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PROPERTIES OF SUSPENSIONS OF INTERACTING PARTICLES - SUMMARY

The dissertation is divided into six chapters. The first chapter
contains introductory remarks and sets the scene for the work that is to
follow,

Cﬁapter 2 is devoted to the conduction of heat or electricity through
granular materials, the conductivity of the grains greatly exceeds that
of the matrix and the grains are closely-packed. From an analysis of the
temperature distribution near the point of contact between a pair of
particles we derive an expression for the effective conductivity of this
type of material,

In chapter 3 we study the conduction of heat across a bundle of
fibres., It is shown that small deviations in fibre straightness or in
fibre alignment have a marked effect on the conductivity of these types
of materials, and expressions are obtained for the effective conductivity
of two classes of fibre bupdles,

The work in chapter 4 is concerned with general aspects of the
determination of effective transport properties. A new method is described
for obtaining the effective transport properties.of suspensions of
interacting spherical particles in both régular and random arrays. This
new method does not encounter divergence difficulties, and provides a

rigorous basis for the rather ad hoc procedures devised earlier to deal

with divergence difficulties. Some old results are rederived by these new
techniques and expressions are obtained for the effective modulus cf
compression of rigid spheres in random and regular arrays in an elastic
| matrix,
Chapter 5 is devoted to a study of the coagulation of particles in
shear flow. We are mainly concerned with the coagulation of particles at
"high'" shear rates, in which case the Brownian motion of the particles is
negligible and the Van der Waals forces between the particles only affect

the motion of nearly touching particles. Expressions are obtained for the
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rate at which single spherical particles coagulate for form doublets, per
unit volume of suspension,
Finally, in chgpter 6 we present the results of a numerical study on the
effect of Van der Waals attraction and electrical repulsion on the motion
of a pair of spherical particles in shear flow. It is shown that at very
low shear rates, pairs execute closed orbits about each other. As the
shear rate increases the pairs are pulled apart, and finally, at very higzh
shear rates pairs are pushe& together with such force by the flow that
some are able to overcome the electrical repulsive forces and coagulation

occurs,
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CHAPTER ONE

INTRODUCTION




1.1 Suspensions

, A "suspension" is defined as a material composed of discrete particles
-embedded or immersed in a continuous matrix, The particles and matrix may
be either solid or fluid, and it is assumed that each particle is large
enough to be regarded as continuous. Examples of suspensions occur
frequently in nature (blood, clay, mist) and in industry (latex paints,
fibre reinforced materials, polymer solutions).

If a particle is placed in én infinite matrix the (temperature
velocity or displacement) field in the matrix will be disturbed by the
presence of the particle, and this disturbance field will vary on a length
scale which is of the order of the particle dimensions. Thus the field
in the neighbourhood of a particle in a suspension will be affected by
the presence of a neighbouring particle unless the distance separating
the pair is much greater than the particle size, We shall refer to this
type of interaction as an "indirect interaction'" since it is transmitted
through the matrix material. 1In addition to this type of interaction
between the particles in a suspension, there may be a "direct" interaction
arising from the forces between the'particlesf

The work which we shall describe in the following chapters is con-
cerned with suspensions in which the interactions, both direct and
indirect, play a significant part., We shall only ccnsider the case of
solid particles suspended in a solid or liquid matrix. Both particles and
matrix are composed of materials which are homogeneous and isotropic and
it is assumed that each particle is éomposed of the same material.

The work divides into parts; chapters 2, 3 and 4 deal with the
problems of determining.the effective transport properties of suspension
of interacting particles, and the remaining two chapters are devoted to
the study of the effects of shear flow and interparticle forces on the

motion of rigid spherical particles suspended 'in a Newtonian liquid.
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In this chapter we describe the background to this work, beginning

with the transport problem, and in §l,4 there is a brief description of
some of the experiments with which I was concerned during my first two

years at Cambridge,

1,2 The effective transport properties of suspensions

The transport properties of the particles are in general different
from those of the matrix, and thus if a suspension is not in a state of

equilibrium, the temperature, velocity or displacement varies in a

complicated manner with position in the suspension. To determine the value

of any of these quantities at each point in the suspensions we would

require the position and shape of each particle, but such microstructural

information is nct usually available., Fortunately we are generally concerned

with the behaviour of "microscopic" samples of the suspension which contain

a large number of particles; the observab1e quantities with which we
are concerned represent averages and the small scale fluctuations in the
quantities are unimportant. For example, if a macroscepic sample is
placed in a non-uniform temperature field, the fluctuations in the flux
density F are of less interest than the flux aéross portions>of the
surface of the sample which are much larger than the particle dimensions.

When viewed oﬁlthis scale, the suspension appears to be a single
phase continuum, with "effectiveﬁ properties which vary in a continuous
fashion with position in the material. Our aim is to determine the
effeétive transport properties which characterize these macroscobic
samples., The transport property of interest may be the conductivity
(electrical or thermal), the viscosity, or the elaséic moduli. We shall
assume that the particles are force-free and therefore the only inter-
actions are indirect.

The particles and'ﬁatrix are characterized by (different) scalar

conductivities. 1In discussing the effective conductivity it will be
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. assumed that the matrix, if it is a liquid, is at vest and hence
conduction is the only means of heat transfer. If the matrix is a liquid,
« it will be taken t§ be Newtonian, and if the particles or the matrix
are composed of isotropic, linearly elastic materials we shall simply
refer to them as being "elastic".

The concept of an effective transport property has been recently
given a precise definition by Batchelor (see Batchelor 1974 for a review),
who also derived an expression relating effective transport properties
to an average over the particles of a quantity known as the "Particle
dipole strength"., We shall describe the derivation of this result here, as
it will be referred to frequently in the following chapters. The
derivation is the same, in principle, for each of the transport properties,
aﬁd we will only give the details for the case of thermal conductivity.

The conductivity of the matrix is denoted by k and that of the particles
in ak. |

In discussing the effective transport properties, Batchelor made use
of the concept of an "ensemble average'". If we perform ezperiments on
a large number of samples of the same suspension under macroscopically
identical_conditions the value of any quantity (éuch as the temperature at
a point in the suspension) will fluctuate randomly from one experiment
to the next since the configuration of particles will not be the same for
each sample., The average of a quantity, averaged over the ensemble of
experiments, is defined as the ensemble average and is denocted by angle
brackets, TFor the conduction precblem, the averaged quantities with

which we shall be concerned are the average flux density <Ethand the

average temperature gradient <V T(x)>, at a point x .
Since the quantities F and VT at a point in a suspension are linearly
related, it is reasonable to assume that the ensemble averages of these

quantities will also be linearly related, i.e.: '

' {
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CF>=-k<VT) (2.1)

X

-where the second rank tensor k* is defined as the effective conductivity,

In the case of a material with a statistically isotropic structure, k* is

proportional to the unit tensor and

CEY = -KXVTY . | | (2.2)

In general k* may vary with position but we shall only be concerned with
materials for which k* is uniform,

If the temperature or flux density over the surface of the sample
is known, then with the aid of the relation (2.1) or (2.2) and the heat
conserv;tion equation V+<F> = 0, we can, in principle, determine the
averaged quantities <F> and <VT> at any point in the material. This
would not be of much practical value if we could not then relate these
ensemble averaged quantities to the quantities which would be measured
in a single experiment, but A.fortunateiy these quantities aré related
for a large class of sqspensions.

To demonstrate this relationship, we begin by noting that the
quantities F(%) and VT(x) vary randomly from one experiment to the next,
reflecting the variations in the particle configuration. If the
statistical properties of F(x) and V T(%) do not vary with x, then by the
Ergodic Hypothesis, the ensemble average of these quantitires is equal
to an average obtained by "sampling" the values of F andVT at a large
number of points in a single suspensioﬁ. This is of course only yalid 1if
the values of F and VT at each sample point are statistically independent
of the values at the other sample points; since these quantities
fluctuate with position on a length scale of the order of the particle
size, we conclude that the sample points must be separated by distances

which are large compared to the particle size, Thus we may replace the
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ensemble average of F and VT by the average over a single suspension if the

variables are approximately statistically stationary over distances which
gfeatly exceed the size.of the particles.

Such suspensions are referred to as "locally statistically
homogeneous'. The work that follows deals only with this type of
suspension, Tf we attempt to measure the value of a quantity in a
suspension using a macroscopic measuring instrumént we obtain an average
of that quantity and for a statistically homogenequs suspension this
average is equal to the local ensemble average. Thus the ensemble averages
have a real meaning for this type of suspension, and the effective
conductivity k* defined in (2.1) is consistant with the intuitive idea
of an effective property.

Although the concept of an ensemble of experiments provides a useful
framework in which to discuse the statistical nature of suspensions, the
ensemble averages are less convenient for manipulation than the averages
over regions of a single suspension. For a locally statistically
homogeneous suépension the two averages are equal and in the work that
follows we shall use tﬁe "volume average'", which is defined as the integral
average over a volume V which is large enough to contain many particles,
but which.has dimensions whiéh are much less than the length scale over
which the statistical propefties of the quantity of interest vary. Thus

for the conduction problem, the relevant averaged quantities are

[Fav (2.3)
v

and

KVT) = ﬁxvrdv . (2.4)

v

On dividing the volume of integration in (2.3) into matrix and particles

and replacing F by -kVT at points in the matrix and -<kVT at points in

the particles, we get
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(Ey=- k<7Tr+ n¢S) (2.5)
where n is the number of particles per unit volume and

§=(1-o") Fav (2.6)

Vi
is the dipole strength of the ith particle., The angle brackets about §
in (2.5) denote the average over the particles contained V,

G
1f the particle is a perfect conductiew ( o =co ) it is not

possible to calculate F at points in the particle and a more convenient

theorem to the volume integral in (2.6) which yields

s=(1-oC’3jch-?xJH (2.7)
Ay
where Ap is the particle surface and 0 is the unit outward normal from
- Ap. This is the definition of § which we shall use for the purposes
of calculating the dipole strength.

For a statistically homogeneous suspension <S> is proportional to

(2.5), once <8> has been determined.
The corresponding results for the other transport problems are
obtained by a similar procedure; the volume average stress <g> in a

suspension with an elastic or Newtonianliquid matrix is given by

(oy=<g>+ n<{SD ' : (2.8)

where o (

°

R

Q2

Particles 0% (x) denotes the stress which would be obtained at
that particle could be replaced by matrix materia with the strain or
Strain rate at x held fixed. The dipole strength S is here a second

order tensor given by

S = [(geo- gaendv | (2.9)

Y]
F

definition of the dipole strength is obtained by applying the divergence

<VT> and thus we may calculate the effective conductivity from (2.1) and

Y= g(X) if x lies inthe matrix, and if = 1lies in the




where VP is the particle volume. For the case of a rigid particle,

~

O, = 0 at points in the particle, and on applying the divergence

|

i .

| theorem to the volume integral in (2.9) we get
I

!

|

|

g:S%g—.adA | | -~ (2.10)

~

Pe

Thus the problem of determining the effective transport properties

is equivalent to that of determining the average particle dipole strength.

Previous Theoretical investigations

If the volume fraction @@ of the particles is small, the distance
between neighbouring particles is, on average, much greater than the
particle dimensions (provided there is no clustering), and hence most of
the particles are effectively alone in an infinite matrix. In this case,
the average dipole strength is equal to So, the dipole strength of a lone
particle immersed in an infinite matrix in which the temperature tends

to <VT>-x at large distances from the particle,

The problem of determining So is simplest for the case of a spherical

'particle, and consequently the dilute suspensions of spherical particies
were the first to recfive theoretical attention. In 1873 Maxwell

obtained an expression for the effective conductivity of such a suspension.
The expression for the effective viscosity of a dilute suspension of rigid
spheres was obtained by Einstein (1956) in 1905, and the corresponding
result for a suspension of droplets of a second fluid held spherical

by surface tension was obtained by Taylor (1932), Finally, in 1947,

Newey derived formulae for the effective elastic moduli of a dilute sus-
pension of elastic spheres in an elastic matrix,
Subsequent investigations have yielded expressions for the effective

transport properties of dilute suspensions of spheroidal particles,

The problem of determining the effective viscosity of such a suspension

is complicated by the fact that the orientation of a spheroid is affected

F




by the bulk flow. Since the dipole strength of these particles depends
on their orientation with respect to the flow field, the effective
viscosity is affected by the bulk flow and such factors as the Brownian
diffusivity of the particles, The problem of determining the orientation
distribution of a dilute suspension of spheroidal particles has recently
been solved by Leal and Hinch for a number of bulk flows and expressions
for the effective viscosity have been obtained (see Batchelor 1974 for
review).,

Although the expressions for the effective transport properties of
dilute suspensions help us to gain some insight into the effect of particle

shape and composition, they are of little practical value, for the transport

properties of these suspensions are only slightly different from those of
t the matrix., To obtain more useful expressions for the effective transport
properties, we must be able to deal with the problems caused by particie
! interactions.

Since the average dipole strength <$> in a dilute suspension is
independent of @ (for @ << 1) it follows from the expressions (2.1) and

(2.5) that the particles alter the effective conductivity by an amount that

is proportional to ¢; It is generally assumed that this is the leading
term in a power series of ¢n, where the coefficients of the¢2‘and higher
order terms reflect various particle interactions,

A great deal of effort has been expended on the determination of the
@2 coefficient in the expressions for the effective transport properties
of random arrays of spherical particles. This work was hampered by the
-occurance of non-convergent integrals, a problem which was finally
overcome by Batchelor (see review article 1974),

By using Batchelor's "Particle Dipole method", Jeffrey (1973) was ;
able to obtain the $? term in the expression for the effective conductivity

of a random array of spheres. The corresponding expression for the

h . ;




- spheres., The formula has been verified experimentally (Meredith and Tcbias

10

viscosity of a suspension of rigid spheres in a pure straining motion
was obtained by Béﬁchelor and Green (1972(b)), again by the Particle
Dipole Method, and in the same paper, an expressicn was derived fof
the effective shear modu¥us of a suspension of incompressible elastic
spheres in an incompressible elastic matrix. More recently, Batchelor
(1977) has calculated the $2 term in the expression for the effective
viscosity of rigid‘spherical particles suspended in a Newtonian liquid
in shear flow, for the case of strong Brownian motion,

In addition to this work on random suspensions there have been
a number of investigations into the effective conductivity of regular
arrays of spheres embedded in a matrix. The initial work in this field
was carried out by Rayleigh (1892), who derived an expression for the

13
). This

conductivity of a simple cubic array of spheres correct to 0(@
. . a "
expression takes the form of a power series in (~/d), where a is the

sphere radius and d is the distance between the centres of neighbouring

1960). Recently, McKenzie and McPhedran (1977) have developed an algorithm
for obtaining higher order terms in this power series, and with the aid
of a computer they have calculated the effective conductivity of a simple
cubic array at volume fractions which are near to the close-packing
limit (@ = .524).

Expression have also been obtained for the effective conductivity of
suspensions of spheres‘in body-centred-cubic and face-centred-cubic array
(Bertaux et al 1975). These formulae were derived by essentially the

same method as that developed by Rayleigh.

In the same paper in which he studied conduction through cubic arrays
of spheres, Rayleigh also derived a formula for the components of k¥*

associated with conduction across a square array of circular cylinders, |

but this formula appears to have aroused comparitively little interest.




- which passes between a pair of particles passes through the thin matrix

" conducting particles, most of the heat passes through these suspensions

1

Of the work which has so far been described, only that of McKenzie
and McPhedran is valid for concentrated suspensions. These authors feport
that the series for k* converges very slowly at volume fractions which
are near to the close packing iimit 1f the conductivity of the spheres is
much greater than that of the matrix. This suggests that the problem of
determining the conductivity becomes more complex as the volume fraction
increases,

This apparent complexity arises from the fact that the power series
formulation for k* is inappropriate at high volume fractions if the
conductivity of the spheres is much greater than that of ‘the matrix. This
was first realized by Keller (1962) who derived a simple formula for the

conductivity of a cubic array of perfectly conducting spheres which are

nearly in contact. Keller's formula is based on tlie observation that most
of the heat which passes through the suspension flows along chains of

particles which extend between the boundaries, and that most of the heat

layer which separates the parts of the particle surfaces that are nearly
in contact. By a similar method, Keller also obtained an expression for'
the conductivity of a square array of nearly-touching parallel cylinders
of infinite conductivity.

In addition to the work described above, there have been a number
of investigations based on "cell models" (Happel and Brenner (1973))‘or
"self consistant schemes" (see Jeffrey (1974)), but we shall not describe

these results here as they do not have a sound theoretical basis.

The work described in Chapters 2, 3 and 4

Chapters 2 and 3 deal with the problem of conduction (cf heat or

electricity) through suspensions of closely packed particles immersed in

a matrix of relatively low conductivity. As in the case of perfectly



along chains of particles, but as neighbouring particles may be in contact,
we cannot approximate the particles as perfect conductors (since the flux
between a pair of perfect.conductors diverges as they come into contact,
if they are at differemt temperatures).

Chapter 2 deals with the problem of conduction through granular
materials; expressiomns are obtained for the gffective conductivity of
suspensions of closely packed spherical particles in random or regular
&rrays. This work was done in collaboration with Professor Batchelor.

In Chapter 3 we study the conduction of heat across a bundle of

fibres. It is shown that small deviationsin fibre straightness or in

fibre alignment have a marked effect on the conductivity of these type
of materials, and expressions are derived for the effective conductivity

of two classes of fibre bundles.

The work in Chapter 4 is concerned with general aspects of the i

" determination of effective transport properties. I describe here a new

method for obtaining the effective transport properties of suspensions of
interacting sbherical particles in both regular and random arrays. This
new method does not encounter divergence difficulties, and provides a
rigorous basis for the rather ad hoc procedures devised earlier to deal
with divergence difficulties. Some old results are rederived by these
new techniques and expressions are obtained for the effective modulus of
compression of rigid spheres in random and regular arrays in an elastic

matrix,

1.3 The effect of interparticle forces on the motion of suspended

particles in shear flow.

Particles suspended in a liquid tend to acquire an electric charge

| which may result from the absorption of ions from the solvent onito the

solvent, The sign of this charge is determined by the difference in

particles surface, or from the migration of ions from the particle to the
|
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’ chemical potential between the particles and the solvent, and thus there

: | is generally an eiectrical repulsion between particles composed of the
same material. Opposed to this repulsive force is the Van der Waals force
E of attraction between the particles, and it is the balance between these
: two forces which determines the stability of the suspension.
This balance can be altered by the addition of salt to the suspension,
i for the electrical forces diminish as the concentration of ions in the
solvent is increased, and if sufficient salt is added, the particles will
coagulate under the action of the Van der Waals forces. It has been found
that the coagulation rate is enhanced if the suspension is stirred, and
Chapter 5 is devoted to the study of this phenomenon, known as '"Shear
induced coagulation".

The earliest theoretical investigation into the problem of coagulation

| was carried out by Smoluchowski(19l7), who studied the coagulation of

spherical particles both in a suspension at rest and in a suspension in

|

i - shear flow. At that time very little was known about the forces of i
' attraction between colloidal particles, and Smoluchowski's work is based |
]

on the assumption that the Van der Waals force between a pair of particles i

|

[ is only significant if the particles are actually touching each other.

i Thus the particles are unaffected by this force unless they'"collide", and

furthermore it was assumed that the particles stick together after colliding.
Since an attractive force of this type cannot bring particles

together, another mechanism is required. In a suspension at rest this is

provided by the Brownian motion of the particles, and thus the coagulation

rate is determined by the diffusivity of the particles.

:

: If the suspension is undergoing shear flow, the coagulation rate |
increases because the shear flow provides an additional mechanism for

bringing particles together.

In studying coagulation in a suspension in shear flow, Smoluchowski

RN TIIERI—————,



neglected the Brownian motion of the particles, an assumption which is

|

.

i valid if the shear.rate is sufficiently high. In this analysis, the

; hydrodynamic interaction between the particles was neglected and thus it

f was assumed that particles simply translate with the bulk flow and coagulate
on collision with other particles. With the aid of these assumptions,
Smoluchowski derived expressionsfor the rate at which coagulated doublets,

triplets and higher order groups of particles are formed per unit volume

of suspension,

Clearly there was some room for improvement in Smoluchowski's analysis,
but even the simpler problem of coagulation iﬁ a suspension at rest was not
treated in an entirely satisfactory manner until 1967, when Derjaguin and
Muller produced an analysis.which took into account both the effects of
Van der Waals attraction and hydrodynamic interaction on the coagulation
rate.

In 1970 Curtis and Hocking studied the effect of Van der Waals attraction

- on the motion of a sphere-pair in a shear flow. By numerically integrating
the equations of motion a sphere pair for a large number of initial
conditions, they were able to determine which pairs would coagulate at
a given shear rate. From this information Curtis and Hocking attempted
to calculate the rate at which spheres ccagulate to form pairs per unit
volume of suspension, but their results are incorrect for reasons which
we shall describe in §5.9.

Most of the work in Chapter 5 deals with the problem of the
coagulation of spherical particles at high shear rates. Like the previous
authors, we neglect the Brownian motion of the particles, and in addition

we make use of the observation that at these high shear rates, the Van

der Waals forces only affect the motion of particles which are nearly
touching each other. The equations which describe the motion of the centre

of one member of a sphere-pair in a shear flow, relative to the centre of

|
|
—
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the other, have ‘a particularly simple form if the pair are nearly in
contact. We have been able to solve these equations and obtain expressions
describing the relative trajectories of the nearly-touching ,sphere pairs
which are influenced by the Van der Waals atﬁraction.

The sphere pairs which are not nearly-touching are effectively
force~free, and the motion of such pairs has been thoroughly analysed
by Batchelor and Green (1972(a)). By linking Batchelor and Green's

results with the expressions describing the relative trajectories of the

nearly touching sphere-pairs, we have been able to calculate the rate

at which single spheres coagulate to férm doublets in a unit volume of
suspension, for a number of shear rates. We have found that the coagulation
rate approaches a limiting value at high shear rates, and we have

calculated this value by two quite different methods,

Finally, by combining this high shear rate analysis with Derjaguin and

Muller's (1967) work on coagulation in a suspension at rest, we have

. obtained a qualitative picture of the combined effects of Brownian motion
and shear rate on coagulation.

If the concentration of electrolyte in the solvent is not sufficiently
~high, the electrical forces between the particles may have a significant
effect on their motion in a shear flow. In Chapter 6 we present the
results 'of a numerical study of the relative motion 6f sphere-pairs which
are influenced by both electrical repulsion and Van der Waals attraction.

I have been unabie to find any previous investigations on this
subject in the literature, and the work presented in Chapter 6 is in the
nature of a preliminary study. Consequently we have dispensed with

complications such as the Brownian motion of the particles and the effect

of vetardation on the Van der Waals force.'+ Furthermore we assume that the

+

The rate at which the Van der Waals force between a pair of particles

drops cff as the particles are separated increases when the minimum separation

distance between the surfaces becomes of order \. , a wavelength (usually

about 107° cms) associated with the material of which the particles are
|
\
|

composed. This is known as the "retardation effect" (see Verwey and Overbeek
(1948) for more details).
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the other, have ‘a particularly simple form if the pair are nearly in
contact. We have been able to solve these equations and obtain expressions
describing the relative trajectories of the nearly-touching ,sphere pairs
which are influenced by the Van der Waals atfraction.

The sphere pairs which are not nearly-touching are effectively
force-free, and the motion of such pairs has been thoroughly analysed
by Batchelor and Green (1972(a)). By linking Batchelor and Green's
results with the expressions describing the relative trajectories of the
nearly touching sphere-pairs, we have been able to calculate the rate g
at which single spheres coagulate to férm doublets in a unit volume of
suspension, for a number of shear rates. We have found that the coagulation
rate approaches a limiting value at high shear rates, and we have

calculated this value by two quite different methods.

Finally, by combining this high shear rate analysis with Derjaguin and

Muller's (1967) work on coagulation in a suspension at rest, we have

. obtained a qualitative picture of the combined effects of Brownien motion

and shear rate on coagulation.

If the concentration of electrolyte in the solvent is not sufficiently

effect on their motion in a shear flow. In Chapter 6 we present the
results 'of a numerical study of the relative motion 6f sphere-pairs which
are influenced by both electrical repulsion and Van der Waals attraction.
I have been unabie to find any previous investigations on this
subject in the literature, and the work presented in Chapter 6 is in the
nature of a preliminary study. Consequently we have dispensed with
complications such as the Brownian motion of the particles and the effect

of retardation on the Van der Waals force. Furthermore we assume that the

* The rate at which the Van der Waals force between a pair of particles

drops cff as the particles are separated increases when the minimum separation
distance between the surfaces becomes of order X\ , a wavelength (usually
about 107° cms) associated with the material of which the particles are
composed, This is known as the "retardation effect" (see Verwey and Overbeek
(1948) for more details).
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range of action of the electrical forces (the Debye length) is much
smaller than the particle radius and thus we only deal with nearly-

touching sphere pairs.

1.4 Unsuccessful Experiments

Although the work presented in this thesis is entirely theoretical,
I had originally intended to carry out rheological measurements on

concentrated suspensions. The experimental work I did during my first

two years did not bear fruit, and in this section I shall briefly describe

the aims of this work, and some of the problems which were encountered.
In the absence of Brownian motion, the bulk (i.e. volume averaged)

stress in a sdspension is determined by the bulk strain rate and-the

statistical aspects of the particle configuration which we term the

"structure" of the suspension. We proposed to carry out an experiment in

" which the suspension has a known structure; in particular, we planned to

measure the effective viscosity of a monodisperse suspension of particles
with isotropic structure in an oscillatory shear flow of small amplitude.
In this case the bulk flow only perturbs the structure from its equilibrium
state, and therefore the suspension femains aﬁbroximately isotropic during
the experiment.

The first step was to obtain a monodisperse suspension. Onre such
suspension which had been used in a number of experiments consists of rod-
like particles, manufactured from fibre glass. The fibres are 3.5 microns
in diameter, and the minimum length to which they can be accurately cut
is about 100 microns (see barter 1967 for details of manufacture of these
suspensions). Unfortunately, these rods are too large for our purpose,
for the time required fér the B}ownian rotation of these rods to impart an
isotropic structure to the suspension is much larger than the time required
for them to sediment out (the specific gravity of the rods is 2.5). Thus

we could not be suve that this suspension would be isotropic at the start




I

of the experiment.

A monodisperse suspension of smaller particles was required.
Fortunately the suspensions known as "latices" appeared to be suitable.
These consist of spherical polymer particles of radius 0.1 - 1 micron
suspended in an aqueous solution. With the assistance of Dr. P. Johnson
of the Department of Colloid Science I attempted to manufacture a latex,

' but it soon became apparent that the making of a monodisperse latex is
something of an art., We then turned to Professor I.M. Krieger of Case
WesternReserve University, Ohio who kindly suppliéd us with a monodisperse
latex containing particles of 0,226 microns in diameter, with a volume
fraction of 0.45.

| In a review article on the rheology bf monodisperse latices,
Krieger (1972) describes a method for effectively eliminating the forces
between the latex particles, based on the addition of certain amounts of
surfactant and electrolyte to the latex., The latex which we had been
given had been treated in this way, and so we assumed that the particles
ﬁere effectigely force-free, rigid spheres,

We pfoposed to measure the effective viscosity of this latex in an
oscillatory shear flow, over a range of frequencies. In order to under-
stand how the variation in ffequency affects the viscosity we must consider
the factors which determine the bulk stress in a suspension of rigid,
force-free particles.,

Thgre are two components to the bulk stress in such a suspension.
One component, known as the "hydrodynamic stress™ is the stress that would
be obtained in the absence of Brownian motion.+ This componént is pro-
portional to the instantaneous strain rate with a constant of proportionality

that is determined by the instantaneous structure. Since the structure is

given that the suspension has the same instantaneous structure. This
structure will be affectéed by the Brownian motion and hence the hydrodynamic
stress is indirectly affected by the Brownian motion.

-ii.IIl-:::_______________________________;_________________44444f
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approximately isotropic in the oscillatory flow, the component of the
viscosity which arises from the hydrodynamic stress is not frequency
dependent. The second component of the bulk stress, known as the '"direct
contribution due to the Brownian motion" arises from the fact that the
flow slightly alters the structure of the suspension and as the particles
diffuse through the liquid in an attempted to restore the equilibrium
structure they generate a bulk stress.,

The parameter which characterizes the relative magnitude of these

two components is a* , where w is the frequency of oscillation

D
of the flow, a is the sphere radius and D is the diffusivity of the

particles. At "low" frequencies wa* << | the (nearly isotropic)

b
structure of the suspension is determined .by the instantaneous shear rate,
and thus the effective viscosity is equal to the "zerg-shear viscosity"

Mo measured in a steadyshear flow (see figure (1.1)). As the frequency

of oscillation increases (wht amplitude held fixed), the hydrodynamic

- component of the bulk stress increases in proportion to w , but the

direct‘c0ptribution increases more slowly and hence the effective viscosity
decreases ask ‘”Qﬁ/D increasés until eventually the viscosity reaches
the limiting value . (see figure (1.1)).

Similarly, the effective viscosity measured in a steady shear flow
decreases with shear rate, (see figure (1.1)) but the high shear limiting
value. P, will iﬁ general be different from &, 5 for in a steady
shear flow the structure of the suspension is altered by the £f£low,

By measuring the quantities Mo and My we can determine
the contribution to the zero shear viscosity from the Brownian motion of
the particles., Furthermore, by measuring the high shear limiting
viscosity j, and comparing this with |, we can studyvthe effect
of structure on the hydrodynamic component of the bulk stress.

Although this seemed ts be a reasonable plan, even the steady shear

measurements proved to be difficult at the higher volume fractions (§ > .4),




Figure 1.1 The expected form of the effective viscosity curves for
a latex., Curve I represents the result for oscillatory
shear and the parameter is wa’p in this case. The

dependence of ' on shear rate ¥ in steady shear flow
is illustrated by curve II.
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for the evaporation of the solvent from these suspensions causes a skin

to form on the surface. At the Department of Chemistry at Bristol

University there is a Weissenberg Rheogoneometer fitted with a “Mooney

device”+ which is designed to overcome this evaporation problem, and it

was at that department that I attempted to measure these quantities p, ,
M and .

With a great deal of assitance from Dr. Jim Goodwin I managed to
obtain some reproducible heasurements of Mo and  p, . This
required the most meticulous attention to cleanliness, between each run
the Mooney device was taken apart and any solidified latex was washed
away with distilled water.

Unfortunately, my attempts . at measuring the high ffequency viscosity

M, , were totally unsuccessful. I had planned to measure this
quantity by observing the decay rate in the oscillations of the upper

platen of the Mooney device after it had been given an initial twist.

- The frequency of these oscillations is determined by the spring constant of

the torsion bar which connects the platen to the frame-of the Rheogoneometer,
With the stiffest torsion bar, the frequency of oscillation is 38.6
cycles per second and although  wa" is only of order . 10 at this
frequency, it was hoped that this would be sufficiently large for the
direct contribution to the viscosity to be negligible,

Before testing the latex samples at this frequency, I carried out
a trial run using distilled water, and it was at this point that the
experiment floundered, for the measured decay rate differed significantly
from the theoretical value (calculatedAon the assumption that the term

w-Vu in the Navier-Stokes equations is negligible). Perhaps the flow

is unstable at this frequency; if so, the measurement of &, could be

this is a combination couette-cone and plate device.
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carried out with a latex containing larger particles, since %§f§>|
would then be satisfied for lower frequencies. .
However, two years without success had dampened my enthusiasm for
the project, and‘it was at this point that I began the work which is

described in the remainder of this dissertation.
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THERMAL OR ELECTRICAL CONDUCTION

THROUGH A GRANULAR MATERIAL
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2.1 Introduction

In this chapter we try to derive the effective conductivity of a
stationary granular material through which there is a steady transport
of heat or electricity, The material consists of randomly arranged
grains ,in, or nearly in, contact with each other and immersed in ;
connected uniform matrix which may be fluid or solid. The matrix is
characterized by a scalar conduétivity k , and the material of the grains
by a scalar conductivity dk. We shall study in particular the case a >> 1,
examples of which are conduction of heat through a packed bed of metal
particles in water or of electricity through a pile of carbon particles
in air., The case & >> 1 is interesting theoretically because the amount
of heat or electricity conducted is a delicate balance between the effects
of the largeness of the conductivity of thé grains and the smallness of
the surface of contact between them., It is not at all evident whether

the effective conductivity of the medium will be closer numerically to

~k or to ak.

As is customary in the analysis of properties of heterogeneous media
with random structure, we shall assume that the granular medium is
statistically homogeneous. It will be supposed that a uniform mean
intensity gradient is set up in the medium, perhaps by imposing uniform
and different values of the intensity at two distant parallel boundaries,
Henceforth we shall use terms and notation appropriate to the case of
thermal conduction for convenience; thus the mean intensity gradient will
be written as <VT>, where ¥V T is the temperature gradient at a point
in the medium (not necessarily in the matrix) and the angle brackets denote
an average over the ensemble of realisations of the random structure of
the medium. The local thermal flux density F is equal to -kVT at a
point in the matrix and ~akV T at a point in a grain or particle., At

each point on the surface of a particle T and the normal components of

F are continuous; and at each point not on such a surface

-




VF=0, ie V?*T=o. (1.1)

All temperature differences are proportional to <VT>, and so for

the mean flux density we have the linear relation

X

By =-k<vTy

where the effective conductivity k* is a second-rank tensor, dependent
on the structure of the medium. We shall be concerned only with
granular materials with statistically isotropic structure, in which case

k* is proportional to the unit tensor and

<FY=-K<VT) . (1.2)

Our objective is an expression for the scalar effective conductivity k¥,
This problem is mathematically identical with that of determining the
effective dielectric constant or the effective magnetic permeabilitv of
a disperse system in which the particles have electrical and magnetic
properties different from those of the matrix.

The argument to be presented divides naturally into two main parts,
one being concerned with the‘relation between the effective conductivity
and the statistics of the structure of the medium and the other with the
analysis of the temperature distribution in the neighbourhood ofla point
of contact between two particles.

Previous theoretical work on the problem of conduction through a
packed bed of particles has assumed a regular array of spheres énd will
be referred to later. None of the previous results is accurate for

touching particles.

2.2 The exact expression for the mean flux

In chapter one we described the formalism that has been developed




in recent years for the transport properties of a statistically homogeneous

medium, For these type of materials the ensemble average of the flux
density F and temperature gradient VT are equal to averages over a large

volume, and <F> is given by

CFy=-k(TTY .+ n<S> . (2.1)

The term S, called "the particle dipole strength" is defined by

§=(-o"\z FAdR, (2.2)
Ap ’
where A, is the surface of the particle, A is the unit outward
normal to Ho and X is the position vector of a point on F%O . The
angle brackets enclosing § in (2.1) here denote an average over many
particles in one realization. The expressions (2.1) and (2.2) are
identical to equations (1 .2.5) and (1.2.7) respectively,

These relations are exact, and valid for any shape, orientation,
concentration and spatial arrangement of the particles, either random
or regular (the latter being a special case of'thé former), and they
provide a convenient means of determining the effective conductivity. In
the dilute limit n — o the distribution of E within a particle is
unaffected by the presence of other particles, and may be obtained
explicitly - for simple particle shapes; for a sphere of radius a the

value of § in these circumstances is readily found to be

— b3 Jle=) k{VT) |
3 oL+ 2. ’

giving Maxwell's (1873) expression for the effective conductivity

for spherical inclusions correct to order &§ , viz,

k*= k {1+ 3(c_<—ﬁ¢} :

t2

where ¢==é§1TGah is the fraction of the total volume that is




25

occupied by particles. An improved estimate of the effective conductivity
of a dilute dispersion of spherical inclusions which is correct to order
¢ 2 has recently been obtained from (2.1) and (2.2) by Jeffrey (1973)
by taking into account the effect of interactions between pairs of
particles on the value of S for a particle,.
Here we are concerned with the opposite limit, with ® close

to its maximum value, for which an expansion of k* in powers of ¢

'is unlikely to exist, and unlikely to be useful if it did exist. The

relations (2,1) and (2,2) are no less useful in this case.

2.3 An approximate expression for the particle dipole strength in

the case of touching particles of high conductivity

~.We now make use of the assumption that « >> 1., This of course
allows neglect of the term a—l in the factor 1 - a_l in (2.2). There
are in addition importance consequences for the integral over the particle
surface Ao' When the conductivity of the particle material is relatively
large, the tempefature gradients within particles are relatively small,
The temperature within one particle is approximately uniform, and in
general is different for different particles., The thermal flux density
across the surface of a particle is consequently of large magnitude near
a point of contact with another particle, These points of contact on
the surface of a particle are necessarily well separated, at any rate for
particles without sharp protruberances. The quantity F. N thus has large
magnitude near a few well separated points on the surface of a particle.
This suggests, and later we shall confirm it analytically, that the
total heat flux across the part of the surface of a particle that is near
a contact point is determined by the local conditions and is large
relative to the total flux across parts of the surface not near a contact
point., In other words, the integral in (2.2) is approximately equal to

the sum of contributions from the parts of A0 near each of the contact

points.




Suppose that the ith contact point on AO is at x=3%; . In

the neighbourhood of this contact point x is approximately constant, with

the value x,, and the outward heat flux across the particle surface in

~i?

the neighbourhood of the contact point is

H;= ff AdA
Aj

where JQi is an appropriately chosen portion of the surface Ao centred

on the point x.. Thus (2.2) becomes
S=~2ixiH; | (3.1)
1

the summation being over the finite number of contact points con the

surface Ao'

The flux Hi obviously depends on the difference between the temperatures
at the centres of the reference particle with surface Ao and the particle

that touches it at the point x5 This temperature difference is determined

. by the requirement that

> Hi= o, (3.2) |
1 . |

there being one such relation for each particle, In the case of a regular
array of particles the temperature difference is a simple consequenceci |
(3.2) and the geometry. But in the case of an irregular arrangement of
spheres it is difficult to use (3.2) explicitly, and later we shall be

obliged to make an ad hoc estimate of the difference between the temperatures

of two touching particles in a random array.
It also follows from the largeness of the flux across the particle
surface in the neighbourhoods of contact points that the first term on

the right-hand side of (2.1) is negligible, whence

<KF) = h<¥%iHi> ; (3.3)




‘minimum width h (figure 2.1) is small compared with the radii of curvature
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The relation (3.3) expresses the idea that most of the flux of heat between
two parallel planes occurs through chains of particles and that the
thermal resistance comes principally from the thin layers of matrix
between adjoining particles., This idea has been used before to obtain
an expression for the average heat flux by more heuristic arguments some-
times referred to as 'percolation theory'.

\ The next step is to consider the way in which Hi depends on o and qn
the conditions near the ith contact point. The next two sections are

concerned with this local problem,

2.4 The thermal flux between two particles in, or nearly in, contact

We consider here the steady temperature distribution near the point
of contact of two particles of high conqgﬁtivity at different temperatures,
More precisely, the temperature of one particle is uniform and egual to
TO far from the contact point and that of the other to T, . Just how
the temperature distribution within one particle remains steady despite
the flux across the particle surface near the contact point is immaterial for
pur present purpose. The compensating flux across other parts of the
particle surface might be concentrated near one or more points cf contact
with other particles or it might be spread widely over the surface. All
that is relevant is that the temperature within a particle tends to a
constant far from the contact point under discussion.

The particle surfaces are assumed to be rounded, with curvatures
of the same order of magnitude, ~The two particle surfaces will be

regarded as being not literally in contact but separated by a gap whose

of the particle surfaces; this additional generality involves no more mathema=-
tical difficulty, and enables us to examine separately the limits a«a—>o0

and h = 0O, The origin O of the coordinate system is at the centre of

the minimum gap and the z-axis is normal to the two surfaces. The point
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Figure 2.1 Two particle surfaces nearly in contact. The z-axis is
normal to the two tangent planes at the points of closest
approach.,
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Figure 2.1 Two particle surfaces nearly in contact. The z-axis is
normal to the two tangent planes at the points of closest
approach.
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_nn the surface of one particle that is closest to the other surface
Jw111 still be referred to as the 'contact point', The width of the

. T@mtrix layer is approximately a quadratic function of x and y, and so

bcfor an appropriate choice of the directions of the x~- and y-axes may be

‘;ﬂwritten as

o g b 5 | (4.1)

N

:;Twhen gac<-a, 'y <<-b; and in the particular case of two locally spherical
| surfaces of radii Ry and R, ,

-1
a= b.= 2R°R|(R°+ A

Note that h << (ab)%.

Perfectly conducting particles

The case o¢—>0co 1is relatively simplé, and will be considered first.

i The two particles heve have uniform temperatures T0 and T, and the

x: - temperature in the matrix layer varies approximately linearly between

~the values To‘and T, on the two sides. The 3 -component of the flux density

at a point on one of the surfaces near O is thus approximately

k(T-T,) . | (4.2)
h+xzg + Y7 .

and the total flux through a portion of the surface near O defined by

(b/a)% 2+ (a/b)%yz\d{2 is given by

2k (T - T')'( _ wk(T—T)(ab\zlu5{|+
e Fiab*

"'I .L' 2
~ wk(T- T,)(ab) {109(“—‘,—5’—71* IOSERE} 3
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for an appropriate choice of the directions of the %~ and y-axes may be
written as

bt 2% %? ,' (4.1)

\
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surfaces of radii R0 and R, ,

B
a=b= 2P‘0R| ( P\o+ ?\D .

%

Note that h << (ab)”.

Perfectly conducting particles

The case a—>0c0 1is relatively simple, and will be considered first.
The two particles here have uniform temperatures To and T and the

temperature in the matrix layer varies approximately linearly between

the values T0 and T, on the two sides. The 3 -component of the flux density

at a point on one of the surfaces near O is thus approximately

k(T-T) . (4.2)
h+x7a + Y7 '

and the total flux through a portion of the surface near O defined by

p S %
r2 = (b/a)*k2? + (a/b)?y%R? is given by

R .
BT S T‘-’)J rdr = wk('ﬂ—To)(ab\.J’:lOS{w B '}
§ & b= R(ab¥

1 4 2,
. - = ab¥ . loag R R
~ wk(T- T, )(ab) {109(_%)_. rt JOSE} ,
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1
provided we choose R? >> h(ab)”. The heat flux through the remainder of the
surface is approximately independent of h. Hence the non-dimensional
total flux across an extensive portion of the particle surface which

includes this contact point and no other is approximately

N = H = log@b¥ 4 k (4.3)
T AR T ab) - |

where K is independent of h. The value of K depends on the precise
specification of the extended portion of the surface and on the conditions
far from the contact point, and is necessarily of order of magnitude unity.
The logarithmic term in (4.3) may be said to he the contribution

to the heat flux associated with the contact point.

The leading term in the asymptotic expression (4.3) was obtained
by Keller (1963) for the case of two perfectly conducting spheres of equal
radii a by essentially the above argument. It can also be found, as
Keller pointed out by taking the limit (as h/a — 0) of an expansion in
terms of hyperbolic functions given by Jeffery (1912) for the total heat
flux betweeni two perfectly conducting spheres at different temperatures with
a (distributed) heat source in the interior of one and a heat sink of
equai magnitude in the other and uniform temperature in the matrix far
from the spheres., The corresponding value of K for this case may be found
from Jeffery's expansion to be 2.48.

Another relevant-published result is the measurement by Meredith &
Tobias (1960) of the electrical flux bethen two brass hemispheres of radius
a at different temperatures in tap water with insulating plane boundaries
so placed that the spheres were effectively part of an iqfinite simple
cubic array. The gap width was h/a = 9.6 x 10—3, from which it is evident,

as may be seen from the formulae given in the next section, that the spheres

were each at uniform potential., The relation (4.3) is therefore applicable,
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and from Meredith & Tobias's measurement of the flux we find K = 0,2

for this particular outer field.

Particles with finite conductivity

If the two partiéles are not perfect conductors, the temperature
distribution within each particle will depart from uniformity in the
neighbourhood of the contact point because in that region the thermal
flux density across the surface is large. For a large but finite the
"domain of non-uniform temperature will be small compared with the
dimensions of the particle, and so it is permissible to regard the surface
of the particle as plane., The heat conducted into a particle across an
element of area of the surface thus spreads out in an effectively semi-
infinite medium, and this allows the formulation of an integral equation
for the distribution of temperature over the surface of the particle near

the contact point., For the temperature at the surface of the upper

oo

particle in figure {(2.1) we have .
|
|
\

o
T~ T g ) s g,
2 { (-2 Cy'- O}

where g(x,33 "is the 3 -component of the flux density at a point
on the surface, This local flux density may again be estimated from the
assumption that the temperature varies linearly across the thin matrix
layer, although here the temperatﬁfe change across the layer as well as
the layer thickness is variable, On writing

Ti-»(:{‘)td) = .T; + 'E(T;--I:)Cp(x)‘d) y l -

- - A (T=

Toeg= T- +(T- Ty
for the temperatures at the surfaces of the upper and lower particles
respectively, and using the approximation (4.1) for the thickness of the

matrix layer, our integral ‘equation for £(x,y) becomes




30

and from Meredith & Tobias's measurement of the flux we find K = 0,2

for this particular outer field.

Particles with finite conductivity
If the two partiéles are not perfect conductors, the temperature
distribution within each particle will depart from uniformity in the
neighbourhood of the contact point because in that region the thermal

flux density across the surface is large. For o large but finite the

"domain of non-uniform temperature will be small compared with the

dimensions of the particle, and so it is permissible to regard the surface
of the particle as plane., The heat conducted into a particle across an
element of area of the surface thus spreads out in an effectively semi-
infinite medium, and this allows the formulation of an integral equation
for the distribution of temperature over the surface of the particle near
the contact point. For the temperature at the surface of the upper

particle in figure {(2.1) we have

1 ' !
Tixeipd— | = L SS_F;(I’q)ax,dS 4, 9
FOPT T Zmak M{(x’-xﬁw"“zfg %
where @(x,g) “is the 5 -component of the flux density at a point

on the surface. This local flux density may again be estimated from the
assumption that the temperature varies linearly across the thin matrix
layer, although here the temperature change across the layer as well as
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Ty = T, + ;2('1:_"1:)}‘(:;,5) 3 1

Toeg= T £(T- TGy

for the temperatures at the surfaces of the upper and lower particles

respectively, and using the approximation (4.1) for the thickness of the

matrix layer, our integral ‘equation for f(x,y) becomes
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o

""L'/f ‘d) dz'dﬂ' (4.5)
Ih %-_ 9_1 {coc X% (y'- @"}z

f(acnj =—'0C-

Gy ®

We have obtained explicit results only for the case of particle
surfaces which are spherical near the contact point, in which case a
and b are equal, the temperature distribution is axisymmetric, and the

integral equation (4.5) reduces to

! ’ 00
" fir) = “'_IL Jé;’\ I(z)dr (4.6)
; where
T __rdo
'Y ol r = bt
165) = ler"w- re-2rr'cosd Ej(:.——q,—ﬂ K(?r::\z) ;

K being the complete elliptic integral of the first kind. The function

I(r'/r) has an integrable singularity at r'/r = 1, and ;

2ry a8 ©_ >0
" (4.7)

- _ : I_(_ri_:_')r\, {

Z as  rp—>%0.

In non-dimensional form (4.6) becomes

f(@)_f,-f(o)l )ch' (4.8)

| ’ where

a Q

This shows immediately that when A >> 1 the particle temperature is

approximately uniform, and that when A << 1 the temperature distribution

in the particle is approximately the same as if the two particles were

{ touching; in other words we see how to judge whether a given small gap has




practical significance.

It seems not ‘to be possible to solve (4.8) analytically, but some
useful deductions can be made immediately. The length scale on which
the temperature in a particle variesis a/w, and in particular the radius
of the circle on the particle surface centred on the contact point over
which the departure of the temperature from To is significant . .is of order
a/a.,. The heat flux through a circular portion of the particle surface
centred on the contact point is an integral of the form

Sank('r,-‘z) 1=30) (4
h+ g

(4.9)

and this integral would diverge logarithmically at the lower terminal as
A — 0, were it not for the fact that f takes values near unity in

the neighbourhood of the contact point. The value of ¢ that cuts off

this logarithmic divergence is of order unity, and so the approximate

expression for the flux when A < 1 is
wk(T = T)a log oc*. (4.10)

On the other hand, when A >> 1 the estimate (4.3) is applicable, the
difference being that the .. _ log «? in (4.10) is replaced by log a/h.
The expression (4.10) answers the question posed in é:l.l about touching
particles; it appears that the heat flux depends more sensitively on
the conductivity of the matrix than on that of the particles.

The asymptotic form of the surface temperature increment, as «r/a-rco
may be found from (4.8) by replacing I(c)o) by 2 0'/o- for values of o'

in the vange 0 <00~ and by 2 outside that range, and is given by

ftor~ 2logo . (4.11)
o~

‘i . .
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This asymptotic form shows incidentally that the difference between the
heat flux through the particle surface and that for a perfectly conducting
| particle is a convergent integral which is independent of the boundary
conditions far from the contact point.

In order to obtain more detailed results and to confirm the
important asymptotic relation (4.10) we have solved the integral equation
(4.8) numerically for several different values of A ., The integral in
(4.8) was replaced by a sum involving the values of £(0) at N different
values of O .by a generalised trapezoidal rule, and these N values of
f were then determined from the N simultaneous equations expressing the
\ satisfaction of (4.8) at each of the N points. A more detailed description
of the method of solution is given in Appendix Al., TFigure (2.2) shows the
temperature distribution found with N = 90, As predicted, the curves for
different values of A have the common asymptotic form (4.11) as oc=co.

A convenient way of presenting the corresponding thermal flux across

the matrix layer is in terms of the convergent integral
Pm—j JC(C” 20-do-

The non-dimensional flux across an extended portion of the particle ‘surface

which includes the neighbourhced of the contact point is then

H=_H____ - logo + kK- P (4.12)
nk(T-T)a SR T ’

where K has the same meaning as in (4.3) and is independent of h and «.
The computed values of P are shown in figure (2.3). As A — 0, P
evidently tends to log A _1, thereby confirming the asymptotic relation

already found. The numerical results show further that

! 109% - P = Iogo&— 2.9 - 0.1 (4.13)

—
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Figure 2.2 The calculated departure from uniformity of the temperature
at the surface of a locally spherical particle either separated
from another by a minimum distance h specified by (= «?h/a)
or in contact with another over a circle of radius ¢
specified by B(= ap /a).
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Figure 2.3 The change in the heat flux between two particles due to non-uniformity of the
temperature at the particle surface.
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when A << 1, and that this remains quite an accurate approximation for
values of A as large as unity. The constants 3.9 and G.l are parameters
of the inner field, and are independent of conditions far from the contact
point. The term linear in A does not have practical value but plays

a part in a later discussion ( §2.5).

The non-dimensional heat flux between two touching particles with

locally spherical surfaces is thus

H,. o= logt+ K =39, (4.14)

where K is a number of order unity which depends on the outer field
conditions and is independent of o and of whether the particles are
actually touching.

Deissler and Boegli (1958) repbrt having made a relazation calcula-
tion of the temperature distribution inside and outside a sphere in point
contact with a second sphere, with boundary conditions corresponding
to the sphere being part of an infinite line of touching spheres in a
circumscribing insulating cylinder, for several values of a up to about
103. They giver their results in the form of a continuous curve, which
we have replotted in figure (2.4) for comparison with (4.14), Deissler
& Boegli's results are less accurate at the larger values of &, for
which the temperature gradients are very steep, but they are consistent
with the linear dependence of the heat flux on log az at large values of «
expected from (4.14). The value of the constant K corresponding to the
linear asymptotic relationship drawn in figure 4 is - 0.2, which is not
very different from the value 0.2 inferred from the measurement of heat

flux by Meredith & Tobias (1960) for a slightly different outer field.

2.5 The thermal flux between two particles with a flat circle of contact

In practice it may happen that a compression load is imposed on a

granular medium (perhaps arising from the weight of the particles) and that
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Figure 2.4

logeec

Heat transfer between two touching spheres in a linear
array, found by Deissler and Boegli (1958) from a
relaxation solution., T, =T, 1is the difference
between the temperatures at the centres of the two
spheres.
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the particles are préssed together. 1If the particles are elastic they will
deform slightly and will develop a flat circle of contact whose dimensions
may be related to the load by the simple theory develcped by Hertz many
years ago, Such a‘change in the nature of the contact between particies
will obviously have a radical effect on the bulk conductivity (an effect
which is utilised in the old carbon microphone). The amount of the elastic
deformation of particles in a random packed bed is unlikely to be either
observable or calculable with much accuracy, but we shall consider here
the thermal flux across a small flat circle of contact in order to
illustrate the importance of deformation of particles.

According to the Hertz theorj+ (see Landau & Lifshitz, 1959), two
touching elastic particles which are locally spherical with radii Ro
and Rl’ and for which E is the Young's modulus and vV Poisson's ratio,

will develop a flat contact circle of radius
& 2 +
e — pO{ 3(4—6\) 26}3

when a compression force P acts on each particle normal to the common
tangent plane at the point of contact, where‘a_= 2R0R1/(RO+R1) as before,
(Formulaelfor the elliptic surface of contact between bodies which afe

not locally spherical are also available but are rather more complicated,)
The theory also yields an expression for the deformation of the particles in
the neighbourhood of the contact circle, and from this we find that the

thickness of the matrix layer between the (deformed) surfaces of the two

particles is LCQ) e 2/a for e$ r << a (see figure25), where
n = %% and
_ -1 = < A2 A% )
Lm)= %{qltcm (= 0* + (712- 12 - 2tan (%1% } (5.1)

Which is similar to that used in 2.4 for the thermal flux problem, in
that the undeformed particle surface is regarded as plane and an integral
equation for the surface displacment is solved.




Figure 2,5 Definition sketch for two surfaces pressed together to
, form a flat circle of contact of radius. ¢ . 1In the
‘undeformed state the surfaces are locally spherical, with

radii of curvature R, and R, , with a = 2R,R, /(R, + R,).
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The function L has the asymptotic forms

' 3
Lin)= 2:L0(n-0* + o((vz—i)g-) for N-1<< (5.1a)
indicating the existence of a cusp at T = 1, and
Lp=n2-2 + o™y for 1>>1 . (5.1b)

The second of these asymptotic expressions is a consequence of the
vanishing of the deformation at large distances from the contact circle
and the fact that the distance between the centres of volume of the two
bodies decreases by 2 p2?/a under the action of the compressive load.

If the temperatures of the two particles far from the contact region
are T0 and T, 0s before, the common temperature over the circle of contact

is %(T0 + T ); that is,

Fery= for rge:

When the radius of the circle of contact is so large that the heat flux

through the thin annular matrix layer is negligible by comparison with

that through the contact circle, the distribution of temperature inside

the two particles is approximately the same as that of the velocity potential
in irrotational flow of incompressible fluid through a circular hole in a
plane wall, The solution to this latter problem is known(see Lamb 1932,

§102), and shows that the normal flux density at the contact circle is

f;(r*\ = cxk(-ﬁ- 7;) (5.2)

and the total flux across the circle of contact is

e
H, = J }«;o—\zw&r - 2o¢k(T,—T°)Q. (5.3)

o
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[ Comparison with (4.14) suggests that the value of the radius of the
contact circle for which the flux across the contact circle is comparable

with that between two particles in point contact is of order

| a_logx
: =8

This may be an exceedingly small length in practice, indicating the
extreme sensitivity of the bulk conductivity of a granular material to

a little compression of the particles,

In order to obtain more general reéults for the total flux from one
particle to another (the expression (5.3) being the flux only for @
large in some sense), we reformulate the integral equation (4.56) for the
temperature at the particle surface and again solve it mathematically.
Outside thercontact’circle the normal flux density at the surface of either
particle is approximately k(T_ - T+) a/{zzL. Hence the expression for the
temperature at the particle surface, again regarded as plane, in terms

of simple sources distributed over the surface is

o — -
u(@:-fs(rz)I(‘q/q)c]Q . 3L

o] |

fﬂzﬁ T (5.4) |
Llnﬂ

where m =r/p n'=1r"lo ,B=oap/a and

S(m = -p F;Cﬂ
<k (T - Te)
is the non-dimensional normal temperature gradient at the circle of
contact,
The asymptotic form of f(r) for r large may be seen, by the same

reasoning as led to (4.11), to be the same as in the case of particles in

point contact, that is, in terms of the new non-dimensional variables,

fimy~ 210980 . a5 n > . (5,5)
B

'i |
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Thus £(r) - fo(r),‘where fo denotes the value of f for the case of

7as;§¥£iélés in point contact, falls off more rapidly as r increases than

f(r), which suggests that an integral equation for the difference f£(r) -

r), will be more amenable to numerical solution than the one for £(r).
The integral equation for f(n ) - £ (q ), = £, (1) say, is found from

5 4) and (4.6) (with h = o) to be

PeCn) = -_(9.(71)1(71/@&71 - —S Tnf__?l;_ It dn

| o (5.6)
b L ! - V1Y) dny
E +5J‘{' ﬁ() ,’.la) n.z} gl TL 7
i where
[
g =gy + 1= %D, (5.7)

B’

: ihis is not an integral equation for f, (Q ) in the analytic sense, since
. it involves also the temperature gradient g (7 ) over the interval o < 7 < L.

 However, over the same interval we have

fap = 1-%m

so that there is no more than one unknown quantity at any given value of Uk
~ The set of simultaneous equations corresponding numerically to (5.6) may

: therefore be solved both for the value of g ,(n ) at a set of points in

Sl ol A -»=»-«rn=-s‘wf-1>r—vf—'-’4f—=':’—’w‘—r’=yv~f—==—==$=1——ﬂﬁ——t:—ﬁ =

- the range o < m < 1 and for the value of f,(n ) at a set of points in the
- rangsl {¢Zm < oo , The details of che method of solution and the
accuracy of the computed values are given in appendix Al.

The distributions of temperature at the particle surface found from
- this numerical solution of the integral equation for § =1 agd B = 10 are
shown in figure (5.2) for comparison with the case of particles not in

~ contact. (We have also solved the integral equation for § = 0.0l, 0.1 and

r ‘1‘ [ i aaiaai e St R T TR A S T R

100.)

e Iy
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Thus £(r) - fo(r), where f0 denotes the value of £ for the case of

I particles in point'contact, falls off more rapidly as r increases than

f(r), which suggests that an integral equation for the difference f(r) -

fo(r), will be more amenable to numerical solution than the one for £(r).
The integral equation for £(7 ) - fo(q ), = £, (1) say, is found from

(5.4) and (4.6) (with h = o) to be

—_| ! : [ f ) ) )
£ = 5(9,(@1(71/@&7 ”'ﬁ‘%‘ Iny)dn

0 | (5.6)
L\r N - d
+ﬁ g 1= JL;( )}{L'rl) n}lﬂ/)q )

where

- - £.o (5.7)
gM =gm+ 1= %0,
Bn*

This is not an integral equation for f (Q ) in the analytic sense, since
it involves also the temperature gradient g|(TL) over the interval o < 7 < 1,

However, over the same interval we have

fm = 1-5m - |

so that there is no more than one unknown quantity at any given value of N
The set of simultaneous equations corresponding numerically to (5.6) may
therefore be solved both for the value of g'(q ) at a set of points in
the range o < M < 1 and for the value of f,(n ) at a set of points in the
rangs 1 & m <o The details of the method of solution and the
accuracy of the computed values are given in appendix Al.

The distributions of temperature at the particle surface found from
| this numerical solution of the integral equation for B =1 aﬁd B = 10 are
shown in figure (5,2) for comparison with the case of particles not in
contact, (We have also solved the integral equation for § = 0.0l, 0.1 and

100.)

—
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The results for the heat flux from one particle to another may
conveniently be presented in terms of (a) the flux across the contact circle,

which in non-dimensional form is

°
Ngy=_H I N S Fcryenrdr (5.8)
P ARG T T Ta )

= -2g{gmndn

and (b) the difference between the flux across the matrix layer and the

total flux between particles in point contact, viz.

© v
AH (p) = AHa - 2[{ 1=F) - 1=h @ ndn. (5.9)

k (T;-T,)a ¢
(The matrix layer for particles with a circle of contact extends 6ver the
range v > 1, but since f(n ) =1 for " M < 1 in that case the contribution
(b) can conveniently be written as a single integral over the range
0 &M <©C ,) The total flux across an extended portion of the sphere

surface which includes the contact circle is then seen from (4.14) to be

ﬂk(}t:—'—— i = H@+AH (P +loga™+ K -39 (5.10)

where K is a constant determined by the outer field as before and H_ (£
and Zl}ﬁiﬁ) are independent of the outer field.

The values of ?Q and ZSFk‘ calculated for B = 0,01, 0.1,
1,10 and 100 are shown on a log - log plot in figure (2.6).

The asymptotic behaviour of H c(B) as B— oo has already been
given in (5.3). And for . ZX}{m we note that the only part of the expression
(5.9) which has large magnitude when B >> 1 is the integral

_.gfl-—({'\g(ﬂﬁ d'rz
J T
[a}

Since f << 1 for r > a/a, (1 - fg/Wz is approximately equal to 7 -1 for
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Figure 2.6 The thermal flux between two particles with a flat. contact.circle of radius o .
H.is the non-dimensional flux across the contact circle alone.
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no > B-l and the integral is asymptotically equal to -2 logB as § —00

We thus expect the numerical solution to be compatible with

H(p~ 28 and AH (gy~-2logf 85 B >co. (5.11)
“ .

As noted earlier, the total flux is dominated by that through the circle
of contact, and Hew 287, ,as B ™ o . We have not taken

-our numerical soluiion to large enough values of  to exhibit the

asymptotic forms (5.11) although the trend of the values of K . is
clearly in accordance with (5.11). The difficulty in the numerical
solution at large values of  is that a very large number of grid points
are required for the solution of the integral equation (5.6) since the
functions g and g, vary with increasing rapidity near the edge of the
contact circle as B —®

It appears from figure (2.6) that both H . and AH o Vary

quadratically with B when B is small. More specifically
H, ~ 0.22p* and AH = - 0.05" for p<< . (5.12)

This common behaviour is a consequence of the fact that for small P the
length scale on which the normal flux density at the particle surface
varies is a/a and that the flux density is approximately constant over
the contact circle and independent of O . 1In the case of H o» the
quadratic dependence on B then follows directly from the dependence of
the area of the contact circle on .© . In the case of AH o Ve

need to refer back to the results (4.12) and (4.13) for the total flux

between two particles with a gap h such that ®2h/a << 1, Provided

0.®h/a << 1 for separated particles and a@ /a << 1 for particles with

are approximately the same in the two cases and the total flux differs

| .

i . a circle of contact, the flux density distributions over the region r < a/a
| s .

l

\
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from that for two particles in point contact primarily because the matrix

layer is thicker by a small amount h everywhere outside the region r < a/a

in the case of separated particles and thinner by a small amount 2¢ 2/a (see

51b)) in the case of particles which a circle of contact. (This may be
_proved by comparing the integral equations for the normal flux density

in the two cases.) The asymptotic formula (4.13) obtained from a previous

numerical calculation holds regardless of the sign of h, from which we

deduce that

' 2
H (B + DH (B = Ot & %e* , or 0.2p

when B << 1, which is in agreement with (5.12). The quadratic dependence

of both A . and AH o o0 B when B << 1 is thus accounted for.

2,6 The effective conductivity of a granular material

We return now to the formulae in § § 2.2, 2,3 for the average
thermal flux through a material consisting of touching, or nearly touching,
particles of high conductivity embedded in a matrix. The expression
(3.1)for the thermal dipole strength of a particle was based on the
supposition that dominant contributions to the‘flux across the surface of
a particlé are made near each contact point. The analysis in the previous
two sections has confirmed this supposition for the three cases, (a)
particles separated by a gap of minimum width h, provided that h/a <1
where a"1 is the mean curvature of the two locally-spherical surfaces,

(b) particles making point contact, and (c) particles pressed together
aﬁd in contact over a circle of radiu; 4 ( << a). For all three of these
types of contact the non-dimensional heat flux Hy /7 k(Ti—To) a across
the particle surface in the neighbourhood of fhe ith contact point
(connecting particles of ter‘nperatureAT0 and Ti) is large compared with
unipx and the total flux across the much larger part of the particle

surface that is not near a contact point is of order unity. In cases
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(a) and (b) the heat flux through the contact region is only logarithmically
large, and the arithmetical requirements on a/h and o respectively are
that they must exceed unity by several powers of 10.

The expression (3.1) for S may be written as

= T[kz ,:_HL (AT-T .
g Ay e ALY Do L

e

N

The factors X and (Ti—To) depend on the location of the conEacf point
on the particle surface and a; depends on the particle geometry, so

that it will be difficult to obtain specific results without making
restrictive assumptions about the geometry of the particle arrangement.
It is therefore worth noticing at this stage that the only part of the
expression (6.1) that depends on a is the flux Hi’ and that in the . case
of an array of particles making point contact Hi is proportion to log «.
This proportionality carries through to the average over a large number
of parﬁicles, showing that <F> (see (3.3)) and k* (see (1.2)) are pro-
portional to log a, for any given shape and (statistical) arrangement of.
the particleé in point contact.

We now make the following assumptions, mainly about the nature of
the particle arrangement, in order to be able to determine the average value
of § over a large number of particles:

(a) The particles are spheres of the same radius a , so that 2, = a
for all contact points‘on all particle surfaces and ‘fi\ = a, |

(b) The local geometry is the same at all contact points, i.e. there
is the same minimum gap width h or the same contact-circle radius

{c) The temperature difference Ti - To is equal to 2§i.<§7T>, i.e.
to the difference between the temperatures at the two sphere centres in a
temperature field which is exactly linear with gradient <V T> everywhere,

This will not be correct for a random arrangement of spheres, although

it is evidently true in some average sense.
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With these assumptions (6.1) becomes

’

S = awoskH%ﬁiﬁ"(VT> (6.2)

>

where 31 is the unit outward normal to the particle surface at the ith
contact point and H , the non-dimensional heat flux across the particle
surface in the neighbourhood of a contact point, is a function only of «
and of either h/a or @/a, The avefaging of S over a large number of
particles is now concerned solely with the statistics of contact points.
The averaging is redundant in the case of a regular arrangement
of spheres (aéd the above assumption (d) is here valid exactly), and
the effective conductivity can be determined immediately from (2.1) and
(6.2). For each of the three possible types of regular arrangement of
close-packed spheres - simple cubic, body-centred cubic and face-centred
cubic - ij%ﬂ is proportional to the unit tensor and

1 i

; <VT>Z(n .m)L (6.3)

where m is an arbitrary unit vector, whence it follows from (1.2) and

(2.1) that

Ko 30K (6.4)
k 2 i

where ¢ =Hkwa® n is the volume fraction occupied by the particles.

From an elementary consideration of the geometry of the three types of

array we find the results shown in table 2.1,
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type of number of
; arrangement volume fraction | contact (n,.m)?2 k*/k
‘ of spheres < points = :
simple cubic array 0.524 ( T /6) 6 2 1.57
body-centred " i 0.680 (3T /8) 8 8/3 2,72
face-centred " . 0.740 (T /3(2) 12 4 4,45
random, isotropic 0.63 6.5 .2 . 2.0

Table 2.1

TheAconductivity of close-packed beds of spheres,

_

We are interested primarily in the random arrays that are common in
practice. It seems likely that many random close-packed arrays of uniform
spheres are statistically isotropic in geometrical structure, and that
contact points are distributed with uniform probability over the surface

of a sphere, at any rate approximately., On this basis

<§)= 2ﬁ03kH3lp<VT> (6.5)

where p is the average number of contact points at the surface of a

particle, whence

h L ?'\_q)p.’H_.l (6.6)

k

This formula is actually valid also for the above three types of regular
arrangement of spheres, bécause, although the distribution of contact
points over the surface of a sphere in one of these regular arrays is

not statistically isotropic, it has a sufficient degree of uniformity to

be indistinguishable from isotropy in a representation by a second-rank
tensor,
A number of observations of the statistical properties of random » ‘

close-packed (i.e. incompressible) arrays of hard spheres have been made,
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mostly in the context of the molecular structure of liquids. If many

spheres of uniform size are simply poured into a vessel, preferably

! - one with irregular walls to prevent regular arrangements from formiqg,
it appears that thé volume fraction of the spheres is iikely to be abou;
0.60, and that if the vessel is shaken to allow some readjustment of the
spheres the volume fraction may rise to about 0.64 (Scott 1960). The
earliest count of contact poihts seems to have been made by Smith, Foote

& Busang (1929), who found that the average number of contact points on

' a sphere varied with the volume fraction of the spheres, beiné larger

' for large volume fractions as one would expect. The values of & for
their different packed beds of spheres varied between 0.55 and 0.64, and
the average number of contact points varied between 6.9 and 2.5, roughly
linearly with (P . Bernal & Mason (1960) later made a count of the
number of sphere pairs with separation less than 0.05a in a random array
with 0] equal to 0,64 and found that-twice the average number per
sphere was 6.4, A much larger number of spheres in a random close-packed
array was generated by a computer (in a manner which simulated pouring
into a vessel) by Adams and Matheson (1972), who found @ = 0.628 and,

judging by their figure 5, an average number of contact points per sphere

(defined as a separation smaller than 0.04a) equal to 6.6. Our interest

is in the average number of points on a sphere surface at which theis is

either actual contact or a separation very much less than 0.04a, which

will be a little less than the numbers given by Bernal & Mason and Adams

& Matheson but not by more than 0.1 if the probability of separations

between O and 0.,04a is estimated on the basis of a uniform pair distribution
function., For a packed bed of spheres with ® = 0.63 we thus have an estimate
of 9.5 for the average number of contact points from the work of Smith,

Foote & Busang, and much- lower estimates of 6.3 and 6.5 from that of

Bernal & Mason and Adams & Matheson respectively. Further work to resolve

this discrepancy would be useful.

_
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1.6

The volume fraction and the average number of contact points on
a sphere surface in a random close-packed array of spheres no doubt vary
with the method of manufacture, perhaps by 5 or 10 per cent, but for
the purpose of comparison with regular arrays we shall adopt the values
suggested by the work of Adams and Matheson, viz., @ = 0.63 and p = 6.5,
giving the value of k¥*/k shown in table 2,1, The assumption (c)
above concerning the temperature difference of spheres in contact is only
an approximation in the case of a random arrangement, but seems unlikely
to introduce an error in k*/k of more than ten or twenty ﬁer cent.,
The effective conductivity depends on particle shape mainly through the
dependence on the number and distrvibution of contact points on a particle
surface, and should not vary much for different particle shapes provided
they are rounded and globular.

The fact on which the bulk cbnductivity depends most sensitively is
the non-dimensional heat flux across a particle surface in the neighbourhood
of a contact point, and we conclude this section by summarizing the
results obtained in §2.4,42.5 for the flux across the region of contaét

between two locally-spherical surfaces:

4 H
H (= wakw)

minimum gap h between surfaces 10(:} % - P
surfaces in point contact 109a§

surfaces with a constact circle of radius }{‘(‘53+A}((f5)+ 103“41'
m

P is given as a function of A (=" /2) in figure (2.3) and X, and
Zﬁ@gn as functions of B (= “€/a) in figure (2,6), These expressions
for H are approximate only, and the error in each of the three cases

is an additive number of order unity which is not determined fully by the

conditions near the contact point,
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For the special case of a random array of uniform spherical
] particles making point contact with each other, and with Adams & Matheson's
value of the average number of contact points, we have the simple

approximate formula

1 * .
| K = 4.0 log« . (6.7)
\
| k ,
This is leading term in an asymptotic expansion of k*/k as o - co 3

and the next term is a constant of order unity which depends on the

(statistical) geometry of the arrangement of the spheres,

2.7 Observations of the effective conductivity of granular materials

A number of observations of either thermal or electrical conductivity
of a bed of randomly packed spheres in contact have been reportedkin
the literature. The experimental conditions for these observations are
summarized in table 2,2, and the resultg are shown in figure 2,7. The
beds were made in different ways, and the values of the particle volume
fraction and average number of contact points probably vary from one to
another, Some scatter of the points is therefore to be expected., It ic-

also possible that the observations are subject to some uncertainity at

the larger values of a, since the temperature or electrical potential
‘ gradients near points of contact between the spheres are of the order
of az.times the mean gradient and so were exceedingly large for some of
the measurements, Turner (1973, 1976), who was the only one to measure
electrical conductivity, reported that it was very difficult to get
reproducible results for values of « above 103.

W

We show on the figure the straight line

—E: a.ologoc;li (7.1)

—
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Figure 2.7 Measurements of the effective conductivity of random close-
packed beds of spheres of uniform size immersed in fluid.
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0.5-1,0mm
or (ii)
0,15-0, 30mm,
in aqueous
solution of
NaCl.

y Vol.
Type of fraction
conduction Material of spheres. Apparatus
Kling (1938) thermal steel spheres 0.62 Spheres con-
3,8mm diam,, tained
in various between co=~
gases, axial cylindexrs
of radii 152mm
-and 352mm,
, ‘Heat source
in inner
cylinder,
.steady state,
Leyers (1972) thermal steel spheres 0.605 As above, but
l,1lmm diam,, cylinder radii
in various 2mm. and 7, 5mm,
gases,
Schuman thermal steel shot, 0.625 A long cylin-
& Voss (1934) av, diam, der of radius
1,3mm, or 30mm contain-
lead shot, .ing the shot
av, diam. was plunged
2,6mm, in into hot water
various gases., and the tewmpatr-
ature on the
cylinder axis
measured as a
function of
time.,
Turner (1973,1976) electrical resin beads, (i) 0.60 The resistance
dia.m (i) (ii) 0.62 between two

electrodes
immersed in a
packed bed in
a cydliner was
measured;
alternating
current,

Table 2.2 Observations of
beds of spheres

constant chosen to achieve

a .reasonable fit with the points.

effective conductivity of random close-packed
reported in the literature.

which has a siope given by the asymptotic relation (6.7) and an additive

The formula

(7.1) thus has partial theoretical basis, and provides a reasonable
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representation of the dafa for different packed beds of uniform .touching
spheres when a >> 1. If we had accepted the estimate of the average
number of contact points on a sphere in a packed bed given by Smith, Foote
& Busang (1929), the coefficient of loga in thé asymp;otic relation
(6,7) would have been about 50 per cent greater, The agreement with the
experimental points shown in figure 2.7 would then not have been as good.
There is even less reason to expect observétions Ef the effective
conductivity of be&s of particles of non-spherical shape to show a dependence
on oo alone, but the extent of the variatioq of effective conductivity for
given o is surprisingly small., Diessler & Bpegli (1958) have reported some
measurements of the conductivity of three different powders, the particles
of which are generally rounded and globular, although not uniform in size
and shape. The variation of a for each powder was obtained by change cof
the ambient gas. The measured values of the volume fraction of the
particles varied by about 10 per cent for each of the powders, corresponding
to different states of compaction, but all lay within the range 0.50 - 0.64,
The observed effective conductivities tended -to be higher for larger
particle volume fractions of a given powder, and there is some scatter of

the points, but all the measured values lie within 50 per cent of those

givén by the simple formula (7.1).
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3.1 1Introduction

This chapter is concerned with the conduction of heat or electricity+
through materials which consist of closely packed fibres immersed in a
matrix of relatively low conductivity. If is assumed that each fibre
has a circular cross-section.of uniform radius R, and.that the radius of
curvature of the axis of each fibre is everywhere much greater than R.

As a result of this curvature, the direction of the tangeﬁt to the axis
of a fibre varies with position along the fibre, but we assume that these
variations in direction are only slight, and that the fibres are approx-
imately alligned. Transformer windings and electrical power cables ére
examples of this type of material,

If the fibres were straight and parallel, neighbouring fibres
would be in contact along a line, but as the fibres are only nearly straight
and nearly parallel, contact between neighbouring fibres occurs only at
discrete points. It will be shown that this has a very significant effect

on the conductivity,.

We assume that both the bulk temperature gradient <VT) , and
the bulk flux density F are uniform and perpendicular to the mean
fibre direction. If the arrangement of the fibre cross-sections is

isotropic++, the effective conductivity tensor k has the form

. k¥ o o
3 %
(8:k*&)={0 K o (1.1)
0 o K,
where (éné“%j\ is a cartesian basis, and %3 is the unit vector

in the mean fibre direction. We are concerned here with materials which

g " ¢ X
are macroscopically two-dimensional, and therefore the components of ﬁ

+ For the remainder of this chapter we will use thermal notation.
Unless otherwise defined, symbols have the same meaning as in chapter 2.

++ i,e., the statistical properties of the cross-sectional geometry
are invariant under rotations in the cross-sectional plane.
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do not alter with position along the fibres. Our aim is to obtain an

expression for K*,

There have been relatively few investigations into the problem of
conduction across matg?ials-compoéed of fibres, and in every case the
_fibres have,beén“approximated by perfectly conducting parallel circular
cylinders. Rayleigh (1892) derived an expression forlthe conductivity
of a square array of cylinders which essentially provides the first few
terms in an expansion of'k? in powers of R/c, whére R is the cylinder
radius and c¢ is the distance between the centres of neighbouring cylinders.
An additional term in the series was obtained by Runge (1925), but mény
more terms are needed if the egpansion is to provide useful estimates of

k* at the volume fractions which concern us here.

The work of Keller (1962) is of more relevance to our investigation.

He obtained an expression for the flux per unit length across the surface
of one of a pair of nearly touching, perfectly conducting parallel
cylinders, and from this derived a formula for the conductivity of a
square array of such cylinders, In the following section we extend this
work, and derive an expression for the flux per unit length between a

' - pair of cylinders of finite conductivity which, unlike Keller's expression
remains finite when the cylinders are touching.

As in chapter 2 we assume that most of the heat flow between the
boundaries (in the plane normal to the mean fibre direction) occurs along
chains of particles, and thus the dipole strength of each particle is
dominated by the contributions from the small portions of the surface
which are close to neighbouring fibres. These small portions of the £fibre
surfaces will be called "contact-regions".

With a suitably chosen cartesian coordinate system  (x,4+3) ;

the thickness of the matrix layer near the point of contact between a

pair of fibres is given by

—
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h(x,g\: %‘ +%1 3 (1.2)

where the 3 axis is perpendicular to the common tangent plane at the
point of contact between the two surfaces. The quantities b and a

are determined by the local fibre geometry, and we take

l , b>a

If the pair of fibres in the neighbourhood of the contact point
can be approximated by a pair of cylinders with inclined and non inter-

secting axes, then b and a are given by

a= Rycos*(ey),
(1.3)
b= R/sin}es) - |

2 where © 1is the angle of intersection of the projection of the cylinder

| axes on the ﬁx,g) plane. This is illustrated in figure (3.1),

For the type of materials that interest us, the fibres are nearly aligned,

that is
6 <X
in which case
o=R
, (1.4)
; and b~ 4R
: %

If the axes of the pair of fibres are coplanéir in the neighbourhood
of the contact point, then it is the curvature of these axes which
determines the thickness of the matrix layer. Denoting the local radii

of curvature by b, and b, respectively, we have

o= R ]

(1.5) l
|
|
|
|




Figure 3.1 A pair of inclined cylinders. The origin of the x,4,3
coordinate system is at the point cf contact between the
cylinders and the 3 axis is perpendicular to the plane
which is tangential to the surfaces at the contact point.
The angle © 1is the angle between the projections of
the cylinder axes on the x-y plane.
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From (l.4) we see that the expressions (1.5) for a and b are valid if

o< 2R (bi+h,) .
‘ bl b?s

The expressions (1.4) and (1.5) coxrespond to limiting cases, and in
general the quantities a and b will depend-on'both the relative
orientation of the fibre axes and their curvature,

For the type of materials which concern us here,

o<<i and (b,b)»R

and therefore

a<<b. ‘ (1.6)

for each contact point. The expression (2..42) for the flux across 2
contact region is only valid if a and b are the same order of magnitude,
and in order to derive an expression for the flux in the case a << b,
we begin by noting that this constraint implies that the temperature field
is only slowly varying in the y direction. Therefore we may -apprcoximate
the fibre sur%aces locally by a pair of parallel circular cylinders of ;
radius a, separated by a matrix layer of thickness
+
h(t&*rp_é_.

} (1.7)

where h(y)= 4,
b

3.2 The Flux across a contact region for the case of parallel cylinders

The aim of this section is to derive an expression for the flux per
unit length H(a,%) passing between a pair of circu1a£ cylinders of radius
a, conductivity ok, and minimum separation distance h. 1In §3.3 we
integrate this expression (with h = y2/b) with respect to y, and obtain

a formula for the flux across the contact region of one of a pair of




55

neighbouring fibres, Using this result, we derive an expression for the
conductivity of a material compopsed of layers of parallel fibres, and in
§3.4 we find the o dependence of k* for the class of materials described
in §3.1.
The temperature varies 1inear1y across the matrix layer provided
tha; both h and x are << a, and for a pair of perfectly conducting

cylinders, H is therefore given by

H(oo, hy= k(T- jax =7wk(T-T) /4 (2.1)
(o, by = K (T, -r,,)‘wm}_l . Jﬁl ;
a

where T,  and To denote the temperatures cof the fibre pair, as found by
Keller (1962). The limits of integration in this expression can here

be formally extended to (tOO ), since the integral is dominated by the
contribution from a small regionsurrou@ding the origin. There is no
necessity to provide a precise definition of the contact region; it is
sufficient to choose any portion of the surface provided that it includes
that part which makes the dominant contribution to the integral for H.

The expression (2.1) for the flux per unit length across a contact
region, shows a much stronger dependence on h than does the equivalent
expression (2.4.3) for the flux between a pair of spheres, which varies as
log(a/h). This implies that the thermal dipole strength of a cylinder
is dominated by the contributions from the contact surfaces at much larger
separations than are required for dominance in the case of spheres,
However, the separation distance at which cylinders of finite conducitivity
cease to have uniform temperatures is likely to be greater than ta/a?),
the value found for spheres, both because the flux density is much larger
than for spheres with the same separation, and because the heat which
passes through the surface of a cylinder can spread out only in two

dimensions.,
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The Derivation of the Integral equation for the temperature on a contact

region
To determine the flux per unit length H passing between a pair of
cylinders for the case a >> 1, we must first determine the tempetature

distribution over the opposing surfaces of the two cylinders. As in

the problem of two locally-spherical particles ( §2.4 ) we formulate an
‘ integral equation for this temperature distribution.

The region surrounding the contact point is illustrated in figure

(3.2). The fibre which lies in the region 3 > O will be called the

| "upper fibre", and the other will be called the "lower fibre"., Far from
the contact region the temperature of the upper fibre is approximately
To and similarly the temperature of the lower fibre approaches the
constant value T, . The temperature varies linearly across the matrix
layer and the heat flux across the layer is determined by the temperatures

on the two fibre surfaces.

We assume that the region of non-uniform temperature within each of
the fibres is so small that each fibre may be treated as a half-space,

| The temperature in the upper fibre, therefore satisfies the boundary

condition
| T . (T =T (2.2)
j 93 (h+ X7)
’ on 3£ 0
where T, and T. denote the temperature on the surfaces of the upper

and lower fibre respectively. The other boundary condition is

T-> 'I; - - (2e3)

far from the contact point.




THE UPPER FIBRE

THE LOWER FIRRE
T=T,

Figure 3.2 The thin matrix layer between a pair of nearly-touching
parallel cylinders., The y-axis is parallel to the cylinder
axes.,
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Unfortunately the two boundary conditions (2.2) and (2.,3) are
incompatible, for since most of the heat enters the cylinder through a
small region surrounding the contact point, the temperature field far
from this point is aéproximately that due'to a line source. The
temperature field of a line source diverges logarithmically at large
distances and (2.3) is violated. However, at distances of order a from
the origin, this logarithmic divergence is cancelled by similarly
divergent contributions from thé other contact regions on the surface
of the fibre, and thus the boundary condition (2,3) is invalid.

An appropriate matching condition is required if T is to be '
determined uniquely, but as the outer solution is not available, we

replace the boundary condition (2.3) by the constraint

Te)-T, l < (2.4)
T(0)— T

if J?;::EZ is of order a.
Although this is not sufficiently precise to enable us to determine
T; uniquely, it will be shown that the uncertainty in T4(O) which
results is negligible if « is sufficiently large.
A solution of Laplaces equation in two-dimensions, which satisfies

the boundary condition (2.2) is given by

oD

Tee L =51 L(hf e gl e

o

(2.5)

(x-x'Y"+ 3

where § is a constant, The value of B is not determined by the "inner

boundary conditions" but we can estimate it as follows., At large

distances from the boundary ( 3 = a), (2.5) becomes, approximately
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00

T, D-T, ~ L jT(x'ﬁ-T.(x')dx‘ logB [x3 dx’
3T~ o) B e ') logp s

o H k) 10g (T ) (2.6)

21rkoC

which is the temperature field of a line source, At distances of order

"a from the origin the condition (2.4) must be satisfied, and as

T 0N =T, is of order j:'fn , we obtain, with the aid

of (2.6), the constraint

H(oc,%ﬁ 109 (BN «
2wk (Ti- T,)

Ly

where N is a number of order 1. If we choose B =.é , log (BNa )

is of order 1 and the constraint becomes

H@X,h@\
2mock (T7=T,)

K.

(2.7)

Forvthe remainder of this section we take =.é., and later we will showv
that the condition (2.7) is satisfied-if o is sufficiently large. This
choice of B is obviously not unique; B = %} where M is a number of
order 1, would be an equally appropriate choice. Later in this section
it will be shown that if the condition (2,7) is satisfied, then the effect
of such a change in B on the value of H is negligible,

If the point (x,3) lies on the surface of the upper fibre,

the integral equation (2,5) reduces to

- - __'_ N - . ! "1 ! )
T =T = = STﬁux’:Fgm .oﬁ[lagaa_u}&x ; (2.8)
e %

where we have replaced § by /g . A similar equation may be formulated
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for the temperature on the surface of the lower fibre, and combining

this expression with (2.8) we obtain

oo . A
T -Teo - [T-T1= 2. S L -To Joglx-x! du' (2.9)
e ot x'* -
ET-) 'a
On introducing n= % as the non-dimensional distance, and.defining

the non-dimensional flux density afq} , by

gl = (T.-T)a \ | (2.10)

”

«(Tom T X"y
a
we get an integral equation for 9(%3

00

| = & (%+ g - %ggfﬁ’)bgm-q‘l dn's (2.113

The numerical solution of the Integral equation (2,11)

We have solved equation (2,11) by a quadrature technique, similar
to that employed for the solution of equations (2.4.8) and (2.5.6). The
details of the method of solution are given in appendix A2,

A convenient way of presenting the numerical solution is in terms

of the non dimensional flux :H(oc)}%’) defined by
o
Hiw hy= _Ht,he) = ocgg(vpdq- (2.12)
0 k(T-T) <50 :
The computed values of He, %%) are illustrated in figure (3.3)

4
for the case ¢« = 10 . From the computed values cf J{(IOA, h/a) it is
possible to obtain the value of H(«, h/a) for any o and h/a without

having to solve equation (2,11) again. To show this, we introduce

another non-dimensional coordinate




5
5
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o
)
\
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‘ Figure 3.3. The non dimensional flux M(x> h)  between a pair of "

_ parallel cylinders as a function of separation h, for a = 10
| The points represent computed values. The asymptotic
‘ ' approximation (2.26) for o = 10 is shown by the broken
line,

|
|
!
|
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|
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|
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0= OC"’Z(:::%C)

and non-dimensional flux density

'8":8/0(

in equation (2,11), which becomes

= . = AP - ¢ e 'c]U" .
| %Hf,h/c&logoc = (A+0 EXG %Jg(o-')’lo%lc— o'ldo, (2.13)
where A= *h,

The right-hand side of (2.13) has the same form as the right-hand side of

(2.11), and the two are identical if h/q is replaced by A and o

is replaced by 1 in equation (2,11)., Both equations are linear, and

therefore
*
3'(0‘3 = (l—%_ }((c;ccz hg) logoc.)g(t?')’
where gwcr) denotes the solution of equation (2.11) for the case

o =1, h/a= A , On integrating both sides of this identity with

respect to O between the limits oo we obtain
Heohy) | Ho ~ w9
Thus the non-dimensional fluxes }%(M.,hy;} and 3{(&2)H4 ) are
a /i
related by
X - Sa _%_iog(ﬁ_lj
H(e, I’\"/CD }‘((0(.2 > h%’qj n ol
: (2.14)
provided
afh = «*h, . (2.15)
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With the aid of equation (2.14) we are able to calculate J{CQ,FHG)
from the computed values of Ho k) . This result was
only realised after I had computed H(«,0) for a number of values of &
and found that the computed values appeared to satisfy a relationship
of the form (2.14).

From the identity (2.14) we can find the asymptotic'behaviour of
H for a pair of touchiﬁg cylinders as a —>oo o Putting h, =h, =0

‘in (2.14), we get

oy = _oL P &io oLy
Flo0,,0)  F(yy0) 0 g(o(_i)

and letting o, — oo  with ay fixed, we find

J‘((OC”O)’\’__T”EI_ aS “—pﬁw' (2016)
210906.

With the aid of the identity (2.14) and the computed values of

3 5

?%(104, h/a), we have calculated values of H(a,h/a) for « = 107, 10~ and

6 :
107, over the range of separations

107" h ¢ 107

These functions are shown in a log-log plot in figuré (3.4), together
with the asymptotic approximation for touching cylinders, given by
(2.16). 1In that figure we have also shown the non-dimensional flux
between a pair of perfectly conducting cylinders, which from (2.1 )

and (2.12), is given by
: ey e a
’H(oq,a)_ 17/_. (2.17)

As mentioned previously, the temperature on the contact region cannot

be determined precisely, since an exact value of B is not available. If

we choose B = M/a, where M is a number of order 1, then instead of




o= 106
oc = IO5 -
o i
o= = e o S =
=10
o
1 : T * T 5 T ¥
10 107'% 1o h 107 o o™k

a

Figure 3.4 The non dimensional flux M (%, hy) for various values of the cylinder conductivity, a. The curves
for o0 = 10% , 10° and 10° were obtained from the o = 10" curve with the aid of equation (2.14).

The asymptotic expression (2.18) for M for touching cylinders o >> 1 is shown by the broken line.




* The quantity H(a,h/a) decreases with increasing h/a, and thus if the
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equation (2,11) we obtain
I = oc(% + 7?2)9(@—2?53(71')105(/"\ b -n'Ndy',

or

o

[ +_127(103/*’\)Ho,:\(o<,h103 = o (hyy+2)g) = %jg(n'ﬁiogm-q'larl" :

-oo
where the subscript M  denotes the value of H(a,h/a) computedxvﬁ}1ﬁ=£§
Again using the fact that the integral equations are linear, we find

that the solutions ¥{, and ¥,  are related by

}&Sxﬁy@) = ey hg)
( l+JLﬂogNﬂlde>h6ﬂ
0 o

Thus the relative uncertainty in J{ is of order %i and the
solutions to equation (2.11) are only accurate if |X| << 1, which is
oL

merely a restatement of the condition (2,7). If the cylinders are in
contact, we may approximate H in (2.7) by the asymptotic expression

(2.16), in which case the constraint becomes . i

loge M1 . ) (2.18) |

condition (2,18) holds, the calculated values of H are accurate over the

entire range of separations h .
a

A Uniformly Valid Asymptotic Expression for H(a,h/a)

From figure (3.4) it can be seen that a pair of cylinders of finite
conductivity may be approximated by perfect conductors if their-separation

h is sufficiently large, We let h/a(a) denote the value of h/a at which

this approximation ceases to be valid, and from (2.17) we have

Jm{(rx)%)m wf% (2.19)
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provided that

%} %(ea ;

' ' I

We also introduce the function Ef(d) as the maximum value of
a

(h/a) at which a pair of cylinders are effectively in contact, so that

(from (2.16))

-7

N, Ay~ T (provic]ed S 1) (2.,20)
a 2%0g« ‘ ' .
for h¢ A' @) -
a a

To obtain the non-dimensional flux H(a,h/a), for the intermediate

range of separations

R'@<¢ h ¢ R (2.21)
a @] a

we must use the identity (2.14) together with the numberical solutions of
4
(2,11) for a = 10,
In this section we shall obtain an approximate expression for X
which is valid for all separations, provided that o is sufficiently large,
and which may be evaluated without the need for numerical solutions of

equation (2,11), To derive this expression, we must find the way in

a
(2,19) and (2,20) intersect at

which h'te and R () depend on o.. Since the curves given by
a

§= b (loasy

2
we assume that h' and _h' are proportional to (1935$-
Q a &

This assumption will be verified after we have obtained the asymptotic

expression for H.

We derive this asymptotic, expression from the identity (2,14) by ‘




6L

letting o<, — 00 , ~with a, fixed, When
loget, 3> loget, (2.22)

(2.14) becomes approximately

K o a4 21ogx, . . (2.23)
Hiotrs 1) Hlearhay ™ .

and if ‘h$‘> h (o) , we can replace H(a,, h,/a) in this
a a

expression by the approximation (2.19), which gives

=~
P

o & _%fn. 42
TV a ™

logx
:H(oc.,%‘)

Eliminating a, and h,, with the aid of (2.15), we get

~

—% =

+ 2 log«, . (2.24)
H(oc.,%x)

T

2k
ol]

This result holds if

has &

157 __(iﬂ

- a ? a :

and from (2,15), we see that the minimum separation h, for which (2.24)

is valid is given by
2

h, _ () Ry .
Q <,/ a
s 1\
This quantity is proportional to ., and since the function 11(4{3
a
1
2
decreases at the slower rate of (;Qgﬁ\\ , as &K, = 3
¢
the constraint
"
(5;,)2‘_h'(oc:)< R () \2,25)
X, a

will be satisfied if «, is sufficiently large.
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If the constraint (2.25) holds, then the expression (2.24) is valid

for all kh . This is because the loga1 term dceminates both in the

fol

identity (2,14) and in (2.24) and thus both equations give

| Hloeshy) » ety )
i v @ 21log,
| for hi¢ hYdQ(_%Z

a a \z

Thus equation (2,24) is the uniformly valid asymptotic expression’

for H, which we rewrite as

H(fx,%ﬂfv ! as «x—yco. (2.26)
.9%& +

oC 1A

[

&]

This asymptotic approximation is shown, for a = 104, by the broken line

in figure (3.3).

From (2.26) we see that

Foe,by=7fe if  hya (l_gg§)2
- = o«

separation at which a pair of locally spherical particles cease to behave

as perfect conductors is of order a/a?, and thus we verify the statement

and \
|
: |
Hlx, b)Y = T if  h«ao (1_9%) |
@ 2logxk 2
and this is consistent with the assumption that iﬁ and %gi are
a
" .
proportional to (1ng% . We have seen, in  $2.4 , that the
o

made earlier ( §3.2), that the perfect conductar approximation breaks

down at larger separations for cylinders than for spheres.

| _ .
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3.3 The conductivity of a material composed of layers of parallel

fibres

We have assumed that the temperature field in the neighbourhood of
a contact point between a pair of fibres is approximately tWo-dimensional,
and thus the flux Q across the contact regiqn of either fibre can be
found by integrating the expression for the flux bétween a pair of

cylinders, viz
Q- [Hdy = KAT[He,hedy » (3.1)

where AT denotes the temperature difference between the axes of the
cylinders which form the contact, and the integral extends over a suitably
chosen neighbourhood of the contact point, The function h(y) denotes

the minimum separation distance between the surfaces at the given value

of y, and from the expression (1.7) for the thickness of the matrix

layer near a contact point, we have
2

To calculate the integral in equation (3.1) we require the values
of a and b, Since the fibres are nearly straight and parallel, a is
approximately equal to R, the cross-sectional radius of the fibres+.

The quantity b is more difficult to determine, since it depends on the
radii of curvature of the fibre axes in the neighbourhood of the contact
point, and the relative orientation of the fibres (see (l.4) and (1.5)).
To determine the conductivity of a fibre-bundle we need details of the

statistical distribution function for b which is associated with the

material, For most of ihe commonly occuring fibre-bundles, it is unlikely

+ As mentioned in §3.1, we assume that each fibre has the same |
circular cross section, of radius R,
|
\




that such detailed microstructural information would be available.

There is however, one class of materials for which we can easily
.calculate b, These materials consist of plane layers of parallel
cylindrical fibres, Although the cylinders within each layer are
parallel, the orientation of the fibres may vary from layer to layer,
Each layer of fibres bears against the adjoining plane layer and
thus every fibre makes contact with fibres in neighbouring layers. Our
aim is to derive an éxpression for the component of the conduétivity
tensor associated with conduction across the layers, The bulk temperature
gradient is taken to be perpendicular to the iayers and of magnitude G.
The temperature on the axis of each fibre is therefore uniform along the
length of the fibres, and this temperature is the same for all fibres
which lie in the same layer, The difference in temperature betwegn

the axes of fibres in subsequent layers is

AT = 2Rz y . (3.3)

where as usual R denotes the fibre radius,
It is assumed that most of the heat passes between adjacent layers
through the contact regions, and therefore the flux F across unit area of

a plane parallel to the fibres layers is
F= NC,Q o (304)

where NC is the number of contacts per unit area between adjacent layers,
With the aid of figure (3,5) it can be seen that the number of contacts
per unit area of the plane touching two adjacent layers is given by
Nc= sine , | (3.5)
LR*
Qhere S denotes the.difference in radians between the orientation
of subsequent layers, If the fibre are nearly aligned, and © << 1,

NCQ‘J_LI;,P\L . 7 (3.6)

—




Figure 3.5 A sketch of the contact regions between the fibres in
subsequent layers,
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{ It will be shown that T is independent of © (for € << 1) and therefore

the difference in orientation between adjacent layers need not be uniform,
The flux across a contact surface is given by (3.1), and on

replacing h(y) by the quadratic expression (3.2), and H(a, q%gj ) by

the asymptotic approximation (2.26), we get

Q=mkAT\ dy_ | (3.7)

2loget
| 209 +}C:1i

The contribution to this integral from the .ﬁg neighbourhood of the

contact point is

fd =2J_108{|+ALA o }

21030( + 1yl Jab Zloc«f\
Y T Jab
B lo as X —>oo . (3.8)
fab 9( Toqe)

On replacing @& and b in (3.8) by the expressions (1.4), and sub-

stituting in (3.7), we obtain the asymptotic expression

)} ; | (3.9)

Combining this result with the expression (3.4) for the average flux

Q~ 4IR kAT log(l ~
o3

density F, and substituting the expressions (3,3) and (3.6) for AT

and Nc’ we get

F-'~21~rk6'6__ G a5 o«— oo .
oadk) '

The conductivity associated with the transport of heat across the layers

is therefore given by,

k~2nk1og(l as o -yo0 (3.10)
0get

in the case 8 ¢ 14
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It will be shown that T is independent of © (for €6 << 1) and therefore
= the difference in orientation between adjacent layers need not be uniform,
The flux across a contact surface is given by (3.1), and on
replacing h(y) by the quadratic expression (3.2), and H(a, qggj ) by

the asymptotic approximation (2.26), we get

q = wkaT|_dy , (3.7)

2loget |
200X +3L3E

The contribution to this integral from the Zﬁg neighbourhood of the

contact point is

rd = éJa_blOg{l-!-ALd < }
= 21030( + 1yl Jab 21ogk
J < Jab

~ gJ——'log(

as xX—>co. (3.8)

030C
On replacing & and b in (3.8) by the expressions (1.4), and sub-

stituting in (3.7), we obtain the asymptotic expression

)} ; | (3.9)

Combining this result with the expression (3.4) for the average flux

Q~ Ler kAT{ log (

10%0(

density F, and substituting the expressions (3,3) and (3.6) for AT

and NC, we get

Fa ?.wk(oc G as «<«— oo .
logu’. ~ '

The conductivity associated with the transport of heat across the layers
is therefore given by,
k~2nk1og(oc as -0 (3.10)
OO&

in the case & << 1,
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'l We can also find the asymptotic form of k* as G —>00.
[
[ for 6 = 1L . In this case, a and b are equal, and from (1,3)
we find
a= b= 2R (3.11)

The matrix layer thickness is here axisymmetric and the expression. (2.l.l4)
for the flux between a pair of locally spherical particles is valid,

namely

Q~ 21rkaAT logee as oc—>oo0. , (3.12)
Replacing a by 2R, and AT by 2RG, we get

Q~ 8mkR*G log as «—>o00. (3.13)

From the expression (3.5) for the number of contacts per unit area, we

get
] n -
Nc.= e Ior ©=

N

and combining this result with (3.13) and (3.4) we find

Fa ZﬁkG(IOSoQ as o — 00O,

Thus the asymptotic expression for the conductivity is

Ki'n mk(logoc) as oc— 004 (3.14)
when o=

Ir.
2

Comparing this result with (3.10) we see that the conductivity is only

weakly ‘dependent on the relative orientation of the layers.




3.4 The Conductivity of a two-dimensional, isotropic fibre bundle

% .

i :

[ In this section we consider the problem of conduction through the

|
macroscopically two-dimensional material described in §3.1. Since the
material has an isotropic cross-sectional geometry, the condﬁctivity
.associated with the conduction of heat across the fibres is characterized
by a single variable K* (see (1.1)), and our aim is to derive an
expression for this quantity, It is likely that this type of material
will occur more commonly in practice than thé fibre-layer material
discussed in the previous section

It is assumed that the material is statistically homogeneous and

therefore the ensemble average of a quantity may be replaced by the volume
average of a single realisation., As the material is macroscopically two-
dimensional, we can choose for our averaging volume V a cylinder of length

L and cross-sectional area A, The axis of the cylinder is parallel to

the mean fibre direction, the cross section is sufficiently large to

enclose many fibres, and the length L is much greater than the length scale
characterising the fluctuations in temperature,

The average flux density is given by

<f>=-k<'\7T)+VLZ,‘,§Lq (4.1)

L

v :
where § is the dipole strength associated with the ith fibre in

V, defined by

St= a-a[xFEAda (4.2)

A.
]

and the integral extends over the pdrtion of the surface of the ith fibre

contained in V. The contribution to this integral from the areas formed

by the intersection of the fibre and the surface of V is negligible,

since these areas represent only a small portion of HE'




0.

The assumption that a« >> 1, enables us to neglect the & e

in (4.2), and assuming that k¥ 55 k , we rewrite (4.1) as
Tigt . B - (4.3)

where n is the average number of fibres which intersect a unit cross-
sectional plane, and <S) is the average dipole strength of the

fibres in V,

As in the previous chapter, we assume that the dipole strength of .

each particle is dominated by the contributions from the contact regions

on the particle surface, and the expression (4.2) for g becomes

S~yx'd, y (4.4)

{3 : : b
where X' is the vector to the ith contact point and Q is the
flux across the ith contact region. The latter quantity is given by

the expression (3.1), which we write as

Ql= kAT‘jH(oc,rlamag.
Qa
ith contacl
region

Replacing o in the integral by the asymptotic approximation (2.26),
and using (3.8), we get

Q' ~ 2k ATYRE 109( ot ) (4.5)

loge

provided « >> 1. 1In deriving this result we have used the fact that a =
for this type of material (see (l.4) and (1.5)).

t
An expression relating the temperature differences AT can be

obtained from the identity

Z’»Qi.': Os
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where the sum extends over the contact points on the surface of a fibre,
Combining this expression with the approximate formula (4.5) for Q'

we obtain
SIATYE = 0. (4.6)

If o is sufficiently large, the tempegature is approximately constant along
the axis of each fibre, and the equations (4.6) (one for each particie)
together with appropriafe boundary conditions, are sufficient to

determine ZXW'L ; We shall assume that this is the case.‘;Since o does
not appear in (4.6) , the temperature differences [ST—: are
independent of o,

The particle dipole strength is found from (4.4) and (4.5) to be

S = {2 =ATYE JarkyR 1og(x Y, (4.7)
~ P log«x
and since AT is independent of a, the dipole strenzth is pro-
' "
portional to log (a/logé ). Thus the conducitivity k™ has the

asymptotic form

E;A.(Constcnt)log(féé%) as o — o . (4.8)
where the value of the constant is determined by the fibre geometry.

This is not very different from the asymptotic form of the conductivity

of granular materials (see 2,6.7), and it appears that a weak « dependence
is characterisitic of materials composed of highly conducting particles
with point contact.

If the fibres are perfectly cylindrical and parallel ,the expression

for k* takes a very'different form from that of (4.8), From the
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asymptotic expression (2,16) for the flux between a pair of touching
cylinders, we see that. K*  is proportional to (e/loga) in this case.
The material which we héve studied contains nearly cylindrical and
nearly parallel fibres and these slight imperfections have a very
significant effect on the conductivity because they convert the line
contact of parallel perfectly straight cylinders into point contact.

To show the way in which the constant ;n the asymptotic expression
(4,8) for k* dependé on the microstructure of the material, we shall
defive an expression for the conductivity of a particular type of fibre
bundle,

The material under consideration is composed of '"nearly straight"
fibres, that is, we assume that the amount by which the axis of any
fibre deviates from a straight line is much less than the fibre radius.
R. This straight line will be called the'"mean axis", and it is assumed
that the mean axes of the fibres are parallel. This material is intended
to provide a model for the windings of transformers or electric motors.

Since we are concerned with conduction across the fibres, we neeﬁ
only consider the component of the particle dipole strength which lies
in the cross-sectional plane. We denote this component by §F , and

from (4,7) we have

(4.9)

5-&8) = {ZY‘ATf_‘ 21ka log (E—

cmﬂads

Togx)

where

.

L Al [ ANA
rt= X% )€, ,
is a vector orthogonal to the mean fibre axis and extending from the mean
axis to the ith contact point, Each pair of fibres make contact at many

[

points along their length and r* is approximately the same for each of

these points,




Tl

To evaluate the average of §P we make the following

l assumptions:
(1) The temperature at the centre of .any fibre cross section

differs from that of any neighbouring fibre by an amount

2R VY Fi

A

where rt is the unit vector in the direction of the line of centres
l .

[ ' (= E/R) )

(2) The shape of the matrix layer surrounding the point of

contact is the same for each contact, that is

b= b . for all contact points.

With the aid of these assumptions, (4.9) becomes

p=-(25 #ir}- <VT)4nPf_k109\

contocis
\

) (4.10)
Ogo(

Taking the average of this expression, we get

<§P>=—ler3 f— 108( % V<X, r\r‘> Ty | (4.11)

Ogm contacts

If the cross-section geometry is isotropic,

ACAC | A
CERMY = MM (4.12)
where l is a 2 x 2 unit tensor.
The vectors 1 have unit magnitude, and (4,12) may be
written as
(MR = LN (4.13)
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where <|UC> is the average number of contact points, per unit
length, on the surface of a fibre, and, as usual 'L denotes the length

of fibre in the averaging volume,. We may write <({N.) as

< NS '-—-<P><Ng> o (4.14)

where < p> is the average number of near neighbours surrounding.the
reference fibre, and <TJ;> is the average number of points of contact, -
per unit length, between the reference fibre and a neighbouring fibre.
With the aid of equations (4.13) and (4.14), the expression (4.11)
for the average dipole strength becomes
{8 =—2nR3ka log (L _\(PYSNHLLV T
R log«

Combining this result with the approximate expression (4.3) for <F)

we get
(FY =20k /b N, log(&_\<VT (4.15)
L R >°9(1ogd) Y

where @ is the fibre volume fraction (= TRnN)

The quantities ¢ and {pP) are determined by the type of
packing. TFor a square array,
pry="m
and for the more closely-packed triangular array
o<py="V3.
I have been unable to find, from the literature, estimates of & and

<P> for the case of a two-dimensional random array, but it seems

certain that (D<ED lies between 1 and 3 for this type of
v
array,

The quantities <F> and <V T) are related by

<EY =KXy

9

—
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and using the expfession (1.1) for ‘h* , together with the fact

~

that <VT) 1is orthogonal to é: , we get

<CEY=-KKVTY .,
. : .
Comparing this expression with (4.15), we find that k is given

by the asymptotic formula

o~ 20¢P) OS(SQOJ f?‘ <R

as ol — 00 »

It is unlikely that the microstructural information required for the

evaluation of the expression (4.16) would be available in practice.
Thus the main result of this section is the formula (4., 8) for }<* s

for even though we are unable to determine the constant in that

expression, it shows the « dependence of KX , and the result is

valid for any material of the type described in § 3.l ‘

The expressions (3.10), (3.14) and (4.8) should now be compared

with experimental observation, but unfortunately I have been unable to

find any relevant observations of K* in the literature,




CHAPTER 4

THE DIPOLE FIELD
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4,1 Introduction

The previous two chapters have been devoted to the study of
méterials composed of closely packed particles immersed in a matrix -
of relatively low conductivity. The effective conductivity.of such
materials can be determined because the particleldipole strength is
dominated by the contributions from the regions near points of contact

between particles, and the flux across these regions is a locally

"determined quantity., At lower volume fractions the problem of deter-

mining the average dipole strength is more difficult, and past.work
has been concerned with two classes of suspensions.+

(1) Materials composed of spherical particles in a regular array,

and

(2) Dilute suspensions of randomly placed spheres.

In this chapter we present new methods for calculating the
effective transport properties of these types of suspensions. The
relevant transport property may be the conductivity, tﬁe viscosity or
the elastic moduli,

The earliest theoretical investigation into the problem of con-
duction through a regular array was cafried out by Rayleigh (1892), who
obtained an expression for the conductivity of a cubic array of spheres.
This expression takes the form of a power series in (a/d), where a is the
sphere radius, and d denoteé the centre-to-centre distance between
nearest neighbours in the array. In order to calculate the effeét of
surrounding particles on the dipole strength of a reference sphere,
Rayleigh assumed that the temperature gradient‘”seen" by the reference

sphere (that is, the temperature gradient which determines the particle

4+ We are not concerned here with the work on two-dimensional composites,
some of which has been described in § 3.1.
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dipole strength) is simply the sum of the field produced by the

' 4P
surrounding spheres. Unfortunately, this sum is non-absolutely convergent.'

Rayleigh noted this, but nevertheless summed the contribﬁtions in a
particular order, giving no real justification for doing so.

Subsequent investigations into the effective conductivity of
, regular arrays of spheres have been concerned either ﬁith,obtaining
more terms in the expansion for the conductivity of a cubic array,
"(Meredith and Tcbias (1960), McKenzie and McPhedran (1976)), or with
deriving similar expressions for other types of arrays (Bertaux et al
(1975)). 1In each case, Rayleigh's unjustified procedure for the
evaluation of the non-absolutely convergent sum has been adopted without
comment, In this chapter we show why this convergence problem arises,
and in §4.4 we present an alternative method for calculating the
effective conductivity of a regular array of spherical particles.

The problem of determining the effective transport properties of a

random suspension of interacting spheres is more difficult, since the

dipole strength is different for each sphere, and neighbouring spheres
may be so cldée to the reference sphere that they cannot adequately ‘
| be approximated by a dipole and a sum of several higher order poles,

However, if the volume fraction of the particles is small, it is possible
to calculate the perturbation in the average dipole strength®* <S> caused

by particle interaction,

+ That is, the result depends on the order in which the contributions
from the (infinite number of) surrounding spheres are summed,

* We have not specified the order of the tensor S, since we are concerned
both with the conduction problem, for which S is a vector, and with

the viscosity and elasticity problems, for which § is a second order
tensor,




80

The probability that a particle will have n neighbours within a
g - distance of several radii is of order @ n, and if we assume that only

the close particles interact, we find that the perturbation in <S> is

due mainly to pair interactions (n = 1), Provided that this assumption

is valid, the average dipole strength may apparently be written as

(Sy=S, + Ss,@chl'o)clvcp \ | (1.1)

where P(}:iO) dV(@ is the probability that the centre
of a particle lies within the volume dV surrounding the point r, given
that the centre of the reference sphere is at the origin o, The term

So denotes the dipole strength in the absence of particle interaction, and

S, is the amount by which the dipole strength of the reference sphere
is altered by the presence of another sphere at I, neglecting all other
particles.

Unfortunately the term S,(r) falls off as l/|rl3 as Ixl— o0,
and the integral in equation (1.1), like the sum encountered by Rayieigh,
is not absolutely convergent.

In order to obtain an expression for <S> in terms of convergent
integrals, Batchelor (see (1974) for review) devised a technique based on
the observation that for each of the transport problems, there is a
quantity which has the same far-field dependence as S, and which has a
. known average, We shall call this quantity "the renormalizing quantity".
The integral of the difference of S, and the renormalizing quantity
. converges, and it is possible to relate this integral to <S>, This method |
- called here the "renormalization technique" has been employed in the
derivation of expressions for the average velocity of sedimentation of
spheres to order ¢ (Batchelor, 1972), the effective viscosity to order

@2 of a suspension of rigid spheres in a Newtonian liquid (Batchelor and

Green 1972), and the effective conductivity of a random suspension of




spheres to order %2 (qeffrey 1973).
Although this preocedure is undoubtedly correct, it is difficult
to see why it works, and furthermore it is not clear why the assumption
? : which led to equation (1.,1) is wrong., It is hoped that the alternative
procedure described in this chapter may help to clear away some of this
obscurity.

The new procedures described here for determining the effective
transport properties of regular and random arrays are based on equations,
derived in §4.,2, which relate the temperature, velocity or displacement
at a pointxin a suspension to an integral over the surrounding particles

together with an integral over a "macroscopic boundary" M b which encloses x .

In >§4.3 we use these equations to obtain expressions for the
dipole strength of a spherical particle, in terms of the dipole and higher
order multipoles of the surrounding particles, together with an integral
over FL o On applying the divergence theorem to this integral over r;
we obtain a term which may be regarded as the field due to a continuous
distribution ;f dipoles throughout the volume enclosed by M, . The
contribution to the dipole strength of the reference sphere from spheres
which lie in a distant volume are cancelled by the contribution from
the continuous distribution of dipoles contained in that volume. Thus
it is the dipole field term which causes the expression for the dipole
strength of a reference sphere to converge, and it is shown that Rayleighs
convergence difficulties arose simply because he neglected this term.

In §4.4 we describe a procedure for obtaining the effective tran-
sport properties of a suspension containing spheres in a regular array,

and we illustrate ithis method by deriving an expression for the effective

conductivity of such a material, Another application of this method is

described in %4;5, where we derive an expression for the effective modulus
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of compression of a material composed of rigid spheres in a regular array
in an elastic matrix.

The final two sections of the chapter are concerned with random
suspensions of interacting particles, 1In § 4,6 we re-derive Jeffrey's
(1973) expression for the effective conductivity, using an alternative

procedure, and in § 4.7 we obtain an expression, correct to 0(@) for the

average particle dipole strength in a suspension of rigid spheres in an

‘elastic matrix,

Notation: Since we shall be concerned with suspensions which have
an elastic or Newtonian liquid matrix, we introduce here some notation
associated with these materials,

Both the velocity and the displacement at a point ¢ will be denoted

- , ,

by U (% p the meaning of the symbol will be clear from the
context,

In a linear and isotropic elastic material, the stress tensor &~

is related to the displacement field by the constitutive equation

‘9:=E(g+%§7-gg£) y (1.2)
where
i T
e=L(Vy+ (VL)) | (1.3)

and vV and E are Poisson's ratio, and Young's modulus respectively.,

The constitutive equation for a Newtonianliquid is

QR—

gz_P t2Me (1.4)

where the rate of strain tensor e is given by (1.3) (with u denoting the
velocity field), p is the pressure and g the viscosity.

If a force F is applied to a point X in an infinite elastic

material, the displacement at x is given by

wr= G- F, (1.5)




(Landau and Lifshitz(1970), pp 29). The tensor G is the Greens functi

Y "
} where
l
!
i ’ Glx)=_149 [(o W) ]+ xx } ) (1.6)
i ~ 8nE(1-Y) 1| rxl
l
| 5

for the elasticity equations in an infinite region,
Similarly, the velocity field due to a force F at a point X

an infinite Newtonian liquid is also given by equation (1.5), where

Gtx)=_1_ [.éT._L:\_ + xs,g]. (1.7}

This expression for u is valid provided that the inertia forces in the

liquid may be neglected,

4,2 The integral expression for the temperature in a statisticall

on

in

}v

homogeneous suspension

T(x) at a point in a suspension to an integral over the volumes of the
suspended particles and an integral cver the "macroscopic boundary" of

the sample, For a statistically homogeneous suspension we show that

and flux density, and it is this observation which enables us to formu
the procedures for calculating the effective transport proéerties,
describéd in the following sections.

The analogous results for the other transport problems can be
obtained by similar methods to those described here for the conduction
problem and therefore we will state these results without proof.

If the temperature field T(x) satisfies Laplace's equation

V*T=0

is related to the flux density F and the temperature over the surface

In this section we derive an equation which relates the temperature

this macroscopic boundary integral involves only the average temperature

late .

at each point in a volume V, then the temperature at any point X in V

of
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V by the identity

T(x)-] g{#— Rt TIV'{,—'TA\}CJF’(E'), BAY

where

F=Fx), T=T,

e |

1L

R

'
'EI’

QWD

v

&Yy’

and k is the conductivity of the material. The surface of V is denoted
by " , and "  is the unit normal directed into V. The identity (2.1)
is an example of Greens Second Indentity (Protter and Weinberger_(1967)
pp 82).

If %X denotes a point in the matrix of a suspension, we write

the expression (2.1) in the form

Tao=1 5 ${ER + TV _dﬂ+1 §>{Fn FTVLAYR L (2.2)
l .
I

LY k r
; .
where f; denotes a closed surface enclosing the point X and f?
denotes the surface of the ith particle contained in r@ . 1If the surface

fl passes through the ith particle, then ﬁ denotes the closed
surface formed by the part of the particle which lies inside r; 5
together with the part of [1 which lies inside the particle.

With the aid of the divergence theorem we can convert the integrals

over the surfaces of the particles to volume integrals:

§{E:YA\+ VA clﬂ—j’t Vl av (2.3)
£ %"
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where Vi is the volume of the ith particle, and
T(x)= F(x)+ KV T(R) (2.4)

is called the "extra flux density", With the aid of (1,2.6) we see that this

quantity is related to the dipole strength.§}'6f a particle, by

g,f:j’gdv. (2.5)
V.,

L

"In deriving the result (2.3) we have used the fact that both F and Vg%

have zero divergence at each point in f} . Replacing the integrals

over [} in equation (2.2) by the equivalent volume integrals given

by (2.3), we get

Tx= 21 | TVLAV+ L ﬁ{f'-’r‘x + TV .A1dA. (2.6)
~ Lk r L J
V.

L

The corresponding expression for the velocity or displacement is+

! ' '
Uy () = ZJ 3G, (2% Tyl ()
0 axk {2.7)
v, \
{ gl N _ ' ! !
+5{ C’Jc(?s X)o7 (%) = U XD ‘,kj(zg. ;9\,§nkclﬂ(25))
s
where T is the "extra stress", defined by
T =g0-E(eg+2 Vul)
= Tooey T =W =
in the case of an elastic matrix, and
T=g-2pg
for a Newtonian liquid matrix. The term JZKJ(?E'ES“’F:,' is the

stress at %f caused by the application of a force F at X , and thus

th may be related to the Green's function G with the aid of

+ This result follows from the reciprocal theorem if one of the velocity
or displacement fields taken to be the field due to a point force at X
given by (1.5).
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the constitutive equation (1.2) or (1.4).

The equations (2.6) and (2.7) hold for any closed surface [,

I
{
|
| enclosing X , and we now consider the form which these equations
I .
: take if r: has the following propertics:
: (1) It is sufficiently large to contain many particles, and

(2) At each point on r; , the local radii of curvature of the
surface are much greater than the length scales associated with the
fluctuations in the temperature field (typically of the order of the
particle diameter).

A surface with these properties is called here a "macroscopic surface",

since the length scales associated with the surface are much larger than

those associated with the microstructure, If the distance from 2% to

the nearest point on r; is much greater than the particle diameter
v N
then the functions 1 and V7¢:‘Tl are approximately constant over
1§ ~
portions of IZ which are large enough to be regarded as Sample Areas,+

If AA" denotes such a portion of [,  then for a statistically

homogeneous material, we have

j.f-?xdﬂx J(E)-ﬁdﬂ 5 R : | | |

AR ARt
and
fan = J(T)dh ,
T ARt
and thus the integral over [} in equation (2.6) becomes

1 §>{<E’>-?\ + <T'>V'1_}.nclﬁ :
[N Ky r

"
Substituting this result in equation (2.6) we find that the temperature

at a point in the matrix of a statistically homogeneous suspension is

given by

+ A "Sample Area'" is an area which passes through a representative sample
of the material. In a statistically homogeneous material, the averages
of F and VT over a sample area are equal to the local ensemble averages.
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T)=21 [T 7L dv+ L o{<EHYn Ny
) “mkiﬁ L +mk'§{_;_>n+k<T>V_r_n}&e. (2.8)

¢ - b . . I
The equivalent result for the elastic or Newtonian matrix is

w0 = 2 | OG5 (-2 TanGeHdv(x)
G g Bl
' | ~ (2.9)
+ 5{ Gyelx-%")¢ oyl M= (wi(%') J&k\j(%'lc"nﬂ dAtx) .
M

Although it may appear that we have only made a slight step
forward in deriving (2.8) from (2.6), it will become apparent in the
following sections that the step is a very significant one, for the
results which are obtained in the remainder of this chapter are derived
in a straightforward mannér from the expressions (2.8) and (2.9)

obtained here.

4,3 The Dipole Strength of a Sphere in a Statistically Homogeneous

suspension

The method for determining the effective transport properties of a

regular array of spheres, is quite different from that required for a random

array, There is however, one step which is common to both techniques,
namely the derivation of an expression which relates the dipole strength
of a particle to the dipole and higher order multipole strengths of the
surrounding particles. 1In this section we derive this expression for
the particle dipole strength, and in subsequent sections we describe the

procedures for finding the average dipole strength of spheres in a

regular array ( §4.4) and ( @4.5) and in a random array ( §4.6 and §4.7).

To derive this expression for the dipole strength, we combine one

of the equations(2.8) or (2.9) (depending on which transport problem

we are concerned with) with a Faxen type formula for the dipole strength

of a sphere placed in an ambient field, As in the previous section, we

—
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shall concentrate on the conduction problem.,

To obtain the Faxén-type expression for the thermal dipole strength

of a sphere we begin by writing the expression (2.8) for the temperature

PR SN ATy T

at a point in the matrix in the form

' = v dv : ' '

| Tcp-ér_kjgc vidv + T, | (3.1)
'. K

i where /

|

# = 2 gfc VLAV o+ L §{<F>ﬂ+ KTHVAnYdA.  (3.2)

The form of (3 1) is the samebas that of the expression for the
temperature field surrounding a single particle in an infinite matrix,
with TE(%) taking the place of the temperature field in the absence of the
particle. We seek an expression for the dipqle strength of sphere j in

terms of the field TE(%), called here "the external field".

| The reference particle (sphere j) has coaductivity =< k , and from

the expression (2.4) for T we get

Txy= (1-<") Fg) (3.3) ‘ |

e "~ at points which lie in the particles.
Combining this result with (3.1) and using the divergence theorem,

we obtain

T(x)= ( '>§F-'r\dﬁ + Te(x), (3.4)

r

§

for points X  in the matrix,
The expression (3.4) is also valid for points which lie inside

the reference sphere, To show this, we apply Green's second identity

(2.1) to the volume enclosed by the reference sphere, with XK replaced

by ak , and we get

|

|

T(x)= -1_36 + T\'/"J,;ﬁ}c}ﬂ \ (3.5) s
Loy r

|
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where, as usual, n denotes the unit normal directed into the matrix,
and % is a point in the reference sphere. By applying Green's second
identity to the volume of matrix enclosed by [, and combining the
resulting expression for §T'V'%_.-?\C]H with (3.5) we obtain
equation (3.4).

Taking the gradient of (3.4) and setting xX =%, , where X

denotes the position of the centre of the reference sphere, we get

VT(x)= (1~°C")§(x XJEAdA + VT(xo)

mkald
(3.6)
J
& .S. 3 VTE(%J g :
LLTYKCIB |
, J |
where a is the radius of the reference sphere and EJ is its dipole

strength., 1If thg reference sphere is a perfect conductor,
VT(x)D= 0
‘and from (3.6) we get
g: ke V(%0

For the case of a sphere of finite conductivity, we require an
additional expression for  V T(%s) in order to find §d . This

is obtained by taking the gradient of equation (3.5) and putting X=X

.

which gives

VTxa=-5 1_5;T'V'\7'7';-ﬁclﬁ\ (3.7)
Kar ka3 -1
B
J
‘Expanding T in the integral in this expression in a Taylor series about

X =%, , and using the fact that V*T=0 in Vj , we get

ij‘v'_L AdA = 8T VT(x)
r 3

and on substituting this result in (3.7), we find,
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VT(xd)= =3 S (3.8)
kol (- ')

(
l
[
|
ﬁ
l

The {ax&n-type formula for the dipole strength of the reference sphere

is found by equating (3.6) and (3.8), which gives

S= - etk (=1 V(x4 - . (3.9)
(ot+2)

The corresponding expression for the dipole strength of a rigid
y sphere suspended in a Newtonianliquid+(with inertia forces neglected),

l is given by (Batchelor and Green 1972(a)):

§J=%Qwo%(gec;@ % flf)a‘vlgs%ﬁ 5 (3.10)
where

€ = L(Vy + (V) _ (3.11)

~

and Y is the external velocity field. From equation (2.9) we have

Ug () = Z SaGanC- %) T 2)dV(x")

L*j V aI,k

| (3.12)
| - ¥ X { G X O (=D T (U0 {3 %M A,
{ iy

b
and from this expression we can calculate the external strain field
& -
! Using a similar method to that employed by Batchelor and Green
‘ (1972(a)) for the derivation of (3.10), we have found that the dipole

strength of a rigid sphére in an elastic matrix is given by+

S= 10mCE(1- N[ e (x + E Ve 06 + L VU] (3.13)
RSN 10 T o)

For a rigid particle in an elastic or newtonian liquid matrix, the
dipole strength S is given by (1.2,10).

B RN
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where E and N are Young's modulus and Poisson's ratio for the matrix,

and the strain tensor ¢_ is given by equations (3.11) and (3.12) in the

(
{
[
i

case of a statistically homogeneous suspension, The derivation of (3.13)
is given in the apbendix A3.+

By combining the Faxen-type formula (3.9) for the thermal dipole

strength, with the expression (3.2) for T, , we get

~o b (&) (x+2) r
L) \Q

gl= T (w0 QBS’E:V'V'%c}V s (x~nq3§{vl<g'>+k<T'>v'\7'zg_}.ﬁc1A . (3.14)
N

With the aid of the expression (3.3) for T, and the divergence theorem,

we find

j T.V7Ldv = (-0 FiRdA (3.15)
Expanding V'-;‘— in (3.15) in a Taylor series about Tz |Xo~X¢|,
where X, 1is the centre of sphere i, we get
|
: |
R [ I A (i o L8, (kﬂr |
(- VL FlRdA= SIVVL + SISUVVLVL, o (3.16) i
r ~ ~ r.i k‘ I rt w
2 R |
q *
where '."":: I%:-E’"t 5
| |
VY .. 9= V.V ],
i [ |%'_x°\ L=E
and
: Q] () (R .
My= (=0 (X-Tp(x-2. . (2= XOFEORARY ,  (3.17)
o :

]

+ It seems likely that the Faxén type formula for an elastic sphere can
be found by a similar, but more arduous procedure, Since our main aim is
to illustrate methods for finding the effective transport properties,

we shall only consider the simpler problem of rigid particles.

—
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is a kth order tensor, called here the "kth multipole strength of sphere

i", This is a straightforward generalization of the concept of a dipole

strength, The term

; 0 @, (k+p
J"LVV Y

i

is the vector formed by the contraction of the tensors J"fk and
0, (2) (hul) :

vV, V1.
re

To obtain an equation relating the dipole strength of the reference
sphere to the dipole and higher order multipole strengths of the surrounding
spheres, we substitute (3.16) in (3.15) and replace the integrals over V;
in (3.14) by the resulting expression, which gives
’\j ( i QI (Re1)
= (x-Na¥(33( IV szpvv VL)
1 TR

(wr2) L (3.18)

(Vi (B> + k<THV UL A ] dA

+

ol <—6~>

Rayleigh (1892) assumed that the’field "seen" by the reference sphere
(in our notation this is the external field TE) is equal to the average
field <V T>-§‘ plus a contribution from the surrounding spheres. He then
obtained an expression for the dipole strength of a sphere (equation (62)
of that paper) which contained the first term on the right hand side of (3.18),
but not the second. From (3.18) it can be seen that the contributions to
this first term from far-off spheres drop off as |/(rif , and as
mentioned in ¢ 4.1, the sum is non-absolutely convergent. We shall now
show that the term which Rayleigh neglected, namely the integral over

r; in (3.18), cancels out the effect of the far off éarticles and gives
a convergent expression for gf .

Applying the divergence theorem to the integral over r: in
equation (3.18), we get

jﬁ{ (EYR 4 l<<T’)v'V'T'; -ﬁ]dﬂ =‘§{<E>+ kT VL dv
. V! (3.19)

VISRV AR

r’\

€
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| where [ denotes the surface of a small sphere of radius € )

: ' centred on ¥, , and V' denotes the volume which lies between

| the surfaces Fl and Tg ., From the expression (1.2.5) for the bulk

E flux density, we see that the volume integral in (3.19) may be written

| as |

|

| jm(_s)-v'v'\_dv . | (3.20)

= - r

| This integral , divided by 4“k s, gives the temperature gradient

i at Xo \due to a continuous distribution of dipoles throughout V.

| To estimate the integral over [¢ in (3.19), we expand <> and
<T> in a Taylor series about Lo , and this gives

§{v1 (EYRA«+ k<'r'>v‘v'%-?\}da = - 41 {E(xa) + 8k VT + 06D,
r 3 3
Te
Combining this result with (3.19) and (3.20), we find

§{Vik (E R+ keTy Vi RYAA = - fn ey 70V s b Cse)
r ' i

© 5 - 4k<T T + OCE) |
and replacing the integral over r; in (3.18) by the above expression

we obtain

1 o0 L 0‘4(“), ,ﬁ‘)
S (-0 A(TUSHV'VL, + DL TV VL))
o (°C+23 L.'L - ol R=2 Rl T
i) !
5 (3.21)
(o< ) N ( x-1)a n\g\;vv._ \I
+ S+ | (S(Y)> e, §'
where
Ss -¢tcro5k(ac-n<v“r(m> : (3.22)
= (o(.-l-x.)

®
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is the dipole strength of the reference sphere in the absence of particle

interaction. In dériving (3.21) we have neglected terms 0(€ ).

From equation (3.21), we see that the contribution to the dipole
strength of the reference sphere from the spheres contained in a distant
volume &V , is given, to leading order, by+

(-1 a*n<SY-V'TL Y,
(o+2) r

| where <S> is the averége dipole strength of the particles in SV , and

T is the distance from X. to a point in 8V. This term is f
cancelled, t§ leading order, by the contribution to (3.21) from the integral
over the continuous distribution of dipoles contained in' §V. Thus the
expression (3.21) converges and the result is independent of the shape of
the macroscopic volume V'

Equation (3.21) is the expression for the dipole strength referred

to at the beginning of this section. The methods for finding the average

i thermal dipole strength of a sphere in a regular, and in a random array,
, both begin with this equation.

To find the corresponding expression relating the elastic dipole
stfength of a rigid sphere to the multipoles sfrengths of the surrounding

spheres, we re-write the Faxén type expressions (3.13) for §f as

J
9=n (Se%w%vzgaczo) + I troce g, (3.23)
50-29) |
where
: M,= 1owa®E (-3 . (3.24)
(=501 +3)
Substituting the expreséion (3.12) for &, into the defining expression

(3.11) for =1 , and using the divergence theorem to convert the
integral over f; to a volume integral, we get
We assume that &V contains a large number of particles, that is, SV”S>%L

and also that SV,
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es(?.co\pq: <er"1\} + "7.1< SP‘§> + 7ZS Sf;ﬁ( Smm)

-+Z' rp(x ~Xdogb, Tl xaVx) - njp(x Ldoqen 1 SmQJ\/ (3.25)
' L#J V . V'

r where  mM,= M O+V(13-20v) |

j 30(1-NE

|

i (3.26)

MF n(1+M

_ | * S0-NE J

; F};qu _;(&PL F 2Gqm) (3.27)

and g' is given by (1.6).
expression (3.12) for . with equation (3.11), and apply the V™

A
‘ To obtain an expression for \Y EE(’;go\. , we combine the
i - operator to the resulting equation, which becomes

/

{

VA eh(x) —ng PO Xoqmb, Tril ) AV
V7

(3.28)

._..S WB__GPE + anm)(O“ Ry - (u )V (aJmhp+ %‘-’v\bq)}ﬂhaﬂ
P

‘ . The integral over [y in this expression may be neglected if h

o

is sufficiently large. To show this, we note that

VZ( @aﬁrmb@ +_a_3C_C—rqn{?.0)is O( Yix\b) as Ixi—oo .

Xq 0 P
and
\4 ( Jkp +D_3_E;zq> 15 O( Axp) as 1x|—>co.
09X,
Furthermore, the term (g)dAL -1s bounded on ‘.—Q (since we

generally take <e> to be uniform), and {u(x)-{(xsd) (= Ty (- %))

increases linearly with [ 2= 2| s JIf ﬁ; is a large sphere,

of radius R, centred on X. , the integral in (3.28) is O(l/Rz) as R-o00,




i
I,
|

6

and may therefore be neglected. Thus (3.28) becomes

2 2o, .
Y, gégg:?jv P(%-%Dpqmk TZ), AV, (3.29)
A
L

This sum converges and there is no dipole field term.
To express the integrals over the particles in the expression (3.25)
and (3.29) in terms of the multipole strengths of those particles, we

make use of the fact that

e
ng

in a rigid particle. From the divergence theorem, we find

5 qukTmKdV_ —J(g(:;pqw + QQQM)& Y C]ﬁ

L

Expandlng G in the above integral in a Taylor series about(%fﬁza
we get

_ 1@ (2Ghix) + 36X S
Vi

Pqm
0 u> aA (R) 3 (3.30)
' oG + a G (M
N 2-?1 Rlax axb ax 0%, P 9 )( h)ub -
where
L A (2) (RO 3 ‘
(Mo em= S.(z- L% X, (%) Oy T an, | (3.31) ‘.
n 9
' |
Substituting (3.30) in (3.25), we obtain
. _ |
Ce(Zdim €Y + 1SSpt 6,,17]3( S = nS PXx % pqand Suie? AV N
v (3.32) |
1
ZL‘I{P(IL ;E’o) qqm qm =p Z hl 'ax; e P(%:@anm ao CM} “
i+

£
and combining (3.30) with the expression (3.29) for 'Vzge , we find

vze ({ o» = Lp - : a 2
E‘Z‘r Pq ?{‘7 (/%'L xa}f‘qamsqm . (3 33)
L*J
I N *
+Z-:":.E|—a—)<‘b —v P(%" ;{' (mk . r_m} .
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.dipole strength of a reference sphere is related to the "external strain

97 s

By substituting (3.32) and (3.33) for Ce and‘V71gE in the
expression (3.23) for gJ , we obtain the required equation relating
the dipole strength of thé reference sphere to the multipoies of the
'surrounding spheres, but since this equation is rather long, we shall
work with each of the component equations (3.23), (3.32) and (3.33)

‘separately,

For the case of rigid spheres susbended in a Newtonian liquid, the

~

rate" €. by equation (3.10), and using a similar method to that

described above, we find

ecmm-<eq>1—n<sq> jmm LY

(3.34)
m .
L —L-Q_A .ji ﬁ: %) ().
2 WL’
and V €. is given by equation (3.33)

4,4 Conduction through a Regular Array of Spheres

We now turn to the problem of determining the effective transport
properties of a ﬁaterial composed of spheres in a regular array, |
immersed in a matrix,
The technique for calculating the transport ptroperties of such a
material makes use of the fact that each of the spheres has the same
dipole and higher order multipole strength.+ To illustrate the method,
we shall consider the problem of conduction through a regular array of
spheres.,
We assume that the material is subjected to a uniform mean temperature

gradient <V T>, Since the multipole tensors are the same for each particle,

we may drop the superscripts of these terms, and equation (3,21) becomes

This is true for all spheres in a volume within which <VT> does not
vary significantly, |




R R e R e T AT

[ oL+ 2) ~0 T
(ot+2 (0(-1'2) L*J ' .
' 0o » @ ¥ (R+) (4.1)
1 FDILTVVL VL] -
R=2 R 0,
L?‘J
where §o is given by (3.22), and as before, the sum is over the

spheres surrounding the reference sphere and contained in the macro-

scopic volume V',
We can obtain an approximate expression for § from equation (4.1)
by neglecting the contributions from the second and higher order multi-

poles associated with the surrounding spheres, in which case (4.1) becomes

= S -1 Q3G V'VL, - '7'L AV )
R <oc+z)¢~ *o Em a {_}—?‘VVrL “&V - } (4.2)
L'kJ

As mentioned in the previous section, the term

{ Vv n [V dv]
b#] V!

converges absolutely as the volume V'becomes infinite. For a given type

of latticq this term is proportional to '/42 , where - d is the

centre-to-centre distance between nearest neighbours in the array., Thus if

L) 9 K | ~ |

oL+
the expression (4.2) for the particle dipole strength becomes, approximately

— S ( —lj N a3 —_ =
$= 1+ &end} + fonad (DVViL - nfvIL N s
L#J V!

For an "orthotropic" lattice (that is, one which is invariant under

T/, rotations), the square bracketed term in (4.3) is zero. To show
this, we choose V to be a large sphere centred on L. . In this case,

the second order tensors

DUvE  and VYR

‘l¢j



{ are isotropic, and since

’ : V'l =0 (r#£0)

\ . Tr
these tensors are identically zero. Thus the dipole strength of a

sphere in an orthotropic array is found from (4.3) to be

S, {1+ =0 d)}_ | o (4t

(o€+2)

?CD

Combining this result with the expression (1.2.5) for the bulk flux
density, using the definition (1.2.2) of k¥  and replacing Se by
the expression (3.22) we find that the conductivity of an isotropic

array 1is given by

_E}: I+—3®(« l)(|+-(x—|)¢} o (4.5)

(ot +2) (+2)

correct to 0(¢?). For the remainder of this section we shall only be

concerned with orthotropic arrays.

! To obtain a more accurate estimate gf ’§ , we must include the
contributions to equation (4.1) from the secona and higher order multi-
poles, From symmetry considerations, we find

JTLk= 0

if R is even, and to find a more accurate value for S , we can

approximate the surrounding spheres by a dipole and a third order multi-

pole. The equation (4.1) thenbecomes

Sl-¢ &= Y= S, + (£=N a1, 31V AL (4.6)
(oL +2.) (+2Y b ;
L#j

/

where we have used the fact that the term in curly bracket in (4.1) is

zero for an isotropic array,
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To evaluate S from (4.6) we require an expression for the tensor
JTQ . This is obtained in appendix A4 by the same type of method as

that used for the derivation of the expression (3.21) for the dipole

}
— kil | s e, el ey

strength. The required expression is:

0 o0 v ) (Red) .
4= -de-n (D[ vIvTL ?tr AN (4.7)

i

|

=

: 15 (o bp) v
|

‘There are no convergence problems here, since the contribution from far off

dipoles is (3( V}ﬁ) , and there is also no dipole field term.

The expression (4.7) is valid for any statistically homogeneous
suspension of spherical particles, and for a regular array, the expression

| becomes

m = - ?(N 1 S Zvvvv '. o e o (z.\' (R#) ' .
T a/,{ o ¥ g}z%zfvv...v?} (4.8)
v bis

To leading order we may neglect the contributions from the second
and higher order multipoles to (4.8), and the first approximation to J 1,

is given by

m_3—-a(o< NS ZVVVV :

15 (octbg) t;'
J

‘Substituting this expression for JN, in (4.6) we get

S§=8, +(¥=N¢pS- a'flu~1¥ - [(Z,VV'7V =31t (ZV7V‘—7‘:1

~ ~ (x+2) = qo(ocu)(owu@ U#] i3

Expanding S in a power series in ( /d), and equating the coefficients of

like powers, we find

8= (et (rfes (e oo eodf

S, 4.9
(o(+2) oLt a0 (e +2) (ot Lp/g)(d) 2 ( )
where
¢= d(SVVVVL i DVYVIL) , (4.10)
= T. :
vy {35 :

—
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is determined by the type of lattice.

From (4.9) it can be seen that, to O((a/dﬁq) , the dipolevstrength
is only a function of volume fraction and thus the effect of lattice |
type on conductivity only becomes significant at fairly high volume
fractions,

To evaluate the tensor g; we use the fact that the arfay is

orthogonally invariant, to obtain

Ve— \
& Z‘.V AN V = A 6m S0t Smh&y+ §, o& ’L(S("‘gu , (411
¥
where  Ugpy =1if i = j=k= ¥, and is zero otherwise. The

constants A and P are related by

) I - -
5Bk V = Sl = 0,

i.e. 5N +8=o0.

Using this relation to eliminate A  from (4.11) and substituting

 the resulting equation in the expression (4.10) for C we get

c=28
$=26

~

nH

and thus (4.9) becomes

5= (v (s (2t ()8 e B S ra¥a12)

R () (+44) 225

‘For a cubic array, B can be related to the constant Sy evaluated
by Rayleigh (1892 pp 497), and we find
BE 60S,) = 1866

The volume fraction of spheres in a cubic array is given by

=_l;-_1Tc13.
¢=3"%

and substituting this result in (4.12) and replacing §, by the formula

(3.22), we obtain

S= L,'n'a3(o< |‘)l<{ er

(x+2

'W

Py % 413
( N (%”‘ (’p 13 (o= & }(VT) ( )

(X+23@K+‘€3)

Thus from (1.2,2) and (1.2.5) we find that the conductivity of a cubic

_—-
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array is given by

K e ad (=) {1 e et 7 o alete% L (h14)
Kk ' ¢(o<+2){ _.72)4) ¢+(3c_+l)(b+l(oc+m(ocr4,g)\r

This is identical to Réyleigh's+ expression for the conductivity of a

| cubic array. It appears Ehat in estimating the non-convergent sum for
; g, Rayleigh chose a value which gave the correct expression for kf

? To show why Rayleigh obtained the correct resuit, we must compare
' his expression for the dipole strength with the expression (4.1). 1In

our notation, Rayleigh's expression is

00 R,
§= 5, + a8 VT + Do E\‘%"v"..fv*il
N k=2 h';

L) (4.15)
i)

#j
and on comparing this with (4.1) we see that the dipole field term and
the term ¢(x-NS are both absent,

(e +2)

The square bracketed term in (4,15) is non-absolutely convergent and

unless the order of summation is specified the expression (4.15) is

meaningless, Without justification, Rayleigh summed the terms in (4.15) |
in the followipg way: he first calculated the éum over tﬁe spheres f
contained in an infinitely long cylinder,of square cross section. The axis
of the cylinder was chosen to coincide with one of the axes of the
lattice and in addition <V T> was taken to be parallel to this axis. By
letting the cross section of the cylinder become infinite, Rayleigh
obtained a value for the square bracketed term in (4.15).

With the aid of (4.1) we can now see why this particular order of
summation led to the correct result for S. We let the volume V'in (4.1)
denote the volume of the cylinder described above. On applying the

divergence theorem to the dipole field term in (4.1) we get

Rayleigh made some numerical errors in deriving the expression for k¥.
These errors have been corrected by Bertaux et al (1975) and their result
is identical to (4.14).

' The tern B, in Rayleigh's paper is |Sl/ qk . If we eliminate 9,

from equation (62) of that paper with the aid of equation (52), we obtain
the result quoted here,




{
(
l
l,

'S‘.JV'V'}LdV = - {glj%c(%)ﬁdﬂ- ioj[v'(r;)ﬁdﬂ ) (4.16)
v b P

where X denotes the component of Y in the direction of §,J1

denotes the surface of the cylinder, and as usual [ is a small

sphere centred on the point r = o, If the lattice is orthotropic § is

parallel to <V T> and as <VT> is parallel to the cylinder axis it can

be seen from symmetry considerations that the integral over rg in

(4.16) is zero. Evaluating the integral over [ in (4.16) we get

- &
S-fVV'—dV: 5-_17‘.3
vl
and on substituting this result in (4.1) we obtain Rayleighs expression
(4.15) for the dipole strength., Thus by summing the terms in a speciai
way, Rayleigh was able to cobtain the correct value for the dipole strength

from an improper expression,

The expressions for the conductivity of other types of isotropic

. A : 3 :
arrays only differ from (4.14) in the coefficient of the ¢|'5 term,

Using Rayleigh's method, Bertraux et al‘(1975) have studied conduction.
through other types of isotropic’arrays and their expressions for k* can
be obtained by replacing the term 1.3 in equation (4.14) by:
.132 in the case of a body centred cubic array, and by .!078 for a
face centred cubic array
The methods for determining the other transport properties of a
regular array of spheres immersed in a matrix are similar to that used
for the conduction problem, and we shall now outline the general procedure
for obtaining any of the éffective transport properties of such a material,
To determine the particle dipole strengtﬁ+ S to a given accuracy,
it is necessary to obtain a set of equations which relate the multipoles

ST, s /My of the reference sphere to the dipole and higher order

As in 4,1, S here denotes either a vector or a tensor.
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multipoles of the surrounding spheres. Then by expanding each of the
multipoles in a power series in (3/d)™ and equating the coefficients of
like powers in the expressionsfor Sﬁﬂlu-.-f~,-fQN , wWe get an
approximate formula for S. The number of terms in this series for S
increases with N, the number of multipole equations.

In the following section we will show how we can use this method to
obtain an approximéte expression for the effective modulus of compression

of an elastic suspension.

4.5 The Effective Modulus of Compression of a Regular orthotropic

array of Rigid Spheres embedded in an Elastic Matrix

The material under consideration consists of rigid spheres in a
regular orthotropic array, embedded in elastic matrix.

The aim is to derive an expression for the effective modulus of
compression K* of this material, correct to 0(d?), where K* is defined
by

K*= ¢ (5.1)
e -
With the aid of the expression (1.2.3) for the‘bulk stress and the

constitutive equation (1.2) for elastic material we can write (5.1) as

K's 1 E (l+3\>>+_ﬁ;8ﬁ_'

T30 T2 3TED | (5.2) |
= K + nSi/3ceyy, |
where the dipole strength S is the same for each sphere in the array,

and K is the modulus of compression of the matrix. As usual, the Youngs
modulus and Poissons ratio of the matrix are denoted by E and V
respectively,

We assume that the material is subjected to a qniform bulk compression,

given by

Ce;)=-8€dy (5.3)




(

i and therefore S has the form
{ e

i

for an orthotropic array. Substituting (5.3) and (5.4) in (5.2) gives

K¥= K+ n& . : ' (5.5)

"<}
v

w

I The coefficient of & in this expression is 0(¢), and to find K* to 0(d)?
‘we therefore require an expression for . to 0(9).
The expression relating the dipole strength of a sphere in a
regular array to the dipole and higher order multipoles of the surrounding

spheres can be found from the equation

— by 1 2 Y -~y
Sy=( Sl + &V SKER +5TE;L_J_2% (X s (3.23) repeated
|
{ where the constant 7, is given by the expression (3.24). Taking the

trace of the above expression, and using (5.4), we get

(

N ez(%aii( 1+ 3 )+ a* VZEE(D,QQ)“) i (5.6) @

5(1-2v) 10

-ng:lz

The external strain field is given by equation (3.32), and as we
only require A to 0(d), we can neglect the contribution from the

second and higher order multipoles to that equation, which then becomes

S&alpg= < €py + T Spq ¢ "736F‘1 - .

| + Sm% P(x A Smnj Plx-%) qud\lc?s)
J

v|
where 7, and 7, ‘are given by (3.26) and F?%M\ is defined by (3.27).

Taking the trace of this expression and using (5.3) and (5.4), we

obtain

= O & = i |
ez -3¢-s(ns I3 baaﬁwﬁbjaﬁmav (5.7)
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From the definitions (3.27) for F?Vm and (1.6) for G,,

we find
= © 5 (5.8)
and (5.7) becomes

€L -3¢ -3(7),» +3n). . ' (5.9)

Similarly, taking the trace of the expression (3.33) foerQE
i and neglecting the second and higher order multipoles of the surrounding

spheres, we get

v? HERWE o' = 0

qum 3
‘-3_)

where we have used the i&entity (5.8). Combining this result with

the expressions (5.9) and (5.6) for (Qe)qq and D , we obtain
D= ‘6(11-3 3+,<5(7 +3 N (5.10)
7“' 5(-2v) YZ( 5|2.0\]
and using the expression (3.24) and (3.26) for U and7%
this becomes
D= lom3E(h—\)‘)(|+ 3 YO+ Q(l%iOv\f) : (5.11)
(14~5M(1+ V) 5(1-2v) (lo-20v) -

Neglecting O($5 terms, we get

Bz bag3E0-9 (1+ 0(9-200)¢, |
C1=-2M0+v) (10-20v)

and from the expression (5.5) for the effective modulus of compression,

we obtain

K'z KO+ 39001+ ¢(19-20M1), (5.12)
(l+\ﬂ[ (1o- 20\’7] )

-
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To obtain more terms in the series for K*, we require expressions
for the higher order multipole strengths LﬁlN of the reference sphere,
‘ _Although we have not obtained such expressions, it can be seen from

symmetry considerations, that’

M=

%

RO

and by analogy with the expression (4.8) for the thermal multipole /Y1,
we expect that the contribution from Jvls to the expression (5.6)
. for O will be 0((a/d)10). If this is so, then by expanding P
in powers of (#/d) in (5.11) and equéting the coefficients of like

powers, we get

3 m mb 10
_ 3K (- S 19-209)
D= 1210 K(zlﬁ’g)(l & ﬁj,(:0~iov)¢ " O(%} )E.

From (5.5), we find that the corresponding expression for the effective

modulus of compression is

K= K(1+300-0 +z:' ﬂ-_zo_v)cb ] +0(9%)), €5.13) |
(1+V) m=y 10-20V ‘

4,6 Conduction through a random array of spheres

In this section Qe shall describe a procedure for obtaining the
effective transport properties of a statistically homogeneous suspension
of spheres with random structure. As for the case of the regular array

§ 4.4ywe begin by illustrating the procedure for the conduction
problem,

Our objective is an expression for the conductivity k*, correct

to 0($2). From the exéression (1.2.5) for the bulk flux density, it

can be seen that to obtain the required formula for k*, we need an
expression for the average dipoles strength <S> correct to 0(¢). This

in turn can be obtained from equation (3.21), which relates the dipole |
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strength of a reference sphere to the multipoles of the surrounding

i
I
|
|

spheres. Taking the average+ of (3.21), we get+*

‘ <SH(i- <&<<+123\¢) = So+ a?;%)iﬁf(g\ob;afclo)—n<§>}cVVrL—dV(6 ,
o o @ (R
Zzz-é—!@mkgm»vv v—p(rlo)d\/]
. IC1=2a
; where P(fl0§dV " is the probability that the centre of a particle

lies in the volume dV surrounding r, given that there is a particle at
the origin o. The term <§(E/°)> denotes the average dipole strength
of a sphere at r, given that there is a sphere at the origin. If there

is no long range order in the suspension,

p(cloy—n and <S(rloY) =» (SYas Igl—>o0

and the integral

j{<§(£'g)>p(£ oY= <§>}.Vv¢r dv
r=y

converges,
We can write the expression (6.1l) in a more convenient form with

the aid of the relation

vy (hed

S(olg))y - Mot=1) _-ZK (r 1MV, .
¢s(olg)) - 5= a &_'Z{G(rlov)vv 2 klr MW.VL  (6.2) |
+ o(¢y |

+ This may be either an ensemble average, or an average over a large
number of particles in a single realization, ’

++ The integral

(<gryuvedv =0

if v" is the volume between a pair of concentric spheres, centred on the
origin, and therefore we are free to take the lower limit of integration
to be Ir] = 2a in (6.1).
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obtained by taking the average of (3.21) over all configurations for
which there is a sphere at O and one at r, Substituting (6.2) in (6.1)

we get

) o Sl .5 - nBk-Deasyolddy.  (6.3)
(9= (=1)8) = S+ J[{<SlOIEN-583peri0 e g9 VgV

(x+2) I 1220

To evaluate the‘integral, we require an expression for ;§(0/£)>.

If we can neglect terms of 0(d), then <8(o/r)> is approximately
equal to the dipole strengthlﬁ(glg) of one of a pair of sphereé with
separation vector r, alone in an infinite matrix with the far-field
boundary condition

T— (VT)x
at points far from the sphere pair. To shéw this, we note that S(o/r)

is given by

00 o (kr‘n
Slolr)-S. = a3(x- ﬂ{,SV(L‘lO)'V\_/—;—-f b mg(f,lO}V:..VL} , (6.4)
(oc+ 2) R=2 k! r
where JYLﬁﬁTO) denotes the ith multipole strength of the sphere

at r. This expression canlbe obtained in a straightforward manner from
the Faxen type formula (3.9) for S. If we neglect the O(Q)vterm in-(6.2)
we see that this expression has the same form as the expression (6.4)

for S(o/r). Similarly, we could formulate expressions for the higher
order multipole strengths and in each case the expressions for <M(o!r)
and MLolr)d would have the same form. Therefore, neglecting

terms of 0(}), we get

{Slolry) = Slolr),
: (6.5)
(M 0l)y =M, 91,
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and the expression (6.3) for <8> becomes
(o]

— ~1) - & - K~ . —_
(8r=§(1+ 0= g jl[{g(olm S)pecio-ceyn 5, VLAV (6.6)
L1=2q ’

The average dipole strength <S> can therefore be evaluated from solutions

of the two-sphere problem,

From the expressions (1.2.5) and (3.22) for <F> and S,s we find

"from (6.6) that the bulk flux density is given by

CEY=-k(VT) -30 ke v (1+ OE=DY

+2 o+ 2
o0 (6.7)
5 ﬂf[{g(om-go}P(g 10) -nQSS_:Q;O.vv'?] dv,

IC1=20

We can write this expression in the same form as Jeffrey's (1973)
result (equation (3.13) in that paper), by noting that the temperature
gradient at a point r due to a single sphere at o in an infinite matrix
is given by |

VT(£lo)= {VT) + S VL .
Wk

Combining this result with (6.7) we get

CEy=-KLTTY - 30k T 1+ §loe=1)
oL+ 2. oL+

+ n[[{@ol@—ﬁp}ggxo}- hknad(«-D{ VT(cl0) - (VT dVY,

T2
Irl=2a

o

and this is the same as Jeffrey's expressions for <F>.
. Jeffrey obtained this result using the method which was described

in §4.1. To apply that technique it is necessary to obtain a

Renormalizing Quantity in order to overcome the problem of the divergence

of the integral in the expression (1l.1) for <S> . The method presented
here has the advantage that this Renormalizing Quantity arises naturally

from the dipole field term in the expression (3.21) for S, and it is now

—
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clear that the convergence difficulties encountered in the past simply

do not arise when the dipole field term is included.

4,7 The Effective Elastic Modulus of a Random Suspension of rigid

Sgheres

We now turn to the problem of determining the effective elastic
modulii, correct to 0($?), of a statistically homogeneous random
suspension of rigid spherical particies in aﬁ elastic matrix. We
assume that the material is subjected to a uniform bulk strain <g>. The
Youngs modulus of the matrix is denoted by E énd the Poisson's ratio by

Y. .

As in the previous section, we begin with an equation relating
the dipole strength of a reference sphere to the multipoles associated
with the surrounding spheres, This expression for the elastic dipole

strength of a rigid sphere can be found from the expression

J_ ) 2 o2 o '
Spq— 7’2|( eE(;{:o)Pq+ _'%_V ei(,,\cam + 8pq€e(XI.) , (3.23) repeated
] 50-2W ) !
where the constant M, is given by (3.24). The external strain field ;
f%(za is the strain tensor which would be obtained at X if

the reference sphere could be replaced by matrix material while the stress
on the surfaces of the surrounding spheres is held fixed. The quantity
ggxa is related to the multipoles of the surrounding particles by
equation (3.31), and §71§E is given by (3.33).
By substituting (3.31) and (3.33) in the expression (3.23) for
gf we obtain the expression for Eﬂ in terms of the surrounding multi-

poles, However, as mentioned in § 4,3, it is preferable to work with

the three equations separately, : |

Taking the average of (3.23), we get
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= ( e ( o\ + zvz A
(Spq7= 1, ({LLNpq) SV I +§8(‘gji®<eg(a~@mmﬂ. (7.1)‘

From the expression (3.32) for €; , we obtain
(=]

(X = (€pq) + M Spq) + 1. 8eq{S) + S[{ P 0qan$ SRt K X0
Il=2q 2

oo—'_.—a—.“ p S 3 ; (7.2._)
Fo. 2 P pqun{ ML 1 Y] plretrl)

- n P sl Senr 1AV,

We may simplify this equation with the aid of the approximate relations

(Ce(LoIZor 1)) = C oy + PUD), (S(3eclx)

o
1.9 .58 P ’ s vi
+ kz,-_z h! aI"’ ax'_ (r)qun<mk(z +K:lz ?hb""\:f\> (/ 03)
+0(d),

obtained by averaging (3.32) over all configurations for which there is
a sphere at X and another at X, +1 . From (7.2) and (7.3) we

get . :

¢ ee(zapq) = {Bpqt My( Si”\) J 'SP‘HTQ( S
+ {[Kegeizmy - (eplptearhn-n PEXSY 74
ICl=2q

+ O(dh.

Similarly, taking the average of (3.33), and using (7.3), we find

< V2e5<;cam> = 5 Vz(escagolgcu»fr))m o+ rixad V(K (7.5)
il ¥ 0(4Y) .
Substituting the expressions (7.4) and (7.5) for (gs) and <vz§5\>

in (7.1), we obtain




CSpq? = Spq +M(MLSpq? + & <S,,,>[q * (,r3)])

5(-2v)

:1 (-2

: : + S{[( S,(vgolz,«*rp)q}—S;q]P(gomi;gD-nvz,(P(r hamS S - (7.6)
‘ 3 | S_E(s',oqmpm e Si) V()

: ,

| where

|

J Spq=1,Ke; %t o€ 5 (7.7)

is the average dipole strength of a particle in the limit as ¢ - 0.

As in %4.6, we can show that

Spq(sl2at 1Y) = Spq(XolZot LY + O(4) (7.8)

| . where Squggoliiﬁr) denotes the dipole strength of one of a pair

of spheres, separated by r and alone in an infinite matrix with an

undisturbed uniform strain field <e>. With the aid of (7.8) and the

expressions (3.26) for 7, and Ty s we find that equation (7.6)
becomes
§ S S gtaan | S 4(13-209) + §, S:M(S’B—BO\B
3(1&75\0 10 - 220V
o i
+ S[{Spq(zo\x°+ )= $Zq}P(%o+£lx0 (7.9)
ILl-2q

—1onadnE(1- \)\{ P(r) S° +8 P(r)kk S }]&V(Y‘) i
(L= 51+ 9) v "

and thus <S> may be calculated with the aid of solutions to the two-sphere 5

1 problem,

For each of the transport problems we have considered, the dipole i
field contributes a renormalizing term to the expression for :SJJ, and | |
without this term the expression would not converge. We shall ﬁow show

that if the bulk strain tensor has the form

P _ |



1Ly

(ep = - BL.J- " (7.10)

corresponding to pure compression, neglect of the dipole field term
leads to an expression for the effective modulus of compression K*
which is convergent but is neverthelesé incorrect,

We begin by deriving the correct expression for K*, based on the
expression (7.9) for the average dipole strength. From equations (7.7)

and (7.10) we see that the tensor §° has the isotropic form

S =- (1+38 e . 7.11
Pq Pqnl\ 5“__va ( )

Taking the trace of equation (7.9), we get

(Sqq)— 5 q[' + ¢(‘|qo—§g:;3 S S(qxcl:co-i-r\ qu}P(x +L1%0)

01z 24
- 12)710 ®nE (- v)(Dm oS S +3_ Yjdvio. (7.12)
b~ 504 ) 10 =200
'Using the expression (7.11) for §° , we obtain

PUE Yogn Sn= 3 )tP( D 05

where we have used the identity (5.8). Combining this result with (7.12)

and substituting the expression (7.11) for .f§°, we find

(Sqp = -3 (1+3__ i+ ¢019-20v)] | : :
K Wl 5"0\’)[ (lo-zov)J

{(7.13)

-+
8

[{ Syl lze D)= SgppCeallxad(r).

L e ot by

B SRR

R

i
¥
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Although the renormalizing factor has vanished, the integral in
(7.13) converges, since
= €9 _ i r )
Sqq (Relxmx) = Soq = constanlx B () + O(7)

= 0('}'—“} as r —oo.

Substituting (7.13) in the expression (5.2) for K*, and replacing 7,
by the expression (3.24), we find that, correct to 0(d?), the effective

modulus of compression is given by

K*= K + 30 U-MK (1 + cb(lq;éov)\

(+9) (16-20V)
00
— VSl - So. ) Pt 126 VD), (7.14)
0L Y '
If instead ofru?ing the expression (7.9) for <S> we use the incorrect
equation
= ¢° +lrs =g )
(Spy= 80+ }[upq(%glf{:i—f) Spq)PEEFLIZIAV(E) | (7.15)

based on the assumption that only nearby pairs interact (c.f. equation
(L.1)), then on taking the trace of this equation and using the expression
(7.11) for s°, we get

o

Sy = -3’Yzl'€(l + 3 )+ g[ S e(".}gu‘,%w):}— Sqq']P(EO*',C‘%o}dV(r.)- (7.16)

5-1avy 9
Although the intégral in (7.15) is non-absolutely convergent,
the integral in (7.16) converges and it is tempting to assume that
simply because the integral converges, the expression (7.16) for <Sqq>
is correct. However, comparing (7.16) with the expression (7.13) (which
takes into account the contribution from the dipole field) we see that

the term

SREO(13=200( 1+ 3
‘ $-10V

10 =200
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does not appear in (7.16). This illustrates a weakness in the renormaliza-
tion éechnique described in §4u1 for, since it is designed to overcome
the problem of a non conVergept integral in the expression (l.1) for(S)
it might lead to the belief that any reasonable looking convergent

expression is correct.
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CHAPTER FIVE
SHEAR INDUCED COAGULATION
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5.1 1Introduction

From thermodynamic arguments (Verwey and Overbeek (1948)) it can
be shown that particles suspended in a liquid have an electric charge.
The sign of the charge is determined by the composition of the particles
and the solvent, and thus particles composed of the same material tend to
repel one another. Opposed to‘this electrical repulsion is the Van der
Waals force of attfaction, and the stability of a colloid is determined
by the balance between these two forces, This balance can be altered by
the addition of electrolyte to the suspension, for the electrical forces
diminish as the concentration of ions in the solvent is increased. Thus
the particles in a suspension cease to repel each other, and may coagulate,
if sufficient electrolyte is added.

The removal of colloidal impurities from a liquid is greatly

facilitated by the coagulation of the particles, since the processes of

filtration and sedimentation are more effective with larger particles.

- For most industrial processes, as for example in the purification of

water (Harris, Kauffman and Krone (1965)) the liquid is stirred after the

~

" addition of the electrolyte. The stirring increases the rate at which

particles coagulate, and it is this phenomenon, known as "shear induced
coagulation"+, that forms the subject of this chapter.

vIn particular we shall study coagulation in a dilute suspension in
steady shear flow. We assume that the particles are spheres of uniform
radius a, and that the.electrical forces between the particles are negligible,
(The effect of electrical forces is t;ken up in the next chapter.)

In the initial stages of ;he process, most of the coagulation takes

place between single particles which unite to form "doublets". Our aim
is to derive an expression for the "Coagulation rate" Y, defined as the

number of doublets formed in unit volume of suspension per unit time,

sometimes called "shear induced flocculation'.
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We shall begin py describing the motion of a pair of spheres in
a shear flow in the absence of Brownian motion. The Brownian motion of
sphere pairs is considered separately in §5.3, and in §5.4 we superpose
the two effects to.obtain a "éair conservation equation'" of the Foker-
Planck type. The coagulation rate may be obtained from a soiutfon of
this equation.

In §5.5 we discuss this solution for thé case of "low" shear rates,
and in §5.6 we turn to the problem of solving the. pair conservation equation
for "high" shear rate;. The following four sections are concerned with
this problem and finally, in §5.10 we combine the results for low and
high shear rates to obtain a semi-quantitative-picture of the effect of

shear flow on coagulation rate.

5.2 The Relative velocity of sphere-pairs in Shear flow

In the absence of Brownian métion, the velocity of a particle in
the suspension is determined by the shear rate K, and by the positions of
the surrounding particles, In a random dilute suspension, the number of
particles which-have a neighbour within a distance of several radii is (
much greater than the number which have two or‘more such neighbours and thus
most of the pairs of spheres which coagulate move together on trajectories
which are unaffected by the other particles in the suspension. To calculate
the efféct of shear rate on the coagulation rate we may therefore treat
each pair of particles as being alone in an infinite liquid in shear flow.

In this section we shall derive an expression for the velocity of the
centre of one member of a sphere pair, relative to the centre of the other.
This quantity is termed "the relative velocity of the pair" and is denoted
by V(r), where r is the vector between the centres of the pair. We assume
that the particles are so small that inertial forces may be neglected, and

to determine the relative velocity of a pair we must therefore find the

velocity u(x ) and pressure p(x ) which satisfy the Stokes equation




VP:: ’“‘va—" 5 v"’b\l;: (@) 9 (2.1)

at each point in the liquid, where M is the viscosity.
With a suitably chosen cartesian coordinate system, the outer

boundary condition may be written as

y@ ~ (-Kx,,0,0) (8.5

at points X which are a large distance from the sphere-pair. On the
surface of the particles the no-slip condition must be sgtisfied. The
relative velocity of the pair is then determined by the condition that
there is a given force of attraction between the particles.

Taking advantage of the linearity of the Stokes equations and the

boundary conditions, we write

V=Y +V ' (2.3)

where V' is the relative velocity of a pair of force-free spheres in !
an infinite liquid with the outer boundary condition (2.2), and V" is |
the relative velocity due to the Van der Waals‘attraction between a pair
of spheres in an infinite liquid which is at rest at points far from
the particles.,

From the work of Batchelor and Green (1972(a)) on the motion of

1 | force-free sphere pairs in a linear flow field we find
V()= ak U(n) (2.4)

where the components of the non-dimensional velocity U are

: _ U.= (- Alma))L sin singcosd

Uy= (1 — B(r/a) L sins cose sing cosd, *

|
. ] i ;. & (2.5)
Ug= = gsma{Sm 9+ £ Blrg)(cos*d - sin 4’3} ) |

..
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and the spherical polar coordinates (r, © ,§) are illustrated in figure
(5.1), The origin'of the coordinate system is fixed at the centre of
one-of the spheres, and the line & = 0 is perpendicular to the plane
of the shear flow, The functions A and B are illustrated in figure 2
of Batchelor and Green's (1972(a)) paper. If the spheres are nearly in.
contact, A and B are giveq by
H(%); fs 4.0?4_% + O((%)%)
(2.6)
B(mg) = 106 + Of '/103(%3) \
where h is the gap distance, defined by
h=r-2a
The relative velocity due to the Van der Waals attraction between
a sphere pair in an infinite liquid which is otherwise at rest is
given by
Vi) = Gl Feny? ' - : (2.7)
3mua
where r = E/r, and F(r)r is the force acting between the spheres. The
mobility function G(r/a) is shown in figure 3 of Batchelor's (1976) papef.
We shall only require the form of G for nearly touching pairs, and from

Batchelor and Green (1972(a)) this is given by
= h . .
Gl %h(: + O(Hlog)(%j\), (2.8)

The Van der Waals force F acting between a pair of spheres may

be written in the form (Verwey and Overbeek (1948))
Fmy= - H Frze) (2.9)
where H is the Hamaker constant, and

Foy = é{_lﬁ_ o+ if—a (2.10)

(&= 1)
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Figure 5.1 The cartesian and polar coordinate systems employed
in this Chapter.
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(This expression is only valid if the minimum distance between the
surfaces of the two spheres is less than 10'_6 cms. At larger separations
the "Retardation Effect" (Verwey and Overbeek (1948)) becomes significant,
and the Van der Waals.force drops off at a more rapid rate with increasing
r than that given by (2.10).) For the case of nearly touching spheres,

(2.10) becomes, approximaﬁely
. 4
F7) =L@+ O(k)). (2.11)
/o) m(hv (aﬁ)
The value of the Hamaker constant is determined by the composition of
the particles and the solvent, and generally lies in the range
107°¢ H¢10™ ergs

(see Ottewill (1973) for review).

Combining the expression (2.7) and (2.9) we obtain

Vs zH _ GFF 2.12
~ 3mpor ( ‘

and using the asymptotic expressions for G and £ we find that the Van der
Waals attraction causes a pair of nearly touching spheres to move together
with a relative velocity given by |
V' = I.S:’l.l.ah (1+ O(k tog (&) 7. .(2.13)
From the expressions (2.4), (2.5) and (2.6) we find that the
radial component of the relative velocity due to the shear flow is

given by the asymptotic expression

V'= 8154 Kh sin*e singcosd (1+0(h) (2.14)

This quantity decreases linearly with h and is dominated by the term

v." if h is sufficiently small. The ratio Vr'/V w is found from (2.13)
’ r

and (2,14) to be
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M~ 460 wa KK sinte sing cos¢ -
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For given values of © and @, the separatioe h at which Vr‘/V nw is of
order one is proportional to ( H )%a. Thus if the condition
| a3k
,_;_f:_K» | : (2.15)

holds, the Van der Waals force only has a significant effect on the

motion of nearly-touching sphere pairs (provided that sin®s sing¢cosd

"is of order unity). This observation enables us to simplify the problem

of determining the coagulation rate at "high" shear rates, i.e. those
shear rates for which the constraint (2.15) is valid. This matter will be

discussed more fully in §5.6.

5.3 The Effect of Brownian motion

Each particle in a suspension is subjected to random thermal forces
from the surrounding solvent molecules. The way in which a particle
responds to an applied force is determined both by the magnitude of the
force and by the position of the neighbouring particles, for as a particle
moves it interacts hydrodynamically with its neighbours. 1In the previcus
section we showed that in a dilute suspension, most of the hydrodynamic
interaction occurs between pairs of particles, and each of these pairs is
hydrodynamically independepnt of the surrounding particles. Thus to find
the effect of Brownian motion on coagulation we can treat each pair as
being alone in an infinite liquid.

The fluctuating thermal forces are random quantities and we can
only speak of their effect in a statistical sense, i.,e. by considering
the Brownian motion of an ensemble of sphere pairs. Such an ensemble is

provided by the pairs in a dilute suspension and in order to describe
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tﬁe effect of Brownian motion on these pairs, it is convenient to introduce
the concept of a "Pair Space'.

Each pair of spheres in a chosen unit volume of the suspension is
represented by two points (,,X,,x; ) and ('x,f'xz,'xg ) in pair
space, where x y %, and x, are the cartesian components of the vector
which passes from the centre of one member of the pair to the centre of
the other. For the remainder of this chapter we shall use the cartesiaﬁ
axes shown in figurebl, .The points in pair space are obtained by
placing the origin of these axes at the centre of each sphere in the unit
volume in turn and noting the coordinates of every other sphere in the
volume, If n denotes the number of particles in the unit volume, there
are n(n-1) points in the pair space. We shall use the term "pair" to
denote both the actual sphere pair and the points which correspond to that
pair.

The points which correspond to coagulated pairs lie on a sphere of
radius 2a, centred on the origin in pair space., This sphere will be
referred to as the "central sphere". The number of points which move
onto the central sphere in unit time is double the coagulation rate, since
each pair of spheres is counted twice;

The density of points in pair space is denoted by oC%) , and
we shall refer to e as the "pair distribution function". 1In the

absence of any long range order in the suspension, we have

as fxl— 00 . In other words, the fact that there is a sphere at

the origin does not affect the probability of their being another sphere

in the unit volume about x , provided I} is sufficiently large.
It e is non uniform the Brownian motion of the particles leads to

a diffusion of points in pair space, and this provides a mechanism for

restoring e to a uniform value. The flux density vector associated
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with this diffusion of points in pair space is given by

1

1,00)=-KTD(5). Vorr) , (3.2)
Sﬂpa _
where
| D)= Gl + Ko (- 77 (3.3)

1 ~ |

, " This result is derived by Batchelor (1976), and the functions G and H
are illustrated in figure (3) of that paper.

We may now combine the expression (3.2) for the flux due to

the relative velocity of a sphere pair, to obtain a differential equation

Brownian motion with the expressions derived in the previous section for
for © . From the solution of this equation we can compute the
coagulation rate,
Before proceeding to the derivation of this differential equation
! for e , there is a point which should be cleared up.concerning the |
1

expression (3.2) for the flux of points in pair space. This result is

of independent pairs., This is not quite correct, for each particle is

e T S e

paired with every other particle to obtain the points in pair space, and

since each point does not correspond to a pair of different particles,

these points cannot be regarded as an ensemble of independent pairs.

However, the points which lie within a spherical volume of radius

:
\
.
based on the assumption that the pairs in a suspension form an ensemble
r*, centred on the origin, do form an ensemble if

D D e D

r* << average particle separation,

that is, if

s =/
rx << ad ? o,
This is because the majority of peints in this vclume each correspond to

a unique pair, Thus the expression (3.2) for the flux density vector is

\

%
|
g
|
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valid in this region, We shall assume that the length scale over which

=/
e is non uniform is << a @ ° , and therefore the differential

equation for @ , obtained with the aid of (3.2), gives a valid expression

for the pair distribution function,

5.4 The Pair Conservation Equation

In the absence of Brownian motion, the points in pair space move

with velocity X: + X" where X’ is the velocity due to the shear flow and

'X" is the velocity caused by the Van der Waals attraction. The flux

density vector associated with this motion is given by

1,=p(VY +V"Y - (4.1)

where the subscript "H" stands for "hydrodynamic'". It is custormary to

assume that the Brownian motion of the pairs is unaffected by either the

shear flow or the Van der Waals force, and thus the total flux density

vector is given by
;:L — ,'z'p_ + l (4.2)

Taking the gradient of (4.2) and using the fact that points in

pair space are conserved, we get

(4.3)

yx

;gg = =-Vi(1,+1) .

For the remainder of the chapter we shall assume that the system is in a

"quasi-steady state", i.e..

2% . 0. | ' (4.4)
ot

Although the number n of single spheres decreases with time, we assume

that the time over which n changes appreciably is much longer than the time

required to achieve steady state conditions.

i
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Substituting the expressions (2.4), (2.12) and (4.1) for V', V"

| P " .

} and 1, in (4.3) and using the expression (3.2) for 1, , we obtain
| ) .

|

0= V(KT Dr)Verr)- orKkucg _"Ac,. . (4.5)
(Sﬂpa D(L)Ve(X) - e Hse) ok () |

This equation, together with the outer boundar§ condition (3.1)

determine 0O uniquely, Equation (4.5) is the "Pair Conservation

‘Equation" referred to in the introduction., ;
We make use of the fact that both equation (4.5) and the boundary

condition (3,1) are linear by introducing a non-dimensional function

©s(L) defined by
o(L) = UL/

Substituting for © in (4.5) and transforming to the dimensionless
coordinate system
x', = :Y.;/a

L

we obtain
1 \ ] - 3
0= V. %—Q‘Veo- m‘rﬁﬂggo + Gfo, ) (4.6)

and the boundary condition (3.1) becomes

R.(CH>— | as lp)l— o0 (4',7)

it

From (4.,6) it can be seen that the function €. is determined by

the non-dimensional parameters iiI and LéazK .
’ H H
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As mentioned in the previous sections the coagulation rate €

is equal to half the number of points which move onto the central sphere

in unit time, and since A 20 &0 , we can calculate € from
. ot .
° A . ’
€= ‘é§ i-ndA (4.8)

3

where 8 denotes a closed surface enveloping the central sphere, dA

is an element of that surface and n denotes the unit normal directed into

‘the volume enclosed by 3 .

Replacing if in (4.8) by the expression (4.2) and using (4.1),

we get

€= 20(1, +p(X'+Y)-AA - (4.9)
>
and with the expressions (2.4), (2.12) dnd (3.2) for V', V" and 4, ,
- ~ e
(4.9) becomes
g = } ol 3 - A N (4.10)
&ﬁ_'_§ KT 3. Ve, + pkoU - 0.GFY.AdR .
weH 2 (awH“ Q + SRR TR )
Py .
X L =
where dA dA/az-
Thus the quantity #re is a function of only two variables,
neH
KT and wo K . Our aim is to find the form of this function.
H ’H '

We can use the fact that <€ is proportional to n? to obtain an
expression for the evolution of the number density n. With each

coagulation, n decreases by two, and thus we have

_dﬂz = =2¢ = = constant x R*

ct

and integration of this equation gives

nt) - ! ' (4.11)
o) 1 4+ o) (constant)t
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5.5 Coagulation in a Suspension at rest

If there is no bulk flow, the pair conservation equation (4.6)

reduces to
0= V-(kTg'-Ve°+eo'Gf?). | * 8.1}
The function Qo " has radial symmetry, since equation (5.1) and the

boundary condition (4.7) are not altered by a rotation of the coordinate

axes. Equation (5,1) therefore becomes

0= d(r*{KTGdo. +QaGf}) A (5.2)
d

where we have replaced D' by the expression (3.3). Integration of

(5.2) yields

(5.3]

kKT d
Gir* _rT'JS-

where c is a constant.
Using the "Method of Variation of Parameters" (Kreyszig (1968)) we

find that the general solution to (5.3) is

- (5.4)
6 = + t_ J eXGE,EzHV/kT)dr} EXP{' }:\_\"/F}
n

where A, and r are constants, and

V(r) = - goc(r\dr

r

is the potential associated with the Van der Waals force. From the

asymptotic expression (2,11) for f we find

\/(%),\, _1—2%. as ja}_—> o, ' (5.5)
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where h = r-2a., The quantity P{' = 3% diverges as r = 2,
. T

and for @, to be an integrable function we require

: Y
1 A + HC \ exp (WVeT)dr 0
in (A + M o Mymydry . o

)

or

n
A= mge_xmmar-
KT Gre

Substituting this expression for A in (5.4) we get

= H xp( IV 1 D dr' Y expl= AV : (5.6)
—_[:J’?__f___/_!er}eP{Hr}

rlz-

The asymptotic form of e as r—>2 1is found by replacing G and V by

the asymptotic expressions (2.8) and (5.5), which gives

eo(}\.\ ~ (COh;LOﬂL}"LQX ( as h=>0. $5.73

This asymptotic result also holds for a suspension in shear flow,
for the velocity\of points due to Van der Waals attraction diverges as h'_a o)
and we may neglect the effect of shear flow on the motion of points in a
thin. layer surrounding the central sphere., The value of the constant in
(5.7) will of course depend on the shear rate.

The constant c which appears in the expression (5.6) for the pair

distribution function of a suspension at rest is determined by the boundary

condition (4.7), which gives

C = (I_g_r) ffﬁg(%—)—dr (5.8)

> GrF
Teking the surface .» which appears in the expression (4.10) for €

to be a sphere of radius r (>2) about the central sphere, we get

n

ul 217 kT G de. +@,_GLJ_C]
n*H 31

L3WH dr (5.9)

2cC
3
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where we have used the expression (5.3) for c. Substituting (5.8) in

the above expression we obtain

4 =12,I 4 (5.10)
T (el |
2 G(r2

This result was first obtained by Derjaguin and Muller (1967).

{ : The expression (5.10) for ,U-_ﬁ_ takes a particularly simple form in the
%
"limit as KT— oo . To find this asymptotic form, we begin by noting
H . .
that the quantity exp {%\_/(*’31 is approximately unity unless r=20<< |,
T a

in which case V(r) has a large negative value, We let T dencte the

I ' minimum value of r at which exp gL HE'\T-/‘} = | s Le€,

exp{ HV(\} > 1-A  for r3F (5.11)
e il I

’ where A << 1,
|
[
|
1

Replacing EXFD{%¥%£)} by unity for r > F in the integral in (5.10)
we get

o ~ e o

‘gexp{i\/.}c:‘lr e jexP{H\/}dr‘ JG . " £5.12)

2 G(yr* 5 G - (r

We can estimate F by expanding exp{ } in (5.11)
in a Taylor series about Pl:'_'\_/ = 0, which gives

\

| ' Vi)~ - AkT 5
H

and with the asymptotic expression (5.5) for V, this becomes

T'\.:. H (5.13)
| . 12AKT

i where h = ¥-2,

Combining the estimate (5.13) for h with the asymptotic expressions

(2.8) and (5.5) for G and V, we find that the expression (5.12) has the




! asymptotic form

[=4)

| | JEXP(HV/kT«}d’ 5 _é_ log(l%) +0(0 s %—)00 :

2
3 Gr

Substituting this asymptotic formula for the integral in (5.10) we obtain

=

__ 16 '
}ﬁ 1 %/103(%) os k_HI > 0, (5.14)

or ' ' ‘

¢~ 16 kT as kT 5 oo, , | |
:5“109(‘%_> H |

Thus the coagulation rate is only weakly dependent on H if kI >> 1.

H
We can obtain the asymptotic form of the expression (5.8) for ¢
as kT o by noting that in this limit, the integral in (5.8) is
H

dominated by the contributions from the region r >> 1, and therefore we

may replace G and V in that integral by the approximate expressions

G~ (see Batchelor (1976)),

and V(r);;-_&é5
~ ar

where the approximate expression for V was obtained from the formula
(2.1) for f and the definition of V., Substituting the above expressions

in equation (8.1), we find

5
4 o o .
%:l/\, C(&H—h as kHI - . (5.15)
(o]
7 (-x*)
where £ = Fi)og e dx
16
0

This asymptotic formula is only wvalid for very small particles (a < 10-8cm),

since it is based on the formula (2.10) for f(r/a) which is only valid if

: : s -6
the particle spearation is less than 10 “cms.

| The expression (5.10) gives the leading term in the expansion of

?
G in powers of kgfﬁL . The coefficient of the odd powers of

| n*H
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FA%;K in this ex?ansion must be zero, sigce the coagulation rate is
not affected by a reversal of the flow direction, and thus the curve of
coagulation rate versus shear rate has zero slope at K = 0., We shall not
attempt to determine the coefficient of the 0&%?5‘% term in the
expression for k%%. s since this will only predict the perturbations

. =
in the coagulation rate cause by "slow" shear flows, and instead we shall

concentration on the more interesting problem of coagulation at high

shear rates,

5.6 The High Shear Regime

From the pair conservation equation (4.6) it can be seen that the

ratio
Brownian diffusion flux
Convective flux due to shear flow
is proportional to kT . Thus if the condition
Mmadk
3 (6.1)
pak sy o
KT
holds, the Brownian motion of the particles may be neglected. It follows
that the quantity #gé is only a function of the variable Aﬁﬁﬂi .
rH

The remainder of this chapter is devoted to the problem of finding

the form of this function for the case

Hﬁ“z > (6.2)

Shear rates which satisfy the constraints (6.1) and (6.2) are termed

"high" shear rates.,
In §5.2 it was shown that if the condition (6.2) is satisfied, only
the nearly touching sphere-pairs are affected by the Van der Waals force.

Thus equation (4.,6) may be approximated by

Ve(Up) =10 (6.3)
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except in a thin layer surrounding the centre sphere. This is the

pair-conservation equation fof force-free spheres in a shear flow which
has been solved by Batchelor and Green (1972(b)).

In this section we wil; show how the coagulation rate may be obtained
by combining Batchelor and Green's results with expressions for the
relative trajectories of the ﬁearly—touching spheres which are affected
by both shear flow ' and Van der Waals attraction. The problem of

determining the motion of such pairs is simplified by the fact that the

13— & e e ———— L.

stress is much larger in the thin layer of liquid between the spheres than

elsewhere in the liquid, and the force exerted by this layer on either

| sphere is a simple function of the relative velocity of the spheres and

the minimum thickness of the liquid layer.

Before describing this technique for determining € we shall briefly

outline the relevant results of Batchelor and Green's (1972(a) and (1972(b))
| work on the motion of force-free sphere pairs in a bulk flow.
By integrating equations (2.4) and (2.5) for the relative velocity
of a sphere-pair, Batchelor and Green obtained-the following expressions
for the trajectory of a point in pair space, in the absence of Brownian

motion and Van der Waals attraction:

P
r(r = exp{gﬁ(r's—&(rj ar) (6.4)
Ry J (1- Atrre )
v
and
o
2 2 .9
ot = ¥ (RY EB(F‘WR)\ ridr } \ (6.5)
AN It
where r, = r singsin @, and r, = r cose (see figure (5.1)). The
constants R, and R, are the values taking by r, and r, at a point on

the trajectory an infinite distance upstream,
The trajectories of force-free pairs which lie in the plane of the

shear flow ( & =75) are illustrated in figure (5.2)., (This is a |

| ‘ , :




B

RYa?=9

: x.fa

Figure 5.2 The trajectories in the plane X, = O of points in pair

space in the absence of Brownian motion and Van Der Waals' attraction.
The circle r = 2 is the surface of the central sphere. The trajectories
for which (R,)2 < 0 are closed, and the boundary of the region of

closed trajectories is formed by rotating the R, = 0 line about the X,
axis,
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reproduction of figure (4) of Batchelor and Green's (1972(a) paper.)

From this figure it can be seen that there is a region of closed tra-
jectories surrounding the central sphere, The quantity R, associated with
trajectories in this region is imaginary, and pairs which move on these
trajectéries execute closed orbits about fhe central sphere, If there

is a force of attraction between the particles the pairs which lie in

this region will eventually coagulate, since they will be drawn closer

to the central sphere with each pass. Even thbugh there are no closed

trajectories if there is a force of attraction between the particles, we

shall continue to refer to this region as "the region of closed trajectories',
g §

From figure (5,2) it can be seen that trajectories are "squeezed
together" near the top of the centfal sphere and this is the reason that
the shear flow assist; in the coagulation process; pairs which move along
trajectories such as the R, = 1 trajectory shown in figure (5.2) pass

a
very near to the central sphere and only a slight force of attraction is
required to cause these pairs to coagulate.

In the second of their papers, Batchelor and Green (1972(b)) found

that the solution to the pair conservation equation (6.3) is given by

(L Y= q(r) (6.6)
where
= _1_ exp 53(B(f3‘9(ﬂﬁd" . (6.7)
qery = i P R )

This result only holds outside the region of closed trajectories,
Substitution of the asymptotic expressions (2.6) for A and B in (6.7)

gives

QM ~ 2R3 a8 h —o0. (6.8)
(b'—\).?s‘{lo a 1-2‘) a
451

a
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Although we are only concerned with the case of shear flow, it should be
noted that the expressions (6.6), (6.7) and (6.8) are valid for any

type of linear bulk flow. The fact that q diverges as h —+ o is a

. reflection of the tepdency for bulk flows to push particles together,

and thus any bulk motion of a suspension assists the coagulation process.

This completes the outline of the relevant results of Batchelor
and Green's papers. We shall now show how ¥ may be obtained with the
aid of these results.,

As mentioned earlier, the Van der Waals forces only affect the motion
of pairs which lie in a region surroundipg the central sphere, We 1et431 )
denotes a surface which encloses this region, and we denote the volume which
lies between & and the central sphere by V(). 1In the region outside

& , pairs move along the trajectories given by {6.4) and (6.5)., If
a pair enters V(£ ) and does not become attached to the central sphere,
it leaves the region on a trajectory which has different R, and Ry
values from that trajectory cn which it entered V(L ). Those pairs
which leave V(4L ) and pass into the region of closed trajectories will
eventually coagulate, since they will be drawn closer to the central
sphere each time they pass through V(L ).

We have assumed that the density of points in pair space does not
vary with time, and therefore the coagulation rate is equal to the number
of pairs which enter & per unit time from outside the region of closed
trajectories in the half space X » > o and eventually become attached to
the central sphere.

To translate this into a mathematical expression, we take the surface

> which appears in the expression (4.10) for € to be that surface
formed by the part of L which lies outside the region of closed trajectories

together with the part of the boundary of the region of closed trajectories

which lies beyond & ., This surface is illustrated in figure (5.3).
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The pairs which lie outside L are effectively force-free and therefore

pairs can only enteér .3 through the part of that surface which coincides

with £,

Those pairs which coagulate enter P through a porti&n of the
surface denoted by ™ , This region is shown in figure (5.3). ' The
pairs which cross [ either become attached to the central sphere or

,.‘ pass out of V(L) in the region of closed trajectories. The Van der Waals

g forces are unimportant beyohd V(L) and therefore pairs cross [ with

the velocity V' given by the expressions (2.4) and (2.5).

through [, i.e.

£, = n“*S@,\LRdF\ , (6.9)

|

\

|

|

:

|

i The coagulation rate € is equal to the rate at which pairs pass
|

\

I -
|

|

|

A N T}
| where n denotes the unit normal directed into V(&) and dA is an element

of the surface [ . The distribution function o at a point in pair

space is determined by the history of the motion of the pairs which arrive
at that point, ‘Pairs which cross ™  come from a region in which

Van der Waals forces are insignificant and therefore the quantity g, i

in (6.9) is given by the expression (6.6), (6.7) and (6.8) derived by

Batchelor and Green,

Substitution of the expression (2.4) for V' and (6.6) for ©

in (6.9) gives

€ = asz(q(r)g(L)-ﬂcJPr , (6.10)

&

vhere the non-dimensional velocity U is given by (2.5).

We are free to choose any shape for &£ , provided that the surface
, S  (of which < forms a part) encloses the region in which the

Van der Waals forces are significant. Since q depends only on [xr | , we

choose for & a sphere of radius r*, centred on the origin., The expression (&.10)

{
‘l
Vo
[ 1

1
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then becomes '

€=~0anq(r*)jU,(E\JH . (6.11)
n(r¥y .
where we have replaced the symbol T by ["(x*), to remind us that the
regionvr‘ depends on r*,
If the shear rate K is sufficientlyllargé, the Van der Waals forces

only affect pairs which lie in a thin layer around the central sphere.

In this case we may choose an r* which satisfies the constraint
r¥-2a «a
and the quantities q and Ur in (6.1) can be replaced by their asymptotic [

forms. The asymptotic expression for Ur is found by substituting the :

Y
formulae (2.6) for A and B in the first of equations (2.5). Combining |
the resulting expression with the formulae (6.8) for q and (6.11) for i

€ , we get .

\‘ZZ .
€ = -6l .a°Kn=(R) fsmae sin¢ cos¢ dedd (6.12)
{ Tog(a/im}™ Ry : |
where h* = r*-2a, ' ;

To evaluate the integral in (6.12) we require expressions for the
curves which form the boundary of [(h*). 1In the following two sections
we will show how this information may be obtained from the expressicn for

the relative trajectories of nearly touching sphere pairs.

5.7 The Boundary of the region of closed trajectories

The pairs which cross fj(hﬁ\ either coagulate immediately or
leave V(&) on a trajectory which lies in the region of closed trajectories.
Those pairs which leave V(?L) on trajectories which lie on the boundary
of the region of closed trajectbries are the '"last" pairs to coagulate,
for any pairs which enter V(L ) at points further downstream (i.e. at
points which have smaller ¢ values) leave that region on trajectories
which lie beyond the region of closed trajectories, and hence these pairs
do not return to V(&£ ), It follows that those pairs which leave V(L ) and
move along the surface of thé region. of closed trajectories first enter |

V(4 ) at points on the ['- boundary. The part of the [ '~ boundary

through‘which these pairs pass will be termed the "lower boundary'". The }
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remaining poitions of the boundary of [’ is formed by the line of
J intersection of <. and the boundary of the region of closed trajectories.
| This curve is termed the '"upper boundary". Both curves are illustrated

in figure (5.3).

To find the position of the upper boundary we require a detailed
description of the part of the surface of the regibn of closed trajectories
which lies near the central sphere. 1In this section we shall-obtain
approximate equations describing this surface, and in the following section
we will look at the more difficult'problem of locating the lower M-
boundary.

The boundary of the region of closed trajectories is formed by the

family of trajectories given by (6.4) and (6.5) with R, = 0. The expression
for this surface is obtained by setting R, = O.in (6.5) and replacing

/R, by the expression (6.4), which gives '

00 - -
Gy eXP{Z{.—____Q("')‘B(”')i’:'}j‘__B(\’_'W {exp[’S.B(r')—ﬂ(r'")glr_‘"]}r'c!r'.ﬁ L)
r.ti\" H(r'\] r' rl-,q(r'} A - A"y r"

~

This equation may be put in a more convenient form by substituting the
expressions (6.7) for q, from which we obtain .
(=2
-2/ 2/3
2 3| B(rgcr) ®rdr
Y= {g(r)(1—A) C 0 L . (7.2)
& {Cl ( )} (|_ F\(r“))/3

r

This is the equation of an axisymmetric surface, f ormed by rotating the

line R, = o in figure (5.2) about the =x , axis.

Substituting r = 2a + h, and r, = 2a cos 6, in (7.2), where &y
is the polar angle measured from the X , &xis (see figure (5.1)), we
obtai& an expressions relating the © , and h values of points on the
surface, With the aid of the tabulated values of the functions A, B and q
given by Batchelor and Green (1972(a), 1972(b)), we have computed from

(7.2), the angle ©, for various values of h/a, and the results are given

in table 5.1.

—
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l.

|

: Oz(h/a) . h/a (h/a) approx

| y
= 0° 4 10~ 4w 107
B
[ 48 B e .
B 11.4° 5 x 107 4.9 x 107 |
(s
|
i 2
| 33.9° 2.5 x-107% 2.1 x 1074
| .

51.3° 2.5 x 1073 2.55 x 1073
| 58,7° 7.5 % 1073 8.8 x 1073
|

Table 5.1 The polar angle © , of points on the surface of the region of
‘ closed trajectories as a function of the distance h of those points from
| the surface of the central sphere., The quantities (h,_ ) approx are
l calculated with the aid of the approximate expresssiona(7.ll) for the
i surface of the region of closed trajectories.
\
>

From figure (5.3) it can be seen that the spherical shell Z. intersects
the region of closed trajectories on a circle about the X, axis. The
angle © , of points on that cigcle i; found by substituting r = 2a + h¥*
(the radius of £ ) and r, = 2a cos © , in equation (7.2), We denote
this angle by Gz(h*/a). With the aid of figure (5.1) it can be seen that
Sineé sin¢ = cose,

. - and therefore the ( ©, @) coordinates of points on the upper boundary

of [ are related by 0

¢(8) = m— sin'{cos sz_(h“/o)} < (7.3)
sin 9
where {,(© ) denotes the azimuthal angle of a point on the upper boundary.
The integral in the expression (7.2) is difficult to evaluate, and

as we shall be requiring ez(h*/a) for a number of h‘«'\‘/,1 values, it is

convenient to replace (7.2) by a simpler approximate expression, valid
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for h* << 1.

/a

As mentioned earlier, the boundary of the region of closed tra-

jectories is obtained by rotating the line (RQ&: O, shown in figure
Q/

(5.25, about the X, axis., This line represents the trajectory of a
force-free sphere pair in the plane of the flow, and-the approximate
equation for the part of this %ine whicH lies close to the central
sphere may be obtained from the approximate form of the expressions
(2.4) and (2.5), for nearly-touching pairs. Substituting the asymptotic
formulae (2.6) for A and B in (2.5) and using (2.4), we get the

approximate equationsof motion

dr (= V') = 815K sin*e Sing cosg h s (7.4)
dt ;
I C .
l gl_e_ (= Vo) = ‘594 Ksine cose singcos¢ (7.5)
' t ¥
i and
do (= Ve )=-K[~?qu—-54‘1ucos?“¢] , (7.6)
dt rsing

In deriving these expressions we have neglected O(lllog(a/h)) terms and
thus the equations are only strictly valid fof extremely close pairs,
Although ﬁe only require in this seétion the equation of a trajectory

in the plane of the flow ( 9>= i% ), we shall solve these equations for
the general case, as this solufion will be required in §5.8.

Substituting r = 2a + h in (7.4) and dividing by (7.6), we obtain

~ Q.15 sin‘e SN oS h (7.7)
*39%F - +591. cos5*¢

oh =
o0

and dividing (7.5) by (7.6) we get

90 o - 591, 5in© Cos e sing cosd (7.8)
°% *39F - +594.co5*¢

e N e e
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Equation (7.8) is also valid if there is a force of attraction
between the spheres, for as this force is radial, it doeé not affect
the rotation of the pair. The solution of (7.8) is found from
separation of v;£iab1es and.integration by parts to be

j tane(® = tan 8(m) , : (7.9)
| . ' ' |- 345c05%) :
' ;

= o ﬁhere 8(mn/) denotes tﬁe polar angle of the trajecto?y at b =M.
The expression (7.9) is the equation of tge surface formed by the famil}
of trajectories which intersect the line 6 =6(m)),$= ™, . In figure
(5.4) we show several curves formed by the intersection of the central
sphere with surfaces which satisfy (7.9) for various values of &My .
These lines may be regarded as the trajectories of touching sphere-pairs.
For those who are familiar with the motion of spheraids. in a shear

flow, we note that the expression (7.9) is identical to the expression for

- the angular motion of a spheroid with an axis ratio of 1.98.

Eliminating the sin?® term from (7.7) with the aid of (7.9) and

integrating by parts, we get

T 6e8%F

h(@ = hppy{ 1= 3h5cos’d CO?G(%)} | (7.10)
. S = 4.5 cos™d ' '

The large exponent in this expression is a measure of the tendency for
the shear flow to push spheres together., To illustrate this effect, we
have calculated the ratio h(d))/h (M/2 ) for various values

and @, and the results are shown in table 5.2.

From this table it can be seen that those pairs which lie in the

plare of the shear flow (&= T/ are pushed closer together than the
pairs for which @,y % m, . This suggests that most of the
coagulating pairs lie in, or nearly in, the plane of the flow, an

observations which shall be verified later in this chapter.




L3

; Figure 5.4 The relative trajectories of touching sphere pairs in
shear flow. The broken lines are lines of constant 6
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¢ O(M2)=1y, (T, = 153 B, )= e('_rr,zysji
/2 1 1 1 1
1.31 1.42 1.39 1.30 L9
ﬁ/l3 412 ..3._78. 297 2.11
"4 24.67 20.68 12.53 5.9
/6 27607 212.85 98.2 29.07

Table 5.2 Values of .. h{¢) /b (T g for trajectories which pass through
e=06(My) at ¢=", s in the bsen;e of Van.der Waals attraction,
We mentioned earlier that the surface of the regicn of cloced
trajectories is obtained by rotating the line R, = o shown' in figure
(5.2) about the =, axié. This line is a trajectory and may therefore
be approximated by an expression of the form (7.10) with O (M= T
The surface obtained by rofating this line is given by

: -6.8%
he)= h | — *34,.5 sin’ez} | (7.11)

min

where hmm is the minimum distance separating the boundary of the

region of closed trajectories from the central sphere. From table 5.1

it can be seen that

h = wxica . (7.12)

min

Equation (7.11) gives the approximate equation of the surface of
the region of closed tréjectories. In table 5.1 are shown the values of
h/a calculated with the aid of (7.11) and (7.12), and it can be seen that

3

the approximation is quite good even at h/a =7.5x 10",

From (7.11) we get




Ll

sin €, () = [1-36.(1 = ( huwa) %y 1% (7.13)
h.*

) D)

where © ,(h*) is ﬁhe polar angle characterizing the circle of inter-
section of the surface (7.11) and the sphere & of radius 2a + h¥*,
Combining this result with (7.3) we find that the ©6,¢ coordinates of .

the upper boundary of [ are given by

v sl -IS
¢ () = T- S1In '{\/l'slr(hmm/hn — .3y ‘} . (7.14)
‘ 51N © ) :
This is the expression for the upper boundary of [ which will be

used in the evaluation of the integral in the expression (6.12) for t
and we now turn to the problem of determining the position of the lower

= boundary.

5.8 The trajectories of nearly touching sphere-pairs

Performing the integration with respect to @ in the expression (6.12)

for €, we get

sin‘e[cos2q(e)~ cosaqi)d¢ . (8.1) |

— R

| KE = 382( po'k) ; F%i: ”
[1og (4,»)] nle k)

where ¢ (®) is the equation of the curve which forms the lower boundary

of [ . To evaluate this integral by a quadrature scheme, we require

the values of @ (8 ) at a number of points on the & -interval ( M, - 8(n}

T, ). 1In this section we shall obtain equations which erable us to

determine these values.

By definition, those pairs which enter V(&) at points which lie on
the lower boundary of [ , leave V(L) on trajectories which lie on the
boundary of the region of closed trajectories., Hence these pairs pass out
of V(x,) at points which lie on' the line of intersection of & and the

surface of the region of closed trajectories. From the previous section,

this line of intersection is given by
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where © ,(h*) is given by equation (7.13). Thus we can calculate the
point of exit (from V(&L )) of a trajectory which intersects the lower

bbundary of [ , and our aim is to find the point at which that trajectory

enters V(&£ ). By finding the entrance points of a number of such

trajectories, we cén evaluate the expression (8.1).

To find an expression relating the point of entrance of a trajectory
into V(&) ﬁo the point of exit, we must solve.the equations of motion for
pairs in V(£ ). Since these pairs are nearly-touching we may use the
asymptotic approximations (2.13), (7.4), (7.5) and (7.6) for V' and V'".

As mentioned previously, the expression (7.9) describing the angular motion
of a pair is valid even if there is a force of attraction between the
spheres, The expression for dn is obtained by superposing the

dt
equations (2.13) and (7.4), which gives

dh = vy = 8154 Ksine sind Coshh - _H_ . (8.2)
dt ~ |8wPah

Dividing this equation by the expression (7.6) and multiplying the

resulting expression by 2h, we get

BR - —16:31 SIN"O Sind Cosbh: 4 __H (8.3)
¢ *397 = -594 c0s*¢ anpak (+#9% - 5905 )

With the aid of (7.9) we can replace sin%® by an expression involving
@ and (M),

Equation (8,3) can be solved by the Method of Varhtioq of Parameters
(Kreyzig (1968)). The first step in this procedure is the solution of the
homogeneous equaticn obtained by neglecting the second term on the right

hand side of (8.,3). This homogeneous equation is simply the equation for
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force~free spheres which we solved in the previous section. From (7.10)

the homogeneous solution ho(¢) is given by

: e
" - -Fu5cos*d

The final step in the Method of Variation of Parameters involves

# substituting
h = Wh, ' (8.5)

in (8.3), which gives

du — H
dd  AmuaK hy (QF(-F97 - *591.C05"d) ’
or
| ¢
w(d) = w(p) +_H g dé . (8.6)
2253 pmak 3 hSOY(1 = <345 C05™)

Substituting (8.6) in (8.5) we obtain the general solution to (8.3):

¢

Fdym G H do h(0Y" (8.7)
2253 uak i ho(OY( |—.4u5c05’¢')) o

where h_ is given by (8.4). We choose @, to be the azimuthal angle of

the point at which the trajectory enters V(&) and in addition, we let

h6(¢) denote the trajectory of a force-free pair which enters V(L) at

the same point, Thus we have

h‘o( (Dl3 = h’* g}

(8.8)
widy= | 3

and the expression (8.7) becomes

R ——




r‘ 1.7 ™

X)) = (1 —_H F(@,,.60m)) -5(d,0¢ 8.9
| R(¢) = (1 2253#0‘(%(%){ B,0m) -3(0,0ma)]) hot" | (8.9)

where ho(¢)2 is given by (8.4). The function £ is defined by

: 9 '
1 ) .
| f(¢6@vﬁ-—§("'m5505®) d@ ‘ (8.10)
‘ = (1= -Fn5cos*a(M),) cos‘dp)”"’ ¢
and the form of this function is shown on figure (5.5) for various values of
©(7/2.) . To obtain these curves we evaluated the integral in (8.10)
using a conditionally convergent scheme based on the trapezoidal rule.
In discussing the form of the trajectories given by (8.9) and (8.10),
we shall concentrate on the case o(mp) = T/, , for most of the
coagulation takes place between pairs which lie in, or nearly in the plane

of the shear flow.

The quantity { FCO,,8(M,N- F(d,0(M)) } in (8.9) determines
the amount by which the ratio h(¢)/h (¢) differs .from unity. From figure

(5 5) it can be seen that £(d@, .II) is approximately constant outside the

interval

60%< ®< 120" . (8.11)

Thus pairs which enter V(&) at points upstfemnof @ = 120° in the plane
of the shear flow, move alpng the undisturbea trajectories of force-iree
pairs until the azimuthal angle drops below 120°. The pairs are then
drawn towards the central sphere, and if they do not become attached to
the central sphere they leave the region given by (8.11) on an undisturbed
trajectory with a reduced value of ho(TVZ D

The value of ho(‘ﬁ/z )'associated with the undisturbed trajectory
on which a pair enters V(L ) is found by substituting the expression (8.4)

for ho(¢) in the boundary condition (8.8), which gives

e e e ——
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2
(¢) = (1 —_H F(4, .00, -5 8.9
R() = (1 = Sa,mkh(wz){ (4,80(m,)) -3(d, e(ﬁ/z))}) hm (8.9)

where ho(¢)2 is given by (8.4). The function f is defined by

¢ . . 1233 :
Feo,00m = g(l - 25052 ) do 598 3 (8.10)
¢ (1= -Fu5cos*a(Mm,) Cos™¢!)
and the form of this function is shown on figure (5.5) for various valués of
&(7™/2) . To obtain these cﬁrves we evaluated the integral in (8.10)
using a conditionally convergent scheme based on the trapezoidal rule.

In discussing the form of the trajectories given by (8.9) and (8.10},
we shall concentrate on the case 9(mp) = T/, for most of the
coagulation takes place between pairs which lie in, or nearly in the plane
of the shear flow,

The quantity { £(0,,80(mN-F(d, GCRQ)S} in (8.9) determines
the amount b; which the ratio h(¢)/h (¢) differs .from unity. From figure

(5 5) it can be seen that £(@, I ) is approximately constant outside the

interval
60 d< 120° . . (8.11)

This pairs which enter V(L) at points upstreamof @ = 120° in the plane
of the shear flow, move alpng the undisturbea trajectories of force-iree
pairs until the azimuthal angle drops below 120°, The pairs are then
drawn towards the central sphere, and if they do not become attached to
the central sphere thej leave the region given by (8.11) on an undisturbed
trajectory with a reduced value of ho(TVZ Vs

The value of ho(‘ﬁ/z )‘associated with the undisturbed trajectory
on which a pair enters V(L ) is found by substituting the expression (8.4)

for ho(¢) in the boundary condition (8.8), which gives
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: O(2) = 1,.0°
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170° 150° 30° o' a0° 10 50° 00 o

Figure 5.5 The function (g £ (T /,)) which appears in the equation
> "(8.9) describing the tra_]octorles of pairs in V(& ).
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— 2 ] [
h(ﬂ g h*{ | — «F4.5C09 (Dl (8.12) 1
o4 I - 35 cos*@, COSle(Tr/Z)I I
The angle e (1/2.) can be related to thé polar angle 8, . at which

the trajectory enters V(& ) with the aid of the expression (7.9)

describing the orientation of a nearly-touching sphere-pair, which gives

i |
\
l : 1.8 . ' {
z ¥ |

!

i

|

|

tan e(my) = tans, [1- - Fu5costh, - (8.13)

Combining the expressions (8.12) and (8.9), we get an expression

; for h(¢) in terms of ¢', o(r/2) and h¥*:

| .

: 2 Bx B S 2 '3-.43

| h(dﬂ} _ (l'—‘%scos & cos e(m)) {( |- -5 C05d, \ (8.14)

| r I = «345 cOS2d I =35 costg, LOsO(TyY

| .

| -% () - )7}

= ECRIGARCRCAY| by

where

| €=_H ___, (8.15)

i . ~ pa KR

|

and we have replaced ho(¢)2 by the expression (8.4).

| In figure (5.6) are shown trajectories given by (8.14) for the case

i 8(”/23: TT/2 s 'g = 1.
i The angle @, at which a trajectory leaves V(£ ) may be found by

. substituting

=0, and heh'

in (8.14),which gives

gl ey = §(4>0(M) (8.18)

where

' ) 1333
g($,0) = ('“‘?45 o7 - £ fo0), (8.19)
|~ 345 cos’® cos*d/ 2253

| .
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B ) . b8
hgp) = hﬂ |~ 350000, } (8.12)
° I = 3.5 cos*@, COS™O(My,)
The angle 8 (1/2.) can be related to the polar angle 8, . at which

the trajectory enters V(& ) with the aid of the expression (7.9)

describing the orientation of a nearly-touching sphere-pair, which gives

tan e(my) = tans, [1- - Fu5cosd, . (8.13)

Combining the expressions (8.12) and (8.9), we get an expression

for h(@) in terms of ¢|, o(m/2) and h¥*:
2 , R 13-33 . '&43
M@] = (l'—-fwscos & cos 8(71/2)) { ( |- 35 cos'd, \ (8.14)
h* I~ 35 c09*d [~ 705 cog¢, oS ©(TyY

~g 2
= [£(d,,007,)- F(d,0( r/g\]j
where

= _H ___ 8.15
< .g M K (R ’ ( )

and we have replaced h0(¢)2 by the expression k8.4).
In figure (5.6) are shown trajectories given by (8.14) for the case
e(nyY=", , € = 1.
The angle @, at which a trajectory leaves V(£) may be found by
substituting

=09, and helk

in (8.14),which gives

3(¢,,9(ﬂ/z))— g(¢z>8<‘* ) I (8.18)
where
$,0) = (L= F45 cos*d ~€, 0,0, (8.19)
g (l—--?-us cos'e cos‘q)) 22.53

|
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= 1.

= ¥ h=o
Figure 5.6 The trajectories of nearly-touching pairs which lie in the plane of the shear flow, for
The broken lines are trajectories of force-free pairs which enter V(L) at

(Calculated from equation (8.14)).

@ = 130° and @ = 120°.
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The function g is illustrated in figure (5.7). Those pairs which enter

V(L) at angles @ for which g is negative are drawn onto the central sphere;

' . in other words, these pairs coagulate on their first encounter. ' |
| With the aid of the function g we can calculate the coordinates of . |
i points on the lower boundary of [’ , for a given~value of h*.. Until
!! _ now, we have left the value of h* unspecified, and the remainder of this
section deals with'the problem of choosing a suitable h%, 1In §5.9 we i
g ; combine the results of this. and the previous sections to obtain the
coagulation rate for a range of }iﬁ?ﬁ ~ values.
The expression (8.1) for € is valid if the pairs which pass
through [T are only affected by Van der Waals forces while in the
w region V(& ). This places a restriction on the minimum value of h*, To
] estimate this minimum h*, we recall that pairs which lie in the plane of
the flow are only affected by the attractive force in the part of V(I )
which lies in the region |
60°< < 120° .

This implies that the point on the lower M= boundary in the plane of the
flow must have an azimuthal angle of 120° or more if the pairs which enter

[T in the plane of the flow are to be effectively force-free at points
outside V(£ ). We shall take this as the condition for the validity of
equation (8.1), for we are mainly interested in the pairs which lie in,
or nearly in the planerf the flow.

For a given value of hL%?ﬁ ,‘the minimum value of h* is that

value for which the lower boundary of - [' passes through the point

¢ =120°, © = M/2 , It is possible to determine this minimum h* for

any value of }Lﬁf#< by using the expression (7.13) for the angle

©,(h*) at which &£ interesects the boundary of the region of closed
trajectories together with the equation (8.18) relating the entrance and exit

angles of a trajectory. We shall obtain a useful upper bound on the

| ' ‘ |
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Figure 5.7 The function ¢(¢#,0 (7/,) defined in §5.8, for & (7/2) = 77/,.
The azimuthal angle (), at which a tT¥ajectory enters V(& ) is related to
the exit angle ¢:L by '

| ‘ g(d,8(Mm)) = 9,80 «
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minimum h¥*, by a more straightforward method.
| /a .

From figure (5.6) it can be seen that if ‘% = 1, the trajectory

120° leaves at ® =~ 56°. Those trajectories

]

|
|
| which enters V(L) at @
|
\

]

which enter upstream of @ 124° are captured by the central sphere and .

! thus if the boundary of the region of closed trajectories in the plane

}
y -
j: " of the flow intersect &£ in the region @ < 560, the lower boundary
o , ' '
ke of r lies in the region
120°< ¢< 1214°

(since these trajectories are "spread out" and leave V(&L ) in the region
@ < 56°). If this is the case then the value of h* is larger than the
minimum, and it is this value of h* (i.e. the value for which ‘% =, 1)
which we shall use in the expression (8.1) for € . We are free to use
| larger values of (h*/a), but as we have assumed that h*/a is small,
there is no point in doing so.

From the definition (8.15) of % , we find that the value of fﬁh

to be used in (8.1) is given by

g (,ﬁz__)"z _ (8.20)
a Mas ik 24
This expression for h* is only valid if the surface of the region of
closed trajectories intefseéts L at a point in the sector @ < 560,

© =T/ . Substituting €, = 340, and h_ - =4 x 10—4a in the
expression_(7.11) for the boundary of the region of closed trajectories,

we find that the minimum value- of h*/a for which (8.20) is valid is

given by 3
h* = 2-5x10 .

—

a

Thus a suitable value for the quantity (h*/a) which appears in the

expression (8.1) for pm€ is given by
n*H
Ko o mox [ 3 2-S%10" ] . (8.21)
& fx@l(

I B X,
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5.9 The Coagulation Rate

We shall now describe the procedure for evaluating the terms which
appear in the expression (8.1) for the coagulation rate.
The thickness h* of the layer V(£ ) surrounding the central sphere

' is given by : : |

| R = max( /MH&K ,2-5‘x1o'3) . (8.21) l

a (repeated)
The surface of this layer intersects the boundary of the region of closed
trajectories at points on a circle about the X , axis (see figure (5.3)).
The polar angle © , of points which lie on this circle is given by
equation (7.13), and on combining this with.the estimate (7.12) for hmin’

we find

*

g hy= sin’{ [1-au01- (EXAS.SQYMS}} . (9.1)

The integral in equation (8.1) can only be evaluated numerically, and

for this we require the value of ¢L(6 ) at a number of points on the interval

m, - o,(h,) ¢ e < o - 'l
where (QL(G)’ ) denote the angular coordinates of a point on the
lower boundary of [ .,

T6 obtain these values, we begin by selecting a point which lies on l
the line given by equation (9.1)’in the region‘¢ < M/, . This point, |
shown in figure (5.8), has angular coordinates (©'5¢'Y ., To show how i

©' and &' are related, we use the identity | |

cos 8, = Sine sind | ' _;

(see figure (5.1)) which in combination with the expression (9.1) for

€] 2(h*/a) gives

sine’

o = sin"{\ﬂ-sg (kx10%0,4) = 7} (9.2) |
|




The lower
™ boundary

(R, dee",8"
(K, ¢',8"

The circle formed by the intersection
of & with the boundary of the region of
>x, closed trajectories,

X3

Figure 5.8 A sket:h of the ﬁrajectory which crosses the lower boundary
7y ada &5 . x .
at (h*, @[, &' ) and passes through the point (h" ,®', ®') lying on the

line of intersection of & and the boundary of the region of closed
trajectories,

4
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The trajectory which passes through the point (e', a") on the
surface &L also.passes through a point on the lower boundary of [T .
The polar anglé of this point is denoted by " "and by definition the
corresponding azimuthal angle is ¢l_( ©"). This point is shown in figure
(5.8).

From the equation (8.18) which relates the point at which a
trajectory enters V(L ) to the point of exit, we find that ¢L(e") is

given by the implicit expression

9(¢¥e"),eCWiﬂ = g(¢',9(ﬂ&Y) _ (9.3)
where the function g is defined in (8.19) and the angle ©(mA2) is
given by

=1 240 A )
o) = ten { (1- #5508 $) “tane') (9.4)

This last expression comes from equation (3F.9). Also from (3.9) we find

that

e": tOf{‘{ tan e(n/fzﬁ . } (9-5)
{1- 75 cos’d (em

Thus with the adi of (9.3), (9.4) and (9.5) we can obtain the coordinates
of a point on the lower boundary of ™ ‘given the coordinates of a
point on the line of intersection of £ and the boundary of the region of
closed trajectories.

By repeating this procedure for a number of values of &' in
the range

%
- H\f
y- GBI ey

we obtain the coordinates (§(6"),8") of a set of points which lie on

the lower boundary of r . Combining this with the values of (&&6")
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calculated with the aid of (7.14) we can obtain the values of the integrand

in (8.1) at a set of points over the range of integration. The integral %

can then be evaluated by using a suitable quadrature, and combining tﬁe _ |

result with the exbression (8.21), fo? h*/a s we can calculate %ﬁ%
. from (8.1). i ' I
The values of ﬁ%% obtained by this method are.shown in ' : (
figure (5.9). -In each case, the integral in (8.1) was evaluated by the ﬂ
trapezoidal rule., Convergence was tested by halving the number of grid W

. points, and in each case the subsequent variation in the computed value

of H%% was less than one percent.
| n*

The limiting coagulation rate

Although the rate at which pairs enter V(& ) is proportional to
the éhear rate K, the coagulation rate is not linear in K because the
percentage of the pairs entering V(& ) which coagulate decreases with
increasing shear rate. In other words, the area of the region [ — 0
as Bﬁfﬁ — oo . »Thus the angles ey and & which

H

appear in the expression (8.1) for &gﬁ are approximately equal at
r"&

very large values of e K , and the integrand in (8.1) is, approximately
H .

- 25in sin 20606 - o@)} (9.6)

Both ¢, and §_ are of order unity and thus the accuracy with

which we can determine the difference {¢w—'¢L} decreases as Hﬁiﬁ_
increases., For this reason, we have not attempted tc compute the values
of ?%% beyond ﬁﬁgﬂﬁ = 106. However, by slightly modifying the
procedure described earlier for calculating € , we can determine the
limiting value to which | E%% *  asymptotes as kﬁﬁiﬁ - oo .

To obtain this quantity, we use the fact that at very large values of

pﬁFK , the trajectories of pairs which cross the lower boundary of

H
" are only slightly perturbed by the Van der Waals forces. Thus we
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‘ : Figure 5.9 The computed values of non-dimensional coagulation rate

(marked by crosses).
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have lg"— o'l << |
and ¢ (8"~ (M= 49K« 1
where, as before, the angles ( {(e"), ©") . . denote the coordinates

of a point on the lower [ -boundary through which passes the trajectory
that leaves V(L ) at the point (h*; @', 8" ) (see figure (5.8)).
An approximate expression for the azimuthal angle ¢L( ©") is obtained

by substituting

gd,, ML) = g(n-¢',e0m,) + 99 \{ o, - (n-d} (9.7)

% d):“-¢‘

in equation (9.3), which gives

b = M-0'+ EHrm- ¢, 0my) - SO\ O] (9.8)
22.53 09
39

where we have used the expression (8.19) for g. Similarly, © " can be
obtained from (9.4) and (9.5) by neglecting O(@ " - ©"2) and O( [ _ -
(m - @')]) 2) terms. The vglue of ¢u(e ") is then obtained with the aid
of equation (7.14) and combining this with the value of @. given by (9.5)

we find that (¢G-Q) has the form,

(e"y- o (e"y = Are") H
(pu ) Q)L ,J,C\QK (9.9)

Thus the integral in (8.1) is proportional to __H , and we have

' M-a3K
calculated the constant of proportionality by calculating the quantity

A(e") for a number of values o " over the rangé
1% n
e~ G318,
and integrating by the usual quadrature scheme. Substituting the
resulting expression for the integral in (8.1), we find that the term

beSK vanishes from the expression, and the non-dimensional
H

coagulation rate has the value
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2418 x }Os' . as Ak s oo

H

This limiting value is indicated by a broken line in figure (8.9).
The limiting coagulation rate can also be estimated directly from

the expression (4.9), which in the absence of Brownian motion, becomes

€ = '?"JSQ (Vo + Y)-hdA ' (9.10)
. _

where & denoteé a closed surface enclosing the central sphere. 1In this
case we take 3 ~ to be the surface of the region of closed trajectories.
At very high shear rates the pair density function Q(EB‘ at points on )
has approximately the same value as would be obtained with force-free

pairs, and from (6.6) we have
e (= rPplr) = (), (9.11)

where q(r) is given by (6.7) and has the asymptotic form given by (6.8).
Substituting the expression (9.11) for @ in (9.10) and using the fact
that the velocity X' of force-free pairs is parallel to b at each point
on the surface,:we get -
€=r$gq(r>\~/"(£)-?xdﬁ (9.12)
At

where -/5+ denotes the part of D  which lies in the region X , > O.

Both q(r) and V"(r) diverge as r - 2a and thus the integral in

. (9.12) is dominated by the contribution from the part of A" which is

close to the central sphere. 1In this region V" and q are given
approximately by the asymptotic expression (2.13) and (6.8), and

substituting these formulae in (9.12) we obtain

€= r?H g$.aqa e (9.13)
2u2 a0t ) (hg Y7 toglag )}

The quantity T.NdA is approximately equal to the projection of the

area element dA on the central sphere, i.e.

—




M AdA = La*sine,de,dd,

where @, is the azimuthal angle corresponding to the polar angle © ,,

shown in figure (5.1). Substituting this result in (9.13) and using the
approximate expression (7,11) which relates the distance h of the surface

A from the central sphere to the angle © ,, we find

e e ——

L .
T 138 W . . .
| Ly = (o (1--74551n%8,) sine,do, o (9.14)
2, i , 2 '

| wH o 46 th,! [iocj{ a (1--H5sinte,) 2“}
! hM;r\
i
' where

- -« (7.12)

Zwa = 4 X100 7, (repeated)

Using a conditionally convergent scheme (based on the trapezoidal rule) to

estimate the integral in (9.14) we have found
Ly - 2.04 x10°
N H
As both method for computing the limiting coagulation rate involve

simplifying assumptions, the six percent different between the two

computed values is quite acceptable,

Previous Theoretical Work

The first theoretical investigation into the effect of shear flow
on coagulation was carried out by Smoluchowski (1917), who neglected the
hydrodynamic interactions between the pairs, He assumed that particles
translate with the bulk fow and coagulated upon "collision'" with other

particles. Thus the pairs which coagulate lie within a circular cylinder

of radius 2a, centred on the X, axis in pair space. We shall refer to

this cylinder as the '"collision cylinder". The coagulation rate is simply

the collision cylinder, and is given by

€ = lon*Ka®. . (9.15)
3 "

i | W

equal to the rate at which pairs pass through any cross-sectional area of




‘for the coagulation rate, where E is the fraction of the cross-sectional

, coagulation for the cases
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Curtis and Hocking (1970) attempted to improve on this analysis
by taking into account the hydrodynamic interactions between the particles.
These authors realized that only a fraction of those pairs which move
within the collision cylinder will in fact coagulate. Unfortunately their

work is based on the erroneous expression

€= 1_36; Er*Ka3 | - (9.16)

area of the collision cylinder at points far upstream, through which pass
the pairs which eventually coagulate. This expression does not take into
account the fact that pairs do not all move with the same velocity. The
remaining theoretical section of that paper is devoted to the calculation
of the quantity E, referred to as the '"collison cross section", and there
is no way to compare their results with the values of coagulation rate
calculated here.

2

In addition to the error in the expression (9.16) for £ , Curtis

and Hocking were unaware of the region of closed trajectories, and hence

they did not realize that some of the pairs which do not coagulate on

’

their first encounter coagulate when they are brought together again by

the bulk flow.

5.10 Conclusion

In this chapter we have studied the effect of shear rate on

it

3
MaK o )
H
and

(mnak | maky ssi .
© H kT

From these investigations we can construct a qualitative picture of the
effect of shear on coagulatien for the entire range of shear rates.

At zero shear rate, the quantity 8 is éiven by the
i
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expression (5.10), which has the asymptotic form

pml a5 kT = oo. (5.14)

~ 1o KT
m2H 3 H /&Og.ﬁf H (repeated)
H
In § 5.5 we mentioned that the slope of the curve ﬁg% vs &ﬁgK
n? -
is zero at ﬁﬁfK = 0 because the coagulation rate is unaffected by
’1

the direction of shear.
Combining this information with the results obtained for high

shear rates, we find that the curve of 4l is likely to have the
ntH

form shown in figure (5.10).
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Figure 5.10 The likely form of the coagulation rate curve.
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CHAPTER SIX

THE EFFECT OF ELECTRICAL FORCES ON

THE MOTION OF PARTICLES IN SHEAR FLOW
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6.1 Introduction.

In the previaus chapter we mentioned that particles suspended in a
liquid are generally charged, and that this charge gives rise to a
repulsive'force between fhe particles. It is these electrical forces
which are responsible for the stability of most suspensions, but.as we |
were interested iﬁ chapter 5 in the process of coagulation, wé assumed ‘;
that the electricai forces had been effectively removed by the addition
of electrolyte to the suspension.

This chapter is concerned with the effect of shear flow on a
suspension of spherical particles in which there are sigﬁificant electrical
forces., As before, we assume that the suspension is dilute and therefore
that interacting pairs of particles are unaffected by the other particles
in the suspension. Our aim is to determine the effect of shear rate on the
relative motion of these interacting sphere-pairs, in the absence of
Brownian motion, . |

The chapter begins with a description of the electrical force between

a pair of spheres in suspension, It is shown that the range of action of.
this force is characterized by a length D, known as the '"Debye length",
which depends on the concentration of ions in the suspending medium. We
shall be concerned with the case |
D<«a

where a is the particle radius. If this condition is satisfied, the
electrical forces only affect the motion of nearly-touching pairs, and as |
we have seen in chapter 5, the equations desgribing the motion of these
pairs have a relatively simple form, |

In §6.3 we combine the expression for the Van der Waals force
between a pair of nearly touching spheres with the formula for the
electrical force for the case D << a, to obtain the total force between

a pair of particles. By substituting this result in the expressions derived |

in the previous chapter for the relative velocity of a nearly-touching

| .
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sphere-pair we obtain the equations‘of motion of these pairs, and in
§6.4 some numerical solutions to these equations are presented,

It is shown that at low shear rates, the bulk flow simply provides
a mechanism for 'bringirg pairs together, The\electricgl repulsive forces
prevent the pairs from coming into contact and instead they orbit each
other with an average separation distance of the order of D. These orbits
become unstable at higher shear rates and the pairs are torn apart. At
still higher shear rates the flow pushes pairs together with such force
that some coagulate., In § 6.5 we obtain a lower bound for the shear
rate at which the particles are torn épart, and an approximate expression

for the shear rate at which pairs begin to coagulate,

6.2 The Electrical force between a pair of spherical particles

In calculating the force between a pair of particles we must take
into account not only the charges of the particles but also the distribution
and type of ions in the solvent. The ions tend to cluster around particles
of opposite charge and so "neutralize'" the particle charge. This layer
of counterions which surrounds each particle is referred to as "the
electrical double layer" and it is the thickness of the double layer which
determines the range of action of the electrical force between particles.

In equilibrium, the ions in the solvent are distributed according

to the Boltzmann equation, If there are only two types of ion, of valency

+v and -V respectively, then their number densities are given by
n(xd)= nexp(evY(XVKT) > (2.1)
ngz)=nexp (-evViz)T) , (2.2)

where n is the number density of ions of either type at great distances

from the particles, %(%) is the potential at a point % in the liquid,

e 1is the charge on an electron, T is the absolute temperature of the
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system and k is Boltzmann's constant.
The potential ) is related to the charge density e by
Poissons equation
\72111 = - hTp ‘ | (2.3)
= 5 : ,
where £ is the dielectric constant’ of the solvent. Substituting

Q= eu(n,f— ny

-in (2.3) and using the expression (2.1) and (2.2) for n, and n_ we obtain

the differential equation for

VZ = 8wevn sinh(evV) . 2.4
Y > LT ) ( )
If the condition

evl « | (2.5)
KT

is satisfied, we can replace (2.4) by the linear equation

VY o= W , (2.6)
D* .
where b
L
D:(gk‘r )1 (2.7)
gTRe vt
is called the "Debye length". 1In the work that follows we shall assume

that the condition (2.5) holds and therefore that equation (2.6) is

valid,

0

The boundary conditions associated with equation (2.6) are

Y~ O , at points far from the particles, (2.8)
and on the surface of each particle, V¥ has the uniform value 7Y, .
In equilibrium, the quantity is determined by the concentration

of certain types of ions in the solvent. For example, the potential of

Silver Iodide particles in water is determined by the concentration of
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Silver or Iodide ions in the solvent (Verwey and Overbeek (1948) pp 47)

and is unaffected By the concentration of other ions. The position of

the particles has no effect on the value of u& , and thus if the

particle configuration is altered, the charge density on the particle

surfaces alters in order that the potential of the particles remains s .
The solution to equation (2.6) and the associated boundary conditions

for a single spherical particle of radius a, alone in an infinite liquid

is given by

.W(r3= %%exp(gg_r), _ _ (2.9)

where r is the distance from the centre of the particle. The potential
decays on a length scale D, and D may be regarded as the "double layer
thickness'" referred to at the beginning of this section., If the surfaces
of a pair of spheres are separated by a distance greater than several
Debye lengths, the field of each partiéle is approximately given by

(2.9) and therefore there is no force between the particles.

To find the field ¥  surrounding a pair of spheres at smaller
separation distances, we must solve equation (2.6), subject to the boundary
conditions (2.8) and

v =, on the surface of either sphere,
The charge Q on either particle is'rélated to the potential

by Gauss' law
Q= —_Eng-ﬂdﬁ (2.10)
0
A

where n is the unit normal and A denotes the surface of the particle .
Verwey and Overbeek ((1948) pp 144) have shown that if Y  satisfies

(2.6) the electrical potential energy of the pair of particles is given by

V(r) = Y Qleo) = QLR ‘ (2.11)
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where r denotes the distance between the centres of the spheres, and thus

the force acting on either particle is
Fer = % dace) . - (2.12)
. dr E

Thus from the solution of equation (2.6) for the field surrouhding
a pair of spheres, we can obtain the electrical force of repulsion between
the spheres,
The equation (2.6) for W is linear, and from (2.10) it can be
seen that Q is proportional to [/ 3 and.thus (2.12) may be written

in the form
Ry = eV ). (2.13)

For the case of "thin double layers" (D << a), the force between
the particles is only significant if the particles are nearly touching,
and is dominated by the repulsive force between parts of the two surfaces
which are nearly in contact. Those surfaces can be locally approximated
by parallel flat plates, and with the aid of the expression for the force

between a pair of plates, it can be shown that - (Verwey and Overbeek (1948)
pp 56)
F(r) = €alt ™ (2.14)

2D |+eMp

where h = r-2a is the minimum distance between the two surfaces.
Formulae for Fo have been obtained‘for other limiting éases

(Russel (1976)) but we are mainly concerned with thin double layers and
we shall not repeat these formulae here.‘

The expression (2.14) for F_ only holds if the linear equation (2.6)

R
for Y is valid. Verwey and Overbeek (pp 140) solved the exact equation
(2.4) for ¥ numerically for the case D << a and found that the expression

(2.14) for the force is approximately correct if

B R RRREEEEEEEBPEDDTI=




x vel 2 .
| KT
If the ions have a valency of one, this constraint implies

g W, £ 50mV,

6.3 The net force between a pair of particles

Opposing the electrical repulsion between particles is the Van der
Waals force, which for a pair of spherical particles is given by

R(%)=-H §(r . (5.2.9)
= (repeated)

where

(5.2.10)
(repeated)
and H is the Hamaker constant.

The force FT(r/a) between a pair of particles is the sum of the
Van der Waals attraction and the electrical repulsion, which from (5.2.9)

and (2,13) is given by
Ry = H {-H(%) + EmH‘o 3;(%7%\/} : (3.1)

The form of the force-distance curve is thus determined by the parameters

EYE%: and D/a,
If the particles are nearly in contact the Van der Waals force is

8

Vgiven approximately by

2 ~-Ha , (see (5.2.11)),
2K
and combining this with the expression (2.14) for the electrical force

between a pair of particles with thin double layers, we find that

. |
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-h
F.(h)= Ha {-_'_ + e } : (3.2)

FORLN S
where h' = h/D is the minimum separation distance between the particles

in Debye leﬁgths, and

L= 68&’:’1) 5 i . (3.3)

H .

The result (3.2) is valid if both h and D are << a,

Although we are only concerned with the case of spherical particles,

we note that the expression (3.2) for F_ holds for any pair of nearly

T

touching particles, provided the surfaces are locally smooth., In this

case the quantity a. is an effective radius, given by

a=+vbb

LI S ]

(3.4)

where b, and b, appear in the quadratic expression for the thickness of

" the liquid layer between the particles (c.f. 2.4.1.)). This result

follows from the fact that both the Van der Waals and electrical force
between a pair of nearly touching particles are dominated by the fecrces
between the parts of the particles which are nearly in contact,

From (3.2) it can be seen that the form of the force-distance curve
for a pair of nearly-touching particles is determined only by the parameter
A . Several such curves are illustrated in figure (6.1) for different

A values, and from thdt figure it can be seen that if

A>2.08 © o (3.5)

there is a repulsive force between particles over an intermediate range
of separations. Thus for any AN > 2,08 there are two separation distances
at which FT = 0, The larger .of these separations corresponds to a stable

equilibrium point and is denoted by hE.

| |
. |
| | |
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Figure 6.1 Curves describing the variation of the force Fy between a
pair of particles with separation h, for various values of the
parameter A ., Positive values of F_ correspond to repulsion
between particles.

T
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L Substitu;ing the expression (3.3) for N in (3.5), we find that 1
| for Y = 50 mv; and H = lo-liygs the constrairt (3.5) is satisfied if
D>- 015 mICrons

In deriving these results we have assume that D/a << 1, and thus if

|
A = 2,08, the formula (3.2) for F_ is only.valid if i

T

a 2 I'micron.

From (3.3) it can be seen that A is proportional to D and therefore as

A increases,the range of particle sizes for which (3.2) is valid
decreases,

Before proceeding to the description of the relative motion of sphete

pairs in shear flow under the action of the force given by (3.2), we
shall pause to consider the implications of an assumption made in chapter
five. In that chapter it was assumed that the electrical forces between

the particles could be removed by the addition of sufficient electrolyte

" to the solvent., From figure (6.1) it can be seen that, for the case

of thin double layers, the assumption is valid if

A0
and with the aid of the expressions (3.3) for A and (2.6) for D, this

becomes

| ny 10" moless, 5 for Y= 50mV,

which for the case of NaCl is equivalent to a concentration of 5.8 gms/1itre

6.4 The relative motion of sphere pairs in shear flow

In this section we shall describe the effect of electrical aﬁd
Van der Waals forces on the relative motion of nearly-touching sphere
pairs in a shear flow. We assume that the expression (3.2) for the force
between a pair of particles is approximately valid, even though the

particles are in motion. Russel (1976) has shown that this is the case

&f both the Electric Hartman number __§]Ef % and the
LI wkT D
Peclét number ay are small, where w is the mobility of the ions
wkT
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and U is here the typical velocity in the thin liquid layer between the
spheres. |

The requirement that the Peclet number be small places a restriction
oﬁ the magnitude of the velocity differenceV between the centres of the
sphere-pair, By the methods of lubrication theory it can be shown that
the component of V along the line of centres of the pair V. gives rise
to a velocity of order Vﬁj%%‘ ' in the liquid layer. Superposed on

this squeezing motion is a shearing motion which arises because spheres

.slide over one another as the pair rotates in the shear flow, This motion

is unaffected by the force between the spheres and féom expressions

derived by Batchelor and Green (1972(a) §5) it can be shown that this

sliding motion gives rise to a velocity fn the liquid layer of order
ak , where K is the shear rate, Thus if the Peclet number

log (%K)

is to be small, we must have

Q%K &1 and  Mafa K.
KT Tog (@) n/wkT

In the work that follows, we shall assume that these constraints are

satisfied, and therefore that the expression (3.2) for the force between
a nearly touching pair is valid.

If the suspension is at rest, the force F,, between the pairs causes

T
them to move with a relative velocity V", given by

Viry= Gy B, - (5.2.7)

T .
3ma . (repeated)

where £ is the unit vector in the direction of the line of centres of the
pair. If the pair are nearly in contact, G may be replaced in this
expression by the formula (5.2.8) and on substituting the expression

(3.2) for F, we obtain

V'(K)=_Hh {'xe'“ _ _'.}. (4.1)
18T pra D" LT e R R
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The relative velocity of a sphere pair in shear flow under the action
of the force FT’ is found by combining (4.1) with the expressions(5.2.4)
. and (5.2.5) for the relative velocity of a force-free pair in shear flow,

and on substituting the asymptotic formulae (5;2.6) for A and B we get

) . 2 s -h ; ..
g%-_- 8-{5&51n¢c05¢81n§.h+l8(he _ﬁZ)h , (4.2)

J vl
dd = - [-19% - 5L coszq)] . v (4.3)
ct :
: and
| de - .59 sinecose sing cosd (4.4)
| dt )
‘ where
1 p = 1_8H__~_"“’
. "lT’vLCl.D K

t is the time in units of K-l, and the angles ©& and ¢ describing the
orientation of the vector r between the centres are illustrated in figure
g {5el)e

As mentioned in chapter 5, the rate of rotation of a sphere pair
is not altered by the force between the particles, and the angular motion

~

of the pairs is described by

tane(®) = tane () (5.7.9)
JC...;hchSzQ (repeated)

where e(iflJE‘) is the azimuthal angle of the pair at ¢ =1x
Dividing (4.2) by (4.3) and eliminating sin @ with the aid of (5.7.9),

we obtain the differential equation for h':

dh' - —Bh‘(%%r- ng) = 8-!5&31nq>cosq)’ﬂanle(g‘, Y . (4.5)
cld - 97— 59 co5tb (-?—9?—-S‘M,_c_os"‘m(l+to&e(%*—-%‘3cos’*¢3

By numerically integrating this equation we have obtained the

relative trajectories of sphere pairs for various values of B, A and

I’
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©(7,) « In order to describe these trajectories we shall again use
the concept of a pair space together with the notation introduced in
| § 5.3. Thus the "trajectory of a pair" is the path followed by the point
in pair space which correspoﬁds to that paif+.

Since equation (4.5).is only valid for nearly-touching spheres, we
can only describe the trajectories of péirs thch lie in a thin layer
surrounding the central sphere. A family of such trajectories for g = 307,

A =10 and OMA)= T/,  are illustrated in figure (6.2). From that
figure it can be seen tha; pairs which enter the-region h/D <12, ¢ >j%
move onto a common closed trajectory. Although‘we cannot describe the
motion of the pairs which are not nearly touching, we can show that the
only pairs which execute closed trajectories in the plane of the flow for
this value of (A, B) are those which move on the closed trajectory shown
in figure (6.2). To prove this assertion, we ﬁote that any pair which
moves on a closed trajectéry must pass through 'the region of closed
trajectoried' defined in 5.6, and once in that region, the pair cannot
escape without passing into the region h < hE’ where there is a force of
repulsion between the particles. From figure (6.2) it can be seen that
all pairs which enter the region h < hE move onto the closed trajectory
and therefore this is the only closed trajectory in the plane of the flow,

The trajectories of pairs for B = 307, A = 10 and G(%%}#l%.
are similar to those shown in. figure (6.2), except that the closed trajectory
is more circular at lower values of 6(1}) « Thus for A = 10 and B = 307,
the shear flow brings pair; together and thereafter the pairs execute
closed orbits with a‘tneanseparation of order hE.

As B is increased (i.e. as shear rate is decreased) beyond 307 the

closed trajectory becomes less distorted, as can be seen from figure (6.3).

There are actually two points associated with each pair, here we refer
to the point which lies in the half-space X , > o,
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Figure 6.2 The relative trajectories of pairs which lie in the plane
of the flow ( 8(M/A)= Ty ) for B = 307 N = 10. For
this value of A , the separation h at which the force
is zero is & 5.8. This"equilibrium" separation is
indicated by the broken line.
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Figure 6.3 The effect of variations in @ on the common trajectory
for e(mpY="T/ 4, A =10, For B > 307, this common
trajectory is also the only closed trajectory in the
plane of the flow.,
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However if B is decreased below 307, the closed trajectory for A =10
G(%?;zj% appears to become unstable (see figure (6.3)), and pairs
.. on this trajectory move apart rapidly in the ;egion P < %} and
are soon separated by a distance of many Debye lengths,
We cannot predict the path of the trajectories beyond this point,
for unless D/a is extremely small, the equations (4.2), (4.3) and (4.4)
are not valid at these large separations., .The value of B at which the
‘closed trajectory is pulled into the region h/D >> 1 (where the
electrical forces are negligible) is denpfed by B*( A ©(™M/32)). It
seems likely that the Van der Waals attraction may hold pairs on closed
orbits for B < B* and that at a critical value of B (which depends also
on D/a) the pairs are torn apart by the flow. The quantity B* provides
an upper bound for this critical value, and in the following section we
shall obtain an approximate formula for B+,

For B < B* some of the pairs which enter the region in which the

electrical forces are significant still join a common trajectory (see
figure (6.4)), but as B decreases the fraction of pairs which move onto
this common tréjectory decreases, and the angle § at which that trajectory
leaves the region of significant electrical forces increases,
Finally, at extremely high shear rates, the pattern of the trajectories

changes again, for pairs are pushed together with such force by the
shear flow that some are able to overcome the repulsive force and coagulation
occurs., The value of (3 atrwhich pairs begin to coagulate is denoted by

5*?¢ .ﬁ(gﬂ). The form of the trajectories at these very high shear

rates is illustrated in figure (6.5) for the case A = 10, B = 1 (< B¥¥)

and  O(My)=Ty,

6.5 Approximate formulae for B* and B*%*
By numerically integrating equation (4.5) for a number of values of

B, with A and o{ /) held fixed, we have been able to determine

P |
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Figure 6.4 Trajectories in the plane of the flow for A =10, § = 100.
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Figure 6.5 At very high shear rates, some pairs coagulate. The
trajectories shown in this figure are those of pairs
which lie in the plane of the flow for A = 10, § = 1,
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i; B* and Bx* for values of A and © (/2> . The results, for

| 9(?&):‘@& are shown iﬁ figure (6.6). From that figure it can be seen
that as A —> 2.08 from above (B*-f**¥) — o, and for A < 2.08 the
phenomena described in the previous'section do not occur; pairs simply
coagulate at all shear rates.

Although it does not seem possibie to obtain expression for %

and B**% directly from the equation of moticn of the pairs, we can
obtain useful bounds for fhese quantities.

We begin by rewriting equation (4.5) in the form

dh - -B RF(h") - 8451, sind cos¢ tan'e ()R (5.1)
dd 397 - 594,005 (F97-5U.cosP)(1 +ta R (1) - 3505 )
where F(k)= I2D1F.}(h,'): 7Lc-h' — ' is the non-dimensional force between
Ha I+eh  RE

1 ' ' the pairs.

The pairs move in the direction of decreasing @ and therefore if gh:
&

is negative at a point, pairs which pass through that point are moving

apart. We can divide pair space into regions in which pairs are moving
apart or comingxﬁogether. The intersection of these regions with the
e = %E plane is shown in figure (6.7) for B = 210, A = 3, '
On the boundaries of theée regions dh = 0 and therefore the

cld

coordinates (h', () of points on the boundaries satisfy

F(h') = - 815 sin¢ cos¢ tan"e() Rl
g1 + tan*e(f) - *745 cos™q)

From figure (6.7) it can be seen that for § = 210 and N = 3 there

is no way for pairs to pass from the region B to the region A, for between

these regions there is an area in which dh! > 0. Thus there is a

ad

stable closed trajectory-forvthis value of B.

The coordinates of points.which lie on the boundaries of these
regions for A = 3 may be found from (5.2) together with the force distance

curve for A = 3 shown in figure (6.1). If ¢ < o , the expression (5.2) i

9
~

' | I
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Figure 6.6 The variation of B* and B** with A , for O(TL)= T .

If A > 2,08, then at low shear rates (B > B%), the point
(B,A ) lies in region I and the flow brings pairs onto a
closed trajectory with average separation of order h; .
For B < B**, (B,A ) lies in region II and the flow pushes
the pairs together with such force that some ccagulate,
Finally, if B** < B < B* (region II) the pairs either
orbit each other with an average separation >> h. , or are
pulled apart by the flow, depending on the value of /4
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Figure 6.7 We can divide pair space into regions in which pairs move
together or apart. The intersection of these regions with
the © =17/, plane is shown in this figure for the case

A =3, B=210and hyy < 8, It can be seen that no
trajectories can pass from region B to region A and hence
there is a unique closed trajectory at this value of B.
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for F(h') is negative and from figure (6.1) it can be seen that there
are at most 3 values of h' (for a given () which satisfy (5.2). If B is

decreased with ¢ held fixed, two of those points converge and eventually

" meet at the local minimum of the force curve, Hence as [ is decreased

the regions A and B come together,

The angle @ at which the regions first touch is the angle at which

Sind cosd
I+ tart8(my) - 345 cos™d

is a maximum. On determining this angle and substituting in (5.2), we
find that the value of B at which A and B first come into contact is given

by

- L.07%1 Siﬁé‘a(’ﬁ/z) (5.3)
Finl) /1= 745 CO8™0(T)

where Fmin(A ) is the local minimum value of F (i.e. the maximum attractive
force for h > hE). At values of B below that given by(5.3) the closed
trajectory may bgpome unstable, for pairs can cross from B to A. Thus

the expression (5.3) gives an upper b;und for B*.

Similarly it can be shown that an upper boundof B** is given by

L.-0%% sin*e (14D

, (5.4)
RN / = 35 cos™e (M)

where E () is the maximum non-dimensional repulsive force between the
pairs.
By comparing the bounds - (5.3) and (5.4) with the computed values

of B* and B**, we have found that both quantities are approximately given by

(ﬂ*) ,B)F’-) = S'G-SInZB(W/Qj . (5.5)
(B0, E, 00/ | =215 cos™a(my)

PRI N
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I have been unable té find in the literature any previous
investigation into the affect of electrical and Van der Waals forces on
the motion of particles in shear flow, and the work presented here is
merely a preliminary investigation into this subject. One possible topic
for future research is the determination of the critical shear rate at
which pairs are torn apart by the flow., This quantity has some practicall
value for if a suspension is left standing for some time, the forée
between the particles will draw many of them together and they will then
be held by the force at the equilibrium séparation distance hE. To
"redisperse" the suspension by shear flow we must shear it at a rate in
excess of this critical shear rate;'ét lower shear rates, the shear flow

will simply assist the forces in bringing particles together.
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Details of the Numerical Solutions of the integral equations in Chapter 2

1. The Solution of equation (2.4.8) for the temperature on the surfaces

of a pair of nearly touching, locally spherical particles

The equation to be solved is

f foy= (12563 1oy 35 o (1)
| o?\&-o-'a

[ ,
i . where

! - :

| 5 ! - _l_( Qir‘] cb = 2

| Heren = &\ fois o T2oocosd)? | o or o Qtﬂoﬂ i

and K is the complete elliptic integral bf the first kind. The temperatur
in either particle is approximately uniform at large distances from the
contact point ( o© = o), i.e.

flory—>0 a5 oo 0

and thus we may replace equation (1) by the approximate expression

ol (2]
R [ ACTINI CEL 8
6 o

where °~ O >> 1,

T; determine the function f over the range (o0,07) we first
Areplace the integral err that interval in equation (3) by a quadrature
involving the values of F at a number of grid points. A set of
linear equations for the values of £ at these grid points is then
obtained from the requirement that equation (3) be satisfied at each of
the grid points., This method for solving an integral equation is known
as "the quadrature techniqué" (Atkinson 1576).

We have used a quadrature based on a modified rectangle rule, viz




oL N s
X 1= $e](e ydo = Z'—n‘(wggl(o:'foqdw L)
N+ o' T e Jeo At O <,
o J 55
where
X * .
O:. = G_);\ + O: 3
2 -
*

and 0" is one of the (N+1) grid points on (o, 07). The gfid points

* * . ,
0, and 07, are at 0 and O respectively. Equation (4) is

approximately valid if the function |- f() is approximately constant
¢ A+ o*
over each interval ( o) ,0;: ) . This function is proportional to the

flux density on the surface of either particle and thus it has a shaxp
maximum of O~ = o, since the particles are nearly in contact at that
point. Hence we require a greater density of grid points in the neighbourhood

' of the origin than elsewhere. A suitable grid point distribution is given

by
* .
O:).' =_J 6 . . (5)
N (NH—J)
From the expression (2) for the function I(o%0o-) we get,
n ; .
1 L . ol
.fl(n/,@d»ze%{(n_‘wqmﬁmn} # <, (62)
o
and
1 E(’ if (6b)
' - R = { N>
SI(’Q/Tqu' = :ﬁ'—{q (/*rll) } > )y
where E is the csmplete elliptic integral of the second kind. The
(o
¥ .
coefficients j I(oy)do" in equation (3) were calculated with the aid

of the relatioﬁi (6a) and (6b), and poiynomial approximations for E and
K (Abromowitz and Stegun pp 541-2). |

The set of linear equations (3) were solved by a Gaussian
elimination technique. Both ﬁhe setting up of the equations and the
solution were carried out on an IBM 370 using double precision.

To evaluate the function P(\ ) from the computed values for j%oi),

we begin by writing the expression for P(A ) in the form

W e e ]
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X
r

o
J(o) o-do” +2_gf(o;)0”d0‘ (7)

A+ o AL O°F
ot

PxYy=2

0 ——m

The integral over (o, o) in éhis expression was eyaluated from the computed
values of f&%)using a quadrature whiéﬁ again.was based on modified
rectangle rule.
To estimate the second integral in the expression (7) for P,
we require an asymptotic expression for Fto as 0" — o . In
§2.u_ we found that the leading term in the asymptotic expansion for
F is ;%ggg' . To obtain the next term in this expansion we

begin by writing the integral equation (1) for £ in the form

d'-‘((r')= 5 I(oYaNdo” f J(o"I(o /o) de! , (8)
s h+o'? A+ o* -

The second integral in this expression is dominated by the contribution

from a region surrouding the origin. In that region 1(9,)% 22y,
(see (2.4.7)) and hence
Sf(o")l(o’g'o/5d°' ~ P(’M as .0¥—> o0 (9)

A+ o2
~

The asymptotic form of the other integral in the expression (8) for It

can be easily found by writing the integral in the form

o0 ¢’ o’ o0
lfwyy}do”‘ = iga'do“’ 4 gI(d/'o’)"Zolyg_'_dc—' 4_§T(c f\dr‘
J A+ o+ ¢OK+U“ Aot A+ o't
' ’r (10)
= log(h+o™=Tog(0 .”,T T(e)=2% dx WI'OW\.
o l)x, A .+
o oo L
The quantity I(xy - 2.x is O(x*)as x=—> 0 and thus the
: : I
contribution to Tl e
2 4 B
o Ot
from the region XL<'_Z?_ - where /A << 1, diminishes as o —» 0
N
(with A fixed). Beyond this region the quantity A forms

e aa
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a negligible part of the integrand, and thus the asymptotic form of

equatioh (10) is

o 7L+0~"’- o
where ‘ e
B se [I(;’Q;:’ﬁ(.dx +‘AJI(x)dx' = Bl
xﬂ- x]_ .
]

o

The value of A was obtained using a conditional convergence scheme based
on Simpson's rule,

On combining the asymptotic formulae (9) and (11) with the expression

(8) for fton , we get
ftoy ~ 2_1992’ + (2:8- 1031- P) as c— ®©.
o~ o
Finally, on substituting this formula for f in the integral over
(0L, 00) in the expression (7) for P(A ), we find
51
PN~ ZSfLo_)G“_di s wdogol 4 2l 8- logh - POD)  (12)
At o oL ol ~ i

and from this formula we can calculate P (A ) from the computed values 5(q3)_

The'accuracy of the computed value of P(N\ ) was checked by calculating
P with 45 and then with 90 grid points, and in each case, the two computed
values differed by less than one percent, Varying the value of G also
had a negligible effect on the value of P(A ), provided o was neither
too large or too small (if o is "too small" the error involved in
n

replacing equation (1) by (3) is significant, and if o. 1is "too large

the grid points are too widely spaced and the relation (4) is not valid).

2. The solution of equation (2,5.6) for the temperature and flux density

over the surfaces of a pair of spheres, pressed together to form a flatspot

We have solved the integral equation




~‘ ey _ [ - ¢ (14)
pov=3{ 18 - [y - 5]
, and equation (13) then reduces to
fop= - gﬁ-m')lm‘/@dn' 8 ¢ | (o
o - :
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fj(*q) fgml(q/ “)dr( E _J ((E;I(’l/)d*z
ﬁ

2= 1
* PS ' ‘f('l) {L( 2D) 12.1}1(’?/,\)‘4 (13)

numerically, using similar methods to thbse employed in the solution of
equation (1) for nearly-touching spheres. In this case the unknown

functions are g,(‘rp for 0 < n < 1 and f.(«rl) for 1L £ m <0,

The quantity ﬂlqﬁ is the solution to equation (1) for A = 0, (and
with the variable o replaced by q(=<ﬁb) ) and on the interval 0 < 7 £ 1
we have ‘ﬁ=|—3co. |

In order to simplify the program fof solving the equation (13)

numerically, we define

The aim is to find the function g, (M) which satisifes this equation

together with the constraints

Lo = 1- Lep for m< (16a)
and “

Fep = BaeLep « - 1__%3} for > 1 - (16b)
This last constraint is obtained fromthe expression (14) for g, .

On the assumption that the contribution to the integral in (15) from

the region o 1 is negligible we replace this integral equation by
W |

g 3:‘(,’0 s s gg \-,zn)]'(ml/,z)d'n y (17)

: |
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where nE > o

The integral in (17) is then replaced by a quadrature, based on a

modified rectangle rule and we get
LY

# .
N -
f(?“) = Z 9@7_,')?1("1'/*1‘3 d' y (= 0,...,N¥! (18)
J=0 * . . )
L .
whers = :n_ilﬂ . On replacing f(Q;) by the appropriate
A ,

expression (16a) or (16b) we obtain a set of simultaneous equations for 9.0

The function 9.(M) has a sharp maximum at the edge of the
contact circle ( 7 = 1) and this maximum becomes more pronounced as
B —> o . Thus the grid points must be closely spaced in the neighbourhood

of M = 1; a suitable distribution of grid points is given by

. \m
=10 %if%%% for points outside the contact circle, and
Y

for the (N, + 1) points on the contact circle where n,m > 1. By varying
the parameters m and n we can adjust the grid point distribution; as m and
n increase the points move towards the edge of the contact circle.

As before the simultaneous equations were set up and solved on the
IBM 370, using a Gaussian elimination technique.  The functions }Q(ﬁ)
and AH.(A) (defined by equations (2.5.8) and (2.5.9) were calculated
from thé computed values of NG B and ﬁﬂqi} using a simple
quadrature, again based on a modified rectangle rule,

To test the accuracy of the computed results we first calculated the
values of Mgy and AH, (B using 50 or 60 grid points. The
number of grid points was then doubled (with N, /g fixed) and the
computations repeated., The computed values of M and AH. were
considered to be acceptable if the relative variations in these values
caused by increasing the number of grid points (generally from 50 to 1C0)
or by doubling or halving 7m_ , were less than one percent. The

values of the grid parameters n, m and M which were used in obtaining

I\ A : I
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these "acceptable" values of and AX,, were selected, for each

value of B, by trial and error.

As mentioned earlier, the function g, develops a sharp peak
at M =1las f— o . Thus the number of grid points required to
obtain acceptable values of XN, and AHm increases with B, and

for this reason we have only calculated I, and A%, up to B = 100.
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A2

The numerical solution of the integral equation (3.2.16)

In this section we describe the steps involved in the solution

of the equation ' .

oo

1= o % + n’*)g(n); %.jﬂ(q') logln'-n|dnt ‘ | (3.2.16)

repeated

for the flux density g between a pair of parallel cylinders which are
nearly in contact with eéch other,

Although the limits of ihe integral in (3.2.16) extend to * o
the integral is dominated by the contribution from a small region

surrounding the origin. Hence we may approximate the integral by
A ; .

where the limits | are both convenient and large enough to contain
the small interval which provides the dominant contribution to the
integral. As g is an even function of M we only require values of

g in the range (0,1) and the equation (3.2.16) may be rewritten as

| = o ( % +'yzz)8(’7z) =+ %—Sg(mz'){iogm-ﬁzl\+log(nz.,.o»z')} d-\zl (1)

o

Using a2 modified rectangle rule, the integral in (1) is replaced
by a finite sum involving the values of g at selected grid points in

0 <M <1, and equation (1) becomes %

o (Bt g )gn) + %JZ 8%‘3{ logini-7| » logimamiyen

G (2)
- Pggp W
where Aij % cx(‘%+ O LTHE L1 {logln-7) + 103(*(-‘4-@}&2 5

.M 3
’Yl} - (J/Nw ( )
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= L :
and = 2 *7}3 .

The integer N in the expression (3) for the grid points is equal to the
number of gfid points in (0,1) and the exponent m determines the
concentration of points about the origin. As g has a sharp maximum at

the origin, mis chosen to be greéter than one in order that there be more
points where d%/dQ‘ is largest. The set of simultaneous equations
(2) with a = 104, were solved on the TBM 370 using Gaussian elimination
for various values of h/a. The non-dimensiénal flux between the cylinders

is given by
M, %1: 2. gg(»@dv(

and with the usual rectangle rule this is approximated by

N
ZJZ ARG ATT D)

" The errors involved in the approximation of equation (3.2.16) by (1)
decrease as the number of grid points is increased, and we may estimate
the error in ¥ by observing the variation in the computed values of

H as the mesh size decrcases. In each case the relative variation

in 00", R caused by increasing N from 30 to 60 was less than

(

one percent.,
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Appendix A3

Deriving the Faxén-type expression (4,3.13) for the elastic dipole

strength of a rigid sphefe

The starting point for this derivation is the expression (4.2.9)
for the displacement at a point in the suspension. On converting the
integral over the volume v in (4.2.9) into a surface integral, and

using the fact that T = 2 at points in a rigid particle, we get

“UX)= gg(x‘£')-g(3')-ﬂ dAX) + Uelx) (1)
g
where (%) is given by (4.3.12). The "external field" U.(x)

is the displacement which would be obtained at X if the reference
spheres (i.e. sphere j) could be replaced by matrix material, with
the stress on the surfaces of the surrounding spheres held fixed.

Our aim is to derive an expression relating the dipole strength
of the reference sphere to the field {, . Since the sphere is rigid,

- we have
@)= U+ Qx (X-%e) (2)

at points X on the surface of the sphere. Taking the first moment of
equation (1) with respect to the centre X, of the reference sphere,

we get

fg@(%—zso) dA(x)=

{5 GG gz Al (3= x) dA () ] AR
 f

r
) (3)
+S%E<o~d(9g—3§o}dﬁ<%) :
n
Jd
From (2) we get
. _ 4 .
Sucacu,s e (4)

f
J

: |
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To find S (xx1.>93HCx7 , we expand Y (%) in a
Taylor serles about x, ,
g Calss x)AG = ’(:LE(?‘QS( x-%)dA + VU E(a%%S( X-x)x-x)A+...  (5)

Evaluating the coefficients in this expression and using the identity

Vl’g (EE) =0

associated with the elasticity equations, (Landau and Lifshitz (1970)

pp 18) we get

luore-2adA = Lot (Tugsg + RTTe (6)
Y T :

B
J

Lmra®
3

This result is valid for any displacement field which satisifies

the elasticity equations in [7 , and thus we have

g{%(x ')g(u'u-r“x(;gv}ﬁ -x)dR()

~ ~ ~

(7)
_g._guc_x (VG (x- xo\+1‘zg

We can use this result to evaluate the remaining term in equation (3).

Integrating (7) with respect to p , over the surface of the sphere,
g g =

we get

S[ g G (- N g7 (x)- ﬂ(%’)(z.—ﬁ@dﬂ(%)]&ﬁ(;g’)
T

(8)
= h;__cw_"g[ VG (x-%) + a7 \7Gm xa] a0y dA &',
10

r“

From the definition (4.1.6) for G, we get

G, x-%> | gt 206, R (K-%o) = L4V { &y (K- %) (18.2207) !
DA 1o ax STE (-t & ‘
‘ 9 ;

_ 2.8 (R0 - B hwlrun
- (S

D e o A W 5 55 2 s |
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Substituting the expression (9) in the integrand in equation (8) we find

%-_.!t.—/-\

SQ o "') R(%" (%~ xo)dﬁ(x\j CiRGx")
M
J

= 280N [(16- 200G - 2(trace 1Y,

30E(1-%) (10)

Replacing each of the terms in equation (3) by the corresponding

expressions (4), (6) and (10), we get

Lrate 0 = - al+y) {(16—- 20»)5 Sem
5 Wk & 305(»~v\{ S }

+ Lma‘*faug(vgo)i ) 5 (11)
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and taking the symmetric part of this expression, we obtain

aly)d { (16-20v)
305(1»3
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S - 2(trace §9) ] )= Mct gxo + e 0N, (12)
~ 2 10

Taking the trace of this expression, and using the identity
Vitroce € (= V(Toud = 0,
(Landau and Lifshitz (1970), pp 18), we get

trace Sj =  La"E(0-W) ‘f.‘roc&[_e )] |

"~

o O+v)(1=29)
Substituting this expression in equation (12), we obtain the Faxen-

type formula:

&' = loma PE( '-V)[ Ce(x) + &L v el + I trace [ & (7%33]
Clm 5V V) lo . S0-29)
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Appendix A4

The Derivation of equation (4.4.7)

The aim is to derive an expression‘for the thifd—order thgrmal
multipole strength'of a sphere J71§ in a statistically homogeneous
suspension., This is obtained from a combination of a Faxén type
expression which relates qu to the external field TE’ and the
expression (4.3.2) for Tge |
From equation (4.3.4), we get

% %_a_ T(Xo= 2 2_ 3 Ta(%0- (—oc"),g’o‘_a_a_ N\F.AdA. (L)
‘n
J

The minus sign in front of the integral comes from replacing 2

by - 2. . Substituting
o
2.0 O LL Spr + 6,7 +6r‘—15fr
BOL,BX; X, T s (ST —t
(where YV =(%-X); ) in the integrand in (1), we find

- S.+8§S
XXX, * Lmrkas{ TENE R )
| (2)

+ 5, ).
h_,n,ho‘r 3 LJk

where S and ~(W3 are the dipole and 3rd order multipole strength of
the reference sphere (for convenience, the superscript j has been

dropped).

Another expression for 2.2 T(xo can be obtained by
3% >N

differentiating the expression (4.3.5) for T, which gives .
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o=t (2.2 2 (\FARdA+ _'_ST_a_a_b__a_ Ln.dA
5T il Smersolrlo, ¢ i) | sxeHor o |
b 7 |
= {8 S; +8dlSJ +6. S} 15, 4
A:n(oc nha Lkl at _
(3)

+%{%J’l’ri 6@ + StkSTrjdA + 6i.i gTrkdﬁ} + |5 Sl TdA .

Expanding T in a Taylor series about- Xa and using the fact

that VT = 0, we find

gr TdA = aT( D

r
J

and

rrrTdA = _hwef? 23 2 Teo+ wum! *[ 61210k + 6,100 £, OTCxo!
{ik 105 92X 2%, 15 L e Rox, Noxy

Substituting these expressions in (3), we get

2_2 2 T(xo--3€(m) -3 {g, S +%5:8.45:61
OXOXOY, T mklwoihar  dmkeenas] R TET RSP0k
[ 5. BT(xm 8. T + 6§, aI(xa] (4)
a’l g X 83& I
\
)
|
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Eliminating 2 2. 2 T(X) from the above expression with the
X%, |
aid of (2), we obtain ‘
- |
M, = baka¥(w-1) V\/VT(xm [+ -] . _ (5)

W(x+449

This is required Faxen type expression for jﬁa . The square brackets

in (5) enclose terms of the form
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5\ : 6
Jkax (6)

The coefficient of (Jn3¥k£ in equation (4.4,1) is

WJMZQﬁ.LQ_

b&+2) ™ oXPgax2X T

J_
T
and the contribution to (4.4;1) from terms of the form (6) is

(X=1) R 3 VvV T = O,
é(ou,z); (BX o, r) %, .

These terms are therefore of no interest ﬁo us, and for the remainder
of this section we shall ignore the square bracketed term in equation
£5).

To evaluate the expression (5) for /M, , we require V'V VT, (x,)
The external field T, is given by the expression (4.3.2). With the
aid of the identity (4.3.3) and the divergence theorem we can rewrite
(4.3.2) as

Totm) = Zurjf{:naa r i (B2 « kemywyayan.

i T

From this equation we find

VOV Tl = - ;(l oc“Sv V'VL EAda

ke
i (7)

| an.
- L S{vvv EYR+ kETYTV'TIL- R}

o

The integral over the maéroscopic boundary TE in this equation
may bé neglected., To show this, we take ra to be a sphere of radius
R. By assumption, <Y T> is uniform throughout the material, and as the
material is homogeneous; <F> is also uniform. The term Y7*f§7{:

is 0( —5 ) as r —>00 , and thus

Sv'v‘v};gﬁdﬂ:op"{g as R—> o0
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Similarly <TxW - <TED) (= <VT>‘(2$’?E3\;= O(R) on [, , and since
VV'V'VL = OLyon [} we have
0 'l./\—‘
J<T)V'VVV?-ncﬁ=O(—é2\as R 00 .
. Thus the integral over f; in equation (7) vanishes as R—>o00

and (7) becomes

VUV T.(xa = -5 (=< V'YV FAdA | 183

“
: r
tij bk

e

Combining this result with equation' (5), we get

LT, T2 ) _WV'V'- ERdN 9
IS(o(+_‘!~_joc L
7] P

and expanding the term \AvAV v'? in a Taylor series about

955 (the centre of sphere i), we obtain

RO, (k+°) -
My=-le=na’ STV PGV S ao
15 (x+ LL) b ka2 Rl ,

l-tJ
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