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Abstract

In this thesis, we introduce a comprehensive framework for the analysis of statistical

samples that are functional data with non-trivial geometry. Geometry can interplay with

functional data in different forms. The most general setting considered here is that of

functional data supported on random non-linear smooth manifolds. This is a situation

often encountered in neuroimaging, where modern imaging modalities are now able to

produce structural brain representations coupled with functional information. Practition-

ers have commonly approached the analysis of such data with a two step approach. In the

first step the manifolds are registered to a template and in the second step the functional

information is analyzed on the template ignoring the registration step. The separation of

the two steps precludes studies aimed at understanding how geometric variations relate

to functional variations. On the other hand, functional data analysis has mostly developed

tools for simplified settings, such as one-dimensional functional samples, limiting their

applicability to real data. We formulate a model which is able to jointly represent geomet-

ric and functional variations. In this setting, modeling functional information requires

the formulation of models able to incorporate structural information on the geometry of

the underlying domains, with the aim of mitigating the curse of dimensionality. This is

achieved by adopting regularized models involving differential operator penalties. Model-

ing random smooth manifolds requires the formulation of models constrained to produce

‘sensible’ shapes, e.g. not self-intersecting. This is achieved by means of diffeomorphic

flows. The proposed models have been applied to real data to perform studies able to

relate structural changes to functional changes, and specifically, to study associations

between brain shape and cerebral cortex thickness. We can also deal with more complex

functional samples, themselves constrained to lie in a non-linear subspace. This is for

instance the case of covariance operators, describing brain connectivity, which are sym-

metric and positive semi-definite operators. Thanks to the proposed models, we are able

to model connectivity as an ‘object’ and study its variations in time or across individuals.

We also consider further extensions of this framework to the inverse problems setting,

which is the setting where each sample is a latent object, and only indirect measurements

are available.
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Introduction

Functional Data Analysis (FDA) is the branch of statistics concerned with the analysis of

random variables that take values in function spaces. These can represent, for instance,

curves, images or shapes. The statistical analysis of samples that are functions comes

with challenges unique to this setting. Functional data are in fact intrinsically infinite-

dimensional. The covariance operator, the analogue infinite-dimensional object to the

covariance matrix, is a compact operator, whose inverse is in general unbounded. There-

fore, multivariate approaches that rely on the inverse of the covariance matrix cannot be

straightforwardly extended to this setting.

Moreover, in practice, functional samples cannot be fully observed, but only discrete

measurements contaminated with observational errors are available. In FDA, it is thus

common to deal with the estimation of infinite-dimensional functional quantities, from a

finite number of measurements. To this end, some smoothness properties are assumed

on the latent functional objects and regularized models are often adopted to enforce these

properties.

As opposed to the multivariate setting, where there is a fixed and known correspon-

dence between each entry of the samples, functions can display both amplitude and

phase variability. Amplitude variability refers to ‘vertical’ variation, while phase variability

refers to ‘horizontal’ variation, e.g. shift or more complicated warpings of the domain.

Analyzing functional data requires models that can jointly represent amplitude and phase

variation, and possibly their relationship.

Despite the fact that FDA is now a mature field, and the issues aforementioned have

been to a good extent covered in the literature, functional data have been classically

assumed to be smooth functions on a fixed interval of the real line. This has shown to be a

great limitation to the applicability of the FDA methodology to modern complex datasets

arising, for instance, from medical imaging devices.

In medical imaging, and specifically neuroimaging, functional data are ubiquitous.

Structural imaging modalities, such as Magnetic Resonance and Computed Tomography
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Figure 1 Surface reconstructions of the brain’s left hemispheres of three different subjects,
with an associated scalar signal representing the cerebral cortex thickness of the subjects.
These have been reconstructed from 3D MRI scans of the subjects. The black area is a
region which is not part of the brain surface.

provide images that describe the structure of the brain. Functional imaging modalities,

such as functional Magnetic Resonance, Electroencephalogram and Magnetoencephalog-

raphy provide time-variant images describing the activation of the different parts of the

brain. These are functional data, which in their most simplified form can be formalized as

a population of n samples

{(Mi ,Yi ) |i = 1, . . . ,n} ,

with {Mi } a set of potentially non-linear subject-specific domains, representing the struc-

tural information and {Yi : Mi →R} a set of functions supported on {Mi } representing the

functional information. In Figure 1, we show an example of three of such samples, with

Mi a 2D surface representing the subject-specific cerebral cortex geometry and Yi a real

function representing the cerebral cortex thickness map of the same subject. The analysis

of the data in Figure 1, can be contextualized within the more abstract framework of

object oriented data analysis (Marron and Alonso, 2014), which is the analysis of complex

non-Euclidean objects.

In this thesis, we focus on the following questions. Ignoring for a moment the geomet-

ric variability and assuming the data have been registered to an ’average’ brain M , how

can we perform Functional Principal Components Analysis (FPCA) to optimally represent

the functions {Yi : M →R}, while incorporating geometric information on the domain M
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where the data are supported? This would allow multivariate techniques to be applied

to the functional data in a subsequent step, overcoming the non-invertibility of the co-

variance operator. Moreover, if Yi are covariance functions describing the connectivity of

the brain, can our FPCA methodology deal with the non-trivial geometry of these objects?

Can these models deal with missing data, discrete noisy measurements, or indirect mea-

surements? Finally, in its full generality the data in Figure 1 present both subject-specific

geometric variations and functional variations. Can we jointly model geometries and

functions, and perhaps infer their relationship?

Formally, these problems share many similarities with the FDA problems mentioned

at the beginning of this section. For instance, the problem of modeling geometric and

functional variations could be regarded as a generalization of the problem of modeling

amplitude and phase variability of functional data. However, in FDA these questions have

been explored mostly in the simplified setting of 1D functional data supported on a fixed

interval. In this thesis, we develop a novel Geometric Functional Data Analysis framework

that bridges the current gap between the classical FDA literature and the complexity of

modern datasets arising from brain imaging techniques.

Thesis overview

In Chapter 1, we start by giving a brief introduction of the classical FDA setting, mainly

focusing on Functional Principal Component Analysis, a crucial tool for the analysis

of functional data. In Section 1.2, we follow with a concise review of the main modern

differential geometry notions, which play an important role in some of the methodological

aspects of this thesis. In Section 1.3, we give an overview on recent developments in the

analysis of functional data that present some non-trivial geometries.

In Chapter 2, motivated by the analysis of high-dimensional neuroimaging signals

located over the cortical surface, we introduce a novel FPCA technique that can handle

functional data located over a two-dimensional manifold. For this purpose a regularization

approach is adopted, introducing a smoothing penalty coherent with the geodesic distance

over the manifold. The model introduced can be applied to any manifold topology, can

naturally handle missing data and functional samples evaluated in different grids of

points. We approach the discretization task by means of finite element analysis and

propose an efficient iterative algorithm for its resolution. We compare the performances

of the proposed algorithm with other approaches classically adopted in the literature. We
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finally apply the proposed method to resting state functional magnetic resonance imaging

data.

In Chapter 3, we introduce a framework for the statistical analysis of functional data

in a setting where these objects cannot be fully observed, but only indirect and noisy

measurements are available, namely an inverse problem setting. The proposed method-

ology can be applied either to the analysis of indirectly observed functional data or to

the associated covariance operators, representing second-order information, and thus

lying on a non-Euclidean space. To deal with the ill-posedness of the inverse problem, we

exploit the spatial structure of the sample data by introducing a flexible regularizing term

embedded in the model. Thanks to its efficiency, the proposed model is applied to MEG

data, leading to a novel statistical approach to the investigation of functional connectivity.

In Chapter 4, we introduce a comprehensive framework for the analysis of functional

data, whose domain is a two-dimensional manifold and the domain itself is subject to

variability from sample to sample. We formulate a statistical model for such data, that

we call Functions on Surfaces, which enables a joint representation of the geometric

and functional aspects, and propose an associated estimation framework. We assess the

validity of the framework by performing a simulation study and we finally apply it to the

analysis of neuroimaging data of cortical thickness, acquired from the brains of different

subjects, and thus lying on domains with different geometries.

The works in Chapter 2 and Chapter 4 of this thesis, have now been published. A very

preliminary version of the work in Chapter 2 has also appeared in Lila (2014). The work in

Chapter 3 has been submitted for publication. The references to these papers are given

below.

Lila, E., Aston, J. A. D., and Sangalli, L. M. (2016). Smooth Principal Component Analysis

over two-dimensional manifolds with an application to neuroimaging. Annals of Applied

Statistics, 10(4), 1854–1879.

Lila, E., and Aston, J. A. D. (2019). Statistical Analysis of Functions on Surfaces, with an

application to Medical Imaging. Journal of the American Statistical Association, in press.

Lila, E., Arridge, S., and Aston, J. A. D. (2018). Statistics on functional data and covariance

operators in linear inverse problems. arXiv preprint, 1806.03954.



Chapter 1

Background

In this chapter, we start by giving a concise introduction to Functional Data Analysis

(FDA) as treated in classical textbooks (see, e.g., Horváth and Kokoszka, 2012; Hsing and

Eubank, 2015; Ramsay and Silverman, 2005), where the statistical samples are assumed

to be elements of the space of square-integrable functions supported on [0,1], or more

in general on Ω, with Ω ⊂ Rd a hyper-cube in Rd . In Section 1.1, we first consider the

setting of fully observable functional samples. We then present recent advances in the

setting where only discrete and noisy measurements of the functional samples are given.

We follow with an introduction to the setting of indirectly observed statistical samples.

This is a generalization of the case of discrete and noisy measurements to more general

transformations of the underlying samples rather than simple discrete evaluations.

In Section 1.2, we give an overview of some basic notions of modern differential

geometry, which play an important role in extending the FDA methodology to deal with

non-conventional geometric functional data, such as functions supported, or taking

values, on non-linear spaces. In Section 1.3, we give an overview of the current literature

on the statistical analysis of geometric functional data.

1.1 Functional Data Analysis

1.1.1 Basic Setup

Consider the space of square-integrable functions supported onΩ, i.e. L2(Ω) = { f :Ω→
R :

∫
Ω | f (v)|2d v < ∞} with the inner product 〈 f , g 〉 = ∫

Ω f (v)g (v)d v and norm ∥ f ∥2 =∫
M | f (v)|2d v . As already mentioned, in FDA the supportΩ is typically a bounded interval

of R, e.g. Ω= [0,1].
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Consider now the random variable (sometimes referred to as a random function) X

with values in L2(Ω) and define its mean µ ∈ L2(Ω) and covariance CX ∈ L2(Ω×Ω) to be

the (continuous) functions

µ(v) = E[X ](v), v ∈Ω, (1.1)

CX (v, v ′) = E[(X (v)−µ(v))(X (v ′)−µ(v ′))], v, v ′ ∈Ω. (1.2)

The covariance function induces a covariance operator CX : L2(Ω) → L2(Ω), defined to be

CX g =
∫
Ω

CX (·, v)g (v)d v, g ∈ L2(Ω). (1.3)

It is straightforward to check that the covariance function is symmetric, i.e. CX (v, v ′) =
CX (v ′, v) for all v, v ′ ∈Ω, and positive semi-definite, i.e.

∫
Ω×ΩCX (v, v ′) f (v) f (v ′)d vd v ′ ≥ 0

for any f ∈ L2(Ω). Consequently, the covariance operator is a positive semi-definite

operator (〈CX f , g 〉 ≥ 0 for any f ∈ L2(Ω)) and self-adjoint (〈CX f , g 〉 = 〈 f ,CX g 〉 for any

f , g ∈ L2(Ω)). Moreover, it can also be shown that the covariance operator is compact.

Hence, the covariance operator admits the spectral decomposition detailed below.

Proposition 1. The covariance operator CX admits the spectral representation given by

CX =
∞∑

r=1
κr 〈ψr , ·〉ψr , (1.4)

where {κr }∞r=1 is the non-increasing set of real eigenvalues of CX and {ψr }∞r=1 the associated

set of orthonormal eigenfunctions, satisfying the set of equations

CXψr = κrψr , (1.5)

or equivalently, ∫
Ω

CX (·, v)ψr (v)d v = κrψr . (1.6)

The eigenvualues have zero as the only possible point of accumulation. The operator is said

to be of finite rank if the set of non-zero eigenvalues is finite.

Moreover, Mercer’s Lemma [Riesz and Szokefalvi-Nagy (1955)] guarantees that the

sequence {κr } of eigenvalues of CX and the orthonormal sequence of corresponding

eigenfunctions {ψr } are such that

CX (v, v ′) =
∞∑

r=1
κrψr (v)ψr (v ′), v, v ′ ∈Ω, (1.7)
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where the convergence is absolute and uniform inΩ×Ω.

We have now set the basis to introduce a fundamental tool in FDA: Functional Principal

Component Analysis (FPCA). In fact, the spectral representation (1.4) can be used to

expand X as

X =µ+
∞∑

r=1
ζrψr , (1.8)

where the random variables ζ1,ζ2, . . . are uncorrelated and are given by ζr = 〈X −µ,ψr 〉.
The expansion (1.8) converges uniformly in mean square and is also known as the Karhunen-

Loève (KL) expansion of X . This offers a convenient representation of the random variable

X , as it disentangles the deterministic infinite-dimensional components {ψr } from the

finite-dimensional random variables {ζr }, allowing, for instance, multivariate statistical

analysis to be performed on a finite truncation of the sequence {ζr }.

The collection {ψr } defines the strongest modes of variation in the random function X

and these are called Principal Component (PC) functions. In fact ψ1 is such that

ψ1 = argmax
φ:∥φ∥=1

∫
Ω

∫
Ω
φ(v)CX (v, v ′)φ(v ′)d vd v ′,

while ψm , for m > 1, solves an analogous problem with the added constraint of ψm being

orthogonal to the previous m −1 functions ψ1, . . . ,ψm−1, i.e.

ψm = argmax
φ : ∥φ∥ = 1

〈φ,ψ j 〉 = 0 j = 1, . . . ,m −1

∫
Ω

∫
Ω
φ(v)CX (v, v ′)φ(v ′)d vd v ′.

The random variables ζ1,ζ2, . . . are called PC scores. This property highlights the fact

that the KL representation is not only a convenient basis for the random variable X , but

its basis elements have an important property that aid exploratory data analysis on the

random variable X .

Another important property of the PC functions is the best M basis approximation. In

fact, for any fixed M ∈N, the first M PC functions of X satisfy

(ψm)M
m=1 = argmin

({φm }M
m=1:〈φm ,φl 〉=δml )

E

∫
Ω

{
X −µ−

M∑
m=1

〈X ,φm〉φm

}2
, (1.9)

where δml is the Kronecker delta; i.e. δml = 1 for m = l and 0 otherwise. Equation (1.9)

emphasizes the dimension reduction properties of FPCA and justifies popular approaches
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where FPCA is first applied to the functional data and this is followed by a multivariate

statistical analysis on the PC scores.

1.1.2 Fully observed functions

Suppose now we are given n samples, X1, . . . , Xn , that are fully observed independent and

identical copies of the random function X taking values in L2(Ω). Then, it is natural to

estimate the mean function µ and the covariance functions CX with the associated sample

mean and sample covariance function

X̄ (v) = n−1
n∑

i=1
Xi (v), ĈX (v, v ′) = 1

n

n∑
i=1

(Xi (v)− X̄ (v))(Xi (v ′)− X̄ (v ′))

for all v, v ′ ∈Ω. The estimates of the PC functions {ψ̂r } and associated eigenvalues {κ̂r } are

computed through the characterization∫
Ω

ĈX (v, v ′)ψ̂r (v)d v = κ̂r ψ̂r (v ′),

which is in practice solved by discretizing the problem on a fine grid or by basis expansion.

The score vectors in the KL expansion (1.8) can then be trivially estimated by integration,

i.e.

ζ̂r =
∫
Ω

(
Xi (v)− µ̂(v)

)
ψ̂r (v)d v.

Assuming E∥X ∥4 < ∞ and relying on the Central Limit Theorem in Hilbert spaces,

consistency and
p

n rates of convergence have been derived for the empirical mean and

covariance (Bosq, 2000; Dauxois et al., 1982; Hall et al., 2006). If moreover κ1 > κ2 > . . .,

uniform convergence of the empirical covariance implies consistency of the empirical

eigenvalues and eigenfunctions (the latter, up to a sign factor) (Bosq, 2000).

1.1.3 Discrete measurements

In the previous section, the functional samples were assumed to be fully observable.

Although this could be a reasonable assumption for very densely sampled functions, it is

usually the case that, for the i th functional sample, only noisy evaluations on a discrete

grid of points vi 1, . . . , vi pi are given, i.e.

Yi j = Xi (vi j )+εi j , j = 1, . . . , pi ; i = 1, . . . ,n, (1.10)
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where the term εi j represents independent observational errors, with mean zero and

variance σ2. Sometimes this setting is referred to as the longitudinal setting.

In the longitudinal setting, the aim is recovering the underlying PC functions and

PC scores vectors of the random variable X , from the noisy measurements Yi j . This

can be dealt with via three different approaches: the ‘Smooth-then-Estimate’ approach,

the ‘Estimate-then-Smooth’ approach, as named in Descary (2017), or the ‘Regularized-

Estimate’ approach. The idea of overtacking the classical ‘Smooth-then-Estimate’ ap-

proach dates back to Rice and Silverman (1991). A conceptually similar situation is also

encountered, for instance, when estimating smooth and monotone functions (Mammen,

1991; Mammen and Thomas-Agnan, 1999).

Smooth-then-Estimate

The ‘Smooth-then-Estimate’ approach is based on the two following steps. In the first

step, the observations associated to each function are smoothed individually, in order to

obtain smooth representations of X1, . . . , Xn . In the second step FPCA is carried out, as

described in the previous section.

Smoothing is a very well explored topic in statistics, both from the non-parametric

regression prospective (Fan and Gijbels, 1996; Green and Silverman, 1994) and the spatial

data analysis prospective (Cressie, 1993). Popular smoothing approaches in FDA are

the least-square finite basis approximation and smoothing spline approaches, which we

briefly recall here. The smoothing step is executed separately for each functional sample.

Hence, we drop here the index i denoting the specific sample and focus on the problem

Y j = X (v j )+ε j , j = 1, . . . , p.

The least-square finite basis approach consists of introducing a smooth K -dimensional

basis {bk }K
k=1 on the domainΩ, and defining a smooth estimate of X , that is X̂ =∑K

k=1 ĉk bk

with

{ĉk } = argmin
{ck }

∑
j

(
Y j −

K∑
k=1

ck bk (v j )
)2

.

Typical choices of the basis for one-dimensional domains of the typeΩ= [0,1] are trun-

cated Fourier series and B-splines basis (Ramsay and Silverman, 2005). The amount of

smoothness on X̂ can be controlled by appropriate choice of the basis function and the

truncation level K .
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An alternative approach to smoothing consists of formulating the problem in a com-

pletely non-parametric fashion, i.e. find a function f such that

X̂ = argmin
f

∑
j

(
Y j − f (v j )

)2
+λ

∫
Ω

(D f )2, (1.11)

with D an operator measuring the roughness of the function f , which squared and in-

tegrated over the domain offers a global roughness penalization term. The constant λ

weighs the classical term measuring the least square misfit to the data and the penalization

term, and can be chosen either with data driven approaches, such as cross-validation,

or can be seen as an additional parameter allowing analysis on different ’scales’ (Green

and Silverman, 1994). A typical choice for D , for one-dimensional domains, is the second

derivative. In this case, the formulation (1.11) is also known as the smoothing spline

problem.

The smoothing spline approach is of particular interest to the methodology developed

in this thesis. In fact, by developing the necessary geometric tools we will be able to extend

formulations of the type (1.11) to more general, and possibly non-linear, domains.

Estimate-then-Smooth

In the case of highly sparse sampling schemes, individual recovery of the functions can-

not be pursued as there is no sufficient information to treat them independently. An

alternative approach consists of exploiting the unprocessed data to construct point-wise

estimates and then proceed with smoothing the point-wise estimates to recover the un-

derlying functional estimates.

For simplicity, suppose for the moment that the functional samples are evaluated on a

fixed grid of points v1, . . . , vp ∈Ω across samples

Yi j = Xi (v j )+εi j , j = 1, . . . , p; i = 1, . . . ,n,

with εi j independent observational error with mean zero and variance σ2.

From the observations {Yi j }, at the locations v1, . . . , vp ∈Ω, we can construct the point-

wise estimators

Ȳ (v j ) = 1

n

n∑
i=1

yi j , ĈY (v j , vl ) = 1

n

n∑
i=1

(
Yi j − Ȳ (v j )

)(
Yi l − Ȳ (vl )

)
.
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The estimator Ȳ (v j ) returns an estimate of µ(v j ), the mean of X at the point v j . Instead,

ĈY (v j , vl ) represents an estimate of CX (v j , vl ), the covariance function of X at (v j , vl ),

only for j ̸= l , as Cov(Yi (v j ),Yi (vl )) = CX (v j , vl )+σ2 for j = l and Cov(Yi (v j ),Yi (vl )) =
CX (v j , vl ) for j ̸= l . This is due to the presence of observational error. A standard strategy

(Yao et al., 2005) is to remove the diagonal from ĈY . Finally, the mean µ and covariance

function CX can be reconstructed by smoothing, respectively, Ȳ (v j ) and ĈY (the latter

post-diagonal removal).

A similar approach can be followed when the sampling scheme involves sample-

specific sparse measurements vi 1, . . . , vi pi for the i th sample. In this case, an estimate of

the mean function µ can be obtained by smoothing the measurements {(Yi (vi j ), vi j ) : i =
1, . . . ,n; j = 1, . . . , pi }. Analogously, the covariance can be estimated by smoothing the ‘raw

covariance’{((
Yi (vi j )− Ŷ (vi j )

)(
Yi (vi l )− Ŷ (vi l )

)
, vi j , vi l

)
: i = 1, . . . ,n; j , l = 1, . . . , pi , j ̸= l

}
,

where the condition j ̸= l ensures that the estimates on the diagonal are discarded.

In the more general version of these estimators, a weight wi could be attached to each

term Yi (vi j ) and a weight zi could attached to each term
(
Yi (vi j )−Ŷ (vi j )

)(
Yi (vi l )−Ŷ (vi l )

)
.

These can be chosen to put either equal weights on each observation (see, e.g., Yao et al.,

2005) or equal weights on each sample (see, e.g., Li and Hsing, 2010). A unified theory is

provided in Zhang and Wang (2016).

The PC functions estimates {ψ̂r } and associated eigenvalues estimates {κ̂r } can be

computed from the eigenanalysis of the estimated covariance function ĈX . As for the

scores predictions, in the sparse setting, the integration formula
∫
Ω

(
Xi (v)− µ̂(v)

)
ψ̂r (v)d v

might be ineffective, due to the low number of measurements per each curve. Therefore,

Yao et al. (2005) propose to reformulate the problem of estimating the r th PC scores

ζi r with its best linear predictor, given the observations Yi = (Yi 1, . . . ,Yi pi )T . Let Ȳi =
(Ȳ (vi 1), . . . , Ȳ (vi pi ))T then the best linear predictor is

ζ̂i r = κ̂r ψ̂
T
i r Ĉ−1

Y (Yi − Ȳi ),

with ψ̂i r = (ψ̂r (vi 1), . . . ,ψ̂r (vi pi ))T and [ĈY (vi j , vi l )] a pi×pi matrix such that ĈY (vi j , vi l ) =
ĈX (vi j , vi l )+δ j ,l σ̂

2, where σ̂2 is an estimator of the noise variance and δ j ,l = 1 if j = l and

zero otherwise.
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A further extension to situations where the noise term is rough, but has a non-trivial

(i.e. non-diagonal) covariance structure, has been considered in Descary and Panaretos

(2019).

Regularized-Estimation

Here we present a third approach, which is the most relevant to the methodology presented

in this thesis: the Regularized-Estimation approach. This consists in adding a penalization

term to the classic formulation of PCA, in order to recover a desired feature of the estimated

underlying functions.

In the setting of fully observable samples, Regularized-Estimation has been proposed

in Rice and Silverman (1991) and Silverman (1996). These formulations are based on the

variational formulation of FPCA formulated as the maximization of the quadratic form∫
Ω

∫
Ωφ(v)ĈX (v, v ′)φ(v ′)d vd v ′∫

Ωφ
2(v)d v

. (1.12)

In particular, for functions supported onΩ= [0,1], Rice and Silverman (1991) propose to

modify the formulation above with the maximization of∫
Ω

∫
Ωφ(v)ĈX (v, v ′)φ(v ′)d vd v ′−λ∫

Ω(φ′′(v))2d v∫
Ωφ

2(v)d v
. (1.13)

Instead, Silverman (1996) proposes to maximize the alternative formulation∫
Ω

∫
Ωφ(v)ĈX (v, v ′)φ(v ′)d vd v ′∫

Ωφ
2(v)d v +λ∫

Ω(φ′′(v))2d v
. (1.14)

Both formulations introduce a smoothing penalty term which yields smoother PC func-

tions.

Consider now the discrete and noisy measurements setting and assume that the

functional samples are evaluated on a fixed grid of points v1, . . . , vp ⊂ Ω, as in model

(1.10). Define the n ×p matrix Y= (Yi j ), the column vector Ȳ = ( 1
n

∑n
i=1 Yi j ) of length p,

the n-dimensional vector z and the p-dimensional vectorφ= (φ1(v j )). Let 1 denote the

column vector of length n with all entries equal to 1. The empirical counterpart of the

objective function in (1.9), for the first PC function, becomes

1

n
∥Y−1ȲT −zφT ∥2

F , (1.15)
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where ∥·∥F is the Frobenius matrix norm, defined as the square root of the sum of squares

of its entries. This last formulation gives a natural way to deal with the fact that only

discrete and noisy evaluations Yi j , i = 1, . . . ,n, j = 1, . . . , p of the underlying functional

samples are available. However, it does not incorporate any information on the smooth-

ness of the functional data. In fact, considering the Singular Value Decomposition (SVD)

ofY−1µT =U DV T , it can be shown that the minimizing arguments of (1.15) are φ̂= [V ]·,1
and ẑ = [U D]·,1, respectively the first column of V and U D, which is a multivariate PCA

applied to the data-matrix Y.

Formulation (1.15) has shown great flexibility for the purpose of incorporating reg-

ularizing terms in the estimation of the PC functions, achieving joint estimation and

regularization. In the literature of sparse PCA, where sparse in this case refers to a high

number of zero entries, sparsifying regularization terms are introduced in the objective

function (1.15) (Jolliffe et al., 2003; Shen and Huang, 2008; Zou and Hastie, 2005). In FDA,

smoothing penalization terms are usually adopted. These encourage the underlying PC

function φ1 in (1.15) to be smooth. An example of a PCA model, for functions supported

on the one-dimensional domain [0,1] ⊂ R, that explicitly incorporates a smoothing pe-

nalization term in (1.15), can be found in Huang et al. (2008). The authors propose to

minimize the objective function

1

n
∥Y−1ȲT −zφT ∥2

F +λzT z
∫

[0,1]
(φ′′

1(v))2d v, (1.16)

with respect to (z,φ1). The subsequent PC functions are estimated by removing the first

PC function effect from the data matrix Y and then re-applying the model.

As already mentioned, most of the present literature focuses on functions supported

on domains that are intervals of R. Zhou and Pan (2014) propose a smooth FPCA model

for two-dimensional functions on irregular planar domains, by adapting the formulation

(1.16). Amini and Wainwright (2012) propose a regularized M-estimator in a Reproducing

Kernel Hilbert Space (RKHS) framework. In Chapter 2 we propose a generalization of the

model in Huang et al. (2008) to the case of real functions whose domain is a non-linear

two-dimensional manifold, leading to a model that can fully exploit the information on

the geometry of the manifold domain.

1.1.4 Indirect measurements

In the previous subsections, we explored different extensions of classical FPCA to situa-

tions where the functional data are not fully observed, but only noisy discrete measure-
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ments are available. In this section, we proceed with a further generalization of this setting

to the most general case of indirectly observed functions. For instance, in a number of

medical imaging modalities, the samples from our random variable of interest X are not

directly observable, but only indirect measurements Yi are given. These are assumed to

be generated from the model

Yi =K Xi +εi ,

where Yi and εi take values in an either finite or infinite dimensional space. The map

K is deterministic and assumed to be known and is usually referred to as the forward

operator. The term εi represents observational error. This setting is a generalization of the

sparse measurements setting, as taking K to be a vector-valued functional that evaluates

a function at p pre-specified points {v j } ⊂Ω, we obtain the generative model in (1.10).

In practice, we will assume that Yi and εi take values in the space of real s-dimensional

vectors and that the forward operator is of the type K : L2(Ω) →Rs . Here, we consider the

problem of estimating the PC functions {ψr } of X , or equivalently the eigenfunctions of

CX (which is the covariance operator of X ), from the observations {Yi }. In neuroimaging

studies this is often an important task as if X is for instance a functional signal describing

brain activity, then CX gives a description of the first-order connectivity of the brain.

In analogy with the discrete measurements scenario, there are three possible ap-

proaches to PCA in this setting: the ‘Reconstruct-then-Estimate’ approach, the ‘Estimate-

then-Reconstruct’ approach, and the ‘Regularized-Estimation’ approach. The most popu-

lar is the ‘Reconstruct-then-Estimate’ approach, where the problem of estimating the PC

functions {ψr } is tackled in two steps. In the first step, estimates {X̂i } of the functions {Xi }

are individually computed from the vectors {Yi }. In the second step, the covariance func-

tion CX is estimated from {X̂i } by use of classical estimators for fully observed functions,

i.e. spectral analysis of the estimated covariance operator. Given that in this approach

the reconstruction step is performed independently for each sample, we focus on the

problem

Y =K X +ε.

This is a well-studied problem within applied mathematics. Its main difficulties arise from

the fact that, in practical situations, an inverse of the forward operator does not exist, or

if it does, it amplifies the noise term. For this reason such a problem is called ill-posed.

Consequently, the estimation of X is generally tackled by minimizing a functional which

is the sum of a data (fidelity) term and a regularizing term encoding prior information

on the function to be recovered (see, among others, Cavalier, 2008; Hu and Jacob, 2012;
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Lefkimmiatis et al., 2012; Mathé and Pereverzev, 2006; Tenorio, 2001), i.e.

X̂ = arginf
f ∈F

∥Y−K f ∥2 +λP ( f ), (1.17)

where ∥ · ∥ denotes the Euclidean norm and P : F → R+ is a penalty functional, e.g.

P ( f ) = ∥ f ∥2
F

, the norm of the functional space F ⊂ L2(Ω).

The functional P encodes prior information on the function to be estimated, while the

data fidelity term ensures that the resulting estimated function X̂ is such that K f is a good

approximation of the signal Y actually detected. The parameter λ is chosen to optimally

weight the two terms, and many data-driven options are available for this purpose, as for

instance, cross-validation or the L-curve method (see, e.g., Vogel, 2002). Typical choices

for P are Sobolev (semi-) norms, which encode smoothness, or the total variation norm,

which allows discontinuity but penalizes for excessively oscillating functions.

Alternatively, when it is important to assess the uncertainty associated with the esti-

mates, a Bayesian approach could be adopted (Repetti et al., 2019; Stuart, 2010). More

recently, also the deep convolutional neural network approach has been applied to this

setting (Jin et al., 2017; McCann et al., 2017). Also, more complex penalty terms could be

considered, for instance, by adding terms that encourage the reconstruction to be sparse.

However, a Reconstruct-then-Estimate approach for the PC functions {ψr } can be sub-

optimal. The main reason is that in the first step the estimations are made individually for

each signal Xi , and information from the other sampled signals is systematically ignored.

Alternatively an ‘Estimate-then-Reconstruct’ approach could be adopted, where first the

PC components of Y are estimated, and subsequently the associated PC functions {ψr } are

reconstructed with a formulation of the type (1.17). In Katsevich et al. (2015), driven by an

application to cryo-electron microscopy, the authors propose an unregularized estimator

for the covariance matrix of indirectly observed functions. This appears to work well in

their setting, however, to tackle more general ill-posed inverse problems, a regularized

approach is needed. In Chapter 3, we develop a Regularized-Estimation approach to

directly estimate the PC functions {ψr } from the the data {Yi }. A more detailed review of

current works in this setting is provided in Section 3.2.1.

1.2 Elements of Differential Geometry

In this section, we give a formal introduction to the main geometric concepts necessary

to generalize the methodology presented in the previous section to geometric functional
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data. Geometric functional data will be either functional samples supported on non-linear

domains, e.g. whereΩ is a two-dimensional surface in R3, or functional data that lie on

a non-linear space, e.g. where the samples from X belong to a non-linear subspace of

L2(Ω).

We focus here on a concise exposure, while trying to develop an intuitive understand-

ing of the objects introduced. A more exhaustive treatment on the subject can be found in

classical textbooks (see, e.g. Chavel, 2006; Lee, 1997, 2012).

1.2.1 Differentiable Manifold

A differentiable manifold is a mathematical object modeling generalizations of geometric

entities such as curves and surfaces. In practice, the notion of a manifold is used in

this thesis to model the geometry of a variety of objects, such as, brain surfaces or more

abstract entities such as the space of covariance matrices. The choice to model the space

of covariance matrices as a manifold has its limitations, in fact, to handle covariances with

different ranks the concept of manifold stratification has been adopted in the literature

(see, e.g. Hotz et al., 2013, and references therein).

 
Figure 1.1 A two-dimensional manifold M embedded in R3, representing a template of
the brain surface, with a coordinate chart (U ,ϕ) offering a local parametrization of the
portion U ⊂M .

Intuitively, a n-manifold (or a n dimensional manifold) is a set M with a reference

system attached to it, i.e. one-to-one mappings from subsets U ⊂M to Rn . Formally, a

n-dimensional manifold is a second-countable Hausdorff space that is locally Euclidean

of dimension n (Lee, 2012). This means that for each p ∈M there exists a coordinate chart
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on M that is a pair (U ,ϕ), with U an open subset of M containing p (the domain of the

chart), and ϕ : U → Û a homeomorphism (i.e. a one-to-one continuous map) from U to

the open subset Û =ϕ(U ) ⊆Rn . Intuitively, the charts are local parametrizations of the

manifold and offer a way to ‘navigate’ the manifold. In Figure 1.1, we show an example of a

chart (U ,ϕ) parametrizing a portion of the manifold M representing the brain geometry.

We are able to define a real function f : M →R on the manifold M , by associating a

real number to each element p ∈M , but how do we generalize the concept of a smooth

function supported on M ? To this purpose, we need to introduce additional structure on

M . Let (U ,ϕ) and (V ,ψ) be two charts of M such that there is a point p ∈M that belongs

to both U and V . It is natural to define the coordinate transformation from ϕ to ψ as the

function

ψ◦ϕ−1 : Û → V̂

We define an atlas A for M to be a collection of charts whose domains cover M and

we say that this is smooth (or that M is smooth) if any two charts (U ,ϕ) and (V ,ψ) in A ,

such that U ∩V ̸= ;, have coordinate transformations ψ◦ϕ−1 that are diffeomorphisms,

i.e. smooth (C∞) one to one functions with smooth inverse. Note thatψ◦ϕ−1 is a function

from an open subset ofRn toRn , hence we have a notion of smoothness for such functions.

We define a smooth manifold to be a pair (M ,A ), where M is a manifold and A is a

maximal smooth atlas, i.e. a smooth atlas not properly contained in any larger smooth

atlas. On a technical note, for smooth manifolds, although an atlas must be included in the

definition, multiple different atlases can give "the same" smooth manifold, however two

manifolds are equal if and only if they are equal as topological spaces. Requiring the atlas

to be maximal, makes the choice of A unique, in the sense that if (M ,A ) and (M ,A ′) are

smooth manifolds such that the identity map from M to M is a diffeomorphism between

them, then A =A ′.
We are now able to define what a smooth function on a smooth manifold is. In fact,

suppose M is a smooth n-manifold, we say that f : M → Rk is a smooth function if for

every p ∈M there exists a smooth chart (U ,ϕ) for M whose domain contains p and such

that f̄ = f ◦ϕ−1 :Rn →Rk is smooth. Analogously, given two smooth manifolds M and N ,

a function F : M →N is said to be smooth if for every p ∈M there exist any two charts

(U ,ϕ) and (V ,ψ), with p ∈U and F (U ) ⊆V , such that ψ◦F ◦ϕ−1 :ϕ(U ) →ψ(V ) is smooth.

Given that for M a smooth manifold, the coordinate transformations are diffeomorphic,

the different charts ‘agree’ on the smoothness of a function f .
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1.2.2 Tangent vectors and Tangent spaces

A tangent space TpM at a point p ∈M is intuitively the vector space obtained by lineariz-

ing M around p. Consider a parametric curve γ : I →M , with I ⊂R, such that γ(a) = p.

In the simpler case where M is embedded in Rl , i.e. M ⊂Rl , the range of γ also belongs

to Rl , and within this linear space we have a meaningful concept of derivative which is

γ̇(a) = lim
h→0

(
γ(a +h)−γ(a)

)
h

. (1.18)

The set of possible ‘velocity’ vectors γ̇(a) defines the tangent space on p. The tangent

space on p ∈ M , for a two-dimensional manifold, is shown in Figure 1.2. However, in

general, a manifold does not come with a concept of ‘embedding’ space Rl and, in this

case, the equation above is not meaningful. This will lead to a more abstract definition of

tangent spaces.

Figure 1.2 Tangent space centered at p ∈M .

The main idea consists in relying on a different property of the standard derivative,

which is easier generalize to a generic manifold, and use this to define derivatives. Let

(U ,ϕ) be a smooth chart containing p ∈M . Let xi be the i -th coordinate of the Rn-valued

function ϕ= (x1, . . . , xn)T . Let f : U →R be a smooth function. Let f̄ = f ◦ϕ−1 and define

γ̄(t) = (γ1(t), . . . ,γn(t)), with γi (t) = xi (γ) . Using the fact that f (γ(t)) = f̄ (γ̄(t)), we may
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define the directional derivative of f along the curve γ to be

d

d t
f
(
γ(t )

)= d

d t
f̄
(
γ̄(t )

)
=

n∑
i=1

(
∂ f̄

∂xi

)
γ̄(t )

dγi (t )

d t

=
n∑

i=1

(
∂ f

∂xi

)
γ(t )

dγi (t )

d t
,

(1.19)

where we have exploited the representation in local coordinates {xi }.

Remark 1. From now on, in this section, we will rely on the Einstein’s convention and omit

the summation
∑

over repeated indices. With this convention, equation (1.19) becomes

d

d t
f
(
γ(t )

)= (
∂ f

∂xi

)
γ(t )

dγi (t )

d t
.

Let us consider this directional derivative as an expression of the function f . In other

words, we define the tangent vector γ̇(a) to be the operator that, for a given curve γ, maps

smooth functions to the real value d
d t f (γ(t ))|t=a . Then we may rewrite (1.19) as

γ̇(a) =
(

dγ(t )

d t

)
p

:= γ̇i (a)

(
∂

∂xi

)
p

, (1.20)

where we use the notation γ̇i (a) = dγi (t )
d t . In other words, γ̇(a) is a linear combination of

operators

{(
∂
∂xi

)
p

}
, with coefficients

{
γ̇i (a)

}
.

Despite the abstract definition of a tangent vector, defined to be an operator acting on

smooth functions, it is important to intuitively think of these objects as ‘geometric tangent

vectors’. In fact, it can be shown that when the tangent vectors can be defined using (1.18)

there is a natural one-to-one correspondence between Equations (1.18) and (1.20).

Consider now all curves passing through the point p ∈ M . We denote the set of all

tangent vectors corresponding to these curves by TpM :

TpM =
{

c i
(
∂

∂xi

)
p

: (c1, · · · ,cn)T ∈Rn

}
.

This forms a linear space of dimension n. We call
(
∂
∂xi

)
p

the natural basis with respect to

the coordinate system ϕ. For an element D ∈ TpM and for all smooth real functions f , g

and all a,b ∈R, D is linear (D(a f +bg ) = aD( f )+bD(g )) and satisfies the Leibniz’s rule
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(D( f · g ) = f (p)D(g )+ g (p)D( f )), known to hold for the standard derivative. In fact, it is

possible to define tangent vectors in terms of these properties. See Lee (2012) for a deeper

discussion on possible approaches to define the tangent space.

Now we would like to formally introduce the concept of a vector field on a manifold

M , a formalization of the one shown in Figure 1.3. To this purpose, denote with T M =
⊔p∈M TpM the tangent bundle, i.e. the disjoint union of tangent spaces. A vector field

is a continuous map X : M → T M (p 7→ Xp ), with the property that Xp ∈ TpM for each

p ∈M . Here, Xp denotes the value of X at p. If X : M → T M is a (in general rough) vector

field and (U ; {xi }) is any smooth coordinate chart for M ; we can write the value of X at

any point p ∈U in terms of the coordinate basis vectors:

Xp = X i (p)
∂

∂xi

∣∣∣∣
p

.

This defines n functions X i : U → R, called the component functions of X in the given

chart. A rough vector field on M is a (not necessarily continuous) map X : M → T M . We

are primarily interested in smooth vector fields, the ones that are smooth as maps from M

to T M (when T M is given the smooth manifold structure, (see Lee, 2012, for details)).

It is standard to denote with X(M ) (or alternatively with Γ(T M )) the set of all smooth

vector fields on M and define f X : M → T M as ( f X )p = f (p)Xp .

Figure 1.3 A smooth vector field X ∈X(M ) on the manifold M .

For any X ,Y ∈X(M ) and any c ∈R, the mappings X+Y : p 7→ Xp+Yp and c X : p 7→ c Xp

are also members of X(M ). Hence X(M ) is a linear space. In addition, for any smooth

real function f , the mapping f X : p 7→ f (p)Xp is a member of X(M ).
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1.2.3 Riemannian metrics

In this section, we enrich smooth manifolds with further structure, with the aim of defin-

ing geometric concepts analogous to lengths and angles on linear vector spaces. For

manifolds, the appropriate structure is called the Riemannian metric.

Given a smooth manifold M , for each point p ∈ M , we define an inner product

gp (D,D ′) for D,D ′ ∈ TpM , to be a real valued map gp (D,D ′) that is bi-linear, symmetric,

positive-definite and smooth in p. Given a Riemannian metric g on M , we call (M , g )

a Riemannian manifold. In any smooth local coordinates
{

∂
∂xi

}
, alternatively denoted

as
{

(∂i )p := ∂
∂xi

}
, the Riemannian metric g can be written in terms of the n ×n matrix of

components {gi j ; i , j = 1, ·,n}, with gi j determined by gi j (p) = gp ( ∂
∂xi , ∂

∂x j ). If we rewrite

the tangent vectors D,D ′ ∈ TpM in terms of their coordinates as D = D i (∂i )p and D ′ =
D

′i (∂i )p their inner product can be written as:

gp (D,D ′) = gi j (p)D i D
′ j ,

and the length ∥D∥ of the tangent vector D is given by

∥D∥2 = gp (D,D) = gi j (p)D i D j .

We define g i j (p) to be the (i , j )th component of the inverse of the matrix (gi j (p))i j

(this also symmetric positive definite), i.e.

gi j g j k = δi k

(in Einstein notation) and with δi k = 1 if k = i and 0 otherwise.

Let now γ : I → M be a parametric curve on the Riemannian manifold M . We can

finally define its length ∥γ∥ to be

∥∥γ∥∥=
∫

I

∥∥∥∥dγ

d t

∥∥∥∥d t =
∫

I

√
gi j γ̇i γ̇ j d t ,

where γ̇i (t ) ∈ Tγ(t )M is the derivative of γi = xi ◦γ.

If M is a sub-manifold of the Riemannian manifold S (intuitively, a manifold M that

is a ‘regular subset’ of S ), for each point p ∈M , we may view TpM as a linear subspace of

TpS , and hence an inner product gp on TpS naturally defines an inner product on TpM .

Then, g |M , denoting the induced inner product, defines a Riemannian metric on M . This

is a standard choice for n-manifolds embedded in Rl , as the one shown in Figure 1.1. It is
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common to say that we identify the tangent vectors of M with the associated elements of

the embedding space Rl .

1.2.4 Covariant derivative

In this section, we generalize the concept of directional derivative to vector fields. This

plays an important role in defining ‘straight lines’ on a manifold M .

Define an affine connection to be a map

∇ :X(M )×X(M ) →X(M ),

written as (X ,Y ) 7→ ∇X Y , with the following properties

• Linearity in X : ∇ f X1+g X2 Y = f ∇X1 Y + g∇X2 Y for f , g ∈C∞(M )

• Linearity in Y : ∇X aY1 +bY2 = a∇X Y1 +b∇X Y2 for a,b ∈R

• Leibniz rule: ∇X ( f Y ) = f ∇X Y + (X f )Y for f ∈C∞(M ).

Despite the fact that a connection is defined by its action on objects globally defined

over M it follows from its definition that ∇X Y |p depends only on the values of Y in a

neighborhood of p and the value of X at p. Thus, we have that ∇X Y |p =∇X (p)Y ∈ TpM .

This is a generalization of the directional derivative of Y at p in the direction of the vector

Xp . ∇X Y is called the covariant derivative of Y in the direction of X .

Let {Ei } be a local frame, i.e. a set of local coordinates, for T M on an open subset

U ⊂M . Expand ∇Ei E j in {Ei }:

∇Ei E j = Γk
i j Ek ,

with Γk
i j , i , j ,k = 1, . . . ,n functions on U , called the Christoffel symbols. Using the repre-

sentation of a vector field in the local coordinates {Ei } we can expand X ,Y ∈X as X = X i Ei

and Y = Y j E j , and ∇X Y as

∇X Y = (X Y k +X i Y jΓk
i j )Ek .

For a manifold M embedded in a Euclidean space (this can be generalized, see e.g. Lee

(1997)), by requiring that the affine connection ∇ must preserve the metric and must be

torsion free, we have that Γk
i j can be uniquely determined. Under these hypotheses, ∇ is

called the Levi-Civita connection.
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A vector field along a curve γ : I → M is a smooth map such that V (t) ∈ Tγ(t )M for

every t ∈ I . An example of a vector field along a curve γ is its velocity vector: γ̇(t ) ∈ Tγ(t )M

for each t . Let M be a manifold with an affine connection ∇, and let γ be a curve in M . A

vector field V along a curve γ is said to be parallel along γ with respect to ∇ if ∇γ̇V (t ) = 0.

Note that there is a slight abuse of notation here, as we should instead use ∇γ̇(t )Ṽ , with

Ṽ an extension of γ̇ in the neighborhood of γ(t). It can be shown that the particular

extension chosen is not relevant. In practice, a connection defines a way to generalize

parallel transport on a manifold. In fact, the parallel transport of a vector u ∈ TpM along a

curve γ can be defined as the collection of vectors u along the curve γ such that ∇γ̇(t )u = 0,

where γ̇(t ) ∈ Tγ(t )M . A pictorial representation of the parallel transport of a tangent vector

is given in Figure 1.4.

The acceleration of γ is the vector field ∇γ̇γ̇ along γ. We call γ a geodesic curve, with

respect to ∇, if its acceleration is zero: ∇γ̇γ̇= 0. For any p ∈M and V ∈ TpM , there is a

unique maximal geodesic (one that cannot be extended to any larger interval) γ : I →M

with γ(0) = p and γ(0) = V , defined on some open interval I . This maximal geodesic is

often called the geodesic with initial point p and initial velocity V , and is denoted with γV .

Figure 1.4 Parallel transport of a vector in Tp1M onto Tp2M along γ.

We have now defined geodesics, which are curves of zero acceleration, or alternatively

(locally) shortest paths. We have also seen how to define lengths of curves. From a statisti-

cal prospective, geodesics play a fundamental role, as we can define a distance dM (w, w ′)
for w, w ′ ∈M that is the length of the shortest curve between w and w ′. Thanks to the

concept of geodesic distance it is possible to introduce a geodesic mean for w1, . . . , ws ∈M

as

w̄ = argmin
p∈M

1

s

s∑
i=1

d 2
M (wi , p),
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which generalizes the Euclidean mean. The geodesic mean is a particular example of

a Fréchet mean, which can instead be defined in any metric space M equipped with a

distance d as

w̄ = argmin
p∈M

1

s

s∑
i=1

d 2(wi , p),

with w1, . . . , ws ∈M .

1.2.5 The Exponential and Logarithmic map

Here we define the exponential map, which is important as it allows us to represent

elements in M in terms of associated elements on a tangent space, which is instead a

linear space.

Define the subset E of T M as

E = {V ∈ T M : γV is defined on an interval containing [0,1]}.

We define exp : E →M , the exponential map, to be

exp(V ) = γV (1).

For a p ∈M , we define the restricted exponential map expp to be the restriction of exp to

the set Ep := E ∩TpM . For any p ∈M , there is a neighborhood V of the origin in TpM

and a neighborhood U of p ∈M (called normal neighborhood) such that expp : V →U is

a diffeomorphism. Given an element in V ⊂ TpM we will be able to associate (uniquely)

an element in U ⊂ M and vice-versa. The inverse map from U to V is sometimes call

logarithmic map. An illustration is given in Figure 1.5.

Figure 1.5 An element expp (v) ∈M generated by applying the exponential map expp to
the tangent vector v ∈ TpM .
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The exponential map can be used to define a set of ‘special’ coordinates on M . In fact,

an orthonormal basis {Ei } for TpM gives an isomorphism E :Rn → TpM by E(x1, ·, xn) =
xi Ei . If U is a normal neighborhood of p, we can combine this isomorphism with the

exponential map to get a coordinate chart ϕ : U →Rn defined as

ϕ= E−1 ◦exp−1
p : U →Rn ,

which offers a convenient way to parameterize U ⊂ M with a subset of Rn . Any such

coordinates are called Riemannian normal coordinates centered at p.

1.2.6 Differential operators on Riemannian manifolds

Now we are finally able to introduce generalizations of differential operators to functions

or vector fields defined on manifolds. Specifically, we generalize the gradient, which for

a function f : Rn → R is ∇ = ( ∂ f
∂x1 , . . . , ∂ f

∂xn ), the divergence operator, which for a vector

field ( f 1, . . . , f n) :Rn →Rn is div f = ∂ f 1

∂x1 + . . .+ ∂ f n

∂xn and the Laplacian, which for a function

f :Rn →R is ∆ f := div∇ f = ∂ f
∂2x1 +·· ·+ ∂ f

∂2xn .

We also extend the definition of Laplacian to vector fields. Note that, for instance, in

the planar 2D case a matrix operator for a vector field u :R2 →R2 can be defined as the

isotropic Laplacian operator [
∆ 0

0 ∆

]
,

where ∆ is the Laplacian operator for real valued functions. The isotropic Laplacian

applies the Laplacian operator component-wise to a vector field in R2, exploiting the

fact that, in the Euclidean space R2 there is a global reference system. The introduction

of an analogous operator for vector fields on a manifold is not straightforward for the

main reason that nearby vectors, living on different tangent spaces, cannot be compared

component-wise, as they are expressed in different local bases. The definition of such

coordinate independent operators for vector fields require the additional notions of

Riemannian geometry introduced in the previous sections.

Let now f : M → R be a real valued and smooth function on the manifold M . Let

d fp (v) be its directional derivative at p in the direction v ∈ TpM . The concept of direc-

tional derivative can be used to define (∇M f )(p) ∈ TpM , the gradient of the function

f at p, as the element of the tangent space that satisfies gp (∇M f (p), v) = d fp (v) for all

v ∈ TpM , which is a well-known property of the gradient in Euclidean spaces. It can be
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shown that (∇M f )(p) ∈ TpM can be expressed in local coordinates {xi } as

(∇M f )(p) = g i j (p)

(
∂ f

∂xi

)
p

(
∂

∂x j

)
p

.

Let V be a smooth vector field on the closed manifold M , where V (p) ∈ TpM . A

generalization of the divergence operator divM can be introduced by imposing that∫
M f divM V = −∫

M gp (∇M f ,V ) for all f ∈ C∞(M ), this also a well-known property in

the Euclidean case. As in the Euclidean case, we can finally define the Laplace-Beltrami

operator as ∆M f = divM∇M f . This is related to the second partial derivatives of f on M ,

i.e. its local curvature. In local coordinates it can be shown that ∆M f (p) is of the form

(∆M f )(p) = 1√
det(gi j (p))

(
∂

∂xi

)
p

g i j
√

det(gi j (p))

(
∂ f

∂x j

)
p

,

with det(gi j (p)) denoting the determinant of the matrix (gi j (p)).

When it comes to vector fields, we can define the Bochner-Laplacian operator, of a

smooth section v ∈X(M ), as

∆BL =∇∗∇ : X(M ) →X(M ) (1.21)

where ∇∗ is the L2 adjoint of ∇.

The operators ∆M f and ∆BL v define measures of local curvature and thus general-

izations of the second derivative for real functions f and vector fields v , respectively.

These will play an important role in defining smooth estimates for quantities that are real

functions or vector fields supported on a manifold M .

1.3 Geometric Functional Data Analysis

There are three main types of geometric functional data, reflecting how geometry and

functional data interplay with each other. We briefly recall them here.

The first setting is that of samples that are real functions supported on a non-linear

manifold M ⊂ Rd , i.e. functional samples Xi : M → R with i = 1, . . . ,n. An example of a

functional sample in this setting is shown in the first panel of Figure 1.6. Due to the high-

dimensionality of the data, and due to the presence of discrete noisy measurements or

indirect measurements, it is often necessary to incorporate smoothness in the estimation
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of the underlying functional unknowns. Thanks to the geometric operators introduced in

Section 1.2, we will be able to achieve this in the context of FPCA.

Figure 1.6 From left to right, three different examples of geometric functional data. On the
first panel, a functional observation f : M →R supported on the manifold M representing
the geometry of the brain surface. On the second panel, a set of curves X (t ) taking values
on a manifold M that is a sphere, i.e. X (t )|t ∈ M for all t ∈ T . In the third panel, a
pictorial representation of the setting of functional objects taking values in a non-linear
space M . An example is the space of covariance operators. All three types of geometric
functional data are generally referred to as ‘functional data on manifolds’.

The second setting is that of manifold-constrained curves, where each sample Xi is

a curve {Xi (t), t ∈ [0,1]} that takes values on a non-linear manifold M ⊂Rd , specifically,

Xi (t) ∈ M for all t ∈ [0,1]. An example of such data are flights trajectories, with M

modeling the geometry of the earth, as shown in the second panel of Figure 1.6. In the

context of FPCA, this setting has been considered in Dai and Müller (2018), Lin and Yao

(2018) and Dai et al. (2018).

Finally, the third setting is that of manifold-valued functional data, where the non-

linearity is not simply a point-wise non-linearity, as opposed to the second setting. Exam-

ples include samples X1, . . . , Xn where each sample is constrained to be a monotonically

increasing function, or a diffeomorphic function (smooth invertible map with smooth

inverse), or a covariance operator; therefore constrained to be symmetric and positive

semidefinite. A pictorial representation of this setting is shown on the third panel of

Figure 1.6. Examples of manifold-valued shape representations for parametrized curves

can be found in Kurtek et al. (2012); Srivastava et al. (2011). Examples of discrete shape

representations with non-trivial geometries are: landmark based shape representations

(see, e.g. Dryden and Mardia, 2016), skeletal shape representations (Pizer et al., 2013),

dihedral angles representations (Eltzner et al., 2018) and projective shape spaces (Mardia

and Patrangenaru, 2005).

The main methodological contributions of this thesis can be contextualized in the

first and third settings, namely in the setting of functional data supported on manifolds
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and manifold-valued functional data. Therefore, a review of the literature on the first

setting has been left to Chapter 2, while the third setting is covered in the second half

of Chapter 3, for functional data that are covariance operators, and in Chapter 4, for

functional data that are diffeomorphic functions. To give a more comprehensive view of

the recent works on the analysis of geometric functional data, in the next section, we also

review the manifold-constrained curves setting, which is the setting this thesis is only

tangentially related to.

1.3.1 Manifold-constrained curves

Let M denote a d-dimensional, geodesically complete (i.e. the exponential map is de-

fined on the entire tangent space) Riemannian manifold embedded in Rd0 , e.g. a two-

dimensional sphere in R3, and let T ⊂ R be a compact interval of the real line. A first

branch of the literature on geometric functional data has focused on samples that are

random continuous curves with values on M , i.e. random continuous functions from T

to M , an example of which is shown on the second panel of Figure 1.6.

In Dai and Müller (2018), an intrinsic Fréchet mean µM is considered, and this is

defined, point-wise, as

µM (t ) = argmin
p∈M

E[dM (X (t ), p)2],

with dM denoting the geodesic distance on M . Existence and uniqueness of µM is

assumed to hold.

Define the log-mapped random functions

V (t ) = logµM (t )(X (t )) ∈ TµM (t )M ,

which can be shown to have zero mean (Patrangenaru and Bhattacharya, 2003). Thanks

to the fact that the manifold is embedded in Rd0 , the elements of the tangent spaces can

be identified with Rd0 . Hence, V (t) ∈ Rd0 for all t ∈ T . Dai and Müller (2018) perform

classical FPCA analysis on V (t ), which for each t ∈T takes values on the tangent space

TµM (t )M and thus belongs to a linear space. Thus, they obtain a KL expansion of V that is

V (t ) =
∞∑

k=1
ζkψk (t ).
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From this they define the truncated approximation of the original process to be

XK (t ) = expµM (t )

( K∑
k=1

ζkψk (t )
)
.

1.3.2 Estimation

The case of fully observed curves

Suppose we are given n independent fully observed functional samples X1, . . . , Xn identi-

cally distributed as X , the Fréchet mean is estimated by

µ̂M (t ) = argmin
p∈M

1

n

n∑
i=1

dM (Xi (t ), p).

Existence and uniqueness of µ̂M are assumed.

The log-mapped data are estimated by V̂i (t) = logµ̂(t )(Xi (t)). These are such that

n−1 ∑n
i=1 V̂i (t ) = 0 (Patrangenaru and Bhattacharya, 2003). The estimates of the PC func-

tions {ψ̂k } are computed by eigen-analysis of the empirical covariance function ĈV =
n−1 ∑n

i=1 V̂i (t)V̂i (s)T , for s, t ∈ T ; The estimates of the PC scores are given by ζ̂i k =∫
T V̂ T

i (t )ψ̂k (t )d t . The estimated truncated expansions take the form

V̂K =
K∑

k=1
ζ̂kψ̂k (t ), X̂K (t ) = expµ̂M (t )

( K∑
k=1

ζ̂kψ̂k (t )
)
.

Consistency and
p

n rates of convergence are obtained for the empirical mean, i.e.

sup
t∈T

dM (µ̂M (t ),µM (t )) =Op (n−1/2),

from which it follows that

sup
t∈T

∥V̂i (t )−Vi (t )∥2 =Op (n−1/2),

with ∥·∥2 denoting the Euclidean distance. Moreover,
p

n rates of convergence are obtained

for the empirical covariance function, i.e.

sup
t ,s∈T

∥ĈV (t , s)−CV (t , s)∥F =Op (n−1/2),
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with ∥ · ∥F denoting the Frobenius norm. From this, consistency of eigenvalues and

eigenfunctions (defined on the tangent space, which is a linear space) follow by classical

arguments (see Section 1.1.2).

The use of the discrepancy measures ∥V̂i (t )−Vi (t )∥2 and ∥ĈV (t , s)−CV (t , s)∥F , is pos-

sible thanks to the identification of the elements of the tangent space with the embedding

space Rd0 . In general, for manifolds not embedded in Rd0 , this is not possible as tan-

gent spaces at different points, are generally in different spaces, which are not directly

comparable without the introduction of further geometric notions (see discussion in

Section 1.2.4).

In Lin and Yao (2018), a very similar setting to Dai and Müller (2018) is considered

and the same estimators are proposed. However, they replace the Euclidean discrepancy

measure with a fully intrinsic discrepancy measure, based on the idea of parallel transport.

This enables statistical analysis on a manifold M not necessarily embedded in a Euclidean

space.

Define two measurable curvesα(t ) andβ(t ) on M , and two vector fields U (t ) and V (t ),

such that U (t) ∈ Tα(t )M and V (t) ∈ Tβ(t )M for all t ∈ T . They define the discrepancy

vector field

U ⊖ΓV := Γα,βU −V ,

with Γα,β the parallel transport operator from Tα(t )M to Tβ(t )M , along the geodesics from

α(t ) to β(t ). From Γα,β, we can define an operatorΦα,β such that, for a linear continuous

operator A , acting on vector fields along α, (Φα,βA )V = Γα,βAΓ∗
α,βV . Here, Γ∗

α,β denotes

the L2 adjoint operator of Γα,β. We can define a discrepancy operator, between A , acting

on vector fields along α, and B, acting on vector fields along β, as

A ⊖ΦB :=Ψα,βA −B.

The discrepancy between the vector fields U and V is finally measured as ∥U ⊖Γ V ∥β
and the discrepancy between the Hilbert-Schmidt operators A and B is measured as

�A ⊖ΦB�β, with ∥·∥β denoting the L2 norm of the vector field along β and �·�β denoting

the associated Hilbert-Schmidt norm.

In terms of these discrepancy measures, the
p

n rates of convergence are recovered for

the empirical covariance function, i.e.

�ĈV ⊖ΦCV �µ =Op (n−1/2),
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where ĈV is ‘transported’ from being an operator acting on vector fields along µ̂(t ) to an

operator acting on vector fields along µ(t). From this, consistency of eigenvalues and

eigenfunctions follow by classical arguments.

Discrete measurements

Suppose now the random curves X1, . . . , Xn , with values on M , are not directly observable,

but instead, each sample Xi is measured at time points ti j , with j = 1, . . . , pi , and the

measurements are contaminated with observational error. Specifically, we observe

{(Yi (ti j ), ti j ), i = 1, . . . ,n; j = 1, . . . , pi },

with Yi (ti j ) ∈M and ti j ∼ f , with f a density supported in T and independent of Xi . The

observations are generated by

Yi j = expµM (ti j ){Vi (ti j )+εi (ti j )},

with Vi (ti j ) = logµM (ti j )(Xi (ti j )) and εi (ti j ) ∈ TµM (ti j )M independent error terms, with

isotropic variance σ2 and E[εi (ti j )|ti j ] = 0. This is the setting considered in Dai et al.

(2018).

Although a Smooth-then-Estimate approach could be adopted to individually recon-

struct X1, . . . , Xn , from the noisy observations, this might be ineffective for very sparsely

sampled functions. For this reason, Dai et al. (2018) propose an Estimate-then-Smooth

approach. To estimate the mean, a geodesic version of the local polynomial regression

(Petersen and Müller, 2019) is applied to the scattered measurements

{(Yi (ti j ), ti j ), i = 1, . . . ,n; j = 1, . . . , pi },

from which the mean function µ̂M (t ) is estimated. Once the mean function is estimated,

the original data are mapped onto the tangent spaces Tµ̂M (ti j )M , centered at µ̂M (ti j ),

leading to the point-wise estimates V̂i (ti j ) = logµ̂M (ti j ) Yi j . Local polynomial regression,

for matrix-valued functions, is then applied to the scatterplot{(
V̂i (ti j )V̂i (ti j )T , ti j , ti l

)
, i = 1, . . . ,n; j , l = 1, . . . , pi , j ̸= l

}
.

Scores prediction, as in the linear case, is tackled by applying, on the tangent space

representations, the Best Linear Unbiased Predictor introduced in (Yao et al., 2005).
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To the best of our knowledge a Regularized-Estimation approach has not yet been

employed in the context of discrete noisy measurements of curves taking values on a

manifold M . The setting of indirect measurements has also not been explored, although

this does not appear to be relevant to the applications considered in this thesis.



Chapter 2

Functional Principal Component

Analysis over manifolds

2.1 Motivation

The recent growth of data arising from neuroimaging has led to profound changes in the

understanding of the brain. Neuroimaging is a multidisciplinary activity and the role

of statistics in its success should not be underestimated. Much of the work to date has

been to determine how to use statistical models in high-dimensional settings that arise

out of such imaging modalities as functional Magnetic Resonance Imaging (fMRI) and

Electroencephalography (EEG). However, it is becoming increasingly clear that there is

now a need to incorporate more and more complex information about brain structure and

function into the statistical analysis to enhance our present understanding of the brain.

Considerable amounts of the brain signal captured, for example, by fMRI arise from the

cerebral cortex. The cerebral cortex is the highly convoluted thin sheet where most neural

activity is focused. It is natural to represent this thin sheet as a 2D surface embedded

in a 3D space, structured with a 2D geodesic distance, rather than the 3D Euclidean

distance within the volume. In fact, functionally distinct areas may be close to each other

if measured with Euclidean distance, but due to the highly convoluted morphology of the

cerebral cortex, their 2D geodesic distance along the cortical surface can be far greater.

While early approaches to the analysis of hemodynamic signals ignore the morphology of

the cortical surface, it has now been well established [Glasser et al. (2013) and references

therein] that it is beneficial to analyze neuroimaging data through the processing of the

signals on the cortical surface using surface-constrained techniques.
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The goal in this chapter is to introduce a novel Functional Principal Component Anal-

ysis (FPCA) technique suitable for working with functional signals distributed over curved

domains and specifically over two-dimensional smooth Riemannian manifolds, such as

the cortical surface. The cortical surface can be extracted from structural Magnetic Reso-

nance Imaging (MRI), a non-invasive scanning technique used to visualize the internal

structure of the brain, rendering it as a 3D image with high spatial resolution. The signal

of interest, which we want to analyse with respect to the surface, comes from fMRI, which

detects a Blood Oxygen Level Dependent (BOLD) signal [Ogawa et al. (1990)] as a series of

repeated measurements in time, yielding a time series of 3D images. An increased neural

activity in a particular area of the brain causes an increased demand for oxygen. As the

fMRI signal is related to changes in the relative ratio of oxy- to deoxy-hemoglobin, due to

their differing magnetic properties, the signal captured within an fMRI scan is considered

to be a surrogate for neural activity and is used to produce activation maps or investigate

brain functional connectivity. The fMRI signal of each individual related to the neural

activity in the cerebral cortex is generally mapped on a common template cortical surface,

to allow multi-subject statistical analysis.

In this work, in particular, we will focus our attention on functional connectivity (FC).

FC maps, on the cortical surface, can be constructed computing the pairwise correlation

between all vertex’s fMRI time-series and the mean time-series of a region of interest. The

resulting FC map for each subject provides a clear view of areas to which the region of

interest is functionally connected.

In practice, the template cortical surface is represented by a triangulated surface

that can be considered a discrete approximation of the underlying smooth compact two-

dimensional Riemannian manifold M ⊂R3 modelling the cortical surface. See Section 1.2

for a formal definition of a Riemannian manifold. Each resting state FC map can be

represented by a function xi : M →R. Once we have the correlation maps on the cortical

surface we want to study how the phenomena vary from subject to subject. A statistical

technique for this study is Functional Principal Component Analysis (PCA). It is natural

to contextualize this task in the framework of Geometric Functional Data Analysis for

functions supported on a non-linear manifold.

In Section 2.2, we formalize the setting considered in this chapter and give a brief

overview of the literature on functional data supported on non-linear manifold domains.

In Section 2.3 we introduce a novel FPCA model and propose an algorithm for its resolution.

We then give some simulation results in Section 2.4, indicating the performance of our

methodology, as compared to other methods in literature. We then return to the FC maps
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example in Section 2.5, to consider how the surface based FPCA analysis might be used

in this case and draw some concluding remarks in Section 2.6. Further simulations are

provided in Appendix A.

2.2 Setting

Consider the space of square integrable functions on M : L2(M ) = { f : M →R :
∫
M | f (p)|2d p <

∞} with the inner product 〈 f , g 〉M = ∫
M f (p)g (p)d p and norm ∥ f ∥2

M
= ∫

M | f (p)|2d p.

We let X be a random variable with values in L2(M ), mean µ = E[X ] and finite sec-

ond moment, i.e.
∫
M E[X 2] < ∞, and assume that its covariance function K (p, q) =

E[(X (p)−µ(p))(X (q)−µ(q))] is square integrable.

The function space L2(M ) is a linear space and the theoretical setup introduced

in Section 1.1.1 readily applies to this setting. Indeed, we can perform FPCA on n fully

observed smooth samples from X , here denoted with x1, . . . , xn , by applying the estimators

in Section 1.1.2, for which the same rates of convergence hold.

In practice, for each sample xi , only noisy evaluations xi (p j ) on a fixed discrete grid

of points p1, . . . , ps ⊂ M are given. In this setting, we want take take advantage of the

smoothing properties of the underlying functional samples to obtain estimators with

better finite sample properties. As mentioned in Chapter 1, there are three approaches to

this problem: the Smooth-then-Estimate, the Estimate-then-Smooth and the Regularized-

Estimate approach.

The Smooth-then-Estimate approach consists of individually smoothing the samples

x1, . . . , xn and then performing FPCA. We will compare the methodology presented in

this chapter with this approach, demonstrating that smoothing the samples individually

generally leads to poorer performances. The Estimate-then-Smooth approach consists of

computing the discrete estimators

x̄(p j ) = 1

n

n∑
i=1

xi (p j ), ĈX (p j , pl ) = 1

n

n∑
i=1

(
xi (p j )− x̄(p j )

)(
xi (pl )− x̄(pl )

)
,

followed by a smoothing on x̄(p j ) and ĈX (p j , pl ). However, due to the potentially high

number of locations p1, . . . , ps , as it is the case in some neuroimaging applications, it might

not be possible to store in memory the entire object ĈX (p j , pl ), limiting the applicability of

the Estimate-then-Smooth approach, as presented for 1D functional data. This motivates

the introduction of a Regularized-Estimate approach to FPCA, where instead of estimating

the covariance ĈX , we estimate directly, in a regularized fashion, its eigenfunctions.
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The first two approaches to FPCA rely on a smoothing procedure for noisy measure-

ments of a function x : M →R, at locations p1, . . . , ps ⊂M , where the natural concept of

neighborhood on the domain M is induced by the 2D geodesic distance. This is also the

case for the Regularized-Estimate approach as it will be clear in the next section.

With the aim of defining a Regularized-Estimate FPCA model, in the next section, we

introduce a generalization of the smoothing splines formulation (1.11). In the simpler

setting where the aim is smoothing a single function x : M → R, observed at locations

{p j }, this takes the form

x̂ = argmin
f :M→R

s∑
j=1

(
x(p j )− f (p j )

)2
+λ

∫
M

(∆M f )2d p,

where ∆M is the Laplace-Beltrami operator, measuring the curvature of the function f

on the manifold. Further details on this approach will follow in the next section. This

formulation overcomes the limitations of the kernel regression and heat kernel approaches

to smoothing on a non-linear manifold, which we briefly review here.

A kernel regression estimator, for the estimation of x : M →R from noisy evaluations

{x(p j )}, has been first proposed in Pelletier (2006). Let K :R+ →R+ be a 1D positive and

continuous kernel, the proposed kernel regression estimator takes the form

x(p) = 1

s

s∑
j=1

x(p j )
1

hd

1

θp j (p)
K

(
dM (p, p j )

h

)
, p ∈M

with 1
θp′ (p) a function normalizing the densities K

(
dM (·,p)

h

)
to sum to 1, h a positive con-

stant tuning parameter and with dM denoting the geodesic distance on M . This approach

becomes infeasible for a generic manifold due to the necessity to compute the normalizing

function θp ′(p), which can in general be defined only on a neighborhood of p. In the

special cases where M is a sphere or M is the space of symmetric positive-definite matri-

ces we can find an explicit computation of θp ′(p) in Pelletier (2006) and Chevallier et al.

(2017), respectively. An alternative formulation has been proposed in Kim and Park (2013),

where the kernels are defined on the tangent space of each location {p j } and are applied

to the tangent space representations of the neighboring locations. The applicability of

this approach to generic non-linear domains is also limited, due to the local nature of the

tangent space representations.

Alternative approaches to smoothing are based on the construction of heat kernels,

which are solutions to the heat equation on a manifold M . The heat kernel smoothing
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of a non-smooth function x, is given by (Kη∗ x)(p) = ∫
M Kη(p, q)x(q)d q , where η is the

smoothing parameter and Kη is the heat kernel, which can also be expressed in terms of

the spectrum of the Laplace-Beltrami operator {(λl ,ψl )} as

Kη(p, q) =
∞∑

l=1
= e−λlηψl (p)ψl (q).

It can be shown that for η small and for q close to p we have that

Kη(p, q) ≈ 1

(2πη)
1
2

exp

(
−d 2

M
(p, q)

2η2

)
. (2.1)

In Chung et al. (2005), the authors rely on this approximation to define a smoother for the

discrete measurements {x(p j )} as x̂(p) = ∑
j K̃η(p, p j )x(p j ), with K̃η the approximation

(2.1), truncated to zero for p and q that are not ‘close’ to each other. This is called the

Iterated Heat Kernel (IHK) smoother as the desired level of smoothing can be reached

after k iterations, thanks to the following property:

K k
η ∗ f = Kη∗ . . .×Kη︸ ︷︷ ︸

k times

∗ f = Kp
kη.

For a fixed bandwidth η, the level of smoothing is determined by an optimal number of

iterations selected via the F-test criterion outlined in Chung et al. (2005). Instead, in Seo

et al. (2010), the function x is expanded on the eigenfunctions of the heat kernel as x =∑
l βlψl . Its smoothed version is given by (Kη∗x)(p) =∑

l e−λlηβlψl (p). The coefficients

{bl } are estimated by least squares. Note that in both cases we need dense measurements

of x, as the approximation (2.1) holds only for p and q close to each other and the least

square estimate of the coefficients βl is accurate only for densely observed functions.

2.3 Smooth FPCA over two-dimensional manifolds

2.3.1 Model

Without loss of generality, we now assume that the random function X has zero-mean.

Suppose the sample of n functions xi : M →R is observed at a fixed set of points p1, . . . , ps

in M (this will be relaxed later). Define the n × s matrix X = (xi (p j )).

Let f : M →R be a real valued and twice differentiable function and let u = {ui }i=1,...,n

be a n-dimensional real column vector. We propose to estimate the first PC function
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f̂ : M →R and the associated PC scores vector û, by solving the equation

(û, f̂ ) = argmin
u, f

n∑
i=1

s∑
j=1

(xi (p j )−ui f (p j ))2 +λuT u
∫
M
∆2

M f , (2.2)

where the Laplace-Beltrami operator is integrated over the manifold M , enabling a global

roughness penalty on f . The empirical term encourages f to capture the strongest mode

of variation, as it is the empirical counterpart of the objective function E
∫
M

{
X −〈X , f 〉 f

}2,

minimized by the first PC function (see Section 1.1, for details). The parameter λ con-

trols the trade-off between the empirical term of the objective function and roughness

penalizing term. The uT u term is justified by some invariance considerations on the

objective function as done in the case of one dimensional domains, in Huang et al. (2008).

Consider the transformation (u → cu, f → 1
c f ), with c a constant, and the transformation

(X → cX,u → cu). Then the objective function in (2.2) is invariant with respect to the first

transformation, while the empirical and the smoothness terms are re-scaled by the same

coefficient with the second transformation.

The subsequent PCs can be extracted sequentially by removing the preceding es-

timated components from the data matrix X. This allows the selection of a different

penalization parameter λ for each PC estimate. We will refer to the model introduced as

Smooth Manifold FPCA (SM-FPCA).

2.3.2 Iterative algorithm

Here we present the numerical algorithm for the resolution of the model introduced above.

Our approach for the minimization of the functional (2.2) can be summarized in the

following two steps:

• Splitting the optimization into a finite dimensional optimization in u and an infinite-

dimensional optimization in f ;

• Approximating the infinite-dimensional solution using a Surface Finite Element

discretization.

Let fs be the vector of length s such that fs = ( f (p1), . . . , f (ps))T . The expression in (2.2)

can be rewritten as

(û, f̂ ) = argmin
u, f

∥X−ufT
s ∥2

F +λuT u
∫
M
∆2

M f , (2.3)
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with ∥ · ∥F the Frobenius matrix norm. A normalization constraint must be considered in

this minimization problem to make the representation unique, as in fact multiplying u by

a constant and dividing f by the same constant does not change the objective function

(2.3). In particular we set the constraint ∥u∥2 = 1, with ∥ · ∥2 the Euclidean norm, as this

allows us to leave the infinite-dimensional optimization in f unconstrained.

Our proposal for the minimization of the criterion (2.3) is to alternate the minimization

of u and f in an iterative algorithm:

Step 1 Estimation of u given f . For a given f , the minimizing u of the objective function

in (2.3) is

u = Xfs

∥fs∥2
2 +λ

∫
M∆

2
M

f
, (2.4)

and the minimizing unitary-norm vector u is

u = Xfs

∥Xfs∥2
. (2.5)

Step 2 Estimation of f given u. For a given u, solving (2.3) with respect to f is equivalent

to finding the function f that minimizes

Jλ,u( f ) = fT
s fs +λ

∫
M
∆2

M f −2fT
s XT u. (2.6)

Step 1 is basically the classical expression of the score vector given the loadings vector,

where in this case the loading vector is given by fs , the evaluations of the PC function

in p1, . . . , ps . The problem in Step 2 is not trivial, consisting in an infinite-dimensional

minimization problem. Let z j denote the j th element of the vector XT u, then minimizing

the functional in (2.6) is equivalent to minimizing

s∑
j=1

(
z j − f (p j )

)2
+λ

∫
M
∆2

M f . (2.7)

This problem involves estimating a smooth field f defined on a manifold, starting from

noisy observations z j at points p j . As already mentioned, in the case of real functions

defined on the real line, adopting a penalty of the form λ
∫

f ′′, the minimization problem

turns out to have a finite-dimensional closed form solution that is a cubic spline [Green

and Silverman (1994)]. For real functions defined on an Euclidean space, cubic splines

are generalized by thin-plate splines. In this case, for an opportune smoothing penalty,
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the solution of the minimization problem can be expressed in terms of a finite linear

combination of radial basis functions [Duchon (1977)].

However, the case of real functions defined on a non-Euclidean domain M is more

involved. In the special case where M is a sphere or a sphere-like surface, that is M =
{σ(v) = ρ(v)v : v ∈ S} where S ⊂R3 is the unit sphere centered at the origin, this smoothing

problem has been considered, among others, by Wahba (1981) and Alfeld et al. (1996).

Moreover, the functional (2.7) is considered, among others, by Ettinger et al. (2016) and

Dassi et al. (2015). Here M is respectively a manifold homeomorphic to an open ended

cylinder and a manifold homeomorphic to a sphere. In the latter two works the field

f is estimated by first conformally recasting the problem to a planar domain and then

discretizing it by means of planar finite elements, generalizing the planar smoothing model

in Ramsay (2002). Our approach is also based on a Finite Element (FE) discretization,

but differently from Ettinger et al. (2016) and Dassi et al. (2015), we construct here a FE

space directly on the triangulated surface MT that approximates the manifold M , i.e. we

use surface FE, avoiding any flattening step and thereby allowing the formulation to be

applicable to any manifold topology.

2.3.3 Surface Finite Element discretization

Assume, for clarity of exposition only, that M is a closed surface, as in our motivating

application. The case of non-closed surfaces can be handled by considering some appro-

priate boundary conditions as done for instance in the planar case in Sangalli et al. (2013).

Consider the linear functional space H 2(M ), the space of functions in L2(M ) with first

and second weak derivatives in L2(M ). The infinite dimensional part of the estimation

problem can be reformulated as follows: find f̂ ∈ H 2(M ) such that

f̂ = argmin
f ∈H 2(M )

Jλ,u( f ). (2.8)

Proposition 2. The solution f̂ ∈ H 2(M ) exists and is unique and is such that

s∑
j=1

ϕ(p j ) f̂ (p j )+λ
∫
M
∆Mϕ∆M f̂ =

s∑
j=1

ϕ(p j )
n∑

i=1
xi (p j )ui (2.9)

for every ϕ ∈ H 2(M ).

The key idea is to minimize Jλ,u( f ) by differentiating this functional with respect to f .

This leads to (2.9), that characterizes the estimate f̂ as the solution of a linear fourth-order
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problem. A more general version of Proposition 2 will be introduced in Chapter 3 in an

inverse problems setting.

Consider now a triangulated surface MT , union of the finite set of triangles T , giving

an approximated representation of the manifold M . Figure 2.1 for instance shows the

triangulated surface approximating the left hemisphere of a template brain. We then

consider the linear finite element space V consisting in a set of globally continuous

functions over MT that are linear affine where restricted to any triangle τ in T , i.e.

V = {v ∈C 0(MT ) : v |τ is linear affine for each τ ∈T }.

Figure 2.1 The triangulated surface approximating the left hemisphere of the template
brain. The mesh is composed by 32K nodes and by 64K triangles

This space is spanned by the nodal basis ψ1, . . . ,ψK associated to the nodes ξ1, . . . ,ξK ,

corresponding to the vertices of the triangulation MT . Such basis functions are lagrangian,

meaning that ψi (ξ j ) = 1 if i = j and ψi (ξ j ) = 0 otherwise. Setting f = ( f (ξ1), . . . , f (ξK ))T

and ψ= (ψ1, . . . ,ψK )T , every function f ∈V has the form

f (p) =
K∑

k=1
f (ξk )ψk (p) = fTψ(p) (2.10)

for each p ∈ MT . The surface finite element space provides a finite dimensional sub-

space of H 1(M ) [Dziuk (1988)]. To use this finite element space to discretize the infinite-

dimensional problem (2.9), that is well posed in H 2(M ), we first need a reformulation

of (2.9) that involves only first-order derivatives. This can be obtained by introducing an

auxiliary function g that plays the role of ∆M f , splitting the equation (2.9) into a coupled

system of second-order problems and finally integrating by parts the second order terms.

The details of this derivation can be found in Section 3.8, in the more general setting of
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Chapter 3. The discrete estimators f̂h , ĝh ∈V are then obtained by solving


∫
MT

∇MT
f̂h∇MT

ϕh −∫
MT

ĝhϕh = 0

λ
∫
MT

∇MT
ĝh∇MT

vh +
s∑

j=1
f̂h(p j )vh(p j ) =

s∑
j=1

vh(p j )
n∑

i=1
xi (p j )ui

(2.11)

for all ϕh , vh ∈ V . Define the s ×K matrix Ψ = (ψk (p j )) and the K ×K matrices R0 =∫
MT

(ψψT ) and R1 =
∫
MT

(∇MT
ψ)(∇MT

ψ)T . Then, exploiting the representation (2.10) of

functions in V we can rewrite (2.11) as a linear system. Specifically the Finite Element

solution f̂h(p) of the discrete counterpart (2.11) is given by f̂h(p) =ψ(p)T f̂ where f̂ is the

solution of [
ΨTΨ λR1

λR1 −λR0

][
f̂

ĝ

]
=

[
ΨT XT u

0

]
(2.12)

Solving (2.12) leads to

f̂ = (ΨTΨ+λR1R−1
0 R1)−1ΨT XT u. (2.13)

Although this last formula is a compact expression of the solution, it is preferable to

compute the solution from the linear system (2.12) due to the sparsity property of the

matrix in the left-hand side. As an example, in the simulations and the application shown

in Sections 2.4-2.5, respectively less then 1% and less then 0.1% of the elements in the

matrix in the left hand side of (2.12) are different from zero, allowing a very efficient

solution of the linear system.

In the model introduced, we assume that all the observed functions xi are sampled

on the common set of points p1, . . . , ps ∈M . Suppose moreover, p1, . . . , ps ∈M coincide

with the vertices of the triangulated surface MT . In this particular case, an alternative

approach could consist of interpreting the points p1, . . . , ps ∈MT as the nodes of a graph

linked by the edges of the triangulation and considering the model (2.2) with a discrete

smoothness operator term instead of the Laplace-Beltrami operator (see e.g. Belkin and

Niyogi (2002) for the choice of the penalization term and Cai et al. (2011) for an application

to matrix decomposition). However, thanks to its functional nature, the formulation (2.2)

can be easily extended to the case of missing data or sparsely sampled functional data.

Specifically, suppose now that each function xi is observable on a set of points p i
1, . . . , p i

si
,

then the natural extension of the model (2.2) becomes

(û, f̂ ) = argmin
u, f

n∑
i=1

si∑
j=1

(xi (p i
j )−ui f (p i

j ))2 +λuT u
∫
M
∆2

M f . (2.14)
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Following the same procedure, we can define an analogous algorithm based on the follow-

ing two steps.

Step 1 For a given f , the unitary-norm vector u minimizing (2.14) is given by

u such that ui =
∑si

j=1 xi (p i
j ) f (p i

j )
p∑n

i=1(
∑si

j=1 xi (p i
j ) f (p i

j ))2
.

Step 2 For a given u, the function f minimizing (2.14) is given by

f = fTψ with f such that [
L λR1

λR1 −λR0

][
f

g

]
=

[
DT u

0

]
,

where

L =


n∑

i=1

si∑
j=1

u2
i ψ1(p i

j )ψ1(p i
j ) . . .

n∑
i=1

si∑
j=1

u2
i ψ1(p i

j )ψK (p i
j )

. . .
n∑

i=1

si∑
j=1

u2
i ψK (p i

j )ψ1(p i
j ) . . .

n∑
i=1

si∑
j=1

u2
i ψK (p i

j )ψK (p i
j )



D =


s1∑

j=1
ψ1(p1

j )x1(p1
j ) . . .

sn∑
j=1

ψ1(pn
j )xn(pn

j )

. . .
s1∑

j=1
ψK (p1

j )x1(p1
j ) . . .

sn∑
j=1

ψK (pn
j )xn(pn

j )

 .

2.3.4 SM-FPCA Algorithm

The algorithm for the resolution of the model SM-FPCA (2.2) can be summarized in the

following steps.
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Algorithm 1 SM-FPCA Algorithm

1: Initialization:

(a) Computation ofΨ, R0 and R1

(b) Perform the SVD: X = UDVT

(c) fs ← V[:,1], where V[:,1] are the loadings of the first PC

2: Scores estimation:

u ← Xfs

∥Xfs∥2

3: PC function’s estimation: f such that[
ΨTΨ λR1

λR1 −λR0

][
f

g

]
=

[
ΨT XT u

0

]

4: PC function’s evaluation:

fs ←ΨT f

5: Repeat Steps 2–4 until convergence

6: Normalization:

f̂ (p) ← fTψ(p)

∥fTψ∥L2(MT )

The problems (2.2)-(2.14) are non-convex minimization problems in (u, f ). However,

in the previous section we proved the existence and uniqueness of the minimizing f given

u and vice-versa. This implies that the objective function is non-increasing under the

update rules of the Algorithm 1. Since the first guess of the PC function, given by the SVD,

is usually a good starting point, in all our simulations no convergence problem has been

detected.

2.3.5 Parameters selection

The SM-FPCA model has a smoothing parameter λ > 0 that adjusts the trade-off be-

tween the fidelity of the estimate to the data, via the sum of the squared errors, and the

smoothness of the solution, via the penalty term. The problem of choosing the smoothing

parameter is common to all smoothing problems.

The flexibility given by the smoothing parameter can be seen as an advantageous

feature; by varying the smoothing parameter the data can be explored on different scales.
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However, in many cases a data-driven automatic method is necessary. In the following

simulations we consider two different criteria. The first approach consists of a K -fold cross

validation. The data matrix X is partitioned by rows into K roughly equal groups. For each

group of data k = 1, . . . ,K the dataset can be split into a validation set Xk , composed of the

elements of the kth group, and a training set, composed of the remaining elements. For

different smoothing parameters, the loading function f −k is estimated from the training

dataset. Given the estimated loading function f −k , the associated score vector uk is

computed on the validation dataset. Since f −k has been computed on the training dataset,

uk should be computed on the validation dataset via the formula (2.4), where
∫
M∆

2
M

can

be approximated by gT R0g, being gh(p) =ψ(p)T g the auxiliary function approximating

∆M f . Finally, we select the value of the parameter λ that minimizes the following score:

CV (λ) =
K∑

k=1

∑n
i=1

∑s
j=1

(
xi (p j )−uk

i f −k (p j )
)2

np
. (2.15)

The second approach is based on the minimization of a generalized cross-validation

(GCV) criteria integrated on the regression step of the iterative algorithm. Setting S(λ) =
ΨT (ΨTΨ+λR1R−1

0 R1)−1ΨT , the GCV score is defined as

GCV(λ) = 1

s

∥(I−S(λ))(XT u)∥2

(1− 1
s tr{S(λ)})2

.

The GCV score represents the average misfit of the regression model with a leave-one-

out cross-validation strategy on the observations’ vector XT u. However, excluding the

i th element from the vector XT u can be interpreted as removing i th column from the

data-matrix X. Thus, in terms of the data-matrix, this strategy can be interpreted as a leave-

one-column-out cross-validation strategy, as opposed to the K -fold, where the data matrix

X is partitioned by rows. The GCV approach is generally faster then the K -fold approach.

However, K -fold does not require the inversion of any matrix. This is an advantageous

feature, since generally the inverse of sparse matrix is not sparse. It is thus applicable also

to datasets X with a large number of columns s.

2.3.6 Total explained variance

Another parameter that must be chosen is the number of PCs that satisfactorily reduces

the dimension of the data. A classical approach consists of selecting this parameter on

the basis of cumulative explained variance of the PC. While in the ordinary PC, the scores
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vectors are uncorrelated and their loadings are orthogonal, in our formulation neither the

loadings are explicitly imposed to be orthogonal nor the PC scores to be uncorrelated. It is

nevertheless possible to define an index of explained variance as follows. Let Û be the n×k

matrix such that the columns of Û are the first k PC scores vectors. Since in our estimation

procedure the PC scores are normalized to have unitary norm, the variance of the PCs

is captured by the PC functions. It is thus necessary to consider here the unnormalized

PC scores, obtained by multiplying each score vector by the norm of the associated PC

function. Without the uncorrelation assumption, it is meaningless to compute the total

variance explained by the first k PCs by tr(ÛT Û). To overcome this problem Zou et al.

(2006) propose to remove linear dependence between correlated PC scores vectors, by

regression projection. Thus they compute the QR decomposition of Û as Û = QR and

define the adjusted total variance as
∑k

j=1 R2
j j , where R j j represents the variance explained

by the j th PC that is not already explained by the previous j −1 components.

2.4 Simulation studies

In this section we conduct simulations to assess the performance of the SM-FPCA algo-

rithm compared to other methods.

We consider as domain of the functional observations a triangulated surface MT with

642 nodes that approximate the brainstem. On this triangulated surface we generate

the orthonormal functions {vl }l=1,2,3, consisting of three eigenfunctions of the Laplace-

Beltrami operator, as shown in Figure 2.2. These functions represent the first three PC

functions. We then generate n = 50 smooth functions x1, . . . , x50 on MT by

xi = ui 1v1 +ui 2v2 +ui 3v3 i = 1, . . . ,n, (2.16)

where ui 1, ui 2, ui 3 are independent random variables that represent the scores and are

distributed as ui l ∼N (0,σ2
l ), with σ1 = 5, σ2 = 3 and σ3 = 1. The smooth functions xi are

then sampled at locations p j ∈R3 with j = 1, . . . , s coinciding with the nodes of the triangu-

lated surface. Moreover at each of these points we add to the functions a Gaussian noise

with mean zero and standard deviation σ= 0.1 to obtain the noisy observations denoted

with xi (p j ). We are thus interested in recovering the smooth PC functions {vl }l=1,2,3 from

these noisy observations over MT . We compare the proposed SM-FPCA technique to two

alternative approaches.
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First PC
function

Second PC
function

Third PC
function

Signal

Figure 2.2 From left to right, a plot of the true first, second and third PC functions and a
plot of a noisy observation on the brainstem, generated from these three PC functions.

The first basic approach we consider is a simple multivariate PCA (MV-PCA) applied

to the data-matrix X. The PC functions are thus obtained by piecewise linear interpolation

over the mesh MT . Finally they are normalized to have unitary norm in L2(MT ).

A second natural approach is based on a pre-smoothing of the noisy observations that

tries to recover the smooth functions xi , i = 1, . . . ,n, from their noisy observations xi (p j ),

followed by a MV-PCA on the denoised evaluations of the functions on p j , j = 1, . . . , s. In

this case the smoothing technique applied is IHK smoothing (see Section 2.2 for details).

In these simulations, the bandwidth has been set at η= 2.5, heuristically selecting the one

with the best performance after some initial pilot studies. The number of iterations is

selected via the F-test criterion outlined in Chung et al. (2005). We refer to this approach

as IHK-PCA.

The proposed SM-FPCA technique is implemented as follows. For each PC we run

Algorithm 1 with 15 iterations of the steps 2-4. For the choice of the optimal smoothing

parameter λ, both K -fold, with K = 5, and GCV approaches have been applied.

The reconstructed PC functions, using the three different approaches are shown in

Figure 2.3. It is evident that applying the MV-PCA yields to a reconstruction far from

the true, because of the absence of any spatial information. The reconstruction through

the IHK-PCA approach and the SM-FPCA model are considerably more satisfactory. In
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Figure 2.4 we show the plots with the empirical variances explained, where in the case of

SM-FPCA, the explained variance has been computed as detailed in the Section 2.3.5.

Original MV-PCA IHK-PCA SM-FPCA

GCV
SM-FPCA

K-fold

First PC

function

Second PC

function

Third PC

function

Figure 2.3 From left to right, contours of the original PC functions and their estimates
respectively with MV-PCA, IHK-PCA, SM-FPCA GCV and SM-FPCA K-fold. From a visual
inspection, MV-PCA shows unsatisfactory results, while a better estimation is achieved
by IHK-PCA and SM-FPCA. In particular SM-FPCA is able to better capture details that
IHK-PCA ignores. This is apparent for instance in the third PC function reconstruction, in
the top-left and top-right corners.

While the poor performance of the MV-PCA is evident, to assess the performance of

the other two methods, we apply them to 100 datasets generated as previously detailed.
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Figure 2.4 From left to right, plot of the empirical variances explained by the first 5 PCs
computed with MV-PCA, IHK-PCA, SM-FPCA GCV and SM-FPCA K-fold.

The quality of estimated individual surfaces is then measured using the mean square error

(MSE) over all the locations p j , j = 1, . . . , s. MSEs are also used to evaluate the reconstruc-

tion of the PC scores vectors. Another performance measure used is the principal angle

between the subspace spanned by the estimated PC functions and the subspace spanned

by the true PC functions, as used in Shen and Huang (2008). Intuitively, the principal

angle measures how similar the two subspaces are. For this purpose we construct the s×3

matricesV= (vi (p j )) and V̂= (v̂i (p j )), where v̂i is the i th estimate of the true PC function

vi . Then we compute the orthonormal set of basis QV and QV̂ from the QR decomposition

of V and V̂. The principal angle is defined as the angle cos−1(ρ), where ρ is the minimum

singular value of QT
V̂

QV. The results are summarized in the boxplots in Figure 2.5, which

compares the MV-PCA, IHK-PCA and SM-FPCA algorithms with respect to the reconstruc-

tion’s errors of the PC functions {vl }l=1,2,3, the PC scores {ul }l=1,2,3 where ul = (ui l ), the

reconstructed signals xi = ui 1v1 +ui 2v2 +ui 3v3 for i = 1, . . . ,50 and the principal angles

between the subspaces spanned by the true and estimated PC functions.

The boxplots highlight the fact that SM-FPCA provides the best estimates of the PC

functions, corresponding scores vectors, signals and subspace reconstruction.

2.5 Application

The data set which we consider in this work arises from the Human Connectome Project

Consortium [HCP, Van Essen et al. (2012)], which is collecting data such as structural

scans, resting-state and task-based functional MRI scans, and diffusion-weighted MRI
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Figure 2.5 Boxplots summarizing the performance of IHK-PCA and SM-FPCA. For the
SM-FPCA both GCV and K -fold have been applied for the selection of the smoothing
parameter.

scans from a large number of healthy volunteers to help elucidate normal brain function.

Many preprocessing considerations have already been resolved in the so-called minimally

preprocessed dataset. Among the various preprocessing pipelines applied to the HCP

original data, of particular interest for us is the one named fMRISurface [Glasser et al.

(2013)]. This pipeline provides a transformation of the 3D structural MRI and 4D signal

from the functional MRI scan, so to enable the application of statistical analysis tech-

niques on brain surfaces. For each subject, the personal cortical surface is extracted as a
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triangulated surface from the structural MRI and to each vertex of this mesh is associated

a BOLD time-series derived from the BOLD signal of the underlying gray-matter ribbon.

The extracted cortical surfaces are aligned to a template cortical surface generated from

the cortical surfaces of 69 healthy adults. In practice, this cortical surface is represented by

two triangulated surfaces with 32k vertices, one for each hemisphere. In Figure 2.1 the left

hemisphere is shown. Through this anatomical transformation map, the patients’ BOLD

time-series, on the cortical surface, are coherently located to the vertices of the template

cortical surface. This, of course, raises questions about the implications of anatomical

alignment, and a small simulation study in Appendix A investigates this issue. The fMRI

signal used for our analysis has been acquired in absence of any task and for this reason is

also called resting state fMRI. Finally each time-series is filtered to the band of frequen-

cies [0.009,0.08]Hz. Summarizing, the data considered are fMRI filtered time-series on a

common triangulated template mesh.

As already mentioned in Section 2.1, a classic approach in the study of the resting

state fMRI is to exploit the time dimension of the data, for the extraction of a connectivity

measure among the different parts of the cortical surface. A standard choice for this

purpose is the computation of the temporal correlation. It first consists of identifying

a Region of Interest (ROI) on the cortical surface. This is the area whose behaviour, as

compared to the rest of the cortical surface, is of interest for the investigator. Within

each subject, a cross-sectional average of all the time-series in the ROI is used to find

a representative mean time-series. To each vertex of the cortical surface we associate

the pairwise correlation of the time-series located in that vertex with the subject-specific

time-series representative of the ROI. Finally each correlation value is transformed using

Fisher’s r-to-z transformation, yielding a resting state functional connectivity (RSFC) map

for each subject. The total number of subjects considered for this analysis is 491.

For the choice of the ROI, we consider the cortical parcellation derived in Gordon

et al. (2016), where a group-average boundary map of the cortical surface is derived from

resting state fMRI (Figure 2.6). The identified cortical areas are unlikely to correspond the

individual parcellation of each subject, since they are derived from a group average study.

However, they can serve as reasonable ROIs in individual subjects. The parcel that served

as ROI in the following analysis is highlighted in red in Figure 2.6. For the chosen ROI, a

snapshot of the RSFC map of one subject is shown in Figure 2.7.

The mean RSFC map is shown in Figure 2.8. As expected high correlation values are

visible inside the ROI. The mean RSFC over 491 subjects shows a variability coherent

with the parcellation, in the sense that the vertices inside each parcel show similar values.
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Figure 2.6 Parcellation of the cortical surface derived in Gordon et al. (2016). In red
the Region of Interest chosen for the computation of the RSFC maps. This region is
localized on an area of the cerebral cortex called precuneus. The blue colours indicate
the parcellated regions, with the major blue area being the join between the two brain
hemispheres, which does not lie on the manifold surface and which is therefore excluded
from the cortical surface analysis.

We wish now to understand which are the main modes of variation of these RSFC maps

among the different subjects, by applying a PCA.

The first three PC functions, estimated with SM-FPCA, are shown in Figures 2.9-2.10-

2.11 as compared to the PC functions derived from MV-PCA and IHK-PCA. The choice of

the smoothing parameter for the SM-FPCA is based on the K -fold cross validation, with

K = 5.

The PC functions estimated from the MV-PCA shows an excessive variability, since the

sample size is not sufficiently large to deal with the extremely high dimensionality of the

data, and the spatial information is completely ignored by this model. In fact, even recent

attempts to model the subject variability from resting state fMRI leads to the conclusion

that spatial mismatches, introduce by the alignment problem, are one of the biggest

sources of currently observable differences between subjects [Harrison et al. (2015)]. This

registration process can result in misalignments, due to the lack to functional regions

being perfectly coincident or due to situations where the local topology is strongly different

among subjects. These misalignments can introduce fictitious effects on the computed PC

functions. Data misalignment is a well known problem in FDA [Marron et al. (2015)]. For

functional data with one-dimensional domains, typical approaches are based on shifting

or (monotone) transformations of the domain of each function. But neither shifting nor

monotonic transformations make sense on a generic non-Euclidean domain, so it is not
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Figure 2.7 A snapshot of the RSFC map of one subject.

Figure 2.8 The mean RSFC map computed over 491 subject. As expected, high correlation
values are visible inside the ROI.

clear how to generalize the standard FDA approaches. The introduction of a smoothing

penalty in the PCA model should reduce the variability effects due to misalignment. In

fact the smoothing parameter in the SM-FPCA algorithm can be seen as a further degree

of freedom that allows a multiscale analysis, meaning that by increasing the smoothing

penalty parameter is possible to constrain the results to show only the macroscopical

effects of the phenomena and to remove the artifacts introduced by the preprocessing

steps.

Both IHK-PCA and SM-FPCA returns smooth PC functions. A visual inspection of the

estimated PC functions though highlights that IHK-PCA completely smooths out sharper

changes in the modes of variations, missing some localized features that are apparent

in MV-PCA and are also very well captured by the proposed SM-FPCA. Comparing for

instance the estimated third PC functions, in the top views of Figure 2.11, one can see

for both MV-PCA and SM-PCA corresponding localized areas with very high values (in

red) and very low values (in blue) that are instead missing in the IHK-PCA estimate. By
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Figure 2.9 From left to right, two views of the first PC function computed respectively with
MV-PCA, IHK-PCA and SM-FPCA.

Figure 2.10 From left to right, two views of the second PC function computed respectively
with MV-PCA, IHK-PCA and SM-FPCA.
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Figure 2.11 From left to right, two views of the third PC function computed respectively
with MV-PCA, IHK-PCA and SM-FPCA.

contrary, the pre-smoothing approach appears to introduce some artifacts: looking at the

bottom views in Figure 2.11, one can for instance notice that IHK-PCA estimated third PC

function has high values in the higher part of the plot, that do not have match neither on

the MV-PCA nor on the SM-FPCA estimate.

For the purpose of interpretation of the PC functions, we might prefer to plot the

functions µ±2σ f , where µ denotes the mean RSFC map,σ denotes the standard deviation

of the PC scores vector and f denotes the associated PC function. In Figure 2.12 we show

the described plot for the first PC function. We can observe that while the high correlation

value in the ROI and inferior parietal are in first approximation preserved from subject

to subject, a high variability between subjects can be observed in the areas surrounding

the ROI and the inferior parietal, which is understood due to individual inter-subject

differences [Buckner et al. (2008) and references therein]. However, it should be noted that

variability can be both somewhat localised as well as more spatially smooth, indicating

that even in resting state data, brain regions have differential response which is not simply

a result of noise in the data.
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Figure 2.12 From left to right, two views of µ−2σ f , µ, µ+2σ f , where µ denotes the mean
RSFC map, σ denotes the standard deviation of the first PC scores vector and f denotes
the first PC function.

2.6 Discussion

In this chapter we introduced a novel PCA technique that can handle functional data

located over a two-dimensional manifold. The adopted approach is based on a regularized

PCA model. In particular, a smoothness penalty term that measures the curvature of a

function over a manifold is considered and the estimation problem is solved via an iterative

algorithm that uses finite elements. The motivating application is the analysis the RSFC

maps over the cortical surface, derived from fMRI. In this setting the adoption of a MV-PCA

suffers of the high-dimensionality of the data with respect to the relatively small sample

size. The adoption of an approach based on individual pre-smoothing of the functional

samples, followed by a MV-PCA, gives smooth estimates of the PC functions. However,

this pre-smoothing step tends to remove useful information from the original data. The

proposed SM-FPCA instead returns smooth PC functions that nevertheless are able to

capture localized features of the estimated PC functions. It could also be imagined that in

more complex study designs (such as patient versus control studies) these PC functions,

along with the associated scores, could be used to investigate diverse difference between

groups or covariate effects.
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A further important feature of SM-FPCA is its computational efficiency. The most

computationally intensive operation is the resolution of the linear system in the iterative

algorithm. However this linear system enjoys two important properties. The first is the

independence between its dimensions, related to the number of nodes of the triangular

mesh, and the number of point-wise observations available for each functional sample

as well as the sample size. In fact, since its resolution time depends mostly on the mesh

size, a mesh simplification approach [Dassi et al. (2015)] could be adopted to speed up the

algorithm. The second and most fundamental property is the sparsity of the linear system.

The use of a sparse solver allows an efficient computation of the solution. For instance, in

the final application the dimension of the linear system is 64K×64K. Despite its dimension,

the solving time is less than a second. The application of the entire algorithm, for a fixed

smoothing parameter, with 15 iterations is less than 15 seconds on a Intel Core i5-3470

3.20GHz workstation, with 4 GB of RAM.





Chapter 3

Functional Principal Component

Analysis in the inverse problem setting

3.1 Motivation

An inverse problem is the process of recovering missing information from indirect and

noisy observations. Not surprisingly, inverse problems play a central role in numerous

fields such as, to name a few, geophysics (Zhdanov, 2002), computer vision (Hartley

and Zisserman, 2004), medical imaging (Arridge, 1999; Lustig et al., 2008) and machine

learning (De Vito et al., 2005).

We recall that solving a linear inverse problem means finding an unknown x, for

instance a function or a surface, from a noisy indirect observation y , which is a solution to

the model

y =K x +ε, (3.1)

where y and ε are elements of a Hilbert space. The map K (known) is called the forward

operator. The term ε models observational error. In Chapter 1, Section 1.1.4, we give a

brief review of the possible approaches to the reconstruction of x from y .

In this chapter, we look at the inverse problem from a Functional Data Analysis (FDA)

perspective. Therefore, we establish a framework for performing statistical analysis on

indirectly observed data samples x1, . . . , xn , consisting of random functions or surfaces,

where each function represents one sample element. The indirect observations are as-

sumed to be generated by the model

yi =Ki xi +εi , i = 1, . . . ,n, (3.2)



60 Functional Principal Component Analysis in the inverse problem setting

with K1, . . . ,Kn a collection of sample specific known forward operators.

Problem 3.2 has been classically dealt with a Reconstruct-then-Estimate approach,

i.e. by reconstructing each observation independently. In other words, the underlying

statistical model of the data is ignored, and such a problem is formulated as n separate

Problem 3.1s. However, such an approach can be sub-optimal in particular in a large noise

setting, as when estimating one signal, the information from all the other sampled signals

is systematically ignored.

In imaging sciences, it is sometimes of interest to find an optimal representation and

perform statistics on the second order information associated to the functional samples,

i.e. their covariance operators. This is, for instance, the case in a number of areas of

neuroimaging, particularly those investigating functional connectivity. Therefore, in this

chapter, we also establish a framework for reconstructing and optimally representing indi-

rectly observed samples C1, . . . ,Cn , that are covariance operators, expressing the second

order properties of the underlying unobserved functions. The indirect observations are

covariance operators generated by the model

Si =Ki ◦Ci ◦K ∗
i +Ei , i = 1, . . . ,n, (3.3)

where K ∗
i denotes the adjoint operator and the term Ei models observational error. The

term Ki ◦Ci ◦K ∗
i represents the covariance operator of Ki X (i ), with X (i ) an underlying

random function whose covariance operator is Ci .

As opposed to more classical linear inverse problems formulations, Problem 3.3 intro-

duces the following additional difficulties:

• We are in a setting where each sample is an object that is a covariance operator

and it is important to take advantage of the information from all the samples in the

reconstruction and representation of each of them.

• The elements {Ci } and {Si } live on non-Euclidean spaces, as they belong to the

positive semidefinite cone and it is important to account for this constraint in the

formulation of the associated estimators.

• In an inverse problem setting it is fundamental to be able to introduce spatial

regularization, however it is not obvious how to feasibly construct a regularizing

term for covariance operators reflecting, for instance, smoothness assumptions on

the underlying functional images.
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We tackle Problem 3.3 by generalizing the concept of functional Principal Component

Analysis (fPCA) to indirectly observed covariance operators. We do this in a Regularized-

Estimate fashion to mitigate the error terms amplification due to the ill-posedness of

the inverse problem. The aim is to optimally represent and understand the variation

associated with samples that are indirectly observed covariance operators.

3.1.1 Functional connectivity

In recent years, statistical analysis of covariance matrices has gained a predominant role

in medical imaging and in particular in functional neuroimaging. In fact, covariance

matrices are the natural objects to represent the brain’s functional connectivity, which

can be defined as a measure of covariation, in time, of the cerebral activity among brain

regions. While many techniques have been proposed to describe functional connectivity,

almost all can be described in terms of a function of a covariance or related matrix.

Figure 3.1 On the top left, head model of a subject and superimposition of the 248 MEG
sensors positioned around the head, called ‘sensors space’. On the top right, brain model
of the same subject represented by a triangular mesh of 8K nodes, which represents the
‘brain space’. On the bottom left, an example of a synthetic signal detected by the MEG
sensors. The dots represent the sensors, the color map represents the signal detected by
the sensors. On the bottom right, intensity of the reconstructed signal on the triangular
mesh of the cerebral cortex.
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Figure 3.2 Covariance matrices of the signal detected by the MEG sensors from three
different subjects of the Human Connection Project. The size of the matrices is 248×248.
The dark blue bands represent missing data, which are due to the exclusion of some
channels after a quality check of the signal.

Covariance matrices representing functional connectivity can be computed from the

signals arising from functional imaging modalities. The choice of a specific functional

imaging modality is generally driven by the preference to have high spatial resolution

signals, and thus high spatial resolution covariance matrices, versus high temporal resolu-

tion, and thus the possibility to study the temporal dynamic of the covariance matrices.

Functional Magnetic Resonance falls in the first category, while Electroencephalogram

(EEG) and Magnetoencephalography (MEG) in the second. However, high temporal reso-

lution does generally come at the price of indirect measurements. Some of these imaging

modalities produce indirect measurements, where, as shown in Figure 3.1 for the case of

MEG data, the signals are in practice detected on the sensors space. It is however of interest

to produce results on the associated signals on the cerebral cortex, which we will refer

to as brain space. The signals on the brain space are functional images whose domain is

the geometric representation of the brain and are associated with the neuronal activity

on the cerebral cortex. We borrow here the notion of brain space and sensors space from

Johnstone and Silverman (1990) and we use it throughout the chapter for convenience,

however it’s important to highlight that the formulation of the problem is much more

general than the setting of this specific application.

The signals on the brain space are related to the signals on the sensors space by a for-

ward operator, derived from the physical modeling of the electrical/magnetic propagation,

from the cerebral cortex to the sensors. This is generally referred to as the forward prob-

lem. For soft-field methods like EEG, MEG and Functional Near-Infrared Spectroscopy,

the forward operator is defined through the solution to a partial differential equation of

diffusion type. Such a mapping induces a strong degree of smoothing and consequently

the corresponding inverse problem, i.e. the reconstruction of a signal on the brain space
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from observations in the sensor space, is strongly ill-posed. In fact, signals with fairly

different intensities on the brain space, due to the diffusion effect, result in signals with

similar intensities in the sensors space. In Figure 3.1, we show an example of a signal on

the brain space and the associated signal on the sensors space.

From a practical prospective, it is crucial to understand how the different parts of the

brain interact, which is sometimes known as functional connectivity. A possible way to

understand these interactions is by analyzing the covariance function associated to the

signals generated from the cerebral activity of an individual on the brain space. More

recently, the interest has shifted from this static approach to a dynamic approach. In

particular, for a single individual, it is of interest to understand how these covariance

functions vary in time. This is a particularly active field, known as dynamic functional

connectivity (Hutchison et al., 2013). Another element of interest is understanding how

these covariance functions vary among individuals. In Figure 3.2, we show the covariance

matrices, on the sensor space, computed from the MEG signals of three different subjects.

The remainder of this chapter is organized as follows. In Section 3.2 we give a formal

description of the problem. We then introduce a model for indirectly observed smooth

functional images in Section 3.3 and present the more general model, for observations that

are indirectly observed covariances, in Section 3.4. In Section 3.5, we perform simulations

to access the validity of the estimation framework. In Section 3.6 we apply the proposed

models to the MEG data and we give some concluding remarks in Section 3.7. The proofs

are presented in Section 3.8.

3.2 Mathematical description of the problem

To set the notation of this chapter, we now introduce the problem using our driving ap-

plication as an example. To this purpose, let M be a closed smooth two-dimensional

manifold embedded in R3, which in our application represents the geometry of the cere-

bral cortex. An example of such a surface is shown on the top right of Figure 3.1. We

denote with L2(M ) the space of square integrable functions on M . Define X to be a ran-

dom function with values in a Hilbert functional space F ⊂ L2(M ) with mean µ= E[X ],

finite second moment, and assume the square integrability of its covariance function

CX (v, v ′) = E[(X (v)−µ(v))(X (v ′)−µ(v ′))]. The associated covariance operator CX is de-

fined as CX g = ∫
M CX (v, v ′)g (v)d v , for all g ∈ L2(M ). Recall from Chapter 1 that Mercer’s

Lemma guarantees the existence of a non-increasing sequence {κr } of eigenvalues of CX
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and an orthonormal sequence of corresponding PC functions {ψr }, such that

CX (v, v ′) =
∞∑

r=1
κrψr (v)ψr (v ′), ∀v, v ′ ∈M .

The random function X can be expanded as X =µ+∑∞
r=1 ζrψr , where the PC scores {ζr }

are given by ζr =
∫
M {X (v)−µ(v)}ψr (v)d v . Recall also that, for any fixed M ∈N, the first

M PC functions of X satisfy

(ψm)M
m=1 = argmin

({φm }M
m=1:〈φm ,φl 〉=δml )

E

∫
M

{
X −µ−

M∑
m=1

〈X −µ,φm〉φm

}2
, (3.4)

where δml is the Kronecker delta.

3.2.1 The case of indirectly observed functions

In the case of indirect observations, the signal is detectable only through s sensors on

the sensors space. Let {Ki } be a collection of s ×p real matrices, representing the subject

specific forward operators relating the signal at p pre-defined points {v j : j = 1, . . . , p}

on the cortical surface M with the signal captured by the s sensors. Moreover, define

the evaluation operator Ψ : F → Rp to be a vector-valued functional that evaluates a

function f ∈ F at the p pre-specified points {v j } ⊂ M , returning the p dimensional

vector ( f (v1), . . . , f (vp ))T . The operatorsΨ and {Ki } are known. However, in the described

problem the random function X can be observed only through indirect measurements

{yi ∈Rs : i = 1, . . . ,n} generated from the modelxi =µ+∑∞
r=1 ζi ,rψr

yi = KiΨxi +εi , i = 1, . . . ,n
(3.5)

where {xi } are n independent realizations of X , and thus expandible in terms of the PC

functions {ψr } and the coefficients {ζi ,r } given by ζi ,r = ∫
M {xi (v)−µ(v)}ψr (v)d v . The

terms {εi } represent observational errors drawn independently from an s-dimensional

normal random vector, with mean the zero vector and variance σ2Ip , where Ip denotes

the p-dimensional identity matrix. Model (3.5) is an implementation of the idealized

Problem 3.2. In Figure 3.3 we give an illustration of the introduced setting.

Note that it would not be necessary to define an evaluation operator if the forward

operators were defined to be functionals {Ki : F → Rs}, relating directly the functional
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objects on the brain space to the real vectors on the sensors space. It is however the

case that the operators {Ki } are computed in a matrix form by third part software (see

Section 3.6 for details) for a pre-specified set of points {v j } ⊂M and it is thus convenient

to take this into account in the model, through the introduction of an evaluation operator

Ψ.

Sensors space Brain Space

Latent objects

Figure 3.3 Illustration of the setting introduced with Model 3.5.

In the case of single subject studies, the surface M is the subject’s reconstructed

cortical surface, an example of which is shown on the right panel of Figure 3.1. In this

case, it is natural to assume that there is one common forward operator K for all the

detected signals. In the more general case of multi-subject studies, M is assumed to be a

template cortical surface. We are thus assuming that the individual cortical surfaces have

been registered to the template M , which means that there is a smooth and one-to-one

correspondence between the points on each individual brain surface and the template

surface M , where the PC functions are defined.

As mentioned in Section 1.1.4, a Reconstruct-then-Estimate approach is suboptimal in

this setting. For this reason, different alternatives have been proposed in the literature. In

the simplified setting of a fixed forward operator K := K1 = . . . = Kn , Amini and Wainwright

(2012) propose to estimate the space spanned by the first R PC functions in a Regularized-

Estimate fashion. The PC functions {ψr } are modelled as elements of a Reproducing

Kernel Hilbert Space (RKHS). On the sensors space, they define a smoothing matrix S−1

translating the smoothness assumption on the PC functions to the sensors space. The
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PC loadings on the sensors space {zr } ⊂Rs are in practice estimated as eigenvectors of a

regularized version of the empirical covariance ĈY = 1
n

∑
i yi yT

i , namely

ĈY −λS−1,

with λ a weighting coefficient. The PC functions of X are estimated as the minimum norm

functions {ψr } satisfying

(KΨ)(ψ̂r ) = ẑr.

The estimated PC functions ψ̂r are such that their images on the sensors space (KΨ)(ψ̂r )

interpolate ẑr and have minimum norm in the RKHS where the PC functions are defined.

An extension to the case of subject specific forward operators has been proposed in

Katsevich et al. (2015). The authors formulate a least square estimator for the discretized

covariance function (CX (v j , vl )) j ,l , which in the notation of this chapter takes the form

ĈX = argmin
C∈Rp×p

1

n

n∑
i=1

∥(yi − ȳ)(yi − ȳ)T −Ki C K T
i −σ2Is∥2

F ,

with ȳ = 1
n

∑n
i=1 yi . The term σ2Is , with σ> 0 a constant and Is the identity matrix of size

s, captures a diagonal structure, due for instance, to observational error. Intuitively, the

‘covariance’ CX (note that CX is not constrained to be positive semi-definite) is such that

its projections on the sensors space Ki CX K T
i match as closely as possible the covariances

in the sensors space (yi − ȳ)(yi − ȳ)T .

In Dobriban et al. (2017), in the context of optimal prediction, the point-wise evalu-

ations of the PC functions {ψr }, on v1 . . . , vp , are estimated from the eigenvectors of the

empirical covariance of the backprojected data, i.e.

1

n

n∑
i=1

K T
i yi yT

i Ki .

The approach in Amini and Wainwright (2012) cannot be immediately extended to

the case of subject-specific forward operators and, to make use of the RKHS machinery,

would require the definition of a kernel on the non-linear domain M , which is not a

trivial task. The approaches in Dobriban et al. (2017); Katsevich et al. (2015) both lack of

a regularization step, fundamental in the inverse problem setting considered here. Also,

in Katsevich et al. (2015) the estimated eigenvectors could potentially be associated to

negative eigenvalues, as the estimated covariance is not constrained to be positive semi-

definite. This motivates a novel estimator proposed in Section 3.3, where we formulate an
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extension of the Regularized-Estimate fPCA model introduced in Chapter 2 to the inverse

problem setting described with model (3.5).

3.2.2 The case of indirectly observed covariance operators

A natural generalization of the setting in the previous section is considering observations

that have group specific covariance operators. In detail, suppose now we are given a

set of n covariance functions {Ci : i = 1, . . . ,n}, representing the associated covariance

operators {Ci : i = 1, . . . ,n} on the brain space. In our driving application, each covariance

function Ci : M ×M →R describes the functional connectivity of the i th individual or the

functional connectivity of the same individual at the i th time-point.

Here we consider the problem of defining and estimating a set of modes of variation

from {Ci }, which is a set of covariance functions that enable the description of {Ci } through

the ‘linear combinations’ of few components. Such a reduced order description is of inter-

est, for example, in understanding how functional connectivity varies among individuals

or over time.

We define a model for the modes of variation of {Ci } from the set of indirectly observed

covariance matrices, computed from the signal on the sensors space, and thus given by

{Si ∈Rs×s , i = 1, . . . ,n} with

Si = KiCi K T
i +E T

i Ei , i = 1, . . . ,n, (3.6)

where Ci = (Ci (v j , vl )) j l and {v j : j = 1, . . . , p} are the sampling points associated to the

operatorΨ. The forward operators {Ki } act on both sides of the covariance functions {Ci },

due to the linear transformation KiΨ applied to the signals on the brain space before being

detected on the sensors space. The term E T
i Ei is an error term, where Ei is a s × s matrix

such that each entry is an independent sample of a Gaussian distribution with mean zero

and standard deviation σ. Model (3.6) could be regarded as an implementation of the

idealized Problem 3.3, where the covariance operators are represented by the associated

covariance functions. An illustration of the setting introduced can be found in Figure 3.4.

The case of statistical samples that are covariance functions has not been extensively

covered in the literature. In fact, PCs are generally defined and computed by seeking linear

subspaces that maximize the variance of the data projected on it, or that analogously

minimizes the distance of the projected data from the observed data. However, on the

space of covariance functions, a linear subspace, or part of it, is likely to fall outside

the non-Euclidean cone of positive semidefinite operators. In the statistical literature,
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Sensors space Brain space

Latent objects

Figure 3.4 Illustration of the setting introduced with Model 3.6.

this non-Euclidean structure is accounted for by introducing a distance in the space of

covariance matrices or covariance operators (see e.g. Dryden et al., 2009; Pigoli et al.,

2014).

In the discrete setting, the analysis of responses that are directly observable positive-

definite matrices has been considered, among others, in Zhu et al. (2009). Suppose we

observe (Ci ,xi ) ∈Rs×s ×Rq , for i = 1, . . . ,n, with Ci symmetric positive-definite matrices,

and xi regressors associated to the i th observation. In Zhu et al. (2009) a semi-parametric

model is considered, where the parametrization is formulated on unconstrained repre-

sentations of {Ci } (e.g. matrix logarithms). In Yuan et al. (2012), such a class of models

is generalized to a fully non-parametric setting, by defining local polynomial regression

between the regressors xi and the unconstrained representations of Ci . An extension of

this setting to responses in general Riemannian symmetric spaces has been proposed in

Cornea et al. (2017). In Lin et al. (2017), an extrinsic approach is instead adopted, where

a kernel estimate of the relation between Ci and xi is defined ignoring the symmetric

positive-definiteness constraints on {Ci }, and subsequently the unconstrained estimate is

projected onto the space of valid estimates.

In the discrete setting, Dryden et al. (2009) introduce a PC model for directly observed

covariance matrices. An extension to directly observed covariance operators has been pro-
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posed in Pigoli et al. (2014). Such models cannot deal with indirectly observed covariances,

we thus propose a novel approach for this problem in Section 3.4.

3.3 Principal components of indirectly observed functions

The aim of this section is to define a model for the estimation of the PC functions {ψr } from

the observations {yi }, defined in (3.5). The main difficulty in defining an estimation model

for CX , directly from the samples {yi }, is the necessity to include an equivalent regularizing

term for the function CX , to improve the finite sample properties of the estimator. The

model proposed here, tackles this problem by working on the estimation of the elements

of the spectral decomposition of CX , or in other terms on the PC functions.

3.3.1 Model

Let now z = (z1, . . . , zn)T be a n-dimensional real column vector and H 2(M ) be the Sobolev

space of functions in L2(M ) with first and second distributional derivatives in L2(M ). We

propose to estimate f̂ ∈ H 2(M ), the first PC function of X , and the associated PC scores

vector z, by solving the equation

(ẑ, f̂ ) = argmin
z∈Rn , f ∈H 2(M )

n∑
i=1

∥yi − zi KiΨ f ∥2 +λzT z
∫
M
∆2

M f , (3.7)

where the Laplace-Beltrami operator ∆M , integrated over the manifold M , enables a

smoothing regularizing effect on the PC function f̂ , while the data fit term encourages

KiΨ f to capture the strongest mode of variation of yi . The parameter λ controls the

trade-off between the data fit term of the objective function and the regularizing term.

The second PC function can be estimated by classical deflation methods, i.e. by working

on the residuals {yi − ẑi KiΨ f̂ }, and so on for the subsequent PCs. The proposed model

can be interpreted as a regularized least square estimation of the first PC function ψ1 in

(3.5), with the terms {zi } playing the role of estimates of the variables {ζi ,1}.

In the simplified case of a single forward operator K = K1 = . . . = Kn , the minimization

problem (3.7) can be reformulated in a more classical form. In fact, fixing f in (3.7) and

minimizing z gives

zi =
yT

i KΨ f

∥KΨ f ∥2 +λ∫
M∆

2
M

f
, i = 1, . . . ,n, (3.8)
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which can then be used to show that the minimization problem (3.7) is equivalent to the

generalized eigenproblem
(Ψ f )T K TYTYK (Ψ f )

∥KΨ f ∥2 +λ∫
M∆

2
M

f
, (3.9)

withY a n× s real matrix, where the i th row ofY is the observation yT
i . This reformulation

gives further insights on the interpretation of f̂ in (3.7). In fact, f̂ is such that KΨ f̂

maximizes 1
nY

TY, i.e. the point-wise estimate of the covariance matrix in the sensors

space. The term zT z in (3.7), places the regularization term λ
∫
M∆

2
M

f in the denominator

of the equivalent formulation (3.9). Thus, f̂ is regularized by the choice of norm in the

denominator of (3.9), in a similar fashion to the classic functional principal component

formulation of Silverman (1996) in equation (1.14).

3.3.2 Algorithm

Here we propose a minimization approach for the objective function in (3.7). Similarly to

what we did in Section 2.3.2, we approach the problem by alternating the minimization of

z and f in an iterative algorithm. In (3.7), a normalization constraint must be considered

to make the representation unique, as in fact multiplying z by a constant and dividing f

by the same constant does not change the objective function. We optimize in z under the

constraint ∥z∥2 = 1, which leads to a normalized version of the estimator (3.8)

zi =
yT

i KiΨ f√∑n
i=1 yT

i KiΨ f
, i = 1, . . . ,n. (3.10)

For a given z, solving (3.7) with respect to f will turn out to be equivalent to solving an

inverse problem, which we discretize adopting a Finite Elements approach, similar to the

one in Chapter 2, that we recall here. Note also that for K1, . . . ,Kn = Ip , the identity matrix

of size p, that is the case of discrete and noisy measurements of the samples, we obtain

the same estimators as in Chapter 2.

Consider now a triangulated surface MT , union of the finite set of triangles T , giving

an approximated representation of the manifold M . We then consider the linear finite

element space V consisting of a set of globally continuous functions over MT that are

affine where restricted to any triangle τ in T , i.e.

V = {v ∈C 0(MT ) : v |τ is affine for each τ ∈T }.
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This space is spanned by the nodal basis φ1, . . . ,φκ associated to the nodes ξ1, . . . ,ξκ,

corresponding to the vertices of the triangulation MT . Such basis functions are La-

grangian, meaning thatφi (ξ j ) = 1 if i = j andφi (ξ j ) = 0 otherwise. Setting c = ( f (ξ1), . . . , f (ξκ))T

andφφφ= (φ1, . . . ,φκ)T , every function f ∈V has the form

f (v) =
κ∑

k=1
f (ξk )φk (v) = cTφφφ(v) (3.11)

for all v ∈MT . To ease the notation, we assume that the p points {v j } associated with the

evaluator functionΨ coincide with the nodes of the triangular mesh ξ1, . . . ,ξκ, and thus

we have that the coefficients c are such that c =Ψ f for any f ∈V . Consequently, we are

assuming the forward operators {Ki } to be s ×κ matrices, relating the κ points on the i th

subject cortical surface, in one-to-one correspondence to ξ1, . . . ,ξκ, to the s-dimensional

signal detected on the sensors of the i th subject.

Let now M and A be the mass and stiffness κ×κmatrices defined as (M) j l =
∫
MT

φ jφl

and (A) j l =
∫
MT

∇MT
φ j ·∇MT

φl , where ∇M is the gradient operator on the manifold M .

Than, the solution of (3.7), in the discrete space V , is given by the following proposition.

Proposition 3. The Surface Finite Element solution f̂h ∈ V of model (3.7), for a given

unitary norm vector z, is f̂h = ĉTφφφ where ĉ is the solution of

ĉ = (
n∑

i=1
z2

i K T
i Ki +λAM−1 A)−1

n∑
i=1

zi K T
i yi . (3.12)

Equation (3.12) has the form of a penalized regression, where the penalty operator

resulting from the discretization procedure is AM−1 A.
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Algorithm 2 Inverse fPCA Algorithm

1: Initialization:

(a) Computation of M and A

(b) Initialize z, the scores vector associated to the first PC function

2: PC function’s estimation:

Compute c such that

( n∑
i=1

z2
i K T

i Ki +λAM−1 A
)
c =

n∑
i=1

zi K T
i yi

fh ← cTφφφ

3: Scores estimation:

zi ←
yT

i KiΨ fh√∑n
i=1 yT

i KiΨ fh

, i = 1, . . . ,n

4: Repeat Steps 2–3 until convergence

The sparsity of the linear system (3.12), namely the amount of zero values entries,

depends on the sparsity of its components. The matrices M and A are very sparse, however

M−1 it is not, in general. In the numerical analysis of Partial Differential Equations

literature, the matrix M−1 is generally replaced with the sparse matrix M̃−1, where M̃ is

the diagonal matrix such that M̃ j j =∑
l M j l . The penalty operator AM̃−1 A approximates

very well the behavior of AM−1 A.

Moreover, in the case of single subjects longitudinal studies, we have a single forward

operator K = K1 = . . . = Kn common to all the observed signals, and consequently equation

(3.12) can be rewritten as the sparse overdetermined system[
Kp

λM̃−1/2 A

]
c =

[
Y T z

0

]
, (3.13)

to be interpreted in a least-square sense. A sparse QR solver can be finally applied to

efficiently solve the linear system (3.13).

In Algorithm 2 we summarize the main algorithmic steps to compute the PC functions

and associated PC scores for indirectly observed functions.
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3.3.3 Eigenfunctions of indirectly observed covariance operators

Suppose now we are in the case of a single forward operator K = K1 = . . . = Kn . Combining

Steps 2–3 of Algorithm 2, and moving the normalization step from zi to fh , we obtain the

iterations

(K T K +λAM−1 A)c = K T
n∑

i=1
(yi yT

i )KΨ fh

fh ← cTφφφ; fh → fh

∥ fh∥
.

The obtained algorithm depends on the data only through
∑n

i=1(yi yT
i ) that up to a constant

is the covariance matrix computed on the sensors space. The proposed algorithm can

thus be applied to situations where the observations {yi } are not available, but we are

given only the associated s × s covariance matrix S on the sensors space, computed from

{yi }.

3.4 Principal components of indirectly observed covariance

functions

In this section we extend the proposed methodology to samples that are indirectly ob-

served covariance operators. Specifically, we formulate models that allow us to reconstruct

and optimally represent a set of latent covariance functions.

3.4.1 Representation models for covariance operators

Consider now n sample covariance matrices S1, . . . ,Sn , each of size s × s, representing

n different connectivity maps on the sensors space. Three of such covariance matrices,

associated to three different individuals, are shown in Figure 3.2. Recall moreover that we

denote with M the brain surface template and with {Ki ∈Rs×p } the set of subject specific

forward operators, relating the signal at the p pre-specified points {v j } on the cortical

surface M with the signal detected on the s sensors.

The aim of this section is to introduce models for the reconstruction and representa-

tion of covariance functions {Ci }, on the brain space, associated to the actually observed

covariance matrices {Si }, on the sensors space. The matrices {Si } are related to the covari-
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ance functions {Ci } through formula (3.6) that we recall here being

Si = KiCi K T
i +E T

i Ei , i = 1, . . . ,n,

with Ci = (Ci (v j , vl )) j l and {v j } the sampling points associated to the operatorΨ.

A subject-specific model

Let S1/2
i be a square-root decomposition of Si , which is a decomposition such that Si =

(S1/2
i )T S1/2

i , for all i = 1, . . . ,n. This could be given, for instance, by S1/2
i = Vi D1/2

i where

Si = Vi Di V T
i is the spectral decomposition of Si and D1/2

i denotes the diagonal matrix

whose entries are the square root of the (non-negative) entries of Di . Each square-root

decomposition S1/2
i can be interpreted as a data-matrix whose empirical covariance is Si .

In the most general setting, each covariance matrix Si is an indirect observation of

an underlying covariance function Ci , which can be expressed in terms of its spectral

decomposition as

Ci (v, v ′) =
∞∑

r=1
κi rψi r (v)ψi r (v ′), ∀v, v ′ ∈M ,

where, for each i = 1, . . . ,n, we have a sequence of non-increasing variances κi 1 ≥ κi 2 ≥
·· · ≥ 0 and {ψi r }r the set of orthonormal eigenfunctions of the associated covariance

operator Ci .

Introduce now { f̂i ∈ H 2(M )} and {ẑi ∈Rs}, obtained by applying Model (3.7) to each

sample independently, i.e.

{
(ẑi , f̂i )

}
i = argmin

{zi }⊂Rs ,{ fi }⊂H 2(M )
∥S1/2

i −zi (KiΨ fi )T ∥2
F +λ∥zi∥2

∫
M
∆2

M fi , i = 1, . . . ,n. (3.14)

Each estimate f̂i , from the proposed model (3.14), can be interpreted as a regularized

estimate of the leading PC function of S1/2
i and thus of the eigenfunction ψi 1. The subse-

quent eigenfunctions can be estimated by classical deflation methods, i.e. by removing

the estimated components ẑi (KiΨ f̂i )T from S1/2
i and reapplying model (3.14). This leads

to a set of estimates { f̂i r } and {ẑi r }.

The unregularized version of model (3.14) is equivalent to a Singular Value Decom-

position applied to each matrix S1/2
i independently, which would lead to a set orthogonal

estimates {ẑi r }r ⊂ Rs , for each i = 1, . . . ,n. Hence, despite not imposing any explicit or-

thogonality constraints in the regularized model, the scores vectors tend in practice to be
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orthogonal. The estimated PC components could also be orthogonalized post-estimation

by means of a QR decomposition.

An approximate representation of Si = (S1/2
i )T S1/2

i is thus given by

Si = Ki
∑

r

{∥ẑi r ∥2
2(Ψ f̂i r )(Ψ f̂i r )T }

K T
i , (3.15)

and the associated approximate representation of Ci , in terms of ẑi r and f̂i r , is

Ci =
∑

r
∥ẑi r ∥2

2 f̂i r ⊗ f̂i r ,

where κ̂i r := ∥ẑi r ∥2
2 is an estimate of the variance κi r and f̂i r is an estimate of ψi r . The

regularizing term in (3.14) introduces spatial coherence on the estimated f̂i r and thus on

the estimated eigenfunctions of {Ci }, fundamental in an inverse problems setting.

On the space of reconstructed covariances {Ci }, we can then define a distance and

perform PCA on vectorizations of (Ci (v j , vl )) j l , as done in Dryden et al. (2009) and Pigoli

et al. (2014). However, this is prohibitive due to the high-dimensionality of (Ci (v j , vl )) j l .

In the terminology introduced in this thesis, Model (3.14) follows a Reconstruct-then-

Estimate approach, as the covariance functions {Ci } are reconstructed individually and

PCA is performed on the reconstructed functions. In the next section, we introduce a

Regularized-Estimate approach.

A population model

Let {ẑi }n
i=1 ⊂Rs and f̂ ∈ H 2(M ) be given by the following model:

({ẑi }, f̂ ) = argmin
{zi }⊂Rs , f ∈H 2(M )

n∑
i=1

∥S1/2
i −zi (KiΨ f )T ∥2

F +λ
n∑

i=1
∥zi∥2

∫
M
∆2

M f . (3.16)

The newly defined model, as opposed to model (3.14), has now a subject specific s-

dimensional vector zi and a term f that is common to all samples. As in the previous

model, the subsequent components can be estimated by deflation methods, leading to a

set of estimates f̂r and ẑi r .

The empirical term in Model (3.16) suggests an approximate representation of Si that

is

Ci =
∑

r
∥ẑi r ∥2

2 f̂r ⊗ f̂r , (3.17)
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where each underlying covariance function Ci is approximated by the product of a subject

specific constant ∥ẑi r ∥2
2 and a component f̂r ⊗ f̂r common to all the observations. The

regularizing term in (3.16) introduces spatial coherence on the estimated functions { f̂r }.

The covariance operators {Ci } are said to be commuting if Ci Ci ′ =Ci ′Ci for all i , i ′ =
1, . . . ,n. This property can be equivalently characterized as

Ci (v, v ′) =
∞∑

r=1
κi rψr (v)ψr (v ′), ∀v, v ′ ∈M , (3.18)

with {κi r }r subject-specific variances and {ψr } a set of common orthonormal functions.

Thus, a collection of commuting covariance operators is such that its covariance operators

can be simultaneously diagonalized by a basis {ψr }. In this case, the functions { f̂r } can be

regarded as estimates of {ψr } and {κ̂i r := ∥ẑi r ∥2
2} estimates of {κi r }.

On the one hand, Model (3.16) constrains the estimated covariances to be of the form

Ci =∑
r κ̂i r f̂r ⊗ f̂r and not of the more general form Ci =∑

r κ̂i r f̂i r ⊗ f̂i r . On the other hand,

such a model takes advantage of all the n samples to estimate the components { f̂r ⊗ f̂r }, so

it could be regarded as a Regularized-Estimate model. The associated variables {κ̂i r } give a

convenient approximate description of the i th covariance, as they are comparable across

samples, as opposed to the one computed from Model (3.15). In fact, the i th covariance

function can be represented by the variance vector (κ̂i 1, . . . , κ̂i R )T , for a suitable truncation

level R, where each entry is associated to the rank-one component f̂r ⊗ f̂r . For each r , a

scatter plot of the variances {κi r }i , helps understand what is the average contribution of

the r th components and what is its variability across samples. Model (3.17) could also

be interpreted as a common PCA model (Benko et al., 2009; Flury, 1984), as { f̂r } are the

estimated regularized eigenfunctions of the pooled covariance C =∑n
i=1 Ci .

Potentially, PCA could be performed on the descriptors (κ̂i 1, . . . , κ̂i R )T to find rank-R

components that maximize the variance of linear combinations of {κ̂i r } (i.e. the variance

of the variances). However, results would be difficult to interpret, as they would involve

variations that are rank-R covariance functions around the rank-R mean covariance

function.

3.4.2 Algorithm

The minimization in (3.14), for each fixed i , is a particular case of the one in (3.7) (see

Section 3.3.3), so we focus on the minimization problem in (3.16) which is approached in

an iterative fashion. We set
∑n

i=1 ∥zi∥2 = 1 in the estimation procedure. This leads to the
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estimates of {zi }, given f , that are

zi = z̃i√∑n
i=1 ∥z̃i∥2

, i = 1, . . . ,n,

with

z̃i = S1/2
i KiΨ fh , i = 1, . . . ,n.

The estimate of f given {zi }, in the discrete space V introduced in Section 3.3.2, is

given by the following proposition.

Proposition 4. The Surface Finite Element solution f̂h ∈V of model (3.16), given the vectors

{zi }, is f̂h = ĉTφφφ where ĉ is the solution of

( n∑
i=1

∥zi∥2K T
i Ki +λAM−1 A

)
ĉ =

n∑
i=1

K T
i ST/2

i zi . (3.19)

Algorithm 3 contains a summary of the estimation procedure. From a practical point

of view, the choice to define the representation basis to be a collection of rank one (i.e.

separable) covariance functions, of the type F = f̂ ⊗ f̂ , is mainly driven by the following

reasons. Firstly, rank-one covariance functions are easier to interpret due to their lim-

ited degrees of freedom. Secondly, on a rank one covariance function F = f̂ ⊗ f̂ spatial

coherence can be imposed by regularizing f , as in fact done for the model (3.14), and this

is fundamental in a setting of indirectly observed covariance functions. Finally, due to

their size, it might not be possible to store the full covariance functions on the brain space,

instead Model 3.17 allows an efficient joint representation of such covariance functions in

terms of their rank-one components.

3.5 Simulations

In this section, we perform simulations to assess the performances of the proposed

algorithms. To reproduce as closely as possible the application setting, the cortical surfaces

and the forward operators are taken from the MEG application described in Section 3.6.

The details on the extraction and computation of such objects are left to the same section.

For the same reason, the signals on the brain space considered here are vector-valued

functions, specifically functions from the brain space M to R3, as is the case in the MEG

application. The proposed methodology can be trivially extended to successfully deal

with this case, as shown in the following simulations.
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Algorithm 3 Inverse Covariance fPCA Algorithm

1: Square-root decompositions

(a) Compute the representations S1/2
1 , . . . ,S1/2

n from S1, . . . ,Sn as

S1/2
i =Vi D1/2

i ,

with Si =Vi Di V T
i the spectral decomposition of Si .

2: Initialization:

(a) Computation of M and A

(b) Initialize {zi }n
i=1, the scores of the first PC

3: PC function’s estimation from model (3.14):
Compute c such that( n∑

i=1
∥zi∥2K T

i Ki +λAM−1 A
)
c =

n∑
i=1

K T
i ST/2

i zi

fh ← cTφφφ

4: Scores estimation from model (3.14):

zi ← S1/2
i KiΨ fh , i = 1, . . . ,n

zi ← zi√∑n
i=1 ∥zi∥2

, i = 1, . . . ,n

5: Repeat Step 3-4 until convergence

3.5.1 Indirectly observed functions

We consider MT to be a triangular mesh, with 8K nodes, representing the cortical surface

geometry of a subject, as shown on the left panel of Figure 3.1. Each of the nodes will

represent the discrete set of locations {v j } associated to the sampling operator Ψ. The

locations of the nodes {v j } on the brain space, the location of the 241 detectors on the

sensors space and a model of the subject’s head, enable the computation of a forward

operator K describing the relation between the signal generated on the locations {v j }, on

the brain space, and the signal detected on the 241 sensors in the sensors space. In practice,

the signal on each node v j is described by a three dimensional vector, characterized by an

intensity and a direction, while the signal detected on the sensors space is a scalar signal.

Thus, the forward operator is a 241×24K matrix.
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Figure 3.5 From top to bottom the components and the energy maps of the PC functions
ψ1,ψ2 andψ3.

Figure 3.6 From left to right, the energy map of a generated function xi , the associated
signal yi on the sensors space with respectively no additional error, Gaussian error of
standard deviation σ= 5 and Gaussian error of standard deviation σ= 10.

We first want to assess the performances of the proposed model in the case of indirect

functional observations belonging to a linear space. To this purpose, we produce synthetic

data following the generative model (3.5). Specifically, on MT , we construct the three L2

orthonormal vector-valued functions {ψr = (ψr,1,ψr,2,ψr,3) : r = 1,2,3}, withψr : MT →
R3. These represent the PC functions to be estimated. In Figure 3.5 we show the three

components of {ψr } and the associated energy maps {∥ψr ∥2 : r = 1,2,3}, with ∥·∥ denoting

the Euclidean norm in R3. We then generate n = 50 smooth vector-valued functions {xi }

on MT by

xi = zi 1ψ1 + zi 2ψ2 + zi 3ψ3 i = 1, . . . ,n,

where {zi 1}, {zi 2}, {zi 3} are i.i.d realizations of the three independent random variables

{zr ∼ N (0,σ2
r ) : r = 1,2,3}, with σ1 = 6, σ2 = 3 and σ3 = 1.
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The functions {xi } are sampled at the 8K nodes, and the forward operator is applied

to the sampled values, producing a collection of vectors {yi } each of dimension 241, the

number of active sensors. Moreover, on each entry of the vectors {yi }, we add Gaussian

noise with mean zero and standard deviation σ, for different choices of σ, to reproduce

different signals to noise ratio regimes.

In the following, we compare the PC model (3.7) to an alternative approach. In fact, the

individual functions {xi } could be estimated from {yi } by use of classical inverse problem

estimators. Here, we adopt the estimates {x̂i } defined as

x̂i = argmin
f=( f1, f2, f3):

f1, f2, f3∈H 2(M )

n∑
i=1

∥yi −KΨf∥2 +λ
∫
M
∥∆M f∥2, i = 1, . . . ,n, (3.20)

where each x̂i is defined in such a way it balances a fitting term and a regularization term,

which due to the fact that f is vector-valued, with a slight abuse of notation, is defined to

be

∆M f =


∆M 0 0

0 ∆M 0

0 0 ∆M




f1

f2

f3

 ,

with { fl : l = 1,2,3} denoting the components of f . The same penalty operator is also

adopted to generalize to vector-valued functions the models introduced in Sections 3.3-

3.4. The constant λ is chosen by K -fold cross-validation, with K = 2. Once we obtain

the estimates {x̂i } we can compute the estimated PC functions {ψr } by applying classical

multivariate PC analysis on the reconstructed objects x̂i .

The estimates are compared to the proposed PC function model, as described in

Algorithm 2, with 15 iterations. The smoothing coefficient λ here is also chosen by K -fold

cross-validation, with K = 2. To evaluate the performances of the two approaches, we

generate 100 datasets as previously detailed. The quality of the estimated r th PC function

is then measured with
∑3

l=1 ∥∇M (ψr,l − ψ̂r,l )∥2. The operator ∇M is the gradient operator

on the manifold M and could be regarded as a generalization to manifolds of the gradient

operator as defined for a 2-dimensional Euclidean domain. The results are summarized in

the boxplots in Figure 3.7, for two different signal to noise ratios, where the Gaussian noise

has standard deviation σ= 5 and σ= 10. In Figure 3.6 we show an example of a signal on

the brain space corrupted with the specified noise levels.

The boxplots highlight the fact that the proposed approach provides better estimates

of the PC functions in particular in a low signal to noise ratio regime, i.e. the estimation of
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the third PC function. More surprisingly is the stability of the estimates of the proposed

algorithm across the generated datasets, as opposed to the naive approach, which returns

multiple particularly unsatisfactory reconstructions. An example of such reconstructions

is shown in Figure 3.8.
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Figure 3.7 On the left, a summary of the results in a medium signal-to-noise ratio regime.
On the right, a summary of the results in a low signal-to-noise ratio regime. Each boxplot
compares the reconstruction errors obtained by applying the two steps naive method with
those obtained by applying Algorithm 2.
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Figure 3.8 On the first row the energy maps of the true three PC components to be esti-
mated, on the second row the estimations given by the two steps naive method, and on
the third row the reconstructions obtained by applying Algorithm 2.
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3.5.2 Indirectly observed covariance functions

In this section, we consider MT to be a 8K nodes triangular mesh, this time representing

a template geometry of the cortical surface, which is shown in Figure 3.9. This contains

only the geometric features common to all subjects. Moreover, each subject’s cortical

surface is also represented by a 8K nodes triangular surface, which is used, together with

the locations of the 241 detectors on the sensors space, and the head model, to compute a

forward operator Ki for the i th subject. The 8K nodes of each subject’s triangular mesh are

in correspondence with the 8K nodes of the template mesh MT . This allows the model to

be defined on the template MT .

Figure 3.9 The template triangular mesh MT composed of 8K nodes.

As in the previous Section, we construct three functions, L2 orthonormal in MT

{ψr = (ψr,1,ψr,2,ψr,3) : r = 1,2,3}. The energy maps of {ψr } are shown in Figure 3.10. We

generate synthetic data from model (3.6) as follows:

Ci =
3∑

r=1
z2

i rψr ⊗ψr =
3∑

r=1
z2

i r


ψr,1 ⊗ψr,1 ψr,1 ⊗ψr,2 ψr,1 ⊗ψr,3

ψr,2 ⊗ψr,1 ψr,2 ⊗ψr,2 ψr,2 ⊗ψr,3

ψr,3 ⊗ψr,1 ψr,3 ⊗ψr,2 ψr,3 ⊗ψr,3

 ,

where zi 1, zi 2, zi 3 are i.i.d realizations of the three independent random variables {zr ∼
N (0,σ2

r ) : r = 1,2,3}, with σ1 = 6, σ2 = 5 and σ3 = 4. The matrix-valued form of the

covariance functions arises from the fact that the observed functions on the brain space

are vector-valued. Subsequently, we construct the point-wise evaluations matrices Ci ∈
R24K×24K , from which the correspondent covariance matrices on the sensors space are

defined as

Si = KiCi K T
i +E T

i Ei , i = 1, . . . ,n.

The term E T
i Ei is an error term, where Ei is a s × s matrix with each entry that is an
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Original

Inverse 
Covariance

fPCA

Figure 3.10 On the top row, the energy maps of ψ1, ψ2 and ψ3. On the bottom row the
energy maps of the estimates ψ̂1, ψ̂2 and ψ̂3 obtained by applying Algorithm 3.

independent sample from a Gaussian distribution with mean zero and standard devia-

tion 5. We then apply Algorithm 3 with, 15 iterations, feeding in input {Si }. The results

are shown in Figure 3.10, in terms of energy maps of the reconstructed functions {ψ̂r }.

These are a close approximation of the underlying functions {ψr }. The fidelity measure∑3
l=1 ∥∇M (ψr,l − ψ̂r,l )∥2 of such estimates is 1.6×10−3, 1.4×10−3 and 1×10−2, forψ1,ψ2

andψ3 respectively, which is comparable in terms of order of magnitude to the results ob-

tained in the case of PCs of indirectly observed functions. Across the generation of multiple

datasets, results are stable, with the exception of few situations where the cross-validation

approach suggests a penalization coefficient λ that under-smoothes the solution, due to

very similar associated signals on the sensors space of the under-smoothed solution and

the real solution. However, the cross-validation is only a possible approach to the choice of

the penalization constant, and other options have been proposed in the inverse problems

literature, (see, e.g., Vogel, 2002). These, however, might involve visual inspection.

3.6 Application

In this section, we apply the developed models to the publicly available HCP Young Adult

dataset (Van Essen et al., 2012). In the following, we briefly review the pre-processing

pipeline, applied to such data by the HCP, to ultimately facilitate their use.

3.6.1 Pre-processing

For each individual a high-resolution 3D structural MRI scan has been acquired. This

returns a 3D image describing the structure of the gray and white matter in the brain. Gray

matter consists mostly of neuronal cell bodies, and it is the source of most of our neuronal

activity. White matter is made of axons connecting the different parts of the gray matter.
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If we exclude the sub-cortical structures, gray matter is mostly distributed at the outer

surface of the cerebral hemispheres. This is also known as the cerebral cortex.

By segmentation of the 3D structural MRI, it is possible to separate gray matter from

white matter, in order to extract the cerebral cortex structure. Subsequently a mid-

thickness surface, interpolating the mid-points of the cerebral cortex, can be estimated,

resulting in a 2D surface embedded in a 3D space that represents the geometry of the

cerebral cortex. In practice, such a surface, sometimes referred to as cortical surface,

is a triangulated surface. Moreover, from the 3D structural MRI, a surface describing

the individuals’ head can be extracted. The latter plays a role in the derivation of the

model for the electrical/magnetic propagation of the signal from the cerebral cortex to

the sensors. An example of the cortical surface of a single subject, is shown on the right

panel in Figure 3.1, instead the associated head surface and MEG sensors positions are

shown on the left panel of the same figure.

Moreover, a surface based registration algorithm has been applied to register each

of the extracted cortical surfaces to a triangulated template cortical surface, which is

shown in Figure 3.9. Post registration, the triangulated template cortical surface is sub-

sampled to a 8K nodes surface. Moreover, the nodes on the cortical surface of each subject

are also sub-sampled to a set of 8K nodes in correspondence to the 8K nodes of the

template. For each subject, a 248×24K matrix, representing the forward operator, has

been computed with FieldTrip (Oostenveld et al., 2011) from its head surface, cortical

surface and sensors position. Such matrix relates the vector-valued signals in R3, on the

nodes of the triangulation of the cerebral cortex, to the one detected from the sensors,

consisting of 248 magnetometer channels.

With the aim of studying the functional connectivity of the brain, for each subject,

three 6 minutes resting state MEG scans have been performed, of which one session is

used in our analysis. During the 6 minutes, data are collected from the sensors at 600K

uniformly distributed time-points. Using FieldTrip, classical pre-processing is applied

to the detected signals, such as low quality channels and low quality segments removal.

Details of this procedure can be found in the HCP MEG acquisition protocol. Moreover,

band pass filtering is applied, limiting the spectrum of the signal to the [12.5,29]Hz, also

known as the low beta waves.
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3.6.2 Analysis

Here we apply the models proposed in this chapter to the HCP data. The first part of

the analysis focuses on the study of the dynamic functional connectivity of a specific

subject. For this purpose, we subdivide the 6 minutes session in 20 intervals. Each of

these intervals is used to compute a covariance matrix in the sensors space, resulting in

20 covariance matrices S1, . . . ,S20. The aim is understanding the main modes of variation

of the functional connectivity of the subject on its brain space. Thus, Algorithm 3 is

applied to S1, . . . ,S20 to find the common modes of variation, with 20 iterations and K -fold

cross-validation, with K = 2. The energy maps of the estimated ψ̂1, ψ̂2 and ψ̂3 resulting

from the analysis are shown in Figure 3.11. These are associated to the first three common

modes of variation ψ̂1 ⊗ψ̂1, ψ̂2 ⊗ψ̂2 and ψ̂3 ⊗ψ̂3, which are in fact difficult to visualize

and interpret, so instead it is useful to focus on the energy maps of ψ̂1, ψ̂2 and ψ̂3. In

fact, high intensity areas, in yellow, give a good representation of which areas present

high average connectivity. From the plots of the associated variances {κ̂i r } we can see

that these areas are also the ones that show high variability in connectivity across time.

These are points where care should be taken in establishing static functional connectivity

assessments.

The second part of the analysis focuses on applying the proposed methodology to a

multi subject setting. Specifically, 40 different subjects are considered. For each subject,

the 6 minutes scan is used to compute a covariance matrix associated to the subject,

resulting in 40 covariance matrices S1, . . . ,S40. The template geometry in Figure 3.9 is used

as a model of the brain space. Algorithm 3 is then applied to S1, . . . ,S40 to find the common

modes of variation on the template brain, associated to S1, . . . ,S40. We run the algorithm

for 20 iterations, and choose the regularizing parameter by K -fold cross-validation, with

K = 2. The energy maps of the estimated functions ψ̂1, ψ̂2 and ψ̂3, associated to the first

three common modes of variation ψ̂1⊗ψ̂1, ψ̂2⊗ψ̂2 and ψ̂3⊗ψ̂3, are shown in Figure 3.12.

High intensity areas, in yellow, indicate which areas present high average connectivity,

and from the plots of the associated variances we can see that these are also ordered by

amount of variability in connectivity among subjects.

The presented methodology opens up the possibility to understand population level

variation in functional connectivity, and indeed, whether, just as we need different forward

operators for individuals (due to anatomical differences), we should also be considering

both population and subject specific connectivity maps when analyzing connectivity net-

works. In fact, it is of interest to note that the modes of variation in functional connectivity,

for the single and multi subject settings, respectively in Figure 3.11 and 3.12, are similar
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Figure 3.11 On the top, energy maps of the estimated ψ̂1, ψ̂2 and ψ̂3 obtained by applying
Algorithm 3 to the covariance matrices computed from the MEG resting state data of a
single subject on 20 consecutive time intervals. On the bottom, a plot of the variances
associated to the first 10 rank-one components, including κ̂i 1, κ̂i 2 and κ̂i 3.

in the first mode and largely overlapping with the Inferior parietal lobule, although only

on the left hemisphere. The second mode of variation for the single subject setting and

the third mode for the multi-subject setting, respectively in Figure 3.11 and 3.12, seem

highlighting a dynamic behavior of the Posterior cingulate cortex. Both the Posterior

cingulate cortex and the Inferior parietal lobule are part of the default network (Buckner

et al., 2008), i.e. the brain regions known to have highly correlated activity when the

subject is not performing any specific task. This might suggest that the default network, or

a subpart of it, is not only a brain area with high functional connectivity levels, in resting

state conditions, but it is also the brain region that shows among the highest levels of

spontaneous variability in connectivity.
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Figure 3.12 On the top, energy maps of the estimated ψ̂1, ψ̂2 and ψ̂3 obtained by applying
Algorithm 3 to the covariance matrices computed from the MEG resting state data of 40
different subjects. On the bottom, a plot of the variances κ̂i r associated to the first 10
rank-one components.

3.7 Discussion

In this chapter, we introduce a general framework for the representation and analysis

of covariance operators in an inverse problem context. We first introduce a model for

indirectly observed functional images in an unconstrained space, which outperforms the

naive approach of solving the inverse problem individually for each sample. This model

plays an important role in the case of samples that are indirectly observed covariance

functions, and thus constrained to be positive semidefinite. We deal with the non-linearity

introduced by such constraints by working with unconstrained representations, yet in-

corporating spatial information in their estimation. The proposed methodology is finally

applied to the study of brain connectivity from the signals arising from MEG scans.

The models proposed here can be extended in many interesting directions. From an

applied prospective, it is of interest to apply the proposed methodology to different set-
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tings, not necessarily involving neuroimaging, where studying second order information

has been so far prohibitive. From a modeling point of view, it is of interest to take a step

further the integration of the inverse problems literature with the population approach

we adopt in this chapter. For instance, penalization terms that have been shown to be

successful in the inverse problems literature, e.g. total variation penalization, could be

introduced in our models.

3.8 Proofs

Here we present the proofs of Proposition 3 and Proposition 4. The proof of Proposition 2

and the subsequent FE discretization follow from that of Proposition 3 as a special case,

with K1, . . . ,Kn = Ip , the identity matrix of size p.

Proof of Proposition 3. We want to find a minimizer f̂ ∈ H 2(M ), given z with ∥z∥ = 1, of

the objective function in (3.7):

n∑
i=1

∥yi − zi KiΨ f ∥2 +λzT z
∫
M
∆2

M f

∝ (Ψ f )T (
n∑

i=1
z2

i K T
i Ki )Ψ f −2(Ψ f )T (

n∑
i=1

zi K T
i yi )+λ

∫
M
∆2

M f . (3.21)

An equivalent formulation of a minimizer f̂ ∈ H 2(M ) of such objective function is given

by satisfying the equation

(Ψϕ)T (
n∑

i=1
z2

i K T
i Ki )Ψ f̂ +λ

∫
M
∆Mϕ∆M f̂ = (Ψϕ)T (

n∑
i=1

zi K T
i yi ) (3.22)

for every ϕ ∈ H 2(M ) (see Braess, 2007, Chapter 2). Moreover, such minimizer is unique

if A(ϕ, f ) = (Ψϕ)T (
n∑

i=1
z2

i K T
i Ki )Ψ f +λ∫

M∆Mϕ∆M f is positive definite. Given that for a

closed manifold M ,
∫
M∆

2
M

f = 0 iff f is a constant function (Dziuk and Elliott, 2013), such

condition is equivalent to assuming that ker(
n∑

i=1
z2

i K T
i Ki ), the kernel of

n∑
i=1

z2
i K T

i Ki , does

not contain the subspace of p-dimensional constant vectors.

Moreover, we can reformulate equation (3.22) in a form that involves only first-order

derivatives by integration by parts against a test function. We then look for a solution in
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the discrete space V ⊂ H 1(M ), i.e. finding f̂ , g ∈V
(Ψϕ)T (

n∑
i=1

z2
i K T

i Ki )Ψ f̂ +λ∫
M∇Mϕ ·∇M h = (Ψϕ)T (

n∑
i=1

zi K T
i yi )∫

M∇M f̂ ·∇M v −∫
M hv = 0

(3.23)

for all h, v ∈V . The operator ∇M is the gradient operator on the manifold M . The gradient

operator ∇M is such that (∇M v)(p), for v a smooth real function on M and p ∈M , takes

value on the tangent space on p. We denote with · the scalar product in the tangent space.

We recall here the definition of the κ×κ matrices to be (M) j l =
∫
MT

φ jφl and (A) j l =∫
MT

∇MT
φ j · ∇MT

φl . Note that requiring (3.23) to hold for all h, v ∈ V is equivalent to

requiring that (3.23) holds for all h, v that are basis elements of V , thus exploiting the basis

expansion formula (3.11) we can characterize (3.23) with the solution of the linear system

 n∑
i=1

z2
i K T

i Ki λA

A −M

[
ĉ

q̂

]
=

 n∑
i=1

zi K T
i yi

0

 , (3.24)

where ĉ and q̂ are the basis coefficients of f ∈V and g ∈V , respectively. Solving (3.24) in ĉ

leads to

(
n∑

i=1
z2

i K T
i Ki +λAM−1 A)ĉ =

n∑
i=1

zi K T
i yi . (3.25)

Proof of Proposition 4. We want to find a minimizer f̂ ∈ H 2(M ), given {zi } with
∑n

i=1 ∥zi∥2 =
1, of the objective function in (3.14):

n∑
i=1

∥S1/2
i −zi (KiΨ f )T ∥2 +λ

n∑
i=1

∥zi∥2
∫
M
∆2

M f

∝ (Ψ f )T (
n∑

i=1
∥zi∥2K T

i Ki )Ψ f −2(Ψ f )T
n∑

i=1
K T

i ST/2
i zi . (3.26)

Comparing (3.26) with (3.21) it is evident that by following the same steps of the Proof

of Proposition 3 we obtain the desired result, which is

ĉ =
( n∑

i=1
∥zi∥2K T

i Ki +λAM−1 A
)−1 n∑

i=1
K T

i ST/2
i zi .





Chapter 4

Functions on Surfaces

4.1 Motivation

Advances in medical imaging acquisition are constantly increasing the complexity of data

representing anatomical objects. In particular, some of these imaging modalities offer

a richer representation of anatomical manifolds, as a geometric object coupled with a

function defined on the geometric object itself, i.e. a Function on a Surface (FoS). In

this work we focus on Functions on Surfaces (FoSs) that are real functions located on

domains that are two-dimensional manifolds, where the domains themselves are subject

to variability from sample to sample, as shown in Figure 1. In the applied mathematics

literature, these are also known with the name of Functional Shapes (Charon and Trouvé,

2014). However, as it will be clear from the methodological section of this chapter, the

proposed framework can be extended to deal with more complex situations, such as

vector-valued functions describing features arising from multi-modal imaging techniques

or the RGB representation of colors, as done in Yao et al. (2017), with the purpose of

inferring the underlying geometry. Further extensions could also include situations where

the functions have an inherent time component. For simplicity of exposition, we will

concentrate on univariate FoS data in this work.

The aim of the present chapter is the introduction of a comprehensive statistical

framework for the analysis of FoSs. To this end, a statistical model is introduced, with

the main aim of jointly representing the geometric variability and functional variability

of the data. Suppose there is an underlying true one-to-one correspondence between

the points on the geometries of the observed FoSs. By geometric variability we mean

variations on the shape of the domains, i.e. variations of the point positions from one FoS

to another. By functional variability we mean variations on the amplitude of the functions
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of the observed FoSs, at the points in correspondence. For instance, it is evident that

the three FoSs in Figure 1, show both geometric variability and functional variability. In

order to quantify these two types of variability, we introduce estimators of the underlying

unknown quantities within the proposed statistical model.

In this context, estimating functional variability is challenging because, in such high-

dimensional settings, there is need to incorporate prior information, like smoothness,

on complex domains. Estimating geometric variability is challenging because the space

where the geometric objects live is non-Euclidean, and this invalidates classical linear

models, which could lead to predictions that do not belong to the original space, for

instance, self-intersecting objects. The formulation of estimators constrained to lie in the

deformation space is therefore required. Moreover, as it is clear from their definitions,

the study of geometric variability cannot be performed independently from the study

of functional variability, as the results of the latter generally depend on the former. This

motivates the introduction of a novel diffeomorphic registration algorithm for functional

data whose domain is a two-dimensional manifold, which enables the exploitation of the

functional information to achieve a better registration.

Often times practitioners have approached the analysis of FoSs in two completely

separate steps. In the first step, the surfaces are registered to a template surface, and

the functions are transported on the template through such estimated registration maps.

In the second step, the analysis of the functions is performed on the template surface,

independently of the previous step. This approach has two main drawbacks. Firstly, the

complete separation of the two steps precludes any study aimed at understanding how

the geometric variability relates to the functional variability. Secondly, for each subject,

there is an infinite number of registrations that bring the template to match the target

surface. However, for different registration maps, the registered functions exhibit different

functional variability. In other words, the registration step is responsible for separating

the variability due to geometric differences from the variability due to differences in the

functions, and this strongly influences the subsequent analysis on the functions. Thus,

the two steps should not be performed independently. Indeed, in the one-dimensional

analogue situation, it has been seen that considerably more information can be gleaned

from a joint approach than a step-wise approach (see Marron et al., 2015, and references

therein).

Many ideas from the literature on image registration (see e.g. Dupuis et al., 1998;

Thirion, 1995, 1998) and the literature on landmarked shapes (see e.g. Bookstein, 1992,

1997; Dryden and Mardia, 2016) have been recently extended to the more general setting of
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surfaces, without a functional component, both from the applied mathematics prospective

(Younes, 2010) and from the statistical prospective (Patrangenaru and Ellingson, 2015).

It is also natural to contextualize FoSs in the Functional Data Analysis (FDA) framework.

However, FDA is generally performed in controlled environments, where data are assumed

to be smooth functions on a fixed interval of the real line (Ramsay and Silverman, 2005),

or more generally, smooth functions on a fixed domain. The setting considered here

represents a new challenge for this branch of statistics.

More recently, a joint mathematical model for geometric and functional variability has

been proposed in Charlier et al. (2017). The approach consists of generalizing the notion

of deformation to a notion of metamorphosis, introduced for 2D images in Trouvé and

Younes (2005). A metamorphosis includes both a geometric deformation term and an

additive functional term. This enables the representation of any FoS as a metamorphosis

of a template FoS. The geometric deformation and the functional additive term, to explain

a given FoS, can be weighted by two different parameters in the model. In contrast, our

approach takes a statistical perspective on the problem of analyzing a set of FoSs, and

aims to offer a methodological toolset that can be feasibly applied to the analysis of the

brain surfaces shown in Figure 1.

4.1.1 Motivating application

The motivating application of the proposed model is the study of a collection of FoSs

derived from Magnetic Resonance Imaging (MRI). A 2D surface representing the geometry

of the cerebral cortex, the outermost layer of the brain, can be extracted from 3D MRI

data thanks to fully automated surface-extraction algorithms (Glasser et al., 2013). The

cerebral cortex is a highly convoluted thin sheet of 2 to 4 millimeters of thickness which

consists of neuronal cell bodies and it is the source of large parts of our neuronal activity.

An illustration of the surface-extraction step is shown in Figure 4.1.

Thanks to complementary imaging techniques, like functional MRI, a function can

be associated to the estimated cerebral cortex (see, e.g., Hagler et al., 2006), resulting in a

FoS. Such functions can be vector-valued functions, where each component represents a

feature of the cerebral cortex, extracted from a different imaging technique. However, in

this work, the function we consider is the map of thickness measurements of the cerebral

cortex. In fact, thanks to the recent improvements of the resolution of MRI scans it is now

possible to have an accurate estimation of this thickness map (Lerch and Evans, 2005).

Details on the cerebral cortex surface reconstruction and the cortical thickness estimation
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Figure 4.1 From left to right, in the first panel we have a section of a structural MRI (T1-
weighted) of a single subject. In the next three panels we have, respectively, the estimated
inner, mid-thickness and outer surfaces of the cerebral cortex. The inner and outer
surfaces enclose the cerebral cortex, the mid-thickness surface interpolates its middle
points and it is used to represent its geometry. These images have been produced using
Connectome Workbench (Glasser et al., 2013).

are covered in Section 4.5. In Figure 1 we show the FoSs representing cerebral cortex

geometry and thickness of three different individuals.

Almost all studies of these kind presume a preprocessing registration step and so do

not consider the inherent variability effects that might be induced by the registration step

on the functional measurements. Indeed, this issue goes beyond neuroimaging, as the

same techniques are often used in a wide variety of medical imaging settings (Audette

et al., 2000), as well as computer vision applications (Zaetz and Kurtek, 2015).

The rest of the chapter is organized as follows. In Section 4.2 we introduce a generative

statistical model which allows for both geometric and functional variability. In Section 4.3,

we propose the statistical estimators of the underlying unknown quantities of the genera-

tive model. We perform a simulation study on synthetic data in Section 4.4, to investigate

our estimation procedure. We then apply the framework introduced to study the relation

between geometry and thickness of the human cerebral cortex in Section 4.5 and draw

some concluding remarks in Section 4.6. Moreover, in the appendices, we present further

details of the proposed methodology and an additional simulation study.

4.2 Model for Functions on Surfaces

4.2.1 Definitions

A set of FoSs, such as the ones in Figure 1, can be mathematically formulated as a collec-

tion of pairs {(Mi ,Yi ) : i = 1, . . . ,n}. The collection {Mi : i = 1, . . . ,n} is a set of topologically

equivalent smooth two-dimensional manifolds, embedded in R3, representing the ge-
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ometry of the data. The functional aspect of the data is represented by the collection

{Yi : i = 1, . . . ,n}, where Yi is an element of the function space L2(Mi ), i.e. the Hilbert

space of square integrable functions on Mi with respect to the area measure.

Here, we propose a statistical generative model for FoSs, modelled in terms of mathe-

matically more tractable objects. To this end, we define a deformation operator ϕ, such

that ϕv :R3 →R3 is parametrized by the elements of a Hilbert space {v : v ∈ V }. Moreover,

we assume ϕv is a homeomorphism of R3 for all v ∈ V and that ϕ0(x) = x for all x ∈ R3.

For each v ∈ V , ϕv :R3 →R3 represents a deformation of the space R3, which means that

whenϕv is applied to a point x ∈R3 this is relocated to the locationϕv (x) ∈R3. In addition,

ϕv being a homeomorphism of R3 implies that, for a fixed v ∈ V , there is a one-to-one

correspondence between each element x ∈R3 and the relocated element ϕv (x) ∈R3.

Moreover, we introduce M0, a smooth two-dimensional manifold topologically equiv-

alent to {Mi }, which represents a fixed template geometric object. Given a FoS, the

geometric template together with the deformation operator offers an alternative repre-

sentation of the geometry of the FoS in hand as: ϕv ◦M0, for a particular choice of v ∈ V .

Here,ϕv ◦M0 is the geometric object obtained by deforming M0 through the mapϕv , and

specifically, by relocating each point x ∈M0 to the new location ϕv (x), to resemble the

target manifold. For this reason, we will informally say that the element v ∈ V encodes the

geometry, or the shape, of a FoS, as in fact v defines the deformation ϕv , which defines

the geometry ϕv ◦M0. The choice of the deformation operator is driven by the particular

problem in hand. We first introduce the generative model and subsequently discuss

different choices of this operator.

4.2.2 The model

Let now {vi : i = 1, . . . ,n} be a set of random samples of a zero-mean and finite second

moment V -valued random function V and {Zi : i = 1, . . . ,n} be a set of random smooth

samples of a zero-mean and finite second moment random real function Z with values in

L2(M0). We assume the following generative model for the i th observation (Mi ,Yi ):
Mi =ϕvi ◦M0,

Xi =µ+δZi ,

Yi = Xi ◦ϕ−1
vi

,

(4.1)
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where µ ∈ L2(M0) is a fixed function, modelling the common function behavior between

the different samples, and δ is a coefficient representing the magnitude of the function

variations around the mean µ. In addition, we assume the objects in Model 4.1 are subject

to a discretization error, which is considered in the estimation process. This formulation

generalizes an often used model for the one-dimensional functional registration problem

(see, e.g. Tang and Müller (2008)).

Model 4.1 achieves the goal of representing FoSs as a collection of more tractable

objects, decomposing the generation of the i th FoS into three main steps. In the first

step, the geometry Mi of the i th object is generated by the deformation ϕvi applied to the

template M0, where vi is a random sample of V . In the second step, a random function Xi ,

on the template, is generated as the sum of the fixed function µ and a stochastic term δZi .

In the third step the generated function Xi is transported on the manifold Mi , defining

Yi . This is done through the equation Yi = Xi ◦ϕ−1
vi

, which means that for all x ∈ M0,

Yi (ϕvi (x)) = Xi (x), or informally that the functional value Xi (x) is ‘transported’ with the

deformation to the location ϕvi (x) ∈Mi .

We now describe the FoSs generation process from Model 4.1, for different choices of

the deformation operator:

• Shift operator: Let V =R3, we defineϕv to be such thatϕv (x) = x+v for all v ∈ V , x ∈
R3. Clearly, in this case, {Mi =ϕvi ◦M0} in Model 4.1 would generate a collection of

surfaces shifted in the directions specified by {vi }.

• Identity operator: Let V be the space of smooth functions v : M0 → R3 and let

ϕv (x) = x + v(x) for all x ∈M0. In this case, {Mi } would be a collection of smoothly

deformed versions of the template M0. Note however, that the maps being only

smooth and not homeomorphic, it cannot be guaranteed that every choice of v ∈ V

preserves the topology of M0. Nevertheless, this choice might still represent a valid

option in a small deformations setting.

To solve this problem, we could think of restricting V to contain only smooth and

homeomorphic functions, however, in this way, the linearity of the space V is lost,

and this is a property of fundamental importance to the subsequent analysis, given

that we want to apply linear statistics on the random function V , which takes values

on V .

• Diffeomorphic operator: Let V be a Sobolev space of sufficiently smooth vector fields

from R3 to R3 vanishing, with their derivatives, at infinity. Let ϕ be a diffeomorphic
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deformation operator, i.e. an operator such that ϕv is a diffeomorphism of R3 for

all v ∈ V . Then, for different choices of v , Model 4.1 would generate a collection

of surfaces that are diffeomorphic (and thus homeomorphic) deformations of the

template M0. More importantly, these deformations are parametrized by the linear

space V , where linear statistics can be applied. For this choice, an illustration of the

generative process is shown in Figure 4.2. The diffeomorphic deformation operator

can be defined by means of an Ordinary Differential Equation (ODE). Details of this

are described in Section 4.2.4.

Figure 4.2 An illustration of the generation of a FoS through Model 4.1 with ϕ the diffeo-
morphic deformation operator. From left to right, in the first panel we have a functional
sample Xi on the geometric template M0. In the second panel we have a vector field
vi ∈ V , a sample of the random function V , evaluated on a uniform grid in R3. This is
shown together with (M0, Xi ). In the third panel we have the diffeomorphic deformation
ϕvi , obtained from vi as described in Section 4.2.4, here displayed as the set of vectors
{ϕvi (ξk )} ⊂R3 with {ξk } the nodes of the triangulated surface representing the template
M0. In the fourth panel, we have the FoS (Mi ,Yi ) obtained by applying the deformation
ϕvi to M0 and ‘transporting’ the functional values with it.

More complicated generative models could be built from Model 4.1. For example,

the functions {vi } and {Xi }, representing respectively geometries and functions, could

be modelled in terms of conditional expectation of different sources of information on

the subjects such as age, disease status or other subject-specific explanatory variables, as

done, in the case of functional data located on 1D domains, in Hadjipantelis et al. (2015).

However, Model 4.1 is the simplest model enabling a comprehensive study of the relation

between geometric and functional variability.

4.2.3 Geometric and Functional variability

Here we formalize the geometric and functional variability relationship. Recalling the

definition of geometric and functional variability, given in the introduction, we can notice

that in Model 4.1 we have that {vi } describe the geometric variability in the data, while
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{Xi } describe the functional variability in the data. The key idea of this work is to formal-

ize geometric and functional variability by means of functional Principal Component

Analysis (fPCA), so that geometric variability can be represented in terms of the Principal

Components (PCs) of the random function V , generating the samples {vi }, and functional

variability can be represented in terms of the PCs of the random function X = µ+δZ

generating the random samples {Xi }. Under the hypothesis that a finite number of PCs is

sufficient to represent V and X , we can than use classical multivariate statistics, such as

multivariate regression or canonical correlation analysis, to model the relation between

the PCs of V and the PCs of X , ultimately formalizing the concept of geometric and func-

tional variability being related. This should also further clarify the choice to introduce a

deformation operator ϕ. In fact, as already mentioned, the deformation operator allows

us to parametrize the space of deformations through the linear space V , and thus linear

fPCA can be applied on the V -valued random variable V .

More formally, under typical assumptions on V , thanks to fPCA, V can be expanded in

terms of the orthonormal sequence of eigenfunctions {ψG
j } of the covariance operator of

V , as

V =
∞∑

j=1
aG

j ψ
G
j ,

where aG
1 , aG

2 , . . . are uncorrelated real random variables, with variances in decreasing order

κG
1 ,κG

2 , . . .. The collection {ψG
j } defines the strongest modes of variation of the random

function V and these are called PC functions. We refer toψG
j as the j th mode of geometric

variation, or alternatively the j th geometric PC function. This represents variation of the

type cψG
j around the mean of V , with c ∈R. The PC function ψG

j is thus associated to the

geometric deformations ϕcψG
j

of R3, that applied to the geometric template, correspond

to the geometries described by ϕcψG
j
◦M0. In practice, we visualize the j th mode of

geometric variation by visualizing the associated geometries for some specific choice of c ,

e.g. ϕ±
√
κG

j ψ
G
j
◦M0. An example of this visualization is given in Figure 4.15. PCA has been

previously used in a similar fashion in Vaillant et al. (2004) and Tward et al. (2017), with ϕ

the diffeomorphic deformation operator, to represent anatomical geometries.

With analogous considerations, the random variable X can be expanded, using the

associated orthonormal eigenfunctions {ψF
j }, of the covariance operator of X , as

X =µ+
∞∑

j=1
aF

j ψ
F
j ,
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where the real random variables aF
1 , aF

2 , . . . are uncorrelated with variances, in decreasing

order, κF
1 ,κF

2 , . . .. We refer to ψF
j as the j th mode of functional variation.

FPCA basis expansions have the fundamental property of separating the discrete set

of stochastic terms from the functional terms. Hence, the relation between the geometry

and the functional terms can be formalized in terms of the random variables {aG
j } and

{aF
j }. We assume that only a finite number of the PC functions are necessary to describe

the phenomenon in hand and denote with aG the associated K G -dimensional random

vector (aG
1 , . . . , aG

K G ) and with aF the K F -dimensional random vector (aF
1 , . . . , aF

K F ).

Different multivariate statistical models can be applied at this stage, to formalize the

geometric and functional variability relation in terms of the relation between the random

vectors (aG
1 , . . . , aG

K G ) and (aF
1 , . . . , aF

K F ). A first possible formalization of the geometric and

functional variability relation is

E[X |V ] =µ+
K F∑
j=1
E[aF

j |aG ]ψF
j . (4.2)

Under linear assumptions on the dependency, the conditional expectation term can be

modelled as

E[aF
j |aG ] =β′

j aG ,

with β j the K G -dimension vector of the regression coefficients of the j th functional mode

of variation.

The model above describes how the main modes of geometric variation explain each

mode of functional variation, implying that we expect the geometry to influence the

functions. This might be the case of neurodegenerative disease, where we expect the

functional activity (the function) to adapt to the disease progression (the geometry).

However, the reverse roles of geometry on functions is also plausible in some cases. For

instance, through a comparative study between taxi drivers and bus drivers, it has been

shown that the different functional activation patterns influence the growth of the gray

matter volume, and thus the brain geometry (Maguire et al., 2006). Moreover, given that in

model (4.2) each mode of functional variations is explained thorugh a linear combination

of the modes of geometric variability, the interpretability of the overall model strongly

relies on the interpretability of the singular functional main modes of variations.

A second possible formalization of the geometric and functional variability relation-

ship might consist of simply examining the maximal directions of correlation between

geometry and function. This is equivalent to performing a Canonical Correlation Analysis
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(CCA). A CCA analysis on the coefficients of the fPCA basis expansion is equivalent to

finding a new basis expansions for V and X as a linear combination of the respective

fPCA basis. However, the elements of the new basis are ordered in a way that maximizes

the correlation between their coefficients, i.e. the interdependency between geometry

and function, representing how the geometric variability associates with the functional

variability and vice versa.

In this work, we focus on studying the relationship between the pair of random func-

tions (V , X ) generating the samples {(vi , Xi ) : i = 1, . . . ,n} describing respectively the brain

geometry and a functional variable of interest. However, in practice, multiple descriptors

are available for each individual. For example, besides the cortical thickness maps, we

could consider cortical myelin maps, cortical curvature maps, or different types of data

such as behavioral and demographic measures, leading to high-dimensional data of the

type {(
vi , X 1

i , . . . , X pX

i ,W 1
i , . . . ,W pW

i

)
: i = 1, . . . ,n

}
,

with pX functional variables X 1
i , . . . , X pX

i and pW univariate descriptors W 1
i , . . . ,W pW

i . A

comprehensive analysis in this setting requires more sophisticated tools than CCA to

analyze and decompose the variation. A natural candidate is Joint and Individual Variation

Explained (JIVE) (Lock et al., 2013), where the variation is subdivided into a low-rank joint

variation component, a low-rank individual variation component, and a residual noise

component of the n-row datasets

V, X1, · · · XpX , W,

formed by filling each row with the i th observation of the associated variables. Intuitively,

the joint variation component presents a common scores matrix across datasets and a

dataset-specific loadings matrix. Instead, the individual variation component allows for

both dataset-specific scores and loadings matrices. A more refined analysis could try to

model joint variation within subsets of the available variables.

4.2.4 The diffeomorphic deformation operator

The deformation operator, introduced in Section 4.2.1, has to be chosen in such a way that

it is flexible enough to represent the observed surfaces, as a deformation of the template

surface. Clearly, the shift operator is not sufficient to capture the variations in geometry

of the FoSs in Figure 1, in terms of deformation of the template. However, this operator
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should only include ‘sensible’ deformations, in the sense that the deformation operator

should have its image contained in the set of diffeomorphic deformations from R3 to R3.

This choice is driven by the fact that diffeomorphic deformations are smooth deformations

that preserve the topological properties of the shapes and that avoid two separate points

on the template collapsing to one point on the observed surface.

For this reason, we rely on the idea of constructing diffeomorphic deformations as

flows of an ODE (Dupuis et al., 1998), which can be parameterized by a Hilbert function

space. Specifically, let now V be a Sobolev space of sufficiently smooth vector fields from

R3 to R3 vanishing, with their derivatives, at infinity. Let v : [0,1]×R3 → R3 be a time

dependent vector field in L2([0,1],V ), the space of vector fields with finite (squared) norm∫ 1
0 ∥vt∥2

V
d t . Then, for a given v , the solution φv : [0,1]×R3 →R3 of the ODE

∂φv

∂t
(t , x) = vt ◦φv (t , x) t ∈ [0,1], x ∈R3. (4.3)

with initial conditions φv (0, x) = x, is a smooth diffeomorphic map in Diff(R3), at each

fixed time t (see, e.g., Younes, 2010). The ODE (4.3) is intuitively defining the solution φv

to be a function such that, for all t ∈ [0,1], the time-derivative ∂φv
∂t (t , x) (i.e. the velocity

field at time t) is given by the vector field vt ◦φv (t , x). In other terms φv represents the

‘flow’ described by the velocity vector field {vt : t ∈ [0,1]}.

Note that we use ϕ and φ to represent two different object and their relation is defined

as follows.

Figure 4.3 From left to right, in the first panel we have an initial vector field v0 ∈ V and in
gray the template M0. In the consecutive panels, we show the solution φv of the ODE at
the times t = 0,0.5,1 (which are diffeomorphic deformations of R3), as deformations of
the template M0. In this specific case, the initial vector field v0 has been chosen in such a
way that the surface ϕv0 ◦M0 is a close approximation of a target surface, i.e. the colored
surface in the figure.

Given an initial vector field v0, we define {vt : t ∈ [0,1]} to be the time-variant vector

field which minimizes the quantity
∫ t

0 ∥vt∥2
V

d t . For this choice, the vector field {vt : t ∈
[0,1]} can be derived from v0 through the resolution of the EPDiff equation (Miller et al.,
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2006). Finally, the deformation operator can be defined to be ϕv0 (x) = φv (1, x), where

v0 ∈ V is the initial vector field generating {vt : t ∈ [0,1]}, through the EPDiff equation, and

φv is the solution of the ODE (4.3). The choice to define ϕv0 (x) with the solution of the

ODE (4.3) at time t = 1 is arbitrary, in fact any other choice of a fixed t > 0 would have

been equivalent, given that the φv (t , x) is guaranteed to be a diffeomorphism of R3 for any

t > 0.

A summary of the main elements necessary to define ϕ is given by the following

v0 −−−−→
EPDiff

{vt : t ∈ [0,1]} −−−−−−→
ODE (4.3)

φv −→ϕv0 :=φv (1, ·)︸ ︷︷ ︸
ϕv0 :R3→R3

. (4.4)

In Figure 4.3 we show the solution of the ODE (4.3) for a given initial vector field v0. We

emphasize that the ODE (4.3) is not used here to model the phenomenon in hand, but it is

just a convenient tool to generate a diffeomorphism of R3 from a smooth vector field v0

belonging to the linear space V .

4.3 Estimation framework

The arguments made in the previous section are formalized in terms of quantities derived

from the underlying unknown random variables modelling the data generation. However,

in practice, only a set of observed noisy FoSs is available, and those quantities have to

be estimated from the data. In this section, we mostly work with the set of idealized

FoSs {(Mi ,Yi ) : i = 1, . . . ,n}. Instead, when the specific computer representation is of

importance to the proposed algorithms, we work with the associated collection of pairs

denoted with {(MT
i ,Y T

i ) : i = 1, . . . ,n}, each composed by a triangulated surface MT
i ⊂

R3, approximating the underlying smooth two-dimensional manifold Mi ⊂ R3, and a

real piecewise linear function Y T
i ∈ L2(MT

i ) representing a noisy approximation of the

underlying smooth function Yi ∈ L2(Mi ).

In this section, we outline the estimation procedures applied to the data to recover the

different quantities in Model 4.1. A flow chart summarizing the main steps is shown in

Figure 4.4. The implementation details are covered in the appendices.
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Figure 4.4 A flow chart summarizing the main steps of the estimation procedure proposed
in Section 4.3. In the Geometric Registration step, as described in Section 4.3.1, the
FoSs are registered to a template M0, i.e. for each FoS we estimate a vector field v̂i

representing the geometric object Mi as the deformed template ϕv̂i ◦M0. Each function
X̂i is obtained by transporting Yi on the template through the estimated registration. In
the Functional Registration step, as described in Section 4.3.2, the functional information
is used to achieve a more accurate registration leading to a corrected version of the
functions {X̂i } and the vector fields {v̂i }. In the FPCA Functions and FPCA Geometries
steps, as described in Section 4.3.3, fPCA is performed on the functions {X̂i } and the
vector fields {v̂i } respectively, leading to the estimation of a set of PC functions and scores
representing functional variability and geometric variability. Finally, as described in
Section 4.3.4, classical statistical analysis is performed on the PC scores ÂF

i , j and ÂG
i , j to

study the relation between functional and geometric variability.

4.3.1 Geometric Registration and Linear representation of shapes

In practice the computation of a diffeomorphic deformation between the template M0

and the surface Mi is achieved by solving a minimization problem of the form

v̂i = argmin
vi∈V

D2(ϕvi ◦M0,Mi )+λ∥vi∥2
V , (4.5)

where D2(ϕvi ◦M0,Mi ), the shape similarity function, is a measure of the amount of

mismatching between the deformed template surface and the target surface. The constant

λ is a weighting parameter between the data-fidelity term and the term ∥vi∥2
V

, which could

be regarded as a measure of the amount of deformation induced by ϕvi . The functions

{v̂i } are an estimation of {vi } in Model 4.1. In Figure 4.3 we show an example of a vector

field in V , estimated by solving (4.5), with the aim of representing a target surface as a

deformation of a template.
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The procedure described is also referred to as the registration step, as in fact the

estimated map ϕv̂i , up to approximation error, defines a one-to-one smooth correspon-

dence between the points of the target manifold Mi and the template M0. Thus, the

function X̂i ∈ L2(M0), obtained by registering Yi to the template, can be defined as the

element X̂i such that X̂i (x) = Yi (ϕv̂i (x)) for all x ∈M0. The registered maps {X̂i } can be

regarded as a first approximation of {Xi } in Model 4.1. In practice, there might be a small

approximation error between ϕvi ◦M0 and Mi , which might contrast with the definition

X̂i (x) = Yi (ϕv̂i (x)) for all x ∈M0, asϕv̂i (x) might not exactly belong to Mi . However, we as-

sume thatϕv̂i (x) is close enough to Mi , for all x ∈M0, and in practice define X̂i (x) = Yi (y)

with y ∈Mi the nearest neighbor of ϕv̂i (x).

The implementation of the registration algorithm (4.5) requires the definition of a

shape similarity function D. As already mentioned, the geometry of a FoS is in practice

encoded as a triangulated mesh, we thus define the similarity function D between tri-

angulated surfaces. We should differentiate between two possible settings at this point.

In the first setting, we suppose that a correspondence between the points of the trian-

gulated surfaces MT
0 and MT

i is known for all i = 1, . . . ,n. In other terms, we suppose

that MT
0 and MT

i have already been registered and thus there is a set of landmarks

{xl , yl : xl ∈ MT
0 , yl ∈ MT

i } in correspondence between them. In this case, a simple

mismatching functional is given by the Euclidean distance between the correspondent

landmarks i.e.

D2(ϕvi ◦MT
0 ,MT

i ) =∑
l
∥ϕvi (xl )− yl∥2

R3 . (4.6)

This choice has been adopted for instance in Joshi and Miller (2000).

This situation is frequent in neuroimaging, a field that has developed their own ad

hoc registration algorithms and where diffeomorphic constraints are explicitly imposed

without the necessity to use a diffeomorphic deformation operator. In this case the esti-

mates {X̂i } are already provided, given that MT
0 and MT

i have already been registered,

nevertheless, the framework introduced here is still of relevance, in fact, we still need to

estimate {v̂i } ⊂ V , in equation (4.5), to represent the given registration maps (i.e. defor-

mation maps), and thus the geometries, in terms of elements of a linear space, which is a

fundamental property to the subsequent analysis.

In the second setting, we suppose that a registration step has not been performed

yet. In this situation, registration and linear representation can be performed jointly by

choosing an appropriate shape similarity function D not based on landmarks, but for

instance, proximity. An example of such a similarity function is proposed in Vaillant and
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Glaunès (2005) and Vaillant et al. (2007), and is defined as follows. Let KZ :R3 ×R3 →R3×3

be a Gaussian isotropic kernel of variance σ2
Z

, i.e. KZ (x, y) = exp(−∥x − y∥2
2/(2σ2

Z
))Id3×3,

with Id3×3 denoting a 3×3 identity matrix. Indeed, such kernel can be any symmetric

positive definite kernel, however it is common to choose a Gaussian kernel. Denote with

c(l ) and η(l ), respectively, the center point and the normal vector of the l th triangle of

the mesh ϕvi ◦MT
0 . Denote with ci (q) and ηi (q), respectively, the center point and the

normal vector of the qth triangle of the mesh MT
i . Moreover, let the triangles of the mesh

ϕvi ◦MT
0 be indexed by l and g and the triangles in MT

i be indexed by q and r . The

resulting shape similarity function has the form

D2(ϕvi ◦MT
0 ,MT

i ) =∑
l

∑
g

KZ (c(l ),c(g ))η(l ) ·η(g )

−2
∑

l

∑
q

KZ (c(l ),ci (q))η(l ) ·ηi (q)

+∑
q

∑
r

KZ (ci (q),ci (r ))ηi (q) ·ηi (r ),

(4.7)

with · denoting the scalar product in R3. Intuitively, the first and last terms measure

deformations to the local geometry within the two surfaces, and the middle term measures

the mismatch in local geometry between the two surfaces.

Thanks to the procedure outlined in this section, given a set of FoSs, we are able to

register them to a fixed template M0. As a result, the information regarding the geometry

of the data is stored in terms of the estimates {v̂i } ⊂ V of {vi } in Model 4.1. These are

estimated so that ϕv̂i ◦M0 resembles the geometry of the i th FoS. Moreover, we obtain a

set of functions {X̂i } on the fixed template, that are a first estimate of the functions {Xi } in

Model 4.1.

In practice the space of smooth functions V is implemented as a Reproducing Kernel

Hilbert Space (RKHS), as described in Appendix B.1.

4.3.2 Functional Registration

The aim of this section is the introduction of a novel functional registration algorithm

for functional data whose domain is a fixed two-dimensional manifold. The functional

registration algorithm can then be applied to align the set of functions {X̂i : X̂i ∈ L2(M0)},

estimated in Section 4.3.1, by registering them to a template function X0 ∈ L2(M0), which

can be in first instance approximated by the cross-sectional sample mean of {X̂i }. The

rationale for such a procedure is that, as well known in FDA, the functions {X̂i } on M0
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should in principle be able to drive a better registration, on the assumption that the

underlying functions {Xi } in Model 4.1 have a preponderant mean effect, with respect to

its second order variation.

In fact, each estimated function X̂i , strongly depends on the associated deformation

map ϕv̂i , whose estimation is usually driven only by geometric features. Hence, a sys-

tematic mis-registration, due to a naive approximation of the deformation maps, could

introduce fictitious functional variability on the functions {X̂i }, which in fact should be

accounted for by geometric variability, in particular in a setting where obvious landmarks

are not available and the deformations {ϕv̂i } are estimated while ignoring the functional

information. The functional registration algorithm can be regarded as a correction step to

{X̂i }, and thus {v̂i }, estimated from Section 4.3.1.

A review on the registration of functional data can be found in Marron et al. (2015).

However, most of the FDA literature treats only the case of functions whose domain is

an interval of the real line. Registration of 2D images has also been well studied (see

e.g., Zitová and Flusser, 2003, for a review). Methods that preserve invertibility of the

deformation have also been proposed for 2D/3D Euclidean images (Vercauteren et al.,

2009) and extended to functions with spherical domains in Yeo et al. (2010). However,

to the best of our knowledge, these methods are not able to deal with the registration

of a collection of functions whose domain is a fixed generic two-dimensional manifold

embedded in R3.

Alternatively, in the case of landmark based registration, functional information can

be introduced into the registration process, by modifying the algorithm that provides

the landmarks, to account for function similarity. In the case where landmarks are not

available functional information can be introduced by equipping the shape similarity

functional (4.7) with a functional similarity term, as done in Charon and Trouvé (2014)

and Charlier et al. (2017).

Definitions

To set the notation of this chapter, we recall some of the basic differential geometry

definitions presented more in details in Chapter 1. Let TpM0 be the tangent space on the

point p ∈M0 and let gp be the metric on M0, i.e. a scalar product on the tangent space

TpM0. In our case it is natural to consider the scalar product induced by the Euclidean

embedding space R3, i.e. the first fundamental form. Define the tangent bundle to be the

disjoint union of tangent spaces T M0 = ⋃̇
p∈M0 TpM0 = ⋃

p∈M0 {p}×TpM0. A section of

the tangent bundle T M0 is the formalization of the concept of a vector field on M0, an
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example of which is shown in Figure 4.5. We denote with L2(T M0) the Hilbert space of

square integrable sections of T M0. Moreover, let ∆BL be the Bochner-Laplacian operator.

The Bochner-Laplacian of a smooth vector field v , i.e. ∆BL v , is a vector field on M0, whose

L2 norm gives a measure of the smoothness of the vector field v . i.e. low values for smooth

vector fields v and high values for rough vector fields. A more formal definition of the

Bochner-Laplacian operator, from the Levi-Civita operator, is given in Chapter 1.

Figure 4.5 A section of the tangent bundle T M0, which has been computed by minimizing
the linearized version of the equation (4.9).

Estimation

The registration of {X̂i } is performed in an iterative fashion, which means that each

function X̂i is aligned to the function X0 by composition of small diffeomorphic defor-

mations. Let {si : M0 → M0} be the set deformation maps estimated from the previous

iterations of the algorithm, such that X̂i ◦ si is a registered version of X̂i to the function

X0. The functions {si } can be the set of identity maps in the first iteration. Moreover, let

{p j : j = 1, . . . ,S} ⊂ M0 be a collection of S control points where the functions {X̂i } are

sub-sampled. In practice, these will be the nodes of the triangulation MT
0 , i.e. the points

where the functions are actually observed.

With a slight abuse of notation, let the diffeomorphic function φu : M0 →M0 be the

solution generated at time t = 1 by the ODE
∂φu
∂t (t , x) = u ◦φu(t , x) t ∈ [0,1], x ∈M0,

φu(0, x) = x x ∈M0

(4.8)

where u is a sufficiently smooth vector field on M0. If M0 has a boundary, than we assume

u vanishes, with their derivatives, on the boundary. Such an ODE is used here as a tool to



108 Functions on Surfaces

generate a diffeomorphic function φu from a vector field u that needs only to be smooth.

Then, we propose to estimate a set of functional registration maps, each aligning X̂i ◦ si to

X0 by minimizing

EM0 (ui ) =
S∑

j=1

(
X0(p j )− X̂i ◦ si ◦φui (p j )

)2 +λ∥∆BLui∥2
L2(T M0), (4.9)

where ∥∆BLui∥2
L2(T M0)

is the L2 norm of the vector field∆BLui , which imposes smoothness

on ui . The constant λ is a weighting coefficient between the data fidelity term, i.e. how

well aligned we want X̂i ◦ si ◦φui to be to X0, and the smoothing term, i.e. how smooth we

want the vector field ui to be.

The term X̂i ◦si ◦φui in Equation (4.9), is then linearized with respect to ui . This results

in the approximation

X̂i ◦ si ◦φui ≈ X̂i ◦ si +Lui ,

where Lui is a first order approximation of X̂i ◦ si ◦φui − X̂i ◦ si . By means of Vector Finite

Elements, an approximate solution ûi , at the nodes of MT
0 , can be characterized in terms

of the solution of a linear system. An approximate vector field ûi on the triangulation

MT
0 is then computed by linear interpolation of the solution found at the nodes of the

triangulation. Details of this procedure can be found in Appendix B.2. The main steps of

the functional registration algorithm are summarized in Algorithm 4.

Each iteration of the functional registration algorithm result in a newly estimated set of

functions {X̂i ◦sk
i }, representing a re-aligned correction of the maps {X̂i }. The composition

X̂i◦sk
i means that for all x ∈M0 the functional value X̂i (x) is, after k iterations, relocated on

the point (sk
i )−1(x) ∈M0. Thus, the functional registration also has the effect of correcting

the overall geometric deformations {ϕv̂i : M0 →Mi }, estimated in Section 4.3.1, to be

ϕv̂i ◦ (sk
i )−1, i = 1, . . . ,n. (4.10)

The geometric registration model in Section 4.3.1 and the functional registration

model, introduced in this section, are similar in spirit, as they both rely on the idea that

given a smooth vector field we can generate a diffeomorphic vector field by means of

an ODE. However, they also differ in many aspects. For instance, they differ in the way

smoothness is imposed. In the geometric registration model, smoothness is imposed

by penalizing through the norm of a RKHS. In the functional registration model, within

each iteration, smoothness is imposed by means of a differential operator, while the

overall smoothness is controlled by the number of iterations. Moreover, in the geometric
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Algorithm 4 Functional Registration Algorithm

1: Initialization:

(a) Initialize {s0
i ← I d : i = 1, . . . ,n} to be the identity functions on M0

(b) Initialize {X̂i : i = 1, . . . ,n} to be the functions estimated from Section 4.3.1

(c) Initialize the functional template to be X0 ← 1
n

∑
i X̂i

2: Compute {ûk
i : i = 1, . . . ,n}, the solution at the kth iteration, from the second order

functional

EM0 (ui ) =
S∑

j=1

(
X0(p j )− X̂i ◦ sk−1

i (p j )−Lui (p j )
)2 +λ∥∆BLui∥2

L2(T M0),

3: Compute the registration maps {φûk
i

: i = 1, . . . ,n} by solving the ODE
∂φ

uk
i

∂t (t , x) = uk
i ◦φuk

i
(t , x) t ∈ [0,1], x ∈M0,

φuk
i

(0, x) = x x ∈M0

4: Update current registration maps and functional template:
{sk

i ← sk−1
i ◦φûk

i
: i = 1, . . . ,n}

X0 ← 1
n

∑
i X̂i ◦ sk

i
5: Output and analysis (e.g. fPCA) of the result of the current iteration:

{X̂i ◦ sk
i : i = 1, . . . ,n}

6: Repeat Steps 2–5 until until a stopping criterion is satisfied

registration, the ODE is defined for a time-variant vector field, instead in the functional

model the ODE is defined for a stationary vector field. Some of these aspects, including

the link between penalizing through the norm of a RKHS and penalizing by means of a

differential operator, are discussed in Appendix B.2.

The functional registration model introduced in this section, as opposed to the geo-

metric registration model in Section 4.3.1, is based on the composition of small deforma-

tions, where at the kth iteration, {X̂i ◦ sk
i : i = 1, . . . ,n} represent the re-aligned versions

of {X̂i ◦ sk−1
i : i = 1, . . . ,n}. The constant λ in the model, controls the change between the

functions {X̂i ◦ sk−1
i } and those estimated at the next iteration, as in fact large values of

λ privilege small deformations. This has the advantage that the fPCA analysis can be

re-performed on the functions {X̂i ◦ sk
i } at each iteration k. The output of this analysis can

provide useful information for the next step of the functional registration algorithm, as for

instance a stopping criterion in a similar fashion to Kneip and Ramsay (2008).
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In summary, we have introduced a method that exploits the functional information to

achieve a better registration by updating the functional estimates {X̂i } to be {X̂i ◦ s
kstop

i },

and the diffeomorphic geometric deformations ϕv̂i to be {ϕv̂i ◦ (s
kstop

i )−1}, where kstop

denotes the iteration where the functional algorithm is stopped. As pointed out at many

stages in this work, it is however important to have a representation of the final update of

the deformations maps {ϕv̂i ◦ (s
kstop

i )−1} in terms of elements of the linear Hilbert space V ,

so that we can perform linear statistics. To this purpose, we can estimate such elements

by applying the geometric deformation model in Section 4.3.1, i.e. by solving

v̂
kstop

i = argmin
vi∈V

D2(ϕvi ◦MT
0 ,ϕv̂i ◦ (s

kstop

i )−1 ◦MT
0 )+λ∥vi∥2

V ,

where D2 denotes the landmark distance defined in equation (4.6).

The overall procedure in this section results in a set of corrected estimates {X̂i ◦ s
kstop

i }

and {v̂
kstop

i }, that exploit functional information, estimating respectively {Xi } and {vi } in

Model 4.1. To ease the notation, in the next section, we drop the index on the number

of iterations of the functional registration algorithm, denoting with {X̂i } and {v̂i } the

corrected estimates of functions and geometric deformations respectively.

Remarks on computational times

It is also important to highlight that the idea of alternating between each iteration of the

functional registration algorithm and the fPCA analysis on the functions is ultimately

enabled by the computational efficiency of the proposed functional registration algorithm

and fPCA algorithm on the functions. In the case of the application, in Section 4.5, each

FoS is represented by a 32K nodes triangulated surface and the associated 32K functional

values on the nodes. In this setting, the computational time of one iteration of the func-

tional registration algorithm, applied between two functions, is in the order of 2 minutes

on a Intel Core i5-3470 3.20GHz workstation, with 4 GB of RAM. The computational time

for a singular PC of the functions is 15 seconds, on the same workstation, with the fPCA

implementation proposed in Section 4.3.3. Instead, the landmark driven geometric regis-

tration of the 32K nodes template to a 32K nodes surface, representing a cerebral cortex,

takes approximately 3 hours on a cluster’s node equipped with a Dell T620 server and a

NVIDIA K20 GPU.
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4.3.3 Functional Principal Component Analysis

In Sections 4.3.1-4.3.2 we introduced the estimation procedure for the objects {v̂i : i =
1, . . . ,n} representing the geometries and {X̂i : i = 1, . . . ,n} representing the functions, from

a set of n FoSs. In this section, the aim is to outline the estimation procedure to the

empirical PC component functions from the observed objects {v̂i } and {X̂i }, in analogy to

what was proposed in Section 4.2.3, in terms of PCs of the underlying random functions V

and X .

Geometric variability

The empirical PC functions are in practice computed from the eigen-decomposition of

the empirical covariance operator ĈV , defined as

ĈV (v) = 1

n

n∑
i=1

〈v, v̂i − v̄〉V (v̂i − v̄), v ∈ V , (4.11)

where v̄ = 1
n

∑n
i=1 v̂i and 〈·, ·〉V denotes the scalar product in V . An explicit solution of this

eigenvalue problem can be derived by expanding v and v̂i in (4.11) over a basis of V or

discretizing the problem over a fine grid of R3. Since the number of observations in this

setting is small with respect to the size of the space, an appropriate choice of the basis is

given by the collection of the actually observed vector fields v̂i (Ramsay and Silverman,

2005). Thus, the eigenvalue problem ĈV (ψG
j ) = κG

j ψ
G
j can be re-formulated to a discrete

eigenvector problem in terms of the basis expansion coefficients, leading to the empirical

PC functions estimates {ψ̂G
j } and empirical variance estimates {κ̂G

j }. The empirical PC

scores vectors can be estimated by projecting {v̂i } on the estimated PC functions, i.e. the

i th element of the j th scores vector is given by

ÂG
i , j = 〈v̂i − v̄ ,ψ̂G

j 〉V i = 1, . . . ,n, j = 1, . . . ,K G .

The empirical mean v̄ can be neglected, as the underlying random function is assumed

to have zero mean. The empirical j th mode of geometric variation is thus represented by

the PC function ψ̂G
j , which is associated to the deformationsϕ±

√
κ̂G

j ψ̂
G
j

ofR3 that applied to

the geometric template correspond to the change of geometry described byϕ±
√
κ̂G

j ψ̂
G
j
◦M0.

The observed vector fields can be finally expressed in terms of the basis expansion, also
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known as the Karhunen-Loève expansion:

v̂i ≈
K G∑
j=1

ÂG
i , j ψ̂

G
j . (4.12)

Equation (4.12) emphasizes the fact that the matrix (ÂG
i , j )i j is such that the i th row is a

compact description of the vector field v̂i .

Functional variability

From similar arguments, we can build an estimator for the PC functions and PC scores

vectors for the functions {X̂i }. The estimated functions {X̂i } are noisy estimates of the

realization of the underlying unobserved random function X . A pre-smoothing of the

noisy functions could be considered, however here we rely on the Regularized-Estimate

fPCA algorithm proposed in Chapter 2, where the regularization term is applied directly

to the PC functions to be estimated.

In fact, the PC functions {ψF
j } of the centered random function X −µ, satisfy the

following property

{ψF
m}M

m=1 = argmin
({ψm }M

m=1:〈ψm ,ψl 〉L2(M0)=δml )

E

∫
M0

{
X −µ−

M∑
m=1

〈X −µ,ψm〉L2(M0)ψm

}2
, (4.13)

where
∫
M0

denotes the surface integral over M0 and 〈·, ·〉L2(M0) denotes the scalar product

in L2(M0). In (4.13) we can see that the PC functions minimize the loss of information

caused by the truncation of the series expansion to the first M components. Let {p j :

j = 1, . . . ,S} ⊂M0 be a collection of S points where the estimated functions {X̂i } are sub-

sampled. In practice, these will be the nodes of the triangulation MT
0 , i.e. the points

where the functions are actually observed. Let ∆ be the Laplace-Beltrami operator (see

e.g. Chavel, 2006). The Laplace-Beltrami operator of a smooth function f ∈ L2(M0) is a

function in L2(M0) that gives a measure of the local curvature of the function f .

The first PC function ψ̂F
1 ∈ L2(M0) and associated first scores vector (ÂF

1,1, . . . , ÂF
n,1) are

estimated by minimizing the following regularized empirical version of (4.13):

(ψ̂F
1 , {ÂF

i ,1}n
i=1) = argmin

ψ1,{Ai ,1}n
i=1

n∑
i=1

S∑
j=1

(
X̂i (p j )− X̄ (p j )− Ai ,1ψ1(p j )

)2 +λ∥∆ψ1∥L2(M0), (4.14)
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where X̄ denotes the sample mean function of {X̂i } and λ is a weighting coefficient be-

tween the empirical and regularizing term. The regularization term imposes smoothness

on the estimated PC function ψ̂F
1 , coherently with the structure of the manifold M0.

Subsequent PCs can be estimated by reapplying (4.14) to the residuals. Details of the

implementation and an application to functional Magnetic Resonance Imaging can be

found in Chapter 2.

The observed functions {X̂i } can be finally expressed in terms of the basis expansion

X̂i ≈ X̄ +
K F∑
j=1

ÂF
i , j ψ̂

F
j . (4.15)

The matrix (ÂF
i , j )i j is such that the i th row is a compact description of the function X̂i .

4.3.4 Geometric and Functional variability relation

The matrices (ÂG
i , j )i j and (ÂF

i , j )i j , computed in Section 4.3.3, are such that their i th row

represents a compact description of the geometry and functions of the i th FoS (Mi ,Yi ).

Each row of these matrices could also be regarded as the estimated empirical i th real-

ization of the random vector (aG
1 , . . . , aG

K G ) and (aF
1 , . . . , aF

K F ) defined in Section 4.2.3. As

outlined in that section, the matrices (ÂG
i , j )i j and (ÂF

i , j )i j can then be used to study the

relation between geometric variability and functional variability of the given collection of

FoSs. To this end we can perform, for instance, a linear regression analysis where we try to

explain the j th mode of functional variability as a linear combination of the K G modes of

geometric variation.

Alternatively, we could perform CCA, and look for the l th mode of co-variation (ŵG ,l ,ŵF,l ),

representing the l th maximally correlated linear combination ŵG ,l ∈RK G
, of the K G modes

of geometric variation with the linear combination ŵF,l ∈ RK F
of the K F modes of func-

tional variation. The l th mode of co-variation (ŵG ,l ,ŵF,l ) can be visualized as the sequence

of FoSs  MCCA,l =ϕc ψ̂G
CCA,l

◦M0,

YCCA,l = c ψ̂F
CCA,l ◦ϕ−1

c ψ̂G
CCA,l

,
(4.16)

obtained by varying c ∈ R in an interval containing 0, with ψ̂G
CCA,l =

∑K G

j=1 ŵG ,l
j ψ̂G

j and

ψ̂F
CCA,l =

∑K F

j=1 ŵ F,l
j ψ̂F

j , where {ψ̂G
j } and {ψ̂F

j } are the estimated geometric and functional

PC component functions, while ŵG ,l
j and ŵ F,l

j denote the j th element of ŵG ,l and ŵF,l
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respectively. An example of such a visualization is shown in Figures 4.17-4.18, for the real

application.

4.3.5 Choice of the hyper-parameters

In the proposed models, various hyper-parameters have to be chosen. In particular, in the

geometric registration step in Section 4.3.1, we have to choose the regularization weighting

parameterλ. The regularization weighting parameter, in our analysis, does not play a large

role. In fact, if the surfaces were noisy reconstructions, its choice would have been more

delicate. However, in practice, the surfaces are extracted from a regularized segmentation

process of 3D images, and thus are smooth. For this reason, the regularization weighting

parameter λ, in the geometric registration, is chosen to be small.

As previously mentioned, V is in practice a RKHS. Important to the registration prob-

lem is the choice of σV , the size of the kernel of the RKHS V (see Appendix B.1). In fact

a RKHS with a large kernel size σV is able to better capture large deformations (e.g. size

differences), while under-fitting local differences. A RKHS with a small kernel size has

an opposite behaviour. Following the approach of Bruveris et al. (2012), we take a sum

of two Gaussian kernels, which allows the space V to account for both large and small

deformations.

The functional registration has also a regularization weighting parameter λ, which

determines how slowly the algorithm approaches an optimal solution. As in Kneip and

Ramsay (2008), after some experimentation, we choose the value λ that achieves a smooth

variation on functional PC functions, obtained from the functional variability analysis,

between each iteration. To determine the number of iterations needed, we examine the

eigenvalue plots (scree plots) to determine when stability of these plots has been reached

in a analogous manner to Kneip and Ramsay (2008). Finally, the regularization weighting

parameter of the fPCA algorithm applied to the functions, has been chosen by K -fold

cross-validation, with K = 5, details of which can be found in Chapter 2.

On a more general note, choosing the hyper-parameters of the registration algorithms,

in a data-driven fashion, is admittedly a very difficult problem and it has been very little

explored in the current literature, even in simpler situations such as for functions on

the real line. The above only represents one possible method of choosing them, which

appears to work well in our application, although further work would be needed for very

different settings.
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4.4 Analysis of a synthetic dataset

In this section, we validate the estimation framework introduced in Section 4.3, by per-

forming a study on a dataset generated from Model 4.1. We thus proceed with defining the

unknown quantities of such model. We will not use different notation for the theoretical

objects and their respective computer representations, unless necessary.

Thus, we denote with M0, the template temporal lobe shown in Figure 4.6. We set

Figure 4.6 On the left, a template of the temporal lobe M0 with an associated cortical
thickness mapµ. On the right, the functionψF

1 used to generate subject-specific functional
variability.

the deformation operator ϕ to be the diffeomorphic deformation operator introduced

in Section 4.2.4. We then choose two orthonormal vector fields ψG
1 ,ψG

2 ∈ V , visualized

in Figure 4.7 as the deformations ϕ±cψG
1

,ϕ±cψG
2

applied to the template M0, where c ∈R
is a constant regulating the norm of the two orthonormal vector fields, for visualization

purposes. The vector field ψG
1 encodes a change in the length of the temporal lobe, while

the vector field ψG
2 encodes a change in the size of temporal lobe.

We set the mean function µ ∈ L2(M0), to be the thickness maps in Figure 4.7, which is

a sharpened version of the cross-sectional average thickness of 100 real subjects. Note

that despite it being computed from real data, this plays the role of an unknown quantity

of the model. Moreover, we introduce localized functional variability through the single

mode of variation ψF
1 ∈ L2(M0), this also visualized in Figure 4.6.
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Figure 4.7 From left to right, first and second geometric modes of variation of the generated
FoSs, here visualized as ϕ±cψG

1
◦M0,ϕ±cψG

2
◦M0, where c ∈R is a constant regulating the

magnitude for visualization purposes.

We then generate n = 50 FoSs (M1,Y1), . . . , (Mn ,Yn) by
Mi =ϕai 1ψ

G
1 +ai 2ψ

G
2
◦M0,

Xi =µ+δai 2ψ
F
1 ,

Yi = Xi ◦ϕ−1
ai 1ψ

G
1 +ai 2ψ

G
2

,

(4.17)

where ai 1, ai 2 are independent random variables distributed as ai l ∼ N (0,σ2
l ), withσ1 = 15

and σ2 = 10. The constant δ = 0.1 determines the scale that relates variations in the

functional term δai 2ψ
F
1 and variations in the geometric term ai 2ψ

G
2 . Finally, normally

distributed noise with variance σ = 0.3, is added to each node of the mesh where the

function is observed. The generative model proposed here is a simplistic implementation

of the one proposed in Model 4.1, with vi = ai 1ψ
G
1 +ai 2ψ

G
2 and Zi = ai 2ψ

F
1 .

The generative model (4.17) seeks to reproduce a situation where the FoSs have two

modes of geometric variation. The first one is a mode of variation which is not correlated

with a variation in the functions. The second one, which encodes the size of the temporal

temporal lobe, has an effect on the function, formalized with a linear relation between



4.4 Analysis of a synthetic dataset 117

the scores of the second geometric mode of variation ψG
2 and the scores of the functional

mode of variation ψF
1 . The generated FoSs are such that larger temporal lobe have larger

cortical thickness in proximity of the central gyrus of the cerebral cortex, independently

of the first geometric mode of variation. We hope to recover this relation through the

approximation pipeline introduced in Section 4.3.

Figure 4.8 On the left, the template M0 with an estimated vector field v̂i ∈ V generating the
diffeomorphic deformation ϕv̂i that registers the template to the i th subject surface. Next,
the evolution of the flow generating the diffeomorphic deformations φv̂i (t , ·) through the
ODE (4.3), which registers the template to the target surface at time t = 1.

Figure 4.9 Two vector fields estimated from the functional registration algorithm, gen-
erating, for two different subjects, the flow which aligns two different functions to the
cross-sectional mean function.

In particular, we perform non-landmarked diffeomorphic registration of the template

to the single surfaces, resulting in the estimated vector fields {v̂i : i = 1, . . . ,n}. The i th

vector field v̂i is such that ϕv̂i ◦M0 resembles the geometry Mi of the i th FoS, with ϕ the

diffeomorphic deformation operator. In Figure 4.8, we show an estimated vector field

v̂i ∈ V and the ODE’s (4.3) flow φv̂i (t , ·), generated from the estimated vector field, which

deforms the template to match the target.

The estimated diffeomorphic deformations {ϕv̂i =φv̂i (1, ·)} are then used to transport

the functions {Yi } on the template surface, thus leading to the estimates {X̂i }. Subsequently,

the cross-sectional mean map of {X̂i } is computed and each function X̂i is iteratively

registered to it through the functional registration algorithm presented in Section 4.3.2. In
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Figure 4.9, we show the template surface, with the tangential vector fields that generate

the deformations that align two different functions to the cross-sectional mean function.

At each iteration of the functional registration algorithm, the cross-sectional mean and

the first 2 functional PCs, from the functionally aligned versions of {X̂i }, are computed.

The results are shown in Figure 4.10. We can notice that while the cross-sectional mean

does not change from iteration to iteration of the functional registration algorithm, the

estimates of the PC functions do. In particular, the first PC function is supposed to

capture ψF
1 . However, where no functional registration is applied, the first estimated PC

component is a mix of the ψF
1 and fictitious variability due to misalignment, while the

second PC function is a flat and corrupted version of ψF
1 . After only one iteration of the

functional registration algorithm, the estimated first PC function starts resembling the

shape of ψF
1 , shifting the misalignment component to the second PC function. With the

subsequent iteration the first estimated PC function becomes a sharper estimation of

ψF
1 , while the misalignment component disappears also from the second component, in

favour of a flat PC function, which is a regularized PC function of the noise added to the

functions.

Subsequently, we perform fPCA on the estimated vector fields {v̂i } representing the

overall deformation, due to both geometric and functional registration. In Figure 4.11

we show the estimated main modes of variation before the functional registration has

been applied. By comparison with Figure 4.7, we can see that the first two PCs capture

the main geometric modes of variations introduced in the generative process of the FoSs.

The estimated geometric PC function do not change, in a visible manner, from iteration

to iteration of the functional registration algorithm, because the functional registration

brings only small deformations.

We finally plot, in Figure 4.12, the scores associated to the PCs describing the geomet-

ric variability and those describing the functional variability, for the estimated quantity

without functional registration and after seven iterations of the functional registration.

Note that without performing functional registration, not only is the first functional mode

of variation a spurious version of the true underlying component, but this is also corre-

lated to the geometric mode of variations, which might lead to misleading conclusions.

Functional registration removes from the first PC the misalignment effect, bringing to

light the true underlying linear dependence between the functional mode of variation and

the second geometric mode of variation.

In practice, the above procedure is particularly useful if the discovered PCs have bio-

logical interpretations. However, in practice, the discovered PCs tend to vary, depending
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Figure 4.10 From left to right, the mean and first two functional PC functions estimates
of the functions, computed after 0,1,2 and 10 iterations of the functional registration
algorithm.

for instance on the pre-registration method applied or on the scalar product adopted

to impose orthogonality between the PC functions. For these reasons, if the aim is to

study the relation between geometry and function, we advocate CCA (see Section 4.3.4).

We perform a CCA on the estimated scores of the geometric and functional variability,

after seven iterations of the functional registration algorithm. In detail, we construct a

n ×3 matrix XF with the scores of the first three components of the fPCA applied to the

functions. Moreover, we construct a n×5 matrixXG with the scores of the first five compo-

nents of the fPCA applied to the deformations. The l th canonical correlation component

is the pair of vectors ŵF,l ∈ R3 and ŵG ,l ∈ R5. The resulting main mode of co-variation
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Figure 4.11 From left to right, the first two geometric PC functions computed on the space
of initial vector fields. These are visualized as ϕ±cψ̂G

j
◦M0, where ψ̂G

j is the estimated j th

geometric PC function.

Figure 4.12 From left to right, scatter plots of the scores obtained from the fPCA on the
function and the geometric fPCA, respectively without and with functional registration.
After functional registration, these show only the linear dependence imposed between the
first PC function on the functions ψF

1 and the second geometric PC function ψG
2 . Without

functional registration, also the spurious PC function, due to misalignment, is correlated
with the first geometric PC function.

(ŵG ,ŵF ) = (ŵG ,1,ŵF,1) is visualized in Figure 4.13 as

{
MCCA =ϕc ψ̂G

CCA
◦M0,

YCCA = c ψ̂F
CCA ◦ϕ−1c ψ̂G

CCA,
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Figure 4.13 First main mode of co-variation of geometric and functional components of
the CCA analysis, representing the most correlated linear combinations of the first five
geometric modes of variation and first three functional modes of variation. From left to
right, this is visualized by plotting the FoS in (4.16) for a sequence of constants c.

with ψ̂G
CCA =∑3

j=1 ŵG
j ψ̂

G
j and ψ̂F

CCA =∑5
j=1 ŵ F

j ψ̂
F
j , where (ψ̂G

j ) and (ψ̂F
j ) are the estimated

functional and geometric PC functions. c ∈ R is a constant varied for visualization pur-

poses in an interval containing 0. As we can see in Figure 4.13, the dependence between

the magnitude and the thickening of the function is captured.

Moreover, we test for the statistical significance of the obtained modes of co-variation.

Specifically, we test the hypotheses

H l
0 : ρ̂1 ̸= 0, ρ̂2 ̸= 0, . . . , . . . , ρ̂l ̸= 0, ρ̂l+1 = . . . = 0, (4.18)

with ρ̂l = corr(XG ŵG ,l ,XF ŵF,l ). According to a likelihood ratio test, with the Bartlett χ2

approximation of the test statistic distribution (see Johnson and Wichern, 2002, Chap-

ter 10.6), only the sample correlation between the first canonical correlation variables, i.e.

XG ŵG ,1 and XF ŵF,1, is significantly different from zero (p-value 5e−19), while for l = 2,3

we get p-values 0.7759 and 0.9587 respectively.

4.5 Application

The publicly available data set considered in this work has been collected by the Hu-

man Connectome Project Consortium (HCP, Van Essen et al., 2012), with the ultimate

goal of elucidating the understanding of the brain functions, by collecting multi-modal

neuroimaging data such as structural scans, resting-state and task-based functional MRI

scans, and diffusion-weighted MRI scans from a large number of healthy volunteers. A

minimal preprocessing pipeline have been applied to the dataset (Glasser et al., 2013).
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4.5.1 Preprocessing

A 3D structural MRI scan has been performed for each individual, returning a 3D image

describing the internal structure of the brain. A slice of the 3D image is shown on the

left panel of Figure 4.1. The cerebral cortex is the outermost layer of the brain, mostly

consisting of neuronal cell bodies. With automatic segmentation techniques, it is possible

to separate the cerebral cortex from the other parts of the brain. Subsequently the two

surfaces enclosing the cerebral cortex can be computed. The inner surface represents the

boundary between the cerebral cortex and the white matter (second panel in Figure 4.1),

while the outer surface corresponds to the boundary between the cerebral cortex and the

cerebrospinal fluid (fourth panel in Figure 4.1). The resolution of the MRI images (0.7 mm

isotropic, in this study) and the effectiveness of the segmentation algorithm determine

the level of details at which such surfaces can be reconstructed.

The geometry of the cerebral cortex is generally represented by the mid-thickness

surface, which is the surface fitting the middle-points of the inner and outer surfaces, an

example of which is shown on the third panel of Figure 4.1. Thus, it is natural to expect the

resulting surfaces to have wider sulci and thinner gyri than what we could observe from a

picture of the brain surface. Moreover, the mid-thickness surface can be equipped with a

function representing the thickness of the cerebral cortex, computed from the inner and

outer surface, as described in Fischl and Dale (2000). A comparison of the various methods

for the cerebral cortex thickness estimation can be found in Lerch and Evans (2005). In

Figure 1, we show the reconstructed (mid-thickness) surfaces of the left hemisphere of

3 different subjects with the associated cerebral cortex thickness maps. Each surface is

represented by a 32K nodes mesh, and at each node of the mesh an evaluation of the

function is available.

The mid-thickness surfaces of the collected cohort are pre-registered to the Conte69

template, on the left in Figure 4.14, through a surface-based registration algorithm driven

by geometric features that describe measures of cortical shape folding, such as sulcal

depth or local curvature (Fischl et al., 1999; Glasser et al., 2013). Registrations are ensured

to be one-to-one by introducing, in the objective function, a term related to the metric

distortion of the registration maps and a term that enforces the positivity of the signed

areas of the triangles on the surfaces (see Fischl et al., 1999, for details). Such a procedure

defines a one-to-one correspondence between the 32K nodes of the template and the

32K nodes of each of the mid-thickness surfaces, which can be regarded as a set of 32K

landmarks.
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Figure 4.14 On the left, the Conte69 template, used as a template surface for the registration
of the individual surfaces. This is equipped with the cross-sectional mean function
computed post-geometric registration. On the right, the cross-sectional mean function
visualized on an inflated version of the template.

4.5.2 Analysis

The relation between geometric features of the brain has raised great interest in the

recent years, since it can potentially help us understand the principles underlying brain

development. Classically, these studies have been confined to correlation studies on

variables summarizing particular geometric features. For instance, in Im et al. (2008), for

each subject, the average cortical volume and absolute mean curvature, among other, are

computed. This set of real variables are then compared to the average cerebral cortex

thickness computed on each subject. Moreover, a more localized analysis is performed by

parcellating each cortical surface in the 4 lobes. Subsequently, the analysis is performed

independently on each of lobe. However, there are two limitations of such approach.

Firstly, the description of the geometric properties through summary statistics is in general

incomplete. Secondly, the parcellation of the cortical surfaces determines a priori which

areas of the cortical surface can have a different behaviour.

The fact that a geometric registration has already been performed on the HCP data,

without relying on the diffeomorphic registration framework in Section 4.3.1, is not in con-

trast with the proposed analysis. In fact, diffeomorphic-like constraints can be imposed

in many different ways when it comes to the estimation of registration maps. However,



124 Functions on Surfaces

Figure 4.15 From left to right, the first four geometric PC functions, computed on the space
of initial vector fields. These are visualized as ϕ±cψ̂G

j
◦M0, where ψ̂G

j is the j th geometric

PC function.

if the aim is the estimation of a low-dimensional subspace of the diffeomorphic space,

these alternative approaches cannot be extended to this more general problem. For this

reason, we use the landmarks defined by the pre-processing geometric registration to

estimate the vector fields that represent such registrations and then perform fPCA on the

estimated vector fields, as described in Section 4.3.3. The estimated first four geometric

PCs are shown in Figure 4.15. Not surprisingly, they are mostly related to the size of the

brain or the size of sub-parts of the brain.

We then perform fPCA on the functions registered on the Conte69 template. The

results are shown in the top two rows of Figure 4.16. Subsequently, we perform functional

registration of the functions on the Conte69 template and recompute the functional

modes of variation at each iteration. In the bottom two rows of Figure 4.16 we show the

PC functions after 2 iterations of the functional registration algorithm.

We finally perform a CCA on the first eight geometric and functional PC functions

scores. The resulting first two main modes of co-variation, the only significant ones

from the likelihood ratio test (4.18), are shown in Figures 4.17-4.18. From the left to the

right panel of Figure 4.17, we can see the presence of a correlation between a decrease

in thickness in the frontal lobe and an increase in size of the entire brain, while in the

temporal lobe, an increase in thickness seems associated to an increase in size of the entire

brain. Moreover, in the second main mode of co-variation a more localized phenomenon

is captured in proximity of the high average cortical thickness area on the lateral sulcus

(see Figure 4.14), where an association between an increase in the cortical thickness and
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Figure 4.16 Results of the fPCA on the functions. On the top two rows, the first eight func-
tional modes of variation computed without performing functional registration. On the
bottom two rows, the first eight functional modes of variation computed after performing
functional registration. These are shown on an inflated version of the template to easy
their visualization.

an increase in the size of the brain is suggested. Note that such local effect would have not

been captured by a study confined to study individually each lobe of the brain, and such

relation would have probably been ascribed to the entire lobe containing that area.
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Figure 4.17 A representation of the first main mode of co-variation of the geometric
and functional components of the CCA analysis, representing the most correlated linear
combinations of the first eight geometric and functional PC functions. From left to right,
this is visualized by plotting the FoS in (4.16) for a sequence of constants c.

Figure 4.18 A representation of the second main mode of co-variation of the geometric
and functional components of the CCA analysis, representing the second most correlated
linear combinations of the first eight geometric and functional PC functions. From left to
right, this is visualized by plotting the FoS in (4.16) for a sequence of constants c.

4.6 Discussion

In this chapter, motivated by the analysis of neuroimaging data, we introduce a framework

for the analysis of FoSs. In particular, a statistical model describing the phenomenon is for-

mulated, and the estimators of the unknown quantities of the model are introduced. The

construction of such estimators is complicated by the necessity of the resulting estimates

to lie in the non-linear subspace of ‘sensible’ solutions, here taken to be deformations.

Moreover, in such high dimensional setting, it is fundamental for the estimator to in-

corporate prior information on the geometry and the smoothness of the data, achieved
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by regularizing the estimates through differential operators. Motivated by simulation

studies, we address the necessity of using the functional information to achieve a better

registration, a well known fact in FDA, by introducing a novel diffeomorphic registration

algorithm for functional data on a two-dimensional manifold.

While the main motivation of this work was taken from a neuroimaging application

into assessing the inherent variabilities of cortical thickness, the methodology has wider

applications in medical imaging as a whole, where FoS appear in cardiovascular (e.g.

Huang et al. (2016)), muskuloskeletal (e.g. Treece and Gee (2015)) and many other imaging

areas. More generally, this methodology is an example of the use of differential operators

as regularisers in statistics, a field where not only statistical but also numerical techniques

are needed to facilitate solutions.

A future interesting aspect is the exploration of the applicability of the Optimal Trans-

port framework to the registration problem, as suggested in Panaretos and Zemel (2016)

in a discrete context, and its links with the diffeomorphic deformation framework. This is

of potential interest in the surface registration framework, where we usually lack physical

models that can describe the phenomena, and thus a ‘least action’ approach could well

be effective.





Chapter 5

Conclusions and Future work

The main contributions of this thesis can be summarized as follows. We introduce a Func-

tional Principal Component Analysis (FPCA) model for functional data whose domain is a

two-dimensional manifold. We adopt a Regularized-Estimation approach and incorporate

additional geometric information on the supporting manifold by means of a differential

operator penalty, namely the Laplace-Beltrami operator. We apply the proposed model to

connectivity maps computed from resting-state fMRI. We then formulate a FPCA model

for functional data in an inverse problems setting. This can be applied to either first-order

or second-order functional data, allowing us to study statistical objects that are covariance

functions. We apply the proposed model to study changes in functional connectivity

across time and subjects. Finally, we present a novel joint geometric-functional model

for functional data that take values on subject-specific supporting manifold domains. We

model geometric variations by means of diffeomorphic flows. We apply the model to study

associations between variations of brain shape and thickness of the cerebral cortex.

The framework developed naturally leads to many interesting questions for future

research. Here, we list a few of them.

• From a neuroimaging prospective, it is necessary to move towards the integration of

multiple sources of information. In this thesis, we have mainly focused on shape and

functional modeling, due to the methodological challenges they present. However,

a more comprehensive investigation could include, for instance, task-fMRI data,

family structure across subjects, lifestyle, demographic and psychometric measures.

A promising approach for combing these heterogeneous set of variables is Joint and

Individual Variation Explained (Lock et al., 2013).
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• In our work, we have mainly focused on healthy individuals. It is certainly of interest

to extend the proposed approaches to understand associations between a disease

outcome and geometric-functional variations. This requires the generalization of

the proposed methodology to a regression framework. The proposed FPCA models

can often be interpreted as regularized tensor decompositions, it is thus natural

to explore the idea of embedding these decompositions in a tensor regression

framework (Zhou et al., 2013).

• From a statistical prospective, the developed models will require theoretical analysis

of the convergence properties of the proposed estimators. Due to the differential

operator regularizers, this requires tools from both partial differential equations

theory and statistical theory.



Appendix A

FPCA over manifolds

A.1 Simulation on the sphere

Here we present some further simulation studies on a domain M that is a sphere centered

on the origin and with radius r = 1, approximated by the triangulated surface MT in

Figure A.1.

Figure A.1 The triangulated surface approximating the sphere with 488 points.

A.1.1 Noisy obervations

We generate n = 50 smooth functions x1, . . . , x50 on MT by

xi = ui 1v1 +ui 2v2, i = 1, . . . ,n
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where v1 and v2 represent the two PC functions with expressionsv1(x, y, z) = 1
2

√
15
π

x y
r 2

v2(x, y, z) = 3
4

√
35
π

x y(x2−y2)
r 4

and ui 1, ui 2 represent the PC scores, generated independently and distributed as ui 1 ∼
N (0,σ2

1), ui 2 ∼ N (0,σ2
2) with σ1 = 4, σ2 = 2. The PC functions are two components of

the Spherical Harmonics basis set, so they are orthonormal on the sphere, i.e.
∫
M v2

i = 1

for i ∈ {1,2} and
∫
M vi vk = 0 for i ̸= k with i ,k ∈ {1,2}. The PC functions are plotted in

Figure A.2. The functions xi are sampled at locations coinciding with the nodes of the

mesh in Figure A.1. At these locations, a Gaussian white noise with standard deviation

σ= 0.1 has been added to the true function xi . We are then interested in recovering the

smooth PC functions v1 and v2 from these noisy observations.

First PC

function

Second PC

function

Figure A.2 From the left to the right, two views of the true first and second PC functions.
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We apply the proposed SM-FPCA method, choosing the optimal smoothing param-

eter λ, both with the K -fold and with GCV. We compare to the approach based on pre-

smoothing followed by MV-PCA on the denoised evaluations of the functions at the

locations p j , j = 1, . . . , p. In this case, the smoothing techniques used is Spherical Splines

[Wahba (1981)], using the implementation in the R package mgcv. The smoothing param-

eter choice is based on the GCV criterion. We will refer to this approach as SSpline-PCA.

The results are summarized in Figure A.3.
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Figure A.3 Boxplots summarizing the performance of SSpline-PCA and SM-FPCA. For
the SM-FPCA both GCV and K -fold has been applied for the selection of the smoothing
parameter.

The best estimates of the first two PC functions and corresponding scores are provided

by the proposed SM-FPCA with selection of the smoothing parameter based on the K -

fold approach. SSpline-PCA does a comparable job on the first principal component,

but a significantly worst on the second. A possible explanation for this is the fact that

SSpline-PCA tends to over-smooth the data, due to the low signal-to-noise setting of

the simulations. This results in good performances for the first PC, but causes a loss of
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information that worsen the estimation of the second PC. Also the MSE on the signal

reconstructions, as well as the measure based on the principal angle between the space

spanned respectively by {vi }i=1,2 and the estimated PC functions {v̂i }i=1,2, emphasize the

good performance of the introduced algorithm.

A.1.2 Spatial mismatching

In this section we complement the set of simulations in the noisy setting by designing a

simple simulation that shows how SM-FPCA behaves when a spatial mismatching effect is

introduced. In the motivating application to neuroimaging data, spatial mismatching is

introduced by the shape registration algorithm. In this simulation, we consider a spherical

domain MT and reproduce this spatial mismatching effect, that results in misalignment

of the signals on this domain, by including a subject specific shift (in spherical coordinates)

of the first PC function. In detail, we generate n = 50 smooth functions x1, . . . , x50 on MT

by

xi = ui 1vi 1, i = 1, . . . ,n (A.1)

where ui 1 represent the PC scores, generated independently and distributed as ui 1 ∼
N (0,σ2) with σ= 4, and the functions vi 1 represent misaligned realization of the PC func-

tion v1. Specifically, we parametrize v1 in spherical coordinates (θ,φ) and set vi 1(θ,φ) =
v1(θ+θi ,φ+φi ), with θi and φi generated independently with a discrete uniform distri-

bution on the set {0,0.4}. In Figure A.4 we show vi 1 for the four possible realizations of

shifting coefficients (θi ,φi ).

Figure A.4 A plot of the four different realizations of the misaligned PC function vi 1.

The interest is to recover the structure of the only PC function v1, from the misaligned

realizations {xi }i=1,...,n , ignoring the effects introduced by the shifts. To consider purely the

misalignment’s effect, we do not add noise to the sampled functions xi . In fact, while the
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benefits of SM-FPCA in the noisy setting have already been extensively demonstrated, we

aim now at considering separately the effect of a spatial mismatching on the sampled func-

tions from the effect of the presence of noise. Pre-smoothing of the signal, as performed in

SSPline-PCA, is thus unnecessary, and we compare directly MV-PCA to SM-FPCA. In fact,

as already mentioned, the proposed SM-FPCA model incorporates the smoothing penalty

in a more parsimonious way than the pre-smoothing approach, allowing a direct control

of the smoothness of the estimated PC function. We would like to show that SM-FPCA,

combined with a cross-validation approach for the choice of the smoothing parameter λ,

might help removing artefacts introduced by the spatial mismatching.

In Figure A.5 we show the estimates computed with MV-PCA, SM-FPCA GCV and

SM-FPCA K -fold (K = 5) for four different datasets generated as in (A.1). In the top row

we show a situation where the PC function estimated with MV-PCA shows a satisfactory

result. In this case also SM-FPCA GCV and SM-FPCA K -fold show a similar behavior.

However, in the bottom three rows the estimates of the PC function computed with MV-

PCA and SM-FPCA GCV show some artefacts introduced by the misalignment, while the

estimate computed with SM-FPCA K -fold better preserves the shape of the PC function,

renouncing however to spatial localization. The results obtained with SM-FPCA K -fold

suggest to interpret the phenomena at a more macroscopical scale, due to the high local

variability introduced by the spatial mismatching.

The different behavior of SM-FPCA, when the smoothing parameter is chosen by GCV

with respect to K -fold cross-validation, can be explained by the fact that this first approach

concerns with the choice of λ only in the regression step (2.7), where the choice of λ is only

driven by the presence of noise on the vector XT u. On the contrary, SM-FPCA K -fold is

based on a direct comparison of the PC function estimated on the training and validation

sets, obtained partitioning the dataset.
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MV-PCA SM-FPCA

GCV

SM-FPCA

K-fold

Figure A.5 From top to bottom, plot of the estimates computed on 4 different gener-
ated datasets. From left to right, plot of the estimate of the first PC function computed
respectively with MV-PCA, SM-FPCA GCV and SM-FPCA K-fold.
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FoSs

B.1 Geometric Diffeomorphic Registration

Here we present the algorithmic details of the estimation framework introduced in Sec-

tion 4.3.

The space of smooth vector fields V , in the geometric registration model (4.5), is

usually constructed as a RKHS (Miller et al., 2015). In detail, let KV : R3 ×R3 → R3×3

be a bounded symmetric positive definite function. KV is usually referred to as the

kernel of V and a typical choice for it is the Gaussian isotropic kernel, i.e. KV (x, y) =
exp(−∥x − y∥2

2/(2σ2
V

))Id3×3, with Id3×3 denoting a 3×3 identity matrix and σV reflecting

the rigidity of the space. Define the pre-Hilbert space V0 = span{KV (·, x)ω|x ∈R3,ω ∈R3}.

Given f , g ∈ V0 we can write them as f =∑N
i=1 KV (·, xi )ωi and g =∑N

i=1 KV (·, yi )zi . We thus

define the inner product between f and g to be 〈 f , g 〉V =∑N
i , j=1ω

T
i KV (xi , y j )z j . The space

(V ,〈·, ·〉V ), defined as the closure of V0, is a (Reproducing Kernel) Hilbert space of smooth

vector fields.

For modeling purposes, the time-variant vector-field vt , introduced in Section 4.2.4, is

assumed to be of the form (see e.g. Vaillant et al., 2004)

vt (·) =
kg∑

k=1
KV (φv (t ,ck ), ·)αk (t ), (B.1)

for a set of control points {ck : k = 1, . . . ,kg } ⊂R3 and the auxiliary variables {αk (t ) :R→R3}

called momenta of the deformation. The control points {ck } are commonly chosen to be

the nodes of the triangulated representation of the surface to be deformed. φv denotes the

solution of the ODE (4.3) given the time-variant vector field {vt : t ∈ [0,1]}. The associated
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deformation energy is defined to be

∫ 1

0
∥vt∥2

V =
∫ 1

0

kg∑
k,l=1

αk (t )T KV (φv (t ,ck ),φv (t ,cl ))αl (t ). (B.2)

Denoting with ∇1 the gradient with respect to the first variable, the vector field vt

generating geodesics, with respect to the energy term
∫ 1

0 ∥vt∥2
V

, can be characterized as

the solution of the coupled ODE system, known as the EPDiff equation (Miller et al., 2015)


∂ck (t )

d t =∑kg

l=1 KV (ck (t ),cl (t ))αl (t )

∂αk (t )
d t =−1

2

(∑kg

l=1∇1KV (ck (t ),cl (t ))αl (t ))
)T
αk (t ),

(B.3)

for a set of initial conditions {αk =αk (0)} ⊂R3, parameterizing the initial vector field v0.

This means that the energy minimizing vector fields, generating diffeomorphisms, can be

determined by (B.3) and fully controlled by the initial vector field

v0(·) =
kg∑

k=1
KV (·,ck )αk ,

parametrized in terms of the initial momentum vector {αk : k = 1, . . . ,kg }. Moreover, along

a geodesic path the instantaneous deformation energies ∥vt∥V are constant, meaning that

the total deformation energy
∫ 1

0 ∥vt∥2
V

d t can be equivalently represented by the initial

deformation energy ∥v0∥2
V
=∑

k,l αk KV (ck ,cl )αl .

Thanks to the finite dimensional representation underlying the element of the RKHS

V , the minimization of (4.5) can be cast in a finite dimensional setting and can be ap-

proached, for instance, with a gradient descent algorithm on the initial momentum vector

parametrizing the initial velocity field (see, among others, Vaillant et al., 2004).

The MATLAB toolkit fshapesTk (https://github.com/fshapes/fshapesTk) offers an

implementation of the described geometric registration algorithm, and its extension to

the fshapes framework (Charlier et al., 2017).

https://github.com/fshapes/fshapesTk
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B.2 Registration of Functional Data on a two-dimensional

manifold

Functional Registration Model

Let now M ,F : M0 → R be respectively a ‘moving’ and ‘fixed’ image. We recall here the

objective function of the functional registration model (4.9), in terms of M and F :

EM0 (u) =
S∑

j=1

(
F (p j )−M ◦ s ◦φu(p j )

)2 +λ∥∆BLu∥2
L2(T M0), (B.4)

with {p j , j = 1, . . . ,S} ⊂M0 the set of control points on the template and φu denoting the

solution of the ODE (4.8) for the vector field u, at time t = 1.

Figure B.1 On the left two views of a semi-circle image on the unit sphere, representing the
moving image M , while on the right two views of a C-shaped image on the unitary sphere,
representing the fixed image F .

The term M◦s◦φu is then linearized with respect to u. This results in the approximation

M ◦ s ◦φu ≈ M ◦ s +Lu ,

where Lu is a first order approximation of M ◦ s ◦φu −M ◦ s. In practice Lu is chosen to be

of the form

Lu(p) = gp (J (p),u(p)), p ∈M0,

with J(p) ∈ TpM0 for all p ∈ M0. Two classical choices for J , in the planar case, are

J =∇D (M ◦ s) and J = 1
2 (∇D (M ◦ s)+∇D (F )) (Vercauteren et al., 2009), where ∇D denotes
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a discrete estimate of the gradient. Plugging the linearized term in (B.4) we obtain the

objective function

EM0 (u) =
S∑

j=1

(
F (p j )− (M ◦ s)(p j )− gp j (J (p j ),u(p j ))

)2 +λ∥∆BLu∥2
L2(T M0). (B.5)

The minimization of (B.4) can be achieved by iteratively minimizing the associated

problem (B.5) and updating the current deformation s with s → s ◦φu , with φu denoting

the solution of the ODE (4.8) at time t = 1.

B.2.1 Problem reformulation

To minimize the objective function in (B.5) we opt for a finite elements discretization

approach. Finite element discretization has been previously applied to the discretization

of FDA problems on manifolds, for instance, in Ettinger et al. (2016) and Lila et al. (2016).

Here, we extend the methodology to the estimation of smooth vector fields on a generic

two-dimensional manifold. To this end, we first reformulate the minimization of (B.5) in

terms of the Euler-Lagrange equation associated to this minima problem.

Define now the space of smooth vector fields on the template to be W = {u ∈ L2(T M0)|∆BLu ∈
L2(T M0)}. Let the vector field u ∈W , in the functional (B.5), be perturbed by an ε amount

along the arbitrary direction ϕ ∈W . The minimization problem is reformulated by impos-

ing the Gateaux derivative ∂ϕEM0 (u) of the energy functional to be 0 for all ϕ ∈W .

This leads to the problem reformulation: find û ∈W such that

S∑
j=1

gp j (ϕ(p j ), J (p j ))gp j (û(p j ), J (p j ))+λ〈∆BLϕ,∆BLû〉L2 =

S∑
j=1

gp j (ϕ(p j ), J (p j ))(F (p j )−M ◦ s(p j ))

(B.6)

for every ϕ ∈W . Moreover, equation (B.6) can be reformulated as the problem of finding

( f̂ , ĥ) ∈W ×L2(T M0) that satisfies
〈∆BLû, v〉L2 −〈ĥ, v〉L2 = 0

λ〈ĥ,∆BLϕ〉L2 +
S∑

j=1
gp j (ϕ(p j ), J (p j ))gp j (û(p j ), J (p j )) =

S∑
j=1

gp j (ϕ(p j ), J (p j ))(F (p j )−M ◦ s(p j ))

(B.7)
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for all (ϕ, v) ∈W ×L2(T M0). In this last reformulation, we have introduced the auxiliary

function ĥ, which has been imposed to be equal, in a weak sense, to∆BLû. Now, asking the

auxiliary function v and the test functionsϕ to be such that v,ϕ ∈W 1 = {u ∈ L2(T M0)|∇u ∈
L2(T ∗M0 ⊗T M0)}, and by exploiting the definition of the Bochner-Laplacian, we can

rewrite the problem only in terms of the connection operator ∇, and consequently be

able to formulate it in a finite dimensional space involving only first order polynomials, as

done in equation (B.9).

B.2.2 Vector Finite Element discretization

Here we introduce a linear finite element space for vector fields on a triangulated surface,

where we seek for the discrete solution of the problem (B.7). To this end, consider the

triangulated surface M c
0 al T , approximated representation of the manifold M0. M c

0 al T

is not a smooth surface, so it is not even clear what the tangent space on a vertex of

the triangulation is. For this reason, we use elements of computer graphics to define

an interpolation basis on the triangulated surface, as done for instance in Knöppel et al.

(2013); Zhang et al. (2006).

Let now ξ1, . . . ,ξK be the vertices of M c
0 al T . For each vertex ξk consider the subset of

M c
0 al T composed by the triangles adjacent to ξk , that we call here one-ring. Following

the approach in Knöppel et al. (2013), the one-ring surface is idealized by normalizing the

sum of the angles incident to the vertex ξk to add up to 2π, i.e. by ‘flattening’ the vertex

and uniformly distributing that curvature to the flat triangles of the one-ring. To the vertex

ξk they associate a unit vector basis (e1
k ,e2

k ) representing a reference orientation, so that

an element of the tangent vector uk ∈ Tξk M c
0 al T will be represented by its coefficients

uk ∈ R2 respect to the local basis. Then, an interpolation basis can be defined on the

idealized one-ring of the vertex ξk by parallel transporting through geodesics (e1
k ,e2

k ) to

the interior points of the one-ring and by scaling them with a piecewise linear function

which takes value 1 on ξk and 0 one the other vertices of the one-ring (see Knöppel et al.,

2013, for details).

What is important to this work is that the outlined procedure leads to a basis of

K functions, whose kth function has support localized on the triangles adjacent to ξk ,

and that we denote here with the function ψk = (ψ1
k ,ψ2

k ), with ψ1
k and ψ2

k vector fields

on M c
0 al T . For this basis functions the FE matrices 〈ψk ,ψk ′〉L2 and 〈∇ψk ,∇ψk ′〉L2 are

provided.
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We can finally define the FE function space Wh to be

Wh = {
uh =

K∑
k=1

ψ′
k uk |uk ∈R2}. (B.8)

Figure B.2 From left to right, the estimated vector fields, and associated deformations
of M , at 4 different iterations of the functional registration algorithm. The target is the
C-shaped image F .

Figure B.3 From left to right, evolution of the flow through the ODE (4.8) for a fixed vector
field. The vector field is obtained by the minimization of the linearized objective function
(B.5) at the 8th iteration.
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The solution in the restricted space Wh is finally given by the discrete approximations

ûh , ĥh ∈Wh , obtained by solving
〈∇ûh ,∇ϕh〉L2 −〈ĥh ,ϕh〉L2 = 0

λ〈∇ĥh ,∇vh〉L2 +
S∑

j=1
gp j (vh(p j ), J (p j ))gp j (û(p j ), J (p j )) =

S∑
j=1

gp j (vh(p j ), J (p j ))(F (p j )−M ◦ s(p j ))

(B.9)

for all ϕh , vh ∈Wh .

Exploiting the representation (B.8) of functions in Wh we can rewrite (B.9) as a linear

system as follows. Let û be a 2K vector obtained from the vectorization of the set coef-

ficients {ui }. In the same way let ĥ be the vectorization of the coefficients of ĥh in (B.9).

Now, introduce the 2K ×S matrixΘ1 and the 2K ×2K matrixΘ2, such that

v′Θ1z =
S∑

j=1
gp j (vh(p j ), J (p j ))(F (p j )−M ◦ s(p j ))

v′Θ2û =
S∑

j=1
gp j (vh(p j ), J (p j ))gp j (û(p j ), J (p j )),

with z the vector of length S such that its j th element is (F (p j )−M ◦ s(p j )) and v the 2K

vector obtained from the vectorization of the set coefficients of vh . These sparse matrices

are defined in Section B.2.3, together with the 2K ×2K mass and stiffness matrices R0 and

R1, such that

ĥ′R0ϕ= 〈ĝh ,ϕh〉L2

ĥ′R1v = 〈∇ĝh ,∇vh〉L2 ,

whereϕ is a 2K vector obtained from the vectorization of the set coefficients ϕh .

Finally, the coefficients û, ĥ, of ûh , ĥh are given by the solution of the linear system[
Θ2 λR1

λR1 −λR0

][
û

ĥ

]
=

[
Θ1z

0

]
, (B.10)

where 0 is a 2K length zero-vector.

The coefficients {ûk } extracted from their vectorization û in (B.10) represent the ap-

proximated tangent vectors on the vertices {ξk }. They are then linearly interpolated to

define a solution on M c
0 al T . This linear piecewise solution on M c

0 al T is then used to

generate a diffeomorphic transformation through the ODE (4.8), which is itself approxi-
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mated with the Euler method. At each step of the Euler method the image of the solution

is re-projected on M c
0 al T . Finally, the current registration is updated by composition

with the newly estimated deformation as s ← s ◦φû , where φû denotes the solution of the

time t = 1 given by the Euler method.

In Figure B.1, we show an example of a moving image M , which is a semicircle indica-

tor function, and a fixed image F , which is a C-shaped indicator function. They both live

on the same spherical domain. This example tries to replicate the C-shaped planar regis-

tration problem, where image registration algorithms are usually tested, as for instance

done in Vercauteren et al. (2009). In Figure B.2 we show the vector fields estimated at four

different iterations of the Algorithm 4. While in Figure B.3, for one particular iteration, we

show the evolution of the flow generated by the ODE (4.8). In this specific example, the

domain is chosen to be spherical for visualization purposes, however it can be any smooth

two-dimensional manifold, as for instance, in Section 4.5. The performances of the algo-

rithm, with these synthetic data, are excellent. In fact, only 12 iterations are necessary to

register the semicircled indicator function to the C-shaped indicator function.

Finally, it could be argued that being the proposed approximation of the vector field û

only piecewise linear, and not of higher regularity, this could lead to deformations that

are not diffeomorphic. However, the use of reasonably fine triangulated meshes M c
0 al T

should solve the problem. After all, in practice, even for higher regularity vector fields,

the computer resolution of the ODE relies on a finite number of sampled values from the

vector field, and thus on a non smooth vector field.

B.2.3 Finite element matrices

Assume, for simplicity, that the points {p j } coincide with the nodes {ξk : 1, . . . ,K } of the

mesh M c
0 al T . The non-zero entries of the matricesΘ1 andΘ2 are

{Θ1}2k,k = gξk (J (ξk ),ek
1 ),

{Θ1}2k+1,k = gξk (J (ξk ),ek
2 )

and

{Θ2}2k,2k = g 2
ξk

(J (ξk ),ek
1 ), {Θ2}2k,2k+1 = gξk (J (ξk ),ek

1 )gξk (J (ξk ),ek
2 ),

{Θ2}2k+1,2k = gξk (J (ξk ),ek
1 )gξk (J (ξk ),ek

2 ), {Θ2}2k+1,2k+1 = g 2
ξk

(J (ξk ),ek
2 )
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with the matrices indexed from zero and k = 0, . . . ,K −1. The computation of the entries

gξk (J (ξk ),ek
1 ) can be performed by representing the tangent vectors J (ξk ) and ek

1 as vectors

inR3 and computing theR3 Euclidean scalar product between them, as in fact the manifold

M0, and its associated triangulated mesh M c
0 al T , are embedded in R3. The entries of the

2K ×2K matrices R0 and R1 in (B.9) are computed in (Knöppel et al., 2013, Section 6.1.1),

for the purpose of computing eigen-vectors of the Bochner-Laplacian operator.

B.2.4 Boundary Conditions

The deformations generated by the functional registration algorithm are by definition

constrained to be maps with their image on the template surface, since the ODE (4.8) is

defined on the manifold itself. However, if the template is a manifold with a boundary,

as in the simulations performed in Section 3.5, the vector might generate deformations

that transport the functions outside the boundary. This can be avoided by imposing

homogeneous Dirichlet boundary conditions on the estimated vector field. Dirichlet

boundary conditions can be implemented in different ways. Here, we opt for applying

them after the linear system (B.10) has been built. In particular given a boundary node

k, we add a large constant M to the entries 2k,2k and 2k + 1,2k + 1 of the left hand

side matrix and set to 0 the entries 2k and 2k + 1 of the right hand side vector. As a

consequence, the vector fields estimated from the modified linear system will smoothly

vanish as approaching the boundary.

B.3 Further Simulations

As previously mentioned, the functional registration algorithm introduced in Section 4.3.2

is not the only option to account for functional information in the registration process.

Here we compare our methodology to the joint functional and geometric registration

algorithm proposed in Charon and Trouvé (2014), where the shape similarity functional

(4.7) is extended to include a functional similarity term.

Suppose now that the template mesh M c
0 al T is equipped with a functional object

µT : M c
0 al T →R, which in first instance can be the cross-sectional mean of the functions

X̂i estimated after the geometric registration described in Section 4.3.1. We briefly recall

the notation in Section 4.3.1, introduced to define (4.7). We define KZ :R3 ×R3 →R3×3 to

be a Gaussian isotropic kernel of variance σ2
Z

, i.e. KZ (x, y) = exp(−∥x − y∥2
2/(2σ2

Z
))Id3×3,
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with Id3×3 denoting a 3×3 identity matrix. Additionally, we introduce a scalar Gaussian

kernel KF :R×R→R of the form KF (x, y) = exp(−(x − y)2/(2σ2
F

)).

Figure B.4 From left to right, the mean and first two functional PC functions estimates of
{X̂i }, estimated by using the registration maps computed by solving (4.5) with the extended
matching function in (B.11), for different choices of σF .

Moreover, we denote with c(l ) and η(l ), respectively, the center point and the nor-

mal vector of the l th triangle of the mesh ϕvi ◦MT
0 . We denote with ci (q) and ηi (q),

respectively, the center point and the normal vector of the qth triangle of the mesh MT
i .

Additionally, we introduce y(l ), denoting the functional value µT , associated to the mesh

ϕvi ◦MT
0 , at the center point of the l th triangle. We denote with yi (q) the functional value

associated to the i th FoSs at the center point of the qth triangle of the mesh Mi .

Let the triangles of the mesh ϕvi ◦MT
0 be indexed by l and g and the triangles in MT

i

be indexed by q and r . The shape similarity functional (4.7) can be extended to include
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functional informations as follows (Charon and Trouvé, 2014).

D2((ϕvi ◦MT
0 ,µT ◦ϕ−1

vi
), (MT

i ,Y T
i )

)=∑
l

∑
g

KF (y(l ), y(g ))KZ (c(l ),c(g ))η(l ) ·η(g )

−2
∑

l

∑
q

KF (y(l ), yi (q))KZ (c(l ),ci (q))η(l ) ·ηi (q)

+∑
q

∑
r

KF (yi (q), yi (r ))KZ (ci (q),ci (r ))ηi (q) ·ηi (r ),

(B.11)

with · denoting the scalar product in R3. Each term now, measures not only differences

in geometry but also differences in the functional values between the template and the

target FoS.

Subsequently, given the FoSs {(MT
i ,Y T

i )} generated as described in Section 3.5, we

perform the landmark-free geometric registration by minimizing the objective function in

(4.5), with the shape similarity functional (4.7), which is equivalent to the similarity func-

tional (B.11) with σF =+∞. Thanks to the estimated registration maps we can estimate

the functions {X̂i } and compute the cross-sectional mean function µT . Subsequently a

second registration step can be performed, by minimizing the objective function in (4.5)

but this time with the similarity functional (B.11). We have performed this for different

choice of σF . The smaller σF , the more we are weighting the functional matching term

as opposed to the geometric matching term.

In Figure B.4 we show the results of the fPCA applied to the functions {X̂i } for different

choices of σF . These need to be compared with the results in Figure 4.10, obtained by

applying the iterative functional registration algorithm in Section 4.3.2. On the left panel

of Figure B.4 we can see the mean and first two PC functions estimated when functional

information is ignored, which coincide with the one showed on the left panel of Figure 4.10,

as they are computed in the same way. On the other two panels of Figure B.4 we can see the

mean and first two PC functions estimated when functional information is introduced. As

we can see the estimated first PC function resembles the true underlying first PC function,

but some fictitious variability is left on the second estimated PC function.

Trying to further decrease σF , to remove the residual fictitious variability, resulted in

estimated registration maps failing to bring the template in geometric correspondence

to the target surface. Such problem has been the limiting factor in successfully applying

the same method to the data in the real application, where the differences in geometries

between the template and the target FoSs are much bigger. In fact, this is one of the

motivations underlying the introduction of the functional registration algorithm in Sec-
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tion 4.3.2, where the ‘moving’ functions are instead ‘constrained’ to lie in the predefined

geometry.
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