, and
Manela (2017). Let us denote by CDSi(t, T ) the annualized spread at day t of a CDS
contract written on bank i and maturing in T years; then, the one-day return of a short
CDS strategy (in the case of no default) is given by

ri(t, T ) = CDSi(t-1, T )/252−∆CDSi(t, T )×RDi(t-1, T ), (10)
22S&P Capital IQ was formed in 2010 from offerings previously provided by Capital IQ, which is also used

in academic research mainly for balance sheet data for corporations (see, e.g., Kahle and Stulz, 2013). On
29 June 2012, S&P Capital IQ acquired CMA Limited from the CMA group. CMA provides independent
data concerning the over-the-counter markets, being one of the major providers of CDS quotes, along with
Markit. CMA data seem to lead the price discovery process in comparison with the quotes provided by
other providers (Mayordomo, Peña, and Schwartz, 2014). Also note that while for sovereigns some data
suppliers provide CDS quotes in different currencies, this is not the case for banks.
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where CDSi(t-1, T )/252 is the carry component, i.e., the seller’s daily receipt of the insur-
ance premium component, and ∆CDSi(t, T ) × RDi(t-1, T ) is the capital gain component,
which results from being long a defaultable bond and short a risk-free bond. The lagged
risky duration, RDi(t-1, T ), is constructed by interacting the default-free discount curve,
implied in US Treasury yields up to the five-year maturity (data are from Gürkaynak, Sack,
and Wright, 2007), with the bank default survival probabilities implied in the daily five-year
CDS spreads. Precisely, to extract survival probabilities, we assume a flat term structure of
survival probabilities and a loss given default of 50% (see Internet Appendix I).23

Table A3 in the Internet Appendix reports asset return summary statistics; we show
the annualized daily asset return statistics for the average bank, along with those for the
25th, 50th, and 75th percentiles for the panel of banks, for the 2004–2018 period. Panel
A presents the statistics for equity returns, while Panel B for CDS returns. During the
full sample period, the average equity return is -4% per annum. However, while over the
pre-crisis period the average stock return was 20% per annum, over the 2007–2018 period, it
fell substantially, mainly because of the losses that materialized during the 2008–2009 global
financial crisis. Bank stock returns display little autocorrelation, high standard deviations,
and high kurtosis, thus being fat tailed. The cross-sectional distribution of bank stock
returns seems to be fairly symmetric, being only marginally left skewed.

Turning to CDS returns, it is apparent that their daily variation is substantially smaller
than that of equities. Therefore, it emerges that movements in CDS spreads actually result
in small CDS returns when compared to equities; in fact, equity returns display a standard
deviation that is roughly ten times higher than that of CDS returns. Of particular interest
is also that CDS returns show almost no variation prior to the onset of the subprime crisis
(see, e.g., Eichengreen et al., 2012). Compared with equities, CDS returns are also somewhat
more autocorrelated.

3.3. Portfolio construction

We examine the predictions of the theoretical framework by resorting to equally-weighted
portfolios of bank asset returns. In doing so, we can average out idiosyncratic components
of bank returns and focus only on their systematic risk (Cochrane, 2009). Specifically, to
examine whether the EGS commands a risk premium, we need to group banks according to
their EGS. However, given that the theoretical analysis suggests that bank-specific risk—

23As a caveat, if the CDS spreads include an (il)liquidity component, capturing both liquidity risk and
risk premiums, this will be reflected in somewhat lower extracted risk-neutral survival probabilities, which
would lower the capital gain component and consequently increase the CDS returns. Such an effect is,
however, partly attenuated by the fact that we focus on the most liquid contract, i.e., the five-year CDS
(see, e.g., Li and Zinna, 2018).
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captured in the model by the variable p—should be controlled for, we first sort banks on
different measures of their riskiness.

3.3.1. First sorts by bank risk

In our theoretical framework, the variable p captures bank-specific risk that stems from
the risk-taking behavior of the bank. Empirically, however, measuring bank-specific risk
is not trivial, and there is no single measure that can capture its full complexity. We
therefore attempt to capture bank risk by using three commonly used measures. A natural
way to proceed is to use accounting ratios; these ratios are widely used by practitioners
and academics given that they are easy to compute and generally available for all banks
(Iannotta, Nocera, and Sironi, 2013). First, we use leverage, calculated as the ratio of total
assets and equity, both at book value. An advantage of using book values is that there
is no clear reason to expect them to have a relation with expected returns (Gandhi and
Lustig, 2015). Our measure of leverage is essentially the inverse of the capital ratio, which
in turn determines the resilience of the bank to withstand adverse shocks. Second, we use
deposits to total assets (another standard accounting ratio) to capture the part of bank risk
that is associated with the bank business model, with low deposits to total assets indicating
riskier banks. Third, we resort to a market-based measure. Differently from accounting
ratios, market-based measures incorporate a number of factors, ranging from the bank’s
financial and economic conditions to aspects such as management quality, organization,
and governance. Specifically, we employ equity volatility, estimated over the three months
of daily equity returns prior to the sorting date. Equity volatility provides information
complementary to book-value leverage about the default probability of the bank and is a
key input to the Merton model (see, e.g., Acharya, Anginer, and Warburton, 2016).

3.3.2. Second sorts by EGS

We double-sort banks first by the selected measure of bank risk, as described above,
and then by a measure of the EGS. The theoretical framework suggests that the implicit
guarantee of a bank should increase with the bank’s market share of deposits. Therefore,
in line with the theoretical framework, we measure the bank EGS with a proxy for the
bank market share of deposits, the bank deposit-to-GDP ratio. Intuitively, banks with
high deposit-to-GDP ratios benefit from stronger EGS, as the failures of these banks can
adversely affect not only the financial system but also the real economy.

A simple exercise reveals that banks with high deposits to GDP have indeed large ex-
posures to their sovereign, as also suggested by the theoretical framework. Fig. A1 in the
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Internet Appendix plots bank deposit-to-GDP ratios versus their sovereign exposures in the
cross-section. The sovereign exposures are estimated by regressing bank CDS returns on
sovereign CDS returns. Therefore, these estimates capture the market assessment of bank-
sovereign exposures, both direct and indirect, which arise from factors including the EGS
(Li and Zinna, 2018). We find that for the sample of banks of all countries, the correlation
coefficient between these two measures is equal to 24%. When restricting the sample of
banks to those based in core EU countries, this correlation coefficient more than doubles
to 66% and is more precisely estimated. This finding is not surprising given that sovereign
risk is likely to be more elevated in EU countries. However, for noncore EU banks, the
correlation is 27%, suggesting that there is substantial heteroskedasticity across banks lo-
cated in different EU countries, being stronger for core EU and much weaker for noncore
EU banks, especially for the full sample. Generally, the correlations tend to be higher over
the pre-bail-in sample, when sovereign risk was more elevated. Overall, these findings seem
to support the use of deposits to GDP as an appropriate sorting variable for our purposes.

The use of the deposit-to-GDP ratio as proxy for the EGS, and therefore as an appropri-
ate variable to test the theoretical predictions, is motivated by Eq. (9). It is, however, useful
to compare this measure with two alternative measures widely used in the literature: the
rating uplift (see, e.g., Gropp, Hakenes, and Schnabel, 2011; Correa et al., 2014; Acharya,
Drechsler, and Schnabl, 2014), and bank size (see, e.g., Gandhi and Lustig, 2015; Acharya,
Anginer, and Warburton, 2016). Relative to the rating uplift, the bank-to-deposit ratio is
more likely to be exogenous to bank asset returns. Indeed, the rating uplift captures not only
the implicit guarantee, i.e., the bank market share of deposits, but also many other factors,
including bank risk and the ability of the sovereign to rescue a bank (see, e.g., Schich and
Lind, 2012; Li and Zinna, 2018). In fact, we find a positive and strongly statistically signifi-
cant correlation between rating uplifts and deposit-to-GDP ratios only when controlling for
sovereign and bank risk. This evidence lends support to the use of the deposit-to-GDP ratio
as suitable sorting measure in a cross-country analysis, not reflecting sovereign risk, being
instead a more direct measure of the implicit support. Moreover, unlike the rating uplift,
which changes across rating agencies and over time in response to revisions in the method-
ologies of the rating agencies, the deposit-to-GDP ratio measures EGS consistently over
time. Therefore, the deposit-to-GDP ratio is an objective measure, not being contaminated
by the judgment of the rating agency.

Turning to bank size, bigger commercial banks also tend to have more deposits, so bank
size and deposits move closely together. What is crucial instead is that our proxy for the
EGS measures the importance of the bank for the national economy rather than its systemic
importance at the global level. In fact, standard measures of systemic importance, which
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largely reflect (absolute) bank size, tend to deliver a substantially different bank ranking
than one would obtain using our measure. For instance, Bank of America and Citibank
are classified as more globally systemically important than Banco Santander and Unicredit
in terms of size. However, when banks are single sorted by their deposit-to-GDP ratios,
the former two are allocated to the low deposit-to-GDP portfolio, whereas the latter two
to the high deposit-to-GDP portfolio. This observation also rationalizes why we no longer
find a relation between the EGS and sovereign exposures when the deposit-to-GDP ratio is
replaced by bank size (or absolute deposits).

Finally, one might argue that deposit-to-GDP ratios capture banks’ direct sovereign ex-
posures. However, we find that, using the sovereign debt holdings released by the European
Banking Association in the 2011 stress test exercise, while deposit-to-GDP ratios correlate
with domestic holdings of sovereign debt over GDP, they do not correlate with the holdings
of sovereign debt when standardized by total assets. If anything, smaller banks display
higher direct sovereign exposures, as measured by domestic sovereign holdings over total
assets. This finding suggests that, despite holdings of domestic sovereign debt potentially
being one of the factors determining the level of the implicit support of a bank, these types
of sovereign exposures do not correlate with our measure of EGS. Therefore, deposit-to-GDP
ratios convey different information than measures of banks’ direct sovereign exposures.

3.3.3. Sorting strategy

Fig. 2 illustrates our sorting strategy, which consists of a series of 2×2 sorts. At the
beginning of each month, we allocate banks to two portfolios according to the selected
measure of bank risk. Then we further split each of these two portfolios into two subportfolios
according to the bank EGSs. As a result, for each measure of bank risk, we obtain four
portfolios. The double-sorted portfolios are denoted by LL, LH, HL, and HH, where the
first letter denotes the level of the first sorting variable (bank risk) and the second letter
that of the second sorting variable (EGS). The return differences between portfolios LH and
LL and between HH and HL denote the low bank risk and high bank risk spread portfolios,
respectively. Spread portfolios are self-financed strategies and represent a long position in
high EGS banks and short position in low EGS banks. These portfolios are of particular
interest, as they contain banks of similar riskiness, i.e., level of risk-taking, and therefore
isolate the direct effects of the EGS on bank returns. We repeat the analysis separately for
bank equity and CDS returns. This sorting strategy yields, for each measure of bank risk, a
total of eight double-sorted portfolios and four spread portfolios. Using the three measures
of bank risk, we obtain a total of 36 portfolios.
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Finally, define rajt the time-t return on the double-sorted portfolios for j = LL, LH, HL,
HH of asset class a, denoting either equities or CDSs. Then the excess returns at time t
for double-sorted portfolios are given by rxajt = rajt − rft−1, where rft−1 is the lagged daily
risk-free rate, proxied by the daily US one-month T-bill rate. Since the spread portfolios are
self-financed, resulting from long-short strategies, their returns are already excess returns.
Before turning to present the empirical results, we briefly present the two-pass method
associated with Fama and MacBeth (1973).

3.4. Asset-pricing methods

Under no-arbitrage pricing, risk-adjusted excess returns have zero price and satisfy the
basic Euler equation E[ϕt+1rxjt+1] = 0. A linear SDF in turn implies the beta pricing model,
E[rxj] = λ′βj so that portfolio j expected excess returns depend on factor risk prices (λ)
and risk quantities (βj). The objects of interest λ and βj can be estimated using a two-pass
procedure (Fama and MacBeth, 1973).

The first pass is a time-series regression of each portfolio’s excess return on the vector
of risk factors

rxjt = αj + ftβj + eit, t = 1, . . . , T, for j = 1, . . . , n, (11)

where ft is the vector of risk factors, αj captures the risk-adjusted average realized returns of
portfolio j, and βj is the vector of its corresponding exposures to the risk factors. The second
pass is a cross-sectional regression of average portfolio excess returns on the estimated betas

rxj = β̂
′
jλ+ aj, for j = 1, . . . , n, (12)

where rxj = 1
T

∑T
t=1 rxjt, β̂j is the ordinary least-square (OLS) estimate of βj, and aj is the

cross-sectional pricing error associated with portfolio j.
A few observations are in order. First, it is standard in the literature to proxy expected

returns with average realized returns, also in the case of CDS portfolios (e.g., He, Kelly, and
Manela, 2017). Second, while the vector βj can be estimated equation by equation using
OLS, we report throughout the analysis Generalized Method of Moments (GMM) variance-
covariance heteroskedasticity and autocorrelation consistent (VARHAC) standard errors to
account for potential serial correlation. Third, in the second pass, we impose the restriction
that the constant (αj) is equal to zero. Finally, note that the second-pass regressors β̂j are
generated so that OLS standard errors would understate the degree of parameter uncertainty.
While the point estimates of the factor risk premiums are unaffected by the fact that β̂j
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are estimated in the first pass, the use of OLS standard errors would compromise inference
about the factor risk premiums. There are three standard ways to take into account the
uncertainty around the regressors β̂j: the Shanken (1992) correction for the standard errors,
GMM standard errors, and bootstrap methods. We use all three methods to test statistical
significance.

4. Empirical results

The empirical results are organized in three parts. Section 4.1 details the steps necessary
to estimate the EGS risk premium and evaluates Prediction 1. Then we turn to assess
Prediction 2, in Section 4.2, by showing how the EGS risk premium varies with sovereign
risk. Finally, Section 4.3 offers complementary evidence by investigating the types of risk
that underlie the EGS factor.

4.1. The EGS risk premium

The key testable prediction of the theoretical framework in Section 2, Prediction 1,
states that, for a given level of bank riskiness, banks that are more exposed to a risky
government guarantee can offer an EGS risk premium. We evaluate this prediction using
the portfolio sorts and asset-pricing methods described earlier. The test assets include
the 36 portfolios formed by double-sorted banks, first by their intrinsic riskiness, using
three alternative measures, and then by deposits to GDP, as described in Section 3, for
the period from January 2004 to November 2018. Specifically, the test assets consist of 12
double-sorted equity portfolios and the 6 associated EGS spread portfolios, and 12 double-
sorted CDS portfolios and the 6 associated EGS spread portfolios. Therefore, the set of
dependent variables to be explained includes a broad set of portfolios, which helps mitigate
the problems that can arise in the presence of a strong factor structure in test-asset returns
(Lewellen, Nagel, and Shanken, 2010). Moreover, the inclusion of the EGS spread portfolios,
in addition to the double-sorted portfolios, is instrumental to identify the EGS price of risk
in the second-pass regressions, when the pricing factor is itself a return (e.g., Della Corte,
Riddiough, and Sarno, 2016); we will return to this point later when discussing second-pass
regressions.

Table 1 presents the average realized excess returns (rxj). We find that double-sorted
equity portfolios tend to deliver large negative average excess returns for low deposit-to-
GDP banks and roughly zero average excess returns for high deposit-to-GDP banks. While
none of the average returns of the double-sorted portfolios are statistically lower than zero,
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the EGS spread portfolios, which are the ultimate object of interest, are positive, large, and
statistically significant, with the only exceptions of those associated with the low leverage
and equity volatility portfolios, which are not statistically significant. The low deposit-
to-total assets spread portfolio generates the highest return of roughly 11% per annum.
The average excess returns for the double-sorted CDS portfolios also tend to be negative,
but they are not statistically significant. More importantly, EGS spread portfolios rxj are
economically small for CDS markets, which is not surprising in light of the evidence on the
return descriptive statistics, and they are also not statistically different from zero.

We test the robustness of the portfolios along two important dimensions. First, we
double-sort the banks using the market share of deposits so that the banks’ deposits are
standardized by the country deposits and not by the country GDP. This exercise is subject
to the caveats that i) at a practical level, the resulting portfolios are not tradable in real time
given that the country deposits are released with a two-year lag, and ii) some extrapolation
of the data is needed, such as for the UK where the data are only available until 2009 (we
simply use the latest data available). Nevertheless, we find that the double-sorted portfolios
are essentially unchanged. Second, one might argue that changes in the deposit-to-GDP
ratios can be driven by changes in GDPs. This possibility would clearly contaminate the
analysis. The reasoning is as follows: as GDP drops, holding fixed the bank deposits, bank
deposit-to-GDP ratios would increase, which would translate to an increase in the EGSs for
the banks located in that country, and change the allocation of the banks to the portfolios
in a potentially counterintuitive manner. To rule out this possibility, we change our EGS
sorting variables; specifically, we standardize the bank deposits by the 2003 level of GDP
so that the denominator is held constant, and all the variability is driven by changes in the
numerator (i.e., bank deposits). The resulting evidence is clear cut; that is, the portfolios
are again unchanged. It is also important to note that the portfolios are populated by a
similar number of banks, which helps exclude the possibility that a few banks might be
driving our findings. In short, our portfolios are robust to these refinements and are not
likely to be driven by outliers.

Summing up, the presence of positive equity EGS spread portfolio returns, which are
statistically and economically significant, is suggestive that an EGS risk premium might
indeed exist, as predicted by the theoretical framework. However, before making more
definite conclusions, we need to examine whether the average risk-adjusted returns are also
positive and statistically significant. In essence, we need to establish whether such excess
returns reflect compensation for risk and hence reflect a risk-return trade-off consistent with
the theoretical framework.
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4.1.1. Explaining returns with standard risk factors

We start by considering a four-factor SDF (see Table A2 in the Internet Appendix for
a detailed definition of the risk factors). The first risk factor is the market factor (Mkt), as
measured by the daily return on the MSCI World Index in excess of the daily one-month
T-bill rate. The second and third risk factors are the bond market (Term) and credit spread
(Crd) differentials. Term is the daily change in the spread between the ten- and two-year US
Treasury rates, which largely measures business cycle risk. The slope of the term structure
is also an important determinant of bank profitability given banks’ maturity transformation
activities (Alessandri and Nelson, 2015). Crd is the daily change in the spread between the
high-yield and investment-grade US corporate rates, which captures corporate default risk
and thus, among other things, the riskiness of bank assets. Finally, we also include the
TED spread, computed as the daily change in the yield difference between the one-month
Libor and the US T-bill of the same maturity. TED measures stress in the interbank market,
being strongly related to funding liquidity, which in turn is intertwined with market liquidity
(Brunnermeier and Pedersen, 2009). A larger spread points to a diminished willingness of
banks to provide funding in the interbank market, as occurred at the peak of the global
financial crisis (Brunnermeier, 2009).

Table 1 presents the first-pass regression estimates. As for the double-sorted portfolio
regressions, the risk factors generally enter with the expected signs; indeed, they load posi-
tively on Mkt and Term and negatively on Crd and TED. Thus, as risk increases (declines),
bank returns decline (increase). Moreover, Mkt, Term, and, Crd seem to be key factors in
explaining both equity and CDS portfolios, being generally statistically significant at the 1%
level, while TED helps explain the returns of some of the CDS portfolios. Taken together,
these four factors explain roughly 60% and 30% of the variations in equity and CDS portfolio
returns, respectively.

Turning to the regressions of EGS spread portfolios, the findings are clear cut: standard
risk factors fail to explain EGS spread portfolio returns, as revealed by the low R2s and,
more importantly, by the statistically and economically significant alphas. In essence, the
average realized spread returns (rxj) are basically the same as the risk-adjusted returns
(αj). As a result, based on this set of risk factors, bank returns sorted by deposits to GDP
are an anomaly, as we cannot find evidence that they can be understood as compensation
for risk.
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4.1.2. Constructing the EGS factor

A natural way to proceed is to examine the factor structure of the risk-adjusted returns
(see, e.g., Berndt and Obreja, 2010; Gandhi and Lustig, 2015). Thus, we perform a PC
analysis of the residuals obtained from the first-pass regressions of the double-sorted portfolio
returns on the set of standard risk factors (Table 1). We extract the loadings for the first
three principal components, displayed in Fig. 3, which explain roughly 85% of the variation
in the residuals.24

Of particular interest is that the three PC loadings suggest the PCs have a clear economic
interpretation. The first PC is a bank level factor given that it loads positively on all the
portfolios. The second PC is a security factor, being short in equity portfolios and long in
CDS portfolios.25 The third PC is a candidate EGS factor, as it is long in high deposit-
to-GDP portfolios and short in low deposit-to-GDP portfolios. Notably, this structure
associated with the weights of the third PC holds both for equity and CDS portfolios.
Moreover, these factor weights align with the pattern of the equity (risk-adjusted) returns,
making the EGS factor as the only likely candidate to be added to the set of risk factors.

Next, as in Gandhi and Lustig (2015), we exploit the PC weights to construct three return
factors (Fig. A2 in the Internet Appendix). While the PCs are generated as PCj,t = ε̃tŵ

′
j,

the return factors are constructed as R[PCj]t = xrtŵ
′
j, where wj is the vector of principal

component weights associated with the jth PC and ε̃ are the standardized residuals (risk-
adjusted returns). The advantage of working with the return factors rather than with the
raw PCs is that they are tradable risk factors. A factor is considered to be tradable if it is
a convolution of returns regardless of whether the loadings, or weights, on the returns are
known in real time.26 A convenient feature of a return factor is that its price of risk must
equal its expected return so that the mean of the factor is its price of risk (e.g., Menkhoff
et al., 2012). It follows that if the mean of the return factor is not statistically different
from zero, then its price of risk is also zero.

24Note that equity risk-adjusted returns display substantially higher variation than CDS risk-adjusted
returns. Therefore, we standardize the residuals before executing the PC analysis. Also, we use the residuals
from regressions of double-sorted portfolio returns, excluding the spread portfolio returns, to carry out the
PC analysis.

25One could argue that this finding is consistent with the evidence that equity and bond returns respond
differently to capital market anomalies (Chordia et al., 2017).

26The reason is that, while the portfolios need to be tradable in real time, the factor is not needed to
form the portfolio strategy. Rather, its purpose is to help us understand the risk-return trade-off that can
explain the excess returns arising from the portfolio strategy in terms of compensation for risk. In the
asset-pricing literature, a nontradable or nonreturn factor is generally converted to a tradable-return factor
using factor-mimicking portfolios. This conversion is implemented by running OLS regressions, using full
sample information, of the original nontradable factor on a set of returns. The loadings obtained from such
regressions are then used to construct the factor-mimicking portfolio by projecting the nontradable factor
onto the space of returns (e.g., see Breeden, Gibbons, and Litzenberger, 1989; Ang, Chen, and Xing, 2006;
Menkhoff et al., 2012; Adrian, Etula, and Muir, 2014).
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Therefore, we examine the statistical significance of the averages of the return factors
presented in the bottom panels of Fig. A2 in the Internet Appendix. Our candidate as
additional pricing factor is the EGS return factor, R[PC3]t; thus, we start by examining its
mean. We find that it is roughly 11% per annum, with a p-value of around 1%. Therefore,
the EGS price of risk is both economically and statistically significant, which seems striking
given that the sample is not only relatively short but also characterized by severe shocks.
By contrast, the level and security factors average around -12% and 12%, respectively, but
none of the two is statistically significant, with p-values around 25%.

4.1.3. Explaining returns with the EGS factor

Next we repeat the first-pass regressions by adding the EGS return factor to the set of
risk factors, which results in a five-factor SDF. The main findings, displayed in Table 2,
are easy to summarize. We start by noting that the spread portfolios load positively on
the EGS return factor, and this holds both for equities and CDSs. This finding, in turn,
suggests that an EGS premium is priced consistently in both markets. Not surprisingly,
in light of the statistical properties of the returns, the magnitudes of such EGS loadings
are substantially higher for equities than for CDSs. Nevertheless, the results for equities
are probably of broader interest given that average risk-adjusted returns for equities are
large and statistically significant, based on the standard set of pricing factors (Table 1). By
including the EGS return factor in the SDF, the alphas on the equity spread portfolios are
no longer large in economic terms, and their statistical significance also drops.27 Moreover,
the R2s on the spread portfolios jump, on average, from roughly 5% to 75%, ranging from
a minimum of 45% to a maximum of 90%.

For the equity regressions, the positive loadings of the spread portfolios on the EGS
return factor result from the combination of the negative loadings of the low deposit-to-GDP
portfolios and the positive loadings of the high deposit-to-GDP portfolios. By contrast, for
the CDS regressions, high deposit-to-GDP portfolios have larger EGS exposures than the low
deposit-to-GDP portfolios, but low deposit-to-GDP portfolios at times also display positive
exposures.28 To shed further light on this issue, in the Internet Appendix (Table A4), we

27The alphas on the low deposit-to-total assets and on the high equity-volatility equity spread portfolios
are no longer statistically significant. Moreover, for the remaining four equity spread portfolios, the alphas
display less statistical and economic significance than the respective average excess returns.

28This finding is likely to result from the following two facts. First, by construction, while the PC weights
are extracted from risk-adjusted returns, the EGS return factor, different from the associated PC, is not
necessarily independent from the other risk factors; see also the discussion in Gandhi and Lustig (2014) on
this issue. Second, despite us performing the PC analysis on the standardized risk-adjusted portfolio returns
to account for the different variation of equity and CDS returns, we still find that the weights on the third
PC are larger (in absolute terms) for equities than for CDSs. This finding, coupled with the fact that we
use the return factor rather than the PC as risk factor, explains why the return factor largely reflects the
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repeat the first-pass regressions by replacing R[PC3]t with PC3,t. Indeed, by doing so we
find that low deposit-to-GDP CDS portfolios show negative exposures to the EGS PC factor,
and the R2s on the CDS spread portfolios are substantially higher, reaching a maximum
of 17%. However, this exercise also shows one of the major shortcomings of working with
a factor that is not tradable and also has zero mean by construction: the alphas remain
economically large and statistically significant.

Finally, we note that the estimated betas are generally individually significant regardless
of whether standard-system OLS, GMM-based, or bootstrap procedures are used to compute
standard errors. For brevity, we only report GMM-based standard errors for the first-
pass regressions. Most importantly, a statistically significant spread in the betas across
portfolios is a necessary condition to find a spread in the expected returns across portfolios.
In formulas, the expected return associated with factor k for portfolio j is given by βjkλk.
We test whether βjk = 0 and βjk = βj ∀j for each factor k = Term, TED, Crd, Mkt,
and R[PC3]. As Table A5 in the Internet Appendix shows, we can strongly reject both
hypotheses.29 Next, we turn to the cross-sectional analysis (second-pass regressions).

4.1.4. Cross-sectional asset pricing

The spread in the factor betas is not a sufficient condition to conclude that there is
a spread in the factor excess returns across portfolios, as it also depends on whether the
pricing factor commands a statistically (and economically) significant price of risk.30 Table 3
presents the cross-sectional asset-pricing results. Starting from Panel B.I, which is our main
object of interest, we find a strongly statistically and economically significant positive price
of risk associated with the EGS return factor. Statistically, the price of risk is precisely
estimated according to all three procedures employed to compute standard errors. The
bootstrapped p-value, which is our preferred statistic given the relatively short sample and
the presence of severe shocks that make returns fat tailed, is below 5%. Economically, the
price of risk for a unit exposure to the EGS factor is as high as 12% per annum. The point
estimate is very close to the average of the EGS return factor, and we cannot reject the null

information embedded in the equity portfolios.
29Although the betas on TED are often individually not significant, we show in the Internet Appendix

(Table A5) that they contribute somewhat to the spread in expected returns, in particular when both
double-sorted and spread portfolios are considered. We therefore opt to include TED in the SDF, but the
results are robust to excluding it.

30When the factor is tradable, one knows its excess return and hence its price of risk. Thus, one can infer
the risk premium associated with that factor from the first-pass regressions. But when the factor is not
tradable, or the SDF includes a combination of tradable and nontradable factors—as in our case—then it is
necessary to proceed with the cross-sectional analysis to infer the factor prices of risk. That said, regardless
of whether the factor is tradable or not, it is useful to conduct the cross-sectional analysis since it allows
us to perform tests on the model cross-sectional pricing errors, thus providing additional information about
the ability of the factors to price the cross-section of assets.
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that the two are equal.
We now turn to assess the economic significance in terms of portfolio excess returns, thus

interacting the portfolio betas with the price of risk. This exercise delivers equity excess
returns, associated with the EGS factor, which range across the spread portfolios from a
minimum of 5% to a maximum of 9% per annum. The absolute magnitudes of the CDS
excess returns are clearly much smaller, being, on average, around 0.15% per annum, but
relative to CDS returns, these premiums are not negligible.31

We employ three measures to evaluate the cross-sectional fit. First, we uncover a good
fit in terms of explained variation: the R2 is 94%. Second, we cannot reject the null that the
pricing errors are zero. Third, the MAE is 0.93% per annum. However, to better evaluate
the contribution of the EGS return factor to the model fit, we compare these statistics
with those obtained from the model containing only the other risk factors (Panel A.I), thus
excluding the EGS factor. It is evident that the inclusion of the EGS factor helps very much
improve the model fit. When the EGS factor is excluded, the R2 drops by 20 percentage
points, and the MAE doubles; the difference in MAEs, 0.97, is statistically significant, based
on the 95% confidence interval, obtained by bootstrap. The evidence is less clear cut when
looking at the pricing error test given that the test fails to reject the null of zero pricing
errors also in the model without the EGS factor.32

Although it is not the main focus of the analysis, we briefly comment on the prices
of risk associated with the other risk factors. It is apparent that they are not precisely
estimated, which is particularly evident when using the bootstrap procedure; the only price
of risk with a p-value below 10% is that associated with the credit factor (Crd). However,
the only prices of risk with economically meaningful signs, being therefore consistent with
a risk-return explanation, are those associated with TED and the market factor, although
these effects are economically negligible. These findings largely hold also when the EGS
return factor is excluded from the SDF.

Before proceeding further, let us briefly return to the differences between equity and CDS
excess returns. Our theoretical framework does not allow us to explain why risk premiums
for equities should be much larger than for CDSs, as it focuses on a portfolio comprising
both equity and debt rather than providing separate expressions for the risk premiums of

31When we perform the second-pass regression by replacing R[PC3]t with PC3,t (Table A6), we find that
the EGS risk premium priced in the CDS market is higher, being, on average, across portfolios around 0.45%
per annum. This finding is likely due to the more precise estimates of the CDS spread portfolios’ exposures
to the EGS factor.

32The weaker evidence likely reflects the low power of this particular test in our context, as it is inconsistent
with the other evidence in the table. The above evidence suggests that the EGS factor enters the SDF
significantly and contributes considerably to the pricing power of the SDF in terms of R2 and reduction in
the magnitude of the pricing errors.
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these two claims. However, we conjecture that the observed differences in excess returns (rx)
between equity and CDS spread portfolios, evident in Table 1, could arise as a consequence
of the priority of debt over equity, implying that the government guarantee will differentially
affect these two claims in different states of the world. Specifically, the fact that debt holders
are paid before equity holders implies that in the states of the world in which the guarantee
is particularly low, the entire transfer from the government goes to debt holders. Given
that in these states the insurance provided by the guarantee is likely to be valued the most,
the risk premium of a debt claim is unlikely to be substantially increased by the guarantee.
We provide a more formal illustration of how this mechanism could operate in the Internet
Appendix II, where we solve for the risk premium of debt and equity claims separately, in
a simplified framework that abstracts from risk-taking.

4.1.5. Bail-in regime

In the summer of 2013, EU members reached an agreement on the adoption of the bail-in
regulation. This new regulation is intended to shield taxpayers from bank bailouts and help
break the tight nexus between troubled banks and heavily indebted governments. Rating
agencies initially reacted to this new regulation by reducing some of the bank rating uplifts.
However, how the new measures affected market participants’ perceptions of too-big-to-fail
subsidies is not obvious. The academic literature on this topic is yet at its infancy. A
notable exception, though, is the study by Schäfer, Schnabel, and Weder di Mauro (2016),
which shows that actual bail-ins led to stronger market reactions than the implementation
of resolution regimes. Therefore, the authors conclude that actions speak louder than words.

Our empirical strategy offers a privileged perspective to infer the market reaction to
this regime change due to the following reason: in a credible and effective bail-in regime,
banks’ implicit guarantees should be significantly reduced if not eliminated, and we would
no longer expect high deposit-to-GDP banks to benefit from stronger implicit guarantees.
As a result, when a bail-in regime is fully operational and credible, we should no longer find
an EGS risk premium in bank asset returns. But the fact that the new regulation fully came
into effect only in 2016, along with the uncertainty around its implementation, might have
limited the impact on bail-out expectations. For these reasons, an EGS risk premium could
still exist. It is therefore natural to ask to what extent market participants have reacted to
the agreement on the new bail-in regime.

To address this question, we repeat the analysis by excluding the years after the adoption
of the new bail-in regulation. Panel A.II and B.II in Table 3 present the cross-sectional
estimates for the model without and with EGS factor, respectively, for the period from
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January 2004 to June 2013. We indeed find that the EGS risk premium was substantially
larger in the years prior to the bail-in regime; in fact, the market price of risk associated with
the EGS factor is economically larger (17% versus 12%). Also note that the alphas on the
equity spread portfolios are no longer statistically significant when the first-pass regressions
are performed over the 2004–2013 period (Table A7 in the Internet Appendix).

Visual inspection of Fig. 4 also shows that the cumulative return of the EGS factor is
essentially zero over the bail-in period. However, it is also apparent that the EGS factor
drops substantially soon after the agreement on the new regime before somewhat stabilizing.
This evidence seems to suggest that the agreement on the bail-in regime, despite not yet
being fully operational, led market participants to reassess this aspect of the bank-sovereign
nexus. However, around the end of 2015, the EGS factor resumes its rise. The turning point
is around the time four EU lenders were rescued. Thus, a possible interpretation is that
this episode led market participants to reassess the credibility of the bank resolution regime
(Philippon and Salord, 2017).33 Moreover, around the same time, the rating uplift starts
increasing again (see Fig. A4 in the Internet Appendix), which suggests that the rating
agencies also might have changed their initial assessment. This evidence, albeit preliminary,
suggests that a bail-in regime can help attenuate the bank-sovereign nexus.

4.1.6. Equity only analysis: 2000–2018

So far, we have presented the joint analysis of equity and CDS portfolios for the 2004–
2018 period. The sample length is largely dictated by the availability of sufficiently liquid
bank CDSs. However, by using only data for equities, we can extend the sample span back
in time. We therefore repeat the analysis using only equity portfolios over the 2000–2018
period. We use January 2000 as the cut-off date given that Capital IQ balance sheet data
are sufficiently comprehensive since then. That said, as the subsequent analysis will show,
there is probably not much scope in trying to extend the sample further back in the past.

As before, to construct the equity portfolios, we double-sort banks by the three measures
of bank risk and then on deposits to GDP. Next, we perform the first-pass regressions on
the four standard risk factors (Panel A of Table 4). We find that these factors fail to explain

33The rescues of the four European banks could have affected the credibility of the new regime in line
with the findings in Schäfer, Schnabel, and Weder di Mauro (2016). It is also worth bearing in mind that
the bail-in regime has been phased in before the completion of other critical measures of the banking union
in the EU (Philippon and Salord, 2017). Furthermore, bailouts will still be required in extreme systemic
events (Avgouelas and Goodhart, 2014). Having said that, the new regime seems to be producing significant
changes under a number of dimensions (Philippon and Salord, 2017). Our findings, taken together, accord
with a bail-in regime that has produced some changes (in the EGS factor), but it is deemed to be not yet
fully credible and effective. Of course, this evidence, and the associated interpretation, need to be taken
with a note of caution, as they are based on a transition period from the old regime to the new one, which
is not complete, as noted before.
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the equity spread portfolios returns; their alphas are positive and statistically significant,
and the R2s are low. We report the PC analysis of the risk-adjusted returns in Fig. A3
in the Internet Appendix; it shows that the second PC weights are positive for the high
deposit-to-GDP portfolios and negative for the low deposit-to-GDP portfolios. Therefore,
this time, we construct the EGS return factor using the weights associated with the second
PC. The resulting factor resembles the behavior of the previously estimated EGS factor.
Most importantly, there is no evidence of an EGS premium in the years prior to the unfolding
of the subprime crisis. This evidence well accords with the time series of the rating uplift
presented in Fig. A4 in the Internet Appendix: indeed, the median uplift for the sample of
developed countries over the 2000–2007 period was zero. Possibly due to this reason, during
this period there was no risk-return trade-off associated with government guarantees. A
plausible explanation is that investors during these “good times” simply neglected this type
of risk (see, e.g., Gennaioli, Shleifer, and Vishny, 2015, on neglected risks). Such behavior
could have been motivated by the fact that, even though there were cases of bank bailouts,
sovereign risk was judged to be, unlike in recent years, negligible in developed countries.
Thus, government guarantees were likely not considered to be risky to any meaningful
degree.

The first-pass estimates of the EGS exposures are very similar to those obtained for the
2004–2018 sample. However, we find that when the EGS factor is constructed by using
only equity portfolios none of the alphas is statistically different from zero (Panel B of
Table 4). Moreover, the estimate of the price of EGS risk, albeit somewhat smaller, is still
economically large and strongly statistically significant (Table 5) and is larger when the
bail-in period is excluded from the analysis.

Overall, the results based on the longer sample using only equities are similar to those
obtained for the 2004–2018 period. Of particular interest is that this additional analysis
confirms that the EGS premium is largely generated in the period between the onset of the
subprime crisis and the agreement of EU members on the adoption of the bail-in regulation.

4.1.7. Robustness to additional risk factors

The four-factor benchmark SDF specification used in our empirical analysis includes
factors that are often used in the literature to jointly price the cross-section of stock and
bond returns. For example, the use of Term and Crd dates back at least to the seminal
paper of Fama and French (1993). However, this SDF omits some of the factors that are
generally used to price equity portfolios, most notably the Fama-French factors SMB, HML,
and MOM. We therefore test the robustness of the findings by augmenting the benchmark
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SDF specification, that is, by including the global versions of these three factors given that
our analysis is based on an international sample of banks. As a result, the standard SDF
now includes seven pricing risk factors.

This alternative SDF clearly better captures risks in the equity market. In fact, in
the first-pass regressions (Table A8 in the Internet Appendix), R2s increase (on average)
across equity double-sorted portfolios by seven percentage points, while the increase for CDS
portfolios is only around two percentage points, relative to the four-factor benchmark SDF
(Table 1). However, we find that also this seven-factor SDF is unable to explain spread
portfolio returns: for the equity and CDS spread portfolios, R2s increase only by two and
one percentage points, respectively. Thus, also based on this richer SDF specification, there
seems to be a puzzle in bank asset returns.

Moreover, the analysis of the risk-adjusted residuals shows that an EGS factor still exists,
as the PC3,t loadings maintain the same structure uncovered in our baseline results, being
positive for high deposit-to-GDP banks and negative for low deposit-to-GDP banks (Fig.
A5 in the Internet Appendix). It is also evident that the resulting EGS factor does not
present material differences from the EGS factor used in the baseline analysis. We then
repeat the first-pass regressions by including the EGS factor and find that only one of the
alphas in the equity spread portfolios remains weakly statistically significant, although it
is not economically significant, dropping from 10% to 2%. Also the results based on the
second-pass regressions are largely unchanged: the EGS price of risk is around 13% over the
full sample (Table A10 in the Internet Appendix). Overall, we conclude that our findings
are robust when expanding the set of risk factors used in the SDF specification.

4.1.8. Summing up

The main prediction of our theoretical framework—Prediction 1—is strongly supported
by the data. Using standard portfolio-sort techniques, where banks are sorted by the EGS,
proxied by deposit-to-GDP ratios, we find a statistically and economically significant risk
premium, consistent with the direct effects of government guarantees. Moreover, this pre-
mium seems to be largely generated in the pre-bail-in period, which is also consistent with
the theoretical predictions: such premium compensates investors for the uncertainty about
government bailouts, which is eliminated under a credible bail-in regime. In essence, we
find empirical evidence in support of the presence of a risk-return trade-off induced by the
presence of government guarantees.

We now turn to assessing Prediction 2 from our theoretical framework, which states that
the EGS risk premium is increasing in the riskiness of the sovereign granting the support. In
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what follows, we first examine the EGS risk premium for subgroups of banks that differ in
the credit risk of the domestic sovereign. In Section 4.3, we will further examine Prediction
2 by investigating the types of risks that underlie the EGS factor.

4.2. The EGS premium and sovereign risk

Next, we examine how the EGS risk premium differs across two subsamples of countries,
which we term core EU (including the five largest EU countries) and safe-haven countries
(the United States, Japan, Germany, and Switzerland). These subsamples are of particular
interest: while sovereign risk was a major concern in the EU, it was contained in safe-haven
countries. By doing this, we aim to provide evidence on the validity of Prediction 2, which
states that the EGS risk premium, ceteris paribus, should be higher in more vulnerable
countries.

Starting with core EU, we construct the double-sorted and spread portfolios, by following
the same steps as before. We then perform the first-pass regressions by using the five-factor
SDF. However, we do not generate again the EGS factor; instead we use the EGS factor
constructed using the whole sample of developed country banks. Table 6 presents the results
of the first-pass regressions. The results are qualitatively in line with those of Table 2 for
the full sample. However, it is evident that the R2s are substantially lower, along with the
EGS exposures being smaller in absolute value, especially those of the spread portfolios. 5.
This finding is, however, not surprising given that we try to explain core EU bank portfolios
with the EGS return factor, which was generated for the sample of developed country banks,
rather than with a factor constructed specifically for the sample of core EU banks. Also,
as a result of this finding, in the second-pass regressions, reported in Table 7, we uncover a
larger EGS price of risk, which indeed compensates for the smaller estimates of the quantity
of risk. We also find that the price of risk is more precisely estimated for the sample of core
EU banks; in addition, most of the findings uncovered for the sample of developed country
banks are still present in this restricted sample.

Given that in this section our final object of interest is the excess return associated
with the EGS factor, we are not particularly interested in its decomposition into price and
quantity of risk components but rather in its magnitude. In this regard, we find that the
excess return associated with the EGS factor ranges from a minimum of 12% to a maximum
of 19% per annum for core EU banks. These figures are substantially higher than those
uncovered for the full sample, suggesting that where sovereign risk is particularly high, the
EGS risk premium is indeed higher. However, to further evaluate this argument, we repeat
the analysis for the banks based in safe-haven countries. Table 8 reports the estimates from
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the second-pass regressions; the price of risk is not statistically different from zero.
We subject the analysis to a number of robustness tests, three of which are worth men-

tioning. First, we repeat the analysis by generating the EGS factor for the specific sample
at hand (i.e., separately for the core EU and safe-haven samples). Considering the sample
of core EU banks, we first construct the core EU EGS return factor, and we then use this
factor in the first- and second-pass regressions; these regressions are reported, respectively,
in Tables A12–A13 in the Internet Appendix. We find that, while five out of six equity
portfolios have positive, large, and statistically significant average returns, none of the al-
phas is statistically different from zero. Moreover, the estimated exposures to the core EU
EGS factor (R[PCEU

3 ]t) are now substantially higher than those estimated using the EGS
factor (R[PC3]t), being of similar magnitudes to those reported in Table 2. As a result,
the estimate of the price of risk is also more in line with that of Table 3. Moreover, the
EGS equity risk premium is in the range of 8%-17% per annum and the EGS CDS risk
premium in the range of 0.35%-0.75% per annum (which reflects larger and more precisely
estimated CDS spread portfolios’ exposures to the EGS factor when replacing R[PC3]t with
R[PCEU

3 ]t.) We follow the same steps for the safe-haven sample, i.e., generate a safe-haven
EGS factor that we then use to perform the two-pass analysis, and again find no EGS risk
premium (not reported). Second, we find similar results when we replace core EU with the
EU sample. Third, we drop Germany from the sample of safe-haven countries given that it
is also included in the core EU sample, and the results are unchanged. Finally, we repeat
the analysis at the country level and find that core EU countries load positively on the EGS
factor, while the US has a negative loading (Fig. A6), possibly reflecting its special status in
international financial markets. Moreover, focusing on the eurozone, we show that banks of
countries where sovereign risk is more elevated, such as Italy and Spain, display larger EGS
loadings than banks of countries where sovereign risk is more contained, such as France and
Germany.34 Therefore, this complementary evidence is also broadly in line with Prediction
2.

4.3. Which risks does the EGS factor reflect?

To gain further evidence on Prediction 2, and to refine our understanding of the EGS risk
premium, we explore the risk profile of the EGS return factor using three separate methods.
First, we provide a descriptive analysis of the EGS return factor, focusing on key economic
and policy events of the 2004–2018 period. Second, we assess the relation between the EGS
return factor and sovereign risk, as well as that with economic policy uncertainty and VIX.

34A similar ordering holds for the equity and CDS portfolios. However, the UK displays particularly high
equity EGS exposure, while the CDS EGS exposure is slightly negative.
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Third, we use simple regressions to shed light on the risks spanning the EGS return factor
and how they differ from those spanning the level and security return factors; here, we also
shed some light on the economic relevance of the direct effect of the guarantee on bank risk
premiums relative to that of the indirect effect. Taken together, the results show that the
risk-return trade-off associated with government guarantees largely stems from the exposure
of the factor to sovereign risk and policy uncertainty, lending further support to Prediction
2.

4.3.1. The EGS factor over time

Fig. 4 plots the cumulative returns on the EGS factor along with major policy and
economic events. The period under scrutiny ranges from January 2004 to November 2018.
We can clearly identify five distinct phases. The first phase covers the pre-crisis period,
when there is no evidence of an EGS premium. The second phase coincides with the onset
and consequent worsening of the subprime crisis. During this period, the EGS factor trends
upward, experiencing only a few drops, and gains roughly 60% over the period.

The EGS factor inverts its trend when the crisis enters a far more turbulent phase, turning
into the global financial crisis, which marks the start of the third phase. The downward
trend of the EGS intensifies with Lehman Brothers’ bankruptcy. Soon after, following the
introduction of system-wide packages to rescue banks, the EGS factor increases sharply.
However, the increase in the EGS factor proves to be short lived, with the factor losing
roughly 50% within the next few weeks. This pattern can be explained by the sovereign-bank
loop shown in Acharya, Drechsler, and Schnabl (2014): system-wide guarantees weaken the
fiscal position of sovereigns, which in turn makes such guarantees risky. The introduction of
guarantees in September 2008, despite providing temporary relief to the financial sector, also
cast serious doubts on the capability of the US government to manage the crisis (Mishkin,
2011).

As the tensions diminish, the EGS return factor resumes its upward trend. However,
it stops its rise as the global financial crisis becomes a sovereign debt crisis. Thus, during
the fourth phase, the focus shifts from the US to the eurozone’s public finances.35 Finally,

35The first rescue package for Greece, which soon after is followed by the introduction of the European
Financial Stability Facility, leads to increases in the EGS factor. The introduction of the European Stability
Mechanism seems to produce a similar effect. However, as the fears that the eurozone debt crisis is spiraling
out of control take hold, i.e., when Spain and Italy become the main source of concern, the EGS factor
falls. Around the second rescue package for Greece, the EGS factor again trends upward. This rise stops
with Draghi’s “Whatever it takes speech”, but it soon after resumes its trend with the introduction of
the Outright Monetary Transactions (OMT), which halts the rise in sovereign risk and reduces uncertainty.
OMTs are an insurance device against redenomination risk, in the sense of reducing the probability attached
to such worst-case scenarios (Cœuré, B., 2013. Outright monetary transactions, one year on. Speech, Berlin,
2 September).
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the fifth phase covers the period that follows the adoption of the bail-in regulation. As
explained in Section 4.1.3, the turning point of the EGS factor around the end of 2015
coincides with the rescues of four European lenders, which cast doubt on the credibility of
the bail-in regime (Philippon and Salord, 2017).

4.3.2. Sovereign risk, economic policy uncertainty, and VIX

We complement the above descriptive analysis with another simple analysis of the re-
lation between the EGS return factor and sovereign risk. Specifically, we allocate the ob-
servations of the EGS return factor into four buckets, depending on the distribution of the
innovations to sovereign risk. We measure sovereign risk with the median of the developed
country sovereign five-year CDS spreads. We then take the first differences of this measure
to compute its innovations; this is our conditioning variable. The first bucket contains the
25% of the EGS return factor observations that coincide with the lowest realizations of the
conditioning variable (reductions in sovereign risk); the fourth bucket contains the 25% of
observations with the highest realizations of the conditioning variable (increases in sovereign
risk). We then compute, for each bucket, the average of the EGS factor returns. The results
are shown in the top panel of Fig. 5, with the bars denoting the annualized mean returns of
the EGS factor for the selected bucket.

As can be seen from the figure, high deposit-to-GDP banks outperform low deposit-
to-GDP banks when sovereign risk drops and vice versa. Thus, the EGS factor decreases
monotonically when moving from the low to the high sovereign risk buckets. While this
analysis is intentionally simple, it illustrates a clear relation between returns associated
with the EGS factor and innovations to sovereign risk. This finding therefore lends strong
support to the predictions of the theoretical framework, consistent with a risk-return trade-
off story, making EGS banks comove negatively with changes in sovereign risk.

Although sovereign risk should be a prominent source of risk for high EGS banks, the
theoretical framework also suggests that EGS banks might be exposed to periods of economic
policy uncertainty (EPU), which might not necessarily coincide with periods of increased
sovereign risk. We therefore replace sovereign risk with the daily US EPU index of Baker,
Bloom, and Davis (2016). It is apparent that the EGS factor drops when there are marked
increases in policy uncertainty. This finding provides complementary evidence in support of
the theoretical framework.

Finally, it is interesting to explore the relation between the EGS factor and the VIX
index. The VIX represents a measure of the market’s risk-neutral expectation of stock
market volatility over the next 30-day period. The VIX is often referred to as the fear
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index, measuring tail risk or systemic risk, along with investors’ risk aversion, which might
result, for example, from episodes of risk panics in the financial sector (see, e.g., Bacchetta,
Tille, and van Wincoop, 2012). Thus, the VIX reflects episodes of financial market turmoil,
which do not stem necessarily from surges in sovereign risk or economic policy uncertainty.
Interestingly, Baker, Bloom, and Davis (2016) show that, despite the VIX and the EPU
index being correlated at low frequencies, the EPU index provides additional explanatory
power for firms in sectors with high government exposures. More fundamentally, government
guarantees should protect banks from surges in the VIX, thus reducing the tail risk of banks
(Gandhi and Lustig, 2015). Consistent with this view, we find that the EGS factor increases
for positive innovations to VIX and vice versa; the relation is monotonic.

Taken together, these pieces of evidence align nicely with the predictions of the theoret-
ical framework: government bailouts protect banks from surges in tail risk, which directly
pertain to the financial sector but at the same time expose high EGS banks to sovereign
risk and the uncertainty associated with economic policy. Put differently, if the guarantees
were to protect banks from tail risk, without exposing them to sovereign risk and policy
uncertainty, then government bailouts would reduce the risk premiums of high EGS banks.
This conclusion essentially reflects the main mechanism in Gandhi and Lustig (2015) that
might indeed be appropriate for US banks given that in the US sovereign risk is low. This
effect is also likely to have been operating at the onset of the financial crisis, when the
financial sector was in turmoil, but sovereigns did not yet take on the credit risk of banks
by guaranteeing the banking sector.

4.3.3. EGS factor versus level and security factors

To conclude the analysis of the EGS return factor, we compare the risks that span the
EGS return factor with those that span the level and security return factors. To do this, we
single sort banks by balance sheet variables and proxies of the EGS, as well as sovereign risk
and sovereign exposure variables. The list of sorting variables is reported in Table A2 in
the Internet Appendix. We perform a comparison in terms of R2s, where these single-sorted
equity portfolios are used as explanatory variables.

The results are presented in the top panel of Table 9. A number of interesting results
emerge from this horse race, which we can summarize as follows. First, the EGS return
factor is largely spanned by portfolios sorted by proxies of the government support, such
as deposit to GDP, size and loan to GDP and, to less extent, rating uplift.36 The high

36Leverage at book value also turns out to be important, but it largely reflects the regularity that larger
banks tend to also have higher leverage (Gandhi and Lustig, 2015). However, the R2 associated with size
is almost twice as large as that associated with leverage, suggesting that the two reflect somewhat different
information. Moreover, the EGS factor loads negatively on a different measure of bank risk, such as bank
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R2s also suggest that the first sorts on bank risk are not central to our results. Second,
and more importantly, portfolios sorted by sovereign risk exposures and sovereign risk also
comove with the EGS factor, thus confirming and complementing the previous pieces of
evidence. Third, level and security factors are exposed to substantially different sources of
risk. Indeed, the bottom panel shows that for these factors sovereign risk and exposures
portfolios display no explanatory power.

Although the focus of the study is not on the indirect effects of the guarantees, the
following observation is in order. Table 9 shows that the regression of the EGS factor on
the spread portfolio constructed by single-sorting banks by the deposit-to-GDP ratio, call
it HML1S, yields an R2 of 91%. This finding seems to suggest that the indirect effects are
economically less relevant than the direct effects. To further examine this possibility, we
compare HML1S with the mean of the spread portfolios obtained by double-sorting banks,
first by bank risk and then by deposits to GDP; call it HML2S. We do this exercise by
focusing on equities, as this asset class shows an economically significant EGS risk premium.
As a result, the cross-sectional mean of the double-sorted spread portfolios consists in av-
eraging over six portfolios. Here, the idea is that, for the indirect effect to be economically
negligible, the two spread portfolios should be very similar; by contrast, for the indirect
effect to be relevant, the mean of HML1S should be higher than that of HML2S, with
their difference being informative about the magnitude of the indirect effect. We find that
the mean return of HML1S is 10.2% per annum, whereas that of HML2S is 7.5%. This
simple evidence suggests that 7.5% captures the direct effect and 2.7% the indirect effect.
Therefore, this exercise suggests that the indirect effects play a role, but a less important
one quantitatively, relative to the direct effects. On the one hand, based on the model, this
could be the case, as in the presence of risky guarantees the effect through risk-taking is
more ambiguous. On the other hand, the effect of government support on charter value
could also be empirically relevant in that it is not clear cut that stronger guarantees induce
banks to take on more risk (e.g., see Brandao-Marques, Correa, and Sapriza, 2018), which
makes the indirect effect of the guarantee weaker.

5. Conclusion

During the recent global financial crisis and, even more so, in the course of the eurozone
debt crisis, sovereign risk emerged as the main challenge to financial stability. Doubts about
the ability of sovereigns to manage their debt undermined the perceived soundness of banks
in two ways: first via the bank holdings of sovereign debt and second via the dwindling

CDS.
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value of the government guarantees. Our focus in this paper is on the second channel.
We develop a simple theoretical framework to show that government guarantees can

generate a risk-return trade-off in bank asset returns separately from their indirect effects
operating through the risk-taking of banks. On the one hand, government guarantees are
beneficial to banks given that guaranteed claims generate higher payoffs when the guarantee
is honored. On the other hand, if guarantees are less likely to be honored when the state
of the economy worsens, the payoffs of the guaranteed claims can become more procyclical,
thus providing poor insurance when it would be most valuable. Due to the latter effect,
government guarantees can have a direct positive effect on bank risk premiums. The theo-
retical framework yields two testable predictions on the direct effects of guarantees on bank
risk premiums. Namely, among banks of similar riskiness, bank risk premiums should (1)
vary with the strength of the implicit guarantee and (2) increase with the riskiness of the
sovereign granting it.

We evaluate these predictions empirically using standard asset-pricing methods applied
to bank debt and equity portfolios. To construct the portfolios, we double-sort banks, first
by bank risk and then by the deposit-to-GDP ratio, employed as a measure of the gov-
ernment’s willingness to support a bank. Both predictions are supported by the empirical
analysis. First and most fundamentally, we uncover a risk premium associated with ex-
pected government support. While this premium is priced consistently in both markets, it
is substantially higher in equity than in CDS returns. Second, this risk premium is inti-
mately tied to sovereign risk, meaning that risk premiums on guaranteed banks are, ceteris
paribus, higher when the guarantor is riskier.

These findings are relevant for asset managers given that the portfolio strategies are
tradable in real time, but they also bear important policy implications. First, they help
inform the design of bank guarantees given that the risk profile of the guarantee ultimately
determines to what extent bank funding costs fall with the introduction of the guarantee.
The reason is that funding costs not only reflect the (physical) probability of default of the
bank, but they also include a risk premium component. Such a premium is likely to be
low, and the guarantee effective, when the riskiness of the guarantor and the uncertainty
associated with the guarantee are low. Second, we show, consistent with our theoretical
framework, that the EGS premium is essentially zero since the adoption of the bail-in regu-
lation in the EU. More generally, this evidence supports the view that such reforms, to the
extent that they are credible, can reduce investors’ expectations of government support for
banks, thereby weakening the link between sovereigns and banks.
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Appendix A. Proofs

Before presenting the proofs, we summarize the notation employed.

Object Definition
ω State of the world.
F (·) Objective probability distribution function of ω.
G(·) Risk-neutral probability distribution function of ω.
a Level of effort exerted by the managers.
p 1−G(ω̄), where ω̄ is chosen by the managers.
(− ln p)aβ Realized payoff when ω ≥ ω̄, where β < 1.
πb Payoff of the managers.
πl Payoff of the investors.
ατ(ω) Transfer obtained by the investors when ω < ω̄.
R̄ Risk-free rate.
Rl Return of the investor’s claim on the bank.∫ ω̄
−∞ τ(ω)dF (ω)/

∫ ω̄
−∞ τ(ω)dG(ω) Risk premium of the guarantee.

Proof of Lemma 1. Following Bester and Hellwig (1987), we first solve the managers’ prob-
lem for given πb and πl. That is,

max
{a,p}

p
[
(− ln p)aβ − πl

]
− a subject to πb + πl + (ln p)aβ = 0. (A.1)

Denoting by λ the Lagrange multiplier associated with the constraint, the necessary first-
order conditions for a solution are

βp(− ln p)aβ−1 − 1 + λβ(ln p)aβ−1 = 0 (A.2)

(− ln p)aβ − πl − aβ + λ
aβ

p
= 0. (A.3)

Solving Eq. (A.2) for λ and substituting the solution into Eq. (A.3) yields

πl = (− ln p)aβ − a

βp(− ln p) . (A.4)

When this condition holds, the managers’ expected payoff is positive as long as

− ln p ≤ 1
β
. (A.5)

Conditions in Eqs. (A.4) and (A.5) are identical in form to those in Bester and Hellwig
(1987). However, here p denotes a risk-neutral rather than an objective probability. Due to
the similarity, we refer to Bester and Hellwig (1987) for a proof that Eqs. (A.4) and (A.5)
are sufficient as well as necessary for a solution to the managers’ problem.
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Using Eq. (A.4) to substitute for πl in Eq. (3) yields the following problem

max
{a,p}

α
∫ ω̄

−∞
τ(ω)dG(ω) + p(− ln p)aβ − a

β(− ln p) − I, (A.6)

subject to Eq. (A.5). Note that in this reformulated problem the investors directly choose
a and p. Supposing that the constraint does not bind, we obtain the following necessary
first-order conditions

βp(− ln p)aβ−1 − 1
β(− ln p) = 0 (A.7)

−ατ(ω̄)− (ln p+ 1)aβ − a

βp(− ln p)2 = 0. (A.8)

Employing Eq. (A.7) to solve for a and substituting the solution into Eq. (A.8) yields

− ln p = 1 + β + ατ(ω̄)
[β2p(− ln p)2]

β
1−β

. (A.9)

For β and τ(ω̄) sufficiently small, − ln p satisfies Eq. (A.5) with strict inequality. Given that
this is the solution we are interested in, we restrict attention to such values of β and ατ(ω̄).
In particular, β is required to satisfy 1 + β < 1

β
.

To conclude the proof, we show how p varies with α. Implicitly differentiating Eq. (A.9)
with respect to α yields

−1
p

[
β2(− ln p)2

] β
1−β

[
1 + (− ln p− 1− β) β

1− β

(
2
− ln p − 1

)]
dp
dα = τ(ω̄). (A.10)

The expression in square brackets is positive whenever

(1 + β)2(− ln p)− β(− ln p)2 − 2β(1 + β) > 0. (A.11)

It is straightforward to verify that Eq. (A.11) holds for 1 + β < − ln p < 1
β
and 1 + β < 1

β
.

Given that we are restricting attention to such values of β and τ(ω̄) for which this condition
is satisfied, we have shown that dp

dα < 0.

Proof of Lemma 2. Combining Eqs. (A.4) and (A.7) to solve for πl as a function of p yields

πl = (1− β)(− ln p)
[
β2p(− ln p)2

] β
1−β . (A.12)
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By differentiating with respect to p, one obtains

dπl
dp =− 1− β

p

[
β2p(− ln p)2

] β
1−β

+ β(− ln p)β2
[
(− ln p)2 − 2(− ln p)

] [
β2p(− ln p)2

] 2β−1
1−β .

(A.13)

By simplifying, one observes that this expression is negative whenever

−(1− β) + β [(− ln p)− 2] < 0. (A.14)

This inequality is equivalent to − ln p < 1+β
β

. Given that we require p to satisfy − ln p < 1
β
,

this condition is always satisfied. Thus, we have shown that dπl
dp < 0.

Proof of Proposition 1. Differentiating Eq. (5) with respect to α yields

d
dα

{
E[Rl]− R̄

}
= −τπl [G(ω̄)− F (ω̄)] R̄
{ατG(ω̄) + πl [1−G(ω̄)]}2

+ ατ [G(ω̄)− F (ω̄)] R̄
{ατG(ω̄) + πl [1−G(ω̄)]}2

dπl
dα

+ ∂

∂ω̄

{
E[Rl]− R̄

} dω̄
dα.

(A.15)

The first term is negative by inspection. We will refer to it as the direct effect of the
guarantee on the risk premium. In the second term, dπl

dα = dπl
dp

dp
dα > 0 by Lemmas 1 and 2.

Thus, this term is positive. In the third term, dω̄
dα = − 1

G′(ω̄)
dp
dα > 0. The partial derivative in

the third term, on the other hand, is equal to

(πl − ατ)
{

[G′(ω̄)− F ′(ω̄)] {ατG(ω̄) + πl [1−G(ω̄)]}

+G′(ω̄)(πl − ατ) [G(ω̄)− F (ω̄)]
}
R̄
/
{ατG(ω̄) + πl [1−G(ω̄)]}2 .

(A.16)

A sufficient condition for this term to be positive is G′(ω̄) ≥ F ′(ω̄). To complete the proof,
note that if α = 0 and G′(ω̄) [1− F (ω̄)] = F ′(ω̄) [1−G(ω̄)], then only the first negative
term in Eq. (A.15) remains. Thus, in this case the derivate is negative. On the other hand,
if F (ω̄) = G(ω̄) and G′(ω̄) ≥ F ′(ω̄), then only the third positive term remains. Therefore,
in this case the derivate is positive.
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Proof of Proposition 2. Differentiating Eq. (6) with respect to α yields

d
dα

{
E[Rl]− R̄

}
=
∫ ω̄
−∞ τ(ω)dF (ω)

{
α
∫ ω̄
−∞ τ(ω)dG(ω) + πl [1−G(ω̄)]

}
{
α
∫ ω̄
−∞ τ(ω)dG(ω) + πl [1−G(ω̄)]

}2

−
∫ ω̄
−∞ τ(ω)dG(ω)

{
α
∫ ω̄
−∞ τ(ω)dF (ω) + πl [1− F (ω̄)]

}
{
α
∫ ω̄
−∞ τ(ω)dG(ω) + πl [1−G(ω̄)]

}2

+

 [1− F (ω̄)]α
∫ ω̄
−∞ τ(ω)dG(ω){

α
∫ ω̄
−∞ τ(ω)dG(ω) + πl [1−G(ω̄)]

}2

−
[1−G(ω̄)]α

∫ ω̄
−∞ τ(ω)dF (ω){

α
∫ ω̄
−∞ τ(ω)dG(ω) + πl [1−G(ω̄)]

}2

dπl
dα

+

G
′(ω̄) [πl − ατ(ω̄)]

{
α
∫ ω̄
−∞ τ(ω)dF (ω) + πl [1− F (ω̄)]

}
{
α
∫ ω̄
−∞ τ(ω)dG(ω) + πl [1−G(ω̄)]

}2

−
F ′(ω̄) [πl − ατ(ω̄)]

{
α
∫ ω̄
−∞ τ(ω)dG(ω) + πl [1−G(ω̄)]

}
{
α
∫ ω̄
−∞ τ(ω)dG(ω) + πl [1−G(ω̄)]

}2

dω̄
dα.

(A.17)

The first two terms represent the direct effect of the guarantee on the risk premium, whereas
the remaining terms capture the effects that operate through risk-taking. The direct effect
is positive if and only if ∫ ω̄

−∞ τ(ω)dF (ω)∫ ω̄
−∞ τ(ω)dG(ω)

≥ 1− F (ω̄)
1−G(ω̄) . (A.18)

That is, the direct effect is positive if and only if the risk premium of the guarantee exceeds
the risk premium of the underlying unguaranteed claim, 1{ω≥ω̄}πl. Note that, in the case of
a constant guarantee, the ratio on the left-hand side becomes F (ω̄)/G(ω̄) ≤ 1 by stochastic
dominance. For this reason, Eq. (A.18) does not hold, and the direct effect is negative. To
show that the total effect is also ambiguous, consider the following two cases. First, suppose
that Eq. (A.18) does not hold, α = 0, and G′(ω̄) [1− F (ω̄)] = F ′(ω̄) [1−G(ω̄)]. In this case,
the direct effect is negative, and the effect operating through risk-taking is zero. Second,
suppose that Eq. (A.18) is satisfied with equality and G′(ω̄) ≥ F ′(ω̄). In this case, the first
four terms of Eq. (A.18) sum to zero, while the last two terms sum to a positive expression.
Therefore, the total effect is also ambiguous.

Proof of Corollary 1. Abstracting from risk-taking, the effect of an increase in α is given by
the first two terms in Eq. (A.17). Their sum is positive only if the guarantee commands a
higher risk premium than the underlying unguaranteed claim.
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Table 1
First-pass equity and CDS regressions
This table presents the first-pass time-series regressions of equity and CDS double-sorted portfolio excess
returns (LL, HL, HL, HH) and the spread portfolios returns (L H/L and H H/L) on the risk factors.
Banks are first sorted on bank risk (low, high) and then on deposits to GDP (low, high), our proxy for
the expected government support. For a given measure of bank risk, spread portfolios are given by LH-LL
for low bank risk and HH-HL for high bank risk. We use three measures of bank risk: bank book leverage
(Leverage), equity volatility (EQ vol.) estimated over three-month rolling windows, and deposits to total
assets (Dep2TA), which moves in opposite direction to bank risk. Portfolios are rebalanced at a monthly
frequency. The resulting double-sorted and spread portfolios are regressed on standard risk factors (f t), such
as rxit = ai+ ftβ′i+ εit, where i is the selected portfolio. The f t vector includes changes in Term, changes in
TED, changes in Credit (Crd), and MSCI world stock market excess returns (Mkt). rxi is the mean excess
return of portfolio i. The sample covers all banks and spans the period from 01/2004 to 11/2018 at a daily
frequency. Adjusted R2s are in percent. ∗∗∗,∗∗,∗ denote significance, respectively, at the 1%, 5% and 10%
levels, based on GMM-VARHAC standard errors.

Panel A: Equity returns Panel B: CDS returns
Leverage (L) Leverage (H) Leverage (L) Leverage (H)

L H H/L L H H/L L H H/L L H H/L
rxi −4.50 −1.96 2.54 −9.42 −1.25 8.17∗∗ −0.47 −0.59 −0.12 −0.25 −0.61 −0.37
con −10.07∗∗ −6.77 3.31 −14.53∗∗∗ −6.19 8.34∗∗∗ −0.68 −0.72 −0.05 −0.41 −0.76 −0.35
Term 3.32 6.33∗∗∗ 3.01 5.16∗∗ 5.60∗∗∗ 0.44 1.39∗∗∗ 1.10∗∗∗ −0.29 1.18∗∗∗ 1.00∗∗∗ −0.18
TED 0.99 −1.29 −2.28 0.06 −1.45 −1.51 −0.69∗∗ −0.40 0.30 −0.75∗∗ −0.37 0.38∗∗∗
Crd 1.09 −6.95∗∗∗ −8.05∗∗∗ −3.21∗∗∗ −7.53∗∗∗ −4.31∗∗∗ −1.17∗∗∗ −1.44∗∗∗ −0.27∗∗∗ −1.37∗∗∗ −1.30∗∗∗ 0.07
Mkt 1.50∗∗∗ 1.35∗∗∗ −0.16∗∗ 1.41∗∗∗ 1.37∗∗∗ −0.04 0.08∗∗∗ 0.05∗∗∗ −0.03∗∗∗ 0.06∗∗∗ 0.05∗∗∗ −0.01∗

R2 59.78 63.24 5.59 65.61 65.04 3.96 28.98 32.92 3.21 32.87 33.69 1.86

EQ vol. (L) EQ vol. (H) EQ vol. (L) EQ vol. (H)
L H H/L L H H/L L H H/L L H H/L

rxi −4.55 −0.03 4.52 −9.66 −1.33 8.33∗∗ −0.90 −0.82 0.08 −0.38 −0.61 −0.23
con −8.71∗∗ −4.32 4.39 −14.98∗∗∗ −6.23 8.74∗∗∗ −1.04 −0.97∗∗ 0.07 −0.58 −0.76 −0.18
Term 4.39∗∗∗ 1.05 −3.34∗∗∗ 4.79∗∗ 5.52∗∗∗ 0.72 0.75∗∗∗ 0.28 −0.47∗ 1.35∗∗∗ 1.01∗∗∗ −0.34
TED −0.47 −2.49 −2.02 0.59 −2.03 −2.62 −0.22 −0.37 −0.16 −0.86∗∗ −0.42 0.44∗∗∗
Crd −2.16∗∗∗ −7.64∗∗∗ −5.49∗∗∗ −2.20∗∗ −8.30∗∗∗ −6.10∗∗∗ −1.07∗∗∗ −1.15∗∗∗ −0.07 −1.41∗∗∗ −1.32∗∗∗ 0.09
Mkt 1.15∗∗∗ 1.12∗∗∗ −0.03 1.46∗∗∗ 1.36∗∗∗ −0.10∗∗∗ 0.05∗∗∗ 0.04∗∗∗ −0.01 0.07∗∗∗ 0.05∗∗∗ −0.02∗∗∗

R2 68.78 62.64 5.58 66.40 63.46 5.61 25.99 30.38 1.04 34.02 33.61 6.25

Dep2TA (L) Dep2TA (H) Dep2TA (L) Dep2TA (H)
L H H/L L H H/L L H H/L L H H/L

rxi −12.77 −1.43 11.35∗∗∗ −10.29 −0.37 9.92∗∗ −0.12 −0.74 −0.61 −0.21 −0.61 −0.40
con −17.68∗∗∗ −6.86 10.82∗∗∗ −15.55∗∗∗ −5.27 10.27∗∗∗ −0.29 −0.91 −0.62 −0.37 −0.76 −0.38
Term 9.04∗∗∗ 8.51∗∗∗ −0.53 5.14∗∗ 5.28∗∗∗ 0.15 1.39∗∗∗ 1.02∗∗∗ −0.37∗ 1.14∗∗∗ 0.96∗∗∗ −0.18
TED −0.79 −1.65 −0.86 0.66 −1.91 −2.57∗ −0.83∗∗ −0.30 0.54∗∗∗ −0.81∗∗ −0.34 0.47∗∗∗
Crd −6.01∗∗∗ −6.68∗∗∗ −0.66 −2.27∗∗ −8.02∗∗∗ −5.75∗∗∗ −1.48∗∗∗ −1.21∗∗∗ 0.27∗∗ −1.38∗∗∗ −1.28∗∗∗ 0.10
Mkt 1.42∗∗∗ 1.55∗∗∗ 0.13∗∗∗ 1.45∗∗∗ 1.35∗∗∗ −0.10∗∗ 0.07∗∗∗ 0.06∗∗∗ −0.00 0.06∗∗∗ 0.05∗∗∗ −0.01∗

R2 60.11 60.47 1.62 65.81 63.60 4.93 33.59 32.30 2.99 33.82 33.53 2.55
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Table 2
First-pass equity and CDS regressions with EGS factor
This table presents the first-pass time-series regressions of equity and CDS double-sorted portfolio excess
returns (LL, HL, HL, HH) and the spread portfolios returns (L H/L and H H/L) on the risk factors and
the EGS factor. Banks are first sorted on bank risk (low, high) and then on deposits to GDP (low, high),
our proxy for the expected government support. For a given measure of bank risk, spread portfolios are
given by LH-LL for low bank risk and HH-HL for high bank risk. We use three measures of bank risk: bank
book leverage (Leverage), equity volatility (EQ vol.), and deposits to total assets (Dep2TA). Portfolios are
rebalanced at a monthly frequency. The EGS factor (R[PC3]t = xrtŵ′3) is obtained as the sum of double-
sorted portfolio excess returns times the principal component (PC) weights, displayed in the bottom panel
of Fig. 3, associated with the third PC obtained from the joint PCA analysis of double-sorted equity and
CDS bank portfolios. The EGS factor is long in high deposits-to-GDP (Dep2GDP) banks and short in low
Dep2GDP banks. The resulting double-sorted and spread portfolios are regressed on standard risk factors
(f t) and the EGS factor (R[PC3]t), such as rxit = αi + ftβ′i + γR[PC3]t + eit, where i denotes the selected
portfolio. rxi is the mean excess return of portfolio i. The f t vector includes changes in Term, changes in
TED, changes in Credit (Crd), and MSCI world stock market excess returns (Mkt). The sample covers all
banks and spans the period from 01/2004 to 11/2018 at a daily frequency. Adjusted R2s are in percent.
∗∗∗,∗∗,∗ denote significance, respectively, at the 1%, 5% and 10% levels, based on GMM-VARHAC standard
errors.

Panel A: Equity returns Panel B: CDS returns
Leverage (L) Leverage (H) Leverage (L) Leverage (H)

L H H/L L H H/L L H H/L L H H/L
rxi −4.50 −1.96 2.54 −9.42 −1.25 8.17∗∗ −0.47 −0.59 −0.12 −0.25 −0.61 −0.37
con −4.22 −9.64∗∗ −5.41∗∗ −12.33∗∗∗ −9.98∗∗ 2.35∗ −0.67 −0.88 −0.21 −0.46 −0.90 −0.45
Term 3.24∗ 6.37∗∗∗ 3.12∗∗ 5.13∗∗∗ 5.65∗∗∗ 0.52 1.39∗∗∗ 1.10∗∗∗ −0.29 1.18∗∗∗ 1.01∗∗∗ −0.18
TED −0.65 −0.48 0.17 −0.56 −0.39 0.17 −0.70∗∗ −0.35 0.34 −0.73∗∗ −0.33 0.41∗∗∗
Crd −3.29∗∗∗ −4.80∗∗∗ −1.51∗ −4.86∗∗∗ −4.68∗∗∗ 0.18 −1.17∗∗∗ −1.32∗∗∗ −0.15 −1.33∗∗∗ −1.19∗∗∗ 0.14
Mkt 1.41∗∗∗ 1.39∗∗∗ −0.02 1.38∗∗∗ 1.43∗∗∗ 0.05∗∗∗ 0.08∗∗∗ 0.05∗∗∗ −0.02∗∗∗ 0.06∗∗∗ 0.06∗∗∗ −0.01
R[PC] −0.49∗∗∗ 0.24∗∗∗ 0.74∗∗∗ −0.19∗∗∗ 0.32∗∗∗ 0.51∗∗∗ −0.00 0.01∗∗∗ 0.01∗∗ 0.00 0.01∗∗∗ 0.01∗∗

R2 74.17 66.89 74.98 67.88 71.35 83.83 28.96 34.32 5.18 32.98 35.01 3.47

EQ vol. (L) EQ vol. (H) EQ vol. (L) EQ vol. (H)
L H H/L L H H/L L H H/L L H H/L

rxi −4.55 −0.03 4.52 −9.66 −1.33 8.33∗∗ −0.90 −0.82 0.08 −0.38 −0.61 −0.23
con −7.81∗∗ −8.65∗∗ −0.84 −11.95∗∗∗ −10.60∗∗ 1.35 −1.10∗ −1.12∗∗ −0.02 −0.62 −0.91 −0.29
Term 4.37∗∗∗ 1.11 −3.27∗∗∗ 4.75∗∗∗ 5.58∗∗∗ 0.82 0.75∗∗∗ 0.28 −0.47∗ 1.35∗∗∗ 1.01∗∗∗ −0.34
TED −0.72 −1.27 −0.55 −0.26 −0.80 −0.54 −0.20 −0.33 −0.13 −0.85∗∗ −0.37 0.48∗∗∗
Crd −2.82∗∗∗ −4.39∗∗∗ −1.57∗∗∗ −4.46∗∗∗ −5.03∗∗∗ −0.56∗ −1.03∗∗∗ −1.03∗∗∗ −0.00 −1.38∗∗∗ −1.20∗∗∗ 0.18∗
Mkt 1.14∗∗∗ 1.19∗∗∗ 0.05∗∗ 1.41∗∗∗ 1.43∗∗∗ 0.02 0.05∗∗∗ 0.04∗∗∗ −0.01 0.08∗∗∗ 0.06∗∗∗ −0.02∗∗∗
R[PC] −0.08∗∗∗ 0.37∗∗∗ 0.44∗∗∗ −0.26∗∗∗ 0.37∗∗∗ 0.63∗∗∗ 0.01∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.00 0.01∗∗∗ 0.01∗∗

R2 69.37 74.02 53.39 70.61 71.56 91.08 26.21 32.51 2.24 34.06 35.00 7.91

Dep2TA (L) Dep2TA (H) Dep2TA (L) Dep2TA (H)
L H H/L L H H/L L H H/L L H H/L

rxi −12.77 −1.43 11.35∗∗∗ −10.29 −0.37 9.92∗∗ −0.12 −0.74 −0.61 −0.21 −0.61 −0.40
con −16.37∗∗∗ −11.30∗∗ 5.07 −12.47∗∗∗ −9.66∗∗ 2.81∗∗ −0.33 −1.03 −0.69 −0.42 −0.90 −0.47
Term 9.03∗∗∗ 8.57∗∗∗ −0.46 5.09∗∗∗ 5.34∗∗∗ 0.25 1.39∗∗∗ 1.02∗∗∗ −0.37∗ 1.14∗∗∗ 0.96∗∗∗ −0.18
TED −1.16 −0.40 0.75 −0.20 −0.68 −0.48 −0.82∗ −0.26 0.56∗∗∗ −0.80∗∗ −0.30 0.49∗∗∗
Crd −6.99∗∗∗ −3.35∗∗ 3.64∗∗∗ −4.57∗∗∗ −4.74∗∗∗ −0.16 −1.45∗∗∗ −1.12∗∗∗ 0.32∗∗∗ −1.34∗∗∗ −1.17∗∗∗ 0.17∗
Mkt 1.40∗∗∗ 1.62∗∗∗ 0.22∗∗∗ 1.40∗∗∗ 1.42∗∗∗ 0.02∗ 0.07∗∗∗ 0.06∗∗∗ −0.00 0.06∗∗∗ 0.06∗∗∗ −0.01
R[PC] −0.11∗∗∗ 0.38∗∗∗ 0.49∗∗∗ −0.26∗∗∗ 0.37∗∗∗ 0.63∗∗∗ 0.00 0.01∗∗∗ 0.01∗∗ 0.00 0.01∗∗∗ 0.01∗

R2 60.76 66.97 46.34 70.16 71.89 90.75 33.65 33.02 3.63 33.91 34.75 3.89
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Table 3
Second-pass equity and CDS cross-sectional regressions
This table reports results for running the cross-sectional regression rxi = β′iλ + ai, where rxi is the mean
excess return of portfolio i, and β̂i is the vector of factor betas associated with portfolio i, resulting from
the first-pass regressions (Tables 1 and 2). For the factor prices of risk (λ), Shanken p-values are in squared
brackets, GMM-VARHAC p-values are in braces, and bootstrapped p-values are in angled brackets. We also
report the cross-sectional adjusted R2s, the pricing error test statistics p-values based on GMM-VARHAC
(PE test), along with the mean absolute pricing errors (MAE). ∆MAE denotes the difference between the
MAE resulting from the model with EGS factor and the MAE resulting from the model without EGS
factor; statistical significance is tested using the bootstrap replications, whereby ∗∗∗,∗∗,∗ denote significance,
respectively, at the 1%, 5% and 10% levels. Top panels report the results for the model with standard risk
factors but without the EGS factor, while bottom panels include the EGS factor in the set of standard
risk factors. Left panels show the analysis for the full sample period (01/2004–11/2018), while right panels
exclude the bail-in period (01/2004–06/2013). The analysis covers developed country banks’ equity and
CDS portfolios.

Panel A: Model without EGS factor
Panel A.I: Full sample (2004–18) Panel A.II: Sample ex bail-in (2004–13)
λ Shan. GMM Boot λ Shan. GMM Boot

Term −0.73 [0.062] {0.135} <0.139> Term −0.72 [0.092] {0.123} <0.202>
TED −4.83 [0.018] {0.038} <0.268> TED −4.38 [0.029] {0.045} <0.390>
Crd 0.79 [0.212] {0.265} <0.385> Crd 0.37 [0.402] {0.416} <0.290>
Mkt −0.56 [0.461] {0.468} <0.324> Mkt −3.65 [0.318] {0.334} <0.227>

R2 PE test MAE R2 PE test MAE
74.2 0.975 1.89 72.3 0.969 2.71

Panel B: Model with EGS factor
Panel B.I: Full sample (2004–18) Panel B.II: Sample ex bail-in (2004–13)
λ Shan. GMM Boot λ Shan. GMM Boot

Term −0.40 [0.165] {0.197} <0.153> Term −0.89 [0.040] {0.053} <0.053>
TED −2.91 [0.028] {0.054} <0.114> TED −2.92 [0.057] {0.087} <0.226>
Crd 1.96 [0.030] {0.046} <0.033> Crd 2.83 [0.057] {0.076} <0.094>
Mkt 2.71 [0.311] {0.323} <0.329> Mkt 1.75 [0.411] {0.417} <0.471>

R[PC] 11.92 [0.031] {0.021} <0.018> R[PC] 17.33 [0.029] {0.018} <0.017>

R2 PE test MAE ∆MAE R2 PE test MAE ∆MAE
93.8 0.954 0.926 0.97∗∗ 95.0 0.996 0.976 1.73∗∗
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Table 4
First-pass equity only regressions: 2000–2018
This table presents the first-pass time-series regressions of equity double-sorted portfolio excess returns (LL,
HL, HL, HH) and the spread portfolios returns (L H/L and H H/L) on the risk factors without EGS factor
(Panel A) and with EGS factor (Panel B). Banks are first sorted on bank risk (low, high) and then on
deposits to GDP (low, high), our proxy for the expected government support. For a given measure of bank
risk, spread portfolios are given by LH-LL for low bank risk and HH-HL for high bank risk. We use three
measures of bank risk: bank book leverage (Leverage), equity volatility (EQ vol.), and deposits to total
assets (Dep2TA). Portfolios are rebalanced at a monthly frequency. The EGS factor (R[PC2]t = xrtŵ′2) is
obtained as the sum of double-sorted portfolio excess returns times the principal component (PC) weights
associated with the third PC obtained from the joint PCA analysis of double-sorted equity and CDS bank
portfolios (Fig. 3 in the Internet Appendix). The EGS factor is long in high deposits-to-GDP (Dep2GDP)
banks and short in low Dep2GDP banks. The resulting double-sorted and spread portfolios are regressed
on standard risk factors (f t) and the EGS factor (R[PC2]t), such as rxit = αi + ftβi + γR[PC2]t + eit,
where i denotes the selected portfolio. rxi is the mean excess return of portfolio i. The f t vector includes
changes in Term, changes in TED, changes in Credit (Crd), and MSCI world stock market excess returns
(Mkt). The sample covers all banks and spans the period from 01/2000 to 11/2018 at a daily frequency.
Adjusted R2s are in percent. ∗∗∗,∗∗,∗ denote significance, respectively, at the 1%, 5% and 10% levels, based
on GMM-VARHAC standard errors.

Panel A: Model without EGS factor Panel B: Model with EGS factor
Leverage (L) Leverage (H) Leverage (L) Leverage (H)

L H H/L L H H/L L H H/L L H H/L
rxi −2.28 0.10 2.38 −6.17 0.44 6.60∗∗ −2.28 0.10 2.38 −6.17 0.44 6.60∗∗

con −4.49 −1.98 2.51 −8.32∗∗ −1.74 6.58∗∗ 0.61 −4.38 −4.99∗∗ −6.29∗ −4.81 1.48
Term 4.71∗∗ 7.71∗∗∗ 3.01 6.27∗∗∗ 7.26∗∗∗ 1.00 4.86∗∗∗ 7.64∗∗∗ 2.79∗∗∗ 6.33∗∗∗ 7.17∗∗∗ 0.85
TED 0.61 −2.63 −3.24∗∗ −0.89 −2.80 −1.91∗ −1.51 −1.63 −0.11 −1.73 −1.52 0.21
Crd 0.73 −4.28∗∗∗ −5.01∗∗∗ −1.95∗∗∗ −4.72∗∗∗ −2.77∗∗∗ −1.96∗∗∗ −3.02∗∗∗ −1.06∗∗∗ −3.02∗∗∗ −3.10∗∗∗ −0.08
Mkt 1.37∗∗∗ 1.18∗∗∗ −0.19∗∗∗ 1.28∗∗∗ 1.23∗∗∗ −0.05 1.19∗∗∗ 1.26∗∗∗ 0.08∗∗∗ 1.21∗∗∗ 1.33∗∗∗ 0.13∗∗∗
R[PC] . . . . . . −0.49∗∗∗ 0.23∗∗∗ 0.72∗∗∗ −0.20∗∗∗ 0.30∗∗∗ 0.49∗∗∗
R2 57.30 56.49 4.32 62.67 59.55 2.79 74.28 60.65 76.19 65.79 66.18 85.00

EQ vol. (L) EQ vol. (H) EQ vol. (L) EQ vol. (H)
L H H/L L H H/L L H H/L L H H/L

rxi −2.67 2.06 4.73 −6.21 0.35 6.56∗ −2.67 2.06 4.73 −6.21 0.35 6.56∗

con −4.39 0.30 4.69∗ −8.42∗∗ −1.83 6.59∗∗ −3.69 −3.22 0.47 −5.81 −5.24 0.57
Term 5.75∗∗∗ 3.42∗∗∗ −2.33∗∗ 6.02∗∗∗ 7.08∗∗∗ 1.06 5.77∗∗∗ 3.31∗∗∗ −2.45∗∗∗ 6.10∗∗∗ 6.98∗∗∗ 0.88∗
TED −1.56 −3.75∗∗ −2.20∗ −0.49 −3.24∗ −2.74∗∗ −1.85 −2.28 −0.44 −1.58 −1.81 −0.23
Crd −1.42∗∗∗ −4.41∗∗∗ −2.99∗∗∗ −1.48∗∗∗ −5.06∗∗∗ −3.58∗∗∗ −1.79∗∗∗ −2.55∗∗∗ −0.77∗∗∗ −2.86∗∗∗ −3.26∗∗∗ −0.40∗∗
Mkt 1.01∗∗∗ 0.96∗∗∗ −0.05∗∗ 1.32∗∗∗ 1.22∗∗∗ −0.10∗∗∗ 0.99∗∗∗ 1.08∗∗∗ 0.09∗∗∗ 1.23∗∗∗ 1.34∗∗∗ 0.11∗∗∗
R[PC] . . . . . . −0.07∗∗∗ 0.34∗∗∗ 0.41∗∗∗ −0.25∗∗∗ 0.33∗∗∗ 0.58∗∗∗
R2 62.71 52.73 2.86 64.17 57.89 3.70 63.28 64.99 48.21 69.21 65.84 88.22

Dep2TA (L) Dep2TA (H) Dep2TA (L) Dep2TA (H)
L H H/L L H H/L L H H/L L H H/L

rxi −8.80 0.18 8.98∗∗ −6.63 0.78 7.41∗∗ −8.80 0.18 8.98∗∗ −6.63 0.78 7.41∗∗

con −11.06∗∗ −2.20 8.86∗∗ −8.82∗∗ −1.41 7.41∗∗ −9.63∗∗ −5.82 3.82 −6.10 −4.90 1.20
Term 9.45∗∗∗ 10.01∗∗∗ 0.56 6.36∗∗∗ 6.72∗∗∗ 0.36 9.49∗∗∗ 9.91∗∗∗ 0.41 6.44∗∗∗ 6.62∗∗∗ 0.18
TED −1.85 −3.21∗ −1.35 −0.34 −3.19∗ −2.85∗∗ −2.45 −1.70 0.75 −1.47 −1.74 −0.27
Crd −3.42∗∗∗ −4.22∗∗∗ −0.80 −1.42∗∗∗ −5.04∗∗∗ −3.62∗∗∗ −4.18∗∗∗ −2.32∗∗∗ 1.86∗∗∗ −2.85∗∗∗ −3.19∗∗∗ −0.35∗∗
Mkt 1.32∗∗∗ 1.37∗∗∗ 0.05 1.31∗∗∗ 1.22∗∗∗ −0.08∗∗∗ 1.27∗∗∗ 1.49∗∗∗ 0.23∗∗∗ 1.21∗∗∗ 1.35∗∗∗ 0.13∗∗∗
R[PC] . . . . . . −0.14∗∗∗ 0.35∗∗∗ 0.49∗∗∗ −0.26∗∗∗ 0.34∗∗∗ 0.60∗∗∗
R2 57.92 54.67 0.52 63.14 58.38 3.51 59.19 61.61 48.62 68.59 66.75 89.89

59



Table 5
Second-pass equity only cross-sectional regressions: 2000–2018
This table reports results for running the cross-sectional regression rxi = β′iλ + ai, where rxi is the mean
excess equity return of portfolio i and β̂i is the vector of factor betas associated with portfolio i, resulting
from the first-pass regressions (Table 4). For the factor prices of risk (λ), Shanken p-values are in squared
brackets, GMM-VARHAC p-values are in braces, and bootstrapped p-values are in angled brackets. We also
report the cross-sectional adjusted R2s, the pricing error test statistics p-values based on GMM-VARHAC
(PE test), along with the mean absolute pricing errors (MAE). ∆MAE denotes the difference between the
MAE resulting from the model with EGS factor and the MAE resulting from the model without EGS factor;
statistical significance is tested using the bootstrap replications, and ∗∗∗,∗∗,∗ denote significance, respectively,
at the 1%, 5% and 10% levels. Top panels report the results for the model with standard risk factors but
without the EGS factor, while bottom panels add the EGS factor to the set of standard risk factors. The
analysis covers all banks, but it is restricted to the equity portfolios. Left panels show the analysis for the
full sample period (01/2000–11/2018), while right panels exclude the bail-in period (01/2000–06/2013).

Panel A: Model without EGS factor
Panel A.I: Full sample (2000–18) Panel A.II: Sample ex bail-in (2000–13)
λ Shan. GMM Boot λ Shan. GMM Boot

Term −0.58 [0.176] {0.252} <0.193> Term −0.53 [0.237] {0.290} <0.256>
TED −4.97 [0.062] {0.118} <0.239> TED −5.09 [0.079] {0.130} <0.295>
Crd 2.12 [0.159] {0.208} <0.476> Crd 2.33 [0.219] {0.264} <0.386>
Mkt −1.27 [0.420] {0.439} <0.398> Mkt −2.97 [0.340] {0.369} <0.276>

R2 PE test MAE R2 PE test MAE
73.5 0.935 1.95 76.2 0.985 2.17

Panel B: Model with EGS factor
Panel B.I: Full sample (2000–18) Panel B.II: Sample ex bail-in (2000–13)
λ Shan. GMM Boot λ Shan. GMM Boot

Term −0.87 [0.036] {0.039} <0.037> Term −1.44 [0.018] {0.027} <0.034>
TED 0.29 [0.431] {0.441} <0.449> TED 1.24 [0.282] {0.332} <0.454>
Crd 1.89 [0.113] {0.124} <0.089> Crd 1.17 [0.293] {0.307} <0.212>
Mkt 7.14 [0.119] {0.156} <0.114> Mkt 6.92 [0.194] {0.244} <0.231>

R[PC] 10.3 [0.048] {0.038} <0.016> R[PC] 13.13 [0.051] {0.039} <0.022>

R2 PE test MAE ∆MAE R2 PE test MAE ∆MAE
93.5 0.794 0.95 1.00∗∗ 94.7 0.984 1.03 1.13∗∗
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Table 6
First-pass equity and CDS regressions with EGS factor: core Europe
This table presents the first-pass time-series regressions of equity and CDS double-sorted portfolio excess
returns (LL, HL, HL, HH) and the spread portfolios returns (L H/L and H H/L) on the risk factors and
the EGS factor. Banks are first sorted on bank risk (low, high) and then on deposits to GDP (low, high),
our proxy for the expected government support. For a given measure of bank risk, spread portfolios are
given by LH-LL for low bank risk and HH-HL for high bank risk. We use three measures of bank risk: bank
book leverage (Leverage), equity volatility (EQ vol.), and deposits to total assets (Dep2TA). Portfolios are
rebalanced at a monthly frequency. The EGS factor (R[PC3]t = xrtŵ′3) is obtained as the sum of double-
sorted portfolio excess returns times the principal component (PC) weights, displayed in the bottom panel of
Fig. 3, associated with the third PC obtained from the joint PCA analysis of double-sorted equity and CDS
bank portfolios for the sample of developed countries banks. The EGS factor is long in high deposits-to-GDP
(Dep2GDP) banks and short in low Dep2GDP banks. The resulting double-sorted and spread portfolios are
regressed on standard risk factors (f t) and the EGS factor (R[PC3]t), such as rxit = αi+ftβ′i+γR[PC3]t+eit,
where i denotes the selected portfolio. rxi is the mean excess return of portfolio i. The f t vector includes
changes in Term, changes in TED, changes in Credit (Crd), and MSCI world stock market excess returns
(Mkt). The sample covers Core EU (DE, FR, IT, ES, GB) banks and spans the period from 01/2004 to
11/2018 at a daily frequency. Adjusted R2s are in percent. ∗∗∗,∗∗,∗ denote significance, respectively, at the
1%, 5% and 10% levels, based on GMM-VARHAC standard errors.

Panel A: Equity returns Panel B: CDS returns
Leverage (L) Leverage (H) Leverage (L) Leverage (H)

L H H/L L H H/L L H H/L L H H/L
rxi −14.13 −7.73 6.40 −19.95∗∗ −6.78 13.16∗∗∗ −0.18 −0.70 −0.52 −0.02 −0.70 −0.68
con −17.14∗∗ −14.74∗∗ 2.40 −23.77∗∗∗ −15.15∗∗∗ 8.63∗∗ −0.31 −1.06 −0.75 −0.17 −1.04 −0.87
Term 11.57∗∗∗ 9.77∗∗∗ −1.80 11.08∗∗∗ 9.38∗∗∗ −1.70 1.94∗∗∗ 2.22∗∗∗ 0.28 1.32∗∗∗ 1.89∗∗∗ 0.57∗∗
TED −0.20 −1.02 −0.83 0.67 −0.69 −1.35 0.13 −0.22 −0.35 −0.25 −0.27 −0.02
Crd −7.07∗∗∗ −5.52∗∗∗ 1.55∗∗ −6.48∗∗∗ −4.59∗∗∗ 1.89∗∗∗ −1.63∗∗∗ −1.58∗∗∗ 0.05 −1.54∗∗∗ −1.42∗∗∗ 0.12
Mkt 1.26∗∗∗ 1.51∗∗∗ 0.25∗∗∗ 1.36∗∗∗ 1.61∗∗∗ 0.25∗∗∗ 0.06∗∗∗ 0.10∗∗∗ 0.04∗∗∗ 0.05∗∗∗ 0.09∗∗∗ 0.04∗∗∗
R[PC] −0.10∗∗ 0.16∗∗∗ 0.26∗∗∗ −0.06∗ 0.25∗∗∗ 0.31∗∗∗ 0.00 0.01∗∗ 0.01∗ 0.00 0.01∗∗ 0.01
R2 41.12 54.13 17.55 47.78 59.95 25.23 19.81 29.49 4.51 25.30 31.20 7.52

EQ vol. (L) EQ vol. (H) EQ vol. (L) EQ vol. (H)
L H H/L L H H/L L H H/L L H H/L

rxi −13.98∗ −4.56 9.43∗∗ −19.84∗∗ −9.06 10.78∗∗∗ −0.69 −0.64 0.05 −0.27 −0.28 −0.01
con −18.33∗∗∗ −11.91∗∗ 6.42 −23.99∗∗∗ −17.18∗∗∗ 6.81∗ −0.90 −1.00 −0.10 −0.46 −0.63 −0.17
Term 8.93∗∗∗ 9.20∗∗∗ 0.27 10.07∗∗∗ 10.11∗∗∗ 0.04 1.80∗∗∗ 1.64∗∗∗ −0.16 2.05∗∗∗ 2.04∗∗∗ −0.01
TED −0.73 −1.10 −0.37 0.26 −0.55 −0.81 0.08 −0.17 −0.24 −0.29 −0.26 0.04
Crd −5.03∗∗∗ −4.41∗∗∗ 0.62 −6.20∗∗∗ −5.29∗∗∗ 0.91 −1.53∗∗∗ −1.33∗∗∗ 0.20 −1.77∗∗∗ −1.44∗∗∗ 0.32∗∗
Mkt 1.20∗∗∗ 1.44∗∗∗ 0.23∗∗∗ 1.36∗∗∗ 1.63∗∗∗ 0.27∗∗∗ 0.06∗∗∗ 0.09∗∗∗ 0.03∗∗∗ 0.07∗∗∗ 0.10∗∗∗ 0.03∗∗∗
R[PC] 0.03 0.22∗∗∗ 0.19∗∗∗ −0.04 0.22∗∗∗ 0.26∗∗∗ 0.01∗ 0.01∗∗ 0.00 0.00 0.01∗∗ 0.01
R2 47.41 60.95 12.68 48.35 58.51 20.45 17.22 31.49 1.71 24.68 31.36 2.39

Dep2TA (L) Dep2TA (H) Dep2TA (L) Dep2TA (H)
L H H/L L H H/L L H H/L L H H/L

rxi −21.16∗∗ −6.74 14.42∗∗ −21.73∗∗ −6.54 15.20∗∗∗ −0.22 −0.58 −0.37 −0.14 −0.49 −0.36
con −24.87∗∗∗ −16.34∗∗ 8.53 −25.11∗∗∗ −15.32∗∗ 9.79∗∗ −0.39 −0.89 −0.49 −0.30 −0.82 −0.52
Term 12.06∗∗∗ 13.16∗∗∗ 1.10 10.23∗∗∗ 9.95∗∗∗ −0.27 1.13∗∗∗ 1.94∗∗∗ 0.81∗∗∗ 1.41∗∗∗ 1.81∗∗∗ 0.40
TED −0.64 0.59 1.22 0.05 0.10 0.05 −0.46 −0.31 0.15 −0.29 −0.27 0.02
Crd −7.63∗∗∗ −4.13∗∗ 3.50∗∗ −6.90∗∗∗ −4.30∗∗∗ 2.60∗∗ −1.39∗∗∗ −1.34∗∗∗ 0.04 −1.57∗∗∗ −1.39∗∗∗ 0.17
Mkt 1.38∗∗∗ 1.81∗∗∗ 0.43∗∗∗ 1.28∗∗∗ 1.69∗∗∗ 0.40∗∗∗ 0.05∗∗∗ 0.09∗∗∗ 0.03∗∗∗ 0.05∗∗∗ 0.09∗∗∗ 0.04∗∗∗
R[PC] −0.08∗∗ 0.31∗∗∗ 0.39∗∗∗ −0.08∗∗ 0.26∗∗∗ 0.34∗∗∗ 0.00 0.01∗∗ 0.00 0.00 0.01∗∗ 0.00
R2 44.66 57.28 19.11 45.25 59.86 24.96 25.51 30.63 6.44 24.92 31.37 5.93
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Table 7
Second-pass equity and CDS cross-sectional regressions: core Europe
This table reports results for running the cross-sectional regression rxi = β′iλ + ai, where rxi is the mean
excess return of portfolio i and β̂i is the vector of factor betas associated with portfolio i, resulting from
the first-pass regressions (Table A11 in the Interent Appendix and Table 6). For the factor prices of risk
(λ), Shanken p-values are in squared brackets, GMM-VARHAC p-values are in braces, and bootstrapped p-
values are in angled brackets. We also report the cross-sectional adjusted R2s, the pricing error test statistics
p-values based on GMM-VARHAC (PE test), along with the mean absolute pricing errors (MAE). ∆MAE
denotes the difference between the MAE resulting from the model with EGS factor and the MAE resulting
from the model without EGS factor; statistical significance is tested using the bootstrap replications, and
∗∗∗,∗∗,∗ denote significance, respectively, at the 1%, 5% and 10% levels. Top panels report the results for the
model with standard risk factors but without the EGS factor, while bottom panels include the EGS factor in
the set of standard risk factors. Left panels show the analysis for the full sample period (01/2004–11/2018),
while right panels exclude the bail-in period (01/2004–06/2013). The analysis covers core EU (DE, FR, IT,
ES, GB) banks’ equity and CDS portfolios.

Panel A: Model without EGS factor
Panel A.I: Full sample (2004–18) Panel A.II: Sample ex bail-in (2004–13)

λ Shan. GMM Boot λ Shan. GMM Boot
Term −0.09 [0.472] {0.482} <0.292> Term −2.55 [0.078] {0.114} <0.303>
TED −7.18 [0.016] {0.045} <0.237> TED −3.49 [0.054] {0.100} <0.305>
Crd 3.00 [0.085] {0.206} <0.424> Crd 0.14 [0.476] {0.481} <0.432>
Mkt 2.95 [0.392] {0.422} <0.425> Mkt 5.12 [0.309] {0.344} <0.367>

R2 PE test MAE R2 PE test MAE
79.5 1 3.09 68.2 0.999 3.44

Panel B: Model with EGS factor
Panel B.I: Full sample (2004–18) Panel B.II: Sample ex bail-in (2004–13)

λ Shan. GMM Boot λ Shan. GMM Boot
Term 0.82 [0.144] {0.175} <0.328> Term 0.73 [0.206] {0.228} <0.374>
TED −1.12 [0.242] {0.218} <0.366> TED −0.82 [0.345] {0.340} <0.436>
Crd 0.74 [0.240] {0.268} <0.444> Crd 2.31 [0.098] {0.120} <0.195>
Mkt −15.04 [0.022] {0.032} <0.037> Mkt −16.43 [0.053] {0.058} <0.064>

R[PC] 49.53 [0.005] {0.009} <0.003> R[PC] 58.13 [0.024] {0.033} <0.013>

R2 PE test MAE ∆MAE R2 PE test MAE ∆MAE
97.4 0.972 0.925 2.17∗∗∗ 97.7 1 0.96 2.48∗∗
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Table 8
Second-pass equity and CDS cross-sectional regressions: safe havens
This table reports results for running the cross-sectional regression rxi = β′iλ + ai, where rxi is the mean
excess return of portfolio i and β̂i is the vector of factor betas associated with portfolio i, resulting from
the first-pass regressions. For the factor prices of risk (λ), Shanken p-values are in squared brackets, GMM-
VARHAC p-values are in braces, and bootstrapped p-values are in angled brackets. We also report the cross-
sectional adjusted R2s, the pricing error test statistics p-values based on GMM-VARHAC (PE test), along
with the mean absolute pricing errors (MAE). ∆MAE denotes the difference between the MAE resulting
from the model with EGS factor and the MAE resulting from the model without EGS factor; statistical
significance is tested using the bootstrap replications, whereby ∗∗∗,∗∗,∗ denote significance, respectively, at
the 1%, 5% and 10% levels. Top panels report the results for the model with standard risk factors but
without the EGS factor, while bottom panels include the EGS factor in the set of standard risk factors.
Left panels show the analysis for the full sample period (01/2004–11/2018), while right panels exclude the
bail-in period (01/2004–06/2013). The analysis covers safe-haven (US, CH, DE, JP) banks’ equity and CDS
portfolios.

Panel A: Model without EGS factor
Panel A.I: Full sample (2004–18) Panel A.II: Sample ex bail-in (2004–13)
λ Shan. GMM Boot λ Shan. GMM Boot

Term −0.33 [0.164] {0.172} <0.302> Term −0.01 [0.495] {0.495} <0.397>
TED −0.32 [0.326] {0.327} <0.371> TED 1.87 [0.068] {0.098} <0.208>
Crd 0.68 [0.154] {0.144} <0.160> Crd −0.34 [0.402] {0.395} <0.427>
Mkt −3.29 [0.260] {0.273} <0.263> Mkt −6.34 [0.190] {0.221} <0.251>

R2 PE test MAE R2 PE test MAE
68.4 0.909 1.28 84.8 1 1.14

Panel B: Model with EGS factor
Panel B.I: Full sample (2004–18) Panel B.II: Sample ex bail-in (2004–13)
λ Shan. GMM Boot λ Shan. GMM Boot

Term −0.36 [0.146] {0.140} <0.237> Term −0.16 [0.378] {0.375} <0.411>
TED −0.42 [0.267] {0.258} <0.325> TED 1.30 [0.175] {0.198} <0.255>
Crd 1.37 [0.116] {0.136} <0.152> Crd 1.16 [0.323] {0.320} <0.193>
Mkt −1.55 [0.399] {0.413} <0.401> Mkt −3.35 [0.352] {0.355} <0.426>

R[PC] −1.05 [0.457] {0.459} <0.487> R[PC] 0.69 [0.482] {0.482} <0.357>

R2 PE test MAE ∆MAE R2 PE test MAE ∆MAE
71.7 0.942 1.37 -0.08 87.7 1 1.11 0.03
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Table 9
What risks do the R[PC]s reflect?
This table reports results for running the regressions of the three R[PC]s on single-sorted bank equity
spread portfolios (hmlEQ); R[PC]jt = aj + φjthml

EQ + ujt for j = 1, 2, 3. Equity single-sorted portfolios
are constructed using balance sheet and sovereign-risk variables as the sorting variables; for a given sorting
variable, banks are grouped into a high or low portfolios, and then the spread portfolio is simply the high
minus low portfolios. R[PCj ]t = xrtŵ′j , where ŵj are the principal component weights associated with the
jth PC and xrt are the equity and CDS portfolios’ excess returns. Panel A shows the top ten portfolios
ordered in terms of the estimated R2s. Panel B focuses on single-sorted portfolios constructed in terms of
i) sovereign risk, using domestic sovereign CDSs or sovereign yields as sorting variables; ii) bank-sovereign
exposures, obtained by regressing bank CDS returns on the domestic sovereign CDS returns, including
(SovExp(c)) or not (Sov Exp) the standard risk factors as controls; and iii) total assets at book value to
GDP (TA2GDP(bv)) and the rating uplift (UpLift) as alternative measures of the EGS. The sample includes
developed countries’ banks. Variables are standardized. The period is 01/2004–11/2018. Adjusted R2s are
in percent. ∗∗∗,∗∗,∗ denote significance, respectively, at the 1%, 5% and 10% levels, based on the Newey-West
approach with optimal lag selection.

Panel A: Horse race
R[PC1] R[PC2] R[PC3]

Port. φ R2 Port. φ R2 Port. φ R2

LEV(mv) 0.63∗∗∗ 40.22 EQvol −0.64∗∗∗ 41.29 Dep2GDP 0.95∗∗∗ 90.84
EQvol 0.63∗∗∗ 39.49 LEV(mv) −0.63∗∗∗ 39.41 TA2GDP(bv) 0.89∗∗∗ 79.31
PVB −0.60∗∗∗ 36.47 PVB 0.61∗∗∗ 36.94 Loan2GDP 0.86∗∗∗ 73.86
ROA −0.53∗∗∗ 27.65 ROA 0.54∗∗∗ 29.06 LEV(bv) 0.63∗∗∗ 39.99

Dep2TA −0.46∗∗∗ 21.32 Dep2TA 0.45∗∗∗ 20.21 BnkCDS −0.45∗∗∗ 20.39
BnkCDS 0.43∗∗∗ 18.76 BnkCDS −0.45∗∗∗ 20.13 Sov.Exp. 0.42∗∗∗ 15.27
ZSCORE −0.41∗∗∗ 16.82 ZSCORE 0.43∗∗∗ 18.90 SovCDS 0.40∗∗∗ 14.58

TDebt 0.27∗∗∗ 7.28 TDebt −0.29∗∗∗ 8.45 Sov.Exp(c) 0.41∗∗∗ 14.52
TA2GDP(bv) 0.23∗∗∗ 5.23 CASHR −0.20∗∗∗ 4.10 SovYld 0.30∗∗∗ 9.15

TA(mv) 0.19∗∗∗ 3.67 TA(mv) −0.20∗∗∗ 3.90 Bnk2SovRat −0.28∗∗∗ 8.00

Panel B: Size, UpLift, and sovereign risk
R[PC1] R[PC2] R[PC3]

Port. φ R2 Port. φ R2 Port. φ R2

TA2GDP(bv) 0.23∗∗∗ 5.23 TA2GDP(bv) −0.18∗∗∗ 3.31 TA2GDP(bv) 0.89∗∗∗ 79.31
UpLift −0.11∗∗∗ 1.09 UpLift 0.12∗∗∗ 1.53 UpLift 0.26∗∗∗ 6.81

SovCDS 0.09∗ 0.72 SovCDS −0.06 0.28 SovCDS 0.40∗∗∗ 14.58
SovYld −0.04 0.12 SovYld 0.07 0.52 SovYld 0.30∗∗∗ 9.15

Sov.Exp. 0.10 0.74 Sov.Exp. −0.06 0.26 Sov.Exp. 0.42∗∗∗ 15.27
Sov.Exp(c) 0.03 0.04 Sov.Exp(c) 0.01 −0.03 Sov.Exp(c) 0.41∗∗∗ 14.52
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Fig. 1. Timing of actions in the model
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The figure shows the sequence of the actions taken by the agents in the theoretical model.
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Fig. 2. Portfolio sorting strategy

LL LH HL HH

L H1st sort: Bank risk

L H L H2nd sort: EGS

The figure shows how we double-sort banks into portfolios based on bank risk and the EGS in-
strument (i.e., deposits-to-GDP ratio). We use the following three alternative measures of bank
risk: (book) leverage, equity volatility, and deposits to total assets; in the Internet Appendix (Ta-
ble A2), we provide a detailed description of the sorting variables. We implement 2×2 sorts: we
first group banks according to their risk (L,H), and then for a given level of bank risk, we group
banks according to their EGS level. For a given variable of bank risk, the resulting double-sorted
portfolios are LL, LH, HL, and HH, and the EGS spread portfolios are LH-LL for low bank risk
and HH-HL for high bank risk. We construct these double-sorted portfolios separately for equity
and CDS returns. Portfolios are rebalanced at a monthly frequency.
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Fig. 3. Level, security, and EGS factor loadings
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The figure shows the joint principal component analysis (PCA) of the risk-adjusted equity and
CDS excess returns of the double-sorted portfolios. Banks are first sorted on bank risk (low, high)
and then on deposits to GDP (low, high), our proxy for the expected government support (i.e.,
Dep2GDP). Portfolios are rebalanced at a monthly frequency. We use three measures of bank risk:
bank book leverage (S1: LEV bv), equity volatility estimated over a three-month rolling windows
(S1: EQ vol), and deposits to total assets (S1: Dep2TA). For each measure of bank risk, we
obtain four portfolios. The resulting double-sorted equities and CDS equally-weighted portfolios
are regressed on standard risk factors such as i) changes in Term (i.e., the ten- minus the two-year
US Treasury rates); ii) changes in TED, i.e., the difference between the interest rates on interbank
loans (one-month Libor) and on short-term US government debt (one-month T-bill); iii) changes
in Credit (Crd), i.e., the difference between high-yield and investment grade yields for the US; and
MSCI world stock market excess returns (Mkt). We perform the PCA analysis on standardized
risk-adjusted excess returns (i.e., the standardized residuals from the first-pass regressions). PC
loadings for the three PCs (ŵj , for j = 1, 2, 3) are displayed. Left panels, i.e., EQ portfolios, present
the loadings associated with the equity portfolios, whereas right panels, i.e., CDS portfolios, those
with the CDS portfolios. The double-sorted portfolios are denoted by LL, LH, HL and HH, where
the first letter denotes the level of the first sorting variable (S1: bank risk) and the second letter
that of the second sorting variable (S2: Dep2GDP). The sample includes the developed countries’
banks and spans the period 1/2004–11/2018 at a daily frequency.
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Fig. 4. EGS factor with events

The figure shows the cumulative sum of the expected government support (EGS) factor with
selected relevant economic, financial, and policy events. The EGS factor (R[PC3]t = xrtŵ

′
3)

is obtained as the sum of portfolios excess returns times the principal component (PC) weights,
displayed in the bottom panel of Fig. 3, associated with the third PC obtained from the joint PCA
analysis of double-sorted equity and CDS bank portfolios. The EGS factor is long in high deposits-
to-GDP banks and short in low deposits-to-GDP banks. Shaded areas delimit the following phases:
Phase 1: pre-crisis (01/2004–12/2006); Phase 2: subprime crisis (01/2007–07/2008); Phase 3:
global financial crisis (07/2008–10/2009); Phase 4: eurozone debt crisis (11/2009–04/2013); and
Phase 5: bail-in regime (05/2013–11/2018). The sample includes developed countries’ banks and
spans the period 01/2004–11/2018 at a daily frequency.
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Fig. 5. EGS factor, economic policy uncertainty, sovereign risk, and VIX
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The figure shows mean excess returns for the expected government support (EGS) factor
(R[PC3]t = xrtŵ

′
3) conditional on innovations to sovereign risk (top panel), the Economic Policy

Uncertainty (EPU) Index (mid panel), and VIX (bottom panel), being within the lowest and high-
est quartile of their sample distributions (four categories from lowest highest shown on the x-axis
of each panel). The EGS factor, resulting from the joint PC analysis of double-sorted equity and
CDS bank risk-adjusted excess returns, is long in high deposits-to-GDP banks and short in low
deposits-to-GDP banks. Sovereign risk is measured as the mean of developed countries’ five-year
CDSs. We exclude those observations for which either sovereign CDSs are not available or display
zero changes, which reflect the limited number of sovereign CDSs available at the beginning of the
sample. Fig. A8 in the Internet Appendix illustrates the results when these observations are not
excluded. VIX is the CBOE Volatility Index. The daily EPU Index quantifies newspaper coverage
of policy-related economic uncertainty (see www.policyuncertainty.com). The sample includes the
developed country banks and spans the period 01/2004–11/2018 at a daily frequency.
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