Geometric Functional Data Analysis

b A AESE A 44

44 =)

Eardi Lila

Emmanuel College
Department of Pure Mathematics and Mathematical Statistics

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

July 2019






Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text.






Abstract

In this thesis, we introduce a comprehensive framework for the analysis of statistical
samples that are functional data with non-trivial geometry. Geometry can interplay with
functional data in different forms. The most general setting considered here is that of
functional data supported on random non-linear smooth manifolds. This is a situation
often encountered in neuroimaging, where modern imaging modalities are now able to
produce structural brain representations coupled with functional information. Practition-
ers have commonly approached the analysis of such data with a two step approach. In the
first step the manifolds are registered to a template and in the second step the functional
information is analyzed on the template ignoring the registration step. The separation of
the two steps precludes studies aimed at understanding how geometric variations relate
to functional variations. On the other hand, functional data analysis has mostly developed
tools for simplified settings, such as one-dimensional functional samples, limiting their
applicability to real data. We formulate a model which is able to jointly represent geomet-
ric and functional variations. In this setting, modeling functional information requires
the formulation of models able to incorporate structural information on the geometry of
the underlying domains, with the aim of mitigating the curse of dimensionality. This is
achieved by adopting regularized models involving differential operator penalties. Model-
ing random smooth manifolds requires the formulation of models constrained to produce
‘sensible’ shapes, e.g. not self-intersecting. This is achieved by means of diffeomorphic
flows. The proposed models have been applied to real data to perform studies able to
relate structural changes to functional changes, and specifically, to study associations
between brain shape and cerebral cortex thickness. We can also deal with more complex
functional samples, themselves constrained to lie in a non-linear subspace. This is for
instance the case of covariance operators, describing brain connectivity, which are sym-
metric and positive semi-definite operators. Thanks to the proposed models, we are able
to model connectivity as an ‘object’ and study its variations in time or across individuals.
We also consider further extensions of this framework to the inverse problems setting,
which is the setting where each sample is a latent object, and only indirect measurements

are available.
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Introduction

Functional Data Analysis (FDA) is the branch of statistics concerned with the analysis of
random variables that take values in function spaces. These can represent, for instance,
curves, images or shapes. The statistical analysis of samples that are functions comes
with challenges unique to this setting. Functional data are in fact intrinsically infinite-
dimensional. The covariance operator, the analogue infinite-dimensional object to the
covariance matrix, is a compact operator, whose inverse is in general unbounded. There-
fore, multivariate approaches that rely on the inverse of the covariance matrix cannot be
straightforwardly extended to this setting.

Moreover, in practice, functional samples cannot be fully observed, but only discrete
measurements contaminated with observational errors are available. In FDA, it is thus
common to deal with the estimation of infinite-dimensional functional quantities, from a
finite number of measurements. To this end, some smoothness properties are assumed
on the latent functional objects and regularized models are often adopted to enforce these
properties.

As opposed to the multivariate setting, where there is a fixed and known correspon-
dence between each entry of the samples, functions can display both amplitude and
phase variability. Amplitude variability refers to ‘vertical’ variation, while phase variability
refers to ‘horizontal’ variation, e.g. shift or more complicated warpings of the domain.
Analyzing functional data requires models that can jointly represent amplitude and phase
variation, and possibly their relationship.

Despite the fact that FDA is now a mature field, and the issues aforementioned have
been to a good extent covered in the literature, functional data have been classically
assumed to be smooth functions on a fixed interval of the real line. This has shown to be a
great limitation to the applicability of the FDA methodology to modern complex datasets
arising, for instance, from medical imaging devices.

In medical imaging, and specifically neuroimaging, functional data are ubiquitous.

Structural imaging modalities, such as Magnetic Resonance and Computed Tomography
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Figure 1 Surface reconstructions of the brain’s left hemispheres of three different subjects,
with an associated scalar signal representing the cerebral cortex thickness of the subjects.
These have been reconstructed from 3D MRI scans of the subjects. The black area is a
region which is not part of the brain surface.

provide images that describe the structure of the brain. Functional imaging modalities,
such as functional Magnetic Resonance, Electroencephalogram and Magnetoencephalog-
raphy provide time-variant images describing the activation of the different parts of the
brain. These are functional data, which in their most simplified form can be formalized as
a population of n samples

(M, Y)Ni=1,...,n},

with {.#;} a set of potentially non-linear subject-specific domains, representing the struc-
tural information and {Y; : #; — R} a set of functions supported on {.#;} representing the
functional information. In Figure 1, we show an example of three of such samples, with
; a 2D surface representing the subject-specific cerebral cortex geometry and Y; a real
function representing the cerebral cortex thickness map of the same subject. The analysis
of the data in Figure 1, can be contextualized within the more abstract framework of
object oriented data analysis (Marron and Alonso, 2014), which is the analysis of complex
non-Euclidean objects.

In this thesis, we focus on the following questions. Ignoring for a moment the geomet-
ric variability and assuming the data have been registered to an 'average’ brain .4/, how
can we perform Functional Principal Components Analysis (FPCA) to optimally represent

the functions {Y; : 4 — R}, while incorporating geometric information on the domain .#
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where the data are supported? This would allow multivariate techniques to be applied
to the functional data in a subsequent step, overcoming the non-invertibility of the co-
variance operator. Moreover, if Y; are covariance functions describing the connectivity of
the brain, can our FPCA methodology deal with the non-trivial geometry of these objects?
Can these models deal with missing data, discrete noisy measurements, or indirect mea-
surements? Finally, in its full generality the data in Figure 1 present both subject-specific
geometric variations and functional variations. Can we jointly model geometries and
functions, and perhaps infer their relationship?

Formally, these problems share many similarities with the FDA problems mentioned
at the beginning of this section. For instance, the problem of modeling geometric and
functional variations could be regarded as a generalization of the problem of modeling
amplitude and phase variability of functional data. However, in FDA these questions have
been explored mostly in the simplified setting of 1D functional data supported on a fixed
interval. In this thesis, we develop a novel Geometric Functional Data Analysis framework
that bridges the current gap between the classical FDA literature and the complexity of

modern datasets arising from brain imaging techniques.

Thesis overview

In Chapter 1, we start by giving a brief introduction of the classical FDA setting, mainly
focusing on Functional Principal Component Analysis, a crucial tool for the analysis
of functional data. In Section 1.2, we follow with a concise review of the main modern
differential geometry notions, which play an important role in some of the methodological
aspects of this thesis. In Section 1.3, we give an overview on recent developments in the
analysis of functional data that present some non-trivial geometries.

In Chapter 2, motivated by the analysis of high-dimensional neuroimaging signals
located over the cortical surface, we introduce a novel FPCA technique that can handle
functional data located over a two-dimensional manifold. For this purpose a regularization
approach is adopted, introducing a smoothing penalty coherent with the geodesic distance
over the manifold. The model introduced can be applied to any manifold topology, can
naturally handle missing data and functional samples evaluated in different grids of
points. We approach the discretization task by means of finite element analysis and
propose an efficient iterative algorithm for its resolution. We compare the performances

of the proposed algorithm with other approaches classically adopted in the literature. We
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finally apply the proposed method to resting state functional magnetic resonance imaging
data.

In Chapter 3, we introduce a framework for the statistical analysis of functional data
in a setting where these objects cannot be fully observed, but only indirect and noisy
measurements are available, namely an inverse problem setting. The proposed method-
ology can be applied either to the analysis of indirectly observed functional data or to
the associated covariance operators, representing second-order information, and thus
lying on a non-Euclidean space. To deal with the ill-posedness of the inverse problem, we
exploit the spatial structure of the sample data by introducing a flexible regularizing term
embedded in the model. Thanks to its efficiency, the proposed model is applied to MEG
data, leading to a novel statistical approach to the investigation of functional connectivity.

In Chapter 4, we introduce a comprehensive framework for the analysis of functional
data, whose domain is a two-dimensional manifold and the domain itself is subject to
variability from sample to sample. We formulate a statistical model for such data, that
we call Functions on Surfaces, which enables a joint representation of the geometric
and functional aspects, and propose an associated estimation framework. We assess the
validity of the framework by performing a simulation study and we finally apply it to the
analysis of neuroimaging data of cortical thickness, acquired from the brains of different

subjects, and thus lying on domains with different geometries.

The works in Chapter 2 and Chapter 4 of this thesis, have now been published. A very
preliminary version of the work in Chapter 2 has also appeared in Lila (2014). The work in
Chapter 3 has been submitted for publication. The references to these papers are given

below.

Lila, E., Aston, J. A. D., and Sangalli, L. M. (2016). Smooth Principal Component Analysis
over two-dimensional manifolds with an application to neuroimaging. Annals of Applied
Statistics, 10(4), 1854-1879.

Lila, E., and Aston, J. A. D. (2019). Statistical Analysis of Functions on Surfaces, with an

application to Medical Imaging. Journal of the American Statistical Association, in press.

Lila, E., Arridge, S., and Aston, J. A. D. (2018). Statistics on functional data and covariance

operators in linear inverse problems. arXiv preprint, 1806.03954.



Chapter 1
Background

In this chapter, we start by giving a concise introduction to Functional Data Analysis
(FDA) as treated in classical textbooks (see, e.g., Horvath and Kokoszka, 2012; Hsing and
Eubank, 2015; Ramsay and Silverman, 2005), where the statistical samples are assumed
to be elements of the space of square-integrable functions supported on [0, 1], or more
in general on Q, with Q c RY a hyper-cube in R%. In Section 1.1, we first consider the
setting of fully observable functional samples. We then present recent advances in the
setting where only discrete and noisy measurements of the functional samples are given.
We follow with an introduction to the setting of indirectly observed statistical samples.
This is a generalization of the case of discrete and noisy measurements to more general
transformations of the underlying samples rather than simple discrete evaluations.

In Section 1.2, we give an overview of some basic notions of modern differential
geometry, which play an important role in extending the FDA methodology to deal with
non-conventional geometric functional data, such as functions supported, or taking
values, on non-linear spaces. In Section 1.3, we give an overview of the current literature

on the statistical analysis of geometric functional data.

1.1 Functional Data Analysis

1.1.1 Basic Setup

Consider the space of square-integrable functions supported on Q, i.e. L>(Q) = {f: Q —
R: [o|f()[?dv < oo} with the inner product (f,g) = [, f(1)g(v)dv and norm || f||* =
[ 4| f()*dv. As already mentioned, in FDA the support Q is typically a bounded interval
of R, e.g. O =[0,1].
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Consider now the random variable (sometimes referred to as a random function) X
with values in L?(Q) and define its mean u € L?(Q) and covariance Cx € L?>(Q x Q) to be

the (continuous) functions

u(v) =E[X](v), veQ, (1.1)
Cx(v,v) =El(X(v) — p() (X (") — p(@))], v,V eQ. (1.2)

The covariance function induces a covariance operator €y : L?(Q) — L?(Q), defined to be
6xg :fQCx(-, vgwydv,  geL*(Q. (1.3)

It is straightforward to check that the covariance function is symmetric, i.e. Cx (v, V') =
Cx (v, v) for all v, v’ € Q, and positive semi-definite, i.e. [, o Cx(v, V) f(v)f(v)dvdv' =0
for any f € L?(Q). Consequently, the covariance operator is a positive semi-definite
operator ((€x f,g) = 0 for any f € L?>(Q)) and self-adjoint (€x f,g) = (f, €xg) for any
f,8¢€ L[%(Q)). Moreover, it can also be shown that the covariance operator is compact.

Hence, the covariance operator admits the spectral decomposition detailed below.

Proposition 1. The covariance operator €x admits the spectral representation given by

Cx =) Kr{Wr, )Wr, (1.4)
r=1

oo

where {x 172 is the non-increasing set of real eigenvalues of €x and {y}72

1 the associated

set of orthonormal eigenfunctions, satisfying the set of equations
CxWr =K Yr, (1.5)

or equivalently,
fQCX(', VY, (Wdv =K,y (1.6)

The eigenvualues have zero as the only possible point of accumulation. The operator is said

to be of finite rank if the set of non-zero eigenvalues is finite.

Moreover, Mercer’s Lemma [Riesz and Szokefalvi-Nagy (1955)] guarantees that the
sequence {k,} of eigenvalues of €x and the orthonormal sequence of corresponding

eigenfunctions {y,} are such that

Cx(v,V) =) .y, Wy, ), vV eq, (1.7)
r=1
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where the convergence is absolute and uniform in Q x Q.
We have now set the basis to introduce a fundamental tool in FDA: Functional Principal
Component Analysis (FPCA). In fact, the spectral representation (1.4) can be used to

expand X as

X=p+) vy, (1.8)

r=1
where the random variables {;,(>,... are uncorrelated and are given by {, = (X — u, ¥ ).
The expansion (1.8) converges uniformly in mean square and is also known as the Karhunen-
Loeve (KL) expansion of X. This offers a convenient representation of the random variable
X, as it disentangles the deterministic infinite-dimensional components {y,} from the
finite-dimensional random variables {(,}, allowing, for instance, multivariate statistical
analysis to be performed on a finite truncation of the sequence {{,}.

The collection {y,} defines the strongest modes of variation in the random function X

and these are called Principal Component (PC) functions. In fact v is such that

Yy = argmaxf f ¢()Cx (v, V(W) dvdV',
¢rllpl=1 JQJQ
while v, for m > 1, solves an analogous problem with the added constraint of v, being

orthogonal to the previous m — 1 functions v1,...,¥;;-1, i.e.

Ym = argmax ff(p(v)CX(v,v’)(p(u’)dvdv'.
¢:lel=1 270
bwp=0 j=1,.., m—1

The random variables {1,(>,... are called PC scores. This property highlights the fact
that the KL representation is not only a convenient basis for the random variable X, but
its basis elements have an important property that aid exploratory data analysis on the
random variable X.

Another important property of the PC functions is the best M basis approximation. In
fact, for any fixed M € N, the first M PC functions of X satisfy

M 2
W= agmin E| {X—p= Y (X dmdm} (1.9)
{pmM_ (P p)=06m) E m=1

where 6§ ,,; is the Kronecker delta; i.e. §,,; = 1 for m = [ and 0 otherwise. Equation (1.9)

emphasizes the dimension reduction properties of FPCA and justifies popular approaches
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where FPCA is first applied to the functional data and this is followed by a multivariate

statistical analysis on the PC scores.

1.1.2 Fully observed functions

Suppose now we are given n samples, Xj,..., X, that are fully observed independent and
identical copies of the random function X taking values in [2(Q). Then, it is natural to
estimate the mean function u and the covariance functions Cx with the associated sample

mean and sample covariance function

Xw)=n!

n A , 1 & S / S

X;(v), CX(U,V):;Z(Xi(v)—x(v))(xi(v)—X(V))

i=1 i=1

for all v, v’ € Q. The estimates of the PC functions {{/,} and associated eigenvalues {&,} are

computed through the characterization

f Cx(, V) (v dv =&, (),
Q

which is in practice solved by discretizing the problem on a fine grid or by basis expansion.
The score vectors in the KL expansion (1.8) can then be trivially estimated by integration,
ie.

{r= fQ (Xi(v) - o), (v)dv.

Assuming E|| X I* < co and relying on the Central Limit Theorem in Hilbert spaces,
consistency and /7 rates of convergence have been derived for the empirical mean and
covariance (Bosq, 2000; Dauxois et al., 1982; Hall et al., 2006). If moreover x; > k2 > ...,
uniform convergence of the empirical covariance implies consistency of the empirical

eigenvalues and eigenfunctions (the latter, up to a sign factor) (Bosq, 2000).

1.1.3 Discrete measurements

In the previous section, the functional samples were assumed to be fully observable.
Although this could be a reasonable assumption for very densely sampled functions, it is
usually the case that, for the ith functional sample, only noisy evaluations on a discrete

grid of points v;,..., vip, are given, i.e.

Yij = Xi(vij) +€ij, j=L..,pi; i=1,..,n, (1.10)
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where the term ¢;; represents independent observational errors, with mean zero and
variance 2. Sometimes this setting is referred to as the longitudinal setting.

In the longitudinal setting, the aim is recovering the underlying PC functions and
PC scores vectors of the random variable X, from the noisy measurements Y;;. This
can be dealt with via three different approaches: the ‘Smooth-then-Estimate’ approach,
the ‘Estimate-then-Smooth’ approach, as named in Descary (2017), or the ‘Regularized-
Estimate’ approach. The idea of overtacking the classical ‘Smooth-then-Estimate’ ap-
proach dates back to Rice and Silverman (1991). A conceptually similar situation is also
encountered, for instance, when estimating smooth and monotone functions (Mammen,
1991; Mammen and Thomas-Agnan, 1999).

Smooth-then-Estimate

The ‘Smooth-then-Estimate’ approach is based on the two following steps. In the first
step, the observations associated to each function are smoothed individually, in order to
obtain smooth representations of X, ..., X;. In the second step FPCA is carried out, as
described in the previous section.

Smoothing is a very well explored topic in statistics, both from the non-parametric
regression prospective (Fan and Gijbels, 1996; Green and Silverman, 1994) and the spatial
data analysis prospective (Cressie, 1993). Popular smoothing approaches in FDA are
the least-square finite basis approximation and smoothing spline approaches, which we
briefly recall here. The smoothing step is executed separately for each functional sample.

Hence, we drop here the index i denoting the specific sample and focus on the problem
Yj:X(l)j)+£j, j=1,...,p.

The least-square finite basis approach consists of introducing a smooth K-dimensional
basis ~{bk}~1k<:1 on the domain Q, and defining a smooth estimate of X, that is X= lele Cre by
with
K 2
{Ck} = argminz (Y] - Z ckbk(vj)) .

leed k=1
Typical choices of the basis for one-dimensional domains of the type Q = [0, 1] are trun-
cated Fourier series and B-splines basis (Ramsay and Silverman, 2005). The amount of
smoothness on X can be controlled by appropriate choice of the basis function and the

truncation level K.
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An alternative approach to smoothing consists of formulating the problem in a com-

pletely non-parametric fashion, i.e. find a function f such that

X:argminZ(Yj—f(vj))2+/1f(Df)z, (1.11)
A | Q
with D an operator measuring the roughness of the function f, which squared and in-
tegrated over the domain offers a global roughness penalization term. The constant A
weighs the classical term measuring the least square misfit to the data and the penalization
term, and can be chosen either with data driven approaches, such as cross-validation,
or can be seen as an additional parameter allowing analysis on different 'scales’ (Green
and Silverman, 1994). A typical choice for D, for one-dimensional domains, is the second
derivative. In this case, the formulation (1.11) is also known as the smoothing spline
problem.

The smoothing spline approach is of particular interest to the methodology developed
in this thesis. In fact, by developing the necessary geometric tools we will be able to extend
formulations of the type (1.11) to more general, and possibly non-linear, domains.

Estimate-then-Smooth

In the case of highly sparse sampling schemes, individual recovery of the functions can-
not be pursued as there is no sufficient information to treat them independently. An
alternative approach consists of exploiting the unprocessed data to construct point-wise
estimates and then proceed with smoothing the point-wise estimates to recover the un-
derlying functional estimates.

For simplicity, suppose for the moment that the functional samples are evaluated on a

fixed grid of points vy, ..., v, € Q across samples

Yij:Xi(Vj)+£ij! j:L---!p; i=1,...,n,

with ¢;; independent observational error with mean zero and variance o2.
From the observations {Y;;}, at the locations 11,..., v, € Q, we can construct the point-

wise estimators

_ 12 ~ 12 _ _
Y(Vj):;;yl'j’ cy(vj,vl)zz;(m—nvﬂ)(m—nvn).
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The estimator Y (v ;) returns an estimate of u(v;), the mean of X at the point v;. Instead,
C‘y(vj, v)) represents an estimate of Cx (v, v;), the covariance function of X at (v;, vy),
only for j # 1, as Cov(Y;(v;), Y;(v))) = Cx(vj, v)) +0? for j =1 and Cov(Y;(v)), Yi(v)) =
Cx(vj,vp) for j # I. This is due to the presence of observational error. A standard strategy
(Yao et al., 2005) is to remove the diagonal from Cy. Finally, the mean p and covariance
function Cy can be reconstructed by smoothing, respectively, Y (v;) and Cy (the latter
post-diagonal removal).

A similar approach can be followed when the sampling scheme involves sample-
specific sparse measurements v;y,..., V;jp, for the ith sample. In this case, an estimate of
the mean function u can be obtained by smoothing the measurements {(Y;(v;;), vij):i =
1,...,n;j=1,..., p;}. Analogously, the covariance can be estimated by smoothing the ‘raw

covariance’
{((viwip =Y @) (Viwid = Y win)vijyva) i =1 jil =1, pis j # 1},

where the condition j # [ ensures that the estimates on the diagonal are discarded.

In the more general version of these estimators, a weight w; could be attached to each
term Y;(v; ;) and a weight z; could attached to each term (Y,-(v,-j) - f’(vij)) (Yi(viz) - 17(1/”)).
These can be chosen to put either equal weights on each observation (see, e.g., Yao et al.,
2005) or equal weights on each sample (see, e.g., Li and Hsing, 2010). A unified theory is
provided in Zhang and Wang (2016).

The PC functions estimates {{/,} and associated eigenvalues estimates {k,} can be
computed from the eigenanalysis of the estimated covariance function Cx. As for the
scores predictions, in the sparse setting, the integration formula |, (X;(v) - 2(v))§,(v)dv
might be ineffective, due to the low number of measurements per each curve. Therefore,
Yao et al. (2005) propose to reformulate the problem of estimating the rth PC scores
(ir with its best linear predictor, given the observations Y; = (Y;y,...,Y; pl.)T. LetY; =

(Y (vi1),..., Y (vip))T then the best linear predictor is
Cir=Re W] CHM Y - X)),

with ¥, = (W, (vi1),. ..,@r(vipi))T and [C‘y(vij, vi1)] a p; x p; matrix such that éy(Uij, vip) =
CX(vij, vip) + 6]-,162, where 62 is an estimator of the noise variance and 6j,=1if j=1Iland

zero otherwise.
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A further extension to situations where the noise term is rough, but has a non-trivial
(i.e. non-diagonal) covariance structure, has been considered in Descary and Panaretos
(2019).

Regularized-Estimation

Here we present a third approach, which is the most relevant to the methodology presented
in this thesis: the Regularized-Estimation approach. This consists in adding a penalization
term to the classic formulation of PCA, in order to recover a desired feature of the estimated
underlying functions.

In the setting of fully observable samples, Regularized-Estimation has been proposed
in Rice and Silverman (1991) and Silverman (1996). These formulations are based on the

variational formulation of FPCA formulated as the maximization of the quadratic form

Jo Jad) Cx (v, VP dvdy'
Jo?(wdv

(1.12)

In particular, for functions supported on Q = [0, 1], Rice and Silverman (1991) propose to

modify the formulation above with the maximization of

Jo oo Cx (v, VYW dvdv' — A [o(@" (v)*dv

(1.13)
JoP*()dv
Instead, Silverman (1996) proposes to maximize the alternative formulation
JaJa W) Cx (v, V(W )dvdv' 114

JoP*Wdv+A [o(@"(v)2dv

Both formulations introduce a smoothing penalty term which yields smoother PC func-
tions.

Consider now the discrete and noisy measurements setting and assume that the
functional samples are evaluated on a fixed grid of points vy,...,v, < Q, as in model
(1.10). Define the n x p matrix Y = (Y;;), the column vector Y = (% Z?:l Y;j) oflength p,
the n-dimensional vector z and the p-dimensional vector ¢ = (¢ (v;)). Let 1 denote the
column vector of length n with all entries equal to 1. The empirical counterpart of the

objective function in (1.9), for the first PC function, becomes

1 _
;IIY—IYT—HIJTII%, (1.15)
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where || - || is the Frobenius matrix norm, defined as the square root of the sum of squares
of its entries. This last formulation gives a natural way to deal with the fact that only
discrete and noisy evaluations Y;;,i = 1,...,n,j = 1,..., p of the underlying functional
samples are available. However, it does not incorporate any information on the smooth-
ness of the functional data. In fact, considering the Singular Value Decomposition (SVD)
of Y—1u” = UDV, it can be shown that the minimizing arguments of (1.15) are ¢ = [V].,
and z = [UD]. ;, respectively the first column of V and UD, which is a multivariate PCA
applied to the data-matrix Y.

Formulation (1.15) has shown great flexibility for the purpose of incorporating reg-
ularizing terms in the estimation of the PC functions, achieving joint estimation and
regularization. In the literature of sparse PCA, where sparse in this case refers to a high
number of zero entries, sparsifying regularization terms are introduced in the objective
function (1.15) (Jolliffe et al., 2003; Shen and Huang, 2008; Zou and Hastie, 2005). In FDA,
smoothing penalization terms are usually adopted. These encourage the underlying PC
function ¢; in (1.15) to be smooth. An example of a PCA model, for functions supported
on the one-dimensional domain [0, 1] € R, that explicitly incorporates a smoothing pe-
nalization term in (1.15), can be found in Huang et al. (2008). The authors propose to

minimize the objective function

%W—lYT—chTu%szzf H((/)’l’(v))zdv, (1.16)
with respect to (z,¢,). The subsequent PC functions are estimated by removing the first
PC function effect from the data matrix Y and then re-applying the model.

As already mentioned, most of the present literature focuses on functions supported
on domains that are intervals of R. Zhou and Pan (2014) propose a smooth FPCA model
for two-dimensional functions on irregular planar domains, by adapting the formulation
(1.16). Amini and Wainwright (2012) propose a regularized M-estimator in a Reproducing
Kernel Hilbert Space (RKHS) framework. In Chapter 2 we propose a generalization of the
model in Huang et al. (2008) to the case of real functions whose domain is a non-linear
two-dimensional manifold, leading to a model that can fully exploit the information on

the geometry of the manifold domain.

1.1.4 Indirect measurements

In the previous subsections, we explored different extensions of classical FPCA to situa-

tions where the functional data are not fully observed, but only noisy discrete measure-
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ments are available. In this section, we proceed with a further generalization of this setting
to the most general case of indirectly observed functions. For instance, in a number of
medical imaging modalities, the samples from our random variable of interest X are not
directly observable, but only indirect measurements Y; are given. These are assumed to
be generated from the model

Y =X X;+¢;,

where Y; and ¢; take values in an either finite or infinite dimensional space. The map
& is deterministic and assumed to be known and is usually referred to as the forward
operator. The term €; represents observational error. This setting is a generalization of the
sparse measurements setting, as taking .£” to be a vector-valued functional that evaluates
a function at p pre-specified points {v;} c Q, we obtain the generative model in (1.10).

In practice, we will assume that Y; and €; take values in the space of real s-dimensional
vectors and that the forward operator is of the type % : L?(Q) — R®. Here, we consider the
problem of estimating the PC functions {v,} of X, or equivalently the eigenfunctions of
%6x (which is the covariance operator of X), from the observations {Y;}. In neuroimaging
studies this is often an important task as if X is for instance a functional signal describing
brain activity, then €’x gives a description of the first-order connectivity of the brain.

In analogy with the discrete measurements scenario, there are three possible ap-
proaches to PCA in this setting: the ‘Reconstruct-then-Estimate’ approach, the ‘Estimate-
then-Reconstruct’ approach, and the ‘Regularized-Estimation’ approach. The most popu-
lar is the ‘Reconstruct-then-Estimate’ approach, where the problem of estimating the PC
functions {y,} is tackled in two steps. In the first step, estimates {Xi} of the functions {X;}
are individually computed from the vectors {Y;}. In the second step, the covariance func-
tion Cy is estimated from {X;} by use of classical estimators for fully observed functions,
i.e. spectral analysis of the estimated covariance operator. Given that in this approach
the reconstruction step is performed independently for each sample, we focus on the
problem

Y=AXX+e.

This is a well-studied problem within applied mathematics. Its main difficulties arise from
the fact that, in practical situations, an inverse of the forward operator does not exist, or
if it does, it amplifies the noise term. For this reason such a problem is called ill-posed.
Consequently, the estimation of X is generally tackled by minimizing a functional which
is the sum of a data (fidelity) term and a regularizing term encoding prior information

on the function to be recovered (see, among others, Cavalier, 2008; Hu and Jacob, 2012;
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Lefkimmiatis et al., 2012; Mathé and Pereverzev, 2006; Tenorio, 2001), i.e.

X = arginf||Y - X f|I> + A2 (f), (1.17)
feF
where || - || denotes the Euclidean norm and & : & — R™ is a penalty functional, e.g.

2(f) = | f1%, the norm of the functional space & < L*(().

The functional 22 encodes prior information on the function to be estimated, while the
data fidelity term ensures that the resulting estimated function X is such that % f is a good
approximation of the signal Y actually detected. The parameter A is chosen to optimally
weight the two terms, and many data-driven options are available for this purpose, as for
instance, cross-validation or the L-curve method (see, e.g., Vogel, 2002). Typical choices
for & are Sobolev (semi-) norms, which encode smoothness, or the total variation norm,
which allows discontinuity but penalizes for excessively oscillating functions.

Alternatively, when it is important to assess the uncertainty associated with the esti-
mates, a Bayesian approach could be adopted (Repetti et al., 2019; Stuart, 2010). More
recently, also the deep convolutional neural network approach has been applied to this
setting (Jin et al., 2017; McCann et al., 2017). Also, more complex penalty terms could be
considered, for instance, by adding terms that encourage the reconstruction to be sparse.

However, a Reconstruct-then-Estimate approach for the PC functions {y,} can be sub-
optimal. The main reason is that in the first step the estimations are made individually for
each signal X;, and information from the other sampled signals is systematically ignored.
Alternatively an ‘Estimate-then-Reconstruct’ approach could be adopted, where first the
PC components of Y are estimated, and subsequently the associated PC functions {y,} are
reconstructed with a formulation of the type (1.17). In Katsevich et al. (2015), driven by an
application to cryo-electron microscopy, the authors propose an unregularized estimator
for the covariance matrix of indirectly observed functions. This appears to work well in
their setting, however, to tackle more general ill-posed inverse problems, a regularized
approach is needed. In Chapter 3, we develop a Regularized-Estimation approach to
directly estimate the PC functions {y,} from the the data {Y;}. A more detailed review of

current works in this setting is provided in Section 3.2.1.

1.2 Elements of Differential Geometry

In this section, we give a formal introduction to the main geometric concepts necessary

to generalize the methodology presented in the previous section to geometric functional
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data. Geometric functional data will be either functional samples supported on non-linear
domains, e.g. where Q is a two-dimensional surface in R3, or functional data that lie on
a non-linear space, e.g. where the samples from X belong to a non-linear subspace of
().

We focus here on a concise exposure, while trying to develop an intuitive understand-
ing of the objects introduced. A more exhaustive treatment on the subject can be found in
classical textbooks (see, e.g. Chavel, 2006; Lee, 1997, 2012).

1.2.1 Differentiable Manifold

A differentiable manifold is a mathematical object modeling generalizations of geometric
entities such as curves and surfaces. In practice, the notion of a manifold is used in
this thesis to model the geometry of a variety of objects, such as, brain surfaces or more
abstract entities such as the space of covariance matrices. The choice to model the space
of covariance matrices as a manifold has its limitations, in fact, to handle covariances with
different ranks the concept of manifold stratification has been adopted in the literature

(see, e.g. Hotz et al., 2013, and references therein).

Figure 1.1 A two-dimensional manifold .# embedded in R3, representing a template of
the brain surface, with a coordinate chart (U, ¢) offering a local parametrization of the
portion U c /4.

Intuitively, a n-manifold (or a n dimensional manifold) is a set .# with a reference
system attached to it, i.e. one-to-one mappings from subsets U < .# to R". Formally, a
n-dimensional manifold is a second-countable Hausdorff space that is locally Euclidean

of dimension 7 (Lee, 2012). This means that for each p € .4 there exists a coordinate chart
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on ./ thatis a pair (U, ¢), with U an open subset of .4 containing p (the domain of the
chart), and ¢ : U — U a homeomorphism (i.e. a one-to-one continuous map) from U to
the open subset U = ¢(U) < R". Intuitively, the charts are local parametrizations of the
manifold and offer a way to ‘navigate’ the manifold. In Figure 1.1, we show an example of a
chart (U, ¢) parametrizing a portion of the manifold .# representing the brain geometry.

We are able to define a real function f : .4 — R on the manifold .#, by associating a
real number to each element p € .4, but how do we generalize the concept of a smooth
function supported on .4 ? To this purpose, we need to introduce additional structure on
A . Let (U, ) and (V,y) be two charts of .4 such that there is a point p € .4 that belongs
to both U and V. Itis natural to define the coordinate transformation from ¢ to v as the
function

yop L U—-V

We define an atlas < for ./ to be a collection of charts whose domains cover .4 and
we say that this is smooth (or that .4 is smooth) if any two charts (U, ¢) and (V,v) in «/,
such that U NV # @, have coordinate transformations v o (p_l that are diffeomorphisms,
i.e. smooth (C™) one to one functions with smooth inverse. Note that o ¢~! is a function
from an open subset of R” to R”, hence we have a notion of smoothness for such functions.
We define a smooth manifold to be a pair (4, <), where ./ is a manifold and <« is a
maximal smooth atlas, i.e. a smooth atlas not properly contained in any larger smooth
atlas. On a technical note, for smooth manifolds, although an atlas must be included in the
definition, multiple different atlases can give "the same" smooth manifold, however two
manifolds are equal if and only if they are equal as topological spaces. Requiring the atlas
to be maximal, makes the choice of & unique, in the sense that if (/, </) and (., </’) are
smooth manifolds such that the identity map from .4 to .4 is a diffeomorphism between
them, then «f = of’.

We are now able to define what a smooth function on a smooth manifold is. In fact,
suppose ./ is a smooth n-manifold, we say that f : .4 — R¥ is a smooth function if for
every p € ./ there exists a smooth chart (U, ¢) for .4 whose domain contains p and such
that f = fop™! :R"” — R¥ is smooth. Analogously, given two smooth manifolds .# and .#,
afunction F: .4 — A is said to be smooth if for every p € ./ there exist any two charts
(U, ) and (V,y), with p € U and F(U) € V, such that o Fo™!: p(U) — w(V) is smooth.
Given that for .4 a smooth manifold, the coordinate transformations are diffeomorphic,

the different charts ‘agree’ on the smoothness of a function f.
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1.2.2 Tangent vectors and Tangent spaces

A tangent space T,,.# at a point p € ./ is intuitively the vector space obtained by lineariz-

ing ./ around p. Consider a parametric curve y: I — .4, with I c R, such that y(a) = p.

In the simpler case where ./ is embedded in R/, i.e. .4/ c R, the range of y also belongs

to R!, and within this linear space we have a meaningful concept of derivative which is
(y(a+h) -y(@)

y(a) = }liir(l) 0 . (1.18)

The set of possible ‘velocity’ vectors y(a) defines the tangent space on p. The tangent
space on p € ./, for a two-dimensional manifold, is shown in Figure 1.2. However, in
general, a manifold does not come with a concept of ‘embedding’ space R’ and, in this
case, the equation above is not meaningful. This will lead to a more abstract definition of
tangent spaces.

Rl

Figure 1.2 Tangent space centered at p € /.

The main idea consists in relying on a different property of the standard derivative,
which is easier generalize to a generic manifold, and use this to define derivatives. Let
(U, @) be a smooth chart containing p € .. Let x' be the i-th coordinate of the R”-valued
function ¢ = (x!,...,x™) 7. Let f : U — R be a smooth function. Let f = fo¢~! and define
¥ = (L (D), ...,y (1), with ¥’ (£) = x*(y) . Using the fact that f(y(1)) = f(7(t)), we may
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define the directional derivative of f along the curve y to be

(1.19)

where we have exploited the representation in local coordinates {x'}.

Remark 1. From now on, in this section, we will rely on the Einstein's convention and omit

the summation ) over repeated indices. With this convention, equation (1.19) becomes

d _(0f) Ay
dtf(y(t))_(axi)y(t) dr

Let us consider this directional derivative as an expression of the function f. In other
words, we define the tangent vector y(a) to be the operator that, for a given curve y, maps

smooth functions to the real value % f ()| s=4. Then we may rewrite (1.19) as

'(a)—(w) = "'(a)(i) (1.20)
=14z p'_y Oxt p’ '

. i
where we use the notation y'(a) = d’;, [(t) . In other words, y(a) is a linear combination of

operators { (%)p }, with coefficients {7'/" (a)}.
Despite the abstract definition of a tangent vector, defined to be an operator acting on
smooth functions, it is important to intuitively think of these objects as ‘geometric tangent
vectors’. In fact, it can be shown that when the tangent vectors can be defined using (1.18)
there is a natural one-to-one correspondence between Equations (1.18) and (1.20).
Consider now all curves passing through the point p € .#. We denote the set of all

tangent vectors corresponding to these curves by T),.4:

Tp%:{cl(i) :(Cl""ycn)TE[Rn}'
ox' ),

This forms a linear space of dimension n. We call (%) the natural basis with respect to

the coordinate system ¢. For an element D € T,.# and for all smooth real functions f, g
and all a,b € R, D islinear (D(af + bg) = aD(f)+ bD(g)) and satisfies the Leibniz’s rule
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(D(f-8)=f(p)D(g)+ g(p)D(f)), known to hold for the standard derivative. In fact, it is
possible to define tangent vectors in terms of these properties. See Lee (2012) for a deeper
discussion on possible approaches to define the tangent space.

Now we would like to formally introduce the concept of a vector field on a manifold
A, aformalization of the one shown in Figure 1.3. To this purpose, denote with T.# =
Upe.u TpA# the tangent bundle, i.e. the disjoint union of tangent spaces. A vector field
is a continuous map X : .4 — T./ (p — X,), with the property that X, € T,,.# for each
p € A . Here, X, denotes the value of X at p. If X: .4 — T M is a (in general rough) vector
field and (U;{x}) is any smooth coordinate chart for .#; we can write the value of X at

any point p € U in terms of the coordinate basis vectors:

X, =X'(p) 2|,
x|,

This defines n functions X' : U — R, called the component functions of X in the given
chart. A rough vector field on ./ is a (not necessarily continuous) map X : .4 — T.#. We
are primarily interested in smooth vector fields, the ones that are smooth as maps from .4
to T/ (when T.# is given the smooth manifold structure, (see Lee, 2012, for details)).
It is standard to denote with X(.#) (or alternatively with I'(T.#4)) the set of all smooth
vector fields on ./ and define fX: .4 — T4 as (fX)p = f(p) Xp.

Figure 1.3 A smooth vector field X € X(.#) on the manifold .Z.

Forany X, Y € X(.#) and any c € R, the mappings X+Y : p— X,+Y,and cX: p— cX,
are also members of X(.#). Hence X(.#) is a linear space. In addition, for any smooth

real function f, the mapping f X : p — f(p) X, is a member of X(.#).



1.2 Elements of Differential Geometry 21

1.2.3 Riemannian metrics

In this section, we enrich smooth manifolds with further structure, with the aim of defin-
ing geometric concepts analogous to lengths and angles on linear vector spaces. For
manifolds, the appropriate structure is called the Riemannian metric.

Given a smooth manifold .#, for each point p € .4, we define an inner product
gp(D,D’) for D,D' € T4, to be a real valued map g, (D, D’) that is bi-linear, symmetric,

positive-definite and smooth in p. Given a Riemannian metric g on .4, we call (4, g)

a Riemannian manifold. In any smooth local coordinates {%}, alternatively denoted
as {(ai) pi= %}, the Riemannian metric g can be written in terms of the n x n matrix of

components {g;;; i, j = 1,-, n}, with g;; determined by g;;(p) = gp(ai g

xi’ oxJ

the tangent vectors D, D’ € Ty in terms of their coordinates as D = Di(a,-)p and D' =

). If we rewrite

D' (9;) p their inner product can be written as:
gp(D,D") = gi;(p)D' D,
and the length || D| of the tangent vector D is given by
IDI* = g»(D, D) = gij(p)D'D’.

We define g'/ (p) to be the (i, j)th component of the inverse of the matrix (g;;(p));;

(this also symmetric positive definite), i.e.
ik
gijg'" =0k

(in Einstein notation) and with 6;; = 1 if k = i and 0 otherwise.
Let now y : I — .4 be a parametric curve on the Riemannian manifold .#. We can

finally define its length ||y|| to be

dy .
= [| 5 ae= [ Vewiiac

where y' (1) € Ty(y.# is the derivative of y' = x' oy.

If 4 is a sub-manifold of the Riemannian manifold .# (intuitively, a manifold .4 that
is a ‘regular subset’ of .#), for each point p € .4, we may view T,.# as a linear subspace of
T, and hence an inner product g, on T,,.% naturally defines an inner product on T,/ .
Then, g|_4, denoting the induced inner product, defines a Riemannian metric on .#. This

is a standard choice for n-manifolds embedded in R’, as the one shown in Figure 1.1. It is



22 Background

common to say that we identify the tangent vectors of .# with the associated elements of

the embedding space R’.

1.2.4 Covariant derivative

In this section, we generalize the concept of directional derivative to vector fields. This
plays an important role in defining ‘straight lines’ on a manifold ..

Define an affine connection to be a map
VX (M) x X(M) — X(M),

written as (X, Y) — VxY, with the following properties
e Linearity in X: Vyx,1¢x,Y = fVx, Y +gVx, Y for f,g e C*(4)
e Linearityin Y: VxaY1+bY> =aVxY, +bVxY, fora,beR
e Leibnizrule: Vx(fY) = fVxY +(X[)Y for f € C*(4).

Despite the fact that a connection is defined by its action on objects globally defined
over ./ it follows from its definition that Vx Y|, depends only on the values of Y in a
neighborhood of p and the value of X at p. Thus, we have that VxY|, =VxY € T, 4.
This is a generalization of the directional derivative of Y at p in the direction of the vector
Xp. VxY is called the covariant derivative of Y in the direction of X.

Let {E;} be a local frame, i.e. a set of local coordinates, for T.4 on an open subset
Uc 4. Expand Vg, E; in {E;}:

Vi, Ej =T} Ey,

with T’ fj, i,j,k=1,...,nfunctions on U, called the Christoffel symbols. Using the repre-
sentation of a vector field in the local coordinates {E;} we canexpand X, Y e Xas X = X iEl-
andY = YjEj, and VxY as

VyY = (XYF +X"Yfr§j)Ek.

For a manifold .# embedded in a Euclidean space (this can be generalized, see e.g. Lee
(1997)), by requiring that the affine connection V must preserve the metric and must be
torsion free, we have that Ffj can be uniquely determined. Under these hypotheses, V is

called the Levi-Civita connection.
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A vector field along a curve y : I — . is a smooth map such that V(#) € Ty, for
every t € I. An example of a vector field along a curve vy is its velocity vector: y(f) € Ty .4
for each t. Let .4 be a manifold with an affine connection V, and let y be a curve in .4 . A
vector field V along a curve y is said to be parallel along y with respect to V if V;, V() = 0.
Note that there is a slight abuse of notation here, as we should instead use Vj V, with
V an extension of y in the neighborhood of y(#). It can be shown that the particular
extension chosen is not relevant. In practice, a connection defines a way to generalize
parallel transport on a manifold. In fact, the parallel transport of a vector u € T),.# along a
curve y can be defined as the collection of vectors u along the curve y such that Vy»u =0,
where y(f) € T (.4 . A pictorial representation of the parallel transport of a tangent vector
is given in Figure 1.4.

The acceleration of y is the vector field V;y along y. We call y a geodesic curve, with
respect to V, if its acceleration is zero: Vyy =0. Forany p € .4 and V € T),./, there is a
unique maximal geodesic (one that cannot be extended to any larger interval) y: I — .4
with y(0) = p and y(0) = V, defined on some open interval I. This maximal geodesic is

often called the geodesic with initial point p and initial velocity V, and is denoted with yy.

(Tpl M7 .gpl ) //

(TP2M7 9P2 )

Figure 1.4 Parallel transport of a vector in Ty, .4 onto T,/ alongy.

We have now defined geodesics, which are curves of zero acceleration, or alternatively
(locally) shortest paths. We have also seen how to define lengths of curves. From a statisti-
cal prospective, geodesics play a fundamental role, as we can define a distance d_y (w, w')
for w, w' € # that is the length of the shortest curve between w and w’. Thanks to the
concept of geodesic distance it is possible to introduce a geodesic mean for w;,..., ws € A
as

1 S
W =argmin- Y d?, (w;, p),
pE./ﬂ N i=1
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which generalizes the Euclidean mean. The geodesic mean is a particular example of
a Fréchet mean, which can instead be defined in any metric space .4 equipped with a
distance d as

1 S
W =argmin- Y d*(w;, p),
pE./ﬂ N i=1

with wy,..., ws € /.

1.2.5 The Exponential and Logarithmic map

Here we define the exponential map, which is important as it allows us to represent
elements in ./ in terms of associated elements on a tangent space, which is instead a
linear space.

Define the subset & of T4 as

& ={V e T :yy is defined on an interval containing [0, 1]}.
We define exp : § — ./, the exponential map, to be
exp(V) =yv(1).

Fora p € ./, we define the restricted exponential map exp,, to be the restriction of exp to
the set £, := &N T,.4. For any p € .4, there is a neighborhood V of the origin in T),.#
and a neighborhood U of p € .# (called normal neighborhood) such thatexp,: V — U is
a diffeomorphism. Given an element in V < T,.# we will be able to associate (uniquely)
an element in U c ./ and vice-versa. The inverse map from U to V is sometimes call

logarithmic map. An illustration is given in Figure 1.5.

(Tva gp)

Figure 1.5 An element exp ,(v) € .4 generated by applying the exponential map exp,, to
the tangent vector v € Ty 4.
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The exponential map can be used to define a set of ‘special’ coordinates on .. In fact,
an orthonormal basis {E;} for T),.# gives an isomorphism E: R" — T,,.# by E(x1,-,X,) =
x;E;. If U is a normal neighborhood of p, we can combine this isomorphism with the

exponential map to get a coordinate chart ¢ : U — R” defined as
_ -1 -1. n
@=E "oexp, :U—R",

which offers a convenient way to parameterize U c .# with a subset of R”. Any such

coordinates are called Riemannian normal coordinates centered at p.

1.2.6 Differential operators on Riemannian manifolds

Now we are finally able to introduce generalizations of differential operators to functions
or vector fields defined on manifolds. Specifically, we generalize the gradient, which for

a function f:R" - Ris V = (%, . ..,%), the divergence operator, which for a vector

field (fl,...,f”) R - R"isdivf = g—ﬁ +...+ gf:: and the Laplacian, which for a function
fiR'—RisAf:=divVf=2L+...+ L

02xn”

We also extend the definition of Laplacian to vector fields. Note that, for instance, in

the planar 2D case a matrix operator for a vector field u : R*> — R? can be defined as the

isotropic Laplacian operator
A0

0 A

)

where A is the Laplacian operator for real valued functions. The isotropic Laplacian
applies the Laplacian operator component-wise to a vector field in R?, exploiting the
fact that, in the Euclidean space R? there is a global reference system. The introduction
of an analogous operator for vector fields on a manifold is not straightforward for the
main reason that nearby vectors, living on different tangent spaces, cannot be compared
component-wise, as they are expressed in different local bases. The definition of such
coordinate independent operators for vector fields require the additional notions of
Riemannian geometry introduced in the previous sections.

Let now f : .4 — R be a real valued and smooth function on the manifold .#. Let
d f,(v) be its directional derivative at p in the direction v € T,,.# . The concept of direc-
tional derivative can be used to define (V_4 f)(p) € T,.#4, the gradient of the function
[ at p, as the element of the tangent space that satisfies g,(V_« f (p), v) = d f,(v) for all

v € Ty, which is a well-known property of the gradient in Euclidean spaces. It can be
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shown that (V_4 f)(p) € Ty can be expressed in local coordinates {x'} as

T of 0
V) (p)=g"(p) (@)p (ﬁ)p'

Let V be a smooth vector field on the closed manifold .4, where V(p) € T,.4. A
generalization of the divergence operator div 4, can be introduced by imposing that
Ly fdivyV=—-[,8,Vyuf,V)forall f e C®(A), this also a well-known property in
the Euclidean case. As in the Euclidean case, we can finally define the Laplace-Beltrami
operator as A 4 f =div_ 4V _4 f. This is related to the second partial derivatives of f on .#,

i.e. its local curvature. In local coordinates it can be shown that A 4 f (p) is of the form

1 ( d ) i of
R \/det(gij(l?))(_-) :
Jdet(gi(p) \0x/p ax/)p

with det(g; j(p)) denoting the determinant of the matrix (g;;(p)).

A Hp)=

When it comes to vector fields, we can define the Bochner-Laplacian operator, of a

smooth section v € X(.#4), as
AgL=V*V: X(HU)— X(MH) (1.21)

where V* is the L? adjoint of V.

The operators A 4 f and Ap; v define measures of local curvature and thus general-
izations of the second derivative for real functions f and vector fields v, respectively.
These will play an important role in defining smooth estimates for quantities that are real

functions or vector fields supported on a manifold ..

1.3 Geometric Functional Data Analysis

There are three main types of geometric functional data, reflecting how geometry and
functional data interplay with each other. We briefly recall them here.

The first setting is that of samples that are real functions supported on a non-linear
manifold M c R4, i.e. functional samples X; : .4 — Rwithi=1,...,n. An example of a
functional sample in this setting is shown in the first panel of Figure 1.6. Due to the high-
dimensionality of the data, and due to the presence of discrete noisy measurements or

indirect measurements, it is often necessary to incorporate smoothness in the estimation



1.3 Geometric Functional Data Analysis 27

of the underlying functional unknowns. Thanks to the geometric operators introduced in

Section 1.2, we will be able to achieve this in the context of FPCA.

TsM

Figure 1.6 From left to right, three different examples of geometric functional data. On the
first panel, a functional observation f : .# — R supported on the manifold .# representing
the geometry of the brain surface. On the second panel, a set of curves X (¢) taking values
on a manifold .# that is a sphere, i.e. X(t)|; € .4 for all t € 9. In the third panel, a
pictorial representation of the setting of functional objects taking values in a non-linear
space ./ . An example is the space of covariance operators. All three types of geometric
functional data are generally referred to as ‘functional data on manifolds’.

The second setting is that of manifold-constrained curves, where each sample X; is
a curve {X;(#), t € [0, 1]} that takes values on a non-linear manifold .# < R%, specifically,
X;(t) € A for all t € [0,1]. An example of such data are flights trajectories, with .#
modeling the geometry of the earth, as shown in the second panel of Figure 1.6. In the
context of FPCA, this setting has been considered in Dai and Miiller (2018), Lin and Yao
(2018) and Dai et al. (2018).

Finally, the third setting is that of manifold-valued functional data, where the non-
linearity is not simply a point-wise non-linearity, as opposed to the second setting. Exam-
ples include samples Xj,..., X;, where each sample is constrained to be a monotonically
increasing function, or a diffeomorphic function (smooth invertible map with smooth
inverse), or a covariance operator; therefore constrained to be symmetric and positive
semidefinite. A pictorial representation of this setting is shown on the third panel of
Figure 1.6. Examples of manifold-valued shape representations for parametrized curves
can be found in Kurtek et al. (2012); Srivastava et al. (2011). Examples of discrete shape
representations with non-trivial geometries are: landmark based shape representations
(see, e.g. Dryden and Mardia, 2016), skeletal shape representations (Pizer et al., 2013),
dihedral angles representations (Eltzner et al., 2018) and projective shape spaces (Mardia
and Patrangenaru, 2005).

The main methodological contributions of this thesis can be contextualized in the

first and third settings, namely in the setting of functional data supported on manifolds
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and manifold-valued functional data. Therefore, a review of the literature on the first
setting has been left to Chapter 2, while the third setting is covered in the second half
of Chapter 3, for functional data that are covariance operators, and in Chapter 4, for
functional data that are diffeomorphic functions. To give a more comprehensive view of
the recent works on the analysis of geometric functional data, in the next section, we also
review the manifold-constrained curves setting, which is the setting this thesis is only

tangentially related to.

1.3.1 Manifold-constrained curves

Let .4 denote a d-dimensional, geodesically complete (i.e. the exponential map is de-
fined on the entire tangent space) Riemannian manifold embedded in R%, e.g. a two-
dimensional sphere in R3, and let 9 c R be a compact interval of the real line. A first
branch of the literature on geometric functional data has focused on samples that are
random continuous curves with values on .#, i.e. random continuous functions from 9~
to 4, an example of which is shown on the second panel of Figure 1.6.

In Dai and Miiller (2018), an intrinsic Fréchet mean p_4 is considered, and this is
defined, point-wise, as

1. (t) = argminE[d 4 (X (1), p)*],
peH

with d , denoting the geodesic distance on .#. Existence and uniqueness of u 4 is
assumed to hold.

Define the log-mapped random functions
V(1) =log,, , ) (X(1) € Ty 04,

which can be shown to have zero mean (Patrangenaru and Bhattacharya, 2003). Thanks
to the fact that the manifold is embedded in R%, the elements of the tangent spaces can
be identified with R%. Hence, V() € R% for all ¢t € 9. Dai and Miiller (2018) perform
classical FPCA analysis on V (1), which for each 7 € 9 takes values on the tangent space

T, , 4 and thus belongs to a linear space. Thus, they obtain a KL expansion of V' that is

o0

V(D)= ) (rwir(D).
k=1
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From this they define the truncated approximation of the original process to be
K
Xic(1) = expy (0 ( ) cku/k(t)).
k=1

1.3.2 Estimation
The case of fully observed curves

Suppose we are given n independent fully observed functional samples Xj, ..., X}, identi-

cally distributed as X, the Fréchet mean is estimated by

- L&
fLu(t) =argmin— Y d 4 (X;(0),p).
pett T i=1
Existence and uniqueness of [i 4 are assumed.

The log-mapped data are estimated by V;(t) = log;, ;) (Xi(2)). These are such that
n! 1 V;(t) = 0 (Patrangenaru and Bhattacharya, 2003). The estimates of the PC func-
tions {{/;} are computed by eigen-analysis of the empirical covariance function Cy =
ntyr, Vi(t)V;(s)T, for s,t € I; The estimates of the PC scores are given by (;x =
Jo \7iT(t)1/7k(t)d t. The estimated truncated expansions take the form

K K
V=Y Ee(, K0 =expy 0 X Cedi(n)
k=1 k=1

Consistency and /7 rates of convergence are obtained for the empirical mean, i.e.

sup d. s (fa (1), phu (1)) = Op(n~1?)

teg

)

from which it follows that

sup | Vi (8) = Vi (D)2 = Op(n~ 13,

teg

with ||| denoting the Euclidean distance. Moreover, /7 rates of convergence are obtained

for the empirical covariance function, i.e.

sup [Cv(t,s) — Cy(t, ) F = Op(n~12),

t,se€T
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with || - | denoting the Frobenius norm. From this, consistency of eigenvalues and
eigenfunctions (defined on the tangent space, which is a linear space) follow by classical
arguments (see Section 1.1.2).

The use of the discrepancy measures || ‘7,-(1‘) —Vi(®)]l2 and | Cy(t,s)—Cy(t,s)|g, is pos-
sible thanks to the identification of the elements of the tangent space with the embedding
space R%. In general, for manifolds not embedded in R%, this is not possible as tan-
gent spaces at different points, are generally in different spaces, which are not directly
comparable without the introduction of further geometric notions (see discussion in
Section 1.2.4).

In Lin and Yao (2018), a very similar setting to Dai and Miiller (2018) is considered
and the same estimators are proposed. However, they replace the Euclidean discrepancy
measure with a fully intrinsic discrepancy measure, based on the idea of parallel transport.
This enables statistical analysis on a manifold .4 not necessarily embedded in a Euclidean
space.

Define two measurable curves a(f) and B(t) on .4, and two vector fields U(¢) and V (?),
such that U(1) € Tqn# and V(1) € Tgy# for all t € I. They define the discrepancy
vector field

UerV:=TapU-V,

with 'y g the parallel transport operator from Ty (.4 to T4, along the geodesics from
a(1) to B(¢). From I'y 5, we can define an operator ®, g such that, for a linear continuous

operator </, acting on vector fields along @, (®y p/)V =T /T, V. Here, '} s denotes

B
the I? adjoint operator of Ty, p- We can define a discrepancy operator, between </, acting

on vector fields along a, and 28, acting on vector fields along , as
A6 B:=Yqpd —B.

The discrepancy between the vector fields U and V is finally measured as |U er V|| B
and the discrepancy between the Hilbert-Schmidt operators «/ and 2 is measured as
ll«/ ©9 Al g, with || - | g denoting the L? norm of the vector field along fand |- [l g denoting
the associated Hilbert-Schmidt norm.

In terms of these discrepancy measures, the /7 rates of convergence are recovered for

the empirical covariance function, i.e.

16y 80 €vll, = Op(n~13),
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where %6y is ‘transported’ from being an operator acting on vector fields along fi(¢) to an
operator acting on vector fields along p(f). From this, consistency of eigenvalues and

eigenfunctions follow by classical arguments.

Discrete measurements

Suppose now the random curves Xj, ..., X,, with values on .#, are not directly observable,
but instead, each sample X; is measured at time points #;;, with j = 1,..., p;, and the

measurements are contaminated with observational error. Specifically, we observe
{(Yi(tij), tij),i=1,...,m;j=1,...,pi},

with Y;(t;;) € 4 and t;; ~ f, with f a density supported in 9~ and independent of X;. The

observations are generated by
Yij=expy ,q;ptViltij) + (i)},

with V;(¢;5) = logyiﬂ(tl_j)(Xi(tij)) and ¢;(¢;§) € Tﬂj[(tij)'/% independent error terms, with
isotropic variance o2 and E[¢; (¢; j)1tij] = 0. This is the setting considered in Dai et al.
(2018).

Although a Smooth-then-Estimate approach could be adopted to individually recon-
struct Xi, ..., X, from the noisy observations, this might be ineffective for very sparsely
sampled functions. For this reason, Dai et al. (2018) propose an Estimate-then-Smooth
approach. To estimate the mean, a geodesic version of the local polynomial regression

(Petersen and Miiller, 2019) is applied to the scattered measurements
{(Yi(tij), tip),i=1,...,m;j=1,..., pi},

from which the mean function fi_4 () is estimated. Once the mean function is estimated,
the original data are mapped onto the tangent spaces T ,;)-#, centered at i (t;;),
leading to the point-wise estimates V;(t; ) =log i) Y;;. Local polynomial regression,

for matrix-valued functions, is then applied to the scatterplot
{(‘Z’(tij)vi(tij)T; Lijs til)»i =L...mjl=1...pij# l}-

Scores prediction, as in the linear case, is tackled by applying, on the tangent space

representations, the Best Linear Unbiased Predictor introduced in (Yao et al., 2005).
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To the best of our knowledge a Regularized-Estimation approach has not yet been
employed in the context of discrete noisy measurements of curves taking values on a
manifold .# . The setting of indirect measurements has also not been explored, although

this does not appear to be relevant to the applications considered in this thesis.



Chapter 2

Functional Principal Component

Analysis over manifolds

2.1 Motivation

The recent growth of data arising from neuroimaging has led to profound changes in the
understanding of the brain. Neuroimaging is a multidisciplinary activity and the role
of statistics in its success should not be underestimated. Much of the work to date has
been to determine how to use statistical models in high-dimensional settings that arise
out of such imaging modalities as functional Magnetic Resonance Imaging (fMRI) and
Electroencephalography (EEG). However, it is becoming increasingly clear that there is
now a need to incorporate more and more complex information about brain structure and
function into the statistical analysis to enhance our present understanding of the brain.
Considerable amounts of the brain signal captured, for example, by fMRI arise from the
cerebral cortex. The cerebral cortex is the highly convoluted thin sheet where most neural
activity is focused. It is natural to represent this thin sheet as a 2D surface embedded
in a 3D space, structured with a 2D geodesic distance, rather than the 3D Euclidean
distance within the volume. In fact, functionally distinct areas may be close to each other
if measured with Euclidean distance, but due to the highly convoluted morphology of the
cerebral cortex, their 2D geodesic distance along the cortical surface can be far greater.
While early approaches to the analysis of hemodynamic signals ignore the morphology of
the cortical surface, it has now been well established [Glasser et al. (2013) and references
therein] that it is beneficial to analyze neuroimaging data through the processing of the

signals on the cortical surface using surface-constrained techniques.
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The goal in this chapter is to introduce a novel Functional Principal Component Anal-
ysis (FPCA) technique suitable for working with functional signals distributed over curved
domains and specifically over two-dimensional smooth Riemannian manifolds, such as
the cortical surface. The cortical surface can be extracted from structural Magnetic Reso-
nance Imaging (MRI), a non-invasive scanning technique used to visualize the internal
structure of the brain, rendering it as a 3D image with high spatial resolution. The signal
of interest, which we want to analyse with respect to the surface, comes from fMRI, which
detects a Blood Oxygen Level Dependent (BOLD) signal [Ogawa et al. (1990)] as a series of
repeated measurements in time, yielding a time series of 3D images. An increased neural
activity in a particular area of the brain causes an increased demand for oxygen. As the
fMRI signal is related to changes in the relative ratio of oxy- to deoxy-hemoglobin, due to
their differing magnetic properties, the signal captured within an fMRI scan is considered
to be a surrogate for neural activity and is used to produce activation maps or investigate
brain functional connectivity. The fMRI signal of each individual related to the neural
activity in the cerebral cortex is generally mapped on a common template cortical surface,
to allow multi-subject statistical analysis.

In this work, in particular, we will focus our attention on functional connectivity (FC).
FC maps, on the cortical surface, can be constructed computing the pairwise correlation
between all vertex’s fMRI time-series and the mean time-series of a region of interest. The
resulting FC map for each subject provides a clear view of areas to which the region of
interest is functionally connected.

In practice, the template cortical surface is represented by a triangulated surface
that can be considered a discrete approximation of the underlying smooth compact two-
dimensional Riemannian manifold .# < R® modelling the cortical surface. See Section 1.2
for a formal definition of a Riemannian manifold. Each resting state FC map can be
represented by a function x; : 4 — R. Once we have the correlation maps on the cortical
surface we want to study how the phenomena vary from subject to subject. A statistical
technique for this study is Functional Principal Component Analysis (PCA). It is natural
to contextualize this task in the framework of Geometric Functional Data Analysis for
functions supported on a non-linear manifold.

In Section 2.2, we formalize the setting considered in this chapter and give a brief
overview of the literature on functional data supported on non-linear manifold domains.
In Section 2.3 we introduce a novel FPCA model and propose an algorithm for its resolution.
We then give some simulation results in Section 2.4, indicating the performance of our

methodology, as compared to other methods in literature. We then return to the FC maps
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example in Section 2.5, to consider how the surface based FPCA analysis might be used
in this case and draw some concluding remarks in Section 2.6. Further simulations are

provided in Appendix A.

2.2 Setting

Consider the space of square integrable functions on #: L*() = {f : M —R: [ , | f(p)*dp <
oo} with the inner product (f,g) , = [, f(p)g(p)dp and norm | fII*>, = [, |f(p)I*dp.
We let X be a random variable with values in L?(.#), mean ¢ = E[X] and finite sec-
ond moment, i.e. [ ﬂE[Xz] < oo, and assume that its covariance function K(p, q) =
E[(X(p) — u(p))(X(q) — u(g))] is square integrable.

The function space L?(.#) is a linear space and the theoretical setup introduced
in Section 1.1.1 readily applies to this setting. Indeed, we can perform FPCA on 7 fully
observed smooth samples from X, here denoted with x;, ..., x,, by applying the estimators
in Section 1.1.2, for which the same rates of convergence hold.

In practice, for each sample x;, only noisy evaluations x;(p;) on a fixed discrete grid
of points py,..., ps © 4 are given. In this setting, we want take take advantage of the
smoothing properties of the underlying functional samples to obtain estimators with
better finite sample properties. As mentioned in Chapter 1, there are three approaches to
this problem: the Smooth-then-Estimate, the Estimate-then-Smooth and the Regularized-
Estimate approach.

The Smooth-then-Estimate approach consists of individually smoothing the samples
X1,..., X, and then performing FPCA. We will compare the methodology presented in
this chapter with this approach, demonstrating that smoothing the samples individually
generally leads to poorer performances. The Estimate-then-Smooth approach consists of
computing the discrete estimators
1 n
Y (xi(pp) = x(p) (xi(pp) — X(pD),

1z o
J_C(Pj)z—zxi(l?j), Cx(pj,p)=—
nl:l ni:l

followed by a smoothing on X(p;) and Cx(p j»P1). However, due to the potentially high
number oflocations p;, ..., ps, as itis the case in some neuroimaging applications, it might
not be possible to store in memory the entire object Cx(p j» 1), limiting the applicability of
the Estimate-then-Smooth approach, as presented for 1D functional data. This motivates
the introduction of a Regularized-Estimate approach to FPCA, where instead of estimating

the covariance Cx, we estimate directly, in a regularized fashion, its eigenfunctions.
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The first two approaches to FPCA rely on a smoothing procedure for noisy measure-
ments of a function x: .4 — R, atlocations py,..., ps € 4, where the natural concept of
neighborhood on the domain .# is induced by the 2D geodesic distance. This is also the
case for the Regularized-Estimate approach as it will be clear in the next section.

With the aim of defining a Regularized-Estimate FPCA model, in the next section, we
introduce a generalization of the smoothing splines formulation (1.11). In the simpler
setting where the aim is smoothing a single function x : .# — R, observed at locations

{p;}, this takes the form

X =argmin i (x(pj) - f(pj))2 + /lf (A )?dp,
frtl—R j=1 M

where A 4 is the Laplace-Beltrami operator, measuring the curvature of the function f
on the manifold. Further details on this approach will follow in the next section. This
formulation overcomes the limitations of the kernel regression and heat kernel approaches
to smoothing on a non-linear manifold, which we briefly review here.

A kernel regression estimator, for the estimation of x : .4 — R from noisy evaluations
{x(p;)}, has been first proposed in Pelletier (2006). Let K : R, — R, be a 1D positive and

continuous kernel, the proposed kernel regression estimator takes the form

1 1 1 d.u(p,pj)
x(p)==) x(pj))— K( ) €M
p s ]; p] hd Hpj (p) h p
with #(p) a function normalizing the densities K (W) to sum to 1, h a positive con-
p

stant tuning parameter and with d_, denoting the geodesic distance on .# . This approach
becomes infeasible for a generic manifold due to the necessity to compute the normalizing
function 6,/ (p), which can in general be defined only on a neighborhood of p. In the
special cases where .# is a sphere or ./ is the space of symmetric positive-definite matri-
ces we can find an explicit computation of 6, (p) in Pelletier (2006) and Chevallier et al.
(2017), respectively. An alternative formulation has been proposed in Kim and Park (2013),
where the kernels are defined on the tangent space of each location {p;} and are applied
to the tangent space representations of the neighboring locations. The applicability of
this approach to generic non-linear domains is also limited, due to the local nature of the
tangent space representations.

Alternative approaches to smoothing are based on the construction of heat kernels,

which are solutions to the heat equation on a manifold .#. The heat kernel smoothing
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of a non-smooth function x, is given by (K, * x)(p) = [ , K, (p, @) x(q)dq, where 1) is the
smoothing parameter and K;, is the heat kernel, which can also be expressed in terms of
the spectrum of the Laplace-Beltrami operator {(1;, )} as

(&)

Ky(poq) =Y. =e MMy (p)yi(q).
=1
It can be shown that for n small and for g close to p we have that

1 df%(P,GI))
Ky(p,q) = exp|———|. 2.1)

In Chung et al. (2005), the authors rely on this approximation to define a smoother for the
discrete measurements {x(p;)} as £(p) = ¥; K, (p, pj)x(p;), with K, the approximation
(2.1), truncated to zero for p and g that are not ‘close’ to each other. This is called the
Iterated Heat Kernel (IHK) smoother as the desired level of smoothing can be reached

after k iterations, thanks to the following property:

K« f=Kp#..xKpxf=K .
n n n Vkn

k times

For a fixed bandwidth 7, the level of smoothing is determined by an optimal number of
iterations selected via the F-test criterion outlined in Chung et al. (2005). Instead, in Seo
et al. (2010), the function x is expanded on the eigenfunctions of the heat kernel as x =
2.1 Bry;. Its smoothed version is given by (Kj, * x)(p) = }; e~ By (p). The coefficients
{b;} are estimated by least squares. Note that in both cases we need dense measurements
of x, as the approximation (2.1) holds only for p and g close to each other and the least

square estimate of the coefficients f; is accurate only for densely observed functions.

2.3 Smooth FPCA over two-dimensional manifolds

2.3.1 Model

Without loss of generality, we now assume that the random function X has zero-mean.
Suppose the sample of n functions x; : 4 — Ris observed at a fixed set of points p;,..., ps
in ./ (this will be relaxed later). Define the n x s matrix X = (x;(p;)).

Let f: ./ — Rbe areal valued and twice differentiable function and let u = {u;};=1,»

be a n-dimensional real column vector. We propose to estimate the first PC function
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f : A/ — R and the associated PC scores vector @, by solving the equation

@, f) = argmini ZS: (xi(pj) - uif(pj))2 + /luTuf Af%f, (2.2)

uf j=1j=1 M
where the Laplace-Beltrami operator is integrated over the manifold .4, enabling a global
roughness penalty on f. The empirical term encourages f to capture the strongest mode
of variation, as it is the empirical counterpart of the objective function E f U {X X, NHf }2,
minimized by the first PC function (see Section 1.1, for details). The parameter A con-
trols the trade-off between the empirical term of the objective function and roughness
penalizing term. The u”u term is justified by some invariance considerations on the
objective function as done in the case of one dimensional domains, in Huang et al. (2008).
Consider the transformation (u — cu, f — % f), with ¢ a constant, and the transformation
(X — cX,u — cu). Then the objective function in (2.2) is invariant with respect to the first
transformation, while the empirical and the smoothness terms are re-scaled by the same
coefficient with the second transformation.

The subsequent PCs can be extracted sequentially by removing the preceding es-
timated components from the data matrix X. This allows the selection of a different
penalization parameter A for each PC estimate. We will refer to the model introduced as
Smooth Manifold FPCA (SM-FPCA).

2.3.2 Iterative algorithm

Here we present the numerical algorithm for the resolution of the model introduced above.
Our approach for the minimization of the functional (2.2) can be summarized in the

following two steps:

* Splitting the optimization into a finite dimensional optimization in u and an infinite-

dimensional optimization in f;

» Approximating the infinite-dimensional solution using a Surface Finite Element

discretization.

Let f; be the vector of length s such that f; = (f(p1),..., f(ps)T. The expression in (2.2)

can be rewritten as

(@, f) = argmin [X - uf! |2 + Au"u f A*, f, (2.3)
uf M
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with | - | r the Frobenius matrix norm. A normalization constraint must be considered in
this minimization problem to make the representation unique, as in fact multiplying u by
a constant and dividing f by the same constant does not change the objective function
(2.3). In particular we set the constraint |ull, = 1, with || - ||, the Euclidean norm, as this
allows us to leave the infinite-dimensional optimization in f unconstrained.

Our proposal for the minimization of the criterion (2.3) is to alternate the minimization

ofuand f in an iterative algorithm:

Step 1 Estimation of u given f. For a given f, the minimizing u of the objective function

in (2.3) is
Xf,
u= ||fs||§ +/1fJ%Afﬂf’ (2.4)
and the minimizing unitary-norm vector u is
u= (2.5)
IXEsll2

Step 2 Estimation of f given u. For a given u, solving (2.3) with respect to f is equivalent
to finding the function f that minimizes

Jau(f) =flfs+ 1 f A%, f —2f1XTu. (2.6)
M

Step 1 is basically the classical expression of the score vector given the loadings vector,
where in this case the loading vector is given by f;, the evaluations of the PC function
in py,..., ps. The problem in Step 2 is not trivial, consisting in an infinite-dimensional
minimization problem. Let z; denote the jth element of the vector X"u, then minimizing

the functional in (2.6) is equivalent to minimizing
s 2 )
zi—f(pi) +7Lf AT (2.7)
]Z:l ( i=f(p; ) P wf

This problem involves estimating a smooth field f defined on a manifold, starting from
noisy observations z; at points p;. As already mentioned, in the case of real functions
defined on the real line, adopting a penalty of the form A [ f”, the minimization problem
turns out to have a finite-dimensional closed form solution that is a cubic spline [Green
and Silverman (1994)]. For real functions defined on an Euclidean space, cubic splines

are generalized by thin-plate splines. In this case, for an opportune smoothing penalty,
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the solution of the minimization problem can be expressed in terms of a finite linear
combination of radial basis functions [Duchon (1977)].

However, the case of real functions defined on a non-Euclidean domain .# is more
involved. In the special case where ./ is a sphere or a sphere-like surface, that is .4 =
{o(v) = p(v)v: v e S} where S c R? is the unit sphere centered at the origin, this smoothing
problem has been considered, among others, by Wahba (1981) and Alfeld et al. (1996).
Moreover, the functional (2.7) is considered, among others, by Ettinger et al. (2016) and
Dassi et al. (2015). Here ./ is respectively a manifold homeomorphic to an open ended
cylinder and a manifold homeomorphic to a sphere. In the latter two works the field
f is estimated by first conformally recasting the problem to a planar domain and then
discretizing it by means of planar finite elements, generalizing the planar smoothing model
in Ramsay (2002). Our approach is also based on a Finite Element (FE) discretization,
but differently from Ettinger et al. (2016) and Dassi et al. (2015), we construct here a FE
space directly on the triangulated surface .#5 that approximates the manifold ./, i.e. we
use surface FE, avoiding any flattening step and thereby allowing the formulation to be

applicable to any manifold topology.

2.3.3 Surface Finite Element discretization

Assume, for clarity of exposition only, that ./ is a closed surface, as in our motivating
application. The case of non-closed surfaces can be handled by considering some appro-
priate boundary conditions as done for instance in the planar case in Sangalli et al. (2013).
Consider the linear functional space H?(.#), the space of functions in L?(.#) with first
and s