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Discovering cause-and-effect relationships, the links between input parameters to an ex-
periment or simulation and the observed outcome, is fundamental to the aerodynamic design
process. An understanding of the underlying flow mechanisms responsible for these connec-
tions is the key transferable learning to be derived. The engineer’s domain knowledge is crucial
for flow-field data interpretation and, in design studies containing large numbers of cases, the
necessary human-data interaction becomes the bottleneck of the process. We demonstrate a
conceptual framework that accelerates this step by reducing the number of detailed flow-field
visualisation analyses and comparisons required to gain a full understanding of cause-and-
effect relationships. Our approach allows engineers to visually encode their interpretation of
flow-field visualisations by interactively adjusting the on-screen location of the data plots. To
identify potential cause-and-effect relationships, this spatial arrangement is then correlated
with the input and output metadata associated with each flow-field case. This approach is
suitable for any visualisation that includes aspects of the underlying physical processes, and a
web browser-based implementation is demonstrated. We introduce a freely available example
dataset consisting of unsteady CFD solutions of 2D turbine designs, illustrate the utility of the
spatial arrangement framework by applying it to the dataset, and demonstrate the advantages
and limitations of visualising unsteady data in the web-browser.

L. Introduction
In aerospace engineering, the analysis of flow-field data visualisations to uncover or explain behavior is a key part of
daily workflow. The NASA CFD Vision 2030 [1] report identified that,

"the CFD capability in 2030 must provide the analyst with a more intuitive and natural interface into the
flow solution to better understand complex flow physics and data trends ...", and

“A single engineer/scientist must be able to conceive, create, analyze, and interpret a large ensemble of
related simulations in a time-critical period.”

Modern computational fluid dynamics tools are capable of executing hundreds of simulations in a day. Individually
analysing large ensembles of flow-fields is time consuming, and a practical approach to data analysis is to work primarily
with metadata; high-level metrics (e.g. coefficients of lift, drag, loss,...) which summarise the data. However, this means
that large numbers of flow-fields are never analysed in detail, which in turn reduces the engineer’s understanding of
the design space. To address this, we propose an approach that allows the user to interact dynamically with the flow
visualisations when exploring the design space, while at the same time retaining a connection to high-level metrics to
answer questions the user may have during design space exploration.

Pullan [2] introduced a hierarchical approach to large flow-field ensemble exploration. The hierarchical approach
aims to reduce the amount of data the user is exposed to by trading quality for quantity - the user can be exposed to many
(thousands) of simulations represented only as high level metrics, called ‘metadata’, few (tens) simulations in detail, and
available levels in between. The trade-off between quality and quantity is achieved by first creating a series of interactive
plots with filtering capability. The user starts with a set of metadata plots, and can interactively select a subset of cases
of interest for which more detailed plots can be requested. With the new set of plots the user can repeat the filtering and
then request more data as needed. Thus at every step some quantity is traded for more detail. The hierarchical approach
by Pullan [2] discusses steady data, but can be extended to cover unsteady data also, as shown in Figure 1.

*Research student
Professor of Computational Aerothermal Design, AIAA Senior Member



Aerodynamic Data Hierarchy

Categorical oD 1D 2D 3D 4D
| v. U
>
©
©
]
¢ " /
B o
C o * X ‘ il
[
D () 1 ’ V
z |— 2\ e
g o 18 )
..é. —_ - 'y 4
= Metadata Vil ® ‘
o 19 3 | A
P e— P E— > m— » m—
Data with physical insights
Dataset Structure Cause-Effect Image Data Types
input output Avenues
S e i input co Gl Gl G

case 0 @] vee &) oo &)
case?@% ...@%%m El’ T CAD % R ey,

case 2 @@ (YY) @@@ooo ‘@ Photos ﬁ -@

output
... and many more P ... and others

Fig. 1 The data hierarchy adapted from Pullan [2], the structure of the dataset containing several cases, and
the available cause-and-effect relationships. The data level is based on the number of dimensions required to
position individual values on screen (e.g. each contour data point value is positioned using two dimensions: x
and y). Adding unsteady data moves all data types one level higher. Each case can associate input & output
metadata with several images. The output images capture the domain-specific mechanism behavior. The most
valuable relationships to discover are between metadata and output images. Image data could be visualisations
of CFD results, CAD geometries, or photos of the hardware itself.

Figure 1 shows an abstract view of datasets containing metadata and images, depicting process inputs and outputs.
Analysis of cause-and-effect relationships is possible based on pairs of input and output data. Potential causality
relationships need to be supported by a valid explanation of the behavior of the underlying mechanisms. In many cases,
these mechanisms are captured in images, for example flow-field contour plots. The input and output data can contain
several images and/or metadata variables. In datasets with many metadata variables, there may be several underlying
cause-and-effect relationships to discover, and systematically verifying them can be time-consuming. To effectively
analyze and verify cause-and-effect relationships, an intuitive, interactive user interface, allowing the user to match the
changes of physical features shown by the images with the corresponding metadata trends, is required.

Interactive positioning of images on-screen allows the user to create clusters of what they perceive are similar images.
By meaningfully arranging the images relative to one another, the user effectively encodes their interpretation of the
images into the on-screen position of the image. This ‘spatial encoding’ is the core interactive idea that is leveraged to
accelerate the exploration session.

Correlation is not causation: the system can identify correlation, but only the user can verify whether the correlation
helps explain the behavior. Our approach is to allow the user to interpret the data, encode their understanding, and
search for correlations with the metadata. If the user successfully verifies a correlation using their domain knowledge,
then they have found a cause-and-effect relationship. As the proposed process begins with the interpretation of the data



the onus is on the user to formulate a hypothesis, and then check it using the data, as opposed to initially searching for
most promising correlations, and then trying to formulate hypothesis to fit them.

The first contribution of this paper is a proposed generic two-part approach for accelerated identification of
cause-and-effect relationships through interactive on-screen spatial encoding:

1) Divide and explore. Image-based datasets typically include subset groups whose members are related.

Identifying these groups is a key step in the discovery of cause-effect relationships in large image-based datasets.
Based on the interactivity features demonstrated by Lekschas et al. [3], our approach enables the user to analyse
the entire dataset in an efficient manner.

2) Connecting spatial arrangement to input-output metadata. Inspired by investigators finding patterns in data
by arranging physical pictures on tabletops, interactive on-screen spatial arrangement of images is used to encode
the user’s domain knowledge. The resulting on-screen arrangement can be used to find correlated metadata
variables and recommend them to the user for consideration.

The second contribution of the paper is an unsteady data visualisation approach that allows interactive cause-and-
effect exploration of unsteady flow-field ensembles. An example unsteady ensemble dataset that is representative of a
task faced by an engineer is presented. Visualisations of unsteady data that allow the spatial arrangement approach to
be used are presented. Finally, the memory and data transfer limitations, and data storage approaches to tackle these
limitations are discussed.

Section II shows how the proposed approach to find metadata correlations with physical features works in practice,
and sketches how the two individual parts listed above would be used. These two parts are subsequently explained in
detail: Section III - Grouping images to divide and explore; Section IV - Connecting spatial arrangement of images
to input-output meta data. Section V shows how this approach can be applied to unsteady data at different levels of
detail. Interactive visualisation of unsteady data using a web-based approach is limited by the client memory, and the
connection speed which delivers the data to the client. This is most important for large unsteady contour plot data.
Section VI discusses which datasets can be smoothly viewed in the browser, the loading times the user can expect, and
data preparation strategies to increase the size of the grids that can be interactively visualised. Finally, an example
unsteady turbine design ensemble dataset is introduced in Section VII, and the approaches discussed throughout the
paper are applied to the example dataset in Section VIII.

I1. Conceptual overview of proposed workflow

To illustrate the benefit of the proposed approach, we use the example of an engineer studying the appearance
and behavior of corner separations (a type of three-dimensional boundary layer separation prone to form in the
suction-surface/endwall corner of a compressor blade row), in an example dataset featuring 590 compressor stator
design candidates [4]. The dataset consists of designs that result in three flow field ‘types’: with a corner separation at
the inner radius endwall, both inner and outer radius endwall corner separation, or no corner separation at all. The
dataset thus contains subsets featuring different configurations of corner separations, as well as differences in separation
sizes. The differences in size and type are driven by the blade lean angle, the number of blades in the row, and their inlet
angle. The basis for the exploration are the flow visualisations, in this case stator exit loss contours.

At the beginning of the exploration the engineer is presented with a ‘wall” of 590 contour plots, as shown in Figure 2
a). To organise the session, the contours can be arranged on-screen by similarity by dragging and dropping. The
contours can be piled on-top of one another to create groups of related contours, such as contours showing separation
both at the hub and the casing, as seen in Figure 2 b). To create a group of contours, the engineer can use a lasso tool to
select several contours, and select the ‘group’ option from the pop-up menu. Groups can be ‘entered’, which allows the
engineer to focus only on the members of the group, while temporarily hiding all other contours. The advantages of
creating groups during exploration are discussed in Section III.

The engineer is now interested to know aspects of blade design encourage the formation of corner separations, and
why some cases show two corner separations, and others only one. The engineer can interactively arrange the three
groups that represent individual flow field ‘types’ on screen, with the group showing no corner separation on the left,
and two corner separations on the right. The links between the on-screen position of the contours and the metadata are
used to identify ‘lean type’ as an important geometrical parameter, as seen in Figure 2 c¢). The same approach can be
used to investigate the design parameters linked to the size of the corner separations. Section IV discusses how spatial
encoding is used to find metadata related to the on-screen arrangement of contours.
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Fig. 2 1) The starting point is a ‘wall of contours’. 2) The user can organise the contours by grouping related
contours together. 3) The on-screen position of contours or contour groups can be used to encode trends and
find correlated metadata variables. 4) Groups can be enfered to continue a more detailed exploration within the
context of the group.

III. Divide and explore

The first step in the workflow of Figure 2 is to accelerate the analysis by separating images into meaningful groups
(e.g. by grouping all flow-fields with distinct flow features together, for instance by shock position, or separation point).
This aids the cause-effect discovery process in two ways: first, representatives of individual subset groups can be
correlated with input-output metadata to determine why the images show sets of different flow features, rather than
having to analyse each image separately; second, the smaller variations within a subset group can also be correlated
with the metadata to ease the identification of the mechanisms driving the detailed variations of the flow features. The
focus is on allowing the practitioner to use their domain knowledge to aid the process as much as possible.

One approach is to compare individual dataset members, and progressively improve the engineer’s understanding of
the dataset. When following this approach, all 590 images must be analyzed in detail to get a complete understanding of
the data. Alternatively, the engineer could first group the images by the type of corner-separation they exhibit, thus
allowing separate analysis of what causes different corner separations to arise, and differences between their sizes.
Instead of analyzing 590 images, the user can then analyse the causes of different corner separations using just 3 images,
and then analyse groups of 185 (hub and casing), 280 (hub), and 125 (no separation) images separately, within the
context of the individual flow-field types. The division of the analysis process into two steps, and the questions answered
at the different levels are shown in Figure 3. The separate analysis of smaller groups already requires fewer pairwise
comparisons of members to be made, thus accelerating the analysis. Furthermore, the similarity of taxonomy group
members allows subtle differences between members to be observed faster.
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Fig. 3 Instead of comparing all contours at once, 1.) form meaningful groups, 2) compare them to understand
the fundamental differences, and 3.) analyse the groups in detail separately.

What is causing different types of behavior?
What is causing different sizes of features?

IV. Connecting spatial arrangement to input-output metadata

Section III discussed how the analysis of an ensemble flow-field dataset can be split into two parts: identifying
flow-fields with different sets of features, and identifying the cause of the differences between comparable features. This
section describes an approach to aid the discovery of these correlations.

Trends can be found by separately analyzing either the metadata or the images in isolation, but working with both
simultaneously allows potential cause-and-effect relationships to be identified. The user can ask questions of the data in
two ways: by mapping from the metadata to the images, or vice versa.

The user may want to know how a metadata parameter impacts the features shown by the images (question mapping
from metadata to the images). By rearranging the images on-screen using associated metadata, the user can directly
compare the images to identify any trends associated with the metadata variable used for the arrangement [3, 5].
For datasets with hundreds of metadata variables, the process of sequentially arranging the images by one metadata
parameter, then the next, could be time-consuming.
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Fig. 4 The user spatially encodes their interpretation of the images by arranging them via dragging. The
Spearman rank-correlation coefficient is calculated to identify input-output metadata variables correlated with
the arrangement. A pop-up menu is used to present the calculated correlations.

The process can be accelerated by first identifying the changes that are visible in the images, and then finding the
associated correlations in the metadata (question mapping from the images to the metadata). This approach relies on the



analyst interacting with the data to encode their domain knowledge, such that the correlations in the metadata can be
found. We suggest that the encoding is done via on-screen arrangement of the flow-field images.

The discovery of metadata related to the on-screen arrangement pattern consists of two steps. The first step is to
interactively arrange the images on-screen into a meaningful pattern, and the second is finding variables that correlate
well with the arrangement in the x and y coordinate directions. The first step allows domain knowledge to be used to
interpret the images and encode the domain knowledge.

In the second step, shown in Figure 4, the correlation between the on-screen arrangement and the metadata variables
is calculated using the SRCC (Spearman’s Rank Correlation Coeflicient), which assesses how well the relationship
between two variables can be described using a monotonic function. The use of SRCC requires the user to arrange the
images such that the changes either decrease or increase monotonically in the vertical and horizontal directions. One
input variable of the SRCC calculation is a metadata variable, and the other is the vertical or horizontal position of the
small multiple on-screen. Therefore, the SRCC is calculated twice for every metadata variable.

As well as finding potential cause-and-effect relationships between the metadata and individual group members, the
spatial arrangement and correlation approach can also be used to study the connections between groups (piles) of images
and the metadata. After the piles are created, the task for the analyst is to explain the cause of inherent differences
between the piles. The approach discussed for analyzing individual images can also be applied to piles. The analyst
can spatially arrange the piles to form a meaningful trend or pattern, metadata variables correlated with the spatial
arrangement are automatically detected, and the analyst can use those as clues to generate a domain-specific explanation
for the observed pattern.

The cases corresponding to the images can have several images associated with them, each showing a different aspect
of the domain specific behavior. By creating piles based on one set of images, and then switching the view to another,
the user can see how insights created when analyzing the first set correlate with the second. In this way, on-screen
arrangement can be seen as a lens through which to look for cause-and-effect relationships between image-based data.

V. Unsteady data visualisatons

Sharing unsteady data is often done by first converting individual time snapshots into 2D images (regardless if the
time snapshot data is 2D or 3D), and combining the images into an appropriate file format for sharing, e.g. a MPEG
movie file. The rendering of 2D images in this way limits the opportunities for interaction. This is particularly restrictive
for 3D unsteady simulations, where the user may wish to adjust the view of the simulated geometry on-the-fly. For
example, commonly used sharing file formats do not support a reorientation of the domain, and the user is forced to
make a new file to view the domain from the newly desired viewpoint. Similarly, a new file has to be created for every
new iso-surface value, color scheme change, or color domain limits change.

Ideally, sharing unsteady data would preserve interactivity, be accessible without the need of specialised software,
and be quick and easy to view. We propose pursuing this vision using a web-based approach. By dynamically visualising
data in the browser the interactivity is preserved, sharing is done by sharing the link to the visualisations, and is
accessible from any machine with a browser and an internet connection.

Unsteady point and line data can be shown as the current timestep in the foreground, and an outline of all other
timesteps in the background, as shown in Figure 1. For scatterplots, the paths the points take with respect to time may
be an informative representation. By separating the unsteady scatter and line plots into multiple individual plots, each
showing the unsteady data of a particular case, the user can create groups of similar designs, as outlined in Section III.
Figure 5 shows examples of unsteady scatter and line plots and how they can be separated into individual axes.

An interactive visualisation of 2D contour snapshots from a LES simulation of a turbine blade trailing edge, from
Pullan [6], is shown in Figure 6. The demo features a central view showing the currently selected snapshot, and two
views on either side connected to it. The left view enables navigation between different snapshots by hovering the mouse
cursor over individual points, while the right view allows the user to extract and visualise data from a particular vertical
line in the domain. Furthermore, this demo demonstrates the ease with which unsteady data visualisations can be shared
over the internet.

A challenge of the approach shown in Figure 6 is that hovering over the points requires the user to look away from
the contour plot, which makes tracking motion of flow features harder. Adding a playbar, such as those found in video
players to navigate through time, removes the dependency on another plot, and allows the user to navigate the data
without taking their eyes off the contour. Figure 5 ¢) shows an example of such an unsteady contour plot.



Fig. 5 a) Unsteady 0D data. b) Unsteady 1D data. c) Unsteady 2D data. I.) A schematic representation of
a single unsteady task visualisation. The arrows indicate the change when the ‘play’ button is activated. II.)
Several unsteady 0D and 1D tasks at once. IIL.) Optionally splitting the plot into several individual plots. These
can be rearranged to look for correlations with metadata, and navigated along the play bar independently.
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Fig. 6 An unsteady data visualisation approach taken from Pullan [6]. The left view allows the user to navigate
between timestep snapshots by hovering over specific points. When a point is hovered over the central view
updates. The vertical line in the central view can be moved horizontally. Data from the central view along this
line is extracted on-the-fly and visualised in the right view.

VI. Data storage and memory handling
The data visualisations discussed in the previous sections are rendered in the web-browser using JavaScript and
WebGL. The amount of data that can handled using JavaScript depends, in part, on the particular JavaScript engine
version used, but a typical value for the V8 JavaScript engine used in Chrome and other Chromium based web browsers
is 4GB. Furthermore, this data needs to be transferred from the server to the client. The connection speed therefore
determines how quickly the user can start engaging with the interactive visualisations. Ideally, all of the requested data
would be presented simultaneously, and be ready in fractions of a second. These limitations are especially important to



consider when attempting to analyse flow-field data, which is typically larger than 1GB. For example, an unsteady 2D
flow field with 10° nodes and 100 timesteps is 1.2GB large if uncompressed (10° nodes x(2 spatial variables + 1 flow
variable)x4 bytes per value ). Simultaneously visualising 16 such cases is 4.8 times larger than the memory available.
Putting aside the browser memory limitation, and assuming a connection speed of 10M B/ s it would take 32 minutes for
all the data to be fully transferred.
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Fig. 7 The player displays the timestep snapshot closest to a given time, which allows datasets with different
timestep sizes to be played together. To be able to smoothly play through the entire domain in the browser either
all the data must be loaded in, the connection speed must handle loading the files on-the-fly, or a combination
of both. The chart can be used to determine whether a particular set of cases can simultaneously be played
smoothly, and how much time it will take to buffer the required initial data. The gray lines represent the
loading behavior when raw grid data, split into timestep snapshot files, is used for visualisation. The colored
lines represent the loading behavior for data transformed into a format aimed at rendering. The coloured lines
flatten out at low timestep numbers as an additional file must be loaded in to allow correct interpretation of the
data prepared for rendering. An interactive version of chart is available [7].

A simple way of splitting the data into smaller chunks is to separate the individual time-step snapshots into separate
files, allowing partial data to be loaded in for each of the desired cases. Continuing the example from the previous
paragraph, for 16 cases roughly 20% of the entire data can be loaded. Furthermore, at 10M B/ s, the first time-step data
is available in roughly 19.2s, and the user can interact with it while the rest of the data is being loaded. The time to
first interaction is slow, and approaches to accelerate it are discussed below. The time to download the maximum data
possible is 6.7 minutes, and depends only on the data size limit and the connection speed.

Another consideration is the data consumption rate; the number of time-step snapshots per second at which the data
is shown, and therefore the amount of data that the user moves through per second. When synchronously playing cases
with different time-steps, the cases with larger time-steps would move through their time domain faster. To account for
different time-steps the snapshots shown are selected by selecting the ones closest to a given time, as shown in Figure 7.

In cases where the entire data cannot be loaded at once, the consumption rate will determine whether the playing
will be interrupted to load the necessary data. If the data consumption rate balances the loading speed, shown as the
Loading = Consumption line in Figure 7, then the data can be played smoothly for any number of time-steps. If the
loading speed is lower than the consumption rate, but still sufficiently high (area below the SmoothPlaying Limit in
Figure 7), the required data can be loaded on-the-fly while the already loaded data is being consumed. Otherwise the
playing will be interrupted.

The chart in Figure 7 can be used to determine whether a particular dataset can be played smoothly, and how long
it takes for the required buffering data to be loaded. The y-axis represents the data size that needs to be transferred
to advance by one time-step snapshot. The y-axis value is a combination of the number of points in the domain, the
number of bytes required to encode the position and value of each point (for example (2 positional values + 1 flow
value)x4 bytes for float32 number representations), and the number of cases considered at the same time. The x-axis
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Fig. 8 a) A separate set of grid data is stored for every individual timestep. b) Assuming the grid geometry
does not change with time, a single set of x and y locations can be used for drawing all timesteps. An additional
‘indices’ array that prescribes how to combine the vertices to form triangles for drawing is created. c) The flow
property values of a single timestep are separated from the grid position data, which reduces the amount of
data that has to be loaded on-the-fly. A further reduction is obtained by encoding these value using only 8 bits.

is the number of time-steps in the dataset.

The equations shown in Figure 7 calculate the amount of available playing time (time used to move through all the
snapshots) as a function of the time already played are the basis for the chart. The intent is to have no more playing
time available just as the last snapshot is shown. For example, if consumption balances loading, then 4y 4i1apie > 0,
and datasets with any number of timesteps can be played smoothly. To calculate the maximum size of the data for a
single time-step snapshot, we can assume that the entire memory has been used to buffer the required data, and set
tavailable = 0 at t = Nyjmesteps/FPS, where FPS is the number of timesteps, or frames, played per second. By varying
Ntimesteps the smooth playing limit can be found. Any datasets that fall above this limit cannot be played smoothly in
the browser unless the memory limit is relaxed, the connection speed is improved, or the consumption rate is lowered.

As per the chart in Figure 7, 16 cases with 10% nodes (y = 16 individual timestep data of 12MB = 192M B and
x = 100 timesteps) cannot simultaneously be played smoothly, unless the timestep snapshot data is reduced. Figure 8
shows a two step approach to reducing the data, and preparing it for rendering on the GPU. Figure 8 a) shows the
individual timestep snapshot data. Each snapshot contains the x and y positions for each grid node, alongside the flow
variables of interest. Assuming that the grid node positions don’t change between timestep snapshots, the x and y grid
node positions can be stored separately from the snapshot data, reducing the snapshot size. Splitting the grid node
positions from the flow field values also allows this data to be prepared for rendering by the GPU before loading it into
the browser, thus saving the processing time. Figure 8 b) shows two new files that are created. The grid position data is
stored in vertices. The contour is drawn by the GPU as triangles. The data on which vertices together form triangles
that should be drawn is stored in the indices file.

The snapshot data can be reduced further by considering a different number encoding. By default the numbers are
stored as float32 using 4 bytes each. By remapping the values of a single snapshot to the range [0, 255] the values can
be saved using just 1Byte. The minimum and maximum values can be saved in the metadata file, and passed to the GPU
alongside the data. The GPU then maps the uint8 values back to the correct range. This compression technique reduces
the snapshot size by a factor of 4. Other compression techniques are available ([8], is a lossy compression scheme
capable of compressing the data up to 16 times without producing any perceptible errors in the visualisation). Including
such powerful methods of data compression could further improve loading performance, and thus allow cases with



larger domains to be visualised in a web-browser.

VII. Example dataset of 2D unsteady turbine simulations

Figure 9 shows different aspects of the example dataset consisting of unsteady CFD solutions of 69 2D turbine
designs, all with a degree of reaction of 0.5, and exit Mach number of 0.65. The CFD evaluation has been done using
Turbostream 3, a GPU accelerated unsteady RANS code [9]. The dataset is open [7], and contains the original flow
fields in npz compressed files, some extracted metadata, and files for rendering.

All designs were created using the same methodology, and the design was specified with only the flow coefficient,
and stage loading. The methodology did not attempt to optimise the designs, and it is likely that adjusting the aerofoil
shapes would increase their performance. The number of stators and rotors varies between individual designs. The
domain is created by stacking together grid blocks, one per each passage, as shown in Figure 9. Each block has 65 nodes
per passage width, and a 282 and 343 nodes in the axial direction for the stator and rotor blocks respectively. Alltogether,
the domain has on the order of 3 x 10° nodes, depending on the number of rotor and stator blocks. The unsteadiness
comes from rotors passing the stators. 72 timestep snapshots are available, which represent the time needed for the rotor
blades to pass a single stator passage height.
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Fig.9 A 2D contour showing the stator and rotor blocks. The sliding plane shows where the change of reference
frame happens. Metadata such as flow angles, entropies and efficiencies shown in the table, have already been
extracted from the unsteady flow-fields, both for the overall time-averaged solution and individual timesteps.
The design flow coefficients and stage loading were taken from the Smith chart [10], and points denote individual
designs. The coloured lines show the isentropic efficiency contours based on the overall isentropic efficiencies of
the example designs. The black and gray lines show the naming convention of the cases.

The black and grey lines in Figure 9 show the naming convention. The design names are sequential numbers from 0
to 68, and some are drawn in gray next to the points in Figure 9. The black outline shows the first 16 cases, which were
selected to bound the design space of interest. Points along the black line are labelled with their isentropic efficiencies.
The gray lines connect the remaining designs, with each gray line connecting all designs in an efliciency interval, for
example the area between 93% and 94% lines, as determined by the Smith chart [10]. The gray lines have the case
names for their starting design point printed below them, and show in which order the case names increase from the
starting point. The colorful contour lines represent iso-efficiency lines based on the design CFD evaluations, with the
higher efficiencies in blue, and lower efficiencies in red.

VIII. Demonstration visualisation of the unsteady dataset
In this section we demonstrate the merits of a web-browser based approach for visualisation and analysis of unsteady
ensemble data. The demo focuses on unsteady contour visualisation, as the data involved is larger than the scatterplot or
line plot data, and the visualisation and its sharing are therefore more challenging.
The cases in the example dataset have domains with roughly 3 x 10° nodes, and the data for a single timestep for a
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single case is therefore roughly 0.3MB. Figure 7 shows that a single case can be smoothly played within 1 second. A set
of 16 cases has a timestep data size of 4.8MB, and can be ready for simultaneous playing within roughly 30 seconds.
This demonstration is available online [7].

Unsteady player

0000 0001 0002 0003 0004

And many more ...

. Unsteady player

Unsteady player

000 0000 0001

0009
/)/7 Correlations

Fig. 10 A) The initial ‘wall of contours’. B) Timestep snapshots can be played by pressing the play button, or
the user can skip to a particular snapshot by clicking on the play bar. C) The user can use scroll to zoom in, and
click and drag to pan the view. D) By dragging the contours, the user can encode their interpretation of the data,
for example by placing contours with more mixed out wakes to the left, and less mixed out wakes to the right.
E) A button must be clicked to display the correlations. Clicking anywhere on-screen closes the correlations
view. F) Correlations are displayed as labels on a 2D axes. Clicking on the labels rearranges the cases in order
of the clicked variable either in the x or y dimension. G) Clicking on the whitespace and dragging creates a
lasso selection. After selection is complete the relevant cases are automatically piled together into a group. H)
A created group has three interactive elements on the side: a button to dissolve the group, a button to enter the
group, and bookmarks to switch between the case that is presented as the top of the group pile. I) When within
a group a button that allows the group to be left appears.
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Figure 10A shows the contours of the first 16 cases of the example dataset. When an example case is played, as
shown in Figure 10B, the stator wake entropy signatures can be seen to be cut by the rotor blades. Zooming in shows
more clearly how the cut wakes reach the rotor TE faster near the centerline of the passage, distorting its shape. The user
notices that for case 9 the stator wake pattern remains visible throughout the outlet, and only mixes out gradually, as
opposed to some cases where the mixing is faster, such as case 4. To see if this observation correlates with the calculated
isentropic efficiencies the contours can be arranged from left (case 4) to right (case 9) by the perceived mixing out of the
wakes. Figure 10F shows the Spearman rank correlation coefficient scores between individual metadata variables and
the on-screen position of contour images. The calculated scores are drawn as text labels on a 2D axes. The position
of alphayororour along the y-axis shows that the arrangement of contours in the vertical direction is not correlated
with this parameter. On the other hand, e f f,,01, seems to be reasonably correlated with the horizontal arrangement.
This is insufficient to claim that the patterns observed in the wake cause improved efficiency, but the correlation is
an interesting hint. The correlation score labels can be clicked to arrange the contours by a particular variable. The
direction in which the contours will be arranged (x or y) is the one with the currently larger SRCC score. For example,
by clicking on e f f},01y the contours are arranged in the horizontal direction by their polytropic efficiency while their y
position remains unchanged.

To continue investigating the correlation between observed wake patterns and efficiency, the user can group a subset
of designs with more pronounced wake patterns. A lasso selection is initiated by pressing the left mouse button when
over the whitespace and dragging. After a suitable area is selected the lasso is closed by releasing the left mouse button.
Any contours within the selected space are automatically piled into a group. Additional contours can be added to the
pile by dragging and dropping them over the pile. The bookmarks allow the user to switch between the contours shown
on top of the pile. The contours can still be played. By entering the group, the exploration is restricted to the members
of that particular group. Only the group members are visible to the user, and only these cases are used to calculate the
spatial arrangement correlations with the metadata. When within a group a button that allows the user to exit the group
appears in the top right.

If the user is satisfied that the interactive connection between the unsteady contour plots and the associated metadata
was sufficiently explained by the rotor outlet wake patterns they can select a different feature of interest to analyse. If
they are interested to analyse how the entropy is generated along the rotor chords they can open the separate unsteady
line plot demo [7].

IX. Summary

The understanding of cause-and-effect relationships is the main goal of aerodynamic ensemble dataset analysis. To
gain this understanding, the flow-fields need to be visualised, interpreted, and compared, which requires the engineer’s
domain knowledge. To accelerate the human-data interactions required to generate understanding, new approaches to
visualise and explore large ensemble datasets are proposed.

The paper first presents a conceptual divide & explore approach to structure image-based dataset exploration, and an
interactive approach to spatially encode the engineer’s domain knowledge have been presented. These two concepts
together allow a faster exploration of image-based datasets, and help the practitioner use their domain knowledge in the
search for possible cause-and-effect relationships.

The second part of the paper discusses unsteady data visualisation, and ways in which unsteady data can be analysed
using the divide & explore, and spatial arrangement approaches. The discussed web-based approach enables the
practitioner to analyse several unsteady simulations simultaneously, preserves interactivity, and enables easy sharing.
This can be particularly beneficial for whole flow-field ensemble data, which can be cumbersome to transport and
visualise en masse. We discuss approaches to prepare the data, and discuss what sizes of flow field domains can currently
be handled by the browser.

A typical workflow using the proposed framework is demonstrated for a new open dataset consisting of 69 unsteady
CFD simulations of 2D turbines is introduced.
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