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ABSTRACT    15 

The mass transport processes always accompanies the flow phenomena and have attracted many researches.  A lot of 16 

numerical methods have been developed to study them. These numerical methods can be classified into the Eulerian and 17 

the Lagrangian approaches. The Lagrangian approach has advantages in high stability and simplicity over the Eulerian 18 

approach, but suffers from heavy computational cost. In this paper, we are mainly concerned with the trade-offs between 19 

the accuracy and computational cost when applying the random walk method, which is a Lagrangian approach for examining 20 

the mass transport scenario. We introduce a linear model to assess the accuracy of the random walk method in several 21 

computational configurations. Studies on computational parameters, i.e. the size of time step and number of particles, are 22 

conducted with the focus on estimation of the longitudinal dispersion coefficient  in steady flows. The results show that 23 

the proposed linear model can satisfactorily explain the computational accuracy, both in sample and out-of-sample. 24 

Furthermore, we find a constant dimensionless parameter, which quantifies a generic relationship between the accuracy 25 

and the number of particles regardless of the flow and diffusion conditions. This dimensionless parameter is of theoretic 26 

value and offers guidelines for choosing the correct computational parameters to achieve the required numerical accuracy.  27 
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statistical differential equation. 29 

 30 

1. INTRODUCTION 31 

Mass transport phenomena in fluid exist widely. Hence, extensive studies have been conducted by many 32 

researchers since the middle of the last century. Generally, the numerical methods for mass transport problems can 33 

be classified into either Eulerian or Lagrangian approaches. The Eulerian approach solves the mass transport 34 

equations on a control volume basis which is in a similar form as that for the flow field calculation. Consequently, 35 

Eulerian approach is grid-based and has gained its popularity on studying mass transport in finite computational 36 

domain (Benkhaldoun et al., 2007; Benson et al., 2017; Liang et al., 2010). The selection of the size of time step 37 

∆t in Eulerian approach often depends on the grid size ∆x. For example, the size of the time step is restricted by 38 

the Courant-Friedrichs-Lewy condition for pure advection equation, i.e. ∆t must be less than the time taken for the 39 

fluid with varying state to travel to adjacent grid points. For the pure diffusion equation, the explicit scheme such 40 

as the central differencing scheme requires , where D is the diffusion coefficient. The relative 41 

dominance of the advection or diffusion constraint can be assessed using the Peclet number Pe given by 42 

, where U is the local flow velocity.   43 

On the other hand, the Lagrangian approach, a powerful method from individual particles perspective, has 44 

been widely applied as a counterpart of the Eulerian one. Although the flow field is traditionally solved through 45 

Eulerian approach, it has also been increasingly solved by Lagrangian methods. For example, the incompressible 46 

Navier-Stokes Equations have been solved by the smoothed particle hydrodynamics (SPH) method (Shao and 47 

Gotoh, 2005; Shao and Lo, 2003). The Lagrangian approach uses a large number of discrete massless particles to 48 

represent the pollutant cloud and tracks the pathway of each individual particle. The concentration, as well as 49 

other parameters such as the dispersion coefficient, can be obtained by studying the statistics of these particles’ 50 

trajectories or their total ensemble. By definition, the Lagrangian approach is perfectly conservative and free from 51 

artificial diffusion near the steep concentration gradients. Besides, this mesh-free scheme limits its computation to 52 

the regions that the pollutant reaches, while the computation in Eulerian approach always needs to cover the entire 53 

flow domain regardless of the presence of the pollutant. Some more merits of Lagrangian approaches have been 54 

reported in recent years. (Zhang and Chen, 2007) found the Lagrangian approach performed better than the 55 

Eulerian one in the unsteady state condition. Saidi et al. (2014) concluded that Eulerian method cannot be applied 56 
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to problems involving low concentration of particles while its Lagrangian counterpart can well detect the particles. 57 

Wu and Liang (2019) and Yang et al. (2019) compared the two algorithms through designed cases and found the 58 

Lagrangian approach achieved higher accuracy. 59 

The advantages of the Lagrangian method listed above are accompanied by the high computational cost, 60 

which has been well recognized (Möbus et al., 2001; Neuman, 1993; Zhang and Chen, 2007). Furthermore, much 61 

less guidance has been reported concerning the selection of computational parameters in the Lagrangian approach 62 

than that in the Eulerian ones. As seen in the description of the method, the amount of the computation depends on 63 

two parameters: the number of particles  to present the pollutant cloud, and the size of the computational time 64 

step . Therefore, the choices of  and  are crucial to the efficiency of the random walk method. According to 65 

many simulation cases in different aquatic environments, the more particles applied and the smaller the time step 66 

is, the more accurate and stable the simulation results will be, although these often lead to greater computational 67 

load. Hence, it is necessary to optimize the selection of the number of particles and the size of the time step. The 68 

random walk method studied in this paper is a typical representative of the Lagrangian approach. Unfortunately, 69 

there is little literature mentioning a detailed and optimized selection of these parameters for the random walk 70 

method applied in hydraulics and hydrodynamics.  71 

Therefore, in this paper we empirically studied the impact of particles number and size of time step on the 72 

accuracy of longitudinal dispersion coefficient in the random walk method for steady flow, with the aim to 73 

minimize its computational cost and control the error of simulation for future studies. First, the theory of random 74 

walk method is introduced. Then an error model of  and  is presented, which is commonly used for Stochastic 75 

Differential Equations (SDE). In the current mathematical framework of the accuracy analysis in SDE 76 

approximations, the coefficients of  and  in the error model do not have analytical expressions and thus need 77 

to be estimated by case studies. The estimation of coefficients is usually difficult in practical situations, which 78 

requires careful experiment design in addition to huge computational cost. In this study, we have conducted the 79 

error analysis based on two types of steady flow for this model: Couette flow and open channel flow. In both 80 

types of steady flow, a dimensionless parameter of  is found to be a constant, shedding light on the possibility of 81 

the priori optimization of the simulation accuracy . For the Couette flow, it is found that the error model degrades 82 

into a simpler form, i.e. linear relationship with  by a constant dimensionless parameter, while  has little 83 

impact on the results as long as it does not exceed a threshold. In the end, we attempted to give some theoretically 84 
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explanations for the model. For potential applications, findings of this paper can be used to accelerate the SDE-85 

related simulations in water research. 86 

2. THEORETICAL BACKGROUND 87 

2.1. Random Walk Method 88 

The random walk method originates from statistical physics which has been used to model movement in a 89 

wide variety of contexts: from time series of financial markets (Hamid et al., 2017; Mishra et al., 2015) to the 90 

dispersion in porous media (de Anna et al., 2013; Sole-Mari et al., 2017). In the simulation of mass transportation, 91 

a large number of particles are released to represent the pollutant cloud in the flow. The trajectories of each 92 

particle are tracked, then the streamwise variation of the ensemble of particles will reveal the dispersion rate, i.e. 93 

the longitudinal dispersion coefficient. The process is illustrated in Fig. 1, with takes the fully-developed turbent 94 

open channel flow as an example. An ensemble of particles are released at time t=0, and then move along the x-95 

axis. The histogram of the particles reveals the concentration at different times after the release, as shown in the 96 

bottom subfigure. 97 
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Figure. 1 Illustration of mass transportation simulation via the random walk method.  100 

The displacement of each particle during each time step in the random walk method is described by Eq. 1. To 101 

simplify the derivation, we take the one-dimensional case here. 102 

 
( ( ), ) ( ( ), ) ( )dx a x t t dt b x t t dW t    

(1) 
103 

which consists of a deterministic component  and a random component . W(t) here 104 

denotes a standard Wiener process, while x(t) denotes the x-axis position of each particle at time t. We introduce 105 
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 as the conditional probability density for , which subjects to the Fokker-Planck Equation as: 106 
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107 

A more thorough analysis can be referred to the classic book in the field of statistics (Gardiner, 2004). The 108 

above analysis shows that the distribution of particles that move according to Eq. 1, which is the Ito stochastic 109 

differential equation (SDE), satisfies the Fokker-Planck equation, i.e. Eq. 2. Meanwhile, Eq.2 is similar in form to 110 

the mass transport equation (the probability density  is equivalent to the concentration ), which is the foundation 111 

of the diffusion-advection phenomenon, shown as Eq. 3: 112 

 ( ) ( )
c c

u c D
t x x x

   
  

   
       (3) 

113 

where  is the diffusion coefficient;  is the velocity of the flow;  is time. By now, we connected the Ito SDE 114 

with the mass transport equation, which is the bedrock of the random walk method.  115 

In hydraulics, we use the longitudinal dispersion coefficient (denoted as ) to quantitatively analyze the 116 

mixing rate of pollutants in shear layers, which is a key parameter in water-quality modeling. As a measure of the 117 

spatially-averaged spreading rate of a tracer cloud,  could be determined by analyzing the statistics of the 118 

positions of a large number of particles. After a certain time has elapsed since the release of the particle ensemble, 119 

known as the Fickian limit, the standard deviation of particles' positions in the longitudinal direction increases 120 

linearly with time, so that  converges into a constant. By then  can be calculated through the time change of 121 

the longitudinal variance of the particle ensemble, as: 122 

 2 1

2 1

( ) ( )1

2
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x x

L

t t
D

t t
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123 

In this paper, we conduct error analysis on the simulation of  , which is a typical example of weak convergence 124 

approximation for SDEs (Peter E. Kloeden, 2007). A strong convergence approximation for SDEs is needed when 125 

the trajectories of the ensemble of particles are taken into considerations, while a weak convergence 126 

approximation is applicable when only the distribution of the particles is concerned. The longitudinal dispersion 127 

coefficient can be calculated from the particle distribution and its development with time, rather than from the 128 

trajectories. Hence, the weak convergence analysis is adopted here.  129 

2.2. Error Analysis 130 

In the field of mathematics and finance, the statistical features of SDE have been well developed. First, the 131 



 

 6 / 20 
 

SDE in Eq. 1 is discretized by a simple Euler discretization with time step  as Eq. 5: 132 

 1 ( , ) ( , )n n n n n n nx x a x t t b x t W             (5) 
133 

In our case, depends on the distribution of the particle ensemble, which is effectively related to the time-134 

varying probability distribution , as described in Eq. 2 and Eq. 4. To calculate , we want to compute the 135 

expectation of , i.e. , where  is a scalar function with a uniform Lipschitz bound (Giles, 2008). 136 

To be specific in our context,  is the function that maps the ensemble of particles into  at instant T, where 137 

T indicates the time after the Fickian limit. To obtain [ ( )]TE f x , the simplest estimation would be the mean of the 138 

discrete values /( )T tf x  , from N independent path simulations, as shown in Eq. 6: 139 

 1 ( )
/

1

( )
N

i
T t

i

Y N f x




     (6) 
140 

In computational mathematics, it is well established that, provided that  and  satisfy certain 141 

conditions (Bally and Talay, 1996; Peter E. Kloeden, 2007; Talay and Tubaro, 1990), the expected mean square 142 

error (MSE) in the estimate Y is asymptotically of the form expressed in Eq. 7 143 

 1 2
1 2

  MSE C N C t   (7) 
144 

which implies that the MSE comes with two sources: error due to the limited number of particles  and the size of 145 

time step  (Giles, 2015). Therefore, as long as  and  are established, the relationship between the choice of 146 

particles number N and the time step t will be known, given the required MSE of . It is also worth mentioning 147 

that, t actually affects MSE in a much more complex way, which follows a polynomial function with a 148 

dominating quadratic component (BALLY and TALAY, 2009). 149 

In practice,  and  are usually unknown and have to be estimated case by case, which is undesirable. In 150 

this study, we collect evidence from different cases and try to establish some general guidelines for finding  and 151 

 that are independent of water environment configurations, such as flow field and diffusion coefficient.  152 

3. CASE STUDIES 153 

3.1. Couette flow 154 

We first choose the dispersion phenomenon in Couette flow to verify the error analysis model, because this 155 

laminar shear flow gives the analytical solution for  (as Fisher first derived it in 1979), as shown in Eq. 8 156 
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157 

In the Couette flow, water flow is assumed to go through two parallel plates of infinite extent, with the top 158 

plate moving at velocity U compared to the bottom one. The width between these two parallel plates is , and  159 

is the diffusion coefficient in the transverse direction. 160 

3.1.1 Demonstration in a particular flow condition 161 

Firstly, the random walk method has been applied on a verification case, whose parameters are presented in 162 

Table 1, with 100,000 particles and time step as 0.001 s. The simulated longitudinal dispersion coefficient is 163 

compared with the analytical solution, and the accuracy of this Lagrangian approach has been validated, as Fig. 2. 164 

 
Table 1. Parameter values of a Couette flow case 165 

Parameters Values 

: flow width 1.0 m 

: velocity of the upper wall 1.0 m/s 

: diffusion coefficient in the transverse direction 0.001 m²/s 

 166 

Figure 2. Evolution of the longitudinal dispersion coefficient  with time in Couette flow 167 

Many simulations are carried out with different numbers of particles N and time steps t, as presented in 168 

Table 2. The results will be used to fit the parameters  and  in Eq. 7. Under each set of t and N, the random 169 

walk simulation was run for 20 times. In each run, the simulated  was compared with the analytical , hence 170 

the error for each run was obtained. The MSE of  was calculated through the mean square error of the 20 171 

simulations for one combination of the particles number N and time step t. The target parameters are the  and 172 

 in Eq. 7.  Meanwhile, 30 sets of t and N (shown in Table 2) are available for fitting. This is a typical linear 173 



 

 8 / 20 
 

regression problem, and the target is to estimate two coefficients (  and ) of the two variables (N, t). We 174 

choose the ordinary least squares (OLS) method to find  and . For the case in Table 1, we obtained [ , ] = 175 

[125.8463, 1.5850]. And the fitted , which represents the fraction of the total sum of squares of 176 

MSE that the model explains. Please note that the linear model does not contain an intercept, thus the Rsq value 177 

should be interpreted as the fraction of total sum of squares of the error explained by the model, rather than the 178 

total variance explained by the model. The regression results are as shown in Fig. 3 and Fig. 4: 179 

Table 2. Sets of time steps and particles numbers used to fit  and  180 

 [s]: time step 0.05 0.05 0.05 0.05 0.05 0.075 0.075 0.075 0.075 0.075 

N [1]: particles number 2000 1000 500 200 100 2000 1000 500 200 100 

 [s]: time step 0.1 0.1 0.1 0.1 0.1 0.125 0.125 0.125 0.125 0.125 

N [1]: particles number 2000 1000 500 200 100 2000 1000 500 200 100 

 [s]: time step 0.15 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2 0.2 

N [1]: particles number 2000 1000 500 200 100 2000 1000 500 200 100 

  181 

Figure 3. Left: Regression result of the fitting of  and ; Right: Measured MSE vs Calculated MSE with fitted  and  182 

To verify the model’s predictive ability for the MSE of  in Eq. 7, we use out-of-sample test for the model. 183 

This out-of-sample test is carried out as follows: we generate another set of  and N combinations (8 randomly 184 

chosen cases which are within the limit of the sets for fitting, as shown in Table. 3), and then run simulations to 185 

test the goodness of using the fitted  and  above in predicting the MSE of . The results are shown in Fig. 4. 186 
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In this out-of-sample test, the  value, is 0.8999, indicating that 89.99% of the total sum of squares of the MSE 187 

of the  can be captured using this set of and  values, which is also close to the  value previously 188 

obtained from the parameter fitting procedure. Given the satisfactory predictability of the model in the out-of-189 

sample test, which is comparable to the in-sample-fitting, the linear model introduced in Eq. (7) is verified to be a 190 

good model which can be used to estimate the MSE of  given different input of N and . In addition, the OLS 191 

approach we have adopted for estimating the values of  and  is validated as an appropriate approach.  192 

Table 3. Sets of time steps and particles numbers used for out-of-sample test 193 

N [1]: number of particles 300 1500 800 250 600 750 1200 400 

 [s]: time step 0.17 0.06 0.07 0.13 0.15 0.09 0.15 0.18 

 194 

Figure 4. Regression result of the out-of-sample test with fitted and in Couette flow. 195 

3.1.2 Nondimensionalization for Different Conditions 196 

Besides the case we studied above, more flow conditions of Couette flow were tested. For each flow 197 

conditions,  and  were estimated, and the  of them were calculated, as shown in the upper part of Table.4. 198 

We can see that among all the conditions, the  values are quite high (above 0.9), the t-statistics of  are 199 

significantly large, and p-values of  are less than 0.1% significance level. Thus these tests provide further 200 

evidence to support the linear model established in the previous section.  201 

Table 4. Different conditions in Couette flow: Top, estimation and its fitness of  and ; Bottom, nondimensionalization 202 

of  and  203 

 

0.001 0.005 0.01 0.001 0.001 0.001 0.001 



 

 10 / 20 
 

 

1 1 1 0.1 0.2 1 1 

  1 1 1 1 1 0.1 0.5 

 

8.333  1.667  0.833  0.083  0.333  0.083  2.083  

Coef of  125.846  5.691  1.439  0.014  0.259  0.013  7.865  

95% CI of  
[109.997, 

141.696] 

[5.209, 

6.174] 

[1.277, 

1.602] 

[0.013, 

0.016] 

[0.236, 

0.280] 

[0.011, 

0.014] 

[6.875, 

8.856] 

t-statistic of  15.562 23.126 17.400 21.166 22.784 15.562 15.562 

p-value of  0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Coef of  1.59E+00 6.83E-02 1.70E-02 -4.31E-06 1.88E-03 1.59E-04 9.91E-02 

95% CI of   
[-2.387, 

5.558] 

[-0.053, 

0.189] 

[-0.024, 

0.058] 

[-3E-4, 

3E-4] 

[-0.004, 

0.007] 

[-2E-04,  

6E-04] 

[-0.149, 

0.347] 

t-statistic of  0.782 1.107 0.819 -0.025 0.660 0.782 0.782 

p-value of  0.441 0.278 0.420 0.980 0.515 0.441 0.441 

 

0.932  0.968  0.944  0.960  0.966  0.932  0.932  

Root mean square error 0.1856 0.0056 0.0019 1.56E-05 2.60E-04 1.85E-05 0.0116 

Nondimensionalize 

  

1.812  2.049  2.073  2.075  2.327  1.812  1.812  

 
 

2.28E+04 9.83E+02 2.45E+02 -6.21E-02 2.70E+01 2.28E+04 2.28E+04 

The nondimensionalization step is to study the coefficient  and  in a dimensionless perspective. To 204 

nondimensionalize these two parameters, we divide  by  and divide  by . We then replace the 205 

original  and  with these rescaled values, denoted as , and . Other methods of 206 

nondimensionalization have also been tried (as listed in table 4.1 in the Research Data uploaded alongside), but 207 

here we select the one that works best. Then we repeat the OLS fitting for the set of parameters  and  again, 208 

using these nondimensionalize values  and . The refitted  and  are donated as  and 209 

, respectively. The lower part of Table 4 shows the  and values estimated using this 210 

nondimensionalizing approach. We can see that the dimensionless values of  are close to 2 for all flow 211 

conditions. This indicates a theoretical explanation behind. We have tried to change 1/2 to 1/5 in Eq.4, found 212 

 remains around 2, implying 1/2 in Eq.4 is not the reason for this number 2. Therefore, further research 213 



 

 11 / 20 
 

should be done to unravel the theory.  enables us to provide predictions for  in different scenarios 214 

once we know the parameters for the flow environment, such as ,  and , without the need to conduct 215 

simulations again.  216 

 217 
Figure. 5 Predicted MSE compared with the measured MSE in Couette flow(the dots represent the measured MSE, while 218 

the solid line represents the predicted MSE by the error model with dimensionless parameter C1 = 2. The predicted MSE 219 

via the dimensionless parameter explained 89.9% of the total sum of squares of the measured MSE.) 220 

To prove that , we choose another 25 sets of   and   (as listed in Table.4.2 in the Research 221 

Data uploaded alongside). The values of N and ∆t are selected because we want to minimize the MSE from ∆t 222 

(abbreviated as  ), thus MSE due to N (abbreviated as   ) is predominant. Each combination of N and 223 

∆t is used in the random walk model for the simulation of the flow case in Table.1 for 20 times, then the MSE can 224 

be obtained for this set of N and ∆t. Meanwhile, with , and comparatively small , the MSE 225 

predicted by the error model can be calculated as . The measured MSE are 226 

then compared with the predicted MSE, as shown in Fig.5. The black line which represents the predicted MSE can 227 

fit the measured MSE well, illustrated by red dots. With , the predicted MSE explained 89.9% of 228 

the total sum of squares of the measured MSE. Therefore, the inference that  for Couette flow is 229 

tenable. 230 

However, we are unable to find a unified dimensionless value for  in the current stage. It can be seen from 231 

Table 4 (and Table 4.1 in the Research Data uploaded alongside), that the estimation of , which implies the 232 

influence of , has much lower confidence. One possible reason for such inaccuracy may be that the weights that 233 

two parts carry are not balanced. Therefore, we tried more sets of  and  (86 sets in total), with a very large 234 

number of N fixed at 50000, i.e. using 50000 particles to reduce the part of MSE due to the number of particles. 235 
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Assuming stands true, the time-step-part of error  can then be obtained by subtracting 236 

 from the total MSE. We then plotted the relationship between  and size of time step as Fig.6(a). 237 

Compared with that of the particles numbers as shown in Fig.5, are scattered randomly around the zero 238 

line, with no evident regularity. Such a distribution implies that the accuracy of the numerical simulation of 239 

longitudinal dispersion coefficient  in Couette flow may be independent of the size of the time step, i.e. . 240 

This conclusion is confirmed by Fig.6(b), which shows that all the development lines of  converge together for 241 

 from 20s to as large as 400s. In conclusion, the choice of the size of the time step in the given steady flow 242 

actually has very little impact on the simulation of the . This evidence is also in line with the large p-values of 243 

 in Table. 4, suggesting .  244 

 245 
   (a)                                                                                (b) 246 

Figure. 6 (a). Mean squared error of  due to the size of the time step with the number of particles is fixed as 50000; (b). 247 

 development with time calculated by different sizes of the time step (Couette flow)  248 

3.2. Open Channel Flow 249 

The above conclusions might be a special case regarding the Couette flow. Hence, we also did simulations on 250 

another steady flow condition, e.g. open channel flow with logarithmic velocity distribution. Interestingly, we 251 

reached the same conclusion: , and  is irrelevant with the size of time step in a certain range when 252 

velocity is small enough. However, when the velocity is moderately large, it can be noticed that a larger  leads 253 

to a larger MSE. (The analytical solution for the longitudinal dispersion coefficient  of logarithmic flow, as 254 

well as the flow conditions, can be found in the Research Data uploaded alongside.) 255 

Fig.7 shows the results by these varying  from 0.1s to 0.5s, with the same particles number 50,000. As can 256 

be seen, despite the differences in the sizes of the time step, there is some small difference among the simulated 257 
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. The simulation of  for open channel flow is dependent on , although the impact is relatively small in this 258 

range.  259 

 260 

Figure. 7  development with time calculated by different sizes of the time step in open channel flow  261 

The impact of N and  is displayed in details in Table. 5. The same ordinary least squares (OLS) method is 262 

utilized to find the values of  and . We also extend the calculation to other flow conditions, as listed in 263 

Table.5, and nondimensionalization was done by the same method as illustrated in the above section. Again, 264 

 converges to 2 after being nondimensionalized, despite the changing of flow conditions. The confidence 265 

of such a regression model is quite high, as proved by the high value of the  in all configurations. However, 266 

impact of the time step is now more obvious in the open channel flow than that in the Couette flow. The 2nd and 267 

the 3rd columns show that a significant non-zero  can be estimated from simulations when the flow velocity is 268 

larger than 0.05 m/s, suggesting a positive impact of time step on the simulated error. Although the estimated 269 

coefficient  seems to be small, the modeled relationship between it and the measured MSE is strong and cannot 270 

be omitted, as indicated by the large t-statistics and the p-values associated with it. These results are consistent 271 

with Eq. 7. 272 

Table 5. Different conditions in open channel flow: Top, estimation and its fitness of , ;  273 

Bottom, nondimensionalization of ,  274 

 

0.01 0.05 0.1 0.01 0.01 

 

1 1 1 2 5 

 

6.83E-04 3.42E-03 6.83E-03 1.37E-03 3.42E-03 

 

0.0586 0.293 0.586 0.117 0.293 
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Coefficient  6.90E-03 1.70E-01 8.01E-01 2.52E-02 1.67E-01 

95% CI of  
[6.1E-03,  

7.8E-03[ 

[1.57E-01, 

1.83E-01] 

[7.28E-01, 

8.74E-01] 

[2.24E-02, 

 2.80E-02] 

[1.50E-01, 

1.84E-01] 

t-statistic of  16.110 24.989 21.436 17.638 19.256 

p-value of  0.000 0.000 0.000 0.000 0.000 

 

1.00E-04 1.35E-02 1.30E-01 7.00E-04 2.40E-03 

95% CI of   
[-1.54E-04, 

2.67E-04] 

[1.02E-02, 

1.69E-02] 

[1.11E-01, 

1.48E-01] 

[-3.42E-05, 

1.37E-03] 

[-1.91E-03, 

6.63E-03] 

t-statistic of  0.524 7.948 13.835 1.864 1.083 

p-value of  0.604 0.000 0.000 0.073 0.288 

 

0.9346 0.9798 0.9813 0.9491 0.9545 

Root mean square error 9.84E-06 1.56E-04 8.57E-04 3.28E-05 1.99E-04 

NonDimensionalize 

 
 

2.0121 1.9796 2.3318 1.8329 1.95 

  3.515E+04 1.35E+04 8.08E+03 4.16E+05 1.47E+06 

The  for different particles numbers are plotted in Fig.8. The red dots are the measured MSE from 20 275 

runs of the model, while the black line shows the predictions made with . It is clear that the larger 276 

number of particles leads to the smaller . Besides, the predicted black line can well fit the measured data 277 

with Rsq = 96.2%. 278 

 279 

Figure. 8 Predicted MSE compared with the measured MSE in open channel flow  (the dots represent the measured MSE, 280 
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while the solid line represents the predicted MSE by the error model with dimensionless parameter C1 = 2. The predicted 281 

MSE via the dimensionless parameter explained 96.2% of the total sum of squares of the measured MSE .) 282 

4. DISCUSSIONS 283 

a) Error due to particles number 284 

The random walk scheme, which tries to use a relatively smaller number of samples to approximate the 285 

probability distribution, belongs to the class of Monte Carlo methods. Monte Carlo methods are popular methods 286 

in many fields, and the error analysis of the Monte Carlo methods has been well studied. It is known that, as 287 

Mackay (2003) claimed, Monte Carlo methods are usually used to solve two problems: 288 

(1)  To generate samples   from a probability distribution . 289 

(2)  To estimate expectations of functions  under this distribution.  290 

Suppose a set of N samples  is generated from a probability distribution , we can then obtain an 291 

estimator  by using the following equation: 292 

 ( )

1

1ˆ = ( )


 
N

i

i

x
N

 (9) 293 

This estimator    is an unbiased estimator of the expectation of . Furthermore, the variance of   will decrease 294 

as , where is the variance of . 295 

In our case, given a known time-discretization, Euler discretization, and all other initial setups of a 296 

simulation, we are actually trying to use N particles to track their trajectories , and  here is the 297 

function for longitudinal dispersion coefficient.  is the estimator for   (i.e. ). Therefore, the left side of 298 

Eq. (9) is the simulated . The variance of the simulated , hence, will decrease as .  here, is the variance 299 

of . Since    is an unbiased estimator, the variance and the Mean square error (MSE) are equivalent. Thus, the 300 

MSE due to the limited number of particles, denoted as , will decrease as , i.e. . 301 

Since the initial conditions and other settings of simulations are fixed, the target probability distribution 302 

, although unknown, is a determined distribution. Thus, its variance  is constant. Therefore,  303 

can be expressed as , where  is a constant to be determined in different cases and is dependent 304 

on the variances of the . 305 

b) Size of the time step  306 
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The calculation of the longitudinal dispersion coefficient, which concerns the ensemble of the particles cloud 307 

rather than the exact trajectory of each particle, belongs to weak convergence approximation of SDE (Bally and 308 

Talay, 1996). It has been proved that the Euler scheme, one of the simplest discretization schemes and the one we 309 

used in the paper, converges with a weak order of 1, i.e. the mean square error because the time step is 310 

proportional to the square of , as indicated in Eq.7. This becomes noticeable in open channel flow case studies 311 

with a large flow speed. 312 

However, it is found in our simulations that, the size of the time step has little influence on the calculation of 313 

the longitudinal dispersion coefficient  in Couette flows. We may comprehend this by drawing an analogy 314 

between the mass transportation in flows and the motions of a group of antelopes. The distribution of this group of 315 

antelopes will stay all the same no matter they take a large or small step to jump, as long as the velocity of their 316 

motion and the total travel time is the same.  317 

Now we try to explain such degradation of Eq.7 from a statistical perspective. Without loss of generality, the 318 

one-dimensional scenario is taken as an example. The position of a particle is calculated as: 319 

  (10) 320 

We now consider two sizes of the time step, , , and . For simplicity's sake,  is also 321 

assumed to be constant, thus . As the velocity u is also a constant in a steady flow, the position of the 322 

particle calculated by  and  are given as below respectively: 323 

  (11a) 324 

  (11b) 325 

Taking  into Eq.11, the final position of the particle after the same time length will be 326 

  (12a) 327 

  (12b) 328 

where  as well as , ,…,   are all random numbers following a normal distribution with zero average 329 

and unit variance.  330 

What we care about here, as stated in weak convergence, is not the trajectory or the exact position of the 331 

particle, but the collective distribution of all the particles. Specifically, it is the longitudinal dispersion coefficient 332 

 that we want to predict. As calculated by Eq. 4,  is dependent on the variance of particles ensemble. From 333 
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the knowledge of statistics, it is known that 334 

  (13a) 335 

  (13b) 336 

Substitute Eq.12 and Eq.13 to Eq.4, it can be proved that  will stay the same despite the choice of the size of the 337 

time step, provided that the initial condition is all the same. This derivation ignores the diffusion effect in the 338 

simulations. Only in some certain and simple cases, such as in a linear flow-velocity profile, the calculation 339 

process of diffusion coefficient may absorb the diffusion effect and thus seem to be independent of the time step.  340 

5. CONCLUSIONS 341 

It is well known that the choice of the number of particles N, and the size of time step , is of vital 342 

importance in the implementation of random walk methods. The choice of these two parameters in random walk 343 

methods relies on the balance between the accuracy (measured as MSE) and the computational cost. In this paper, 344 

we present an empirical study on the reliance of the MSE of the longitudinal dispersion coefficient  on these 345 

two parameters in a quantitative approach. The following conclusions are made for steady flows: 346 

(1)  After nondimensionalization, i.e. normalizing  by the analytical value , the value of  347 

converges to a constant of 2 regardless of the flow conditions.  348 

(2)  For the Couette flow, the accuracy of the random walk simulations for the longitudinal dispersion 349 

coefficient seems to be independent of ∆t. However, when the velocity profile is highly nonlinear, extremely large 350 

∆t values will decrease the accuracy of the random walk simulation. 351 

Therefore, a relatively large time step  can be applied to minimize the computational expenses without 352 

compromising the accuracy for the numerical simulation of  in steady flows. However, the time step must be 353 

limited for the correct treatment of boundary conditions and source terms. Furthermore, given that the 354 

nondimensionalized value is valid for any flow conditions, the absolute value of  can be calculated 355 

as  . Once the analytical solution or empirical value of the dispersion coefficient  is known, the 356 

relationship between the accuracy of predicted  value and the computational parameters can be expressed by: 357 

 1
1

MSE c N  (14) 358 

This degraded error model provides guidance on the choice of the number of the particles needed to achieve the 359 

desired accuracy. On the other hand, it can be used to estimate the computational uncertainty  for a given 360 
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value of  in different flow scenarios. 361 

We are currently extending this research to unsteady flows, and the related details will be described in 362 

another paper. Both the dispersion coefficient and other parameters will be examined by our error model for the 363 

random walk simulations.  364 
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