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PROPERTIES OF SUSPENSIONS OF INTERACTING PARTICLES - SU~~Y 

The ·dissertation is divided intQ six chapters. The first chapter 

contains introductory remarks and sets the scene for the work that is to 

follow . 

Chapter 2 is devoted to the conduction of heat or electricity through 

granular materials, the conductivity of the grains greatly exceeds that 

of the matrix and the grains are closely-packed. Frornan analysis of the 

temperature distribution near the point of contact between a pair of 

particles we derive an expression for the effective conductivity of this 

type of material. 

In chapter 3 we study the conduction of heat across a bundle of 

fibres. It is shown that small deviations in fibre straightness or in 

fibre alignment have a marked effect on the conductivity of these types 

of materials, and expressions are obtained for the effective conductivity 

of two classes of fibre bu~dles. 

The work in chapter 4 is concerned with general aspects of the 

determination of effective transport properties. A new method is described 

for obtaining the effective transport properties of suspensions of 

interacting spherical particles in both regular and random arrays. This 

new method does not encounter divergence difficulties, and provides a 

rigorous basis for the rather ad hoc procedures devised earlier to deal 

with divergence difficulties. Some old results are rederived by these new 

techniques and expressions are obtained for the effective modulus of 

compr ession of r igid spheres in random and regular arrays in an elastic 

matrix. 

Chapter 5 is devoted to a study of the coagulation of particles in 

shear flow. We are mainly concerned with the coagulation of particles at 

"high" shear_ rates, in which case the Brew nian motion of the particles is 

negligible and the Van der Waals forces between the particles only affect 

the motion of nearly touching particles . Expressions are obtained for the 
I . 
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rate at whi.ch single spherical particles coagulate for form doublets, per 

unit volume of suspension. 

Finally, in chapter 6 we present the results of a numerical study on the 

effect of Van der Waals attraction and electrical repulsion on the motion 

of a pair of spherical particles in shear flow. It is shown that at very 

low shear rates, pairs execute closed orbits about each other. As the 

shear rate increases the pairs are pulled apart, and finally, at very hibh 

shear rates pairs are pushed together with such force by the flow that 

some are able to overcome the electrical repulsive forces and coagulation 

occurs. 
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1.1 Suspensions 

A "suspension" is defined as a material composed of discrete particles 

~mbedded or immersed in a continuous matrix. The particles and matrix may 

be either solid or fluid, and it is assumed that each particle is large 

enough to be r egarded as continuous. Examples of suspensions occur 

frequently in nature (blood, clay, mist) and in industry (latex paints, 

fibre reinforced materials, polymer solutions). 

If a particle is placed in an infinite matrix the (temperature 

velocity or displacement) field in the matrix will be disturbed by the 

presence of the particle, and this disturbance field will vary on a length 

scale which is of the order of the particle dimensions. Thus the field 

in the neighbourhood of a particle in a suspension will be affected by 

the presence of a neighbouring particle unless the distance separating 

the pair is much greater than the particle size. We shall refer to this 

type of interaction as an "indirect interaction" since it is transmitted 

through the matrix material. In addition to this type of interaction 

between the particles in a suspension, there may be a "direct" interaction 

arising from the forces between the particles. 

The work which we shall describe in the following chapters is con­

cerned with suspensions in which the interactions, both direct and 

indirect, play a significant part. We shall only consider the case of 

solid particles suspended in a solid or liquid matrix. Both particles and 

matrix are composed of materials which are homogeneous and isotropic and 

it is assumed that each particle is composed of the same material. 

The work divides into parts; chapters 2, 3 and 4 deal with the 

problems of determining the effective transport properties of suspension 

of interacting particles, and the remaining two chapters are devoted to 

the study of the effects of shear flow and interparticle forces on the 

motion of rigid spherical particles suspended in a Newtonian liquid. 
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In this chapter we describe the background to t his work, beginning 

with the transport problem, and in §l.4 there is a brief description of 

some of the experiments '.;Iith which I '.;Ias concerned during my first two 

years at Cambridge. 

1.2 The effective transport properties of suspensions 

The transport properties of the particles are in general different 

from those of t he matrix, and thus if a suspension is not in a state of 

equilibr ium, t he temperature, velocity or displacement varies in a 

complicated manner with position in the suspension. To determine the value 

of any of t hese quantities at each point in the suspensions we would 

require the position and shape of each particle, but such microstructural 

information i s not usually available. Fortunately we are generally concerned 

with the behaviour of "microscopicl! samples of the suspension which contain 

a large number of particles; the observable quantities with whic~, we 

are concerned represent averages and the small scale fluctuations in the 

quantities are unimportant. For example, if a TIacroscopic sample is 
, 

placed in a non-uniform temperature field, the fluctuations in the flux 

density F are of less interest than the flux across portions of the 
'" 

surface of the sample ,.;Ihich are much larger than the part icle dimens ions. 

When viewed on this scale, the suspension appears to be a single 

phase continuum, with "effective" properties which vary in a continuous 

fashion with position in the material. Our aim is to determine the 

effective transport properties which characterize these macroscopic 

samples. The transport propert y of interest may be the conductivi t y 

(electrical or thermal), the viscosity, or the elastic moduli. We shall 

assume t hat t he particles are force - free and therefore the only inter-
·1 

actions are i ndirect . 

The particles and matrix are character ized by (different) scalar 

conductivities . In disc~ssing ~he effective conductivity it will be 

> 



. assumed that the matrix, if it is a liquid, is at rest and hence 

conduction is the only means of heat transfer. If the matrix is a liquid, 

~ it will be taken to be Newtonian, and if the particles or the matrix 

are composed of isotropic, linearly elastic materials we shall simply 

refer to them as being "elastic". 

The concept of an effective transport property has been recently 

given a precise definition by Batche10r ( see Batchelor 1974 for a review), 

who also derived an expr~ssion relating effective transport properties 

to an average over the particles of a quantity known as the "Particle 

dipole strength". We shall describe the derivation of this result here, as 

it will be referred to frequently in the following chapters. The 

derivation is the same, in principle, for each of the transport properties, 

and we will only give the details for the case of thermal conductivity. 

The conductivity of the matrix is denoted by k and that of the particles 

in ak. 

In discussinb the effective transport ~roperties, Batchelor made use 

of the concept of an "ensemble average". If we perform experiments on 

a large number of samples of the same suspension under macroscopically 

identical conditions the value of any quantity (such as the temperature at 

a point in the suspension) will fluctuate randomly from one experiment 

to the next since the configuration of particles will not be the same for 

each sample. The average of a quantity, averaged over the ensemble of 

experiments, is defined as the ensemble average and is denoted by angle 

brackets. For the conduction prob 1em, the averaged quantities \vith 

which '-7e shall be concerned are the average flux density <,!:(:9/and the 

average temperature gradient < V T(;r) > J at a point ~ • 

Since the quantities I and vTat a point in a suspension are linearly 

related, it is reasonabl.e to assume that the ensemble averages of these 

quantities will also be linearly reI~ted, i.e.: 
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(2.1) 

<' 

-~here the second rank tensor ~'1~ is defined as the effective c-onductivity, 

In the case of a material with a statistically isotropic st r ucture, k* is 

proportional to the unit tensor and 

< F) = - k*<V'T) (2.2) 

In general k* may vary with position but we shall .on1y be concerned with 

materials for which k1( is uniform. 

If the temperature or flux density over the surface of the sample 

is known, then with the aid of the relation (2.1) or (2.2) and the heat 

conservation equation \7- <F> = 0, we can, in principle, determine the 

averaged quantities <E> and < \} T> at any point in the material. This 

would not be of much practical value if we could not then relate these 

ensemble averaged quantities to the quantities which would be measured 

in a single experiment, but .fortunately these quantities are related 

for a large class of suspensions. 

To demonstrate this relationship, we begin by noting that the 

quantit ies F(;f) and \) T(;f) vary randomly from one experiment to the next, 

reflecting the variations in the particle configuration. If the 

statistical properties of F(~ ) and V T(~) do not vary with ~, then by the 

Ergodic Hypothesis, the ensemble average of these quantitires is equal 

to an average obtained by "sampling" the values of F and \7T at a large 

humber of point s i n a s ingle sus pensi on . This i s of c our ~ e onl y va lid i f 

the values of! and V T at each sample point are statistically independent 

of the values a t the other sample points; s ince these quantit ies 

fluctuate with position on a length scale of the order of the parti cle 

size, we conclude that the sampl e points must be s e parated by dLs tances 

which are large compared to the particle size. Thus we may replace the 



ensemble average of f and VT by the average over a single suspension if the 

variables are approximately statistically stationary over distances which 

greatly exceed the size of the particles. 

Such suspensions are referred to as "locally statistically 

homogeneousll. The work that follows deals only with this type of 

suspension. If we attempt to measure the value of a quantity in a 

suspension using a macroscopic measuring instrument we obtain an average 

of that quantity and fora statistically homogeneous suspension this 

average is equal to t he local ensemble average-. Thus the ensemble averages 

have a real meaning for this type of suspension, and the effective 

conductivity k* defined in (2.1) is consistant with the intuitive idea 
"" 

of an effective property. 

Although the concept of an ensemble of experiments provides a useful 

frame~oJOrk in which to discuss the statistical nature of suspensions, the 

ensemble averages are less convenient for manipulation than the averages 

over regions of a single suspension. For a locally statistically 

homogeneous suspension the two averages are equal and in the work that 

follows ~ve shall use the "volume average", which is defined as the integ:::-al 

average over a volume V which is large enough to contain many particles, 

but which has dimensions which are much less than the length scale over 

which the statistical properties of the quantity of interest vary. Thus 

for the conduction problem, the relevant averaged quantities are 

(2.3) 

and 

< 'VT) = ~ J vr dV (2.4) 
v 

On dividing the volume of integration in (2.3) into matrix and particles 

and replacing E by -kvT at points in the matrix and -C(kVT at points in 

the particles, we get 

-.. _'-
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< F) = - k <'7T) + n < S ) - - (2.5) 

where n is the number of particles per unit volume and 

§= (l-o(·'~JfdV (2.6) 
Vi 

is the dipole strength of the ith particle, The angle brackets about S 

in (2.5) denote the average over the par ticles contained V. 
(;- 1-

If the particle is a per fect conduct~ ( a :: co ) it is not 

possible to calculate! at points in the particle and a more convenient 

definition of the dipole strength is obtained by applying the divergence 

theorem to the volume integral in (2.6) which yields 

~ = (1- ci1jJ ~ f· 7tdA 

A~ 

(2.7) 

where Ap is the particle surface and 3 is the unit outward normal from 

Ap. This is the definition of S which we shall use for the purposes 
'" 

of calculating the dipole strength. 

For a statistically homogeneous suspension <~> is proportional to 

<VT> and thus we may calculate the effective conductivity from (2.1) and 

(2.5), once <~> has been dete~mined. 

The ~orresponding results for the other transport problems are 

obtained by a similar procedure; the volume average stress < g'> in a 

suspension with an elastic or Newtonianliquid matrix is given by 

(2.8) 

where if x lies infue matrix, and if Hes in the 

particles 00 (x) denotes the stress which Ttlould be obtained at :c. = ~ ~ 
if 

that particle could be replaced by matrix materi&with the strain or 

strain rate at ~ held fixed. The dipole strength S is here a second 
. ...... 

order tensor given by 

§ = r( g-(~') - ~(;&'i)dV (2 . 9) 
"-----

'IF 
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where V is the particle volume. For the case of a rigid particle, 
p 

g;; = g at points in the particle, and on applying the divergence 

theorem to the volume integral in (2.9) we get 

2 = ~ ~ g-. ~ dA (2.10) 

Ap 

Thus the problem of determining the effective transport properties 

is equivalent to that of determining the average particle dipole strength. 

Previous Theoretical investigations 

If the volume fraction 0 of the particles is small, the distance 

between neighbouring particles is, on average, much greater than the 

particle dimensions (provided there is no clustering), and hence most of 

the particles are effectively alone in an infinite matrix. In this case, 

the average dipole strength is equal to ~o, the dipole strength of a lone 

particle immersed in an infinite matrix in which the temperature tends 

to '< VT>.?S at large distances from ' the part icle. 

The problem of determining So is simplest for the case of a spherical 
---- ~ 

particle, and consequently the dilute suspensions of spherical particles 

were the first to rece(~ve theoretical attention. In 1873 Haxwell 

obtained an expression for the effective conductivity of such a suspension. 

The expre~sion for the effective viscosity of a dilute suspension of rigid 

spheres was obtained by Einstein (1956) in 1905, and the corresponding 

result for a suspension of droplets of a second fluid held spherical 

by surface tension was obtained by Taylor (1932). Finally, in 1947, 

Dewey derived formulae for the effective elastic moduli of a dilute sus-

pension of elastic spheres in an elastic matrix. 

Subsequent investigations have yielded expressions for the effective 

transport properties of dilute suspensions of spheroidal particles. 

The problem of determining the effective viscosity of such a suspension 

is complicated by the fact that the orientation of a spheroid is affected 
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by the bulk flow. Since the dipole strength of these particles depends 

on their orientation with respect to the flow field, the effective 

viscosity is affected by the bulk flow and such factors as the Brownian 

diffusivity of the particles. The problem of determining the orientation 

distribution of a dilute suspension of spheroidal particles has recently 

been solved by Leal and Hinch for a number of bulk flows and expressions 

f or the effective viscosity have been obtained (see Batchelor 1974 for 

review). 

Although the expressions for the effective transport properties of 

dilute suspensions help us to gain some insight into the effect of particle 

shape and composition, they are of little practical value, for th~ transport 

properties of these suspensions are only slightly different from those of 

the matrix. To obtain more useful expressions for the effective transport 

properties, we must be able to deal with the problems caused by particle 

interactions. 

Since the average dipole strength <~> in a dilute suspension is 

independent of 0 (for 0 « 1) it follows from the expressions (2.1) and 

(2.5) that the particles alter the effective conductivity by an amount that 

is proportional to 0. It is generally assumed that this is the leading 

term in a power series of 0
n

, where the coefficients of the0 2 and higher 

order terms reflect various particle interactions. 

A great deal of effort has been expended on the determination of the 

0 2 coefficient in the expressions for the effective transport properties 

of random arrays of spherical particles. This work was hampered by the 

·occurance of non-convergent integrals, a problem which was finally 

overcome by Batchelor (see review article 1974). 

By using Batchelor's "Particle Dipole method", Jeffrey (1973) was 

able to obtain the 0 2 term in the expression [or the effective conductivity 

of a random array of spheres . The corresponding expression for the 
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viscosity of a suspen~ion of rigid spheres in a pure straining motion 

was obtained by Batchelor and Green (1972(b», again by the Particle 

Dipole Method, and in the same paper, an expression was derived for 

the effective shear modulus of a suspension of incompressible elastic 

spheres in an incompressible elastic matrix. More recently, Batchelor 

(1977) has calculat ed t he ~2 term in t he expression for the effective 

viscosity of rigid spherical particles suspended in a Newtonian liquid 

, in shear flow, for the case of strong Brownian motion. 

In addition to this work on random suspensions there have been 

a number of i nvestigations into t he effective conductivity of regular 

arrays of spheres embedded in a matrix. The initial ,york in this field 

was carried out by Rayleigh (1892), who derived an expression for the 

I~ 
conductivity of a simple cubic array of spheres correct to o(~ 3). This 

expression takes the form of a power series in (a/d), where a is the 

sphere radius and d is the distance between the centres of neighbouring 

spheres. The formula has been verified experimentally (Meredith and Tobias 

1960). Rece.flt ly, 11cKenzie and McPhedran (1977) have developed an algorithm 

_for obtaining higher order terms in this power -series, and with the aid 

of a computer they have calculated the effective conductivity of a simple 

cubic array at volume fractions which are near to the close-packing 

limit (0 = .524). 

Expression have also been obtained for the effective conductivity of 

suspensions of spheres in body- cent red-cubic and face-cent red-cubic array 

(Bertaux et a l 1975). These f ormulae were derived by essentially the 

same method as that developed by Rayleigh. 

In the same paper in which he studied conduction through cubic arrays 

of spheres, Rayleigh also der ived a formula for the components of k* 

associ~ted with conduction across a square array of circular cyLinders, 

but this formula appears to have aroused comparitively little interest. 
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Of the work which has so far been described, only that of McKenzie 

and McPhedran is v~lid for concentrated suspensions. These authors report 

that the series for k* converges very slm-11y at volume fractions which 

are near to the close packing limit if the conductivity of the spheres is 

much greater than that of the matrix. This suggests that the problem of 

determining the conductivity becomes more complex as the volume fraction 

increases. 

This apparent complexity arise s from the fact that the power series 

formulation for kk is inappropriate at high volume fractions if the 

conductivity of the spheres is much greater than that of the matrix. This 

was first realized by Keller (1962) who derived a simple formula for the 

conductivity of a cubic array of perfectly conducting spheres which are 

. nearly in contact. Keller's formula is based on the observation that most 

of the heat which passes through the suspension flows along chains of 

particles which extend between the boundaries, and that most of the heat 

which passes between a pair of particles passes through the thin ffie.trix 

layer which separates the parts of the particle surfaces that are nearly 

in contact. By a similar method, Ke11er also obtained an expression for 

the conductivity of a square array of nearly-touching parallel cylinders 

of infinite conductivity. 

In addition to the ,york described above, there have been a number 

of investigations based on "cell models" (Happel and Brenner (1973)) or 

"self consistant schemes" (see Jeffrey (1974)), but we shall not describe 

these results here as they do not have a sound theoretical basis. 

The work described in Chapters 2, 3 and 4 

Chapters 2 a nd 3 deal with the problem of conduction (of heat or 

electricity) thr ough suspension~ of closely packed particles immersed in 

a matrix of relatively low conductivity. As in the case of perfectly 

conducting particles, most of the heat passes through these suspensions 
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along chains of particles, but as neighbouring particles may be in contact, 

we cannot approximate the particles as perfect conductors (since the flux 

j -etween a pair of perfect conductors diverges as they come into _contact, 

:iif 1tFrey anre at: cl!:iiJf:fEeJreID.t temperatures). 

Chapter 2 deals-with the problem of conduction through granular 

mat~r~]g; expressi@~g are obtained for the effective conductivi ty of 

suspensions of cdosely packed spherical particles in random or regular 

array,s. This work was done in collaboration with Professor Batchelor. 

In Cb,apter 3, we study the conduction of heat across a bundle of 

fihres. It is shown that small deviationsin fibre straightness or in 

fib~e alignment have a marked effect on the conductivity of these type 

of materials, and expressions are derived for the effective conductivity 

of two classes of fibre bundles. 

The work in Chapter 4 is concerned with general aspects of the 

determination of effective transport properties. I describe hGre a new 

- method for obtaining the effective transport properties of suspensions of 

interacting ~pherical particles in both regular and random arrays. This 

new method does not encounter divergence difficulties, and provides a 

rigorous basis for the rather ad hoc procedures devised earlier to deal 

with divergence difficulties. Some old results are rederived by these 

new techniques and expressions are obtained for the effective modulus of 

compression of rigid spheres in random and regular arrays in an elastic 

matrix. 

1.3 The effect of interparticle forces on the motion of suspended 

particles in shear flow _ 

Particles suspended in a liquid tend to acquire an electr.ic charge 

which may result from the absorption of ions from the solvent onto the 

particles surface, or from th'e migration of ions from the particle to the 

solvent. The sign of this charge is determined by the difference in 
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chemical potential between the particles and the solvent, and thus there 

is generally an electrical repulsion between particles composed of the 

same material. Opposed to this repulsive force is the Van der Waals force 

of attraction between the particles, and it is the balance between these 

two forces which determines the stability of the suspension. 

This balance can be altered by the addition of salt to the suspension, 

for the electrical forces diminish as the concentration of ions in the 

solvent is increased, and if sufficient salt is added, the particles will 

coagulate under the action of the Van der Waals forces. It has been found 

that the coagulation rate is enhanced if the suspension is stirred, and 

Chapter 5 is devoted to the study of this phenomenon, knmm as "Shear 

induced coagulation". 

The earliest theoretical investigation into the problem of coagulation 

was carried out by Smoluchowski (1917), who studied the coagulation of 

spherical particles both in a suspension at rest and in a suspension in 

shear flow. At that time very little was known about the forces of 

attraction between colloidal particles, and Smoluchowski's work is based 
" 

on the assumption that the Van der Waals force between a pair of particles 

is only significant if the particles are actually touching each other. 

Thus the particles are unaffected by this force unless they"collide", and 

furthermore it was assumed that the particles stick together after colliding. 

Since an attractive force of this type cannot bring particles 

together, another mechanism is required. In a suspension at rest this is 

provided by the Brownian motion of the particles, and thus the coagulation 

rate is determined by the diffusivity of the particles. 

If the suspension is undergoing shear flow, the coagulation rate 

increases because the shear flow provides an additional mechanism for 

bringing particles togeth~r. 

In studying coagulatton in a suspension in shear flow, Smoluchowski 

.-... .... 
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neglected the Brownian motion of the particles, an assumption which is 

valid if the shear:rate is sufficiently high. In this analysis, the 

hydrodynamic interaction between the particles was neglected and thus it 

was assumed that particles simply translate with the bulk flow and coagulate 

on collision with other particles. With the aid of these assumptions, 

Smoluchowski derived expressionsfor the rate at which coagulated doublets, 

triplets and higher order groups of particles are formed per unit volume 

of suspension. 

Clearly there was some room for improvement in Smoluchowski's analysis, 

but even the simpler problem of coagulation in a suspension at rest was not 

treated in an entirely satisfactory manner until 1967, when Derjaguin and 

Muller produced an analysis which took into account both the effects of 

Van der Waals attraction and hydrodynamic interaction on the coagulation 

rate. 

In 1970 Curtis and Hocking studied the effect of Van der Waals attraction 

on the motion of a sphere-pair in a shear flow. By numerically integrating 

the equations of motion a sphere pair for a large number of initial 

conditions, they were able to determine which pairs would coagulate at 

a given shear rate. From this information Curt is and Hocking attempted 

to calculate the rate at which spheres coagulate to form pairs per unit 

volume of suspension, but their results are incorrect for reasons which 

we shall describe in § 5.9. 

Most of the work in Chapter 5 deals with the problem of the 

co~gulation of spherical particles at high shear rates. Like the previous 

authors, we neglect the Brownian motion of the particles, and in addition 

we make use of the observation that at these high shear rates, the Van 

der Waals forces only affect the motion of particles which are nearly 

touching each other. The equations Hhich describe the motion of the centre 

of one member of a sphere-pair in a shear flow~ relative to the centre of 
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the other, have 'a par~icularly simple form if the pair are nearly in 

contact. We have been able to solve these equations and obtain expressions 

describing the relative trajectories of the nearly-touching ,sphere pairs 

which are influenced by the Van der Waals attraction. 

The sphere pairs which are not nearly-touching are effectively 

force-free, a nd t he motion of such pairs has been thoroughly analysed 

by Batche10r and Green (1972(a)). By linking Batchelor and Green's 

results with the expressions describing the relative trajectories of the 

nearly touching sphere-pairs, we have been able to calculate the rate 

at which single spheres coagulate to form doublets in a unit volume of 

suspension, for a number of shear rates. We have found that the coagulation 

rate approaches a limiting value at high shear rates, and we have 

calculated this value by two quite different methods. 

Finally, by combining this high shear rate analysis with Derjaguin and 

Muller's (1967) work on coagulation in a suspension at rest, we have 

_ obtained a qualitative picture of the combined effects of Brownian motiop-

and shear rat e on coagulation. 

If the concentration of electrolyte in the solvent is not sufficiently 

. high, the electrical forces between the particles may have a significant 

ef£ect on their motion in a shear flow. In Chapter 6 we present the 

results 'of a numerical study of the relative motion of sphere-pairs which 

are influenced by both electrical repulsion and Van der Waals attraction. 

I have been unable to find any previous investigations on this 

subject in the literature, and the work presented in Chapter 6 is in the 

nature of a preliminary study. Consequently we have dispensed with 

complications such as the Brownian motion of the particles and the effect 

of retardation on the Van der Waals force.+ Furthermore we assume that the 

+ The rate at which the Van der Waals force between a pair of particles 
drops off as the part icles are separated increases when the mini.mum separat ion 
distance bet"Jeen the surfaces becomes of order A_ , a YJavelength (usually 
about lO-b cms) associated with the material of which the parti cles are 
composed. This is knov7n as the "retardation effect" (see Verwey and Overbeek 
(1948) for more details). 
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range of action of the electrical forces (the Debye length) is much 

smaller than the particle radius and thus we only deal with nearly­

touching sphere pairs. 

1.4 Unsuccessful Experiments 

Although the work presented in this thesis is entirely theoretical, 

I had originally intended to carry out rheologi cal measurements on 

concentrated suspensions. The experimental work I did during my first 

two years did not bear fruit, and in this section I shall briefly describe 

the aims of this work, and some of the problems which were encountered. 

In the absence of Brownian motion, the bulk (i.e. volume averaged) 

stress in a suspension is determined by the bulk strain rate and the 

statistical aspects of the particle configuration which we term the 

"structure" of the suspension. - He proposed to carry out an experiment in 

which the suspension has a known structure; in particular, \ve planned to 

measure the effective viscosity of a monodisperse suspension of particles 

with isotropic structure in an oscillatory shear flm\l of small amplitude. 

In this case, the bulk flow only perturbs the structure from its equilibrium 

state, and therefore the suspension remains approximately isotropic during 

the experiment. 

The first step was to obtain a monodisperse suspension. Or.e such 

suspension \o]hich had been used in a number of experiments consists of rod­

like particles, manufactured from fibre glass. The fibres are 3.5 microns 

in diameter, and the minimum length to which they can be accurately cut 

is about 100 microns (see Carter 1967 for details of manufacture of these 

suspensions). Unfortunately, these rods are too large for our purpose, 

for the time required for the Brownian rotation of these rods to impart an 

isotropic structure to the suspension is much larger than the tiree required 

for them to sediment out (the s pecific gravity of the rods is 2.5). Thus 

we could not be sure that this suspension would be isotropic at the start 
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of the experiment. 

A monodisperse suspension of smaller particles was required. 

Fortunately the suspensions kno'iYn as "latices" appeared to be suitable. 

These consist of spherical polymer particles of radius 0.1 - 1 micron 

suspended in an aqueous solution. With the assistance of Dr'. P. Johnson 

of the Department of Colloid Science I attempted to manufacture a latex, 

but it soon became apparent that the making of a monodisperse latex is 

something of an art. t-lethen turned to Prpfessor I.H. Krieger of Case 

WestemReserve University, Ohio who kindly supplied us with a monodisperse 

latex containing particles of 0.226 microns in diameter, with a volume 

fraction of 0.45. 

In a review article on the rheology of monodisperse latices, 

Krieger (1972) describes a method for effectively eliminating the forces 

between the latex particles, based on the addition of certain amounts of 

surfactant and electrolyte to the latex. The latex which we had been 

given had been treated in this way, and so we assumed that the particles 

were effecti~ely force-free, rigid spheres. 
, 

We proposed to measure the effective viscosity of this latex in an 

6scillatory shear flow, over a range of frequencies. In order to under-

stand how the variation in frequency affects the viscosity "le must consider 

the factors which determine the bulk stress in a suspension of rigid, 

force-free particles. 

There are two components to the bulk stress in such a sus~ension. 

One component, known as the "hydrodynamic stress ll is the stress that would 

be obtained in the absence of Brownian motion.+ This component is pro-

portional to the instantaneous strain rate with a constant of proportionality 

that is determined by the instantaneous structure. Since the structure is 

+ given that the suspension has the same instantaneous structure . This 
structure will be affected by the Browni.an motion ,and hence the hydrodynamic 
stress is indirectly affected by the Brownian motion. 

Lt URY 
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approximately isotropic in the oscillatory flow, the component of the 

viscosity which arises from the hydrodynamic stress is not frequency 

dependent. The second component of the bulk stress, known as the "direct 

contribution due to the Brownian motion ll arises from the fact that the 

flow slightly alters the structure of the su~pension and as ' the particles 

diffuse through the .liquid in an attempted to restore the equilibrium 

structure t hey generate a bulk stress. 

The parameter which characterizes the relative magnitude of these 

tl~O components is wo~ 
1) 

where w is the frequency of oscillation 

of the flow, a is the sphere radius and D is the diffusivity of the 

particles. At "low" frequencies wa'l..« , I 
b 

the (nearly isotropic) 

, structure of the suspension is determined by the instantaneous sheer rate, 

and thus the effective viscosity is equal to the "zero-shear viscosity" 

~o measured in a steadyshear flow (see figure (1.1». As the frequency 

of oscillation increases (wht amplitude held fixed)~ the hydrodynamic 

component of the bulk stress increases in proportion to w ,but the 

direct' contribution increases more slowly and hence the effective viscosity 

decreases as increases until eventually the viscosity reaches 

the limiting value J-L. (see figure (1.1». 

Similarly, the effective viscosity measured in a steady sheer flm~ 

decreases with shear rate, '(see figure (1.1» but the high shear limiting 

value ~~ will in general be different from ~l , for in a steady 

shear flow the structure of the suspension is altered by the flow. 

By measuring the quantities )-l,o and J.1..1 we can determine 

the contribution to the zero shear viscosity from the Brownian motion of 

the particles. Furthermore, by measuring the high shear limiting 

-viscosity fJ'1. snd comparing t his with J-t, we can study the effect 

of structure on the hydrodynamic component of the bulk stress. 

Although this seemed to be a reasonable plan, , even the steady shear 

measurements proved to be difficult at the higher volume fractions (0 > .4), 
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J!.t--- - -

fJ-. 

~---- tJ.~ 

Figure 1.1 The expected form of the effective viscosity curves for 
a latex. Curve I represents the result for oscillatory 
shear and the parameter is WO~D in this case. The 
dependence of )-'-. on shear rate '0 in steady shear flow 
is illustrated by curve 11. 
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for the evaporation of the solvent from these suspensions causes a skin 

to form on the surface. At the Department of Chemistry at Bristol 

University there is a Weissenberg Rheogoneometer. fitted with a "Mooney 

device n+ which is designed to overcome this evaporation problem, and it 

was at that department that I attempted to measure these quantities ~o 

fJ-, and r"1.' 

Tl1ith a great deal of assitance from Dr. Jim Goodwin I managed to 

obtain some reproducible measurements of }J-o and This 

required the most meticulous attention to cleanliness, between each run 

the Mooney device was taken apart and any solidified latex was washed 

away with distilled Hater. 

Unfortunately, my attempts at measuring the high frequency viscosity 

~, , were totally unsuccessful~ I had planned to measure this 

quantity by observing the decay rate in the oscillations of the upper 

platen of the Mooney device after it had been given an initial twist. 

The frequency of these oscillations is determined by the spring constant of 

the torsion bar which connects the platen to the frame of the Rheogoneometer. 

With the stiffest torsion bar, the frequency of oscillation is 38.6 

wo .... 
D 

cycles per second and although is only ~f o~der 10 et this 

frequency, it was hoped that this would be sufficiently large for the 

direct contribution to the viscosity to be negligible. 

Before testing the latex samples at this frequency, I carried out 

a trial run using distilled water, and it was at this point that the 

experiment floundered, for the measured decay rate differed significantly 

from the theoretical value (calculated on the assumption that the term 

~.Vu in the Navier-Stokes equations is negligible). Perhaps the flow 
"'" -

is unstable at this frequency; if so, the measurement of ~, could be 

+ this is a combination couette-cone ' and plate device. 

---
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carried out with a latex containing larger particles, since wo""» I 
D 

would then be satisfied for lower frequencies. 

However, two years without success had dampened my enthusiasm for 

the project, and it was at this point that I began the work which is 

described in the remainder of this dissertation. 
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CHAPTER TWO 

THERMAL OR ELECTRICAL CONDUCTION 

THROUGH A GRANULAR MATERIAL 



2.1 Introduction 

In this chapter we try to derive the effective conductivity of a 

stationary granular material through which there is a steady transport 

of heat or e lectricity. The material consists of randomly arranged 

grains , in, or nearly in, contact with each other and immersed in a 

connected uniform matrix which may be fluid or solid. The matrix is 

characterized by a scal ar conductivity k , and the material of the gr ains 

by a scalar conductivity ak. We shall study in particular the case a » 1, 

examples of which are conduction of heat through a packed bed of metal 

particles in water or of electricity through a pile of carbon particles 

in air. The case a » 1 is int eresting theoretically because the amount 

of heat or electricity conducted is a delicate balance between the effects 

of the largeness of the conductivity of the grains and the smallness of 

the surface of contact between them. It is not at all evident whether 

the effective conductivity of the medium will be closer numerically to 

k or to ak. 

As is customary in the analysis of properties of heterogeneous ~edia 

with random structure, we shall assume that the granular medium is 

statistically homogeneous. It will be supposed that a uniform mean 

intensit y gradient . is set up in the medium, perhaps by imposing uniform 

and different values of the intensity at two distant parallel boundaries. 

Henceforth we shall use terms and notation appropriate to the case of 

thermal conduction f or convenience; thus the mean intensity gradient will 

be written a s <V T>, where \l T is the temperature gradient at a point 

in the medium (not necessar ily in the mat r ix) and the angle brackets denote 

an average over the ensemble of realisations of the random structure of 

the medi um. The local t hermal flux density E is equal to - k VT at a 

pOint in the matrix and - ak V T at a point in a grain or particle. At 

each point on the surface of a ~article T and the normal components of 

F are c ontinuous; and at each point not on such a surface 
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0.0 

All temperature differences are proportional to < 'VT>, and so for 

the mean flux density we have the linear relation 

where the effective conductivity k* is a second-rank tensor, dependent 
:::: 

on the structure of the medium. We shall be concerned only with 

granular materials with statistically isotropic structure, in which case 

~* is proportional to the unit tensor and 

< F) = - k*<VT) ( 1.2) 

Our objective is an expression for the scalar effective conductivity k~·:. 

This problem is mathematically identical with that of determining the 

effective dielectric constant or the effective magnetic permeability of 

a disperse system in which the particles have electrical and magnetic 

properties di fferent from those of the matrix. 

The argument to be pre~ented divides naturally into two main parts, 

one being concerried with the relation between the effective conductivity 

and the statistics of the structure of the medium and the other with the 

analysis of the temperature distribution in the neighbourhood of a point 

of contact between two par ticles. 

Previous theoretical work on the problem of conduction through a 

packed bed of particles has assumed a regular array of spheres and will 

be referred to later. None of the previous results is accurate for 

touching particles. 

2 . 2 The exact expression for the mean flux 

In chapter one we described the formalism that has been developed 



in recent years for the transport properties of a statistically homogeneous 

medium. For these type of materials the ensemble average of the flux 

density! and temperature gradient \TT are equal to averages over a large 

volume, and <I> is given by 

(2.1) 

The -' term,e, called "the particle dipole strength" is defined by 

S = (I-c(-'l:x: F.n df\ 
~ Jrv~" 

(2.2) 

Ap 

where is the surface of the particle, ~ is the unit outward 

normal to PlO and ::f is the position vector of a point on Ao • The 

angle brackets enclosing S in (2.1) here denote an average over many 
'" 

particles in one realization. The expressions (2.1) and (2.2) are 

identical to equations (1 .2.5) and 0.2.]) respectively. 

These relations are exact, and valid for any shape, orientation, 

concentratio~ and spatial arrangement of the particles, either random 

or regular (the latter being a special case of ' the former), and they 

provide a convenient means of cietermining the effective conductivity. In 

the dilute limit n ~ 0 the distribution of E vlithin a particle is 

unaffected by the presence of other particles, and may be obtained 

explicitly ' for simple particle shapes; for a sphere of radius a the 

value of ~ in these circumstancffi is readily found to be 

giving Maxwell's (1873) expression for the effective conductivity 

for spherical inclusions correct to order ~ ,viz; 

~-Jhere is the fraction of the total volume that is 
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occupied by particles. An improved estimate of the effective conductivity 

of a dilute dispersion of spherical inclusions which is correct to order 

<1>2 has recently been obtained from (2.1) and (2.2) by Jeffrey (1973) 

by taking int o account the effect of interactions between pairs of 

particles on the value of S for a particle. 

Here we are concerned with the opposite limit, with q, close 

to its maximum value, for which an expansion of k~'~ in powers of ~ 

is unlikely to exist, and unlikely to be useful if it did exist. The 

relations (2 .1 ) and (2.2) are no less useful in this case. 

2.3 An approximate expression for the particle dipole strength in 

the case of touching particles of high conductivity 

_We now make use of the assumption that a »1. This of course 

-1 -1 
allows neglect of the term a in the factor 1 - a in (2.2). There 

are in addition importance consequences for the integral over the particle 

surface A. When the conductivity of the particle material is relatively 
o 

large, the temperature gradients within particles are relatively small. 

The temperature within one particle is approximately uniform, and in 

general is different for different particles. The thermal flux density 

across the surface of a particle is consequently of large magnitude near 

a point of contact with another particle. These points of contact on 

the surface of a particle are necessarily well separated, at any rate for 

particles without sharp protruberances. The quantity!. ri thus has large 

magnitude near a few well separated points on the surface of a particle. 

Trbis suggests, and later we shall confirm it analytically, that the 

total heat flux across the part of the surface of a particle that is near 

a contact point is dete rmined by the local conditions and is large 

relative to the total flux across parts of the surface not ne3r a contact 

point. In other words, the integral in (2.2) is approximately equal to 

the sum of contributions from the parts of A near each of the contact 
o 

point s. 
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Suppose that the ith 'contact point on A is at 
o 

:x..=x· . ,...... ....... i, In 

the neighbourhood of this contact point ~ is approximately constant, with 

the value ~i' and the outward heat flux across the particle surface in 

the neighbourhood of the contact point is 

where is an appropriately chosen portion of the surface A centred 
o 

on the point x .• 
"'~ 

Thus (2.2) becomes 

(3.1) 

the summation being over the finite number of contact points en the 

surface A • 
o 

The flux H. obviously depends on the difference between the temperatures 
~ 

at the centres of tqe reference particle with surface A and the particle 
o 

that touches it at the point x .. 
~ 

This temperature difference is determined 

_ by the requirement that 

(3.2) 

there being one such relation for each particle. In the case of a regular 

array of particles the temperature difference is a simple consequence of 

(3.2) and the geometry. But in the case of an irregular arrangement of 

spheres it is difficult to use (3.2) explicitly, and later we shall be 

obliged t ,o make an ad hoc estimate of the difference between the temperatures 

of two touching particles in a random array. 

It also follows from the largeness of the flux across the particle 

surface in the neighbourhoods of contact points that the first term on 

the right-hand side of (2.1) is negligible, whence 

(3.3) 
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The relation (3.3) expresses the idea that most of the flux of heat between 

two parallel planes occurs through chains of particles and that the 

thermal resistance comes principally from the thin layers of matrix 

between adjoining particles. This idea has been used before to obtain 

an expression for the average heat flux by more heuristic arguments some-

times referred to as 'percolation theory'. 

The next step i s to consider the way in which H. depends on a and on 
1. 

the conditions near the ith contact point. The next two sections are 

concerned with this local problem. 

2.4 The thermal flux between two particles in, or nearly in, contact 

We consider here the steady temperature distribut ion near the point 

of contact of two particles of high con~tivity at differeht temperatures. 

More precisely, the temperature of one particle is uniform and equal to 

T far from the contact point and that of the other to T I • Just how 
o 

the temperature distribution within one payticle remnins steady despite 

the flux across the particle surface near the contact point is i~naterial for 

our present purpose. The compensating flux across other parts of the 

particle surface might be concentrated near one or more points ef contact 

with other particles or it might be spread widely over the surface. All 

that is relevant is that the temperature within a particle tends to a 

constant far from the contact point under discussion. 

The particle surfaces are assumed to be rounded, with curvatures 

of the same order of magnitude • . The two particle surfaces will be 

regarded as being not literally in contact but separated by a gap whose 

-minimum width h (figure 2.1) is small compared with the radii of curvature 

of the particle sur.faces; this additional generality involves no more nlathema~ 

tical difficulty, and enables us to examine separately the limits a~OD 

and h -7 O. The origin 0 of the coordinate system is at the centre of 

the minimum gap and the z-axis is normal to the two surfaces. The point 
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Figure 2.1 Two particle surfaces nearly in contact. The z-axis is 
normal to the two tangent planes at the points of closest 
approach. 
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Figure 2.1 Two particle surfaces nearly in contact. The z-axis is 
normal to the two tangent planes at the points of closest 
approach. 
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on the surface of one particle that is closest to the other surface 

will still be referred to as the 'contact point'. The width of the 

matrix layer is approx imately a quadra t i c function of x a nd y, and so 

for an appropriate choice of t he directions of t he x- and y- axes may be 

written as 

(4.1) 

when x « a, y « h; and in the particular case of two locally spherical 

, surfaces of radii R and RI o 

~ Note that h « (ab) • 

Perfectly conducting particles 

The case a~co is relatively simple, and will be considered first . 

The two particles here have uniform temperatures T and T ,and the o , 

- temperature in the matrix layer varies approximately linearly between 

the values To and T, on the two sides. The ~ -component of the flux density 

at a point on one of the surfaces near 0 is thus approxim2tely 

(4.2) 

and the total flux through a portion of the surface near 0 defined by 

~ ~ 
r2 = (b/a)2x 2 + (a/b)2y2~R2 is given by 

R 

2'nk n~ - ~)f - h..--,-,-=dc..;.."r"_-
+ y-:l.(ob)-i 

o 
= 
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h. + :'<.ia + ~7b 

and the total flux through a portion of the surface near 0 defined by 

1: 1: 
r2 = (b/a)2x 2 + (a/b)2y2~R2 is given by 

p. 

2TTk er; - ~)f _L_r~a=-:y~_ 
rL + r:l.(ob)-i 

o 



~ provided we choose R 2 » h( ab). The heat flux through the remainder of the 

surface is approximately independent of h. Hence the non-dimensional 

total flux across an extensive portion of the particle surface which 

includes this contact point and no other is approximately 

, (4.3) 

where K is independent of h. The value of K depends on the precise 

specification of the extended portion of the surface and on the conditions 

far from the contact point, and is necessarily of order of magnitude unity. 

The logarithmic term in (4.3) may be said to be the contribution 

to the heat flux associated with the contact point. 

The leading term in the asymptotic expressioh (4.3) was obtained 

by Ke1ler (1963) for the case of two perfectly conducting spheres of equal 

radii a by essentially the above argument. It can also be found, as 

Keller pointed out by taking the limit (as h/a ---1- 0) of an expansion i.n 

terms of hyperbolic functions given by Jeffery (1912) for the total heat 

flux betweenltwo perfectly conducting spheres at different temperatures with 

a (distributed) heat source in the interior of one and a heat sink of 

equal magnitude in the other and uniform temperature in the matrix far 

from the spheres. The corresponding value of K for this case may ba found 

from Jeffery's expansion to be 2.48. 

Another relevant published result is the measurement by Meredith & 

Tobias (1960) of the electrical flux between two brass hemispheres of radius 

a at different temperatures in tap water with insulating plane boundaries 

so placed that the spheres were effectively part of an infinite simple 

cubic array. The gap width was h/a = 9.6 x 10-3 , from which it is evident, 

as may be seen from the formulae given in the next section, that the spheres 

were each at uniform potential. The relation (4.3) is therefore applicable, 
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and from Meredith & Tobias's measurement of the flux we find K = 0.2 

for this particular outer field. 

Particles with finite conductivity 

If the two particles are not perfect conductors, the temperature 

distribution within each particle will depart from uniformity in the 

neighbourhood of the contact point because in that region the thermal 

flux ' density ac~oss the surface is large. For a large but finite the 

. domain of non-uniform temperature will be small compared with the 

dimensions of the particle, and so it is permissible to regard the surface 

of the particle as plane. The heat conducted into a particle across an 

element of area of the surface thus spreads out in an effectively semi-

infinite medium, and this allows the formulation of an integral equation 

for the distribution of temperature over the surface of the particle near 

the contact point. For the temperature at the surface of the upper 

particle in figure 02.1) we have 

where . is the ~ -component of the flux density at a point 

on the surface . This local flux density may again be estimated from the 

assumption that the temperature varies linearly across the thin matrix 

layer, although here the temperature change across the layer as well as 

the layer thickness is variable . On writing 

~(X.,~) = 1 + ~ (1;-.1;).fex,lj) , 1 
"[(X,'j> = Tr -. i c~- ~)fe::C)l:J ) J 

(4.4) 

for the temperatures at the surfaces of the upper and lower particles 

respectively, and using the approximation (4.1) for the thickness of the 

matrix layer, our integral 'equation for f(x,y) becomes 
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J 
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T_<x',ul = T. - J.. (T- T.,)fCx,u) v I - 2.. I 0 -.; 

for the temperatures at the surfaces of the upper and lower particles 

respectively, and using the approximation (4.1) for the thickness of the 

matrix layer, our integral 'equation for f(x, y) becomes 

-a------------______________ ...... l 
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(4.5) 

We have obtained explicit results only for the case of particle 

surfaces which are spherical near the contact point, in which case a 

and b are equal, the temperature distribution is axisyrnrnetric, and the 

integral equation (4.5) reduces to 

00 

fCr') = ..Lf ' - f(r'~ J(L) cl r' 
ex. h. + r';2, r 

o /0 

where 

J(L') = 
t" 

= Lf-r' K(lJ...r'r) 
rr(r'+rJ (r'+rV·' 

K being the complete elliptic integral of the first kind. The function 

I(r'/r) has an integrable singularity at r'/r = 1, and 

as 
(4.7) 

05 

In non-dimensional form (4.6) becomes 

00 

J( 0-) == Jd(j-') 1 ( 0-' ) dO"" 
i\ + cr':z. ~ ~ 

(4.8) I 
o 

where 

0- = ocr 
Cl 

This shows immediately that when ~ » 1 the particle temperature is 

approximately uniform, and that ,.,.,hen ~ « 1 the temperature distribution 

in the particle is approximately the same as if the two particles were 

touching; in other ,.,.,ords we see how to judge ~lhether a given small gap has 
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practical significance. 

It seems not 'to be possible to solve (4.8) analytically, but some 

useful deductions can be made i~nediately. The length scale on which 

the temperature i n a particle varies is a/~, and i n particular the radius 

of the circle on the particle surface centred on the contact point over 

which t he departure of the temperature fr om T is significant , is of order 
o 

a/a • . The heat flu~ through a circular portion of the particle s urface 

centred on t he contact point is an integral of the for.rn 

(4.9) 

and this integral would diverge logarithmically at the lower terminal as 

0, were it not for the fact ' that f takes values near unity in 

the neighbourhood of the contact point. The value of ~ that cuts off 

this logarithmic divergence is of order unity, and so the approximate 

expression f~r the flux when A.. « 1 is 

1Tk(T.- ~)a log oc?-. 

On the qther hand, 'vhen A »1 the estimate (4.3) is applicable, the 

difference being that the ~ ~ ~ log a 2 in (4.10) is replaced by log a/h. 

The expression (4 . 10) ~nswers the question posed in §Z .l about touching 

particles; it appears that the heat flux depends more sensitively on 

the conductivity of t he mat rix than on that of the particles. 

The asymptotic form of the s urface temperature increment, as ar /3 ~OO 

may be found from (4 . 8) by replacing 1(0-}"0-) by 2 0-'/0'" for values of 0-' 

in the range 0 ~ 0-'< 0- and by 2 outside that range, and is given by 

f( 0-) 'V ?-199.T (4 .11 ) 
0-
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This asymptotic form shows incidentally that the difference bet\veen the 

heat flux through the particle surface and that for a perfectly conducting 

particle is a convergent integral which is independent of the boundary 

conditions far from the contact point. 

In order to obtain more detailed results and to confirm the 

important asymptot ic relation (4.10) we have solved the integral equation 

(4.8) numerically for several different values of ~ The integral in 

(4.8) was replaced by a sum involving the values of £(0'-) at N different 

values of ~ ' by a generalised trapezoidal rule, and these N values of 

f were then determined from the N simultaneous equations expressing the 

satisfaction of (4.8) at each of the N points. A more detailed description 

of the method of solution is given in Appendix Al. Figure (2.2) shows the 

temperature distribution found with N = 90. As prGdicted, the curves for 

different values of A have the conunon asymptotic form (4.11) as o-~ co. 

A convenient way of presenting the corr~sponding thermal flux across 

the matrix layer is in terms of the convergent integral 

00 

P(A') = r J(er') 2.a-do-. J 7\. + 0'"' 1-
o 

The non-dimensional flux across an extended portion of the particlesurfaca 

which includes the neighbourhcod of the contact point is then 

H 
rrkCT.-~)a 

:: lo~ ~ + k - P(7\. ') , 
h.. 

(4.12 ) 

where K has the same meaning as in (4.3) and is independent of hand lI.. 

The computed values of P are shown in figure (2.3). As A.. -7 0, P 

evidently tends to log ~ - 1, thereby confirming the asymptotic relation 

already found. The numerical results show further that 

(4.13) 
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when A « 1, and that this remains quite an accurate approximation for 

values of i\ as large as unity. The constants 3.9 and 0.1 are parameters . 

of the inner field, and are independent of conditions far from the contact 

point. The term linear in A does not have practical value but plays 

a part in a later discussion ( g2.5). 

The non- dimensional heat flux between two touching particles with 

locally spherical surfaces is thus 

(4.14) 

where K is a number of order unity which depends on the outer field 

conditions and is itidependent of a and of whether the particles are 

actually touching. 

Deissler and Boegli (1958) report having made a relaxation calcula-

tion of the temperature distribution inside and outside a sphere in point 

contact with a second sphere, ~vith boundary conditions corresponding 

to the sphere being part of an infinite line of touching spheres in a 

circumscribing insulating cylinder, for several values of a up to about 

103 • They give:-. their results in the form of a continuous curve, ~vhich 

we have replotted in figure (2.4) for comparison with (4.14). Deissler 

& Boegli's results are less accurate at the larger valuas of a, for 

which the temperature gradients are very steep, but they are consistent 

2 with the linear dependence of the heat flux on log a at large values of a 

expected from (4.14). The value of the constant K corresponding to the 

linear asymptotic relationship drawn in figure 4 is - 0.2, which is not 

very different from the value 0.2 inferred from the measurement of heat 

flux by Meredith & Tobias (1960) for a slightly different out~r field. 

2.5 The thermal flux between two particles with a flat circle of contact 

In "practice it may happen that a compression load is imposed Or! a 

granular medium (perhaps arising from the weight of the particles) and that 
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the particles are pressed together. If the particles are elastic they will 

deform slightly and will develop a fl~t circle of contact whose dimensions 

may be related to the load by the simple theory developed by Hertz many 

years ago. Such a change in the nature of the contact between particles 

will obviously have a radical effect on the bulk conductivity (an effect 

which is utilised in the old carbon microphone). The amount of the elastic 

deformation of particles in a random packed bed is unlikely to be either 

observable or calculable with much accuracy] but ws shall consider he ~re 

the thermal flux across a small flat circle of contact in order to 

illustrate the importance of deformation of particles. 

+ According to the Hertz theory (se2 Landau & Lifshitz, 1959), two 

touching elastic particles which are locally spherical with radii R 
o 

and R
l

, and for which E is the Young's modulus and ~ Poisson's ratio, 

will develop a flat contact circle of radius 

when a compression force P acts on each particle normal to the corumon 

tangent plan; at the point of contact, where a . = 2RoRl/(Ro+Rl) as before. 

(Formulae for the elliptic surface of contact betHeen bodies which are 

not locally spherical are also available but are rather more complicated.) 

The theory also yields an expression for the deformation of the particles in 

the .neighbourhood of the contact circle, and from this we find that the 

thickness of the matrix layer between the (deformed) surfaces of the two 

particles is L("1) e 2/a for « a (see figure 2.5), where 

and = r e 
L(11) = ~{7]:ttaf\-I(r{_I)i+ (1(,~ ()1: - 2. ton-I(~2_I/r } (5.1) 

+ Which is similar to that used in § 2.4 for the thermal flux prob lem, in 
that the undeformed particle surface is regarded as plane and an integral 
equation for the surface displacment is solved. 

-... _-
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Figure 2.5 Definition sketch for two surfaces pressed together to 
form a flat circle of contact of radius . ~ In the 

. undeformed state the surfaces are locally spherical, with 
radii of curvature R 0 and R" with a = 2RoR, / (R 0 + RI ). 
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The function L has the asymptotic forms 

(S.la) 

indicating the existence of a cusp at ~ = 1, and 

for 7l» I • (5 .lb) 

The - second of these asymptotic expressions is a consequence of the 

vanishing of the deformation at large distances from the contact circle 

and the fact that the distance between the centres of volume of the two 

bodies decreases by 2 e2/a under the action of the compressive load. 

If the temperatures of the two particles far from the conta~t region 

are To and T 105 before, the COlll.mon temperature over the circle of contact 

is ~(T + T ); that is, 
- 0 

Jh-) = I for r~e I 

When the radius of the circle of contact is so large that the heat flux 

through the thin annular matrix layer is negligible by comparison with 

that through 1the contact circle, the distribution of temperature inside 

the two particles is approximately the same as that of the velocity potential 

in irrotational flow of incompressible fluid through a circular hole in a 

plane wqll. The solution to this latter problem is known(see Lamb 1932, 

§l02), and shows that the normal flux density at the contact circle is 

= <xk(~- ~) 
l1(e':l.- r:l.)f 

and the total flux across the circle of contact is 

e 
He. ~ J ~('-)2.1rrdr _. 2e<.. k (I;-Io)~' 

o 

(5.2) 

(5.3) 
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Comparison with (4.14) suggesLS that the value of the radius of the 

contact circle for which the flux across the contact circle is comparable 

with that between two particles in point contact is of order 

This may be an exceedingly small length in .practice, indicating the 

-
extreme sensitivity of the bulk conductivity of a granular material to 

a little compression of the particles. 

In order to obtain more general results for the total flux from one 

particle to another (the expression (5.3) being the flux only for e 
large in some sense), we reformulate the integral equation (4.6) for the 

temperature at the particle surface and again solve it Inathematica11y. 

Outside the contact ·circ1e the normal flux density at the surface of either 

particle is approximately k(T_ - T+) a/~ 2L. Hence the expression for the 

temperature at the particle surface, again regarded as plane, in terms 

of simple sources distributed over the surface is 

I 

f(ll) = -T8('1')I("1/1'()cl~1 

where '1. 

o 

= r/o 
\" 

rt' = r' le 

00 

+ -'- r I - f( !I') I (-'1/1( );\'Y'L 
~ ~ U'r)') 

, ~ = rJ. e la and 

(5.4) 

is the non-dimensional normal temperature gradient at the circle of 

contact. 

The asymptotic form of fer) for r large may be seen, by the same 

reasoning as led to (4.11), to be the same as in the case of particles in 

point contact, that is, in terms of the new non-dimensional variables, 

fC'7,J---' 2. 109~'1 
f37( 

as 1(. -4 00 • (5.5) 
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Thus fer) - fo(r), where fo denotes the value of f for the case of 

4n point contact, falls off more rapidly as r increases than particles .... 

f(r), which Suggests that an integral equation for the difference Hr) -

f (r), wi ll be mor e amenable to numerical solution than the one for fer). 
o 

The integral equation for f('1. ) - foeTi. ), = f 1 (1.) say, is found from 

(5.4) and ( 4 . 6) (with h = 0) t o be 

1 co 

£ ( 'n) = -So (T(') ICl1/l'1 )d"1' - -' r fu'~ 1('1:;1') ) cl l' 
1 ' ( iJl L ~ J L ( 'YJ' ) l 

o . I l 

co (5.6) 

+ ..!....J!I- £(.,..\) 1{_1 - L 2,1 H11/"1.)an ' , 
f3 L o · L j L('YI') 11' J " 

I 

where 

(5.7) 

This is not an integral equation for f, (~ ) in the analytic sense, since 

it involves also the temperature gradient gl (~ ) over the interval 0 < ~ ~ 1 . 

However, over the same interval we have 

so that there is no more than one unknown quantity at any given value of ~ . 

The set ' of s i multaneous equations corresponding numerically to (5.6) may 

therefor e be solved both for the value of gl(~ ) at a set of points in 

the range 0 < ~ < 1 and for the value of f, (1 ) at a set of points in the 

ranpfi 1 ~ '1 < 00 The details of the method of solution and the 

accuracy of the computed values are given in appendix Al. 

The distr i butions of t emperature at the particle surface found from 

this numer i cal solution of the integral equation for ~ = 1 and ~ = 10 are 

shown i n figure ( 5. 2) fo r comparison with the case of particles not in 

contact . (We have also solved the integral equation for ~ = 0.01, 0.1 and 

100. ) 

'._---



38 

Thus fer) - f (r), where f denotes the value of f for the case of 
o 0 

particles in po i nt cont act, f alls off mor e rapidly as r incr eases than 

fer), which suggests that an integral equation for the differe~e fer) -

f (r), wi ll be more amenable to numerical solution than the one for fer). 
o 

The integral equation for f(~ ) - fo(~) ' = f, (~) say, is found from 

(5.4) and (4 . 6) (with h = 0) t o be 

, 00 

£(1)} =- -SO,C7(,')I(7(in)d'T(' - -' r k?J'_) ICytl'1'1) c11' 
, cJ L ~ J L< ,) l 

o , I '1 

co (5.6) 

+J.... (rf- £C'Y4)1{_1 - L2.' H"1/"1Jan' , p J'L 0 L L('>'!') ll' J I. 

I 

where 

(5.7) 

This is not an integral equation for f, (~ ) in the analytic sense, since 

it involves also the temperature gradient g, (~ ) over the interval 0 < ~ ~ 1. 

However, ove r: the same interval we have 

so that there is no more than one unknown quantity at any given value of ~ . 

The set ' of simultaneous equations corresponding numerically to (5.6) may 

therefore be solved both for the value of g.(1 ) at a set of points in 

the range 0 < 1 < 1 and for the value of f, (1 ) at a set of points in the 

rangP. 1 $. '1 < 00 The details of the method of solution and the 

accuracy of the computed values are given in appendix Al. 

The distr i butions of t emperature at the particle surface found from 

this numer i cal solution of the integral equation for ~ = 1 and ~ = 10 are 

shown i n fi gur e ( 5.2 ) f or comparison with the case of particles not in 

contact. (We have also solved the integral equation for ~ = 0.01, 0.1 and 

100. ) 



The results for the heat flux from one particle to another may 

conveniently be pr~sented in terms of (a) the flux across the contact circle, 

which in non- dimensional form is 

, (5.8) 

, I 

= - 2.,8 j 8("117( d1 
o 

and (b) the difference between the flux across the matrix layer and the 

total flux between particles in point contact, viz. 

= LiH"" (5.9) 
nk (1;" - T.)o 

(The matrix layer for particles with a circle of contact extends over the 

range "'I. >". 1, but since f( '1 ) = 1 for . '1 ~ 1 in that case the contribution 

(b) can conveniently be written as a single integral over the range 

o ~ ~ < 00 .) The total flux across an extended portion of the sphere 
...... 

surface which includes the contact circle is then seen from (4.14) to be 

H = 'H/p)+L1J-<,rU3) +'lO<jd.1..+ K -3·Q 
1Tk(~- 1 0 )0 

(5.10) 

where K is a constant determined by the outer field as before and }{c{f) 

and ~J-{m((3) are independent of the outer field. 

The values of He and ,6 T-l(V) calculated for ~ = 0.01, 0.1, 

1 ~1O and 100 are shown on a log - log plot in figure (2.6). 

The asymptotic behaviour of '}{ (~) as ~ ~ 00 has already been 
c 

given in (5.3). And for ,6}-{ we note that the only part of the expression 
m 

(5.9) which has large magnitude when ~ » 1 is the integral 

Since f o« 1 for r » a/~, (1 - fJ/~ is approximately equal to '1. - 1 for 
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-1 
»~ and the integral is asymptotically equal to -2 log~ as ~ ~oo 

We thus expect the numerical solution to be compatible with 

CJnd (5 .11 ) 

As noted earlier, the total flux is dominated by that through the circle 

of contact, and as ~ ~ 00 We have not taken 

· our numerical solution to large enough values of ~ to exhibit the 

asymptotic forms (5.11) although the trend of the values of }{ is 
c 

clearly in accordance with (5.11). The difficulty in the numerical 

solution at large values of ~ is that a very large number of grid points 

are required for the solution of the integral equation (5.6) since the 

functions g and g, vary with increasing rapidity near the edge of the 

contact circle as ~ -HO 

It appears from figure (2.6) that both ~ and 
c 

t:, 'H vary 
m 

quadratically with ~ when P is small. More specifically 

(5.12 ) 

This con®on behaviour is a consequence of the fact that for small p the 

length scale on which the normal flux density at the particle surface 

varies is a/a and that the flux density is approximately constant over 

the contact circle and independent of ~ • In the case of}{ ,the c . 

quadratic dependence on P then follows directly from the dependence of 

the area of the contact circle on 'r In the case of ,0,. H ,we 
ID 

need to refer back to the results (4.12) and (4.13) for the total flux 

between two particles with a gap h such that a 2h/a «1. Provided 

~2h/a « 1 for separated particles and ae /a « 1 for particles with 

a circle of contact, the flux density distributions over the region r < a/a 

are approximately the same in the two cases and the total flux differs 
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from that for two particles in point contact primarily because the matrix 

layer is thicker by a small amount h everywhere outside the region r < ala 

in the case of separated particles and thinner by a small amount 2Q 2/a (see 

~lb» in the case of particles which a circle of contact. (This may be 

_--PIoved by comparing the integral equations for the normal flux density 

in the two cases . ) The asymptotic formula (4.13) obtained from a previous 

numerical calculation holds regardless of · the sign of h, from which we 

deduce that 

2-
1\) ~J .., '\. 0 2. 1-{ (R) + uJ-{ (f3 ~ 0.1 ~ ~ • Or ·2R 

C ,... M 0 a' I'" 

when ~ « 1, which is in agreement with (5.12). The quadratic dependence 

of both ']-{ and 
c 

.6.H on p when ~ « 1 is thus accounted for. 
m 

2.6 The effective conductivity of a granular material 

We return now to the formulae in § § 2.2, 2.3 for the average 

thermal flux through a material consisting of touching, or nearly touching, 

particles of high conductivity embedded in a matrix. The expression 

(3.l)for th~thermal dipole strength of a particle was based on the 

supposition that dominant contributions to the flux across the surface of 

a particle are made near each contact point. The analysis in the previous 

two sections has confirmed this supposition for the three cases, (a) 

r­
particles separated by a gap of minimum width h, provided that 'la « 1 

-1 where a is the mean curvature of the two locally-spherical surfaces, 

(b) particles making point contact, and (c) particles pressed together 

and in contact over a circle of radiu,s ~ ( « a). For all three of these 

types of contact the non-dimensional heat flux H t 111 k(T. -T ) a across 
~ 0 

the particle surface in the neighbourhood of the ith contact point 

(connecting particles of temperature T and T.) is large compared with 
. 0 ~ 

unity, and the total flux across the much larger part of the particle 

surface that is not near a contact point is of order unity. In cases 



4.2. 

(a) and (b) the heat ~lux through the contact , region is only logarithmically 

large, and the arithmetical requirements on a/h and a respectively are 

that they must exceed unity by several powers of 10. 

The expression (3.1) for ~ may be written as 

'(6.1) 

The factors x. and (T.-T ) depend on the location of the contact point 
""~ ~ 0 

on the particle surface and a. depends on the particle geometry, so 
~ 

that it will be difficult to obtain specific results without making 

restrictive assumptions about t he geometry of the particle arrangement. 

It is therefore wort h noticing at this stage that the only part of the 

expression (6.1) that depends on a is the flux H., and that in the , case 
1. 

of an array of particles making point contact H. is proportion to log a. 
1. 

This proportionality carries through to the average over a large number 

of particles, showing that <F> (see (3.3» and k~'<' (see (L2» a,re pro-
"V 

portional to log a, for any given shape and (statistical) ar~angement of 

the particles in point contact. 

We now make the following assumptions, mainly about the nature of 

the particle arrangement, in order to be able to determine the average value 

of ~ over a large number of particles: 

(a) The particles are spheres of the same radius a 

for all contact points on all particle surfaces and Ix.1 
"-1. 

so that '" = a ~i 

= a . 

(b) The local geometry is the same at all contact points, i.e. there 

is the same minimum gap width h or the same contact - circle radius 

( c) The temperature difference T . - T is equal to 2x .• <\7T>, Le. 
, 1. 0 -1. 

t o the diffe r ence between the temperatures at the two sphere centres in a 

tempera t ure field which is exact ly linear v7ith gradient < v T> everywhere. 

This will not be correct for a random arrangement of spheres, although 

it is evidently true in some average sense. 
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With these assumptions (6.1) becomes 

(6.2) 

where ~. is the unit outward normal to the particle surface at the ith 
~ 

contact point and '}{ , the non- dimensional heat flux across the particle 

surface in the neighbourhood of a contact point, is a function only of ~ 

.nd of either b /a or ~/a. The averaging of ~ over a large number of 

particles is now concerned solely with the statistics of contact points. 

The averaging is redundant in the case of a regular arrangement 

of spheres (and t he above assumption (c) is here valid exactly), and 

the effective conductivity can be determined immediately from (2.1) and 

(6.2). For each of the three possible types of regular arrangement of 

close-packed spheres - simple cubic, body-centred cubic and face-centred 

cubic - ~ "" w nn is proportional to the unit tensor and 
i ( 

Ln.n.<VT> = 
L I I 

< VT) L: (~i·~)2. .~ 
t 

(6.3) 

where m is an arbitrary unit vector, whence it follows from (1.2) and 
,...; 

(2.1) that 

kit ~,,;l 
~ ~ CP.H L./nr"Q» 

k 2. i 

(6.4) 

where C\l = k'T1' a 3 n is the volume fraction occupied by the particles. 
5 

From an elementary consideration of the geometry of the three types of 

array we find the results shown in table 2.1. 
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type of number of 
arrangement volume fraction contact (n, .m) 2 k'l: /k j{ 

of spheres points ~ 

simple cubic array 0.524 ( 11 /6) 6 '2 L57 

body-centred " " 0.680 ({3il/8) 8 8/3 2.72 

face-centred " " 0.740 (iT/3D) 12 4 4.45 

.. random, isotropic 0.63 6.5 2.2 2.0 
\ 

Table 2.1 The conductivity of close-packed beds of spheres. 

We are interest:ed primarily in the random arrays that are common in 

practice. It seems likely that many random close-packed arrays of uniform 

spheres are statistically isotropic in geometrical structure, and that 

contact points are distributed with uniform probability over the surface 

of a sphere, at any rate approximately. On this basis 

where p is the average number of contact points at the surface of a 

particle, whence 

= (6.6) 

This formula is actually valid also for the above three types of regular 

arrangement of spheres, b~cause, although ~he ~istribution of contact 

points over the surface of a sphere in one of these regular arrays is 

not statistically isotropic, it has a sufficient deg~ee of uniformity to 

be indistinguishable from isotropy in a representation by a second-rank 

tensor. 

A number of observations of the statistical properties of random 

close-packed (i.e. incompressible) arrays of hard spheres have been made, 
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mostly in the context of the molecular structure of liquids. If many 

spheres of uniform size are simply poured into a vessel, preferably 

one with irregular walls to prevent regular arrangements from forming, 

it appears that the volume fraction of the spheres is likely to be about 

0.60, and that if the vessel is shaken to allow some readjustment of the 

spheres the volume fraction may rise to about 0.64 (Scott 1960). The 

earliest count of contact points seems to have been made by Smith, Foote 

& Busang (1929), who found that the average number of contact points on 

a sphere varied with the volume fraction of the spheres, being larger 

for large volume fractions as one would expect. The values of ~ for 

their different packed beds of spheres varied between 0.55 and 0.64, and 

the average number of contact points varied between 6.9 and 9.5, roughly 

linearly with ~ • Bernal & Mason (1960) later made a count of the 

number of sphere pairs with separation less than 0.05a in a random array 

with equal to 0.64 and found that '-twice the average number per 

sphere was 6.4. A much larger number of spheres in a random close-packed 

array was generated by a computer (in a manner which simulated pouring 

into a vessel) by Adams and Matheson (1972), who found ~ = 0.628 and, 

judging by their figure 5, an average number of contact points per sphere 

(defined as a separation smaller than 0.04a) equal to 6.6. Our interest 

is in the average number of points on a sphere surface at which the:!: .:: is 

either actual contact or a separation very much less than 0.04a, which 

will be a little less than the numbers given by Bernal & Mason and Adams 

& Matheson but not by more than 0.1 if the probability of separations 

between 0 and 0.04a is estimated on the basis of a uniform pair dist r ibution 

function. For a packed bed of spheres with ~ = 0.63 we thus have an estimate 

of 9.5 for the average number of contact points from the work of Smith, 

Foote & Busang, and much· lower estimates of 6.3 and 6.5 from that of 

Bernal & Mason and Adams & Matheson respectively. Further work to resolve 

this discrepancy would be useful. 



The volume fraction and the average number of contact points on 

a sphere surface in a random close-packed array of spheres no doubt vary 

with the method of manufacture , per.haps by 5 or 10 per cent, but for 

the purpose of comparison with regular arrays we shall adopt the values 

su.ggested by the work of Adams and Matheson, viz. ~ = 0.63 and p = 6.5, 

giving the value of k*/k shown in table 2.1. The assumption (c) 

above concerning the temperature difference of spheres in contact is only 

an approximation in the case of a random arrangement, but seems unlikely 

to introduce an error in k~( /k of more than ten or twenty per cent. 

The effective conductivity depends on particle shape mainly through the 

dependence on the number and distribution of contact points on a particle 

surface, and should not vary much for different particle shapes provided 

they are rounded and globular. 

The fact on which the bulk conductivity depends most sensitively is 

the non-dimensional heat flux across a particle surface in the neighbourhood 

of a contact point, and we conclude this section by summarizing the 

results obtained in § 2. 4,~ 2.5 for the flux across the region of contact 

between two locally-spherical surfaces: 

minimum gap h between surfaces 

surfaces in point contact 

surfaces with a constact circle of radius e 

log ~ - P(i\.") 

log cX.-'l 

:H, (~') + !:J-(",C ~ ) + loS.,(1. 

P is given as a function of \ (= -ah/a ) in figure (2.3) and 1{~ and 

~1{1"\ as functions of ~ (= et e /a)in figure (2.6). These expressions 

for }{ are approximate only, and the error in each of the three cases 

is an additive number of order unity v7hich is not determined fully by the 

conditions near the contact point. 

I 



For the special case of a r andom array of uniform spherical 

particles making point contact with each other, and with Adams & Matheson's 

value of the average · number of contact poj_nts, 'l7e have the simple 

approximate formula 

(6.7) 

This is leading term in an asymptotic expansion of k"l: /k as (I. ~ 00 

and the next term is a con~tant of order unity which depends on the 

(statistical) geometry of the arrangement of the spheres. 

2.7 Observations of the effective conductivity of granular materials 

A number of observations of either thermal or electrical conductivity 

of a bed of randomly packed spheres in contact have been reported in 

the literature. The experimental conditions for these observations are 

summarized in table 2.2, and the results are shown in figure 2.1. The 

beds were made in different ~ays, and the values of the particle volume 

fraction and average number of contact points probably vary from one to 

another. Some scatter of the points is therefore to be expected. It is 

also possible that the observations are subject to some uncertainity at 

the larger values of (I., since the temperawre or electrical potential 

gradients near points of contact between the spheres are of the order 

of (l.2 . times the mean gradient and so were exceedingly large for some of 

the measurements. Turner (1973, 1976), who was the only one to measure 

electrical conductivity, r eported that it was very difficult to get 

reproducible results for values of a above 103 • 
, 

We show on the figure the straight line 

k* k = 4. .0 10g ex. - 11 
(7 . 1) 
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Figure 2.7 Measurements of the effective conductivity of random close­
packed beds of spheres of uniform size i~~ersed in fluid. 



Authors 
Type of 
conduction Material 

Vol. 
fracti on 
of spheres. Apparatus 

Kling (1938) thermal steel spheres 0.62 Spheres con 
3 . 8nuu diam. , tained 
in various between co-
gases. axia l cylin ders 

2mm 

, 

Leyers (1972) thermal steel spheres 0.605 
l.lmm diam., 
in various 
gases . 

Schuman thermal steel shot, 0.625 
& Voss (1934) av. diam. 

1.3mm, or 
lead shot, 
av. diam. 
2.6mm, in 
various gases. 

"-

' . 

Turner (1973,1976) electrical resin beads, (1) 0.60 
dia.m (1) ( ii) 0.62 
0.5-l.Omm 
or ( ii) 

of radii 15 
and 352mm. 

-Heat source 
in inner 
cylinder, 
steady stat 

As above, b 
cylinder ra 
2mm. and 7 .S 

A long cyli 
der of radi 
30mm contai 
ing the sho 
was plunged 
into hot '-la 
and the tem 
3.ture on th 
cylinder ax 
measured 8.5 

function of 
time. 

The res ista 
betwet~ n tv]O 

electrodes 
immersed in 

e. 

ut 
dii 
rnill . 

n­
LIS 

n­
t 

te r 
per ·-
e 
is 

;-1 

nce 

a 
O.lS- 0.3Omm, 
in aqueous 

packed bed 
a cydliner 

in 
v/as 

solution of measured; 
Nael. -. -. alte!:nating 

current. 

Table 2.2 Observations of effective conductivity of random close-packed 
beds of spheres r~ported in the literature. 

which has a slope given by the asymptotic relation (6.7) and a n additive 

constant chosen to achieve a .reasonable fit with the points. The f ormu la 

(7.1) thus has part ial theoretical basis, and pr ovides a reasonable 
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representation of the data for different packed beds of uniform touching 

spheres when a »1. If we had accepted the estimate of the average 

number of contact points on a sphere in a packed bed given by Smith, Foote 

& Busang (1929), th~ coefficient of loga in the asymptotic relation 

(6.7) would have been about 50 per cent greater. The agreement with the 

experimental pOints shown in figure 2.7 would then not have been as good. 

There is even less reason to expect observations of the effective 

conductivity of beds of particles of non-spherical shape to show a dependence 

on a alone, but the extent of the variation of effective conductivity for 

given a is surprisingly small. Diessler & Boegli (1958) have reported some 

measurements of the conduct i vity oft:hree different powders, the particles 

of which are generally rounded and globular, although not uniform in size 

and shape •. The variation of a for each powder was obtained by change of 

the ambient gas. The measured values of the volume fraction of the 

particles varied by about 10 per cent for each of the powders, corresponding 

to different states of compaction, but all lay within the range 0.50 - 0,64. 

The observed effective conductivities tended to be higher for larger 

particle volu~e fractions of a given powder, and there is some scatter of 

~he points, but all the measured values lie within 50 per cent of those 

given by the simple formula (7.1). 
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CHAPl'ER 3 

CONDUCTION ACROSS FIBR8BUNDLES 



Sl 

3.1 Introduction 

This chapter" is concerned with the conduction of heat qr electricity+ 

through materials which consist of closely packed fibres immersed in a 

matrix of relatively low condu~tivity. It is assumed that each fibre 

has a circular cross-section . of uniform radius R, and that the tadius of 

curvature of the axis of each fibre is everywhere much greater than R. 

As a r esult of this curvature, the direction of the tangent to the axis 

of a fibre varies with position along t~e fibre, but we assume that these 

variations in direction are only slight, and that the fibres are approx-

imately alligned . Transformer windings and electrical power cables are 

examples of this type of material. 

If the fibres were straight and parallel, neighbouring fibres 

would be in contact along a line, but as the fibres are only nearly straight 

and nearly parallel, contact between neighbouring fibres occurs only at 

discrete points. It will be shown that this has a very significant effect 

on the conductivity. 

We assume that both the bulk temperature " gradient <\7T) ,and 

the bulk flux density F are uniform and perpendicular to the mean 

fibre direction. If the arrangement of the fibre cross - sections is 

isotropic++, the effective conductivity tensor k has the form 

where (e e ,eol 
" l.' ., 

" is a cartesian basis, and ~ is the unit vector 

in the mean fibre direction. We are concerned here with mater ials which 

are macroscopically two-dimensional, and therefore the components of k~ 
-::::; 

+ For the remainder of this chapter 've will use thermal notat ion. 
Unl ess otherwise defined, symbols have the same meaning as in chapter 2. 

++ i.e., the statistical properties of the cross-sectional geomet ry 
are invariant under rotations in the cross-sectional plane. 
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do not alter with position along the fibres. Our aim is to obtain an 

expression for k*. 

There have been relatively few investigations into the problem of 

conduction across mat~rials ~omposed of fibres, and in every case the 

--fib.res have-heen _ ~"prox:i,mated by perfectly conducting parallel circular 

cylinders. Rayleigh (1892) derived an expression for the conductivity 

of a square array of cylinders which essentially provides the first few 

. * terms in an expansion of k in powers of R/c, where R is the cylinder 

radius and c is the distance between the centres of neighbouring cylinders. 

An additional term in the series was obtained by Runge (1925), but many 

more terms are needed If the expansion Is to provide useful estimates of 

k* at the volume fractions which concern us here. 

~he work of Keller (1962) is of more relevance to our investigation. 

He obtained an expression for the flux per unit length across the surface 

of one of a pair of nearly touching, perfectly conducting parallel 

cylinders, and from this derived a formula for the conductivity of a 

square array of such cylinders. In the following section we extend this 

work, and derive an expression for the flux per unit length between a 

pair of cylinders of finite conductivity which, unlike Keller's expression 

remains finite when the cylinders are touching. 

As in chapter 2 we assume that most of the heat flow between the 

boundaries (in the plane normal to the mean fibre direction) occurs along 

chains of particles, and thus the dipole strength of each particle is 

dominated by the contributions from the small portions of the surface 

which are close to neighbouring fibres. These small portions of the fibre 

surfaces will be called "contact-regions". 

With a suitably chosen cartesian coordinate system 

the thickness of the matrix layer near the point of contact between a 

pair of fibres is given by 
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(1.2 ) 

where the 3 axis is perpendicular to the common tangent plane at the 

point of contact between the two surfaces. The quantities b and a 

are determined by the local fibre geometry, and we take 

.b)o 

If the pair of fibres in the neighbourhood of the contact point 

can be approximated by a pair of cylinders with inclined and non inter-

secting axes, then b and a are given by 

0= R/OOS'(9/:l)' 1 

R/sin2(6,2.) ~ J 

(1. 3) 

where e is the angle of intersection of the projection of the cylinder 

axes on the plane. This is illustrated in figure (3.1). 

For the type of materials that interest us, the fibres are nearly aligned, 

that is 

e«1 

in which case 

O ?! R 

} ( 1.4) 

and b::: 4.R 
9"2. 

If the axes of the pair of fibres are coplan~r in the neighbourhood 

of the contact point, then it is the curvature of these axes which 

determines the thickness of the matrix layer. Denoting the local radii 

of curvature by b , 

Cl. = R 

b = 26,b~ _ 
(b, t b~) 

respectively, we have 

1 
(1. 5) 



~--~---------4)~ 

Figure 3.1 A pair of inclined cylinders. The origin of the x , ~) ~ 
coordinate system is at the point of contact .between the 
cylinders and the ~ axis is perpendicular to the plane 
whi ch is tangential to the surfaces at the contact point. 
The angle e is the angle between the projections of 
the cylinder axes on the x-y plane. 
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From (1.4) we see that the expressions (1.5) for a and b are valid if 

e:t« 2fUbJ+~) 
b,b:t 

The expressions (1.4) and (1.5) correspond to limiting cases, and in 

general the quantities a and b will depend on both the relative 

orientation of the fibre axes and their curvature. 

For the type of materials which concern us here, 

.and therefore 

o «b. (1. 6) 

for each contact point. The expression (2.~J~ for the flux across e 

contact region is only valid if a and b are the same order of magnitude, 

and in order to derive an expression for the flux in the case a « b, 

we begin by noting that this constraint implies that the temperature field 

is only slowly varying in the y direction. Therefore ~ve may ·approximate 

the fibre surfaces locally by a pair of parallel circular .cylinders of 

radius a, separated by a matrix layer of thickness 

f'\(ij)i- 'X,"I. 

0. 

where. h('j')= 1. 
b 

} (1. 7) 

3.2 The Flux across a contact region for the case of parallel cylinders 

The aim of this section is to derive an expression for the flux per 

unit length H(a,h) pass{ng between a pair of circular cylinders of radius 
CL 

a, conductivity ak, and minimum separation distance h. In §3.3 we 

integrate this expression (with h = y2/b) with respect to y, and obtain 

a formula for the flux across the contact region of one of a pair of 



neighbouring fibres. Using this result, we derive an expression for the 

conductivity of a material comppsed of layers of parallel fibres, and in 

§3.4 we find the a dependence of k* for the class of materials described 

in §3.1. 

The temperature varies linearly across the matrix layer provided 

that both h and x are « a, and for ~ pair of perfectly conducting 

cylinders, H is therefore given by 

(2.1) 

where T
J 

and T denote t he temperatu r es of the fibre pair, as found by 
o 

Keller (1962) . The limits of integration in this expression can here 

be formally extended to (±CO ), since the integral is dominated by the 

contribution from a small region surrounding the origin. There is no , 

necessity to provide a precise definition of the contact region; it is 

sufficient to choose any portion of the surface provided that it includes 

that part which makes the dominant contribution to the integral for H. 

The expression (2.1) for the flux per unit length across a contact 

region, shows a much stronger dependence on h than does the equivalent 

expression (2.~3) for the flux between a pair of spheres, which varies as 

log(a/h). This implies that the thermal dipole strength of a cylinder 

is dominated by the contributions from the contact surfaces at much larger 

separations than are required for dominance in the case of spheres. 

However, the separation distance at which cylinders of finite conducitivity 

cease to have uniform temperatures is likely to be greater than (a/a 2
), 

the value found for spheres, both because the flux density is much larger 

than for spheres with the same separation, and because the heat which 

passes through the surf~ce of a cylinder can spread out only in two 

dimensions. 
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The Derivation of ihe Integral equation for the temperature on a contact 

region 

To determine the flux per unit length H passing between a pair of 

cylinders for the case a » 1, we must first determine the temperature 

distribution over the opposing surfaces of the two cylinders. As in 

the problem of two locally-spherical particles ( §2.~ ) we formulate an 

integral equation for this temperature distribution. 

The region surrounding the contact point is illustrated in figure 

(3.2). The fibre which lies in the region j > 0 will be called the 

"upper fibre", and the other will be called the "lower fibre". Far from 

the contact region the temperature of the upper fibre is approximately 

T and similarly the temperature of the lower fibre approaches the 
o 

constant value T, The temperature varies linearly across the matrix 

layer and the heat flux across the layer is determined by the temperatures 

on the two fibre surfaces. 

We assume that the region of non-uniform temperature within each of 

the fibres is so small that each fibre may be treated as a half-space. 

"-

The temperature in the upper fibre, therefore satisfies the boundary 

condition 

(2.2) 

on 

where Tt and T_ denote the temperature on the surfaces of the upper 

and lower fibre respectively. The other boundary condition is 

T~ To . (2.3) 

far from the contact point. 

---



THE UPPER FIBf1.E 

T=--r;, 

h.(~)+r 
o 
------jf- h.(Ij) ------~') ::x:.. 

/ ///// ///. / />,>///~;;;;;~~ 7:. 
, //// //// /~ /> / / //// /</-://:!~7$/// 

, 
THE LOWER FI&P-E: 

T=T. 

Figure 3.2 The thin matrix layer between a pair of nearly-touching 
parallel cylinders. The y-axis is parallel to the_ cylinder 
axes. 
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Unfortunately the two boundary conditions (2.2) and (2.3) are 

incompatible, for since most of the heat enters the cylinder through a 

small region surrounding the contact point, the temperature field far 

from this point is approximately that due to a line source. The 

temperature field of a line source diverges logarithmically at large 

distances and (2.3) is violated. However, at distances of order a from 

the origin, this logarithmic divergence is cancelled by similarly 

divergent contributions from the other contact regions on the surface 

of the fibre, and thus the boundary condition (2.3) is invalid. 

An appropriate matching condition is required if T is to be 

determined uniquely, but as the outer solution is not available, we 

repla~e the boundary condiiion (2.3) by the constraint 

T(~'2)-l;,_1 «1 
-r:CO) - ~ 

is of order a. 

(2.4) 

Although this is not sufficiently precise to enable us to determine 

T", uniquely, it will be shown that the uncertainty in T t(xl which 

results is negligible if a is sufficiently large. 

A solution of Laplaces equation in two-dimensions, which satisfies 

the boundary condition (2.2) is given by 

00 

T(x,~)-~= -L.{ r "[eX')-I..('x.') log(BJ(X-:x:.'Y+:J'I.)d:c. ' 
2.TT .oo"'(f1.+xta') r cl 

~ 

- ~ ( ~ (x') - To }£.109 ~ (x-):.' )1.+ ~t.lccJ:x.I ) 
_~ d-a b::l-. 

(2.5) 

where ~ is a constant. The value of . ~ is not determined by the "inner 

boundary conditions" but we can estimate it as follm·]8. At large 

distances from the boundary ( ~ = a), (2.5) becomes, approximately 

-- --



ss 

~(~)hk)log~(~xl+~l) ) 
2:rrkoc: . 

(2.6) 

which is t he t emperature field of a l i ne sour ce. At di stances of order 

. a from the origin the condition (2.4) must be satisfied, and as 

is of order , we obtain, with the aid 

of (2 . 6), the constraint 

where N 

H (ex:, %"') 109 (~ ~Ja. J « 
~.:Trol ~ ("r; - ~ ) 

is a number of order 1. If we choose 

is of order 1 and the constraint becomes 

H(C(,h/o') « I . 

Zrroc k C1~ -1:) 

~ = I 
a ' 

log (~No ) 

(2.7) 

For the remainder of this section we take ~ =~ , and later we will shoy 
q 

that the condition (2.7) is satisfied if a is sufficiently large. This 

choice of ~ is obviously not unique; ~ = ~L where M is a number of 
Cl 

order 1, would be an equally appropriate choice. Later in this section 

it will be shown that if the condition ("2.7) is satisfied, then the effect 

of such a change in ~ on the va lue of H is negligible. 

If the point lies on the surface of the upper fibre, 

the integral equation (2.5) reduces to 

T(x) - T = 
t 0 

00 

_, \ l;(x' ) - T (x ') 10rA[ Ix- XII] Jx.' , 
110( J h.+ x '}, J 0 

~O<l a 
(2.8) 

where we have replaced ~ by 'la. A similar equation may be formula t ed 



for the temperature on the surface of the lower fibre, and combining 

this expression with (2.8) we obtain 

CIC 

1(:<:) - ~():.) - [1;-1; 1 = £. r 1(:(1) -1(x l
) ' lo~ I~I d:c'. 

ne( J 11..+ :>(.11 Cl. 
-"'0 a . 

On introducing as the non- dimeqsional distance, and .defining 

the non- dimensional flux density , by 

0("'1) = (1;.-1:.)Q , 
c(( 17>-T.)(h.+'X'~) 

(2.10) 
') 

a 

we get an integral equat ion for 9 (i"(.) 

00 

I = <X (h. + 7](.)o('r()- .~J 9('1') ~ 1'Yl.-'(1 cht'-
d • Cl llJ (2.11) 

-00 

The numerical solution of the Integral equation (2.11) 

We have solved equation (2.11) by a quadrature technique, similar 

to that employed for the solution of equation~ (2.~.8) and (2.5.6). The 

details of the method of solution are given in appendix A2. 

A convenient way of presenting the numerical solution is in terms 

of the non dimensional flux defined by 

(2.12) 
_00 

The computed values of are illustrated in figure (3.3) 

4 
for the case Cl. = la. From the computed values of 

possible to obtain the va lue off{(a,h/a) for a ny Cl. and hla without 

having to solve equation (2 . 11) again. To show this, we introduc~ 

another no~-dimensional coordinate 
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a 

Figure 3.3. The non dimensional flux f{Co(..)%-l bet'veen a pair of 
parallel cylinders as a function of separation h, for a = 10 4 

The points represent computed values. The asymptotic 
approximation (2.26) for a = 10 is shown by the broken 
line. 
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0- = 0<."7. ' (= o:x') 
. . Cl 

and non- dimensional flux density 

in equation (2.11), which becomes 

00 

1-2.J-«(c(,hla)logc<. = (A.+o-l.')~'(o-)- 2.. ('J'(o-)1o~I(T - (T·\do-', 
~ ~ ~J 

·00 

(2.13) 

where A. = ce:Lh. 
Cl 

The right-hand side of (2.13) has the same form as the right-hand side of 

(2.11), and the two are identical if h./a is replaced by :\ and (J. 

is replaced by 1 in equation (2.11). Both equations are linear, and 

therefore 

S~( ~) denotes the solution of equation (2.11) for the case 

(J. = 1, h/a = A On integrating both sides of this identity with 
...... 

±co respect to 0- between the limits we obtain 

~ ....L = .2 lo~c(. 
}-( (0( ~ "-la") .}{(I,?.) 1T 

Thus tht= non-dimensional fluxes J-«~" hI/a') and J-{( o(}.) h-lfo) are 

related by 

(2.14) 

provided 

(2.15) 
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With the aid of equation (2.14) we are able to calculate ]--.{(cx., h./Q) 

from the computed values of This result was 

on.ly realised after I had computed H(a,O) for a number of values of a 

and found that the computed values appeared to satisfy a relationship 

of the form (2.14). 

From the identity (2.1L~) we can find the asymptotic behaviour of 

J{ for a pair of touching cylinders as a ~oo Putting hI = h4 = 0 

' in (2.14), we get 

and letting a, ~ 00 with a~ fixed, we find 

Ji(o<., ,0) "v 1YcC, 

2109c(1 
as C{, ~ 00. (2.16) 

With the aid of the identity (2.14) and the computed values of 

. J-( 104 , h/a), we have calculated values of .H(a,h/a) for a 

106 , over the range of separations 

5 10 and 

These functions are shown in a log-log plot in figure (3.4), together 

with the asymptotic approximation for touching cylinders, given by 

(2.16). In that figure we have also shown the non-dimensional flux 

between a pair of perfectly conducting cylinders, which from (2.1 ) 

and (2.12), is given by 

(2 .17) 

As mentioned previously, the temperature on the contact region cannot 

be determined precisely, since an exact value of ~ is not available. If 

we choose ~ = M/a, where M is a number of order 1, then instead of 



'06L ___ ~.: 
i-

roE. 

0(,= 10S 

IOl'r -1- -- -

H(oc~)1 oc. 10 4-

107.. 
j---
I 
I-

~ 

oc.= 10 3 

1 , 1·-=0-=-';;; 14---------lQ-t"i' --- I 

!O·'O 11.-
o 

--;-::-g----_. 
10 

r 
10·& 

--;::0, 

~ 

10· 4-

'-, 
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equation (2 . 11) we obtain 

= 0<.( ~ + 'l2.)~('t() - ~ ~ 3(~') 105(M Ii'( -""1'I)d~' ~ 
-00 

or 

ca 

1+ .2,...(103/"\) rtM(o()va) = 'cd h,to +'17.)~(~) - £ \ 3h') log h-1'1 d'l(.' ') 
rr QC. nJ · 

-00 

where the s ub s cript M denote s t he va lue of j{(cx,h/a) computed with ~=- ('1', 
. . ~ 

Ag~in using the fact that the integral equations are linear, we find 

that the solutions H, and J-<'M are related by 

HM(oc,j·vo.) = ~I(o(_ )h./a) 
( I + .2.(looM)DM(o( )h./o)) 

71' (.J ex 

Thus the r elative uncertainty in }{ is of or der ..b. and the 
0(. 

solutions to equation (2.11) are only accurate if l:H1 « 1, which is 
eX.. 

merely a restatement of the condition (2.7). If the cylinders are in 

contact, we may approximate H in (2.7) by the ~symptotic expression 

(2.16), in which case the constraint becomes 

loge:( »1 . (2.18) 

The quantityH(cx,h/a) decreases with increasing h/a, end thus if the 

condition (2.18) holds, the calculated values of H are accurate over the 

entire range of separations 

A Uniformly Valid Asymptotic Expression for H (cx,h/u) 

From figure (3 . 4) it can be s een that a pair of cylinders of finite 

conductivity may be approximated by perfect conductors if their -separation 

h is sufficiently large. We let h/a(cx) denote the value of h/a at which 

this approx imation ceases to be valid, and from (2.17) we have 

(2.19) 
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provided that 

We also introduce the function h.1! (0<.) 

a 
as the maximum value of 

(h/a) at which a pair of cylinders are effectively in contact, so that 

(from (2.16» , . 
H(cx.,b..)~ ~ (proviae~ 0<:»1) 

Cl "lioge(. 
(2.20) 

for h. < fLlI (0<.,,) 
0.. a. 

To obtain the non-dimensional flux H(a,h/a), for the intermediate 

range of separations 

(2.21) 

we must use the identity (2.14) together with the numberical solutions of 

4 (2.11) for a = 10 • 

In this section we shall obtain an approximate expression for £{ 

which is valid for 'all separations, provided that a is sufficiently large, 

and which may be evaluated without the need for numerical solutions of 

equation (2.11). To derive this expression, we must find the way in 

wh ich h.' (c<.J 
"0 

(2.19) and (2.20) 

we assume that 

and ~I(~') 
a 

intersect at 

.h.' and J1~ 
o 0. 

depend on a. Since the curves given by 

~ 
are proportional to (1~95)' 

This assumption will be verified after we have obtained the asymptotic 

expression for H. 

We derive this asymptotic. expression from the identity (2.14) by 



letting , ' ,with a 2 fixed. When 

109 c(, » log c<.l. (2.22) 

(2.14) becomes approximately 

~ ~ + 2.. 109"'. 
}{(c(l. )~) 'Ti 

(2.23) 

and if fu) ~ (0<.,,') 
a:. a. 

, we can replace J{(a 2, h2/a) in this 

expression by the approximation (2.l9)J which gives 

Eliminating a 2 and h 2, with the aid of (2.15), we get 

/ 

oC. (2.24) 

This result holds if 

and from (2.15), we see that the minimum separation hi' for which (2.24) 

is valid is given by 

h, = rd1)2. h' (cC;) • 
0. \0(., a 

This quantity is proportional to , and since the function 
ci..2. 

, 2-

(109c(~ , as c(, ~ CO 
0(\ 

decreases at the slower rate of 

the constraint 

2. L' )< III , (~) '_rt.(C('l. rL (c<.,) 
\'c<, Cl 

(2.25) 

will be satisfied if a~ is sufficiently large. 
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If the constraint (2,25) holds, t hen the expression (2 .24) is v.alid 

for all lb This is because the loga l term dominates both in the 
Q 

identity (2.14) and in (2.24) and thus both equations give 

:H (OC, ,lli) ~ ~ 
Cl. 2~c:<.1 

for h, < h' ( oC) (0{ 1)~ . 
q a.. c(., 

Thus equation (2.24) is the uniformly valid asymptotic express ion' 

for ~, which we rewrite as 

Si. (0( ) b.') "v _-;--..1...1 ---
a .2.. 1o(J~ + _1.1h: 

11 -ci.-OJ= 11.J Cl 

(2.26) 

This asymptotic approximation is shown, for a = 104 
by the broken line , 

in figure (3.3). 

From (2.26) we see that 

2-
J-L(ex:,~) -;;: TIff: if h.») 0. ~~9~) 

"-

and 

~ 

J-((O(,h..)-;;: ire( if h.(~a(l~~ ) a 21o~r:;<· 

and this is consistent '''ith the assumption that ~ and nil 
Q 0:' 

are 

proportional to We have seen, in §2.4- , that the 

separation at which a pair of locally spherical particles cease to behave 

as perfec t conductors is of order a / a 2
, and thus we verify the statem~nt 

made earlier ( §3.2), that the perfect conductor approximation breaks 

down at larger separations for cylinders than for spheres. 
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3.3 The conductivity of a material composed of layers of parallel 

fibres 

We have assumed that the temperature field in the neighbourhood of 

a contact point between a pair of fibres is approximately two-dimensional, 

and thus the flux Q across the contact region of either fibre can be 

found by integrating the expression for the flux between a pair of 

cylinders, viz 

(3.1 ) 

where ~T denotes the temperature difference betwe en the axes of the 

cylinders which form the contact, and th~ integral extends over a suitably 

chosen neighbourhooc of the contact point. The function hey) denotes 

the minimum separation distance between the surfaces at the given value 

of y, and from the expression (1.7) for the thickness of the matrix 

layer near a contact point, we have 

(3.2) 

To calculate the integral in equation (3.1) we require the values 

of a and b. Since the fibres are nearly straight and parallel, a is 

approximately equal to R, the cross-sectional radius of the fibres+. 

The quantity b is more difficult to determine, since it depends on the 

radii of curvature of the fibre axes in the neighbourhood of the contact 

point, and the relative orientation of the fibres (see (1.4) and (1.5)). 

To determine the conductivity of a fibre - bundle we need details of the 

statistical distribution function for b which is associated with the 

material. For most of t he commonly occuring fibre-bundles, it is unlike ly 

+ As mentioned in § 3.1,' we assume thdt each fibre has the same 
circular cross section, of radius R. 
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that such detailed microst r uctur al information would be available. 

There is however, one class of mat er ials for which we can easily 

< alcu1ate b. These materials consist of plane layers of parallel 

cylindrical fibres d Although t he cylinders within each layer are 

parallel, the orientation of the fibres may vary from layer to layer. 

Each layer of fibres bears against t he adjoining . plane layer and 

thus every fibre makes contact with fibres in neighbouring layers . Our 

aim is to derive an expression for the component of the conductivity 

tensor associated with conduction across the layers. The bulk temperature 

gradient is taken to be perpendicular t o the layers a nd of magnitude G. 

The temperature on the axis of each fibre is therefore uniform along the 

length of the fibres, and this temperature is the same for all fibres 

which lie in the same layer. The difference in temperature between 

the axes of fibres in subsequent layers is 

~T=2Rc,. (3.3) 

where as us~al R denotes the fibre radius. 

It is assumed that most of the heat passes between adjacent layers 

through the contact regions, and therefore the flux F across unit area of 

a plane parallel to the fibres layers is 

(3.4) 

where N is the number of contacts per unit area between adjacent layers. 
c 

With the aid of figure (3.5) it can be seen that the number of contacts 

per unit area of the plane touching two adjacent layers is given by 

where e 

Ne '= sine 
/.;..R';I. 

(3.5) 

denotes the difference in radians between the orientation 

of subsequent layers. If the fibre are nearly aligned, and e « 1, 

(3.6) 



Figure 3.5 A sketch of the contact regions between the fibres in 
subsequent layers. 
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It will be shown that F is independent of 8 (for e « 1) and therefore 

the difference in orientation between adjacent layers need not be uniform. 

The flux across a contact surface is given by 0.1), and on 

replacing hey) by the quadratic expression (3.2), and H(a, b.l'jJ ) by 
Cl 

-the asymptotic approximation (2.26), we get 

(3.7) 

The contribution to this integral from the ~~ neighbourhood of the 

contact point is 

= 2-1o.b 108 { I + 1:l~_..sL 1 
:Jab 2.1080<-. 

"- 2.fcili log( ~ ') at) o(.-'HO. 

lo~o<. 
(3.8) 

On replacing a and b in (3.8) by the expressions (1.4), and sub-

stituting ~n (3.7), we obtain the asymptotic expression 

(3.9) 

Combining this result with the expression (3.4) for the average flux 

density F, and substituting the expressions (3.3) and (3.6) for ~-r 

and N , we get 
c 

F",- 2:rrk~\ G 
t1cScG ) 

as 0::-4 00 • 

The conductivity associated with the transport of heat across the layers 

is therefore given by, 

as c<.. --) 00 (3.10) 

in · the case e «1. 
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It will be shown that F is independent of e (for 8 « 1) and therefore 

the difference in orientation between adjacent layers need not be uniform. 

The flux across a contact surface is given by (3.1), and on 

replacing hey) by the quadratic expression (3.2), and H(a., b.L'jJ 
Cl 

) by 

-the asymptotic approximation (2.26), we get 

(3.7) 

The contribution to this integral from the ~~ neighbourhood of the 

contact point is 

= 2.fob log { I + b.Lj_ ~ 1 
:Jab 2.108~ 

(3.8) 

On replacing a and b in (3.8) by the expressions (1.4), and sub-

st ituting in... (3.7), we obtain the asymptotic express ion 

(3.9) 

Combining this result with the expression (3.4) for the average flux 

density F, and substituting the expressions (3.3) and (3.6) for Lilt 

and N , we get 
c 

F- 2:rrk~\ G 
\lDS~) 

as oC ~ 00 • 

The conductivity associated with the transport of heat across the layers 

is therefore given by, 

in ·the case e 

k*", 211 k 1.09 (~ \ 
100cfw) 

. . .:J 

«1. 

as c<.. --) 00 (3.10) 

. --



We can also find the asymptotic form of as c(.4oo. 

for 8 = 'TT 
2" 

In this case, a and b are equal, and from (1 . 3) 

we find 

0.= b: 2.1<. (3.11) 

The -matrix layer thickness is here axisymmetric and the expression _ (2.~.1~) 

for the flux between a pair of locally spherical particles is valid, 

namely 

Q""V 2:rrka6T loge£.. as oC.~CO. (3,12 ) 

Replacing a by 2R, and f:. T by 2RG" we get 

os <X. -'> 00 . (3.13) 

From the expression (3.5) for the number of contacts per unit area, we 

get 

Ne. = b...!(ZiO 
n 
lor e = 11 

2. 

and combining this result with (3.13) and (3.l~) we find 

Thus the asymptotic expression for the conductivity is 

0.14) 

when 

Comparing this result with (3.10) we see that the conductivity is only 

weakly ~ dependent on the relative orientation of the layers. 
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3.4 The Conductivity of a two- dimensional, isotropic fibre bundle 

In this section we consider the problem of conduction through the 

macroscopically two-dimensional material described in §3.l. Since the 

material has an isotropic cross-sectional geometry, the conductivity 

-B..ssociated with the conduct ion of heat across the fibres is characterized 

k~ by a single variable (see (1.1)), and our aim is to derive an 

expression for this quantity. It is likely that this type of material 

will occur more commonly in practice than the fibre-layer material 

discussed in the previous section 

It is assumed that the material is statistically homogeneous and 

therefore the ensemble aver a ge of a quantity may be replaced by the volume 

average of a single realisation. As the material is macroscopically two-

dimensional, we can choose for our averaging volume V a cylinder of length 

L and cross-sectional area A. The axis of the cylinder is parallel to 

the mean fibre direction, the cross section is sufficiently large to 

enclose many fibres, and the length L is much greater than the length scale 

characterising the fluctuations in temperature. 

The average flux density is given by 

(4.1) 

·where S ~ 
is the dipole strength associated with the ith fibre in 

V, defined by 

~i= (I-CC')J ~fnc1A , 
A· 

I 

(4.2) 

and the integral extends over the portion of the surface of the ith fibre 

contained in V. The contribution to this integral from the areas formed 

by the intersection of the fibre and the surface of V is negligible, 

since these areas represent only a small portion of A., 
L 
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-1' 
The assumption that a » 1, enables us to neglect the a term 

in (4.2), and assuming that k* » k , we rewrite (4 . 1) as 

where n is the average number of fibres which intersect a unit cross-

sectional plane, and (~l is the average dipole strength of the 

fibres in V. 

As in the previous chapter, we assume that the dipole strength of 

each particle is dominat ed by the contributions from the contact regions 

on the particle surface, and the expres~ion (4 . 2) for S becomes 

where L QL X is the vector to the ith contact point and is the 

flux across the ith contact region. The latter quantity is given by 

the expression (3.1), which we write as 

Q t = k6T iJ }{(ex., %(Lj)) cl~ . 
i.th contac.t . 

regt.ol"l 

Replacing }-{ in the integral by the asymptotic approximation (2.26), 

and using (3 .8 ), we get 

Ql ~ 211k6TVRbL log ~ \ 
rlo~c( I 

(4.5) 

provided a »1 . In deriving this re sult we have used the fact that a ~ R 

for this type of material (see (1.4) and (1.5 )). 

An expression relating the temperature differences can be 

obtained from the identity 
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where the sum extends over th~ contact points on the surface of a fibre~ . 
Combining this expression with the approximate formula (4.5) for QL 

we obtain 

(4.6) 

If ~ is sufficiently large, the temperature is approximately constant along 

the axis of each fibre, and the equations (4.6) (one for each particle) 

together with appropriate boundary conditions, are sufficient to 

determine We shall assume that this is the case. Since a does 

not appear in (4.6) , the temperature differences ~T' are 

independent of a. 

The particle dipole strength is f~und from (4.4) and (4.5) to be 

(4.7) 

and since is independent of a, the dipole stren3th is pro-

k't. 
portional to log (a/log c(,. ). Thus the conducit ivity 

asymptotic form 

* . 
£"" (constant! 109(~) 05 c;( -4 00 . 
k . logo<. 

has the 

(4.8) 

where the value of the constant is dete~mined by the fibre geometry. 

This is not very different from the asymptofic form of the conductivity 

of granular materials (see 2.6.7), and it appears that a weak a dependence 

is characterisitic of materials composed of highly conducting particles 

with point contact. 

If the fibres are perfectly cylindrical and parallel ;the expression 

for k* takes a very different form from that of (4.8). From the 
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asymptotic expression (2.16) for the flux between a pair of touching 

k* cylinders, we see that is proportional to (a/loga) in this case . 

The material which we have studied contains nearly cylindrical and 

nearly parallel fibres and the se slight imperfections have a very 

significant effect on the conductivity because they convert the line 

contact of parallel perfectly straight cylinders into point contact. 

To show the way in which the constant in the asymptotic expression 

(4.8) for k* depends on the microstructure of the material, we shall 

derive an expression for the conductivity of a particular type of fibre 

bundle. 

The material under consideration is composed of "nearly straight" 

fibres, that is, we assume that the amount by which the axis of any 

fibre deviates from a straight line is much less than the fibre radius . 

R. This straight line will be called the "mean axis", and it is assumed 

that the mean axes of the fibres are parallel. This material is intend~d 

to provide a model for the windings of transformers or electric motors. 

Since ~e are concerned with conduction across the fibres, we need 

only consider the component of the particle dipole strength which lies 

in the cross-sectional plane. We denote this component by 

from (4.7) we have 

where 

c 
:<F , and 

(4.9) 

is a vector orthogonal to the mean fibre axis and extending from the mean 

axis to the ith contact point. Each pair of fibres make contact at many 

points along their length aud r C is approximately the same for each of 

these points. 



To evaluate the average of we make the follm.,ring 

assumptions: 

(1) The temperature at the centre of .any fibre cross section 

differs from that of any neighbouring fibre by an amount 

2R< VT)' r- i , 

where 
/I' 
1'"1 is the unit vector in the direction of the line of centres 

(2) The shape of the matrix layer surrounding the point of 

contact is the same for each contact, that is 

for all contact points. 

With the aid ot these assumptions, (4.9) becomes 

(4.10) 

Taking the average of this expression, we get 

(4.11) 

If the cross-section geometry is isotropic, 

(4.l2) 

where is a 2 x 2 unit tensor. 

The vectors have unit magnitude, and (4.12) may be 

written as 

(4.13) 
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where < N, > is the average number of contact points, per unit 

length, on the surface of a fibre, and, as usual 'L denotes the length 

of fibre in the averaging volume... We may write < I~c.') as 

(4.14) 

"Where < p'> i -s the average number of near neighbours surrounding the 

reference fibre, and < 1'Jc.) is the average number of points of contact, 

per unit length, between the reference fibre and a neighbouring fibre. 

With the aid of equations (4.13) and (4.14), the expression (4.11) 

for the average dipole strength becomes 

Combining this result with the approximate expression (4.3) for < f> 
we get 

where cp ?. 
is the fibre volume fraction (= 1TR n.1 

(4.15) 

The quantities <P and < p) are determined by the type of 

packing. For a square array, 

~<?) = rr 

and for the more closely-packed triangular array 

<P<P) = rr-f3. 

I have been unable to find, from the literature, estimates of ~ and 

<p> for the case of a two-dimensional random array, but it seems 

certain that <t52> lies between 1 and fi for this type of 
11 

array. 

The quantit ies <E) and < 'VT) are related by 

-
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and using the expres s ion (1.1) for 

that (''VT) is · orthogonal to 

< £) = -k* ('VT) . 

" e!> 

, together with the fact 

, we get 

Comparing this expression with (4.15), we find that is given 

by the asymptotic formula 

(4.16) 

as oC.. ~ 00 . 

It is unlikel y t hat t he microstructural information required for the 

evaluation of the expression (4.16) would be available in practice. 

Thus the main result of this section is the formula (4. 8) for k* 
for even though we are unable to determine the constant in that 

expression, it shows the a dependence·of k* , and the result is 

valid for any material of the type described in § 3.1. 

The expressions (3.10), (3.14) and (4.8) should now be compared 

with experimental observation, but unfortunately I have been unable to 

find any relevant observations of in the literature. 
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CHAPTER 4 

THE DIPOLE FIELD 
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4.1 Introduction 

The previous two chapters have been devoted to the study of 

materials composed of closely packed particles immersed in a matrix· 

of relatively low conductivity. The effective conductivity . of such 

materials can be determined because the particle dipole strength is 

dominated by the contributions from the regions near points of contact 

between particles, and the flux across these regions is a locally 

determined quantity. At lower volume fractions the problem of deter-

mining the average dipole strength is more difficult, and past work 

has been concerned with two classes of suspensions.+ 

(1) Hateria1s composed of spherical particles in a regular array, 

and 

(2) Dilute suupensions of randomly placed spheres. 

In this chapter we present new methods for calculating the 

effective transport properties of these types of suspensions. The 

relevant transport property may be the conductivity, the viscosity or 

the elastic moduli. 

The earliest theoretical investigation into the problem of con-

duction through a regular array was cariied out by Rayleigh (1892), who 

obtained an expression for the conductivity of a cubic array of spheres. 

This expression takes the form of a power series in (a Id), 'vhere a is the 

sphere radius, and d denotes the centre-to-centre distance between 

nearest neighbours in the array. In order to calculate the effect of 

surrounding particles on the dipole strength of a reference sphere, 

Rayleigh assumed that the temper ature gradient "seen" by the reference 

sphere (that is, the temperature gradient which determines the particle 

+ We are not concerned here with the work on two-dimensional composites, 
some of Ylhich has been described in § 3.1. 



dipole strength) is simply the sum of the field produced by the 

...L 

surrounding spheres. Unfortunately, this sum is non-absolutely convergent.' 

Rayleigh noted this, but ·nevertheless summed the contributions in a 

particular order, giving no real justification for doing so. 

~Suhsequent investigations into the effective .conductivity of 

~egu1ar arr~ys of spheres have been concerned eitber ~ith ~btaining 

more terms in the expansion for the conductivity of a cubic arra y, 

. (Meredith and Tcbias (1960), McKenzie and McPhedran (1976)), or with 

deriving similar expressions for other types of arrays (Bertaux et a1 

(1975)). In each case, Rayleigh's unjustified procedure for the 

evaluation of the non-absolutely convergent sum has been adopted without 

comment. In this chapter we show why this convergence problem arises, 

and in § 4.4 we preaent an alternative method for calculating the 

effective conductivity of a regular array of spherical particles. 

The problem of determining the effective transport properties of a 

random suspension of interacting spheres is more difficult, since the 

dipole strength is different for each sphere, and neighbouring spheres 

may be so close to the reference sphere that they cannot adequately 

be approximated by a dipole and a sum of several higher order poles. 

However, if the volume fraction of the particles is small, it is possible 

to calculate the perturbation in the average dipole strength* <S> caused 

by particle interaction. 

+ That is, the result depends on the order in which the contributions 
from the (infinite number of) surrounding spheres are summed. 

* We have not specified the order of the tensor S, since we are concerned 
both with the conducticri problem, for which S is a vector, and with 
the viscosity and elasticity problems, for which S is a second order 
tensor. 
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The probability that a particle will have n neighbours within a 

distance of several radii is of order 0 n, and if we assume that only 

the close particles interact, we find that the perturbation in <S> is 

due mainly to pair interactions (n = 1). Provided that this assumption 

is valid, the average dipole strength may apparently be written as 

"I 
(1.l) 

where pCr 10) dV(r) is the probability that the centre 

of a particle lies within the volume dV surrounding the point ~, given 

that the centre of the reference sphere is at the origin '0. The term 

So denotes the dipole strength in the absence of particle interaction, and 

SI is the amount by which the dipole strength of the reference sphere 

is altered by the presence of another sphere at r, neglecting all other 
'" 

particles. 

Unfortunately the term SI(£) falls off as as l::c \ ~ OQ ) 

and the integral in equation (1.1), like the sum encountered by Rayleigh, 

is not absolutely convergent. 

In order to obtain an expression for <S>in terms of convergent 

integrals, Batche10r (see (1974) for review) devised a technique based on 

the observation that for each of the transport problems, there is a 

quantity which has the same far-field dependence as S I and which has a 

known average. We shall call this quantity "the renormalizing quantity". 

The integral of the difference of SI and the renormalizing quantity 

. converges, and it is possible to relate this integral to <S>. This method, 

called here the "renormelization technique" has been employed in the 

derivation of expressions for the average velocity of sedimentation of 

spheres to order 0 (Batche1or, 1972), the effective viscosity to order 

02 of a suspension of rigid spheres in a Newtonian liquid (Batchelor and 

Green 1972), and the effective conductivity of a random suspension of 
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spheres to order ~2 (Jeffrey 1973). 

Although thi~ procedure is undoubtedly correct, it is difficult 

to see why it works, and furthermore it is not clear why the assumption 

which led to equation (1.1) i s wrong. It is hoped that the alternative 

procedure described in this chapter may help to clear away some 'of this 

"obscurity. 

The new procedures described here for determining the effective 

transport properties of regular and random arrays are based on equations, 

derived in §4.2. which relate the temperature, velocity or displacement 

at a point~in a suspension to an integral over the surrounding particles 

together with an integral over a "macroscopic boundary" r b which encloses x. 
-~ 

In§4.3 we use these equations to obtain expressions for the 

dipole strength of a spherical particle, in terms of the dipole and higher 

order multipoles of the surrounding particles, together with an integral 

On applying the divergence theorem to this integral over Gb 

we obtain a term which may be regarded as the field due to a continuous 

distribution of dipoles throughout the volume enclosed by rb The 

contribution to the dipole strength of the reference sphere from spheres 

which lie in a dista~ volume are cancelled by the contribution from 

the continuous distribution of dipoles contained in that volume. Thus 

it is the dipole field term which causes the expression for the dipole 

strength of a reference sphere to converge, and it is shown that Rayleighs 

convergence difficulties arose simply because he neglected this term. 

In §4.4 we describe a procedure for obtaining the effective tran-

sport properties of a suspension containing spheres in a regular array, 

and we illustrate this method by deriving an expression for the effective 

conductivity of such a material. Another application of this method is 

described in ~4~5, where we derive an expression for the effective modulus 
..; 
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of compression of a material composed of rigid spheres in a regular array 

in an elastic matrix. 

The final two secti"ons of the chapter are concerned with random 

suspensions of interacting particles. In § 4.6 we re-derive Jeffrey's 

(1973) expression for the effective conductivity, using an alternative 

_procedure, and in § 4.7 we obtain an expression, correct to 0(0) for the 

average particle dipole strength i n a suspension of rigid spheres in an 

·elastic matrix. 

Notation: Since we shall be concerned with suspensions which have 

an elastic or Newtonian liquid matrix, we introduce here some notation 

associated with t hese mater ials. 

by 

Both the velocity and the displacement at a point x will be denoted 

1 he meaning of the symbol will be clear from the 

context. 

In a linear and isotropic elastic material~ the stress tensor ~ 

is related to the displacement field by the constitutive equation 

0.2) 

where 

( 1.3) 

and ~ and E are Poisson's ratio, and Young's modulus respectively. 

The constitutive equati.on for a Newtonian.liquid is 

( 1.4) 

where the rate of strain tensor ~ is given by (1.3) (with u denoting the 

velocity field), p is the pressure and J1- the viscosity. 

If a force F is applied t o a point ~ in an infinite elastic 

material, the displacement at x' is given by 

-
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where 

(1.6) 

(Landau and Lifshitz(1970), pp 29). The tensor G is the Greens function 
"'" 

for the elasticity equations in an infinite region. 

Similarly, the velocity field due to a force F at a point ~ in 

an infinite Newtonian liquid is also given by equation (1.5), where 

(1. 7) 

This expression for ~ is valid provided that the inertia forces in the 

liquid may be neglected. 

4.2 The integral expression for the temperature in a statistically 

homogeneous suspension 

In this section we derive an equa.tion which relates the temperature 

T(~) at a point in a suspension to an integral over the volumes of the 

suspended particles and an integral over the "macroscopic boundary" of 

the sample. For a statistically homogeneous suspension we show that 

this macroscopic boundary integral involves only the average temperature 

and flux density, and it is this observation which enables us to formulate . 

the procedures for calculating the effective transport properties, 

described in the following sections. 

The analogous results for the other transport problems can be 

obtained by similar methods to those described here for the conduction 

problem and therefore we will state these results without proof. 

If the temperature field T(~ ) satisfies Laplace's equation 

V'A.T = 0 

at each point in a volume V, then the temperature at any point ~ in V 

is related to the flux density E and the temperature over the surface of 



V by the identity 

(2.1) 

where 

F'- F I T'- TCi) ",,::: ,~) ~ = "', 

r:: 1x.-;x:.'1 '"" .... , 

and k is the conductivity of the material. The surface of V is denoted 

by r , and is the unit normal directed into V. The identity (2.1) 

is an example of Greens Second Indentity (Protter and Weinberger (1967) 

pp 82). 

If 'X. --.. denotes a point in the matrix of a suspension, we write 

the expression (2.1) in the form 

(2.2) 

where fb denotes a closed surface enclosing the point x 

denotes the surface of the ith particle contained in fb If the surface 

passes through the ith particle, then denotes the closed 

surface formed by the part of the particle which lies inside ~ 

together with the part of which lies inside the particle. 

With the aid of the divergence theorem we can convert the integrals 

over the surfaces of the particles to volume integrals: 

th{f:n + T'Vl.n1dA = S1:',v~LdV 
J kr r · k r 
r . V· . ~ 

(2.3) 
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where Vi is the volume of the ith particle, and 

(2.4) 

is called the "ext:t"a flux density". With the aid of (1.2.6) we see that this 

~quant ity is . re lated to 
i -

the dipole strength ·1 . of a particle, by' 

'I. 
~ 

(2.5) 

. In deriving the result (2. J) we have used the fact that both F and V'.L 
'" r 

have zero divergence at each point in Replacing the integrals 

over in equation (2.2) by the equivalent volume integrals given 

by (2.3)) we get 

Tc-x. )= (2.6) 

The corresponding expression for the velocity or displacement is+ 

LL'(~) = ~J cc,.it(~-~')1:Lk(?;')d'y(.~') 
.J i, o"ik (2.7) 

--- V~ + S{ (,. .. (x-X')Q':I (?G')- u...(X'> J.
k
. ('X..'X')l nl dA(~'), 

JL"" - ~,,,, ~ "", . ~ J ~ '" '" I 

rb 
where is the "extra stress", defined by 

in the case of an elastic matrix, and 

for a Newtonian liquid matrix. The term J:k·(x-x')F. 
vJ - "" J 

stress at 'X' caused by the applicat ion of a force F at x. 

is the 

and thus 

~kj may be related to the Green's function g with the aid of 

+ This result follows from the reciprocal thenrem if one of the velocity 
or displacement fields taken to be the field due to a point force at ~ 
givc;n by (1.5). 
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the constitutive equation (1.2) or (1.4). 

The equations (2.6) and (2.7) hold for any closed surface ~ 

enclosing and "We now consider the form which these equations 

take if has the following properties: 

(1) It is sufficiently large to con.tain ' many particles, and 

(2) At each point on ~ ,the local radii of curvature of the 

surface are much greater than the length scales associated with the 

fluctuations in the temperature field (typically of the order of the 

particle diameter). 

A surface with these properties is called here a "macroscopic surface", 

since the length scales associated with the surfaca are much larger than 

those associated with the microstructure. If the distance fro~ ~ to 

the nearest point on is much greater than t~eparticle diamete~ 

then the functions l 
r 

and v'~·n r are approximately constant over 

portions of ~ which are large enough to be regarded as Sample Areas.+ . 
If to.A ~ denotes such a portion of r 

b then for a statistically 

homogeneous material, "We have 

and 

J .£.ndA ~ J ~f)·r\dA ? 

AA~ t.F'r\ 

J TdA -::::. J.<T)dA 
6Pt' b.Pt' 

and thus the integral over rb in equation (2.6) becomes 

1... ~{<f')·n + <T'>'V'll.ndA . 
4-:rr J KY' rJ 

fb 
Substituting this result in equation (2.6) we find that the temperature 

at a point in the matrix of a statistically homogeneous suspension is 

given by 

+ A "Sample Area" is an area which passes through a representative sample 
of the material. In a statistically homogeneous material, the averages 
of F and V'T over a sample area are equal to the local ens2mble averages. 

rv 
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T(~)=~.L Jr,.\7:J..dvt .L rh{<E).n.+K<T)Vl:n}dA. 
~ 4-rrk r 4-1Tk J r r y, ~ 

The equivalent'result for thebelastic or Newtonian matrix is 

+ Sf c,.j~(;~-;S')( o:",(~I))n~- (LLi(;t;,'» J;PJ(:;S - ~')nit.1dA(~') . 

'b 

(2.8) 

(2.9) 

Although it may appear that we have only made a slight step 

forward in deriving (2.8) from (2.6), it will become apparent in the 

following sections that the step is a very significant one, for the 

results which are obtained in the remainder of this chapter are derived 

in a straightforward manner from the expressions (2.8) and (2.9) 

obtained here. 

4.3 The Dipole Strength of a Sphere in a Statistically Homogeneous 

suspension 

The method for determining the effective transport properties of a 

regular array of spheres, is quite different f~om that required for a random 

array. There is however, one step which is common to both techniques, 

namely the derivation of an expression which relates the dipole strenghh 

of a particle to the dipole and higher order multipole strengths of the 

surrounding particles. In this section we derive this expression for 
, 

the particle dipole st r ength, and in subsequent sections we describe the 

procedures for finding the average dipole strength of spheres in a 

regular array ( § 4.4) and ( §4 . S) and in a random array ( ~4 . 6 · and S4 .n . 
To derive this expression for the dipole strength, ,ve combine one 

of the equations(2.8) or (2 . 9) (depending on which transport problem 

we are concerned with) with ~ Faxe~ type formula for the dipole strength 

of a sphere placed in an ambient field. As in the previous section, we 
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shall concentrate on the conduction problem. 

To obtain the Faxen-type expression for the thermal dipole strength 

of a sphere we begin by writing the expression (2.8) for the temperature 

at a point in the matrix in the form 

(3.1) 

where 

~(x)= E 1- r rr'.v'ldv + 1- §{<f)·n+ k<T')V.:.l:h} clA. (3.2) 
- l ~1rk j .,..... r 41Tk r. r r 

i1j v' b 
The form of (3.1) is the same as that of the expression for the 

temperature field sur.roundi.ng a single particle i.n an infinite matrix, 

with T£(~) taking the place of the temperature field in the absence of the 

particle. We seek an expression for the dipole strength of sphere j in 

terms of the field TE <:~:), called here "the external field". 

The reference particle (sphere j) has conductivity ~k ,and from 

the expression (2.4) for :r we set 

(3.3) 

at points which lie in the particles. 

Combining this result with (3.1) and using the divergence theorem, 

we obtain 

(3.4) 

for points X in the matrix. 

The expression (3.4) is also valid for points w?ich lie inside 

the reference sphere. To show ,this, ,>le apply Green1s second identity 

(2.1) to the volume enclosed by the reference sphere, with K replaced 

by ctk , and we get 

(3.5) 



"'. where, as usual, n denotes the unit normal directed into the matrix, 

and ~: is a point in the reference sphere. By applying Green's second 

identity to the volume of matrix enclosed by ~ and combining the 

resulting expression for with (3.5) we obtain 

equation (3.4). 

Taking the gradient of (3.4) and setting where x . ..... 

denotes the position of the centre of the r eference sphere, we get 

(3.6) 

= 

where a is the radius of ~he reference sphere and c: J 
u ,.... is its dipole 

strength. If the reference sphere is a perfect conductor, 

VT(~.J= 0 

and from (3.6) we get 

sj = - 4-11' kal \IT/~o) . 
"" 

For the case of a sphere of finite conductivity, we require an 

additional expression for in order to find This 

is obtained by taking the gradient of equation (3.5) and putting ~=;:So 

which gives 

(3.7) 

.Expanding T in the integral in this expression in a Taylor series about 

*- = 'fo , and using the fact that \7~T= 0 in Vj , we get 

S TV'yr'l.f'tdA = 811" VT(:x:.) 
r 2>-

and on substituting this result in (3.7), we find , 



(3.8) 

The taxen-type formula for the dipole strength of the reference sphere 

is found by equating (3.6) and (3.8), which gives 

(3.9) 

The corresponding expression for the dipole strength of a rigid 

sphere suspended in a Newtonian1iquid+(with inertia forces neglected), 

is given by (Batche1or and Green 1972(a»: 

(3.10) 

where 

(3.11) 

and ~E is the external velocity field. Fro~ equation (2.9) we have 

U,,(x.) = E 
.~ < -... '" ... i. 

ttj 

(3.12 ) 

+ j { Gn:rnC'*- ~')<O-{Y\R.(;s'))n",- < u.(\'l(~')JMIz.~~- ~')~k.1dR(~I). 

\. 

and from this expression we can calculate the external strain field 

Using a similar method to that employed by Batche10r and Green 

(1972(a» for the derivation of (3.10), we have found that the dipole 

strength of a rig~d sphere in an elastic matrix is given by+ 

(3.13 ) 

+ For a rigid particle in an elastic or newtonian liquid matrix, the 
dipole strength S is given by (1.2.10). 



where E and '\l are Young's modulus and Poisson's ratio for the matrix, 

and the strain tensor ~E is given by equations (3.11) and (3.12) in the 

case of a statistically homogeneous suspension. The derivation of (3.13) 

is given in the appendix A3.+ 

By combining the Faxen-type formula (3.9) for the thermal dipole 

~trength, with the expression (3.2) for ~ we get 

With the aid of the expression (3.3) for k, and the divergence theorem, 

we find 

Expanding 

where 

where 

and 

J T· '7~7'~ dv = ('-o(.·')fV'~ f:f\aA (3.15) 

y. r. 
L ~ 

\]'_1-
r 

in (3.15) in a Taylor series about T:: \ ~o- f~ I '1 

is the centre of sphere i, we get 

(3.16 ) 

(3.17) 

+ It seems likely that the Faxen type formula for an elastic sphere can 
be found by a similar, but more arduous procedure. Since our main aim is 
to illustrate methods for findlng the effective transport properties, 
we shall only consider the simpler problem of rigid particles. 



is a kth order tensor., called here the "kth multipole strength of sphere 

i" . This is a straightforward generalization of the concept of a dipole 

strength. The term 

is the vector formed by the contraction of the tensors . JYL~ and 
t" (2,) (h,) 

\J'\}~ . . \1'.1. 
re: 

To obtain an equation relating the dipole strength of the reference 

sphere to the dipole and higher order multipole strengths of the surrounding 

spheres, we substitute (3.16) in (3.15) and replace the integrals over V~ 

in (3.14) by the resulting expression, which gives 

• • , _ , DO • 0' (U (R~') 

SJ = (oc- J) a3{2: ( S~. V \l-t-r + L f1. ~,\7'\]: . . V1-~) 
"- (c(tll t~j "" r /2.'l.12:1 r (3.18) 

+ j[V"~ < f'>'~\ + k<T'>\]I\7~'~] dA} 

fb 
Rayleigh (1892) assumed that the field "seen" by the reference sphere 

(in our notation this is the external field TE) is equal to the average 

field <v T>·x plus a contribution from the surrounding spheres. He then 
~ ....... 

obtained an expression for the dipole strength of a sphere (equation (62) 

of that paper) which contained the first term on the right hand side of (3.18), 

but not the second. From (3.18) it can be seen that the contributions to 

this first term from far-off spheres drop off as and as 

mentioned in § 4.1, the sum is non-absolutely convergent. We shall now 

show that the term which Rayleigh ne.glected, na~ely the integral over 

~ in (3.18), cancels out the effect of the far off particles and gives 

a convergent expression for ~ 

Applying the divereence theorem to the integral over in 

equation (3.18), we get 

(3.19) 

_§{\71~ <f'>.n+k<T,>.qI\JI~.n1dA ~ 
lE. 



where denotes the surface of a small sphere of radius E 

centred on V
, 

and denotes the volume which lies between 

the ., surfaces 
,.., 
I b and ~ From the expression (1.2.5) for the bulk 

flux density, we see that the volume integral in (3.19) may be written 

as 

S'Y\ <~, .~~'.L ay . 
VI' r 

(3.20) 

This integral divided by 411k , gives the temperature gradient 

at x. 
r-

due to a continuous distribution of dipoles throughout VI. 

To estimate the integral over ~ in (3.19), '\le expand <F> and 
'" 

<T> in a Taylor series about ~o , and this gives 

-
~{V~ < F).J1 T k<T')'v'V~.n.}aA = -b:!r <[Cb')) + 8'i1'K<\lT(~o')'> + o C€:,") , 
} r - r 3 0 
rE: 

Combining this result with (3.19) and (3.20.), we find 

and replacing the integral over 

we obtain 

where 

4-lTY\. < se ~s' 
? - 'I 
..:;) 

- tl.1Tk<'VT(~o"l) -to OCE.) ~ 

in (3.18) by the above expression 

(3.21) 
(ex-I) 0 3 Sn<~).\]'\]'~ c1v, 
(0<.+'2,) ,,' 

(3.22 ) 



is the dipole strength of the reference sphere in the absence of particle 

interaction. In deriving (3.21) we have neglected terms O( E. ). 

From equation (3.21), we see that the contribution to the dipole 

strength of the reference sphere from the spheres contained in a distant 

volume SV is given, to leading order, by+ 

where <S> is the average dipole strength of the particles in 'iJV and 

r is the distance from ~o to a point in 5 V. This term is 

cancelled, to leading order, by the contribution to (3.21) from the integral 

over the continuous distribution of dipoles contained in 6v. Thus the 

expression (3.21) converges and the result is independent of the shape of 

the macroscopic volume V~ 

Equation (3.21) is the expression for the dipole strength referred 

to at the beginning of this section. The methods for finding the average 

thermal dipole strength of a sphere in a regular, and in a random array, 

both begin with this equation. 

To find, the corresponding expression relating the elastic dipole 

strength of a rigid sphere to the multipoles strengths of the surrounding 

s~heres, we re-write the Fax~n type "expressions (3.13) for as 

where 

'11= I01lo3 E(I- 'V) 
(4--5-vY \ + \) 

(3.23) 

(3.24) 

Substituting the expression (3.12) for into the defining expression 

(3.11) for ~~ and using the divergence theorem to convert the 

integral over lb to a volume integral, we get 

+ We assume that b V contains a large number of part icles, that is, bV)."")~ 

and also that 
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eJ~oJP9= <ep~) +"'12.< 51'91 + '13 bp1<SMM) 

where Yi.'J..= -rt (I +11,(,3- ~O'JJ 
30(1-\l)E 

'Yb= n.{,+\)) 

15(1-'V)E 

and G is given by (1.6). 

0.25) 

(3.26) 

( 3.27) 

To obtain an expression for , we combine the 

expression (3.12) for ~c with equation (3.11), and apply the \7~ 

operator to the resulting equation, which becomes 

Y'2eJ~O')R= ~~ v1.P(~-:fO)p9M~ L"'k(~) av 
~t-J (3.28) 

+ ~S{\7~ a~pJ!) + a G'9(:!l) < o--m~') - < Ll",/"i'(cJMp.p+ OJ;"P)9')lJ nkaR . 
r. ax,,\ a'X.r Ox.~ C)':c.p 
b 

The integral over ~ in this expression may be neglected if ~ 

is sufficiently large. To show this, we note that 

and 

Furthermore, the term 

increases linearly with 

of radius R, ceutred on X . 

. is bounded on 

If r b 

( since \ve 

is a large sphere, 

J the integral in (3.28) is O(l/R2) as R~co , 

---'" 
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and may therefore be neglected. Thus 0.28) becomes 

(3.29) 

This sum converges and there is no dipole field term. 

To express the integrals over the particles in the expression (3.25) 

a nd (3.29) i n terms of t he mul tipole strengths of t hose particles, \07e 

make use of the fact that 

in a rigid particle. From the divergence theorem, we find 

Expanding G in the above integral in a Taylor series about (::c.- X o) 
'" L ~ 

we get 

1. '0 (~G-('X.i-X.o) + aG(x.-X~c.~' S~ 
2. oX~ oX

9 
~ - - pM . cyx.

p 
~ ~ "") om 

00 (I) (l.' (p, ) . 
+.LE ~ I ~~ . .. .. . .£..~ d Gp +E-G-9M)(J'l~) b 

2.. ~'2 t'I.. CXI).OXb 'Ox, dXq M aX
f 

0. . .. . t.<t1. , 

(3.30) 

where 

. '" (2) (R) 

(Jfl~)ob .. • "'::. ((:x-x.)(X.~:t)b·····" (:X:-X')o-- n dA. 
K. .... . - J "" "" " 0.. - '" ,..., """'''c Mf r . 

(3.31) 

r. 
~ 

Substituting (3.30) in (3 . 25), we obtain 

eE(~o)Fq=- (e p9> + 1'2:i.(Sp9)+ Ch'rt3< Srn,.) ~ n J p(~- ;S'\)~Qr~Sq~)c1V 
VI (3.32) 

r. { Pc ~c - ;foJpqQM S~rt\ + f: ~I ~ . .. . . -~ . P(~r :fo\OQI"lCfYl i)v.o . 'IV) I.. , 
l. R",2. N .......b ox'c. ' . r 1 'j 

ttj 
and combining (3.30) with the expression (3 . 29) for 9~e ,we find 

:;::E 

ca 

+ . L:. 1.. 2- ' " ·iL \J?"P(x.-XO) (JYli.) 
R.,;~ R 1 oXp o~ ,..., ~ P9QM 

'" 0.6 . 
I 

C.M J . 

(3.33) , 



By substituting (3.32 ) and (3.33) for e "",E and ' \72.~E: in the 

expression (3.23) for sj , we obtain the required equation relating 
'" 

the dipole strength of the reference sphere to the multipoles of the 

surrounding spheres, but since this equation is rather long, we shall 

work with each of the component equations (3.~3), (3.32) and (3.33) 

-separat"ely. 

For the case of rigid spheres suspended in a Newtonian liquid, the 

.-dipole strength of a reference sphe're is related to the "external strain 

rate" by equation (3.10), and using a similar method to that 

described above, we find 

and 

eE(~O')f'9= < e p9 ) +-'~f-L < SF~) - J, ~9q!l") < Sar--l dV 
V 

• oa • 

(3.34) 

+ B{ PCX-xo) SL + ~i-I~ - . . ...£. P{~-)(o)(J'1~} . 
. l . "'1. rv f'lo.M (XlVI ~:2. f\ • aXb oX,f9Q"Q ~ <U> - • 

vt-J 

\7~~e is given by equation (3.33) 

4.4 Conduction through a Regular Array of Spheres 

We now turn to the problem of determining the effective transport 

properties of a material composed of spheres i~ a regular array, 

immersed in a matrix. 

The technique for calculating the transport ptoperties of such a 

material makes use of the fact that each of the spheres has the same 

+ dipole and higher order multipole strength. To illustrate the method, 

we shall consider the problem of conduction through a regular array of 

spheres. 

We assume that the material is subjected to a uniform mean temperature 

gradient <9T>. Since the multipole tensors are the same for each particle, 

we may drop the superscripts of these terms, and equation (3.21) becomes 

+ This is true for all spheres in a volume wit hin which < VT> does not 
vary significantly. 
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S( 1- q>(tX.-II) = S + (cx- \}Q3[ S.fB\7"v-' I, -"n ('V'~v'~.dV} 
'" (0(,,+'2.) ..... 0 (0<.+;:.;,) - L, t., Y' J . ')-, . 

t.*j v' 
, 00 (I) (t) OH') 

+ LJPlJz,L, \7 'V:. ,-v~ 1 ') 
1I.~2. '" I ,L. (" 

• L~J 

(4.1) 

where ~ is given by (3.22), and as before, the sum is over the 

spheres surrounding the reference sphere and contained in the macro-

scopic volume VI. 

We can obtain an approximate expression for S from equation (4.1) 

by neglecting the contributions from the second and higher order mu1ti-

poles associated with the surrounding spheres, in which case (4.1) becomes 

(4.2) 

As mentioned in the previous section, the term 

converges absolutely as the volume V'becomes infinite. For a given type 
, "-

of lattice, this term is proportional to , d is the 

centre-to-centre distance between nearest neighbours in the array. Thus if 

(c( - \ \ g3 < < I 
\~ t:t.) d~ 

the expression (4.2) for the particle dipole strength becomes, approximately 

(4.3) 

For an "orthotropic" lattice (that is, one which is invariant under 

IT/2. rotations)~ the square bracketed term in (4.3) is zero. To shmv 

this, we choose V to be a large sphere centred on In this case, 

the second order tensors 

and 

I 



are isotropic, and since 

'2, ' ' 

V_I =0 . r 

go. 

Cr¥- 0") 

these tensors are identically zero. Thus the dipole strength of a 

sphere in an orthotropic array is fou nd from (4 .3 ) to be 

(4.4) 

Combining this result with the expression (1.2.5) for the bulk flux 

density, using the definition (1.2.2) of k* and replacing ~o by 

the expression (3 .22 ) we find that the conductivity of an isotropic 

array is given by 

(4.5) 

correct to O(~2). For the remainder of this section we shall only be 

concerned with orthotropic arrays. 

To obta~n a more accurate estimate of S , we must include the 
. rv 

contributions to equation (4.1) from the second and higher order mu1ti-

poles. From symmetry considerations, we find 

JYl.j.,= 0 

if p, is even , and to find a more accurate value for ~,we can 

approximate the surrounding spheres by a dipole and a third order mu1ti-

pole. The equation (4.1) thenbecomes 

§(I- q, (C<- I) ) = ~o + (C(- JJ Cl~JT13 B '\7"\1'\7'\7'1.. 
(0(+2.) (~+21 b . i. ' r L 

L~' 
I J 

(4.6) 

where we have used the fact that the term in curly bracket in (4.1) is 

zero for an isotropic array. 
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To evaluate S from (4.6) we require an expression for the tensor 

113 This is obtained in appendix A4 by the same type of method as 

that used for the derivation of the expression (3 .21 ) for the dipole 

strength. The required expression is: 

(4.7) 

There are no convergence problems here, since the contribution from far off 

dipoles is and there is also no dipole field term. 

The expression (4.7) is valid for any statistically homogeneous 

suspension of spherical particles, and for ' a regular array, the expression 

becomes 

(4.8) 

To leading order we may neglect the contributions from the second 

and higher order multipoles to (4.8), and the first approximation to J~~ 

is given by 

'Substituting this expressio~ for JYl3 in (4.6) we get 

R.= ~o + (()(-:)<P~-_~t(<>G-~ ll~ , ' ~. [(?=.\7'\1v\i~l): r::2v'\J\T'\;'~cl1. 
, (0::+.-:.) gO (0(;" ,,)(0<.+ 4-t3) t"tj ~,*j 

Expanding ~ in a power series in (a/d), and equating the coefficients of 

like powers, we find 

where 

(4.10) 
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is determined by the type of lattice. 

From (4.9) it can be seen that, to o ((O-Id)q) the dipole strength 

is only a function of volume fraction and thus the effect of lattice 

type on conductivity only becomes significant at fairly high volume 

fractions. 

To evaluate t he tensor c~ we use the fact that the array is 
~ 

orthogona11y invariant, to obt ain 

as Lt V~ ~'\7~\7~ +t = A. ( Cm.! ~t + 'Sf'\R 6Jt + 6",,- bJR.) + ~ ('V"ij"-~) 
i"j 

) 
(4.11) 

where = 1 if i = j = k = £, and is zero othen~ise. The 

constants ~ and ~ are related by 

Using this relation to eliminate ~ from (4.11) and substituting 

the resulting equation in the expression (4.10) for C we get 
~ 

and thus (4.9) becomes 

For a cubic ar ray, ~ can be related to the constant 84- evaluated 

by Rayleigh (1892 pp 497), and we find 

(Jp. 60S~) = 186 - 6 

The volume fraction of spheres in a cubic array is given by 

and substituting this r esult in (4.12) and replacing ~o by the formula 

(3 . 22), we obtain 

Thus from 0.2.2.) and 0.2.5) ,~e find that the conductivity of a cubic 
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array is given by 

k* =, + 3~(C<-I) {/-I-foc-I)q, +(t' ,'2..)cjl1.+(.~-,)gctl)+ I'?::(oc.-,')~~'% '}. 
k (~+2.) ~t'2. ,.2. ~cx:.+2. (cx.+z..l(o(+ IJ.~) 

(4.14) 

, + 
This is identical to Rayleigh's expression for the conductivity of a 

cubic array. It appears that in estimating the non-convergent sum for 

S, Rayleigh chose a value which gave the correct expression for k*. 
';:::. 

To show why Rayleigh obtained the correct result, we must compare 

his expression for the dipole strength with the expression (4.1). In 

our , notation, Rayleigh's expression is++ 

(4.15) 

and on comparing this with (4.1) we see that the dipole field term and 

the term <!>(OC-I)S are both absent. 
(cGt2)-

The square bracketed term in (4.15) is non-absolutely convergent and 

unless the order of summation is specified the expression (4.15) is 

meaningless. Without justification, Rayleigh summed the terms in (4.15) 

in the following way: he first calculated the sum over the spheres 
'-

.. 
contained in an infinitely long cylinder . of square cross section. The axis 

of· the cylinder was chosen t~ coincide with one of the axes of the 

lattice and in addition < 'V T> was taken to be parallel to this axis. By 

letting the cross section of the cylinder become infinite, Rayleigh 

obtained a value for the square bracketed term in (4.15). 

With the aid of (4.1) we can now see v7hy this particular order of 

summation led to the correct result for S. We let the volume V' in (4.1) 

denote the volume of the cylinder described above. On applying the 

divergence theorem to the dipole field term in (4.1) we get 

+ Rayleigh made some numerical errors in deriving the expression for k*. 
These errors have been corrected by Bertaux et al (1975) and their result 
is identical to (4.14). 

-t+ The term B, in Rayleigh's paper is 1?1/~:nk • If we eliminate A, 
from equation (62) of that paper with the aid of equation (52), we obtain 
the result quoted here. 
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S.SV"V'J...dV = -IS IJ.Q.. (.-L)AdA- ~'S\7I(_1 ~n.clA, 
~~ r . ox. r r 

(4.16) 

V' ~ ~ 

where :x:. denotes the component of .t in the direction of §, . ~ 

denot es the surface of the cylinder, a~d as usual is a small 

SRhere cent r ed on the point r = o. If the lattice is orthotropic ~ is 

parallel to <7 T> and as < 'VT> is parallel to the cylinder axis it can 

be seen from symmetry considerations that the integral over in 

(4.16) is zero. Evaluating the integral over in (4.16) we get 

s . S\l'\jI2- aV = ,..... ' r 
VI 

and on substituting this result in (4.1) we obtain Rayleighs expression 

(4.15) for the dipole strength. Thus by summing the terms in a special 

way, Rayleigh was able to obtain the correct value for the dipole strength 

from an improper expression. 

The expressions for the conductivity of other types of isotropic 

arrays only ditfer from (4.14) in 'the coefficient of the term. 

Using Rayleigh's method, Bertraux et al (1975) have studied conduction , 

through other types of isotropic arrays and their expressions for k* can 

be obtained by replacing the term 1.3 in equation (4.14) by: 

.132 in the case of a body centred cubic array, and by ; 078 for a 

face centred cubic array 

The methods for determining the other transport properties of a 

regular array of spheres immersed i n a matrix are similar to that used 

for the conduction problem, and we shall now outline the general procedure 

for obtaining any of the effective transport properties of such a material . 

+ To determine th~ particle dipole strength S to a given accuracy, 

it is necessary to obtain a set of equations which relate the mu1tipoles 

of the reference sphere to the dipole and higher order 

+ As in § 4.1, S here denotes either a vector or a tensor . 



multipoles of the sur~ounding spheres. Then by expanding each of the 

multipoles in a po~er series in (a/d)n and equating the coefficients of 

like powers in the expressions for S, JYt" ••.•• ,.PLt4 ~ we get an 

approximate formula for S. The number of terms in this series for S 

increases with N, the number of multipole equations. 

In the following section we will s~ow how we can use this method to 

obtain an approxim~te expression for the effective modulus of compression 

of an elastic suspension. 

4.5 The Effective Modulus of Compression of a Regular orthotropic 

array of Rigid Spheres embedded in an Elastic Matrix 

The material under consideration consists of rigid spheres in a 

regular orthotropic array, embedded in elastic matrix. 

The aim is to derive an expression for the effective modulus of 

compression K~': of this material, correct to O(q>2), where K~: is defined 

by 

:4: K = < O""( jl (5.1) 
3( e~~) 

With the aid of the expression (1.2.~) for the bulk stress and the 

constitutive equation (1.2) for elastic material we can write (5.1) as 

(5.2) 

= K t nS~(/3<eLl>' 
where the dipole strength § is the same for each sphere in the array, 

arid K is the modulus of compression of the matrix. As usual, the Youngs 

modulus and Poissons ratio of the matrix are denoted by E and ~ 

respectively . 

We assume that the material is subjected to a uniform bulk compression, 

given by 

(5.3) 
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and therefore S has the form 

(5.4) 

for an orthotrop,ic array. Substituting (5.3) and (5.4) in (5.2) gives 

K*= K + n~ 
.3'e 

(5.5) 

The coefficient ~f ~ in this expression is o(~), and to find K* to 0(~)2 

we therefore require an expression for ~ to o(~). 

The expression relating the dipole strength of a sphere in a 

regular array to the dipole and higher order multipoles of the surrounding 

spheres can be found from the equation 

(3.23) repeated 

where the constant ~I is given by the expression (3.24). Taking the 

trace of the above expression, and using (5.4), we get 

(5.6) 

The external strain field is given by equation (3.32)~ and as we 

only require ); to O(q,), we can neglect the contribution from the 

second and higher order multipoles to that equation, which then becomes 

er/~o)pq= < e pq? + ~2. Sp9 rl- 1?3 bf'q, Srt\M 

+ SlYln1 P(~i-~)pqm; Srr,nJ P(~-~·)F9M}VC'E) 
\~ yl 

where and are given by 0.26) and P 
I 1"'\"''' is defined by (3.27). 

Taking the trace of this expression and using (5.3) and (5.4), we 

obtain 

(5.7) 

---
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From the definitions (3.27) for PN~~ and (1.6) for G~n 

we find 

(5.8) 

and (5.7) becomes 

(5.9) 

Simtlarly, taking the trace of the expression (3.33) for \7l~E 

and neglecting the second and higher order multipoles of the surrounding 

spheres, we get 

o I 

where we have used the identity (5.8). Combining this result with 

the expressions (5.9) and (5.6) for (~E\\9 and )) 

and using the expression (3.24) and (3.26) for · '11) '1,. 

this becomes 

;() =. I01ToOE (1- ',I') ( 1 + _3_ ~-t + G> (1'1- lO'Y\b 
(tr-5vV\ +\)) 5(\-,:))) (10- 20'J) 

Neglecting O(~) terms, we get 

~=1c.rraSE(I-'V) (I + dl(IQ-2.0'J'))t 
(1-21»(1+",) . (IO-lO))) 

, "le obtain 

(5.10) 

and'l 
3 

(5.11) 

and from the expression (5.5) for the effective modulus of compression, 

we obtain 

(5.12) 
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To obtain more terms in the series for K~':, we require expressions 

for the higher order mu1tipole strengths JYl N of the reference sphere . 

_ALthough we have not obtained such expressions, it can be seen from 

symmetry consider a t ions, that' 

and by analogy \\lith the expression (4.8) for the thermal mu1tipo1e .fVlJ 

we expect that the contribution from ~3 to the expression (5 . 6) 

for )) . will be O«a/d )10). If this is so, then by expanding JJ 

in powers of (a/d) in (5.11) and equating the coefficients of like 

powers, we get 

From (5.5), we find that the corresponding expression for the effective 

modulus of compression is 

(5.13) 

4.6 Conduction through a random array of spheres 

In this section we shall describe a procedure for obtaining the 

effective transport properties of a statistically homogeneous suspension 

of spheres with random structure. As for the case of the regular array 

in § 4.4,we begin by i11u~ trating the procedure for the conduction 

problem. 

Our objective is an expression for the conductivity k*, correct 

to O(~2). From the expression (1.2.5) for the bulk flux density, it 

can be seen that to obtain the required formula for k1: , we need an 

expression for the average d~po1es strength <~> correct to O(~). This 

in turn can be obtained from equation (3.21), which relates the dipole 
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strength of a reference sphere to the mu1tipo1es of the surrounding 

spheres. Taking the average+ of (3.21), we get+t 
00 

< §)( 1- (0<- () et» = So+ a~(c(.- I) L 1« S (r I O)pCr-1 0) - n <~ >}.\J\l..L dv 
(0(+2) - (oCt2.) Jr '" '" - r 

1'c1:2a. (6.1) 
00 r (1'\ ('l.~ (P'+I) . 

+ ~2 ~!J<JYlk(rIO»\1\7: ... V ~P(Clo)dYJ., 
fl:l=:2.Q 

where ' pC(lo)dV . is the probability that the centre of a particle 

lies in the volume dV surrounding E, given that there is a particle at 

the origin o. The term <S(r/o» denotes the average dipole strength - ~ . 

of a sphere at E' given that there is a sphere at the origin. If there 

is no long range order in the suspension, 

and the integral 

00 

S {<§(rIQ)p(C 10') - 1) (S>}.\1V' f. dV 
1[1=2Q 

converges. 

We can write the expression (6.1) in a more convenient form with 

the aid of the relation 

(6.2) 

+ This may be either an ensemble average, or an average over a large 
number of particles in a single realization. 

++ The integral 
r (S ).\1\7..L. dV = 0 J,.., r 

VII 

if v" is the volume between a pair of concentric spheres, centred on the 
origin, and therefore we are free to .take the lower limit of integration 
to be Ir/ = 2a in (6.1). 

rv 



obtained by taking the average of (3.21) over all configurations for 

which there is a sphere at 0 and one at r. Substituting (6.2) in (6.1) 

we get 

(6.3) 

To evaluate t he irit egral, we requ ire an expression for <!(o/~». 

If we can neglect terms of O(~), then <~(o/r» is approximately 

equal to the dipole strength ~(£/E) of one of a pair of spheres with 

separation vector ~, alone in an infinite matrix with the far - field 

bounda ry condition 

at points far from the sphere pair. To show this; we note that S(o/r) 

is given by 

S(olr)- So 
'" - "" 

(6.4) 

"-

where JYlLCrlo) denotes the ith multipole strength of the sphere 

at r. This expression can be obtained in a straightforward manner from ... 
the Faxen type formula (3.9) for~. If we neglect the O(~) term in (6.2) 

we see that this expr ession has the same form as the expression (6.4) 

for ~(o/E). Similarly, we could formulate expressions for the higher 

order multipole strengths and in each case the expressions for <JY!JO![l) 

and JY) • . (olr) . '" would have t he same form. Therefore, neglecting 

terms of O( ~ ), we get 

} (6 . 5) 
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and the expression (6.3) for <S> becomes 
r.--

00 

(5'> = So(1 + dl(C(-I)) + r [{S(OI()- So}pCJ:IOJ- C\3(c(.-')n S .\l\lJ..]dv. 
- "" ("'+2) J..... - ("""+2 ~o r 

1.c1::~Q • 

(6.6) 

The average dipole strength <~> can therefore be evaluated from solutions 

of the two-sphere problem. 

From the expressions (1.2.5) and (3.22) for <F> and S , we find 
--0 

"from (6.6) that the bulk flux density is given by 

00 (6.7) 

+ 1'11 [ {§(Olr) -~o}p(r lQJ - nq3~oc~;) ~o·V'V ~ 1 dv . 
1(.1=2Q 

We can write this exvression in the same form as Jeffrey's (1973) 

result (equation (3.13) in that paper), by noting that the temperature 

gradient at a point E due to a single sphere at 0 in an infinite matrix 

is given by 

VT((-IO) = (\7T) + ~:v\f ~ 
lL.1Tk 

Combining this result with (6.7) we get 

< f) = - k ('7T) - 3~k (c<- I)<V'T) (I + (H~- I)) 
oc+~ ~+2 

Co? 

+ n r [ {~(Ol() - ~} p(t: 10') - 4.iTkn_o3 (0( - i){ \7TCr \0) - ('YT) 1] ay) J " Cf.-+-2. 
1!'1=2a 

and this is the same as Jeffrey's expressions for <E>. 

Jeffrey obtained this result using the method which was described 

in §4.l. To apply th~t technique it is necessary to obtain a 

Renormalizing Quantity in order to overcome the problem of the divergence 

of the integral in the expression (1.1) for <~> • The method presented 

here has the advantage that this Renormalizing Quantity arises naturally 

from the dipole field term in the expression (3.21) for S, and it is now 
'" 
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clear that the convergence difficulties encountered in the past simply 

do not arise when the dipole field term is included. 

__ ..;.4~., 7 The Effective Elastic Hodulus of a Random Suspension of rigid 

Spheres 

We now turn t o the problem of detennining the effective elastic 

modulii, correct to O(cJl2) J of a statistically homogeneous random 

suspension of rigid spherical particles in an elastic matrix. We 

assume that the material is subjected to a uniform bulk strain ~~>. The 

Youngs modulus of the matrix is denoted by E and the Poisson's ratio by 

As in the previous section, we begin with an equation relating 

the dipole strength of a reference sphere to the multipoles associated 

with the surrounding spheres. This expression for the elastic dipole 

strength of a rigid sphere can be found from the expression 

(3.23) repeated 

where the constant is given by (3.24). The external strain field 

is the strain tensor which would be obtained at if 

the reference sphere could be replaced by matrix material while the stress 

on the surfaces of the surrounding spheres is held fixed. The quantity 

e(?:;o') is related to the multipoles of the surrounding particles by 
~E 

equation (3.31), and is given by (3.33). 

By substituting (3.31) and (3.33) in the expression (3.23) for 

SJ J we obtain the expression for S 
"'" rV 

in terms of the surrounding multi-

poles. However, as mentioned in § 4 .3 , it is preferable to work with 

the three equations separately. 

Taking the average of (3.23), we get 
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(7.1) 

.). 

From the expression (3.32) for ~E we obtain 
00 

< et~·Jf9) == < e pq) + '12.< Sfql ~ -rz}>P1 <SMri1} + j [ { PCr:)pqMI"I < S (~o+.r: l~o)~rJ 
I.!:I:lq 2 

(7.2) 

We may simplify this equation with the aid of the approximate relations 

00 

+ L.L..£··· ~ P(y-') < JY1 kJx,t-r Ix.) I 
k~2 ~! oX:, ox~ ~ F~""n - ~ r.... rrib ... c.tI 

(7.3 ) 

+0($), 

obtained by averaging (3.32) over all configurations for which there is 

a sphere at and another at ~o + r From (7.2) and (7.3) we 

get 

00 . 

+ j[{< ei~·I~o+r)p9) - < epq/} P(*o+.c\~o) - n ~~1)(Sml)1dV (7.4) 

I!:\,=2q 

+ O(qh. 

Similarly, taking the average of (3.33), and using (7.3), we find 

00 

<vlei(*;)P91 = j \7teE(~.I~o+r))p,\p(~o+rl;So)dV(r;) (7.5) 

I,!:I=~Q + O( $1.) . 

Substituting the expressions (7.4) and (7.5) for <e~ 
~ 

in (7.1), we obtain 
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< SP'1) = S~~.~ 1I,(rh.<Sp9) + bp1< S""')l '1] + (jC"Y/.3)]) 
5(1-2.)1) 

where 

s~= 17. «eE> +cSDo<e,,) J ~ 
I ( I P9 - '-1- .. MM j 

5(1-:<'1)) 

(7.7) 

is the average dipole strength of a particle in the limit as cp --> o. 

As in § 4.6, we can show that 

(7.8) 

. where denotes the dipole strength of one of a pair 

of spheres, separated by r and alone in an infinite matrix \'lith an 
"" 

undisturbed uniform strain field <e>. 
~ 

With the aid of (7.8) and the 

expressions (3.26) for '1."2- and 1(,3 , we find that equation (7.6) 

becomes 

00 

+ j[{Spt~·\~.tr) - $.~91p(~o+.r:I~o) (7.9) 

Itl=2Q 

and thus <g> may be calculated with the aid of solutions to the two-sphere 

problem. 

For each of the transport problems we have considered, the dipole 

j 
field contributes a renormalizing term to the expression for S, and 

;::;l 

without this term the expression would not converge. We shall now show 

that if the bulk strain tensor has the form 
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<e .. > - --t: c .. ~J - . °lJ ~ (7.10) 

corresponding to pure compression, neglect of the dipole field term 

leads to an expression for the effective modulus of compression K~': 

which is convergent but is nevertheless incorrect. 

We begin by deriving the correct expression for K*, based on the . 

expression (7.9) for the average dipole strength. From equations (7.7) 

o 
and (7.10) we see that the tensor ~ has the . isotropic form 

Taking the trace of equation (7.9), we get 

00 

( Sq';> = S~~ [I + q, (Iq - 20\l)J t r [( SJ~.lfo+r)- S~q 1 p (~.+.c i~o) 
( 10 - 20'1)) jl~ 

' Using the expression (7.11) for SO 
.~ 

, we obtain 

(7.11) 

(7.12 ) 

where we have used the identity (5.8). Combining this result with (7.12) 

and substituting the expression (7.11) for ~o, we find 

C>O 

t J [{S'l,\(~:I\~~~r)- S~9}p(~.+r\~oldV(t:). (7.13 ) 

1(, 1:2" 

----



115 

Although the re~ormalizing factor has vanished, the integral in 

(7.13) converges, since 

constant l\ P. (t) + 0 ( r" u ) 
'l~rl" T 

O(..L) as \" ~co· 
'1"1+ 

Substituting (7.13) in the expression (5.2) for K*, and replacing ~I 

by the expression (3 . 24), we find that, correct to O(~2), the effective 

modulus of compression is given by 

~ . . 

I< = .K + 3~(I-'V)k(' + <tl(lq:..ZO'\»)) 
. (I+))~ ( 16- 2.0\)) 

00 

_ XL j { 59') (~o\'f:o+- ,r)- S:'91 p(~o+t I~) dVCt). (7.14) 
q-e,. r: lA 

If instead of using the expression (7.9) for <S> we use the incorrect 

equation 

(7.15 ) 

based on the assumption that only nearby pairs interact (c.f. equation 

(l.l», then on taking the trace of this equation and using the expression 

o (7.11) for S , we get 

Although the integral in (7.15) is non- absolutely convergent, 

the integral in (7.16) converges and it is tempting to assume that 

simply because the integral converges, the expression (7.16) for <Sqq> 

is correct. However, comparing (7.16) with the expression (7.13) (which 

takes into account the cont r ibution from the dipole field) we see that 

the term 
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does not appear in (7.16). This illustrates a weakness in the renormaliza-

tion technique described in~4.l for, since it is designed to overcome 

the problem of a non convergent integral in the expression (1.1) for(S) , ~ 

. it might lead to the belief that any reasonable looking convergent 

expression is correct. 
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CHAPTER FIVE 

SHEAR INDUCED COAGULATION 



liS 

5.1 Introduction 

From thermodynamic arguments (Verwey and Overbeek (1948» it can 

be shown that particles suspended in a liquid have an electric charge. 

The sign of the charge is determined by the composition of the particles 

and the solvent, and thus particles composed of the same material tend to 

repel one another. Opposed to this electrical repulsion is the Van der 

Waals force of attraction, and the stability of a colloid is determined 

by the balance between these two forces. This balance can be altered by 

the addition of electrolyte to the suspension, for the electrical forces 

diminish as the concentration of ions in the solvent is increased. Thus 

the particles in a suspension cease to repel each other, and may coagulate, 

if sufficient electrolyte is added. 

The removal of colloidal impurities from a liquid is greatly 

facilitated by the coagulation of the particles, since the processes of 

filtration and sedimentation are more effective with larger particles. 

_ For most industrial processes, as for example in the purification of 

water (Harris, Kauffman and Krone (1965» the liquid is stirred after the 

addition of the electrolyte. The stirring increases the rate at which 

particles coagulate, and it is this phenomenon, known as "shear induced 

coagulation"+, that forms the subject of this chapter. 

In particular we shall study coagulation in a dilute suspension in 

steady shear flow. We assume that the particles are spheres of uniform 

radius a, and that the electrical forces between the particles are negligible. 

(The effect of electrical forces is taken up in the next chapter.) 

In the initial stages of the process, most of the coagulation takes 

place bet'l7een single particles which unite to form "doublets". Our aim 

is to derive an expression for the "Coagulation rate" 'B, defined as the 

number of doublets formed in unit volume of suspension per unit time. 

+ sometimes called "shear induced flocculation". 

---
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We shall begin by describing the motion of a pair of spheres in 

a shear f10,.;7 in the absence of Brownian motion. The Brownian motion of 

sphere pairs is considered separately in g5.3, and in §5.4 we superpose 

the two effects to obtain a "pair conservation equation" of the Foker-

P1anck type. The coagulation rate may be obtained from a solution of 

this equation. 

In § 5.5 we ' discuss this solution for the case of "low" shear rates, 

and in 95.6 we turn to the problem of solving the. pair conservation equation 

for "high" shear rates. The following four sections are concerned with 

this problem and finally I in § 5.10 we combine the results for low and 

high shear rates to obtain a s emi - quantitative-picture of the effect of 

shear flow on coagulation rate. 

5.2 The Relative velocity of sphere-pairs in Shear flow 

In the absence of Brownian motion, the velocity of a particle in 

the suspension is determined by the shear rate K, and by the positions of 

the surrounding particles. In a random dilute suspension, the number of 

particles which, have a neighbour within a distance of several radii is 

much greater than the number \<lhich have two or more such neighbours and thus 

most of the pairs of spheres which coagulate move together on trajectories 

which are unaffected by the other particles in the suspension. To calculate 

the effect of shear rate on the coagulation rate we may therefore treat 

each pair of particles as being alone in an infinite liquid in shear flow. 

1n this section we shall derive an expression for the velocity of the 

centre of one member of a sphere pair, relative to the centre of the other. 

This quantity is termed "the relative velocity of the pair" and is denoted 

by VCr), where r is the vector between the centres of the pair. We assume 
~ ~ 

that the particles are so small that inertial forces may be neglected, and 

to determine the relative velocity of a pair we must therefore find the 

velocity u(~ ) and pressure p(~ ) which satisfy the Stokes equation 



12. 0 

V'p 
, 2. 

= J-L \)~ (2.1) 

at each point in the liquid, where ~ is the viscosity. 

With a suitably chosen cartesian coordinate system, the outer 

boundary condition may be written as 

(2.2) 

at points x which are a large distance from the sphere-pair. On the 

surface of the particles the no-slip condition must be satisfied. The 

relative velocity of the pair is then determined by the condition that 

there is a given force of attraction between the particles. 

Taking advantage of the linearity of the Stokes equations and the 

boundary conditions, we write 

y'=.~I+'i" ,(2.3) 

where VI is the relative velocity of a pair of force-free spheres in 

an infinite liquid with the outer boundary condition (2.2), and Y" is 

the relative velocity due to the Van der Waals attraction between a pair 

of spheres in an infinite liquid which is at rest at points far from 

the particles. 

From the work of Batchelor and Green (1972(a)) on the motion of 

force-free sphere pairs in a linear flow field we find 

(2.4) 

where the components of the non-dimensional velocity £, are 

Ue= (I - BCr-/o))fi sins cose sin~ COS$) 

U~= - tsine{Sin;(.C\l+ ~B(r/())(cos2.<p- sin2.Q»)} 
(2.5) 
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and the spherical polar coordinates (r, e ,0) are illustrated in figure 

(5.1). The origin ' of the coordinate system is fixed at the centre of 

one of t he s phere G, and the l i ne 8 = 0 is perpendicular to the plane 

of the shear flow. The functions A and B are illustrated in figure 2 

of Batchelor and Green's (1972(a» paper. If the spheres are nearly in 

contact, A and B are given by 

(2.6) 

where h is the gap distance, defined by 

h. = r- 20 

The relative velocity due to the Van der Waals attraction between 

a sphere pair in an infinite liquid which is otherwise at rest is 

given by 

(2.7) 

where ~ = ~/r, and F(r)~ is the force acting between the spheres. The 

--- r mobility function G( la) is shown in figure 3 of Batchelor's (1976) paper. 

We shall only require the form of G for nearly touching pairs, and from 

Batche10r and Green (1972(a» this is given by 

(2.8) 

The Van der Waal~ force F acting between a pair of spheres may 

be vrritten in the form (Verwey and Overbeek (1948» 

(2.9) 

where H is the Hamaker constant, and 

_ 8 }. ' 
5(51... 4.') 

(2.10) 



Figure 5.1 The cartesian and polar coordinate systems employed 
in this Chapter. 
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(This expression is only valid if the minimum distance between the 

. -6 
surfaces of the two spheres is less than 10 erns. At larger separations 

the "Retardation Effect" (Verwey and Overbeek (1948) becomes significant, 

and the Van der Waals force drops off at a more rapid rate with increasing 

r than that given by (2.10).) For the case of nearly touching spheres, 

(2.10) becomes, approximately ., 

(2.11) 

The value of the Hamaker constant is determined by the composition of 

the particles and the solvent, and generally lies in the range 

(see Ottewill (1973) for review). 

Combining the expression (2.7) and (2.9) we obtain 

Vii = -:J:L. &J ~ 
3n flO1.. 

(2.12) 

and using the asymptotic expressions for G and f we find that the Van der 

Waals attract~on causes a pair of nearly touching spheres to move together 

with a relative velocity given by 

(2.13) 

From the expressions (2.4), (2.5) and (2.6) we find that the 

radial component of the relative velocity due to the shear flow is 

given by the asymptotic expression 

(2.14) 

This quantity decreases linearly with h and is dominated by the term 

Vr" if h is sufficiently small. The ratio Vr'/V" is found from (2.13) 
· r 

and (2.14) to be 



V' 
----=.L- ~ 

V" 
r 

1 2.~ 

4-60' J,!:Q h."K s.:inze sin~ COS~ . 
H 

For given values of e and 0, the separation h at which Vr'/V "is of 

order one is proportional to 

#o'3k» I 
H 

( H )~a 
J-lo'?K • 

r 
Thus if the condition 

(2.15) 

holds, the Van der Waa1s force only has a significant effect on the 

motion of nearly- touching sphere pairs (provided that sin 2 e sin~cos cJ, 

is of order unity). This observation enables us to simplify the problem 

of determining the coagulat ion rate at "high" shear rates, i. e. those 

shear rates for which the constraint (2.15) is valid. This matter will be 

discussed more fully in §5.6. 

5.3 The Effedt of Brownian motion 

Each particle in a suspension is subjected to random thermal forces 

from the surrounding solvent molecules. The way in which a particle 

responds to an applied force is determined both by the magnitude of the 

force and by the position of the neighbouring particles, for as a particle 

moves it interacts hydrodynamica11y with its neighbours. In the previous 

section we showed that in a dilute suspension, most of the hydrodynamic 

interaction occurs between pairs of particles, and each of these pairs is 

hydrodynamically independe l;l. t of the surrounding particles. Thus to find 

the effect of Brownian motion on coagulation we can treat each pair as 

being alone in an infinite liquid. 

The fluctuating thermal forces are random quantities and we can 

only speak of their effect in a statistical sense, i.e. by considering 

the Brownian motion of an ensemble of sphere pairs. Such an ensemble is 

provided by the pairs in a dilute suspension,and in order to describe 

----. 
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the effect of . Brownian motion on these pairs, it is convenient to introduce 

the concept of a "Pair Space". 

Each pair of spheres in a chosen unit volume of the suspension is 

) in pair 

space, where X, ,x,:2. and :1:3 are the cartesian components of the vector 

-which passes from the centre of one member of the pair to the centre of 

the other. For the remainder of this chapter we shall use the cartesian 

axes shown in figureS.I. The points in pair space are obtained by 

placing the origin of these axes at the centre of each sphere in the unit 

volume in turn and noting the coordinates of every other sphere in the 

volume. If n denotes the number of particles in the unit volume, there 

are n(n-1) points in the pair . space. We shall use the term "pair" to · 

denote both the actual sphere pair and the points which correspond to that 

pair. 

The points which correspond to coagulated pairs lie on a sphere of 

radius 2a, centred on the origin in pair space. This sphere will be 

referred to as the "central sphere". The number of points '<1hich move 

onto the central sphere in unit time is double the coagulation rate, since 

each pair of spheres is counted twice. 

The density of points in pair space is denoted by , and 

we shall refer to e as the "pair distribution function". In the 

absence of any long range order in the suspension, we have 

(3.1) 

as 1~I~oo In other words, the fact that there is a sphere at 

the origin does not affect the probability of their being another sphere 

in the unit volume about ~. ,provided I~I is sufficiently large. 

If e is non uniform the Brmvnian motion of the particles leads to 

a diffusion of points in pair space, and this provides a mechanism for 

restoring to a uniform value. The flux density vector associated 
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with this diffusion of points in pair space is given by 

(3.2 ) 

where 

(3.3) 

This result is derived by Batchelor (1976), and the functions G and H 

are illustrated in figure (3) of that paper. 

We may now combine the expression (3 . 2) for the flux due to 

Brownian motion with the expressions derived in the previous section for 

the relative velocity of a sphere pair, to obtain a differential equation 

for e From the solution of this equation ,ve can compute the 

coagulation rate. 

Before proceeding to the derivation of this differential equation 

for e , there is a point which should be cleared up . concerning the 

expression (3~2) for the flux of points in pair space. This result is 

based on the assumption that the pairs in a suspension form an ensemble 

of independent pairs. This is not quite correct, for each particle is 

paired ~ith every other particle to obtain the points in pair space, and 

since each point does not correspond to a pair of different particles, 

these points cannot be regarded as an ensemble of independent pairs. 

However, the points which lie within a spherical volume of radius 

r;'(, centred on the origin, do form an ensemble if 

that is, if 

r* « average particle separation, 

__ 1/" 
r* « Cl q, ~ 

This is because the majority of points in this volume each correspond to 

a unique pair. Thus the expression (3.2) for the flux density vector is 



126 

valid in this region. We shall assume that the length scale over which 

e ~ '/3 
is non uniform is « a ~ ,and therefore the differential 

equation for e ,obtained with the aid of (3 . 2), gives ~ valid expression 

for the pair distribution function. 

5.4 The Pair Conservation Equation 

In the absence of Brownian motion, the points in pair space move 

with velocity Vi + V" where Vi is the velocity due to the shear flow and 
"',..., 'V 

V" is the velocity caused by the Van der Waals attraction. The flux .-

density vector associated with this motion is given by 

(4.1) 

where the subscript "H" stands for "hydrodynamic". It is custormary to 

assume that the Brownian motion of the pairs is unaffected by either the 

shear flow or the Van der Waals force, and thus the ~6tal flux density 

vector is given by 

Taking the gradient of (4.~) and using the fact that points in 

pair space are conserved, we get 

.:Qe. = - v· ( ~y + ;!;p,) • 
'at 

(4.3) 

For the remainder of the chapter we shall assume that the system is in a 
, , 

"quasi-steady state", Le. , 

o· (4.4) 

Although the number n of single spheres decreases with time, we assume 

that the time over Hhich n changes appreciably is much longer than the time 

required to achieve steady state conditions. 
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Substituting the expressions (2.4), (2.12) and (4.1) for:i f , 2" 

and ~I-l in (4.3) and using the expression (3.2) for 1:8 J we obtain 

This equation, together with the outer boundary condition (3.1) 

determine e uniquely. Equation (4.5) is the "Pair Conservat ion 

·Equation" referred to in the introduction. 

We make use of the fact that both equation (4.5) and the boundary 

condition (3 . 1) are linear by int r oducing a non- dimensional function 

Substituting for e in (4.5)·and transforming to the dimension1ess. 

coordinate system 

we obtain 

(4.6) 

and the boundary. condition (3.1) becomes 

(4.7) 

From (4.6) it can be seen that the function is determined by 

the non-dimensional parameters kT and J...lo3 K 
H. H 
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As mentioned in the previous sections the coagulation rate e 
is equal to half the number of points which move onto the central sphere 

in unit time, and since 3e ~ 0 
-at 

~ = ±y iT' ndA 
~ 

, we can calculate from 

(4.8) 

where ~ denotes a closed surface env~loping the central sphere, cIA 

is an element of that surface and a denotes the unit normal directed into 

the volume enclosed by ~ 
. 

Replacing ~T in (4.8) by the expression (4.2) and using (4.1), 

we get 

-e = t Y(~!l +- eCi' + ;(')). n.dA 
<> 

, (4.9) 

and with the expressions (2.4), (2.12) and (3.2) for V', VII and tt 
"\.. /V 

(4.9) becomes 

= ..! .. J( -kT D. v~o 2.1 3TfH~ " 

(4.10) 

.b 

,,,here cIA' = cIA/a 2' 

Thus the quantity is a function of only two variables, 

kT 
H 

and Our aim is to find the form of this function. 

We can use the fact that e is proportional to n 2 to obtain an 

expression for the evoluti9fi of the number density n. With each 

coagulation, n decreases by two, and thus we have 

dn.. = - ;<.:f. ::. _ c.on~+ar.ixn...l. 
di: 

and integration of this equation gives 

(4.11) 

,1' 



5.5 Coagulation in a Suspension at rest 

If there is no bulk flow, the pair conservation equation (4.6) 

reduces to 

0= 'V'. ( kT DI. "70 + Cl 'GJ? \ H ~ \ 0 ,0 ). 
( 5.1) 

The function has radial synnnetry, since equation (5.1) and the 

boundary condition (4.7) are not altered by a rotation of the coordinate 

axes. Equation (5.1) therefore becomes 

where we have replaced D' by the expression (3.3). 
~ 

(5.2) yields 

c . 
G ("2. 

= kT dOe) f' .=s:: + eo.:r , H c/(" 

where c is a constant. 

(5.2) 

Integration of 

(5.3) 

Using the "Method of Variation of Parameters" (Kreyszig (1968) we 

find that the general solution to (5.3) is 

I'" 

He. r exp ( HV/k,)dr 1 exp\- HV 1 
kT J G-rl. ) kT 

r, 

., (5.4) 

where A, and ~ are constants, and 

00 

V(rJ -= ~ I fCr ")dr 
r 

is the potential associated with the Van der Waals force. From the 

asymptotic expression (2.11) for f we find 

as b.. ~ 0 , 
o 

(5.5) 
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where h = r - 2a. The quantity expf- HV(rl l 
'l kT I 

diverges as r ~ 2, 

and for E:o to be an integrable function we require 

or 

r 

lilY) (A +- He j exp ( H'I/kT')dr) ~ 0 , 
kT r. Gr~ r ... :I.,. 

I 

r. 
A = He ( exp. ( HV/kTl ar . 

kT j &rl. 
:t 

Substituting this expression for A in (5.4) we get 

r 

l:!f.{ S exp( HV;kI}0r '}exp{-HY(Y")} 
kT . 2. &' r'~ kT 

(5.6) 

The asymptotic form of e as r ----) 2.. is found by replacing G and V by 

the asymptotic expressions (2.8) and (5.5), which gives 

E? 
(h.)""'-- (COn~tontJ I-L exp (-J:L \) as h ...." 0 . 

o l:2.kTh. 

(5.7) 

This asYmptotic result also holds for a suspension in shear flow, 
'"'-

for the velocity of points due to Van der Waa1s attraction diverges as h ~ 0 

and we may neglect the effect of shear flow on the motion of points in a 

thi~ layer surrounding the central sphere. The value of the constant in 

(5.7) will of course depend on the shear rate. 

The constant c which appears in the expression (5.6) for the pair 

distribution function of a suspension at rest is determined by the boundary 

condition (4.7), which gives 

= (kTyoo CH) ~ exp( H\f ') Or (5.8) _ _ kT_ 
~. Gr'). 

Taking the surface ~ which appears in the expression (4.10) for ~ 

to be a sphere of radius r (>2) about the central sphere, we get 

= 2. c 
.3 

(5.9) 

I 
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where we have used the expression ~5.3) for c. Substit~ting (5.8) in 

the above expression we obtain 

(5.10) 

This result was first obtained by DerJ~guin and Muller (1967). 

The expression (5.10) for ~~ takes a particularly simple form in the 

. limit as kT ~ CO To find this asymptotic form, we begin by noting 
H . 

that the quantity exp f~j(r) 1 is approximately unity unless r-~C\ <'< I 

in which case VCr) has a large negative value. We let r denote the 

minimum value of r at which exp ~ H\I} ::::; 
L kT 

where t6. «1. 

€Xp { Hv(r-l} >- f- t:,. 
kT ) Y' 

foY" 

, i.e. 

(5.11) 

Replacing exp\ HVC("J} by unity for r > f in the integral in (5.10) 
kT 

we get 

r co '-

J exp{ W 1dr 
~ G(r)(,,). 

~ S exp{ If¥ 1 d r- + 
2. G«(")r1. 

We can estimate F by expanding 

in a Taylor series about H\I 
kT 

VC?)::::: - bkT , 
H 

r 

exp{ ~~) 

= 0, which gives 

and with the asymptotic expression (5.5) for V, this becomes 

12.6. kT 

where h = r-2. 

(5.12 ) 

in (5.11) 

(5.13) 

Combining the estimate (5.13) for h with the asymptotic expressions 

(2.8) and (5.5) for G and V, we find that the expression (5.lZ) has the 



asymptotic form 

00 

S expf H\}/kT1 elr 
Gr'l. • :z. 

132. 

r-- .!.. 109 ( kl") 
S . H 

as kT - ) 00 • 

H 

SUb"stituting this asymptotic formula for the integral in (5.10) we obtain 

or 

Thus 

*~~ 
16 ki / os 
3" H 109 (kT) 

H 

~'" 16 0:' boT as kI 
.3,u. 109 (Ft,; ) H 

the coagulation rate is only weakly 

kT ~ 00, 

H 

~ 00 • 

dependent on H if 

(5.14) 

I<T »l. 
1f 

We can obtain the as~nptotic fOlln of the expression (5.8) for e 
as kT ~ 0 by noting that in this limit, the integral in (5.8) is 

H 
dominated by the contributions from the region r » 1, and therefore we 

may replace G and "V in that integral by the approximate expressions 

G ~ 1 (see Batche16r (1976», 

and V(r)~-~ 6~ 
" "Ir 

where the approximate expression for V was obtained from the formula , 

(2.1) for f and the definition of V. Substituting the above expressions 

in equation (8.1), we find 

*t~ A.... c. ~T)/" 05 kT -,,0 (5.15) 
H H 
C<J 

where c.. - {~b)l,f, J e (-XO)d~ 
0 

This asymptotic formula is only valid f~r very small particles (a < 10-8 cm), 

since it is based on the formula (2.10) tor f(r/ ) which is only valid if 
" a 

the particle speuration is less than 10-6cms • 

The expression (5.10) gives the leading term in the expansion of 

~ 

in powers of B('~ 
H 

The coefficient of the odd po,,,ers of 

, I 
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in this expansion must be zero, since the coagulation rate is 

not affected by a reversal of the flow direction, and thus the curve of 

coagulation r a te versus shear rate has zero slope at K = O. We shall not 

attempt to determine the coefficient of the term in the 

expression for , since this will only predict the pe~turbations 

in the coagulation rate cause by "slow" shear flows, and instead 'o1e shall 

concentration on the more interesting problem of coagulation at high 

shear rates. 

5.6 The High Shear Regime 

From the pair conservation equation (4.6) it can be seen that the 

ratio 

Brownian diffusion flux 
Convect ive flux due to shear flo'o1 

is proportional to kT 
).A.o.~ K 

Thus if the condition 

~Cl3 k >'> 
kT 

(6.1) 

holds, the Browni'an' motion of the particles may be neglected. It follmvs ' 

--... 
that the quantity is only a function of the variable ~~3k • 

H 
The remainder of this chapter is devoted to the problem of finding 

the form of this function for the case 

~ ka
3 » I 

H 

(6.2) 

Shear rates which satisfy the constraints (6.1) and (6.2) are termed 

"high" shear rates. 

In § 5 .• 2 it was shown that if the condition (6.2) is satisfied, only 

the nearly touching sphere-pairs are affected by the Van der Waals force. 

Thus equation (4.6) may be approximated by 

\7~ ( U D ) = 0 
'" \. c 

(6.3) 
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except in a thin layer surrounding the centre sphere. This is the 

pair-conservation equation for force-free spheres in a shear flow which 

has .been solved by _Batchelor and~r.een (1972 (b)). 

In this section we will show how the coagulation rate may be obtained 

by combining Batchelor and Green's results with expressions for the 

relative trajectories of. the nearly-touching spheres which are affected 

by both shear flow and Van der Waals attraction. The problem of 

determining the motion of such pairs is simplified by the fact that the 

stress is much larger in the thin layer of liquid bet~"een the spheres than 

elsewhere in the liquid, and the force exerted by this layer on either 

sphere is a simple function of the relative velocity of the spheres and 

the minimum thickness of the liquid layer. 

Before describing this technique for determining e we shall briefly 

outline the relevant results of Batchelor and Green's (1972(a) and (1972(b)) 

work on the motion of force-free sphere pairs in a bulk flow. 

By integrating equations (2.4) and (2.5) for the relative velocity 

of a sphere-pair, Batchelor and Green obtained-the following expressions 

for the tr~ectory of a point in pair space, in the absence of Brownian 

motion and Van der Waals attraction: 

and 

()() 

= exp{ r Ji(r')- £,(r') 0,-'1 
~ (I-A(r'))r' J 

co 

, 

= S(y-)~ {(Rj' + r E>(r')fR3fr'dr-' 1 ") 
(T\3)~ • l (1- A(r')}r~("'J?.. J 

(6.5) 

where r 2 = r sin9sin 0, and r3 = r cose (see figure (5.1)). The 

constants R2 and R3 are the values taking by r2 and r. 
..J 

at a point on 

the trajectory an infinite distance upstream. 

The trajectories of force-free pairs which lie in the plane of the 

shear flow (G =TVZ) are illustrated in figure (5.2). (This is a 



. . 

3 t~----------------------__________ ~R~U~~~=~9~ ______ --J 
....•. 

, . 
''-. 4 

, 2..--- __ 

a:Ja 

. ' . 

---- --- - --=-=, 
2 3 4 5 

a:Ja 

Figure 5.2, The trajectories in the plane X2 = 0 of points in pair 
space in the absence of Brownian motion and Van Der Waals' attraction. 
The circle r = 2 is the surface of the c ~~tral sphere. The trajectories 
for which (R 2 )2 < 0 are closed, and the boundary of the region of 
closed trajectories is formed by rotating the R2 = 0 line about the X 2 

axis. 



135 

reproduction of figure (4) of Batchelor and Green's (1972(a) paper.) 

From this figure it can be seen that there is a region of closed tra-

jectories surroundini the central sphere. The quantity R2 associated with 

trajectories in this.region is imaginary) and pairs which move on these 

trajectories execute c1os~d orbits about the central sphere. If there 

is a force of attraction between the particles the pairs which lie in 

this region will eventually coagulate, since they will be dra--;m closer 

to the central sphere with each pass. Even though there are no closed 

trajectories if there is a force of attr~ction between the particles, we 

shall continue to refer to this region as "the region of closed trajectories", 

From figure (5.2) it can be seen that trajectories are I1squeezed 

together" near the top of the central sphere and this is the reason that 

the shear flow assists in the coagulation process; pairs which move along 

trajectories such as the R~ 
Q 

= 1 trajectory shown, in figure (5.2) pass 

very near to the central sphere and only a slight fbrce of attraction is 

required to cause these pairs to coagulate. 

In the second of their papers, Batchelor and Green (1972(b)) found 

that the solution .to the pair conservation equa~ion (6.3) is given by 

where 

00 

_I _ eXD{ ~ 3( BCr'J- R(r-';')dr' 1 ' 
I-A(r} \ r r'(\- A( .... '~) 

This result only holds outside the region of closed trajectories. 

(6.6) 

(6.7) 

Substitution of the asymptotic expressions (2.6) for A and B in (6.7) 

gives 

~-> O. (6.8) 
0.. 
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Although we are only concerned with the case of shear flow, it should be 

noted that the exptessions (6.6), (6.7) and (6.8) are valid for any 

type of linear bulk flow. The fact that q diverges as h"4' 0 is a 

reflection of the tepdency for bulk flows to push particles together, 

and thus any bulk motion of a suspension assists the coagulation process. 

This completes the outline of the relevant results of Batchelor 

and Green's papers ~ We shall now show how -e may be obtained with the 

aid of these results. 

As mentioned earlier, the Van der Waals forces only affect the motion 

of pairs which lie in a region surrounding the central sphere. We let ~ 

denotes a surface which encloses this region, and we denote the volume which 

lies between L and the central sphere by veil. In the region outside 

~ , pairs move along the trajectories given by ~6.4) and (6.5). If 

a pair enters V(~) and does not become attached to the central sphere, 

it leaves the region on a trajectory which has different R2 and Rs 

values from that trajectory en which it entered v(i). Those pairs 

which leave V(~ ) and pass into the region of closed trajectories will 

eventually coagulate, since they will be drawn. closer to the central 

sphere each time they pass through veL ). 

We have assumed that the density of points in pair space does not 

vary with time, and therefore the coagulation rate is equal to the number 

of pairs which enter cL per unit time from outside the region of closed 

trajectories in the half space X 2 > 0 and eventually become attached to 

the central sphere. 

To translate this into a mathematical expression, we take the surface 

~ which appears in the expression (4.10) for ~ to be that surface 

formed by the part of J[ which lies outside the region of closed trajectories 

together ,~ith the part of the boundary of the region of closed trajectories 

which lies beyond ~ This surface is illustiated in figure (5.3). 
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Figure 5.3 The surface A in pair space, defined in §S.6. 
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The pairs which lie outside ~ are effectively force-free and therefore 

pairs can only enter ~ through the part of that surface which coincides 

with 

Those pairs which coagulate enter ~ through a portion of the 

surface denoted by r This region is shown in figure (5.3). ' The 

-pairs which cross r either become attached to the central ' sphere or 

pass out of V(~) iri the region of closed trajectories. The Van der Waals 

forces are unimportant beyo~d V(J..) and therefore pairs cross r with 

the velocity Y' given by the expressions (2.4) and (2.5). 

The coagulation rate e is equal to the rate at which pairs pass 

through r , i.e. 

-t - n~j~)L'. ~dA ('6.9) 

r 

where ~ denotes the unit normal directed into v(i) and dA is an element 

of the surface r The distribution function at a point in pair 

space is determined by the history of the motioD. of the pairs which arrive 

"-

at that point. Pairs which cross r come from a region in ,.,hich 

Van der Waa1s forces are insign~ficant and therefore the quantity e~ 

in (6.9) is given by the expression (6.6), (6.7) and (6.8) derived by 

Batche10r and Green. 

Substitution of the expression (2.4) for V' and (6.6) for Eo 
in (6.9) gives 

'€ ~ aKr.,2.\ 9(nk::(,c')·n.dPt, 
I.i 

r 
lJhere the non- dimensional velocity U is given by (2.5). 

"v 

(6.10) 

We are free to choose any shape for L , provided that the surface 

~ (of which 1- forms a part) encloses the region in which the 

Van der Waals forces are significant. Since q depends only on I£-\ ,we 

choose for i.. a sphere of radius r~':, centred on the origin. The expression (6 . 10) 
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then becomes 

-e :: - 0 Kn49 ( r*) f Ur ( t:) dA (6.11) 
r(,..") 

where we have replaced the symbol r by r(r~\"), to remind us that the 

region r depends on r -/(. 

If the shear rate K is sufficiently large, the Van der Waa ls forces 

only affect pairs which lie in a thin layer around the central sphere. 

In this case we may choose an r* which satisfies the constraint 

\'"' .... - 20 «0 
and the quantities q and U in (6 .1 ) can be replaced by their asymptotic 

r 

forms. The asymptotic expression for U is found by substituting the 
r 

formulae (2.6) for A and B in the first of equations (2.5). Combining 

the resulting expression with the formulae (6 . 8) for q and (6.11) for 

-e ,we get. 

-e=-T'61t-QOKn.2·("*~<t'i21Jf 81,,3e 5]n~ C.OS<\, clec.l~ ~ 
{loS(o/h.:¥ ) } ~ rCh,"') _ . 

(6.12) 

where h* = r*-2a. 

To evaluate the integral in (6.12) we require expressions for the 

curves which form the boundary of Hh';':). In the following t\oJO sect ions 

we will shm-1 how this information may be obtained from the express i on for 

the relative trajectories of nearly touching sphere pairs. 

5.7 The Boundary of the region of closed trajectories 

The pairs which cross rnLlfj either coagulate immediately or 

leave V( i. ) on a trajectory which lies in the region of closed trajectories. 

Those pairs which leave V( 'J... ) on trajectories which lie on the boundary 
• 

of the region of closed trajectories are the "last" pairs to coagulate, 

for any pairs which enter v(;L) at points further downstream ( i. e. at 

pOints which have smaller (/J values) leave that region on trajectories 

~hich lie beyond the region of closed trajectories, and hence these pairs 

do not return to V(tf_ ). It fo11m-1s that those pairs ~-1hich leave V( J... ) and 

move along the surface of the region. of closed t~ajectories first enter 

V( if- ) at points on the r- boundary. The part of the r - boundary 

through which these pairs pass will be termed the "lower boundary". The 



13'1 

remaining poitions of the boundary of r is formed by the line of 

intersection of cl and the boundary of the region of closed trajectories. 

This curve is termed the "upper boundary". 0 Both curves are illustrated 

in figure (5.3) f 

To find the position of the upper boundary we require a detailed 

description of the part of the surface of the region of closed traject~ries 

which lies near the central sphere. In this section we shall obtain 

approximate equations describing this surface, and in the following section 

we will look at the more difficult problem of locating the lower r -
boundary. 

The boundary of the region of closed trajectories is formed by the 

family of trajectories given by (6.4) and (6.5) with R2 = O. The expression 

for this surface is obtained by setting R2 = O.in (6.5) and replacing 

rs/Ra by the expression (6.4), which gives 

00 0 00 00 

r;.(r)~= exp{ 2 (A(r')-BCr') d,..'} r BCr') (exp[ 2 \ J;Cr ')-F\(rol1tclclljJ' r'drl.{7 .1) 
J-tl- A(t"')1 r' J,-A(r ')1. J I-ACrll) i" 
r . r 1""' 

This equation may be put in a more convenient form by substituting the 

expressions (6.7) for q, from which we obtain 

(7 .2) 

This is the equation of an axisymmetric surface, formed by rotating the 

line R2 = 0 in figure (5.2) about the x 2 axis. 

Substituting r = 2a + h, and r 2 = 2a cos 9 2 in (7.2), where 8 2 

is the polar angle measured from the x 2 axis (see figure (5.1)), we 

o~tain an expressions relating thee 2 and h values of points on the 

surface. With the aid of the tabulated values of the functions A, Band q 

given by Batchelor and Green (~972(a), 1972(b)), we have computed from 

(7.2), the angle B2 for various values of h la , and the results are given 

in table 5.1. 
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8 2 (h la) h/a (h/a ) approx 

. 0 
0 4 x 10-5 

4 x 10-5 

11.4
0 

5 x ~0-5 4~9 x 10-5 

33.9
0 2.5 x 1 -4 · 0 2.1 x 10-4 

51.3
0 

2.5 x 10-3 
2.55 x 10-3 

58.7
0 

7.5 x 10-3 8.8 x 10-3 

Table 5.1 The polar angle e 2 of points on the surface of the region of 
closed trajectories as a function of the distance h of those points from 
the surface of the central sphere. The quantities (h/ ) approx are 
calculated with the aid of the approximate expresssion

a
(7.ll) fo~ the 

surface of the region of closed trajectories. 

From figure (5.3) it can be seen that the spherical shell ~ intersects 

the region of closed trajectories on a circle about the .x. 2 axis. The 

angle e 2 of points on that circle is found by substituting r = 2a + h1< 

(the radius of £ ) and r 2 = 2a cos 9 2 in equation (7.2). We denote 

this angle by 9 2 (h*/a). With the aid of figure (5.1) it can be seen that 

Slh e sin <p = cos e2. 

and therefore the ( 8, 0) coordinates of points on the upper boundary 

of r are related by 

CPu.(B) = 1T - sin-'{ CO: e2.(h.~/O)} 
. S1n e , 

(7.3) 

where ~u(8) denotes the azimuthal angle of a point on the upper boundary. 

The integral in the ex~ression (7.2) is difficult to evaluate, and 

as we shall be requiring 9 2 (h*/ ) for a number of h*/ values, it is . a a 

convenient to replace (7.2) by a simpler approximate expression, valid 
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for h~'( «l /a • 

As mentioned earlier, the boundary of the region of closed tra-

jectories is obtained by rotating the line 
z. 

(R .. ,\ = 0, shown in figure 
o I 

(5.2), about the x. 2 axis. This line represents the trajectory of a 

force-free sphere pair in the plane of the flow, and ·the approximate 

~quation for the part of, this line which lies close to the central 

sphere may be obtained from the approximate form of the expressions 

(2.4) and (2.5), for nearly-touching pairs. Substituting the asymptotic 

formulae (2.6) for A and B in (2.5) and using (2.4), we get the 

approximate equations of motion 

and 

dr (= V.') = g'15/rK 51n~9 sin~ cosq, h. 
cJt r 

@ (:. :{~) = 'Sq4- l< sine cose 5in~ cos~ 
dt r 

.Qjt (= ~ ) = - K[·tqt- - ·Sg4. COS?Cj>J 
dt rS1nS 

0.4) 

(7.5) 

o .6) 

In deriving these expressions we have neglected O(l/log(a/h » terms and 

thus the equations are only strictly valid for extremely close pairs. 

Although we only require in this section the equation of a trajectory 

in the plane of the flow ( e = 'N 
:i: 

), we shall solve these equations for 

the general case, as this solution will be required in §5.8. 

Substituting r = 2a + h.in (7.4) and dividing by (7.6), we obtain 

on. = - 2,'154- sin~e sin ~ c.oS(} h. 
d~ 'l-q-+ - . 5'14- cosA.<b 

0.7) 

and dividing (7.5) by (7.6) we get 

_~G =' - ·5elll. Sin e cos e sjn.cj) (ostP 
act> 'i-Cf-=t- - ·S'1u-cos).<j> 

0.8) 



Equation (7.8) is also valid if there is a force of attraction 

between the sphere~, for as this force is radial, it does not affect 

the rotation of the pair. The solution of (7.8) is found from 

separation of variables and integration by parts to be 

tane«\Y) :;:; tan e(-rr/2,) 
7 I - • "+4.5 C.05:<~ 

(7.9) 

where e (1r/:2.) dEmotes the polar angle of the trajectory at q> = 'T'r/;<, • 

The expression (7.9) is the equation of the surface formed by the family 

of trajectories which intersect the line e = 6(nh'l) et> = 'TT/2,. In figure 

(5;4) we show several curves formed by the intersection of the central 

sphere with surfaces which satisfy (7.9) for various values of 6('12 ) 

These lines may be regarded as the trajectories of touching sphere - pairs. 

For those \vho are familiar with the motion of spheroids _ in a shear 

flmv, we note that the expression 0.9) is identical to the expression for 

. the angular motion of a spheroid with ari axis ratio of 1.98. 

Eliminating the sin 2 e term from 0.7) with the aid of 0.9) and 

integrating by parts, we get 

6.gl­
h(ct>l:' \-t(lT'lz)f 1- '":145 COS'2.<p cos2.e(iTh,) ~ 

~ - . 't45 c.os~<t> J 0.10) 

The large exponent in this expression is a measure of the tendency for 

the shear flow to push spheres together. To illustrate this effect, we 

have calculated the ratio h( <l> ) /h (1112. ) for various values 

and 0, and the results are shown in table 5.2. 

From this table it can be seen that those pairs which lie in the 

plane of the shear flmv (e = TT/'Z, I are pushed closer together than the 

pairs for which G(7T/2.") =I- 1T'h This suggests that most of the 

coagulating pairs lie in, or nearly in, the plane of the flow, an 

observations which shall be verified later in this chapter. 
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\ ---,-~ 
~------------------~3~O~o 

Figure 5.4 
shear flow . 

The re lative trajectories of touching sphere pairs in 
The broken lines are lines of constant e 
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1> 8 (TI/Z:VfYl , 2- 8(11/2,) = 1·:31 eCTTil :: ~ e(}rhl= :!l 
~ 4-

'K 12 1 1 '1 1 

1.31 1.42 1.39 1.30 1.19 

rr 13 4.12 . 3.78 2.97 2.11 

fr 14 24.67 20.6S- 12.53 5.96 

fT/6 
. 276.07 212.85 98.2 29.07 

Table 5.2 Values of . h(~n Ib (nh ) for trajectories which pass through 
eo;: e (7l'/,2.) at ~ =. 11'12, ,~n the absence of Van der Waals attraction. 

We mentioned earlier that the surface of the region of closed 

trajectories is obtained by rotating the line R2 = 0 shown·. in figure 

(5.2) about the X 2 axis. This line is a trajectory and may therefore 

be approximated by an expression of the form (7.10) with e ('l'l;2.I::: 'fY2. • 

The surface obtained by rotating this line is given by 

-b·g-. 

h.(~):= h.{'f\in. { I - ':;"4-5 sin'le~J . 0.11) 

where is the minimum distance separating the boundary of the 

region of closed trajectories from the central sphere. From table S.l 

it can be seen that 

0.12 ) 

Equation (7.11) gives the approximate equation of the surface of 

the region of closed trajectories. In table 5.1 are shown the values of 

his calculated with the aid of (7.11) and (7.12), and it can be seen that 

-3 
the approximation is quite good even at hla = 7.5 x 10 • 

From (7.11) we get 



(7.13) 

where 9 2(h*) is the polar angle characterizing the circle of inter-

section of the surface (7.11) and the sphere L of radius 2a + h*. 

Combining this result with (7.3) we find that thee, ~ coordinates of 

the upper boundary of r are given by 

(7 .• 14) 

This is the expression for the upper boundary of r which will be 

used in the evaluation of the integral in the expression (6.12) for ~ 

and we now turn to the problem of determin:i.ng the position of the lower 

r - boundary. 

5.8 The trajectories of nearly touching sphere-pairs 

Performing the integration with respect to ° in the expression (6.12) 

for -e , we get 
" 

(8.1) 

where 01. (e) is the equation of the curve which forms the lower boundary 

of r To evaluate this integral by a quadrature scheme, we require 

the values of 0 .... (8 ) at a number of points on the e :"interval ( if!z.. - elh .... ~ 

tr/~ ). In this section we shall obtain equations which enable us to 

determine these values. 

By definition, t~ose pairs which enter V( a..) at points which lie on 

the lower boundary of I' , leave V(~ ) on trajectories which lie on the 

boundary of the region of closed trajectories. Hence these pairs pass out 

of VeL ) at points which lie on'the line of intersection of L and the 

surface of the reg ion of closed trajectories. From the previous section, 

this line of intersection is given by -. 
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6.., = e-(h:*) ... l. 

-where e 2(h*) is given by equation (7.13). Thus we can calculate the 

point of exit (from V(~») of a trajectory which intersects the lower 

-boundary of r , and our aim is to find the point at which that trajectory 

~nters v(l). By finding the entrance points of a number of such 

trajectories, we can evaluate the expression (8.1). 

To find an expression relating the point of entrance of a trajectory 

into v( et) to the point of exi.t, we must solve, the equations of motion for 

pairs in V(~). Since these pairs are nearly- touching we may use the 

asymptotic approximations (2.13), (7.4), (7.5) and (7.6) for Vi and V". 
rv rv 

As mentioned previously, the expression (7.9) describing the angular motion 

of a pair is valid even if there is d force of attraction between the 

spheres. The expression for db- is obtained by superposing the 
dt 

equations (2.13) and (7.4), which gives 

dh. (= v. 1 tV") dt \" r" -... r 
(8.2) 

Dividing this equation by the expres~ion (7.6) and multiplying the 

resulting expression by 2h, we get 

(8.3) 

With the aid of (7 . 9) we can replace sin2e by an expression involving -

f/J and 8 ( 7th") . 

Equation (8.3) can be solved by the Method of Vanation of Parameters 

(Kreyzig (1968)). The first step in this procedure is the solution of the 

homogeneous equation obtained by neglecting the second term on the right 

hand side or (S.3). This homogeneous equation is simply the equation for 
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force-free sphere s which we solved in the previous section. From (7.10) 

the homogeneous solution h (0) is given by o 

, 

(8.4) 

The final step in the Method of Variation of Parameters involves 

substituting 
" 

(8.5) 

in (8.3), which gives 

or 

cl> 

u. (4)) = u( 41,) + H r-=d<t>=--___ _ 
Z2..'53f-,ta.l< l, hJ<t»:l.( 1- '"1-4$ c..OSJ.<!» 

(8.6) 

Substituting (8.6) in (8.5) we obtain the general solution to (8.3): 

~ 

h.'2.(C!l) = (u'CcP,I+_H __ r d<l>' )h, (<I»2-
22,'5'3 /-lOo K ~ "'oC C!l)l.( 1- • ~4.5' COS ?Q') 0 

I ' 

(8:1-) 

where ho is given by (8.4). We choose 0, to be the azimuthal angle of 

the point at which the trajectory enters V( cL) 'and in addition, we let 

h~(0) denote the trajector¥ of a force - free pair which enters ve al ) at 

the same point. Thus we have 

(8.8) 

and the expression (8.7) becomes 



where h (0)2 is given by (8.4). The function f is defined by 
o 

(8.9) 

(8.10) 

and the form of this function is shown on figure (5.5) for various values of 

To ob ~ ain these curves we evaluated the integral in (8.10) 

using a conditionally convergent scheme qased on the trapezoidalrule. 

In discussing the form of the trajectories given by (8.9) and (8.10), 

we shall concentrate on the case for most of the 

coagulation takes place between pairs which lie in, or nearly in the plane 

of the shear flow. 

The quantity in (8.9) determines 

the amount by which the ratio h(0)/h (0) differs .from unity. From figure 
o 

(5.5) it can be seen that f(0, Jt ) is approximately constant outside the 

interval 

(8.ll) 

Thus pairs which enter V( i) at points upstreaI'Lof 0 = l20? in the plane 

of the shear flow, move al png the undisturbed trajectories of force-free 

o pairs until the azimuthal angle drops below 120. The pairs are then 

drawn towards the central sphere, and if they do not become attached to 

the central sph~re they leave the region given by (8.11) on an undisturbed 

trajector y wit h a reduced value of h ( TT/2, ) . 
o 

The value of h (TI/ 2 ) associated with the undisturbed trajectory 
o . 

on which a pair enters V(~) is found by substittiting the expression (8.4) 

for h (0) in the boundary condition (8.8), which gives 
o 



where h (~)2 is given by (8.4). The fun~tion f is defined by 
o 

(8.9) 

(8.10) 

and the form of this function is shown on figure (5.5) for various values of 

6 (1't'/7-.. ) To ob~ain these curves we evaluated the integral in (8.10) 

using a conditionally convergent scheme qased on the trapezoidal rule. 

-
In discussing the form of the trajectories given by (8.9) and (8.10), 

we shall concentrate on the case for most of the 

coagulation takes place between pairs which lie in, or nearly in the plane 

of the shear flow. 

The quantity in (8.9) determines 

the amount by which the ratio h(~)/h (~) differs .from unity. From figure 
o 

(5.5) it can be seen that f(~, ~ ) is approximately constant outside the 

interval 

(8.11) 

Thus pairs which enter V( i) at points upstreaJY\of ~ = 1200 in the plane 

of the shear flow, move al r ng the undisturbed trajectories of force-free 

o pairs until the azimuthal angle drops below 120. The pairs are then 

drawn towards the central sphere, and if they do not become attached to 

the central sph~re they leave the region given by (8.11) on an undisturbed 

trajectory with a reduced value of h ( nit.., ). 
o 

The value of h (n/2 ) associated with the undisturbed trajectory o . 

on which a pair enters V(~) is found by substituting the expression (8.4) 

for h (~) in the boundary condition (8.8), which gives 
o 



I. 
I 

1·0 

$(11';2)= 60 
o 

Figure 5.5 The function f(0~(7r /2)) which appears in the equation 
- (8.9) describing the trajectories of pairs i.n veri.). 

le:! 



(8. 12 ) 

The angle can be related to the polar angle 8 1 at 'vhich 

the trajectory enters V(~) with the aid of the expression (7.9). 

describing the orientation of a nearly-touching sphere-pair, which gives 

(8.l3) . 

Combining the expressions (8.12) and (8.9), we get an expression 

for h(0) in terms of 0, e(n/~ ) 
I 

and h~'~: 

where 

and we have replaced h (0)2 by the expression (8.4). 
o 

(8.14) 

(8.15) 

In figure (5.6) are shown trajectories given by (8.14) for the case 

The angle O2 at which a trajectory leaves V(~) may be found by 

substituting 

cP = <P2 cod 11. = h.* 

in (8.l4),which gives 

(8.18) 

'vhere 

(8.19) 



(8. 12 ) 

The angle can be related to the polar angle 8, at ~~hich 

the trajectory enters V(~) with the aid of the expression (7.9) 

describing the orientation of a nearly-touching sphere-pair, which gives 

ta(\. e(rr/2 ):;: ton 9, J' - . ~45 cosl.~\ (8.13) · 

Combining the expressions (8.12) and (8.9), '\le get an expression 

for h(O) in terms of 0, e(n/~) 
I 

where 

and h"'~: 

and we have replaced h (0)2 by the expression (8.4). 
o 

(8.14) 

(8.15) 

In figure (5.6) are shown trajectories given by (8.14) for the case 

The angle O2 at which a trajectory leaves V(~) may be found by 

substituting 

in (8.l4),which gives 

(8.18) 

'3 (<I>,e) (8.19) 
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The function g is illustrated in figure (5.7). Those pairs which enter 

v(cL) at angles 0 for which g is negative are drawn onto the central sphere; 

in other words, these pairs coagulate on their first encounter. 

With the aid of the func.tion g we can calculate the coordinates of 

points on the lower boundary of r ,for a given value of h*. Until 

now, we have left the value of h~( unspecified, and the remainder of this 

section deals with the problem of choosing a s'oitable h~':. In § 5.9 we 

combine the results of this and the previous sections to obtain the 

coagulation rate for a range of ~o3K values. 
H 

The expression (8.1) for e is valid if the pairs which pass 

through . r are only affected by Van der Waals forces while in the 

region V( cL ). This places a restrict ion on the minimum value of h~':. To 

estimate this minimum h*, we recall that pairs which lie in the plane of 

the flow are only affected by the attractive force in the part of V(~ ) 

which lies in the region 

This implies that the point on the lower ,-> - boundary in the plane of the 

o flow must have an azimuthal angle of 120 or more if the pairs which enter 

. ~ in the plane of the flow are to be effectively force-free at points 

outside V(!.- ). We shall take this as the condition for the validity of 

equation (8.1), for we are mainly interested in the pairs which lie in, 

or nearly in the plane of the flow. 

For a given value of , the minimum value of h~': is that 

value for which the lower boundary of· r passes through the point 

8 = 11/2-

N:03k 
H 

any value of 

It is possible to determine this minimum h~': for 

by using the expression (7 . 13) for the angle 

6 2 (h*) at which ~ interesects the boundary of the region of closed 

trajectories together with the equation (8.18) ralating the entrance and exit 

angles of a trajectory. We shall obtain a useful upper bound on the 



1.0 

. -'4-

Figure 5.7 The function 9(0,8 (11 /2) defined in §5.8, for e (11/2) = 1f/2' 
The azimuthal angle 0

1 
at Hhich a trajectory enters v(cL) is related to 

the exit angle 0
L 

by 

9 ( 4\ , e (11';7)) = g( <P.<, ~e(11i'2)) • 
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minimum h~'(/a by a more straightforward method. 

From figure (5.6) it can be, seen that if ~ = 1, the trajectory 

which enters V( <L) at ~ = 1200 leaves at 56°. Those trajectories 

hi h f ~ 124° d b h 1 h d w c enter upstream ° ~ = are capture y t ecentra sp ere an . 

thus if the boundary of the region of closed trajectories in tlie plane 

of the flow intersect cL in th~ region' cb < 56 0
, the lower boundary 

of r lies in ' the regio~ 

12.00 <' <1>.( 12 Lr 0 ~ 

(since these trajectories are "spread out" and leave V( i...) in the region 

cb < 56 0
). If this is the case then the value of h* is larger than the 

minimum, and it is this value of h* (i.e. the value for which s = 1) 

which we shall use in the expression (8.1) for €. We are free to use 

larger values of (h*/a)' but as we have assumed that h*/a is small, 

there is no point in doing so. 

From the definition (8.15) of ~', we find that the value of ~~~ 

to be used in (8.1) is given by 

(8.20) . 

This expression for h-" " is only valid if the surface of the region of 

closed trajectories 
, 

intersects ~ at a point in the sector ~ < 56 0 , 

e;:Tr/z . Substituting 9 2 = 34°, and h . = 4 x lO-4a in the 
M,>" 

expression (7.11) for the boundary of the region of closed trajectories, 

we find that the minimum value r of h*/a for which (8.20) is valid is 

given by 
. hit = 

Q 

-~ 
Z·S x 10 • 

Thus a suitable value for the quantity (h*/a) which appears in the 

expression (8.1) for is given by 
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5.9 The Coagul a tion Rate 

We shall now 'describe the procedure for evaluating the terms which 

appear in the expression (8.1) for the coagulation rate. 

The thickness h~': of the layer V( tf...) surrounding the central sphere 

is given by 

(8.21) 
(repeated) 

The surface of this layer intersects the boundary of the region of closed 

trajectories at points on a circle about the X 2 axis (see figure (5.3)). 

The polar angle e 2 of points which lie on this circle is given by 

equation (7.13), and on combining this with the estimate (7.12) for h . , 
m~n 

we find " 

(9.1) 

The integral in equation (8.1) can only be evaluated numerically, and 

for this we requ~re the value of ~L(e) at a number of points on the interval 

11/2- - e;t ( h./Cl ') ~ e ~ ""/~ 

where (<4>L,ce), 8) denote the angular coordinates of a point on the 

lower boundary of r' 

To obtain these values, we begin by selecting a point which lies on 

the line given by equation (9.1) in the region 0 < n/Z • This point, 

shown in figure (5.8), has angular coordinates (e', q;, ') To shm07 how 

e' and \t>' are related, we use the identity 

cos 8:l... = sine s in~ 

(see figure (5.1)) which in combination \oJith the expression (9.1) for 

e 2(h~': ) gives 
la 

CP' -- 5j,n-I{~4-(4XIO-So./h.>\)·'4~ '34' J 
sin.e' 

(9.2) 



The. lowe.r 
r- bou()dor~ 

x, 

The c.,;rde .forMe.d b~ the. intersedion 
of cL with the boundol':J of the.. res ion of 

)-----------~Xl dos e..d traj ectori es . 

Figure 5.8 A sket .~h of the trajectory which crosses the lower boundary 
at (h*, 0(S!~ e" ) and passes through the point (h* ,4>',8') lying on the 
line of i~tersection of .:R.. and the boundary of the region of closed 
trajectories. 

01 

: 
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The trajectory ~hich passes through ,the point (e', G') on the 

surface ;L also passes through a point on the lower boundary of r 

The polar angle of this point is denoted by ell and by definition the 

corresponding azimuthal angle is ~ L ( elf). This p,oint is shown in figure · 

(5.9). 

From the equation (8.18) which relates the point at which a 

trajectory enters vU:,,) to the point of exit, we find that (/J (e") is 
L 

given by the implicit expression 

(9.3) 

where the function g is defined in (8.19) and the angle is 

given by 

(9.4) 

This last expression comes from equation (J.9) . Also from (1.9) we find 

that 

e" - to,{I{ tOrt e(iTh") 1 
- J I - ·1-LS cos'l.<t>L,.( ell) 

(9.5) 

Thus with the adi of (9.3), (9.4) and (9.5) we can obtain the coordinates 

of a point on the lower boundary of r 'given the coordinatei of a 

point on the line of intersection of ~ and the boundary of the region of 

closed trajectories. 

By repeating this procedure for a number of values of 9' in 

the range 

we obtain the coordinates (<PCS") e",) ... , of a set of points which lie on 

the lower boundary of r Combining this with the values of C\lv.,( 8~ ) 
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calculated with the aid of (7.l4) we can obtain the values of the integr~nd 

in (8.1) at a set of points over the range of integration. The integral 

can then be evaluated by using a suitable quadrature, and combining the 

result with the expression (8.21), for. h~'(/a ' we can calculate g£ 
r\.. .. H 

from (8.1). 

The values of obtained by this method are shown in 

figure (5.9). In each case, the integral in (8.1) was evaluated by the 

trapezoidal rule. Convergence was tested by halving the number of grid 

points, and in each caSe the subsequent variation in the computed value 

of was less than one percent. 

The limiting coagulation rate 

Although the rate at which pairs enter V( i. ) is proportional to 

the shear rate K, the coagulation rate is not linear in K because the 

percentage of the pairs entering V(~ ) which coagulate decreases with 

increasing shear rate. In other words, the area of the region r ~ 0 

as 3 
f:::.o. K -4 00 Thus the angles which 

H 
appear in the expression (8.1) for are approximately equal at 

very large values of , and the integrand in (8.1) is, approximately 

(9.6) 

Both 0u and 0~ are of order unity and thus the accuracy with 

which we can determine the difference {~~- · ~L} decreases as 
"3 

}:!:.Q. K 
H 

increases. For this reason, we have not attempted to compute the values 

of ~ beyond 
«H 

f.!:::.0:'K 
H 

= 10
6

• However, by slightly modifying the 

procedure described earlier for calculating £ we can determine the 

limiting ~alue to which asymptotes as 

To obtain this quantity, we use the fact that at very large values of 

, the trajectories of pairs which cross the lower boundary of 

r are only slightly perturbed by the Van der Waals forces. Thus we 
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Figure 5.9 The computed values of non-dimensional coagulation rate 
(marked by crosses). 
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have 19"- e'l « 

and 

where, as before, the angles (<1lJe"), e") , denote the coordinates 

of a point on the lower r - boundary through which passes the trajectory 
. 

that leaves vC£ ) at the point (h~':; 0',8') '(see figure (5.8)). 

An approximate expression for the azimuthal angle 0 ( e") is obtained 
L 

by substituting 

in equation (9.3), which gives 

~L = 1\- CP' + sf fCTI- (\)', e(t1'/:t'~ - Je <i>\ O(1'!/;2.1)~ 
2.7,- 53 ~ 

act> 

(9.7) 

(9.8) 

where we have used the expression (8.19') for g. Similarly, e 11 can be 

obtained from (9.4) and (9.5) by neglecting 0«(0" - 8')2) and OC [0 -
\" 

(n '- 0') J 2) terms. The value of 0 (8 ") is then obtained with the aid 
u 

of equation (7.14) and combining this with the .value of 0~ given by (9.8) 

we find that (0-$) has the form, u L 

<\lce ") - <j>(e") = A(e") H 
u L j-J-Q)K. (9.9) 

Thus the integral in (8.1) is proportional to , and we have 

calculated the constant of proportionality by calculating the quantity 

A( 8 ") for a number of vaLues e 11 over the range 

1* 
1rh. - 8'].( ~ ') < B" < 11/:;1, 

and integrating by the usual quadrature scheme . Substituting the 

resulting exp r ession for the integral in C8 . l), we find that the te rm 

vanishes from the expression, and the non-dimensional 

coagulation rate has the value 
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as 

This limiting value is indicated by a broken line in figure (8.9). 

The limiting coagulation rate can also b~ estimated directly from 

the expression (4.9), wh1ch in the absence of Brownian motion, becomes 

-e :: . ~ ~e (r::.)( yt(r) + itr))·n.dA 
.b 

(9.10) 

where ~ denotes a closed surface enclosing the central sphere. In this 

case we take .2J . to be the surface of the region of closed trajectories. 

At very high shear rates the pair density function e(~) at points on ~ 

has approximately the same value as would be obtained with force-free 

pairs, and from (6.6) we have 

(9.11) 

where q(r) is given by (6.7) and has the asymptotic form given by (6.8). 

Substituting the expression (9.11) for e in (9.10) and u~ing the fact 

that the velocity VI of force-free pairs is parallel to ~ at each point 
'" 

on the surface, we get 

-e= rt2..~ q(r-) ;((!:).r-..ciA 
~+ 

(9.12) 

where .2J+ denot es the part of ~ which lies in the region X 2 > O. 

Both q(r) and V"(r) diverge as r -') 2a and thus the integral in 

q. 
(9.12) is dominated by the cont ribution from the part of ~ which is 

close to the central sphere. In this region V" and q are given 
'" 

approximately by the asymptotic expression (2.13) and (6.8), and 

substituting these formulae in (9.12) we obtain 

'€ = n..,2.H · ~ r.n.dA 
1. (1'7~ { 1 ' 2.q 2.l.y t,/v-o .-6+ h../o ) lo~ (o/h..) j 

(9.13) 

The quantity ~ . nciA is approximately equal to the projection of the 

area element ciA on the central sphere, i.e. 
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where O2 is the azimuthal angle corresponding to the polar angle e 2' 

shown in figure (5.1). Substituting this result in (9.13) and using the 

approximate expression (7.11) which relates the distance h of the surface 

H 
/~ from the central sphere to the angle e 2, we find 

where 

. 5 
4- x \0 

(9.14) 

(7.12 ) 
(repeated) 

Using a conditionally convergent scheme (based on the trapezoidal rule) to 

est imate the integral in (9.14) '-le have found 

~ :: 2, .D4 x 10S' • 
I\,'l:H 

As both method for computing the limiting coagulation rate involve 

simplifying assumptions, the six percent different between the two 

computed values is quite acceptable. 

Previous Theoretical Work 

The first theoretical investigation into the effect of shear flow 

on coagulation was carried out by Smoluchowski (1917), who neglected the 

hydrodynamic interactions between the pairs. He assumed that particles 

translat.e with the bulk fow and coagulated upon "collision" with other 

particles. Thus the pairs which coagulate lie within a circular cylinder 

of radius 2a, centred on the XI axis in pair space. We shall refer to 

this cylinder as the "collision cylinder". The coagulation rate is simply 

equal to the rate at which pairs pass through any cross-sec~iona1 area of 

the collision cylinder, and is given by 

-e.::: 16 n,t. Ko!> • (9.15) 
--3-
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Curtis and Hocking (1970) attempted to improve on this analysis 

by taking into account the hydrodynamic interactions between the particles. 

These authors realized that only a fraction of those pairs which move 

within the collision cylinder will in fact coagulate. Unfortunately their 

work is based on the erroneous expression 

(9.16) 

for the coagulation rate, where E is the fraction of the cross-sectional 

area of the collision cylinder at points far upstream, through which pass 

the pairs which eventually coagulate. This expression does not take into 

account the fact that pairs do not all move with the same velocity. The 

remaining theoretical section of that paper is devoted to the calculation 

of the quantity E, rE-fer red to as the "collison cross section", and there 

is no way to compare their results with the values of coagulation rate 

calculated here. 

In addition to the error in the expression (9.16) for ~ , Curtis 

and Hocking were unaware of the region of closed trajectories, and hence 
"-

they did not realize that some of the pairs which do not coagulate on 

their first encounter coagulate when they are brought together again by 

the bulk flow. 

5.10 Conclusion 

In this chapter we have studied the effect of shear rate on 

, coagulation for the cases ' 

and 

3 
/0.0 K « I 

H 

(f:!:cfK ) H-a3K~ »>1 . 
H kT 

From these investigations we can construct a qualitative picture of the 

effect of shear on coagulation for the entire range of shear rates. 

At zc r. o shear rate, t he quantity is given by the 
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expression (5.10), which has the asymptotic form 

~ 16 kT 05 II -4 00. 
n..2.H 3" H / 109 kT H 

H 

In § 5.5 we mentioned that the slope of the curve #~ 
r\.'H 

(5.14) 
(repeated) 

3 
vs ~ 

H 

is zero at = 0 because the coagulation rate is unaffected by 

the direction of shear. 

Combining this information with the results obtained for high 

shear rates, we find that the curve of is likely to have the 

form shown in figure (5.l0)~ 



5 
2. .19;< 10 

-----------------

Figure 5.10 The likely form of the coagulation rate _curv~. 
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CHAPTER SIX 

THE EFFECT OF ELECTRICAL FORCES ON 

THE MOTION OF PARTICLES IN SHEAR FLOW 
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6.1 Introduction . 

In the previous chapter we mentioned that particles suspended in a 

liquid are generally charged, and that this charge gives rise to a 

repulsive force between the particles. It is these electrical forces 

which are responsible for the stability of most suspension~, but as we 

were interested in chapter 5 in the process of coagulation, we assumed 

that the electrical forces "had been effectively removed by the addition 

of electrolyte to the suspension. 

This chapter is concerned with the effect of shear flow on a 

suspension of spherical particles in which there are significant electrical 

forces. As before, we assume that the suspension is dilute and therefore 

that interacting pairs of particles are unaffected by the other particles 

in the suspension. Our aim is to determine the effect of shear rete on the 

relative motion of these interacting sphere-pairs, 

Brm·mian mot ion." 

in the absence of 

The chapter begins with a description of the electrical force between 

a pair of spheres in suspension. It is shmm that the range of action of " 

this force is characterized by a length D, known as the "Debye length", 

which depends on the concentration of ions in the suspending medium. We 

shall be concerned with the case 

D«o 

where a is the particle radius. If this condition is satisfied, the 

electrical forces only affect the motion of nearly- touching pairs, and as 

we have seen in chapter 5, the equations describing the motion of these 

pairs have a relatively simple form. 

In § 6.3 we combine the expression for the Van der Waa1s force 

between a pair of nearly touching spheres with the formula for the 

electrical force for the case D « a, to obtain the total force between 

a pair of particles. By substituting this result in the expressions derived 

in the previous chapter for the relative velocity of a nearly-touching 
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sphere- pair we obtain the equations of motion of these pairs, and in 

§6.4 some numerical solutions to these equations are presen~ed. 

It is shown that at low shear rates, the bulk flow simply provides 

a mechanism for ' bringi~ pairs together. The electrical repulsive forces 

prevent the pairs from coming into contact and instead they orbit each 

other with an average separation distance of the order of D. ,These orbits 

become unstable at 'higher shear rates and the pairs are torn apart. At 

still higher shear rates the flow pushes pairs together with such force 

that some coagulate. In § 6.5 we obtain a lower bound· for the shear 

rate at which the particles are torn apart, and an approxlmate expression 

for the shear rate at which pairs begin to coagulate. 

6.2 The Electrical force between a pair of spherical particles 

In calculating the force between a pair of particles we must take 

into account not only the charges of the particles but also the "distribution 

and type of ions in the solvent. The ions tend to cluster around particles 

of opposite charge and so "neutralize" the particle charge. This layer 

of counterions ~hich surrounds each particle is referred to as "the 
" . 

electrical double layer" and it is the thickness of the double layer which 

determines the range of action of the electrical force between particles. 

In equilibrium, the ions in the solvent are distributed according 

to the Boltzmann equation. If there are only two types of ion, of valency 

+ v and - If reipectively, then their number densities are given by 

(2.1) 

(2.2) 

where n is the numter density of ions of either type at great distances 

from the particles, ~r(~) is the potential at a point ~ in the liquid, 

e is the charge on an electron, T is the absolute temperature of the 
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system and k is Boltzmann'~ constant. 

. The potential ~ is related to the charge density e by 

Poissons equation 

2 V IV = - 4-lTn . -Cl:: (2.3) 

where E is the dielectric constan~ of the solvent. Substituting 

e :. ev(rt. - rlJ 

. in (2.3) and using the expression (2.1) and (2.2) for n+ and n we obtain 

the differential equation for lV 

v\ = 8nevn sinhCevW) 
£. KT 

If the condition 

evW « I 

kT 

is satisfied, we can replace (2.4) by the linear equation 

, 

where 

, 
D = (ekT \~ 

01Tn. e"'''Jl.) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

is called the "Debye length". In the work that follows \-]e sha11 assume 

that the condition (2.5) holds and therefore that equation (2.6) is 

valid. 

The boundary conditions associated with equation (2.6) are 

at points far from the particles, (2.8) 

and on the surface of each particle, '¥ has the uniform value 'Vo 

In equilibrium, the quantity ~~ is determined by the concentration 

of certain types of ions in the solvent. For example, the potential of 

Silver Iodide particles in water is determined by the concentration of 
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Silver or Iodide ions . in the solvent (Ven~ey and Overbeek (1948) pp 47) 

and is unaffected by the concentration of other ions. The position of 

the particles has no effect on the value of Wo , and thus if the 

particle configuratiorr is altered, the charge density on the particle 

surfaces alters in order that the potential of the particles remains ~~. 

The solution to equation (2.6) and the associated boundary conditions 

for a single spherical particle of radius a, alone in an infinite liquid 

is given by 

where r is the distance from the centre of the particle. The potential 

decays on a length scale D, and D may be regarded as the lIdouble layer 

thickness ll referred to at the beginning of this section. If the surfaces 

of a pair of spheres are separated by a distance greater than several 

Debye lengths, the field of each particle is approximately given by 

(2.9) and therefore there is no force between the particles. 

To find the field ~ surrounding a pair of spheres at smaller 

separation distances, we must solve equation (2.6), subject to the boundary 

conditions (2.8) arid 

on the surface of either sphere. 

The charge Q on either particle is related to the potential 

by Gauss' la,~ 

(2.10) 

where n is the unit normal and A denotes the surface of the particle • 

Verwey and Overbeek (0948) pp 144) have shown that if satisfies 

(2.6) the electrical potential energy of the pair of particles is given by 

V(r',) = W;( Q(CO) - OCr)) (2.11) 

'--~ 
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where r denotes the distance between the centres of the spheres, and thus 

the force acting on either particle is 

(2.12) 

Thus from the solution of equation (2.6) for the field W surrounding 

a pair of spheres, we can obtain the electrical force of repulsion between 

the spheres. 

The equation (2.6) for ~ is linear, and from (2.10) it can be 

seen that Q is proportional to , and thus (2.12) may be written 

in the form 

(2.13) 

For the case of "thin double layers" (D « a), the force between 

the particles is only significant if the particles are nearly touching, 

and is dominated by the repulsive force between parts of the two surfaces 

. which are nearly in contact. Those surfaces can be locally approximated 

by parallel flat plates, and with the aid of the expression for the force 

between a pair of plates, it can be shovm that · (Verwey and Overbeek (1948) 

pp 56) 

(2.14) 

where h = r-2a is the minimum distance between the two surfaces. 

Formulae for FR have ,been obtained for other limiting cases 

(Russel (1976» but \l7e are mainly concerned with thin double layers and 

we shall not repeat these formulae here. 

The expression (2~14) for FR only holds if the linear equation (2.6) 

for 1V is valid. Verwey and Overbeek (pp 140) solved the exact equation 

(2.4) for 1V numerically for the case D « a and found that the expression 

(2.14) for the force is approximately correct if 

---..-



ye Wo ~ 2 
kT 

1b5 

If the ions have a valency of one, this constraint implies 

'Wo ~ 50 MY. 

6.3 The net force between a pair of particles 

Opposing the electrical repulsion between particles is the Van der 

·Waals force, which for a pair of spherical particles is given by 

where 

and H is the Hamaker constant. 

(5.2.9) . 
(repeated) 

(5.2.10) 
(repeated) 

r 
The force F

T
( la) between a pair of particles is the sum of the 

Van der Waa1s attraction and the electrical repulsion, which from (5.2.9) 

and (2.13) is given by 

(3.1) 

The form of the force-distance curve is thus determined by the parameters 

'2 
Ell{; (I and D/a. 

H 
If the particles are nearly in contact the Van der Waals force is 

given approximately by 

(see (5.2. 11) ) , 

and combining this with the expression (2 . 14) for the electrical force 

between a pair of particles ~ith thin double layers, we find that 
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F:(h.')~ Ha {-.l 
T 12D1. · h. 2. 

(3.2) 

where h' = hiD is the minimum separation distance between the particles 

in Debye lengths, and 

( 3.3) 

The result (3.2) is valid if both hand Dare « a. 

Although we are only concerned with the case of spherical particles, 

we note that the expression (3.2) for FT holds for any pair of nearly 

touching particles, provided the surfaces are locally smooth. In this 

case the quantity a : is an effective radius, given by 

(3.4) 

where b , and b 2 appear in the quadratic expression for the thickness of 

the liquid layer between the particles (c.f. 2.~ . 1 .»). This result 

follows from the fact that both the Van der Waals and electrical force 
""-

between a pair of nearly touching particles are dominated by the forces 

between the parts of the particles which are nearly in contact. 

From (3.2) it can be seen that the form of the force-distance curve 

for a pair of nearly- touching particles is determined only by the parameter 

. ~ Several such curves are illustrated in figure (6.1) for differep-t 

A values, and from that figure it can be seen that if 

i\ '> 2. .0g (3.5) 

there is a repulsive force between particles over an intermediate r ange 

of separations. Thus for any ~ > 2.08 there are two separation distances 

at wh i ch FT = O. The larger .of these separations corresponds t o a stable 

equilibrium point and is denoted by hE . 



0·2 

0·\ 

~d' 
Ha 

-0-1 

-0·2 

-0·3 

.A=4. 

Figure 6.1 Curves describing the variation of the force FT between a 
pair of particles with separation h, for various values of the 
parameter A • Positive values of FT correspond to repulsion 
between particles. 

* . 

. .. ~ . ',' . .: . ". .., " , 
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Substituting the expression (3.3) for ~ in (3.5), we find that 

for Vo -15 = 50 mV, and H = 10 e~S5 the constrai~ (3.5) is satisfied if 

D)'OIS Mic.rons 

In deriving these results we have assume that Dja « 1, and thus if 

A = 2.08, the formula (3.2) for FT.is onl~ . valid if 

a ~ I 'Mlc.ron • 

From (3.3) it can be seen that "'A is proportional to D and therefore as 

A increases,the range of particle sizes for which (3.2) is valid 

decreases. 

Before proceeding to the description of the relative motion of sphere 

pairs in shear flow under the action of the force given by (3.2)~ we 

shall pause to consider the implications of an assumption made in chapter 

five. In that chapter it was assumed that the electrical forces between 

the particles could be removed by the addition of sufficient electrolyte 

to the solvent. From figure (6.1) it can be seen that, for the case 

of thin double layers, the assumption is valid if 

'A<O.I 

and with the aid of the expressions (3.3) for ·/I, and (2.6) for D, this 

bli!comes 

for lVo = 50mV, 

which for the case of NaCl is equivalent to a concentration of 5.8 gms/l' l.tre. 

6.4 The relative motion of sphere pairs in shear flow 
--~~,----~~----~~~~~~--~~~-

In this section we shall describe the effect of electrical and 

Van der Waals forces on the relative motion of nearly-touching sphere 

pairs in a shear flow. ' We assume that the expression (3.2) for the force 

between a pair of particles is approximately valid, even though the 

particles are in motion. Russel (1976) has shown that this is the case 

: f both the Electric Hartman number and the 

Peclet number oU 
wkT 

are small, where w is the mobility of the ions 
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and U is here the typical velocity in the thin liquid layer between the 

spheres. 

The requirement that the Peclet number be small places a restriction 

on the magnitude of the velocity differenceV between the centres of the 
'" 

sphere-pair. By the methods of lubrication theory it can be shown that 

the component of y along the line of centres of the pair Vr gives rise 

. to a velocity of order ~~ . . in the liquid layer~ Superposed on 

this squeezing motion is a sheaiing m~tion which arises because spheres 

. slide over one another as the pair rotates in the shear flow. This motion 

is unaffected by the force between the spheres and from expressions 

derived by Batchelor and Green (1972(a) §S) it can be shown that this 

sliding motion gives rise to a velocity [n the liquid layer of order 

q k , where K is the shear rate. Thus if the Peclet number 
log CCVh.J 

is to be small, we must have 

a'2.K « I 

wkTlo~(~J 
and \ / r.:::- // , 

v, CJ ~ .?, _ / " " I • 

fI./wkT . 

In the work that follows, we shall assume that these constraints are 

satisfied, and therefore that the expression (3.2) for the force between 

a nearly touching pair is valid. 

If the suspension is at rest,the force FT between the pairs causes 

them to move with a relative velocity V", given by 

')t'C.!::) = G- (1""/0") r:; r 
3rT'f.J.Q 

(5 .• 2.7) 
, (repeated) 

where r is the unit vector in the direction of the line of centres of the 

pair. If the pair are nearly in contact, G may be replaced in this 

expression by the formula (5.2.8) and on substituting the expression 

(3.2) for F, we obtain 

11 , • -h} 
V Cl--..,) = Hf.t. { !Le 
~ { '3'Tr f...I. 0. D 1. -I -'-t--e-·"T'I\"-' 

(4.1) 

----



The relative velocity of a sphere pair in shear flow under the action 

of the force FT' is found by combining (4.1) with the expressions(5.2.4) 

and (5.2.5) for the relative velocity of a force-free pair in shear flow, 

and on substituting the asymptotic formulae (5.2.6) for A and B we get 

and 

where 

d~::: 8.154. sinq, 'coscp sin.4eh.' + R(7I.e~j - -' ) h.' 
dt. . r 1 + e-h: ~ 2 

dill. = - [·7-91 - '594. cos2.<PJ 
dt 

de = '5'14.. sine case sin~ cosq> 
-dt 

= H 

(4.2) 

(4.3) 

(4.4) 

ISilJ-LClD"K 
- -1 t is the time in units of K ,and the angles G and 0 describing the 

orientation of the vector r between the centres are illustrated in figure 

(5.0. 

As mentioned in chapter 5, the rate of rotation of a sphere pair 

is not altered by the force between the particles, and the angular motion 

of the pairs is described by 

where 8(11 ) 
l.. 

tan e (4)') = ton e Crl';,? ') 

)1- . 11...5 COS~4> 
, 

is the azimuthal angle of the pair at 

(5.7.9) 
(repeated) 

Dividing (4.2) by (4.3) and eliminating sin e with the aid of (5.7.9), 

we obtain the differential equation for hI: 

-h.' 
= -Bh.'( ~err - -kl.) 

·1'1'1-- ·S%.c.oS'l.4 

- 8'154. Sin (j) cos qd:or\:2.e (%-') h.' • (4.5) 

('r9i- - '5~4- c.os"','V>C I +tor\:;:-e(~) - ·1-4Sc.oshpi 

By numeric~lly integrating this equation we have obtained the 

relative trajectories of sphere pairs for various values of ~,A and 

" 
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e(~/~J' In order to describe these trajectories we shall again use 

the concept of a pair space together with the notation introduced in 

9 5.3. Thus the "trajectory of a pair" is the path followed by the point 

in pair space which corresponds to that pair+ 

Since equation (4.5) . is only valid for nearly-touching spheres, we 

can only describe the trqjectories of pairs which lie in a thin layer 

surrounding the central sphere. A family of such trajectories for ~ = 307, 

are illustrated in figure (6.2). From that 

figure it can be seen that pairs which enter the region hiD < 12, 0 > ~ 

move onto a common closed trajectory. Although we cannot describe the 

motion of the pairs which are not nearly touching, we can show that the 

only pairs which execute closed trajectories in the plane of the flmJ for 

this value of (~, ~)are those which move on the closed trajectory shown 

in figure (6.2). To prove this assertion~ we note that any pair which 

moves on a closed trajectory must pass through 'the region of closed 

trajectories'defined in §5.6, and once in that region, the pair cannot 

escape without passing into the region h < hE' where there is a force of 

repulsion bet~l7e'en the particles. From figure (6.2) it can be seen that 

all pairs which enter the region h < hE move onto the closed trajectory 

and therefore this is the only closed trajectory in the plane of the flml7. 

The trajectories of pairs for ~ = 307, A = 10 and 

are similar to those shovm in . figure (6.2), except that the closed trajectory 

is more circular at lower values of 6CJf) Thus for )~ = 10 and ~ = 307, 

the shear flow brings pairs together and thereafter the pairs execute 

closed orbits with a mean separation of order hE. 

As ~ is increased. (i.e. as shear rate is decreased) beyond 307 the 

closed trajectory becomes less distorted, as can be seen from figure (6.3). 

+ There are actually two points associated with each pair, here we refer 
to the point which lies in the half-space X 2 > o. 

• "':, •• ~.~- •• '-' •• ~. " .... ~ ••• !... •• :-,; ': ~ ,:....!...!-•• .., -
I 
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'tt' 1r'h,. 0 

Figure 6.2 The relative trajectories of pairs which lie in the plane 
of the flow (8 (TT !:2.. 1= TT/z. ) for ~ = 307 A. = 10. For 
this value of A ,the separation h at which the force 
is zero is ~ 5. B. This "equilibrium" separation is 
indicated by the broken line. 
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Figure 6.3 The effect of variations in ~ on the common trajectory 
for G (iT/~) = 1Th ,A = 10. For p ~ 307, this common 
trajectory is also the only closed trajectory in the 
plane of the flow. 
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However if ~ is decreased below 307, . the closed trajectory for A = 10 

appears to become unstable (see figure (6.3)), and pairs 

on this traject ory move a'part rapid~y in the region and 

, are soon separated by a distance of many Debyelengths. 

We cannot predict the path of the trajectories beyond this point, 

for unless D/a is extremely small, the equations (4.2), (4.3) and (4.4) 

are not valid at these large separations. The value of ~ at which the 

' closed trajectory is pulled into the region hiD » I (where the 

electrical forces are negligible) is denoted by ~1( A) 9 (1I/z)). It 

seems likely that the Van der Waals attraction may hold pairs on closed 

orbits for ~ < ~* and that at a critical value of ~ (which depends also 

on D la) the pairs are torn apart by the flmv. The quantity ~ ~~ provides 

an upper bound for this critical value, and in the follml1ing section we 

shall obtain an approximate formula for ~~'(. 

For ~ < ~* some of the pairs which enter the region in which the 

electrical forces are significant still join a common crajectory (see 

figure (6.4)), but as ~ decreases the fraction of pairs which move onto 

this common trajectory decreases, and the angle ~ at which that trajectory 

leaves the region of significant electrical forces increases. 

Finall~, at extremely high shear rates, the pattern of the trajectories 

changes again, for pairs are pushed together with such force by the 

shear flow that some are able to overcome the repulsive force and coagulation 

occurs. The value of ~ at which pairs begin to coagulate is denoted by , 
** f5 C~ ,8 ("rr)). The form of the trajectories at th~se very high shear 

:l.. 

rates is illustrated in figure (6.5) for the case A = 10, ~ = I « ~**) 

6.5 Approximate formulae for @~'( and @1:-k 

By numerically integrating equation (4.5) for a number of values of 

~, with A.. and held fixed, we have been able to determine 

• _. _ ~ _. .' • ., • ,: , • • J ~ __ :"''''''' " 
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Figure 6.4 Trajectories in the plane of the flow for A= 10, ~ ~ 100. 
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Figure 6.5 At very high shear rates, some pairs coagulate. The 
trajectories shown in this figure are those of pairs 
which lie in the plane of the flow for ~ = 10, P = 1. 
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~ .. ( and p~b'<' for values of A and e (n I~ ') The results, for 

9(~/ZJ= ~Z are shown in figure (6.6). From that figure it can be seen 

that as 0, and for A. < 2.08 the 

phenomena described in the previous section do not occur; pairs simply 

coagulate at all shear rates. 

Although it does not seem possible to obtain expression for ~* 

and ~m'<' directly from the equation of motion of the pairs, we can 

obtain useful bounds for these quantities. 

We begin by rewriting equation (4.5) in the form 

-& n!FCh.') 
'"1-'1+- ·S<14-C.OS":l.4> 

where FCh.''\ D .... c (L ') " -~ 
J = 12 I)' rt, ::; ~;- I is the non-dimens iona1 force bet,,,een 

Ha I + e.-I-,; 1T2.. ' 
the pairs. 

The pairs move in the direction of decreasing 6 and therefore if a~ 
Cfci) 

is negative at a pOint,pairs which pass through that point are moving 

apart. He can divide pair space into regions in which pairs are moving 

apart or coming together. The intersect ion of · these regions "7ith the 

e = 11 
2.. 

plane is shown in figure (6.7) for ~ = 210, A. = 3. 

On the boundaries of these regions dh.' 
c1cp 

= 0 and therefore the 

coordinates (h', ~) of points on the boundaries satisfy 

is no 

these 

stable 

Fe h.'') 

From figure (6.7) 

way for pairs to 

regions there is 

( 6'154- sincp C05~ tan?e(~)_ 
~( I + ton'l.e(~J - ·:r45"cos1.~) 

it can be seen that for ~ = 210 and 

pass from the region B to the region 

an area in which cih.' > O. Thus 
d4l 

closed trajectorT for this value of ~. 

(5.2) 

71. = 3 there 

A, for between 

there is a 

The coordinates of points. which lie on the boundaiies of these 

regions for ~ = 3 may be found from (5.2) together with the force distance 

curve for fL = 3 shown in figure (6 . 1) . If f/J < iT ,the expression (5.2) 
2. 
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lOD 2.00 . . 

Figure 6.6 The variation of ~~.( and ~~'d( with A ,for e(TThJ:' 'Tih... • 
If A. > 2.08, then at 10'17 shear rates (~ > ~~.(), the point 
(~,A ) lies in region I and the flow brings pairs onto a 
closed trajectory with average separation of order h.E • 
For ~ < p**, (~,~ ) lies in region 11 and the flow pushes 
the pairs together with such force that some coagulate. 
Finally, if ~*~ < P ~ ~* (region 11) the pairs either 
orbit each other with an aver age separation» hE' or are 
pulled apart by the flow, depending on the va'lue of .D/q 



/ 
/-. 
J 

Figure 6.7 We can divide pair space into regions in which pairs move 
together or apart. The intersection of these regions with 
the e = ~/~ plane is shown in this figure for the case 

A = 3, ~ = 210 and k-/D < 8. It can be seen that no 
trajectories can pass from region B to region A and hence 
there is a unique closed trajectory at this value of ~. 
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for F(h l
) is negative and from figure (6.1) it can be seen that there 

are at most 3 values of hI (for a given 0) which satisfy (5 .2 ) . If ~ is 

~ 

decreased with ~ held fixed, two of those points converge and eventually 

meet at the local minimum of the force curve. Hence as ~ is decreased 

the regions A and B come together. 

The angle ~ at which the regions first touch is the angle at which 

sin et> cos1> 

is a maximum. On determining this angle and substituting in (5.2), we 

find that the value of p at which A and B first come into contact is given 

by 

4..071 sin2 e(7T/Z) (5.3) 

E. CA.) ) I - ·1-4-5 (,0£,29 (('(/0') 
fYll" ,~ 

where F . ( 7\. ) is the local minimum value of F (Le. the maximum attractive ml.n 

force for h > hE). At , values of ~ below that given by(5.3) the closed 

trajectory may become unstable, for pairs can cross from B to A. Thus 

the expression (5.3) gives an upper bound for ~~ 

Similarly it can be shown that an upper bound of pid: is given by 

(5.4) 

where F (~J is the maximum non-dimensional repulsive force between the 
rY\a~ 

pairs. 

By comparing the bounds ' (5 . 3) and (5.4) with the computed values 

of ~* and ~** , we have found that both quantities are approximately given by 

(5.5) 

" 

.. ' .. , ....... ..:.. ... ~., ..... t ... r'~, :~'''''-':~ __ ;'''';·''''f'':·l:c:~",~",~; ..... ~·N~~:.t.~~~ .. ·:l''':;>·'': If' " • ~ ... ~_ .... '" •• " 
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I have been unable to find in the literature any previous 

investigation into the affect of electrice.l and Van der Waals forces on 

the motion of particles in she8;r flow, and the work presented here is 

merely a preliminary investigation ,int6 this subject. One possible topic 

for future research is the determination of the critical shear rate at 

which pairs are torn apart by the flow. This quantity has some practical 

value for if a suspension is left standing for 'some .time, the force 

between the particles 'will draw many of them together a~d they will then 

be held by ~he force at the equilibrium separation distance hE' To 

"redisperse" the suspension by shear f10\07 we must shear it at a rate in 

excess of this. critical shear rate; ' at lower shear rates, the shear flow 

will simply assist the forces in bringing particles together, 
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A1 

Details of the Numerical Solutions of the integral equations in Chapter 2 

1. The Solution of equation (2.4.8) for the temperature on the surfaces 

of a pair of nearly touching, locally spherical particles 

The equation to b~ solved is 

(1) 

where 

~:TT 

...!...- ( cr'd <P 1 

11 J (0--:<-+ 0-- ,2 - 2a-'O"'Cos<l>,)"';?. 
(2 ) 

o 

and K is the complete elliptic integral of the first kind. The temperature 

in either particle is approximately uniform at large distances from the 

contact point ( v = 0), Le. 

and thus we n~ay replace equation (1) by the approximate expression 

CJi: 

f I-{Co--') ICo;; )do-' + 
7L +- (o- 1)2. 0" 

o 

where C{»l. 

To determine the function f 

00 

r l( lYra') do--' 
j A. + d':t 
0;: 

(3) 

over the range (o, OL ) we first 

replace the integral over that interval in equation (3) by a quadrature 

involving the values of f at a number of grid points. A set of 

linear equations for the values of J at these grid points is then 

obtained from the requirement that equation (3) be satisfied at each of 

the grid points. This method for solving an integral equation is known 

as "the quadrature technique" (Atkinson 1976). 

We have used a quadrature based on a modified rectangle rule, viz 

1 

., 
._ ...... .;; ... ~:,,~ .. :_._t;~;f;'-~~~~~iy.;if~~~J~:~~4' .. 1,<..~~~~..r)':r'Z~!i:::t;~:t~J~~l.t~:!%~.l~:,l·":;'··~ > }' _., '1iJL',(~.! - .] " ' " ',-
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0"' ... 

(4) S I - f(()'~ 1(0;: ~dcy' ::;:,; 
'A.+ 0-'1. 0' 

o 

where 
~ 0"''1-

0-: =- o;'\-\ + 
J J 

2 

and 0-* 
J 

is one of the (N+l) grid points on (0, a: ). The grid points 

.. 
0-0 and are at 0 and ~ respectively. Equation (4) is 

approximately valid if the function I - f< ()) is approximately constant 
A. + o-l.. 

over each interval (0-* 0-'*\ 
.J ) .J1" I ) 

This functron is proportional to the 

flux density on the surface of either particle and thus it has a sharp 

maximum of 0- = 0, since the particles are nearly in contact at that 

point. Hence we require a greater density of grid points in the neighbourhood 

of the origin than elsewhere. A suitable grid point distribution is given 

by 

'* ' 0-: = L C5b. 
J N (-hl-"+~\ --J-:-::' ) 

(5) 

From the expression (2) . for the function I( cr'/er) we get, 

~ . 

f J('Y('/'1) d~' = ~{('1~ l)Kb'e')-I- E.(~2)} 1f 11< I (6a) 

o 

and 
'Y/ 

~I('Z/-rl)d1(1 = ~{1E(/'1).)-'} 
I 

(6b) 

where E is the complete elliptic integral of the second kind. The 
v-' Jl1r J l(O";;,;dO"'" in equation (3) were calculated with the aid 

~'* 
of the re1atio~s (6a) and (6b), and polynomial approximations for E and 

coefficients 

K (Abromowitz and Stegun pp 541-2) . 

The set of linear equations (3) were solved by a Gaussian 

elimination technique. Both the setting up of the equations and the 

solution were carried out on an IBM 370 using double precision. 

To evaluate the function pC A.) from the computed values for {(O]) 1 

we begin by writing the expression for p( i\.) in the form 
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~ . 

P(,,") = 2. r J( 0:-) o-d () 
J ?\. + 0"' 1-
o 

000 

+ 2. ( f(;) o-d() 
J.'i\..j.O-" 
~ 

(7) 

The integral over (0, et) in this expression was evaluated from the computed 

values of tea) using a quadrature which again. was based on modified 

rectangle rule. 

To estimate the second integral in the expression (7) for P, 

we require an asymptotic expression for J(~) as In 

we found that the leading term in the asymptotic expansion for 

To obtain the next term in this expansion we 

begin by writing the integral equation (1) for f in the form 

(8) 

The second integral in this expression is dominated by the contribution 

from a region surrouding the origin. In that region 

(see (2.4.7)) and hence 

00 fie ~i) I (O"'IQ"') dO" ,...., PCA. ') as . 0'"' ~ cc (9) 
i\ + 0-':1, er 

0 

The asymptotic form of the other integral in the expression (8) for l(c-) 

can be easily found by writing the integral in the form 
(5" 0.0 (J" 

S l( 0-.10-') do--' = 1:.. ( O"d«' 

O 
7l ~ 0'11. 0- J A. +- 0"'1-

o . 

+ ( I(0'/<y)-2cr'/~c.Icr' -I- r.l(O·~d)cll7l 
~ ).+&':1. ~i\+all. 

I '(la) 
109 CA t o") - 109 CA) + -.!... { ( 1(')(.)-11<. dy~ t · ( 1(.<.") _ ~ • 

The quant it y 

contribution to 

---;:. from the region 

= 
0-' (j" J).. + 'Xl. . J1.l.-\-";(J.j 

· 0 0'1. 0 er 

lex") - 2.-x. is and thus the 

-x'"< A_ . where £::.. « 1, diminishes as 0- - ';l 00 
O''1.A 

fixed). Beyond this region the quantity fonns 

I 

; .... .Jll. 

." ", ,~~,' ~I;":t:!,~~~~~*-?e~~@~4~~~~~~",,~~~~~U!lV·~~~·'::1·:';-:~~.~L.~~"-=:.~""-!1~)" ,>r"~' .. ~ :- -" . .-.,;;.~~ 
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a negligible part of the integrand, and thus the asymptotic form of 

equation (la) is 

00 

I re O"{O' J do-I "- 2 :103 0-' + _A ~ 10a.l Q S C" ~ 00 (11) 
A+- 0-1'). 0-- 0- ~ 

o 

where , 
A = r 1(-x) - :lX dx. 

J oX'" 
=2,.. e, 

o -' 

The value of A was obtained using a conditional convergence scheme based 

on Simpson's rule. 

On combining the asymptotic formulae (9) and (11) with the expression 

(8) for , we get 

+ (.<·8 - 109~ - PC7l.j) 
0-

Finally, on substituting this formula for f in the integral over 

in the expression (7) for P(A ), we find 

+ 

and from this fonnula we can calculate P (A.) from the computed values 5(0:;) . 

The accuracy of the computed value of p('A. ) was checked by calculating 

P with 45 and then with 90 grid points, and in each case, the two computed 

values differed by less than one percent. Varying the value of u~ also 

had a negligible effect on the value of P(A ), provided ~~ was neither 

too large or too small (if O'L is "too small" the error involved in 

replacing equation (1) by (3) is significant, and if is "too large" 

the grid points are too widely spaced and the relation (4) is not valid). 

2 . The solution of equation (2 .5.6) for the t emperature and flu x density 

over the surfaces of a pail;' of spheres, pressed together to form a flatspot 

We have solved the integr~l equation 
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co 

+ -!.J[r -f(,,,,)){...L - .J...1I(n'"d'l')l 
~ J 0 l U"1I) . 1("j 1,""'1' " 

( 13) 

1 

numerically, using similar methods to those employed in the solution of 

equation (1) for nearly- touching spheres. In this case the unknown 

functions ar e for 0 < '>(. < 1 and J,("() for 1 < '"1 < co 

The quantity is the solution to equation (1) for A = 0, (and 

with t he variable 0' replaced by r( (= 9 f:» ) and on the interval 0 < '7.. < 1 

we have ft==I - ~. 

In order to simplify the program for solving the equation (13) 

numerically, we define 

(14) 

, and equation (13) then reduces to 

0<> 

f; ~) = - ~ ca,("1')1(1/1)dl' (15) 

o . 

The aim is to find the function '07hich satisifes- this equation 

together with the constraints 

(l6a) 

and 

r 
Jor "l> \ (16b) 

This last constraint is obtained from the expression (14) fo r 31 

On the assumption that the contribution to the integral in (15) from 

the region L »1 is negligible we replace this integral equation by 

1L. 

r Cl r ,t)') Ih 'f, ) cl 'l) ' J Jll t . ·,'1 . l 

o 

(1n 



where "7L »1. 

The integral in (17) is then replaced by a quadrature, based on a 
~ 

modified rectangle rule and we get 

where 

. r~' 
:f;'('r/iJ = ~9(rz} J~ l("1'/'l.)d~' 

~ 
. -)j ~ 
~ -l(J~ - A. 

On replacing 

(18) 

by the appropriate 

expression (16a) or (16b) we obtain a set of simultaneous equations for 5J(c ) 

The function has a sharp maximum at the edge of the 

contact circle ( '1. = 1) and this maximum becomes more pronounced as 

Thus the grid points must be closely spaced in the neighbourhood 

of 1 = 1; a suitable distribution of grid points is given by 

for points outside the contact circle, and 

(;= 

for the (N, + 1) points on the contact circle where n,m > 1. By varying 

the parameters m and n we can adjust the grid point distribution; as m and 

n increase th~ points move towards the edge of the contact circle. 

As before the simultaneous equations were set up and solved, on the 

IBM 370, using a Gaussian elimination technique. The functions J{( (~) 

and L'.H",(f-,) (defined by equations (2.5.8) and (2.5".Q) were calculated 

from the computed values of 3,('Y(J) and fa ('1) using a simple 

quadrature, again based on a modified rectangle rule. 

To test the accuracy of the computed results we first calculated the 

values of using 50 or 60 grid points. The 

number of grid points was then doubled ('vith N, IN fixed) and the 

computations repeated. The computed values of and b.H ..... were 

considered to be acceptable if the relative variations in these values 

caused by increasing the number of grid points (generally from 50 to 100) 

or by doub ling or halving '7.1.... , were less than one percent . The 

values of the grid parameters n, m and '7L which were used in obtaini ng 
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these "acceptable" values of Ne. 

value of p, by trial and error. 

and 

As mentioned earlier, the function 

were selected, for each 

develops a sharp peak 

at "1 = 1 as p ~ 00 

obtain acceptable values of 

Thus the number of grid points required to 

.:N., and 6.Ji.rr> increases with p, and 

for this reason we have only calculated J-c. and 6~~ up ·to P = 100. 
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A2 

The numerical solution of the integral equation (3.2.16) 

In this section we describe the steps involved in the solution 

of the equation 

00 

= cd ~ + 'r1~)~(rp ~ .~ hC'l{') lo;:j1"7'-'7~d'7' 
-00 

(3.2.16) 
repeated 

for the flux density g between a pair of parallel cylinders which are 

nearly in contact with each other. 

Although the limits of the integral in (3.2.16) extend to too 

the integral is dominated by the contribution from a small region 

surrounding the origin. Hence we may approximate the integral by 

~ j~C'Y(I)lo911-1'ld'1' 'l 

-, 
where the limits :!:I are both convenient and large enough to contain 

the small interval which provides the dominant contribution to the 

integral. As g is an even function of we only require values of 

g in the range (0,1) and the equation (3.2.16) may be rewritten as 

, 
t = Cl(. ( ~ + ,)'(1.) 3("() + *= 1 gC1'){1o~ 11-":('\ + LoS ({"pr)} d~ I (1) 

o 

Using a modified rectangle rule, the integral in (1) is replaced 

by a finite sum involving the values of g at selected grid points in 

o < '7. < 1, and equation (1) becomes 'i' 

I : 0( ( ~ t "1t) 'il ('/.) + ~ t. ~!r(}J.{·1031"l< -1 \ .. 1"9 h.+ "l n cl'] 
. (; (2) 

=' A~J' ~(1j '> ~ 
1i~\ 

where At} = 0<: (~ + ,/-) 5~J' + ~ J { 10<3 11~- -1 \ 4- log ("'1~ +1>1 dt ~ 
~~ 

M 

U/~ 1 
(3) 
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and 

The integer N in the expression (3) for the grid points is equal to the 

number of grid points in (0,1) and the exponent ID determines the 

concentration of points about the origin. As g has a sharp maximum at 

the or igin, [nis chosen to be greater than one in or der that t here be more 

points where is largest. The set of simultaneous equations 

(2) with a = 104, were solved on the IBM 370 using Gaussian elimination 

h 
for various values of la. The non- dimensional flux between the cylinders 

is given by 

~ 

}{ ( C( \ h:. I ~ Zol ~ gc-'Od<. 
a. 0 

and with the usual rectangle rule this is approximated by 

Ij 

2. L3 Q ('Y) . ') ('I"] ... - "( . ') . u I;J lJ · \ J 
J ," 

The errors involved in the approximation of equation (3.2.16) by (1) 

decrease as th~ number of grid points is increased, and we may estimate 

the error in r( by observing the variation in the computed values of 

:H as the mesh size decreases. In each case the relative variation 

in caused by increasing N from 30 to 60 was less than 

one percent. 
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Appendix A3 

Deriving the Faxen-type expression (4.3.13) for the elastic dipole 

strength of a rigid sphere 

The starting point for this derivation is the expression (4.2.9) 

for the displacement at a po~nt in the suspension. On converting the 

integral over the volume ~ in (4.2.9) into a surface integral, and 

using the fact that ~ = g- at points in a rigid particle, we get 

~(z)= ~ g(~-~')'g-(:&').h. dA(~') + ~e(z) 
r 
u 

(1) 

where is given by (4.3.12). The "external field" ~E(~) 

is the displacement which would be obtained at ~ if the reference 

spheres (i.e. sphere j) could be replaced by matrix material, with 

the stress on the surfaces of the surrounding spheres held fixed. 

Our aim is to derive an expression relating the dipole strength 

of the reference sphere to the field ~e Since the sphere is rigid, 

we have 

(2 ) 

at points X on the surface of the sphere. Taking the first moment of 

equation (1) with respect to the centre ~o of the reference sphere, 

we get 

I 

J b!:(~)(~-';5o)clA(;{)= 
r 
J 

From (2) 'lie get 

5 {5 ~(~- ;f'), i (z'); ~(~')(i~ ~o') dAh,s>} cJA(~ I ) 
~L 7 (3) 

. + ~ ~~(~)(~- ~o)c1A('f). 
r 
J 

~ UC;O,..,(f - ~o~~A(~') ::: 

r. 
( 4) 

J 



To find Suo ( ?C )(~-'.' ) c1A (x ) 
'" E ...... """ ",;"l ....... 

f.' 

Taylor serie~ about fo 

, we expand u. (x ) 
-:=- - in a 

Evaluating the coefficients in this expression and using the identity 

associated with the elasticity equations, (Landau and Lifshitz (1970) 

pp 18) we get 

Jl!t~)(~- ~) dA = 
r. 
J 

(6) 

This result is valid for any displacement field which satisifies 

the elasticity equations in I:' J , and thus we have 

(n 

We can use this result to evaluate the remaining term in equation (3). 

Integrating (7) with respect to ;SI , over the surface of the sphere , 

we get 

j t I 9'(~- ;5')' g- (~ '). n.( ;:')( Z-~o)dA(~)]aA(~f) 
S S 

= 4.~a4-n \7~(~' -~O) 
r. 
J 

From the definition (4.1.6) for G, we get 

C>G·tX.f-XO'l +- q'l. \7 2. oG · \l. (-x.'-"X. o) == 1·1-" r S ·k ('X.'-'X<>). ( !Z-2CdJ 
--=.J,'" '" - :..::...L! r- ~ 1 [ J' .'" ~ l -5-
oX~ 10 d¥. .: . 't>1T E (I-VlO' 

~ 6.. [; 'k( ')( '- Xoi) 1 , :5 l ,.....: /V 5 

(9) 



I'lV 

Substituting the expression (9) in the integrand in equation (8) we find 

J [ J g(~_~I). gV~-:6 I): n.(~ I) (~- *o)dA(;-s)J dACzl) 

r r . 
J J 

( 10) 

Replacing each of the terms in equation (3) by the corresponding 

expressions (4), (6) and (10), we get . 

+ 4.rro4-( Cl (J.((~o)( 
3 3:<=1:, 

(11 ) 

and taking the symmetric part of this ~xpression, we obtain 

Taking the trace of this expression, and using the identity 

(Landau and Lifshitz (1970), pp 18), we get 

/.rO?"E(l-'V) 1:rC1c.el~f.(~o)J • 
(I +'V)(I-'l.») 

Substituting this expression in equation (12), we obtain the Faxen-

type formula: 

• 



Appendix A4 

The Derivation of equation (4.~.7) 

The aim is to derive an expression for the third-order thermal 

mu1tipo1e strength of a sphere JYLj 
.3 in a statistically homogeneous 

suspension. ' / This is obtained from a combination of a Faxen type 

expression which relates JYlJ 
3 to the external field T

E
, and the 

expression (4.3.2) for TE• 

From equation (4.3.4), we get 

The minus sign in front of the integral comes 

by 

Cl .a. 0 _I 
ai,', oX', oX: r 

• J Il. 

Substituting 

= 3 (blr. +b ... r.+b .. rJ- 15 fis·r; 
- J" l "l J lJ" ,~ r5 r~ 

from replacing Cl 
O'X' c 

(where ) in the integrand in (1), we find 

(2) 

\-1here,e aq.d!'1J are the dipole and 3rd order mu1tipole strength of 

the reference sphere (for convenience, the superscript j has been 

dropped). 

Another expression for ..Q.. iL Q. T(~o') can be obtained by 
oX ~ 0 X}:l:x.p, 

differentiating the expression (4.3.5) for T, which gives 



_I r T Q. 2... 1L.£. .l.. n. c1A 
4:rr J oX.oX'O:x.toX' r '" , J l .... 

r. 
J 

(3) 

+_3_ {blSTr. c1R +- S." ~Tr.dA + b. fTr'"kdA} +.!.£.. r r.r.-r;. T dA . 
rro 6 J~ ~ . L''''J J lJ J '" 'TIa~J ~ J '" 

Expanding T in a Taylor series about ~o and using the fact 

that V~T = 0, we find 

and 

Substituting these expressions in (3), we get 

( 4) 

Eliminating L .:a.-.Q.... T(*o) 
Ox.;ax.Jox.~ 

from the above expression with the 

aid of (2), we obtain 

fYl.J = k.'7Ika1-(oc- \) VV\7T~C-~o')~. [., . . . J' 
15 (0<. + 4-1,:) . 

This is required Faxen type expression for )113 

in (5) enclose terms of the form 

(5) 

The square brackets 



• 

1 '1 3 

The coefficient of ( fl'l.J )j~ ~ in equation (4.4.1) is 

(0<.. - I)J2 :eLL -0 L L ", 
6(o<+A.) f'>'l oXja-=1dx.~OX:n.IjV) 

and the contributi~n to (4.4.1) from terms of the form (6) is 

(6) 

These terms are therefore of no interest to us, and for the remainder 

of this section we shall ignore the square bracketed term in equation 

(5) . 

To evaluate the expression (5) for JY'l3 ,we require v V VT( (~o) 

The external field TE is given by the expression (4.3.2). With the 

aid of the identity (4.3.3) and the divergence theorem we can rewrite 

+ 4-~k j {<f;'n + ~<T)V'(+}n} clA . 

fb 
From this equation we find 

(7) 

The integral over the macroscopic boundary ~ in this equation 

may be neglected. To shmv this, "le take to be a sphere of radius 

R. By assumption, <7T> is uniform throughout the material, and as the 

material is homogeneous, <F> is also uniform. The term 
'" 

is O( ~Ij. ) as r -~ 00 and thus 



Similarly 

I I , , r> h \l'V 'V V ~:: 0(-1-,) on 'b we ave 
1'"' RS . 

f<T > v'v'v'v ~·AaA= O(-1)as R -4 IX) . 

r R 

r;' 
b , and since 

Thus 'the i ntegral over fb in equation (7) vanishes as R-400 

and (7) becomes 

VVVTE(Xo) = -2: (I-oC')jV'~iVl F.l\dR , "'" . 4- k · r ~ • L • 1'( 
L1:J . r. ' 

(8) 

. L 

Combining this result with equation (5), we get 

(9) 

and expanding the term in a Taylor series about 

, 
~~ (the centre of sphere i), we obtain 

(10) 
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