
Exploring Brexit with dynamic spatial panel models :
some possible outcomes for employment across the EU

regions

1 Introduction

The paper aims to simulate potential outcomes for employment across 255
EU regions as a result of the impending and, at the time of writing, probable
departure of the UK from the EU, commonly known as Brexit. Most ana-
lysts agree that Brexit will have momentous consequences for the UK and
(remaining) EU economies, but there is very minimal analysis at the regional
scale, and analysis typically fails to account for interconnectivity at the re-
gional level. Some regional impact studies have been carried out by Dhingra
et al(2017), Los et al (2017 ) and McCann(2018), and the current paper
complements or contrasts with this research by applying a state-of-the-art
a dynamic spatial panel data model in which a pan-European approach is
adopted involving the majority of EU regions1 and all UK regions. This mod-
elling approach is ideally suited to capturing the impact of spatial intercon-
nectivity of the European regions and projecting the long-run consequences
of Brexit across EU and UK regions, thus enabling comparison of the impact
on both sides of the Channel and the Irish sea. To this end, we use the dy-
namic spatial panel data model and prediction equation recently introduced
into the literature by Baltagi et al(2018) and applied in different contexts by
Fingleton et al(2019) and Fingleton and Szumilo(2019). The model assumes
that employment in a given region depends on the levels of production and
investment within that region, as shown in the basic economic model which
underpins the estimating equation, and it also depends on demand coming
from all the regions of the EU and UK, as determined by interregional trade
flows. Additionally, the model proposes that employment levels in any re-
gional are closely linked to employment levels in the region in the previous
period, and on employment levels in trade-connected EU and UK regions in
previous period. Following this literature, a rational basis for the presence

1Although Switzerland and Norway are formally outside the EU, they are an integral
part of the analyis. Their regions are referred to as EU regions for convenience.

1



of spatial and temporal lags is introduced which more typically are ad hoc
in the spatial econometrics literature. In addition, the model takes account
of unobserved factors which also affect the level of employment. These are
captured by region-specific random effects which are also spatially interde-
pendent. An additional feature of the approach adopted is the way in which
endogeneity is handled, with the application of internal instruments in the
spirit of Arellano and Bond(1991), thus eliminating the often diffi cult search
for valid external instruments.
The focus of analysis is the so-called job-shortfall which could arise due

to Brexit. In other words, the intention is not to forecast what happens
to the actual levels of employment in each region, which would be the pre-
dicted change in the number of jobs, but to simulate what the impact of
Brexit would be assuming no consequential responses such as jobs created
by new trade links formed post-Brexit, changes to the UK’s competitivity
and consequences for demand and employment due to changes in exchange
rates and prices, changes to migration flows in and out of the UK, changes
in the competitivity of firms if trade barriers are increased and regulations
relaxed, and possible changes in levels of inward and outward investment
and capital stock if capital relocates. Contemplating these and other pos-
sible consequences enhance uncertainty regarding what might be the actual
change in the levels of employment in the UK regions, so in this paper the
focus is on attempting to simulate the job-shortfall due to Brexit per se.
Stated more explicitly, the empirical analysis bases the spatial interde-

pendence of levels of employment across different regions on how closely they
are connected in terms of trade. We assume that employment levels partly
reflect demand for a given region’s good and services coming from the UK
and EU regions. Naturally, since about 50% of the UK’s trade in 2019 is with
countries outside the EU, demand coming from these non-EU countries will
also affect the levels of employment. For both UK and EU regions generally,
we assume that the non-EU component of demand is reflected by the levels
of production and investment within each region. In this way we have at-
tempted to isolate the impact of reduced trade between UK and EU regions
from the potential effects of changes in non-EU trade on employment. In
the simulations, the non-EU trade flows and hence capital and output are
assumed to remain at the same level as previously, thus leading to our focus
on job-shortfall rather than job-loss or job-gain. Moreover, in an effort to
make the simulations robust, simplifying assumptions are made regarding
the impact of Brexit on trade flows between individual UK and EU regions,
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leading to a geography of the Brexit impact that is immune to changes in
the actual level of assumed trade.
More specifically, estimates are made of employment levels across N =

255 EU regions both with and without Brexit. The explicit drivers of em-
ployment are output and capital, which are approximated by Gross Value
Added (GVA) and a function of Gross Fixed Capital Formation (GFCF) re-
spectively. Estimation is based on a viable data series over the period 2001
to 2010. Data for 2011 and 2012 are not used in estimation but held for one-
and two-step ahead prediction. Different assumptions can be made about
post-2011 paths for GVA and GFCF, given that accessible data with the
same geography are not available over the more recent period, although it
has been found that these have relatively little effect on outcomes.
The structure of the paper is as follows. In Section 2 the model is out-

lined, and the data described in Section 3. Section 4 summarises the estima-
tor, and Section 5 the resulting estimates. Section 6 focuses on prediction
methodology, and Section 7 gives details of the method for simulating the
Brexit effect. Section 8 gives the simulation results and Section 9 concludes.
The Appendices in Section 10 give the theoretical basis of the estimating
equation, provides details of the outcomes from alternative estimators, and
summarise the Chow-Lin approach to obtaining an interregional connectivity
matrix. Section 11 list the references.

2 The Model

The reduced form used as a basis to simulate the Brexit effect assumes that
employment partly depends on level of output, as measured by GVA (Gross
Value Added), denoted by qt, and (a proxy for) the level of capital within the
region, based on GFCF (Gross Fixed Capital Formation), which is denoted
by kt. To show this we start with the theoretical model given as equation
(1), which is based on equation (30) given in the Appendix. The N by 1
vector edt is the density of employment per unit area, and at is the level of
effi ciency of labour at time t, so that the product edtat is the number of labour
effi ciency units. This is related to q̃t, which is a measure of output in the
competitive final goods and services sector in each region at time t,via the
constant parameters φ and γ̃,thus
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q̃t = φ(edtat)
γ̃ (1)

In order to obtain total output qt, it is assumed that q̃t = πqt, in which
π is an N by 1 vector giving the share of total output in each region that
is competitive final goods and services output. For simplicity of estimation
it is assumed that π is constant over time. Also the employment levels are
et = hedt in which h is the area of land in each region. Taking logs gives

lnπ + lnqt = lnφ+ γ̃ ln et + γ̃ ln at − γ̃ lnh (2)

Rearranging (2) gives

ln et =
1

γ̃
(lnπ + lnqt − lnφ)− ln at + lnh

To obtain (3) I assume that labour effi ciency at = qt
k̃t
, with more effi cient

labour having a higher level of output per unit of capital k̃t. As shown
below in equation (14), an approximation to the log level of capital is ln k̃t =

− ln ã+ b̃ lnkt, hence ln at = lnqt + ln ã− b̃ lnkt, and from this

ln et =
1

γ̃
(lnπ + lnqt − lnφ) + lnh− lnqt − ln ã+ b̃ lnkt (3)

Collecting together constants as c with ι an N by 1 vector of ones, and
reorganising gives

ln et = cι+
1− γ̃
γ̃

lnqt + b̃ lnkt + εt (4)

in which the error term εt captures the time-invariant regional hetero-
geneity in land h and in shares π, which are unobserved, as given in equation
(12).
In the dynamic context, it is reasonable to assume that disparities in

employment levels across locations will persist as an equilibrium outcome to
unchanging and fundamental causes. We therefore proceed, following in par-
allel the exposition in Baltagi et al(2018), to assume that (log) employment
levels across regions, denoted by the N by 1 vector ln et at time t will persist
at dynamically stable levels so that ln et = ln et−1 unless there are changes in
the levels of qt or kt, or changes in common factors, interregional trade, or
unobserved effects. If such a disturbance occurs at time t and is ephemeral,
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then ln et 6= ln et−1 but over a subsequent period of quiescence t → T then
once again we expect employment levels to converge on a new equilibrium at
which ln eT = ln eT−1. Assume data are observed where ln et 6= ln et−1 but
tending to converge, so that ln et = f(ln et−1), and an autoregressive process
is assumed, hence

ln et = ς + γ ln et−1 (5)

in which ς is anN by 1 vector and γ is a scalar parameter. In the long-run
with abs(γ) < 1, and with no subsequent disturbances, the process converges
to ln eT = ς

(1−γ) .
Consider next connectivity between regions in the form of a matrixW∗

N ,
which is is a time-invariant N by N matrix where N is the number of regions.
Spatial interdependence between regions is a feature of many different sit-
uations, and can be modelled either via an autoregressive process involving
the dependent variable, or via spatial interdependence of the errors, or by
both as in this paper. The problem of how to model dependence between N
regions is typically resolved by application of an N by N matrix of constant
quantitative values or weights assigned to the cells ofW∗

N which indicate the
existence and importance of a link between each pair of regions. In many
spatial econometric applications, connectivity the N regions will be some
function of the distance between them, be it geographical distance or some
measure of economic distance. In the paper we proxy economic distance by
the level of trade between each pair of regions, more trade equals shorter
economic distance. Usefully, W∗

N provides a parsimonious parametrization
for interdependence between in this case employment levels in different re-
gions. As explained by LeSage and Pace (2009), once we allow for depen-
dence relations between a set of N by N entities on a single variable, for
example as represented by the N by 1 vector ln et, there are potentially N2

−N parameters that define individual interdependence, such as the relation
between ln eit and ln ejt , having excluded dependence of an observation on
itself. This leads to an over-parametrization problem, which can be solved
by imposing an a priori structure, or weights matrix W∗

N , on the interde-
pendence relations, thus reducing the number of parameters to be estimated
from N2 −N to one, denoted here by ρ1. For purposes of interpreting para-
meter estimates we normalize by dividingW∗

N by the maximum eigenvalue
ofW∗

N to give
2 WN . Using this normalization, the maximum eigenvalue of

2The matrix WN retains (scaled) absolute levels rather than shares as the basis of
interregional connectivity, and we make the standard assumptions for a weights matrix,
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WN is 1, and the continuous range for which (IN − ρ1WN) is nonsingular
is 1

min(eig)
< ρ1 <

1
max(eig)

= 1,in which ρ1is a scalar spatial autoregressive
parameter.
Multiplying (5) by ρ1WN gives

ρ1WN ln et = ρ1WN ς + ρ1WNγ ln et−1 (6)

Subtracting (6) from (5) leads to another logically consistent expression
in which the spatial dependence implied by (6) can be seen in (7) as an
explicit cause of variation in ln et.Thus

ln et − ρ1WN ln et = ς + γ ln et−1 − (ρ1WNς + ρ1WNγ ln et−1)

(IN − ρ1WN) ln et = (γIN − ρ1γWN) ln et−1 + (IN − ρ1WN) ς

Writing θ = −ρ1γ gives

ln et = B−1N [CN ln et−1 +BNς] (7)

in which BN = (IN − ρ1WN) ,CN = (γIN + θWN) and IN is an identity
matrix of order N . In order to solve equation (7), given appropriate para-
meter restrictions, equation (7) converges to ln eT = (BN −CN)−1BNς.
Introducing additional covariates by writing BN ς = (cι+ xβ) , in which

cι is a constant N by 1 vector, x is an N by k matrix and β is a k by 1
vector, gives

ln et = B−1N [CN ln et−1 + cι+ xβ]

In order to maintain dynamically stable simulations, following Elhorst
(2001,2014, p. 98), Parent and LeSage (2011, p. 478, 2012, p. 731) and
Debarsy, Ertur and LeSage (2012, p. 162), requires the largest character-
istic root (emax) of B−1N CN to be less than 1. This restriction ensures that
employment converges to equilibrium levels

ln eT = (BN −CN)−1 (cι+ xβ) (8)

that it comprises fixed (non-stochastic) non-negative values with zeros on the leading
diagonal and its row and column sums are uniformly bounded in absolute value, and
maintain the same assumption for B−1N = (IN − ρ1WN )

−1 (Elhorst, 2014, p. 99).
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Additional realism is introduced in three ways. First, the restriction
that θ = −ρ1γ is removed since this greatly simplifies estimation. However
we anticipate that θ̂ ≈ −ρ̂1γ̂. Second, taking account of the variables in
equation (4), the time invariant matrix x is replaced by time-varying matrix3

xt. Third, spatially dependent unobservables are represented by the error
term εt. Although the system may, depending on B−1N CN , still tend towards
equilibrium, equilibrium will be continuously disturbed and new equilibrium
levels established as t varies. For simplicity of estimation, inter-regional
connectivity is assumed to remain constant over the estimation period. These
considerations lead to the model of employment levels4 given in equations
(9,10,11,12), which is a time-space dynamic panel data model, thus

ln et = B−1N [CN ln et−1 + cι+ xtβ + εt] (9)

Given x1t = lnqt, x2t = lnkt, x3t = ln et,xt = [x1t x2t x3t] and β =
[ β1 β2 β3]

T , equation(9) can be stated more explicitly as

ln et = cι+ γ ln et−1 + ρ1WN ln et + β1 lnqt + ... (10)

β2 lnkt + β3 ln et + θWN ln et−1 + εt

εt = ut − ρ2MNut (11)

uit = µi + νit i = 1, ..., N, t = 1, ..., T (12)

µi ∼ iid(0, σ2µ)

νit ∼ iid(0, σ2ν)

The presence of the district-invariant mean of the dependent variable et
attempts to allow for the presence of observed or unobserved common factors
affecting all districts at each point in time. This approach is motivated by
Pesaran(2015) who provides a major treatise on the different approaches to
modelling dynamic spatial panel data with common factors, and by Bailey
et al (2016) who ask, ‘to what extent are the observed dependencies between

3We assume that the elements of Xt are uniformly bounded in absolute value.
4Changes in employment levels are driven by changes in the fundamental variables

in the theoretical model, and could come about as a result of consequent changes in
unemployment rates, levels of economic activity, and the number of UK and international
inward and outward migrants.
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different spatial units due to common factors - for example, aggregate shocks
- that affect different units rather than being the result of local interactions
that generate spatial spillover effects?’. They propose the use of cross-unit av-
erages to extract common factors, an approach that has also been applied by
Fingleton et al. (2018) and Fingleton and Szumilo(2019). The introduction
of common factors to spatial econometric models has also been considered
by among others Vega and Elhorst(2016) and Ertur and Mussolesi(2016).
The disturbances εt capture the effects of the spatially dependent unob-

served variables, with a compound structure (12) comprising time-invariant
unobserved unit-specific interregional heterogeneity represented by µi with
i = 1, ..., N and unobserved idiosyncratic shocks represented by νit; i =
1, ..., N, t = 1, ..., T . These are assumed to be independent of each other
and are collectively represented by uit. It is important to recognize that the
µis represent the net effect of unobserved variables which in the short run
can be treated as time-invariant.
Most usually the assumption is that spatial dependence is an autoregres-

sive (SAR-RE) process, such that εt = ρ2MNεt+ut.However in this paper the
assumption for the error process is a spatial moving average process (SMA-
RE) as in equation (11), thus εt = GNut, where GN = (IN − ρ2MN) . This
means that the error process is such that a shock in a region affects only
neighbouring regions as defined by a row standardized interregional conti-
guity matrix5 MN . In contrast, an SAR-RE process would entail shocks
affecting all regions.There are two reasons for this. First, Assuming SMA-
RE rather than SAR-RE errors improves the predictive performance of the
estimator, as described in Section 6. Secondly, SMA-RE errors might proxy
for omitted spillovers, which otherwise might be captured by the spatial lags
WNxt. This is pertinent since the presence ofWNxt on the right hand side
of (9) could adversely affect estimation. As explained by Fingleton, Le Gallo
and Pirotte(2017) and Baltagi, Fingleton and Pirotte(2018), an SMA-RE
error specification ‘mitigates against the problem for instrumental variable
estimation identified by Pace et al. (2012)’. In two-stage least squares (2SLS)
estimation, the instrument set should comprise the ‘exogenous’variables (xt)
and their spatial lags (WNxt), and kept to a low order to avoid linear de-

5The matrixMN has ˜̃e−1max = 1,where ˜̃e is the vector of purely real characteristic roots
ofMN .OftenMN =WN ,otherwise we assume thatMN has the same properties asWN ,

and with the restriction that ˜̃e−1min < ρ2 <
˜̃e−1max = 1 one guarantees the invertibility of GN

as in equation(22).
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pendence and retain full column rank for the matrix of instruments (Kele-
jian and Prucha 1998, 1999). The performance of the estimation procedure
could be suboptimal, as explained by Pace et al. (2012), by includingWNxt
among the set of explanatory variables. This is because with spatial lags
(WNxt) among the set of regressors, then spatial lags of the spatial lags
(W2

Nxt,W
3
Nxt, . . .) feature among the instruments, and this could lead to

a weak instrument problem. To avoid this, SMA-RE errors are adopted as
an alternative way to capture local spillovers.

3 Data

In estimating equation (10), data for employment (et), output as measured
by Gross Value Added (GVA, qt) and capital as proxied by a function of
Gross Fixed Capital Formation (GFCF, kt), both denominated in €2005m,
are taken from the Cambridge Econometrics European Regional Economic
database, with observations over the 10 year period 2001 to 2010 used to
estimate the model. Data are also available for 2011 − 2012, but are held
back to allow out-of-sample prediction tests of the model and some rivals. kt
is used to reflect capital stock k̃t, for which data are unavailable, on the basis
of a simple relationship which is assumed to exist between the two variables.
kt measures gross net investment (acquisitions minus disposals of produced
fixed assets) in fixed capital assets and so provides an indicator of changes
to the stock of capital. The assumption is that kt is a non-linear function of
a constant fraction ã of k̃t so that

kt =
(
ãk̃t

) 1

b̃ (13)

hence

k̃t =
1

ã

(
kb̃t

)
(14)

As a test of the viability of this approximation, assume a standard model
for the evolution of capital stock which is depreciating at a constant rate d̃
so that

k̃t = kt + (1− d̃)k̃t−1; t = 2, ..., T (15)
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in which T is a large number. One problem with (15) is that it requires the
initial capital stock at time t = 1,i.e. k̃1. However given arbitrary values for
k̃1 and d̃, values for ã and b̃ can be found whereby (14) provides a reasonable
approximation to the outcome of iterations (15). A more realistic test is
provided by the existence of both (albeit experimental estimates of) capital
stock6 (Derbyshire et al, 2010) and of well-founded GFCF data. Using the
latest available data for both kt and k̃t, which is for the year, t = 2008,
and taking logs of (14), leads to a loglinear regression of ln k̃t on lnkt which
gives OLS estimates of the constant ln ã−1 = 2.4546 (t ratio = 13.5628)
and slope b̃ = 1.0195(t ratio = 50.8118),with R2 = 0.8888.The plot of lnkt
against ln k̃t shows a significant linear relationship and no evidence of outliers
or of heteroscedasticity It thus appears that the model given as equation
(13) provides a good approximation. The estimated ã = 0.0859 suggests
the approximate proportion of the capital stock that is invested, and, by
comparison,

∑
kt /

∑
k̃t = 0.0686.

The matrixWN is based on estimated bilateral trade flows between EU
NUTS2 regions. The data come from the PBL (the Netherlands Environmen-
tal Assessment Agency)7 who developed a new methodology which is close to
that of Simini et al (2012). Details of the methodology are given in Thiessen
et al. (2013, 2013a, 2013b), see also Gianelle(2014). The method follows a
top-down approach and therefore is consistent with the national accounts of
the different countries. Given the total international exports and imports on
the country level, interregional trade flows are derived using data on business
travel (services) and on freight transport (goods). Additionally, exports that
went to EU destination countries’final demand8 were also included. Trade
flows involving regions of non-EU countries Switzerland and Norway were
obtained on the basis of interregional trade flows estimated by the best lin-
ear disaggregation method of Chow and Lin(1971), which was initially used
to break down annual time series into quarterly series (see Abeysinghe and
Lee, 1998, Doran and Fingleton, 2014). In this, commencing with aggregate

6I am grateful to Cambridge Econometrics for providing this data.
7We are grateful to Mark Thiessen, who kindly provided the data. The data can be

visualized at http://themasites.pbl.nl/eu-trade/index2.html?vis=net-scores
81.Final consumption expenditure by households and non-profit organisations
2.Final consumption expenditure by government
3.Net capital formation
4.Inventory adjustment
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trade values9 between 21 EU counties, these were allocated to the NUTS2
regions. A parallel approach has been used by Polasek, Verduras and Sellner
(2010), Vidoli and Mazziotta (2010), and Fingleton, Garretsen and Martin
(2015). More detail of the method is provided in the Appendix. Finally,
OLS regression of the log PBL trade flows on log Chow-Lin trade flows pro-
duced parameters used to predict the missing PBL regional trade flows for
Switzerland and Norway using the values for these regions obtained via the
Chow-Lin approach. For estimation, the start-of-period trade flows for the
year 2000 is used. This year is chosen because it is the earliest available, so
it is treated as exogenous to et,qt and kt, for t = 2001 to 2010. Prediction is
based on the 2010 trade flows supplemented in the same way by Chow-Lin
data. Estimates are also given in Appendix Table A3 based on aWN matrix
constructed entirely from the Chow-Lin trade flows. These simply use great
circle distances and year 2000 GVA levels, and so are also be assumed to be
exogenous. The comparative predictive performance of each set of estimates
is discussed in Section 6.

4 Estimator for the time-space dynamic panel
data model

Comprehensive overviews of spatial panel econometrics are given by Pesaran
(2015, Chapters 29 and 30) and Baltagi (2013, Chapter 13) which highlight
its growing importance for the applied econometrician. The estimator used in
this paper, introduced by Baltagi et al(2018), adds to the available method-
ology by allowing a wider range of spatial interaction effects which include
the spatial lag of the temporal lag of the dependent variableWN ln et−1, thus
avoiding bias due to constraints necessary for dynamic stability and stationar-
ity, and also by allowing spatial moving average compound error dependence
rather than the usual autoregressive compound error process found in the
majority of spatial econometric models. The estimator, which is applied to
equation (9), is based on the earlier paper by Baltagi et al. (2014), which
extends the approach of Arellano and Bond (1991) by the introduction of
extra moments in line with the presence and availability of spatial lags (see

9They are downloadable from http://cid.econ.ucdavis.edu/data/undata/undata.html,
see also Feenstra et al. (2005).
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also Bouayad-Agha and Védrine, 2010). Since the estimator is described else-
where, a simple outline sketch is provided here focussing on the treatment
of regressors as predetermined rather than exogenous10. Hence in equation
(10), lnqt and lnkt are considered to be predetermined alongside endogenous
right hand side variables ln et−1,WN ln et−1andWN ln et and ln et.
Focussing on the endogenous dependent variable ln et, the instruments

include ln et lagged by two periods, and its spatial lagWN ln et also lagged
by two periods, so that the moments equations (16,17) hold assuming νit
is serially uncorrelated and E(∆νit,∆νit−2) = 0.Thus following Baltagi et
al(2007), with, we have

E (ln eil∆νit) = 0 ∀i, l = 1, 2, ..., T − 2; t = 3, 4, ...T (16)

E(
∑
i 6=j

wij ln eil∆νit) = 0 ∀i, l = 1, 2, ..., T − 2; t = 3, 4, ...T (17)

in which E denotes the expectation. Also, if we were to assume exogenous
rather than predetermined regressors (x1,x2) this leads to (18)

Zt =

 ln e1, ..., ln et−2,WN ln e1, ...,WN ln et−2,x11, ...,x1T ,
x21, ...,x2T ,WNx11, ...,WNx1T ,WNx21, ...,WNx2T ,

x31, ...,x3t−2,Wx31, ...,WNx3t−2,

 (18)

for t = 3, ..., T.Given that in (18) the regressors (x1,x2) are exogenous, the
moments equations are satisfied including the entire set
x11, ...,x1T ,x21, ...,x2T ,WNx11, ...,WNx1T andWNx21, ...,WNx2T regard-

less of time t. As explained in Baltagi et. al.(2018), additional instruments
can be generated via the matrix W2

N ,but for simplicity these are omitted
from the estimators used in the current paper.
Strict exogeneity rules out any feedback from past shocks to current val-

ues of the variable, and the need to accommodate feedback leads to the
preferred estimator based on predetermined regressors (see Bond, 2002, Pe-
saran, 2015). Predetermined regressors are contemporaneously uncorrelated,

10We show below that the assumption of predetermined regressors produces superior
one-step ahead predictions compared with assuming exogenous regressors.
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so that corr(xt,νt) = 0, but do depend on earlier shocks so that, for ex-
ample, corr(xt,νt−1) 6= 0.This means that an adjustment to ln e,which em-
bodies ν, at time t does not have an instantaneous effect on output and
capital investment time t but takes effect at t + 1 and later. This allows an
extension to the set of instruments (compared with assuming endogeneity,
where all endogenous variables are lagged by two periods), by the inclusion
of x1t−1,x2t−1,WNx1t−1,andWNx2t−1 so that

Zt =


ln e1, ..., ln et−2,WN ln e1, ...,WN ln et−2,

x11, ...x1t−2,x1t−1,x21, ...x2t−2,x2t−1,x31, ...x3t−2,
WNx11, ...WNx1t−2,WNx1t−1,WNx21, ...WNx2t−2,WNx2t−1,

WNx31, ...WNx3t−2


(19)

Given the set of instruments as in equation (19), these are used to ob-
tain initial estimates of γ, ρ1, θ, β1, β2 and β3, having first differenced the
data to eliminate the time invariant individual effects µ which are correlated
with the time and space lagged dependent variables. The resulting estimates
are then used to give estimated errors which lead to estimates of the pa-
rameters of the spatial moving average error process, namely ρ2, σ

2
µ and σ

2
ν

using moments equations given in Fingleton(2008). Given these, preliminary
one-stage consistent spatial GM estimates are obtained, followed by the two-
stage Spatial GM estimates of γ, ρ2, θ and β based on a robust version of the
variance-covariance matrix.

5 Estimates

Table 1 near here

Table 1 shows that the θ estimate for the spatial lag of the temporal
lag ( WN ln et−1) is not dissimilar to −γ̂ρ̂1, in line with expectation stem-
ming from an equilibrium process. Also the Table 1 estimates are station-
ary and dynamically stable, as shown by the largest characteristic root of
B−1N CN which is equal to 0.6874, and the stationary bounds for ρ2 are
ẽ−1min = −1.1239 < ρ2 < ẽ−1max = 1. Observe that the negative values of ρ̂2 im-
ply positive spatial dependence among the errors. Among the instrument set
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we have several endogenous variables, one is the dependent variable lagged by
two periods, ln et−2 , its spatial lag lagged by two periodsWN ln et−2, ln et−2
andWN ln et−2. To satisfy the orthogonality conditions and moments equa-
tions for these instruments, we require a lack of serial correlation in the νit,
in other words we need to satisfy the assumption that E (∆νit,∆νit−2) = 0.
Arellano and Bond(1991) give a test m2 = cov (∆νit,∆νit−2) /s.e. which is
asymptotically N(0, 1) under the null of no serial correlation. In our case
m2 = −0.9389 with two-tailed p-value equal to 0.3478. Thus we assume
that there is an absence of serial correlation as required. Note also that
m1 = cov (∆νit,∆νit−1) /s.e = −6.22 indicating significant first order serial
correlation as one would expect, since if the νit are serially uncorrelated, ∆νit
has first order moving average serial correlation. A second complementary
approach to testing the validity of the instrument set is via the application
of the Sargan-Hansen test of over-identifying restrictions, which is equal to
253.3.This is insignificant when referred to the χ2314 distribution, and while
this evidently supports the moments conditions implied by our dynamic spa-
tial panel model, one should be cautious because it may have low power given
the presence of many moments conditions (Bowsher, 2002, Pesaran, 2015).

Appendix Table A give the estimates of some rival estimators, including
one with SMA-RE errors but assuming exogenous regressors (Table A1),
and with SAR-RE errors assuming predetermined regressors (Table A2). As
noted in Section 6, the predictive ability of these rivals is not as good as
obtained via the preferred estimates summarised in Table 1.

6 Prediction

In order to support the preferred model summarised by Table 1, a cross-
validation strategy is employed to assess the performance of competing esti-
mators ‘by comparing their predictive ability on data which have not been
used in model estimation’(Anselin, 1988). Out-of-sample predictions of the
level of employment across regions are obtained for the years 2011 and 2012
using 2011 and 2012 data combined with the parameter estimates obtained
for data over the estimation period 2001 to 2010.
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Following Chamberlain (1984), Sevestre and Trognon (1996), and Baltagi
et. al.(2014, 2018), the linear predictor is

E [ln et] = B−1N [CNE [ln et−1] + xtβ + cι+GNE [ut]] (20)

in which E [.] denotes the expectation, so this can be seen to be identical
to equation (9) but with expectations. With regard to the estimate of the
time-invariant component of the error term µ, assuming a spatial moving
average error process gives equation (9) rewritten thus

εt = BN ln et −CN ln et−1 − xtβ − cι
GNut = BN ln et − CN ln et−1 − xtβ − cι (21)

ut = µ+ νt

µ(t) = G−1N (BN ln et −CN ln et−1 − xtβ − cι)− νt (22)

In order to obtain estimates µ̂(t) estimates ĜN = (IN − ρ̂2MN) , B̂N =

(IN − ρ̂1WN) , ĈN =
(
γ̂ + θ̂WN

)
and ĉ and β̂ are used along with random

draws from νt ∼ N(0, σ̂2ν). We then take the mean over time of the µ̂
(t)s for

t = 2, ..., T , subsequently scaling so that it has variance equal to σ̂2µ,thus
giving the estimate µ̂ of the time-invariant error component. The outcome
is the prediction equation (23) for T + 1 = 2011, in which x1T+1 = lnqT+1,
x2T+1 = lnkT+1, and x3T+1 = ln eT+1, t = 1, ..., T.

ln êT+1 = B̂−1N

[
ĈN ln êT + xT+1β̂ + ĉι+ ĜN µ̂

]
(23)

For two step ahead11, x1T+2 = lnqT+2, x2T+2 = lnkT+2 and x3T+2 =
ln eT+2.Figure 1 shows a close correlation between predicted log employment
ln êT+1and observed log employment, suggesting that the preferred estimator
giving the Table 1 estimates would be a good basis for simulating the impact
on employment following Brexit.

11Data limitations mean that for 2012, k in each region is estimated using each region’s
previous growth rate.
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Figure 1 near here

The preference for the Table 1 estimates is based on the mean of the

RMSE =

√
N∑
i=1

(ln ei,T+s − ln êi,T+s)
2 /N for s = 1, 2,denoted by RMSE. In

the case of Table 1, RMSE = 0.0781.Rival estimators (Appendix Table A),
give less accurate one- and two-step ahead predictions. In the case of assum-
ing SMA-RE errors and exogenous regressors, RMSE = 0.1791. Assuming
SAR-RE errors with predetermined regressors gives RMSE = 0.2890. Note
that in the case of SAR-RE errors, ĜN = (IN − ρ̂2MN)−1 in equations (20,
21,23). Table A also gives estimates relating to SMA-RE errors and pre-
determined regressors, but are based on WN derived using the Chow-Lin
approach. In this case RMSE = 0.2529,providing support for the choice of
WN based on the PBL trade data. Table A also give estimates based on
SMA-RE errors and predetermined (and exogenous) regressors, but with the
additional variablesWNx1,the spatial lag of lnq, andWNx2,the spatial lag
of lnk, withWN given by the PBL trade data. This is thus a form of spatial
Durbin specification, but with regressors xt = (x1t,x2t,WNx1t,WNx2t) the
additional covariates evidently cause a problem of weak instruments, giv-
ing dynamically unstable nonstationary estimates, as reflected by the largest
characteristic root ofB−1N CN equal to 1.0663 (1.9041) and, with x in equation
(22) and (23) RMSE = 7.4403 (3.0918). The same spatial Durbin specifica-
tion again assuming predetermined regressors but with ρ2 restricted to zero
gives a largest characteristic root equal to 1.1127 and RMSE = 3.3017. The
same spatial Durbin specification assuming exogenous regressors and with a
spatial autoregressive (SAR) error process gives a largest characteristic root
equal to 2.489 and RMSE = 20.9333.These results point to the viability of
the Table 1 estimates for prediction purposes.

7 Simulating the Brexit effect

The approach adopted is to use the parameters estimates in Table 1 to predict
the impact on employment of presumably reduced trade between the UK and
the remaining EU regions in the year 2020 and beyond. Attention is focussed
on 2020 and later, given that the UK’s formal exit from the EU is scheduled
for the first half of 2019, so 2020 will the first full year outside the EU.
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Given a lack of appropriate and accessible data, for instance with the same
geography as up to 2011, beyond 2011 employment could be predicted on
the basis of assumptions about the level of q, k and e in 2020.
From τ = 2020 onwards there are two scenarios, on based on the trade

flows assuming no Brexit effect, and the other assuming a Brexit effect
on trade flows, and the difference between them is taken as the Brexit ef-
fect. Regarding the no-Brexit effect scenario, this applies matrixWN ,which
is based on the latest available trade flows pertaining to the year 2010.
The prediction is then given by the solution to equation (24) with B̂N =

(IN − ρ̂1WN) , ĈN =
(
γ̂ + θ̂WN

)
and ĜN = (IN − ρ̂2MN) . Also xτ is an

(N by 3) matrix containing the forward projections lnqτ , lnkτ and ln e, thus

ln êτ = B̂−1N

[
ĈN ln êτ−1 + xτ β̂ + ĉι+ ĜN µ̂

]
(24)

The second scenario is to assume that bilateral trade between the UK
regions and the (remaining) EU regions is, for example, 2% lower than it
would otherwise be. Thus of the N = 255 UK plus EU regions, there are
N2−N = 64, 770 bilateral trade flows in any one year involving the regions.
With 37 UK regions and 218 EU regions, (2 x 37 x 218) = 16, 132 interre-
gional trade flows are assumed to be 2% smaller than under an assumption
of no Brexit effect. This Brexit-affected trade flow matrix is denoted by W̃N

which leads to B̃N =
(
IN − ρ̂1W̃N

)
, C̃N =

(
γ̂ + θ̂W̃N

)
and the prediction

equation
ln ẽτ = B̃−1N

[
C̃N ln ẽτ−1 + xτ β̂ + ĉι+ ĜN µ̂

]
Thus the % job-shortfall at time τ is ln ẽτ − ln êτ .
Using the equilbrium solution of (8), but also taking into account x at

time τ = T and ĜNµ, employment converges to

ln êT =
(
B̂N − ĈN

)−1 [
xT β̂ + ĉι+ ĜNµ

]
Similarly

ln ẽT =
(
B̃N − C̃N

)−1 [
xT β̂ + ĉι+ ĜNµ

]
Thus the % job-shortfall with long run convergence at time T is ln êT −

ln ẽT , hence
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ln êT − ln ẽT =

[(
B̂N − ĈN

)−1](
xT β̂ + ĉι+ ĜNµ

)
−[(

B̃N − C̃N

)−1](
xT β̂ + ĉι+ ĜNµ

)

One assumption might be that q, k and e in 2020 are at the same level
as observed in each region in 2011. An alternative assumption could be
that from 2011 onwards they grow at their historical rates, taken over the
period 1991 to 2011 in each region. On this basis on average the level of
q and k in 2025 is approximately 25% more than the 2011 levels. However
Table 2 gives simulation outcomes for the examples of Inner London and
Paris which illustrate the relative insensitivity of job-shortfall to assumed
regressor levels. The Table shows that doubling the level of q and k gives
equilibrium job-shortfalls that are only about 6% higher, as a result of the
same increases applying to both Brexit and no-Brexit outcomes. Table 2 also
shows that doubling the trade reduction in each region in effect doubles the
job-shortfall. It shows that doubling the % trade reduction, say from 2% to
4%, has the effect of doubling the job-shortfall in each region. Increasing the
% reduction by a factor of 8, going from 2% to 16%, increases each region’s
job-shortfall by a factor of 8. This means that ratio of Inner London to
Paris remains stable (which for this pair of regions is approximately 1.98)
regardless of what is assumed for % trade reduction. This stability of the
outcome ratio exists for any pair of regions so that maps of job-shortfalls
would be in a sense identical - identifying the same regions with large or
small levels giving constant outcome ratios - irrespective of the assumed %
trade reduction. This geographical stability is a result of the assumptions
made within the simulation exercise, with trade for all UK to EU trade flows
reduced by the same %. This means that the subsequent map patterns are
immune to the assumed reduction in trade, although the scales would differ
were we to focus on a trade reduction other than 2%. So in this way we see
we have an element of robustness in our simulations. Of course in an ideal
world one might wish to make changes to trade on an individual region by
region and sector by sector basis rather than assume that trade reduces by
the same amount across all regions and all sectors. However this is very much
the unknown, although some sectorally specific estimates are given below.
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Tables 2,3 near here

Sectorally specific Brexit impacts are obtained by assuming that trade in
specific sectors alone is restricted. While this is unrealistic, it is likely that
there will be sectorally differentiated impacts but it is diffi cult to know by
how much trade in manufactures, for example, will be reduced compared with
trade in services12. A simple approach is therefore to assume that a specific
sector is impacted by Brexit, but that there is zero impact on other sectors.
This highlights the geography of the sector-specific trade impacts, because
the sectoral trade patterns have different geographies and therefore the im-
pacts have different geographical distributions to the outcomes assuming a
global reduction across all sectors.

8 Results

The initial outcomes relate to a reduction in EU-UK trade of 2% across
all sectors. The predicted % changes in employment across the EU and
UK regions assuming the 2011 levels for q,k and e are shown by Figure 2.
This shows the dynamic paths for each region to 2050, with convergence to
steady state occurring after 2030. From this it is evident that the maximum
equilibrium job-shortfall is −2.56%,in the case of Inner London,with most
other regions falling below 1%. Figure 3 shows the geographical pattern of
the Brexit impact equal to ln ẽτ − ln êτ for τ = 2025, indicating a maximum
shortfall by 2025 of −2.34% (Inner London). The picture which emerges from
the simulation is that the negative Brexit impact is diverse across regions and
bilateral, with both UK regions and EU regions likely to see a job-shortfall.
Figure 3 shows larger negative impacts in regions with strong trading links
to the UK, most notably in the Ile de France (Paris) region (−1.19%), the
Southern and Eastern region of Ireland (−1.35%), and the Oberbayern re-
gion centred on Munich(−0.99%). Figure 4 gives the frequency distribution
of the Figure 3 data, highlighting the fact that despite some large impacts,
for about 160 of the 255 regions, Brexit is likely to have close to zero effect
on employment. Figure 5 shows that within the UK, Inner and Outer Lon-
don (−1.32%) are expected to have the biggest % shortfall by 2025, with
impacts generally higher along the Thames valley in Berkshire, Bucks and

12Excluding non-market services.
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Oxfordshire (−1.09%) towards Gloucestershire, Wiltshire and North Somer-
set (−1.19%). Generally %s are higher around the Greater South East and in
some of the large conurbations (Birmingham −0.78%, Manchester −0.76%,
West Yorkshire −0.67%) than in more rural and peripheral regions. Figure 6
gives the frequency distribution of the Figure 5 data, emphasizing the Inner
London outlier, with many regions having a job-shortfall of less than −0.5%.
As noted above, if one were to assume different reductions in trade other
than 2%, the outcomes for employment would be different, but proportional
to the 2% impact, so that the ratio of impacts in different regions and the
geographical pattern would be identical.

Figure 2,3,4,5,6 near here

Next consider the separate impacts on employment of restricted trade in
the manufacturing sector, defined as the production of Food, beverages and
tobacco,Textiles and leather etc, Coke, refined petroleum, nuclear fuel and
chemicals etc, Electrical and optical equipment and Transport equipment and
Other manufacturing. Simulating on the same basis, region paths converge
to equilibrium levels as with Figure 2, although the equilibrium levels differ
from those of Figure 2. We take a snapshot across the dynamic paths in
Figures 7 to 10, showing the % shortfall in employment in manufactures by
region for the year 2025. Figure 7 shows that the geography of the impact
due to 2% less industry trade is very similar to the overall pattern shown in
Figure 3. However a comparison of Figures 4 and 8 emphasizes the differences
in the levels of impact, with the maximum level in Inner London. Figures 9
and 10 show the % job-shortfall in the UK and Ireland. Again the impact in
the South and East of Britain and especially London is clear, and the effect
on Ireland remains pronounced.
We also estimate the impact of reduced trade within the manufacturing

sector. Of particular interest is the group of industries defined for trade pur-
poses as comprising ‘electrical and optical equipment and transport equip-
ment’, which includes the all-important production of vehicles. With tech-
nological development, we have seen the the geographical fragmentation of
production processes involved in vehicle manufacture, with the development
of spatially dispersed value chains as different elements of the production
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processes optimally located in different regions or countries. Also just in
time processes means that quick and easy access to parts and components
used in manufacturing vehicles is important, so interregional connectivity is
important, and any disruption of it due to increased barriers to trade will
have a significant impact. The impacts of a 2% trade reduction are sum-
marised by Figures 11 and 12, which picks out some of the production hots
spots. In Figures 13 and 14, the integrated nature of production and dis-
persed knock-on effects of reduced trade are evident from the relatively even
spread of impacts across regions.

Compared with industry, the impact of reduced trade in services13 is much
less symmetrical, with the bulk of the job-shortfall occurring in Britain and
Ireland. This is clear from Figures 15 and 16. Inner London clearly stands out
with the most significant projected job-shortfall compared with all other EU
regions, and apart from the South and Eastern region of Ireland, almost all
non-zero job-shortfalls occur in Great Britain. Figures 17 and 18 emphasize
the polarized effect of service trade reduction, with Inner London standing
out as an outlier. Outer London and Southern and Eastern Ireland see a
comparable effects, ahead of all other UK regions. Focussing on the highly
important Financial Intermediation sector, Figure 19 and 20 emphasise even
more strongly the assymetric impact on Brexit, with more than 200 non-
UK EU regions having almost zero job-shortfall. The most affected non-
UK EU region is the South and East of Ireland, followed by Luxembourg.
Figures 21 and 22 illustrate the role of Inner London in particular as a centre
for financial intermediation, but overall for the UK increased trade barriers
for this element of services seems to have a less profound impact on the
job-shortfall than the more geographically widesread and deeper impact of
reduced trade in transport equipment.

Figures 7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22 near here

13Distribution, Hotels and restaurants, Transport storage and communication, Financial
intermediation and Real estate renting and business activities
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8.1 Conclusion

The paper shows negative Brexit-induced impacts on employment which af-
fect not only the UK regions but also employment levels in EU regions,
especially those which are close trading partners. This pan-European inter-
regional interdependency is captured in the state-of-the-art model by spatial
and temporal interactions based on the best available trade flow estimates
which determine the strength of interdependence. This means that employ-
ment within a region depends on the levels of output and capital within the
region, but also on demand coming from other regions which are trading
partners. the impacts will be multi-way, what happens to employment in
London depends partly on what happens in Paris, which depends on what
happens Munich, which depends what happens in London, etc. The approach
adopted has been to assume a reduction in trade between EU and UK regions
which gives a corresponding reduction in demand for jobs. The predicted job-
shortfalls depend on the assumed global % reduction in trade between UK
and EU regions, but the modelling assumptions made ensure stability in the
geography of Brexit impact.
In the paper the impact of Brexit is measured in terms of the 2025 job-

shortfall, which is the reduction in the number of jobs in each region due
to Brexit assuming no alternative sources of employment are put in place.
This of course might be a false assumption, as the pro-Brexit lobby has
consistently emphasized the potential stimulus of new trade deals with other
non-EU countries. Therefore the Brexit impact as reflected in the maps
of job-shortfall indicate those regions which could be in greatest need of
alternative compensating sources of employment. Thus the paper is not
predicting a job-loss per se, simply a potential job loss without successful
alternative trade arrangements post-Brexit. Additional employment due to
trade diversion effects due to higher UK-EU trade barriers (Ortiz Valverde
and Latorre, 2018, Dhingra et al 2017a, and Krueger 1999) could possibly
be captured within the current modeling set-up via changes to the levels of
output and capital in each region, but these would be diffi cult to estimate
and there is some empirical evidence that they might be quite small (Krueger
1999, Magee 2018).
Key outcomes are as follows. First, Both UK and EU regions are neg-

atively affected, this is a lose-lose scenario. Second, the deepest most con-
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centrated impact is for the UK, many EU regions are barely affected, but
the South and East region of Ireland is the worst affected EU region, with
impacts on a par with the worst affected UK regions. In addition the Ile
de France, Oberbayern, Stuggart and Dusseldorf stand out as regions likely
to see significant job shortfalls. Third, in the UK, Southern regions, espe-
cially in and around London, and big cities are expected to see the largest
job-shortfall. Fourth, the effect of manufacturing trade reduction will be ev-
idently larger than for services, but the service impact is more asymmetric,
with the bulk of the job-shortfall focussed on UK regions, especially London.
This is even more the case when comparing the effect of trade reductions in
vehicles etc and financial intermediation.
Overall, the simulations suggest that the biggest Brexit impact on UK

regions will occur in the richer South East and urban areas, which is in line
with work from LSE based on GVA, which shows that ‘areas in the South
of England, and urban areas, are harder hit by Brexit. . . the areas that were
most likely to vote remain are those that are predicted to be most negatively
impacted by Brexit’(Dhingra et al, 2017b). This interpretation is in direct
contrast to other work which maintains that ‘the regions which voted Leave
also tended to be more dependent on Europe for their prosperity than the
regions which voted Remain’(Los et al, 2017 ).
Clearly Brexit is a complex phenomenon leading to diverse interpretations

of outcomes, as evident in the special issue of Papers in Regional Science
(McCann, 2018). The outcomes presented in this paper are based on model
assumptions, but it is argued that the main driver of the results are the data,
not imposed assumptions. Nevertheless great caution is needed in interpret-
ing the validity and value of any ‘prediction’effort. It is worth recalling the
words of Box and Draper(1986), “Essentially, all models are wrong but some
are useful”. David Spiegelhalter, Professor of the Public Understanding of
Risk at the University of Cambridge, refers to Donald Rumsfeld as the pa-
tron saint of Risk Analysis, who will be remembered for famously saying that
“but there are also unknown unknowns. There are things we do not know
we don’t know”. We should therefore put forward predictions with all due
humility, but clearly and without fear, because we don’t want to come across
as ‘dithering scientists’. In defence of the approach adopted, there is support
from the words of Pesaran(1990), who points out that ‘Econometric models
are important tools for forecasting and policy analysis, and it is unlikely that
they will be discarded in the future. The challenge is to recognise their lim-
itations and to work towards turning them into more reliable and effective
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tools. There seem to be no viable alternatives’.

9 Appendices

9.1 Theoretical background

The theoretical background to the model specification commencing with
equation (1) is derived from standard urban economics as given by Abdel-
Rahman and Fujita(1990), Ciccone and Hall(1996) and Fujita and Thisse(2002),
among others. The theory commences with a constant returns to scale Cobb-
Douglas production function for the output q̃ of the competitive final goods
and services sector

q̃ =
(
mβ̃i1−β̃

)α
h1−α

in which m denotes sector-specific labour effi ciency units and the level of
composite services is given by i,and h is area of land. Assume h = 1 then

q̃ =
(
mβ̃i1−β̃

)α
(25)

Assume that the equilibrium output of each service firm is ie and there
are g firms, depending on the total services effective labour. We obtain g by
dividing the total services effective labour by the effective labour per firm,
thus

g =
(1− β̃)ẽ

aie + s
(26)

In (26), (1− β̃) equals the services labour share of total effective labour ẽ
under competitive equilibrium in the labour market.For each services firm, we
have internal returns to scale, with s denoting the fixed labour requirement
and a the marginal labour requirement, so that aie + s is the effective labour
per firm at equilibrium. From the CES production function we obtain

i = gµ̃ie (27)
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where µ̃ is a measure of monopoly power in the monopolistically com-
petitive services sector, and µ̃

µ̃−1 is the constant elasticity of substitution.
Substituting i into equation (25) gives

q̃ =
(
mβ̃gµ̃−µ̃β̃i1−β̃e

)α
(28)

Substituting for g in equation (28) gives

q̃ = ẽα(β̃+µ̃−µ̃β̃)β̃
α̃β

(aie + s)αµ̃(β̃−1) i
α(1−β̃)
e

(
1− β̃

)−α̃µ(β̃−1)
(29)

which simplifies to

q̃ = φẽα(1+(1−β̃)(µ̃−1)) = φẽγ̃ (30)

This shows that with α = 1 there are increasing returns (γ̃ > 1) if ser-

vice firms are relevant to output in the competitive sector
(
β̃ < 1

)
and also

possess monopoly power (µ̃ > 1) . However α < 1 indicates that land is also
a relevant factor, and depending on the value of α a tendency to increasing
returns could be offset by the congestion effect caused by the restriction of
production to a unit of land, leading to γ̃ < 1 hence diminishing returns.

9.2 Other estimates

Table A near here

A1 : Assuming exogenous regressors, SMA-RE errors
A2 : Assuming predetermined regressors, SAR-RE errors
A3 : Assuming predetermined regressors, SMA-RE errors, Chow-Lin

WN

A4 : Spatial Durbin, predetermined regressors, SMA-RE errors
A5 : Spatial Durbin, exogenous regressors, SMA-RE errors
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9.3 The Chow-Lin approach

This commences with aggregate trade values between Ñ = 21 EU counties
(denoted by the square (Ñ × Ñ) matrix TÑ , in which the subscript Ñ means
national). There are Ñ = 21 unobserved intra-country trade flows, thus
giving p = 420 observations for the year 2000. The Ñ2 = 441 ‘observations’
are the dependent variable in a Weighted Least Squares regression model. All
observed trade flows are given the weight 1, and those unobserved weighted
zero. In terms of parameter estimates, an entirely equivalent procedure is
to estimate the 420 observed trade flows by OLS. In the regression, the
explanatory regressors are great circle distances between country pairs (GÑ),
and the product of each pair of country’s national GVA level (q̃Ñ) in the
year 2000, so that given the (Ñ × 1) vector q̃Ñ , QÑ = q̃Ñ q̃

>
Ñ
is an (Ñ ×

Ñ) matrix. Subsequently QÑ ,GÑ and TÑ are reshaped as (Ñ2 × 1) vectors
qÑ , gÑ and tÑ , and together with cÑ which is an (Ñ2 × 1) vector of ones,
these variables provide the input for the regression denoted by equation (31),
thus giving the estimates β̂Ñ . Interregional trade estimates are based on the
(national level) regression parameter estimates β̂Ñ and on the estimated
regression residuals êÑ . Thus, trade flows between regions, denoted by tR̃,
are obtained by applying the national level estimates β̂Ñ to the regressors
measured at the regional level, denoted by gR̃ and qR̃. Also, an equal share of
the national level residuals êÑ is added to regions corresponding to country
pairs. This process is summarised by the two equations:

ln tÑ = βÑ,1cÑ + βÑ,2 lngÑ + βÑ,3 lnqÑ + eÑ (31)

with log bilateral interregional trade flows ln tR̃ then being obtained using

ln tR̃ = βÑ,1cR̃ + βÑ,2 lngR̃ + βÑ,3 lnqR̃ + êR̃. (32)

To obtain the (R̃2× 1) vector êR̃, we calculate the (R̃× R̃) matrix V̂R̃ =

hR̂Ñh
> where h = d>(dd>)−1and d is an (Ñ × R̃ ) indicator matrix with

ones in each country’s row indicating which regions are within that country,
and zeros indicating those which are not. The (Ñ×Ñ)matrix of residuals R̂Ñ

is formed by reshaping the (Ñ2× 1) vector êÑ so that R̂Ñ(1 : Ñ , 1) = êÑ(1 :

Ñ), R̂Ñ(1 : Ñ , 2) = êÑ(Ñ+1 : 2Ñ), ..., R̂Ñ(1 : Ñ , Ñ) = êÑ(Ñ2−Ñ+1 : Ñ2).
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The outcome V̂R̃ is an (R̃× R̃) matrix containing the inter-country resid-
uals êÑ allocated equally to all regions corresponding to country pairs. Also
there are block diagonal zeros as a result of the unobserved intra-country
trade flows, and zeros across 4 rows representing 4 regions equal to the coun-
tries Estonia, Lithuania, Latvia and Luxembourg which were excluded from
the initial regression. Finally, V̂R̃ is reshaped as the (R̃2 × 1) vector êR̃ of

equation (32) to give ln tR̃. The resulting
(
R̃× R̃

)
matrix of interregional

trade flows isW∗
N = TR̃.
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