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Abstract
Glycaemic traits such as fasting and post-challenge glucose and insulin measures, as well as glycated haemoglobin (HbA1c),
are used to diagnose and monitor diabetes. These traits are risk factors for cardiovascular disease even below the diabetic
threshold, and their study can additionally yield insights into the pathophysiology of type 2 diabetes. To date, a diverse set of
genetic approaches have led to the discovery of over 97 loci influencing glycaemic traits. In this review, we will focus on
recent advances in the genetic aetiology of glycaemic traits, and the resulting biological insights. We will provide a brief over-
view of results ranging from common, to low- and rare-frequency variant-trait association studies, studies leveraging the
diversity across populations, and studies harnessing the power of genetic and genomic approaches to gain insights into the
biological underpinnings of these traits.

Introduction

Since their advent in 2005 (1), genome-wide association studies
(GWAS) have been very successful at identifying common vari-
ant (minor allele frequency (MAF)> 5%) trait associations, with
over 30,000 unique associations described to date (2). The type 2
diabetes (T2D) field has been no exception, with the number of
loci robustly associated with T2D risk rising from three [PPARG,
KCNJ11 and TCFL2 (3–5)] prior to the GWAS-Era, to 128 (6,7).
Fasting and post-challenge glycaemic measures, and glycated
haemoglobin (HbA1c), have also been the subject of intense ge-
netic research as they are used to diagnose and monitor T2D,
and are important risk factors for cardiovascular disease even
within the non-diabetic range. For example, studies have found
that patients diagnosed using either fasting (FG) or 2-h glucose
(2hG) have distinct cardiometabolic risk (8), with 2hG being a
better predictor of cardiovascular mortality than FG (9).
Similarly, glycated haemoglobin (HbA1c) which reflects average

glycaemia over the 2-3 month lifespan of a red blood cell, is an
accepted diagnostic test for diabetes (10), but also predicts
future vascular complications (11). Furthermore, insulin resis-
tance, commonly measured using proxy phenotypes fasting in-
sulin (FI) and insulin resistance by homeostasis model
assessment [HOMA-IR (12)], is often associated with obesity or
with limited peripheral adipose tissue capacity (13), and is an
important risk factor for T2D. However, more sophisticated gly-
caemic measures such as the insulin suppression test or eugly-
cemic clamp (considered the ‘gold standard’ estimate of
peripheral insulin sensitivity) or proinsulin [adjusted for FI,
equivalent to the proinsulin:insulin ratio, an indicator of beta-
cell stress (14)], may, in combination with other glycaemic traits
(FG, 2hG, HOMA-B and HbA1c), provide insights into diabetes
pathophysiology, and possible disease stratification.

The application of a series of genetic approaches to these
traits have to date yielded over 97 trait-associated loci (Table 1,
Fig. 1). In this review, we will focus on the progress made in
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recent years and will briefly describe: a) insights from common
variant (MAF� 5%) associations; b) results from approaches that
expand the allelic frequency range to low- and rare- variant as-
sociations; c) results from diverse populations; d) early biologi-
cal and functional insights and e) application of results to T2D.

Common Variant Trait Associations
Genome-wide association studies (GWAS) have transformed
the landscape of glycaemic trait genetics. Prior to GWAS FG was
associated with genetic variants in GCK (Glucokinase) (15).
Subsequently, early GWAS replicated the GCK association
(16,17) and identified novel associations with FG at G6PC2 (16,17)
and GCKR (18–20). Aggregation of data through meta-analyses,
primarily in populations of European ancestry in the setting of
large consortia (such as the Meta-Analyses of Glucose and
Insulin-related traits Consortium, MAGIC), and the develop-
ment of targeted arrays such as the Metabochip (21), have in-
creased the number of associations between common variants
and the most commonly used glycaemic measures (FG, FI, 2hG
and HbA1c) to over 70 (Table 1), accounting for<6% of pheno-
typic variance in Europeans (22,23).

Association with more sophisticated glycaemic measures,
identified additional genome-wide significant loci, such as
LARP6 and SGSM2 associated with fasting proinsulin (24), NAT2
associated with euglycemic clamp and insulin suppression test
techniques (25), BCL2 and FAM19A2 associated with the modi-
fied Stumvoll Insulin Sensitivity Index (ISI) (a dynamic measure
of whole-body insulin sensitivity) (26). These measures enabled
detailed physiological characterization of existing loci (27–29),
including establishment of the role of MTNR1B in decreased
early phase insulin response (30). An alternative measure of im-
paired glucose tolerance, 1-h glucose (1hG), may warrant further
research following studies investigating its potential utility
(31,32), and the identification of novel loci MYL2, C12orf51 and
OAS1 associated 1hG in Koreans (33) (Table 1).

The Contribution of Low Frequency and Rare
Variants
The majority of genome-wide association signals are both
common and non-coding, and recent efforts have focused on
the contribution of rare (MAF< 1%) and low frequency
(1%�MAF< 5%) variants, and their role as possible causal vari-
ants. Current strategies include: 1) genotyping arrays targeting
the exons (also known as ‘Exome Chips’) or with combined com-
mon variant backbone and exonic content; 2) genome- and
exome –wide sequencing and 3) combined genotyping arrays
and dense imputation using sequence based reference panels
such as 1000 genomes (34), UK10K (35,36) and HRC (37).

Huyghe et al. (38) were the first to demonstrate the utility of
exome-array genotyping. Using this approach in Finns, they
found novel low-frequency coding variants at TBC1D30 (R279C,
MAF¼ 2.0%) and KANK1 (R667H, MAF¼ 2.9%) associated with
fasting proinsulin levels (and late/early-phase proinsulin to in-
sulin conversion ratio, respectively) and two variants with
MAF¼ 5.3%, and in near-perfect LD (r2¼0.997) at PAM (D563G)
and PPIP5K2 (S1228G) associated with insulin secretion (insuli-
nogenic index). Novel low frequency variants at previously
identified GWAS loci, SGSM2 (V996I, MAF 1.4%) and MADD
(R766X, MAF¼ 3.7%) associated with fasting proinsulin, and
common variants associated with insulin secretion or beta-cell
function at GPSM1 (S391L), HNF1A (intergenic), and ABOT

ab
le

1.
C

o
n

ti
n

u
ed

Lo
cu

s
C

h
r

In
d

ex
SN

P
R

ef
s.

A
n

ce
st

ry
A

ll
el

es
[E

/O
]

T
yp

e
o

f
va

ri
an

t
EA

F
Ef

fe
ct

Si
ze

(S
E)

P-
va

lu
e

T
ra

it

rs
11

07
16

57
(8

0)
EA

A
/G

D
o

w
n

st
re

am
0.

63
0.

00
8

(0
.0

03
)

0.
01

FG
rs

45
02

15
6

(2
4)

EA
T

/C
D

o
w

n
st

re
am

0.
58

0.
02

9
(0

.0
04

)
3.

5
�

10
�

2
0

Pr
o

in
su

li
n

W
A

R
S

14
rs

37
83

34
7

(2
2)

EA
G

/T
In

tr
o

n
ic

0.
79

0.
01

7
(0

.0
03

)
1.

30
�

10
�

1
0

FG
Y

SK
4

2
rs

15
30

55
9

(2
2)

EA
A

/G
In

tr
o

n
ic

0.
52

0.
01

5
(0

.0
03

)
3.

40
�

10
�

8
FI

Z
BE

D
3

5
rs

77
08

28
5

(2
2)

EA
G

/A
In

tr
o

n
ic

0.
27

0.
01

5
(0

.0
03

)
1.

20
�

10
�

8
FG

_a
d

jB
M

I

C
h

r,
C

h
ro

m
o

so
m

e;
EA

,
Eu

ro
p

ea
n

an
ce

st
ry

;
EA

A
,

Ea
st

A
si

an
an

ce
st

ry
;

A
A

,
A

fr
ic

an
A

m
er

ic
an

an
ce

st
ry

;
A

ll
el

e,
[E

,
Ef

fe
ct

al
le

le
/O

,
O

th
er

al
le

le
];

EA
F,

Ef
fe

ct
al

le
le

fr
eq

u
en

cy
;

N
R

,
N

o
t

re
p

o
rt

ed
/a

va
il

ab
le

;
FG

,
fa

st
in

g
gl

u
co

se
(m

m
o

l/
L)

;

FG
_a

d
jB

M
I,

fa
st

in
g

gl
u

co
se

B
M

I
ad

ju
st

ed
;F

G
_B

M
I3

0,
Fa

st
in

g
gl

u
co

se
in

in
d

iv
id

u
al

s
w

it
h

B
M

I¼
30

kg
/m

2
;F

I,
fa

st
in

g
in

su
li

n
(p

m
o

l/
L)

;F
I_

ad
jB

M
I,

fa
st

in
g

in
su

li
n

B
M

I
ad

ju
st

ed
;2

h
G

,2
h

gl
u

co
se

(m
m

o
l/

L)
;H

bA
1c

,g
ly

ca
te

d
h

ae
m

o
gl

o
bi

n

(%
);

H
O

M
A

-B
,b

-c
el

lf
u

n
ct

io
n

by
h

o
m

eo
st

as
is

m
o

d
el

as
se

ss
m

en
t;

H
O

M
A

-I
R

,i
n

su
li

n
re

si
st

an
ce

by
h

o
m

eo
st

as
is

m
o

d
el

as
se

ss
m

en
t;

Pr
o

in
su

li
n

(p
m

o
l/

L)
;I

SI
_a

d
jB

M
I,

M
o

d
ifi

ed
St

u
m

vo
ll

In
su

li
n

Se
n

si
ti

vi
ty

In
d

ex
,a

d
ju

st
ed

fo
r

B
M

I.
Ef

fe
ct

es
ti

m
at

es
ar

e
ta

ke
n

fr
o

m
o

ri
gi

n
al

re
fe

re
n

ce
s

ar
e

al
lr

o
u

n
d

ed
to

th
re

e
d

ec
im

al
p

o
in

ts
.

Ef
fe

ct
si

ze
s

fo
r

IS
Ia

re
p

re
se

n
te

d
as

th
e

SD
p

er
ef

fe
ct

al
le

le
.

a
C

o
ef

fi
ci

en
t

u
n

it
s

ar
e

ln
(p

m
o

l/
l)

.
b
Li

ke
ly

ef
fe

ct
o

r
tr

an
sc

ri
p

t
at

th
e

lo
cu

s.
c Si

gn
al

at
N

A
T

2
d

id
n

o
t

re
ac

h
ge

n
o

m
e-

w
id

e
si

gn
ifi

ca
n

ce
.

d
Si

gn
al

at
SN

X
7

re
ac

h
ed

ge
n

o
m

e-
w

id
e

si
gn

ifi
ca

n
ce

af
te

r
ad

ju
st

in
g

fo
r

fa
st

in
g

gl
u

co
se

(P
¼

5.
4
�

10
�

9
).

R177Human Molecular Genetics, 2017, Vol. 26, No. R2 |

Deleted Text: Common variant trait associations
Deleted Text: &thinsp;
Deleted Text: r
Deleted Text: O
Deleted Text: A
Deleted Text: The Contribution of Low Frequency and Rare Variants
Deleted Text: ``
Deleted Text: '') 


(intronic) were also identified. Gene-based tests (aggregating
rare/low frequency variants at the locus) identified significant
associations with fasting proinsulin at TBC1D30, SGSM2 and
ATG13, although conditional analyses suggested the ATG13 sig-
nal was partially driven by variants in MADD. Wessel et al. (39)
identified a non-synonymous variant at GLP1R (A316T;
rs10305492; MAF¼ 1.4%) associated with lower FG, early insulin
secretion and type 2 diabetes risk, but higher 2hG (39). The
same effort identified a gene-based signal at G6PC2, which was
driven by three non-synonymous rare variants (H177Y, Y207S
and S324P) and a stop variant (R283X). Further evidence of FG
association at G6PC2 was provided by Mahajan et al. (40), who
also found multiple rare coding variants at this gene (V219L,
H177Y, Y207S), with evidence of loss of protein function,
identifying G6PC2 as an effector transcript at the G6PC2/ABCB11
locus (Table 1). The same study identified 10 additional non-
synonymous coding variants associated with FG or FI, of which
eight mapped to known GWAS loci: GCKR (P446L), SLC30A8
(R325W), RREB1 (S1554Y), PCSK1 (S690T, Q665E), COBLL1 (N939D),
TOP1 (N310S) and PPARG (P12A) (Table 1). Two novel loci, GLP1R
[A316T, supporting result from (39)] and URB2 (E594V) were also
identified. Despite this success only two association signals
were low frequency variants, H177Y MAF 0.8% at G6PC2/ABCB11
and E594V MAF 0.1% at URB2, (Table 1), and the data supported
PCSK1, RREB1 and ZHX3 as likely effector transcripts at the

associated loci, with RREB1 also replicated in a type 2 diabetes
study (7), confirming it as the probable effector gene for T2D at
the SSR1 locus.

The UK10K Consortium (35) performed low depth (7x)
whole-genome sequencing in 3,781 participants from two
British cohorts (ALSPAC and TwinsUK) and conducted associa-
tion analyses with 31 phenotypes available in both cohorts, rep-
licating common variant associations at G6PC2-ABCB11 with FG.
Subsequent fine-mapping efforts identified missense variant
associations as the causal variant or within the credible set of
causal variants at GCKR (L446P) and SLC30A8 (R325W) (41).

Transferability to Other Ancestries and Fine
Mapping
Driven by the availability of large sample sizes, the majority of
early GWAS studies were performed in populations of European
ancestry. Since then, efforts have expanded to diverse popula-
tions, leveraging differences in allele frequency and linkage dis-
equilibrium (LD) structure, to harness power for novel locus
discovery and fine-mapping (42). While genetic effect sizes for
common variants are largely consistent across ancestry groups,
allele frequencies can vary (43,44), improving power for associa-
tion in certain populations.

Figure 1. Venn diagram showing the overlap between the groups of glycaemic loci identified. Lists of loci (identified by the name of the closest gene to the index

variant, or biologically plausible gene where known) unique to each trait, or overlapping between traits, are listed outside the diagram where that number is high, oth-

erwise they are indicated in the figure. Loci were identified from large-scale meta-analyses with N�108–133 K for FI and FG and N�43–48 K for 2hrGlu, HbA1c, and

HOMA-IR. Sample sizes for other glycaemic measures were much smaller, ranging from N�16 K for ISI to just �1,000 participants for 1hrGlu.
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Studies in African Americans have identified SC4MOL and
TCERG1L associated with FI and insulin resistance (HOMA-IR)
(45), and FAM133A and PELO associated with FI, where PELO was
identified in a trans-ethnic meta-analysis combining African
American data with publicly available European summary sta-
tistics from MAGIC (46). In East Asians, studies have identified
SIX2-SIX3, C12orf51, PDK1-RAPGEF4, KANK1 and IGF1R associated
with FG (33,47,48), MYL2, C12orf51 and OAS1 associated with 1-
2hG (33) and HBS1L-MYB, CYBA, MYO9B and G6PC3 for HbA1c
(49,50) (Table 1).

More focused replication and fine-mapping efforts have also
been carried out in African Americans (51–53), Asian populations
(54,55) and an admixed Mexican population (56). Exact (the same
index variant) and local replication has replicated variants in or
near MNTR1B, G6PC2-ABCB11, GCK, IRS1, TCF7L2, DGKB, FADS1,
GCKR, SLC30A8 and ZMAT4 associated with FG and GCKR with FI.
These results suggest partial locus transferability but are limited
in power by the relatively modest sample sizes (largest discovery
sample sizes, N�20-25 K) compared to the much larger European
ancestry efforts (N� 108-133 K for FI and FG) that have led to the
discovery of the loci being assessed. Nonetheless they highlight
the utility of diverse populations to refine association signals, to
fewer probable casual variants. For example, inclusion of African
American samples in a trans-ethnic fine-mapping approach re-
duced the credible set (smallest set of SNPs that accounts for
99% of the posterior probability of containing the causal variant
at the locus) at GCK and ADCY5 for FG, PPP1R3B for FI, and GCKR
for FG and FI, to a single SNP (46).

In contrast, population isolates derive from a small number
of founder individuals, have reduced genetic diversity and
higher levels of LD, and enrichment of some rare alleles follow-
ing the initial bottleneck, thus increasing power and facilitating
genetic discovery (57,58). Successful outcomes are the TBC1D4
locus identified in Greenland strongly associated with 2hG and
2hI (59), and most recently, a variant (P50T) in AKT2 associated
with a large effect (12% increase) on FI, with MAF 1.1% in Finns,
but virtually absent (MAF�0.2%) in the individuals from other
ancestries (60).

Biological and Functional Insights
As mentioned earlier, most glycaemic trait genetic variant asso-
ciations map within non-coding regions, with the underlying
causal or effector transcript hard to establish, requiring fine-
mapping which often necessitates other genomic evidence to
establish a functional link between associated variants and un-
derlying biology. Recent studies have shown that pancreatic is-
let enhancers are enriched with FG associated loci (61,62), and
that pancreatic islet eQTLs provide important clues for candi-
date effector transcripts at FG associated loci (63,64). For some
of these loci, the eQTL provides compelling confirmatory evi-
dence for the biological candidate loci at these association sig-
nals [e.g. ADCY5, DGKB at the DGKB/TMEM195 locus, FADS1 and
MTNR1B (63), replicating previous findings at this locus (64,65)].
At the ARAP1 locus a recent study (63) suggests STARD10 is the
likely effector transcript, which is in contrast with earlier data
(66), but consistent with another more recent report (67). At the
MADD locus two potential effector transcripts were identified,
MADD and ACP2 (63), supporting evidence for MADD is provided
by a beta-cell specific mouse model which showed that Madd
plays a role in glucose-stimulated insulin secretion (68), how-
ever the mouse phenotype did not provide any clues regarding
the insulin processing effects also strongly associated with
MADD (24). ACP2, on the other hand, encodes a lysosomal

protein; the role of lysomes in the degradation of ageing insulin
granules (69) was hypothesised by the authors (63) as a possible
link for the fasting glucose and prosinsulin association signals.
WARS, NKX6-3 (at the ANK1 locus) and RBMA6 (at the AMT locus)
were also implicated as plausible effector transcripts but the
mechanism through which they impact islet function, is as yet,
unknown (63).

Loci associated with insulin resistance have been more re-
calcitrant to the GWAS approach and thus the number of estab-
lished loci and effector transcripts is much smaller (Table 1).
Recently, a blood transcriptomic genome-wide analysis (TWAS)
combined with eQTL analysis, identified a trans-eQTL
(rs592423) where the A-allele was associated with higher
IGF2BP2 transcript levels and higher fasting insulin, suggesting
this is the effector transcript at this locus (70). The TWAS also
identified several genes with established roles in metabolic
traits, namely IRS2 and FOXO4 involved in insulin signalling,
and three genes involved in adipocyte or adipokine biology
(ITLN1, PID1, ADIPOR1) (70). Another recent approach focused on
identifying loci simultaneously associated with higher levels of
FI adjusted for BMI, higher levels of triglycerides and lower lev-
els of HDL, a hallmark of insulin resistance and of the condition
lipodystrophy. In total, 53 associated loci were identified which
when combined in a genetic risk score, were associated with in-
creased T2D and coronary heart disease risk, but lower periph-
eral adipose tissue. The same loci also provided the first
evidence of polygenic influence in familial lipodystrophy type 1,
a severe form of insulin resistance previously thought to be
monogenic in origin. Overall, these data suggested that impaired
peripheral adipose tissue capacity may be an important mecha-
nism influencing insulin resistance and is likely to be an impor-
tant aetiological contributor to insulin-resistant cardiometabolic
disease (13). The importance of adipose tissue differentiation in
insulin resistant states was known from monogenic lipodystro-
phy due to mutations in PPARG (71,72) and has also more recently
been demonstrated to be an important aetiological factor in T2D
predisposition (73).

Complementing functional regulatory associations, the
identification of multiple rare missense variants shown to affect
protein function, and that contribute to a gene-based associa-
tion signal, is a strong indicator that the effector transcript has
been identified [e.g. G6PC2 (39,40), SLC30A8 (74) and PPARG (73)].
Similarly, single-point associations shown, or predicted, to have
an effect on protein function [e.g. the P50T variant at AKT2 asso-
ciated with FI (60) and the S690T and Q665E at PCSK1 associated
with proinsulin and FG (24,40)], or mapping proximal to classical
candidate loci are also strong indicators that the effector tran-
script is likely to map to those specific genes. This approach
suggested that SLC2A2 (encoding GLUT2), GCK, GCKR, FOXA2
and PDX1 are the likely effector transcripts at these loci (Table
1). SLC2A2 encodes GLUT2, the main glucose transporter in the
islets of rodents but not of humans, where GLUT1 and GLUT3
predominate both in islets and beta-cells, suggesting that the
role of variants at this gene are likely to be mediated through ef-
fects on other metabolic tissues (75). Recently, another study
has supported this hypothesis, where the C allele of rs8192675
in SLC2A2 was associated with a greater metformin-induced de-
crease in HbA1c levels, and was also shown to be an eQTL for
GLUT2 in human liver samples. This suggested a role of hepatic
GLUT2 in metformin action and glucose metabolism with signif-
icant clinical impact, and proposed as a biomarker for precision
medicine (76). The importance of the liver in glucose homeosta-
sis and FG levels, was also confirmed by studies of the P446L
variant in GCKR, which demonstrated that this variant affected
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GCKR inhibition of GCK which was predicted to promote hepatic
glucose metabolism with consequent decrease in FG (77). A
number of glycaemic trait-associated loci map within, or proxi-
mal to, genes associated with a range of Mendelian metabolic
disorders namely SLC2A2 (OMIM # 227810), GCK (OMIM #
125851), PPARG (OMIM # 604367), PCSK1 (OMIM # 600955), PDX1
(OMIM # 606392), GLIS3 (OMIM # 610199), IGF1 (OMIM # 608747)
and HNF1A (OMIM # 600496) providing additional biological sup-
port for their candidacy as effector transcripts at these loci, and
suggesting a role for rare penetrant and common variants
influencing familial or polygenic traits, respectively.

These data combined, highlight genes involved in glucose
regulation, insulin processing, secretion and response, and
transcription factors with an established role in pancreas devel-
opment as important mechanisms influencing glycaemic traits.
Early GWAS results highlighted for the first time in humans, the
role of loci involved in circadian rhythm [MTNR1B (65,78,79) and
CRY2 (80)] in glucose metabolism. These results have been repli-
cated in many additional studies, and subsequent analyses
have shown that the associations at these loci are season-
dependent (81) and that clock genes are regulated in pancreatic
islet cells confirming that perturbations in circadian clock com-
ponents are likely important in glucose homeostasis (82). The
role of circadian clock in metabolism and possible therapeutic
opportunities has recently been extensively reviewed (83),
though the exact mechanism of how MTNR1B is likely to affect
glucose homeostasis and diabetes risk remains the subject of
some controversy (84,85).

Glycaemic Traits and T2D
Fasting glucose is used to diagnosis type 2 diabetes (T2D) how-
ever, GWAS studies have demonstrated that the genetic archi-
tecture of these two traits does not fully overlap (22,80,86),
suggesting that raising fasting glucose per se is insufficient to
confer T2D risk and that pathophysiology is likely conditional
on the affected pathway. The availability of detailed measures
of glycaemia has thus helped demonstrate that a diverse set of
mechanisms are involved in conferring risk of T2D. To date,
T2D risk loci have been grouped into five distinct groups: a)
those loci whose primary effect appears to be on insulin sensi-
tivity (PPARG, KLF14, IRS1, GCKR); b) loci associated with de-
creased insulin secretion and with fasting hyperglycaemia
(MTNR1B, GCK); c) a single locus, ARAP1, associated with im-
paired proinsulin processing; d) a large cluster of loci influenc-
ing insulin processing and secretion with modest or no detected
effects on fasting glucose levels (TCF7L2, SLC30A8, HHEX/IDE,
CDKAL1, CDKN2A/2B, PROX1, THADA, ADCY5, DGKB/TMEM195);
and e) a large set of 20 loci that despite influencing T2D risk did
not have clear associations with any of the available measures
of glycaemia and which may correspond to novel mechanisms
influencing diabetes by as yet not understood biology (87).
Similar earlier analyses of loci influencing fasting and post-
challenge glucose measures also suggested similar diverse
mechanisms influencing these traits (27).

A recent large-scale trans-ethnic meta-analyses of GWAS for
HbA1c has expanded the number of HbA1c-associated loci to 60,
and importantly highlighted that the genetic architecture of the
trait differed in African Americans compared to the other ances-
tries studied (European, East and South Asians). In African
Americans, a single variant in the G6PD gene (G202A) responsible
for glucose-6-phosphate deficiency, accounted for a significant
fraction of the variance in the trait (14.4%) and led to a substantial
decrease in HbA1c values in hemizygous men (0.81%-units) and

homozygous women (0.68%-units). This variant, if unaccounted
for, could lead to up to 2% of African Americans with T2D to
remain undiagnosed, highlighting the importance of studying
glycaemic traits in diverse populations in order to avoid racial
health disparities in the application of precision medicine (23).

Summary and Future Directions
In conclusion, large-scale genetic association analyses, combined
with information on genomic features (enhancers, expression
QTLs, TWAS) and high- throughput functional assays (88) have
provided an increasingly growing list of loci associated with con-
tinuous glycaemic measures. The genetic architecture of these
traits is comprised of many common variants of modest effect,
mostly mapping to non-coding regions, with evidence of enrich-
ment in active islet enhancers, and some overlap with mono-
genic loci involved in various disorders of metabolism. Genetic
locus overlap between several glycaemic traits can be observed,
most notably between FG and many of the other glycaemic traits,
including T2D, though this number is likely to change as larger
more powered studies become available (Fig. 1). Interestingly, FG
and FI, have limited overlap in associated loci which may be a re-
flection of underlying differences in physiology affecting these
traits (Fig. 1). These approaches have revealed some expected,
and some novel pathways involved in glucose homeostasis, with
recent efforts highlighting a number of low-frequency or rare
missense variants affecting protein function, which provide
compelling evidence for the effector transcript at a given locus.
Studies of diverse populations have demonstrated, for the most
part, the transferability of glycaemic trait-associated loci across
ancestries and highlighted the power of isolated populations to
identify variants of larger effect sizes. More recently, large-scale
trans-ethnic genetic analysis of HbA1c highlighted the need for
more powered studies on diverse ancestries to avoid health dis-
parities in the application of genomics to the clinic. Future efforts
combining sequencing approaches, increased sample sizes (par-
ticularly in non-European ancestries), understanding of the non-
coding regions of the genome and the integration of other ‘omics’
data will continue to improve understanding of the biology
underlying glycaemic traits and how they impact on disease.

Acknowledgements

The authors wish to thank all participants and researchers of
the cited studies, and would like to apologise to colleagues
whose work we were unable to cite due to space constraints.

Conflict of Interest statement. None declared.

Funding
Wellcome Trust (WT098051). Funding to pay the Open Access
publication charges for this article was provided by Wellcome
Trust WT098051.

References
1. Klein, R.J., Zeiss, C., Chew, E.Y., Tsai, J.Y., Sackler, R.S.,

Haynes, C., Henning, A.K., SanGiovanni, J.P., Mane, S.M.,
Mayne, S.T. et al. (2005) Complement factor H polymorphism
in age-related macular degeneration. Science, 308, 385–389.

2. MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings,
E., Junkins, H., McMahon, A., Milano, A., Morales, J. et al.
(2017) The new NHGRI-EBI Catalog of published

R180 | Human Molecular Genetics, 2017, Vol. 26, No. R2

Deleted Text: (
Deleted Text: )
Deleted Text: A
Deleted Text: Glycaemic traits and T2D
Deleted Text: A
Deleted Text: Summary and Future Directions
Deleted Text: )
Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text: ``
Deleted Text: '' 


genome-wide association studies (GWAS Catalog). Nucleic
Acids Res., 45, D896–D901.

3. Hani, E.H., Boutin, P., Durand, E., Inoue, H., Permutt, M.A.,
Velho, G. and Froguel, P. (1998) Missense mutations in the
pancreatic islet beta cell inwardly rectifying Kþ channel
gene (KIR6.2/BIR): a meta-analysis suggests a role in the
polygenic basis of Type II diabetes mellitus in Caucasians.
Diabetologia, 41, 1511–1515.

4. Altshuler, D., Hirschhorn, J.N., Klannemark, M., Lindgren,
C.M., Vohl, M.C., Nemesh, J., Lane, C.R., Schaffner, S.F., Bolk,
S., Brewer, C. et al. (2000) The common PPARgamma
Pro12Ala polymorphism is associated with decreased risk of
type 2 diabetes. Nat. Genet., 26, 76–80.

5. Grant, S.F., Thorleifsson, G., Reynisdottir, I., Benediktsson,
R., Manolescu, A., Sainz, J., Helgason, A., Stefansson, H.,
Emilsson, V., Helgadottir, A. et al. (2006) Variant of transcrip-
tion factor 7-like 2 (TCF7L2) gene confers risk of type 2
diabetes. Nat. Genet., 38, 320–323.

6. Scott, R.A., Scott, L.J., Magi, R., Marullo, L., Gaulton, K.J.,
Kaakinen, M., Pervjakova, N., Pers, T.H., Johnson, A.D.,
Eicher, J.D. et al. (2017) An expanded genome-wide associa-
tion study of Type 2 diabetes in Europeans. Diabetes, doi:
10.2337/db16-1253.

7. Fuchsberger, C., Flannick, J., Teslovich, T.M., Mahajan, A.,
Agarwala, V., Gaulton, K.J., Ma, C., Fontanillas, P.,
Moutsianas, L., McCarthy, D.J. et al. (2016) The genetic archi-
tecture of type 2 diabetes. Nature, 536, 41–47.

8. Faerch, K., Witte, D.R., Tabak, A.G., Perreault, L., Herder, C.,
Brunner, E.J., Kivimaki, M. and Vistisen, D. (2013)
Trajectories of cardiometabolic risk factors before diagnosis
of three subtypes of type 2 diabetes: a post-hoc analysis of
the longitudinal Whitehall II cohort study. Lancet Diabetes
Endocrinol., 1, 43–51.

9. Decode Study Group, t.E.D.E.G. (2001) Glucose tolerance and
cardiovascular mortality: comparison of fasting and 2-hour
diagnostic criteria. Arch. Intern. Med., 161, 397–405.

10. Farmer, A. (2012) Use of HbA1c in the diagnosis of diabetes.
BMJ, 345, e7293.

11. Khaw, K.T., Wareham, N., Bingham, S., Luben, R., Welch, A.
and Day, N. (2004) Association of hemoglobin A1c with car-
diovascular disease and mortality in adults: the European
prospective investigation into cancer in Norfolk. Ann. Intern.
Med., 141, 413–420.

12. Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A.,
Treacher, D.F. and Turner, R.C. (1985) Homeostasis model as-
sessment: insulin resistance and beta-cell function from
fasting plasma glucose and insulin concentrations in man.
Diabetologia, 28, 412–419.

13. Lotta, L.A., Gulati, P., Day, F.R., Payne, F., Ongen, H., van de
Bunt, M., Gaulton, K.J., Eicher, J.D., Sharp, S.J., Luan, J. et al.
(2017) Integrative genomic analysis implicates limited pe-
ripheral adipose storage capacity in the pathogenesis of
human insulin resistance. Nat. Genet., 49, 17–26.

14. Roder, M.E., Porte, D., Jr., Schwartz, R.S. and Kahn, S.E. (1998)
Disproportionately elevated proinsulin levels reflect the de-
gree of impaired B cell secretory capacity in patients with
noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol.
Metab., 83, 604–608.

15. Weedon, M.N., Clark, V.J., Qian, Y., Ben-Shlomo, Y.,
Timpson, N., Ebrahim, S., Lawlor, D.A., Pembrey, M.E., Ring,
S., Wilkin, T.J. et al. (2006) A common haplotype of the gluco-
kinase gene alters fasting glucose and birth weight: associa-
tion in six studies and population-genetics analyses. Am. J.
Hum. Genet, 79, 991–1001.

16. Bouatia-Naji, N., Rocheleau, G., Van Lommel, L., Lemaire, K.,
Schuit, F., Cavalcanti-Proenca, C., Marchand, M.,
Hartikainen, A.L., Sovio, U., De Graeve, F. et al. (2008) A poly-
morphism within the G6PC2 gene is associated with fasting
plasma glucose levels. Science, 320, 1085–1088.

17. Chen, W.M., Erdos, M.R., Jackson, A.U., Saxena, R., Sanna, S.,
Silver, K.D., Timpson, N.J., Hansen, T., Orru, M., Grazia Piras,
M. et al. (2008) Variations in the G6PC2/ABCB11 genomic re-
gion are associated with fasting glucose levels. J. Clin. Invest.,
118, 2620–2628.

18. Scott, L.J., Mohlke, K.L., Bonnycastle, L.L., Willer, C.J., Li, Y.,
Duren, W.L., Erdos, M.R., Stringham, H.M., Chines, P.S.,
Jackson, A.U. et al. (2007) A genome-wide association study
of type 2 diabetes in Finns detects multiple susceptibility
variants. Science, 316, 1341–1345.

19. Orho-Melander, M., Melander, O., Guiducci, C., Perez-
Martinez, P., Corella, D., Roos, C., Tewhey, R., Rieder, M.J.,
Hall, J., Abecasis, G. et al. (2008) Common missense variant in
the glucokinase regulatory protein gene is associated with
increased plasma triglyceride and C-reactive protein but
lower fasting glucose concentrations. Diabetes, 57,
3112–3121.

20. Vaxillaire, M., Cavalcanti-Proenca, C., Dechaume, A., Tichet,
J., Marre, M., Balkau, B., Froguel, P. and Group, D.S. (2008) The
common P446L polymorphism in GCKR inversely modulates
fasting glucose and triglyceride levels and reduces type 2 di-
abetes risk in the DESIR prospective general French popula-
tion. Diabetes, 57, 2253–2257.

21. Voight, B.F., Kang, H.M., Ding, J., Palmer, C.D., Sidore, C.,
Chines, P.S., Burtt, N.P., Fuchsberger, C., Li, Y., Erdmann, J.
et al. (2012) The metabochip, a custom genotyping array for
genetic studies of metabolic, cardiovascular, and anthropo-
metric traits. PLoS Genet., 8, e1002793.

22. Scott, R.A., Lagou, V., Welch, R.P., Wheeler, E., Montasser,
M.E., Luan, J., Magi, R., Strawbridge, R.J., Rehnberg, E.,
Gustafsson, S. et al. (2012) Large-scale association analyses
identify new loci influencing glycemic traits and provide in-
sight into the underlying biological pathways. Nat. Genet., 44,
991–1005.

23. Wheeler, E., Leong, A., Liu, C.-T., Hivert, M.-F., Strawbridge,
R.J., Podmore, C., Li, M., Yao, J., Sim, X., Hong, J. et al.
(Submitted) Impact of Common Genetic Determinants of
Hemoglobin A1c on Type 2 Diabetes Risk and Diagnosis in
Ancestrally Diverse Populations: A Transethnic Genome-
Wide Meta-Analysis.

24. Strawbridge, R.J., Dupuis, J., Prokopenko, I., Barker, A.,
Ahlqvist, E., Rybin, D., Petrie, J.R., Travers, M.E., Bouatia-Naji,
N., Dimas, A.S. et al. (2011) Genome-wide association identi-
fies nine common variants associated with fasting proinsulin
levels and provides new insights into the pathophysiology of
type 2 diabetes. Diabetes, 60, 2624–2634.

25. Knowles, J.W., Xie, W., Zhang, Z., Chennamsetty, I., Assimes,
T.L., Paananen, J., Hansson, O., Pankow, J., Goodarzi, M.O.,
Carcamo-Orive, I. et al. (2015) Identification and validation of
N-acetyltransferase 2 as an insulin sensitivity gene. J. Clin.
Invest., 125, 1739–1751.

26. Walford, G.A., Gustafsson, S., Rybin, D., Stancakova, A.,
Chen, H., Liu, C.T., Hong, J., Jensen, R.A., Rice, K., Morris, A.P.
et al. (2016) Genome-Wide Association Study of the Modified
Stumvoll Insulin Sensitivity Index Identifies BCL2 and
FAM19A2 as Novel Insulin Sensitivity Loci. Diabetes, 65,
3200–3211.

27. Ingelsson, E., Langenberg, C., Hivert, M.F., Prokopenko, I.,
Lyssenko, V., Dupuis, J., Magi, R., Sharp, S., Jackson, A.U.,

R181Human Molecular Genetics, 2017, Vol. 26, No. R2 |



Assimes, T.L. et al. (2010) Detailed physiologic characteriza-
tion reveals diverse mechanisms for novel genetic Loci regu-
lating glucose and insulin metabolism in humans. Diabetes,
59, 1266–1275.

28. Prokopenko, I., Poon, W., Magi, R., Prasad, B.R., Salehi, S.A.,
Almgren, P., Osmark, P., Bouatia-Naji, N., Wierup, N., Fall, T.
et al. (2014) A central role for GRB10 in regulation of islet
function in man. PLoS Genet., 10, e1004235.

29. Palmer, N.D., Goodarzi, M.O., Langefeld, C.D., Wang, N., Guo,
X., Taylor, K.D., Fingerlin, T.E., Norris, J.M., Buchanan, T.A.,
Xiang, A.H. et al. (2015) Genetic variants associated with
quantitative glucose homeostasis traits translate to Type 2
diabetes in Mexican Americans: The GUARDIAN (Genetics
Underlying Diabetes in Hispanics) Consortium. Diabetes, 64,
1853–1866.

30. Langenberg, C., Pascoe, L., Mari, A., Tura, A., Laakso, M.,
Frayling, T.M., Barroso, I., Loos, R.J., Wareham, N.J., Walker,
M. et al. (2009) Common genetic variation in the melatonin
receptor 1B gene (MTNR1B) is associated with decreased
early-phase insulin response. Diabetologia, 52, 1537–1542.

31. Manco, M., Panunzi, S., Macfarlane, D.P., Golay, A., Melander,
O., Konrad, T., Petrie, J.R. and Mingrone, G. Relationship
between Insulin, S. and Cardiovascular Risk, C. (2010)
One-hour plasma glucose identifies insulin resistance and
beta-cell dysfunction in individuals with normal glucose tol-
erance: cross-sectional data from the Relationship between
Insulin Sensitivity and Cardiovascular Risk (RISC) study.
Diabetes Care, 33, 2090–2097.

32. Joshipura, K.J., Andriankaja, M.O., Hu, F.B. and Ritchie, C.S.
(2011) Relative utility of 1-h Oral Glucose Tolerance Test as a
measure of abnormal glucose homeostasis. Diabetes Res. Clin.
Pract., 93, 268–275.

33. Go, M.J., Hwang, J.Y., Kim, Y.J., Hee Oh, J., Kim, Y.J., Heon
Kwak, S., Soo Park, K., Lee, J., Kim, B.J., Han, B.G. et al. (2013)
New susceptibility loci in MYL2, C12orf51 and OAS1 associ-
ated with 1-h plasma glucose as predisposing risk factors for
type 2 diabetes in the Korean population. J. Hum. Genet., 58,
362–365.

34. Genomes Project, C., Auton, A., Brooks, L.D., Durbin, R.M.,
Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini, J.L.,
McCarthy, S., McVean, G.A. et al. (2015) A global reference for
human genetic variation. Nature, 526, 68–74.

35. Consortium, U.K., Walter, K., Min, J.L., Huang, J., Crooks, L.,
Memari, Y., McCarthy, S., Perry, J.R., Xu, C., Futema, M. et al.
(2015) The UK10K project identifies rare variants in health
and disease. Nature, 526, 82–90.

36. Huang, J., Howie, B., McCarthy, S., Memari, Y., Walter, K.,
Min, J.L., Danecek, P., Malerba, G., Trabetti, E., Zheng, H.F.
et al. (2015) Improved imputation of low-frequency and rare
variants using the UK10K haplotype reference panel. Nat.
Commun., 6, 8111.

37. McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood,
A.R., Teumer, A., Kang, H.M., Fuchsberger, C., Danecek, P.,
Sharp, K. et al. (2016) A reference panel of 64,976 haplotypes
for genotype imputation. Nat. Genet., 48, 1279–1283.

38. Huyghe, J.R., Jackson, A.U., Fogarty, M.P., Buchkovich, M.L.,
Stancakova, A., Stringham, H.M., Sim, X., Yang, L.,
Fuchsberger, C., Cederberg, H. et al. (2013) Exome array anal-
ysis identifies new loci and low-frequency variants
influencing insulin processing and secretion. Nat. Genet., 45,
197–201.

39. Wessel, J., Chu, A.Y., Willems, S.M., Wang, S., Yaghootkar,
H., Brody, J.A., Dauriz, M., Hivert, M.F., Raghavan, S.,
Lipovich, L. et al. (2015) Low-frequency and rare exome chip

variants associate with fasting glucose and type 2 diabetes
susceptibility. Nat. Commun., 6, 5897.

40. Mahajan, A., Sim, X., Ng, H.J., Manning, A., Rivas, M.A.,
Highland, H.M., Locke, A.E., Grarup, N., Im, H.K., Cingolani, P.
et al. (2015) Identification and functional characterization of
G6PC2 coding variants influencing glycemic traits define an
effector transcript at the G6PC2-ABCB11 locus. PLoS Genet.,
11, e1004876.

41. Iotchkova, V., Huang, J., Morris, J.A., Jain, D., Barbieri, C.,
Walter, K., Min, J.L., Chen, L., Astle, W., Cocca, M. et al. (2016)
Discovery and refinement of genetic loci associated with
cardiometabolic risk using dense imputation maps. Nat.
Genet., 48, 1303–1312.

42. Zaitlen, N., Pasaniuc, B., Gur, T., Ziv, E. and Halperin, E. (2010)
Leveraging genetic variability across populations for the
identification of causal variants. Am. J. Hum. Genet., 86,
23–33.

43. Ioannidis, J.P., Ntzani, E.E. and Trikalinos, T.A. (2004) ‘Racial’
differences in genetic effects for complex diseases. Nat.
Genet., 36, 1312–1318.

44. Yang, Q., Liu, T., Shrader, P., Yesupriya, A., Chang, M.H.,
Dowling, N.F., Ned, R.M., Dupuis, J., Florez, J.C., Khoury, M.J.
et al. (2010) Racial/ethnic differences in association of fasting
glucose-associated genomic loci with fasting glucose,
HOMA-B, and impaired fasting glucose in the U.S. adult pop-
ulation. Diabetes Care, 33, 2370–2377.

45. Chen, G., Bentley, A., Adeyemo, A., Shriner, D., Zhou, J.,
Doumatey, A., Huang, H., Ramos, E., Erdos, M., Gerry, N. et al.
(2012) Genome-wide association study identifies novel loci
association with fasting insulin and insulin resistance in
African Americans. Hum. Mol. Genet., 21, 4530–4536.

46. Liu, C.T., Raghavan, S., Maruthur, N., Kabagambe, E.K., Hong,
J., Ng, M.C., Hivert, M.F., Lu, Y., An, P., Bentley, A.R. et al.
(2016) Trans-ethnic meta-analysis and functional annota-
tion illuminates the genetic architecture of fasting glucose
and insulin. Am. J. Hum. Genet., 99, 56–75.

47. Kim, Y.J., Go, M.J., Hu, C., Hong, C.B., Kim, Y.K., Lee, J.Y.,
Hwang, J.Y., Oh, J.H., Kim, D.J., Kim, N.H. et al. (2011)
Large-scale genome-wide association studies in East Asians
identify new genetic loci influencing metabolic traits. Nat.
Genet., 43, 990–995.

48. Hwang, J.Y., Sim, X., Wu, Y., Liang, J., Tabara, Y., Hu, C., Hara,
K., Tam, C.H., Cai, Q., Zhao, Q. et al. (2015) Genome-wide as-
sociation meta-analysis identifies novel variants associated
with fasting plasma glucose in East Asians. Diabetes, 64,
291–298.

49. Chen, P., Takeuchi, F., Lee, J.Y., Li, H., Wu, J.Y., Liang, J., Long,
J., Tabara, Y., Goodarzi, M.O., Pereira, M.A. et al. (2014)
Multiple nonglycemic genomic loci are newly associated
with blood level of glycated hemoglobin in East Asians.
Diabetes, 63, 2551–2562.

50. Chen, P., Ong, R.T., Tay, W.T., Sim, X., Ali, M., Xu, H., Suo, C.,
Liu, J., Chia, K.S., Vithana, E. et al. (2013) A study assessing
the association of glycated hemoglobin A1C (HbA1C) associ-
ated variants with HbA1C, chronic kidney disease and dia-
betic retinopathy in populations of Asian ancestry. PLoS One,
8, e79767.

51. Fesinmeyer, M.D., Meigs, J.B., North, K.E., Schumacher, F.R.,
Buzkova, P., Franceschini, N., Haessler, J., Goodloe, R.,
Spencer, K.L., Voruganti, V.S. et al. (2013) Genetic variants as-
sociated with fasting glucose and insulin concentrations
in an ethnically diverse population: results from the
Population Architecture using Genomics and Epidemiology
(PAGE) study. BMC Med. Genet., 14, 98.

R182 | Human Molecular Genetics, 2017, Vol. 26, No. R2



52. Ramos, E., Chen, G., Shriner, D., Doumatey, A., Gerry, N.P.,
Herbert, A., Huang, H., Zhou, J., Christman, M.F., Adeyemo,
A. et al. (2011) Replication of genome-wide association
studies (GWAS) loci for fasting plasma glucose in
African-Americans. Diabetologia, 54, 783–788.

53. Liu, C.T., Ng, M.C., Rybin, D., Adeyemo, A., Bielinski, S.J.,
Boerwinkle, E., Borecki, I., Cade, B., Chen, Y.D., Djousse, L.
et al. (2012) Transferability and fine-mapping of glucose and
insulin quantitative trait loci across populations: CARe, the
Candidate Gene Association Resource. Diabetologia, 55,
2970–2984.

54. Rees, S.D., Hydrie, M.Z., O’Hare, J.P., Kumar, S., Shera, A.S.,
Basit, A., Barnett, A.H. and Kelly, M.A. (2011) Effects of 16 ge-
netic variants on fasting glucose and type 2 diabetes in
South Asians: ADCY5 and GLIS3 variants may predispose to
type 2 diabetes. PLoS One, 6, e24710.

55. Takeuchi, F., Katsuya, T., Chakrewarthy, S., Yamamoto, K.,
Fujioka, A., Serizawa, M., Fujisawa, T., Nakashima, E.,
Ohnaka, K., Ikegami, H. et al. (2010) Common variants at the
GCK, GCKR, G6PC2-ABCB11 and MTNR1B loci are associated
with fasting glucose in two Asian populations. Diabetologia,
53, 299–308.

56. Langlois, C., Abadi, A., Peralta-Romero, J., Alyass, A., Suarez,
F., Gomez-Zamudio, J., Burguete-Garcia, A.I., Yazdi, F.T.,
Cruz, M. and Meyre, D. (2016) Evaluating the transferability
of 15 European-derived fasting plasma glucose SNPs in
Mexican children and adolescents. Sci. Rep., 6, 36202.

57. Hatzikotoulas, K., Gilly, A. and Zeggini, E. (2014) Using popu-
lation isolates in genetic association studies. Brief. Funct.
Genomics, 13, 371–377.

58. Service, S.K., Teslovich, T.M., Fuchsberger, C., Ramensky, V.,
Yajnik, P., Koboldt, D.C., Larson, D.E., Zhang, Q., Lin, L.,
Welch, R. et al. (2014) Re-sequencing expands our under-
standing of the phenotypic impact of variants at GWAS loci.
PLoS Genet., 10, e1004147.

59. Moltke, I., Grarup, N., Jorgensen, M.E., Bjerregaard, P.,
Treebak, J.T., Fumagalli, M., Korneliussen, T.S., Andersen,
M.A., Nielsen, T.S., Krarup, N.T. et al. (2014) A common
Greenlandic TBC1D4 variant confers muscle insulin resis-
tance and type 2 diabetes. Nature, 512, 190–193.

60. Manning, A., Highland, H.M., Gasser, J., Sim, X., Tukiainen,
T., Fontanillas, P., Grarup, N., Rivas, M.A., Mahajan, A.,
Locke, A.E. et al. (2017) A low-frequency inactivating Akt2
variant enriched in the Finnish population is associated
with fasting insulin levels and Type 2 diabetes risk. Diabetes,
66, 2019–2032.

61. Pasquali, L., Gaulton, K.J., Rodriguez-Segui, S.A., Mularoni, L.,
Miguel-Escalada, I., Akerman, I., Tena, J.J., Moran, I., Gomez-
Marin, C., van de Bunt, M. et al. (2014) Pancreatic islet en-
hancer clusters enriched in type 2 diabetes risk-associated
variants. Nat. Genet., 46, 136–143.

62. Parker, S.C., Stitzel, M.L., Taylor, D.L., Orozco, J.M., Erdos,
M.R., Akiyama, J.A., van Bueren, K.L., Chines, P.S., Narisu, N.,
Program, N.C.S. et al. (2013) Chromatin stretch enhancer
states drive cell-specific gene regulation and harbor human
disease risk variants. Proc. Natl. Acad. Sci. U S A, 110,
17921–17926.

63. van de Bunt, M., Manning Fox, J.E., Dai, X., Barrett, A., Grey,
C., Li, L., Bennett, A.J., Johnson, P.R., Rajotte, R.V., Gaulton,
K.J. et al. (2015) Transcript expression data from human islets
links regulatory signals from genome-wide association stud-
ies for Type 2 diabetes and glycemic traits to their down-
stream effectors. PLoS Genet., 11, e1005694.

64. Fadista, J., Vikman, P., Laakso, E.O., Mollet, I.G., Esguerra, J.L.,
Taneera, J., Storm, P., Osmark, P., Ladenvall, C., Prasad, R.B.
et al. (2014) Global genomic and transcriptomic analysis of
human pancreatic islets reveals novel genes influencing
glucose metabolism. Proc. Natl. Acad. Sci. U S A, 111,
13924–13929.

65. Lyssenko, V., Nagorny, C.L., Erdos, M.R., Wierup, N., Jonsson,
A., Spegel, P., Bugliani, M., Saxena, R., Fex, M., Pulizzi, N. et al.
(2009) Common variant in MTNR1B associated with in-
creased risk of type 2 diabetes and impaired early insulin
secretion. Nat. Genet., 41, 82–88.

66. Kulzer, J.R., Stitzel, M.L., Morken, M.A., Huyghe, J.R.,
Fuchsberger, C., Kuusisto, J., Laakso, M., Boehnke, M.,
Collins, F.S. and Mohlke, K.L. (2014) A common functional
regulatory variant at a type 2 diabetes locus upregulates
ARAP1 expression in the pancreatic beta cell. Am. J. Hum.
Genet., 94, 186–197.

67. Carrat, G.R., Hu, M., Nguyen-Tu, M.S., Chabosseau, P.,
Gaulton, K.J., van de Bunt, M., Siddiq, A., Falchi, M., Thurner,
M., Canouil, M. et al. (2017) Decreased STARD10 expression is
associated with defective insulin secretion in humans and
mice. Am. J. Hum. Genet., 100, 238–256.

68. Li, L.C., Wang, Y., Carr, R., Haddad, C.S., Li, Z., Qian, L.,
Oberholzer, J., Maker, A.V., Wang, Q. and Prabhakar, B.S.
(2014) IG20/MADD plays a critical role in glucose-induced in-
sulin secretion. Diabetes, 63, 1612–1623.

69. Halban, P.A. (1991) Structural domains and molecular life-
styles of insulin and its precursors in the pancreatic beta
cell. Diabetologia, 34, 767–778.

70. Chen, B.H., Hivert, M.F., Peters, M.J., Pilling, L.C., Hogan, J.D.,
Pham, L.M., Harries, L.W., Fox, C.S., Bandinelli, S., Dehghan,
A. et al. (2016) Peripheral blood transcriptomic signatures of
fasting glucose and insulin concentrations. Diabetes, 65,
3794–3804.

71. Barroso, I., Gurnell, M., Crowley, V.E., Agostini, M., Schwabe,
J.W., Soos, M.A., Maslen, G.L., Williams, T.D., Lewis, H.,
Schafer, A.J. et al. (1999) Dominant negative mutations in hu-
man PPARgamma associated with severe insulin resistance,
diabetes mellitus and hypertension. Nature, 402, 880–883.

72. Agostini, M., Schoenmakers, E., Mitchell, C., Szatmari, I.,
Savage, D., Smith, A., Rajanayagam, O., Semple, R., Luan, J.,
Bath, L. et al. (2006) Non-DNA binding, dominant-negative,
human PPARgamma mutations cause lipodystrophic insulin
resistance. Cell Metab., 4, 303–311.

73. Majithia, A.R., Flannick, J., Shahinian, P., Guo, M., Bray, M.A.,
Fontanillas, P., Gabriel, S.B., Go, T.D.C., Project, N.J.F.A.S.,
Consortium, S.T.D. et al. (2014) Rare variants in PPARG with
decreased activity in adipocyte differentiation are associ-
ated with increased risk of type 2 diabetes. Proc. Natl. Acad.
Sci. U S A, 111, 13127–13132.

74. Flannick, J., Thorleifsson, G., Beer, N.L., Jacobs, S.B., Grarup,
N., Burtt, N.P., Mahajan, A., Fuchsberger, C., Atzmon, G.,
Benediktsson, R. et al. (2014) Loss-of-function mutations in
SLC30A8 protect against type 2 diabetes. Nat. Genet., 46,
357–363.

75. McCulloch, L.J., van de Bunt, M., Braun, M., Frayn, K.N., Clark,
A. and Gloyn, A.L. (2011) GLUT2 (SLC2A2) is not the principal
glucose transporter in human pancreatic beta cells: implica-
tions for understanding genetic association signals at this
locus. Mol. Genet. Metab., 104, 648–653.

76. Zhou, K., Yee, S.W., Seiser, E.L., van Leeuwen, N., Tavendale,
R., Bennett, A.J., Groves, C.J., Coleman, R.L., van der Heijden,
A.A., Beulens, J.W. et al. (2016) Variation in the glucose

R183Human Molecular Genetics, 2017, Vol. 26, No. R2 |



transporter gene SLC2A2 is associated with glycemic re-
sponse to metformin. Nat. Genet., 48, 1055–1059.

77. Beer, N.L., Tribble, N.D., McCulloch, L.J., Roos, C., Johnson,
P.R., Orho-Melander, M. and Gloyn, A.L. (2009) The P446L
variant in GCKR associated with fasting plasma glucose and
triglyceride levels exerts its effect through increased gluco-
kinase activity in liver. Hum. Mol. Genet., 18, 4081–4088.

78. Prokopenko, I., Langenberg, C., Florez, J.C., Saxena, R.,
Soranzo, N., Thorleifsson, G., Loos, R.J., Manning, A.K.,
Jackson, A.U., Aulchenko, Y. et al. (2009) Variants in MTNR1B
influence fasting glucose levels. Nat. Genet., 41, 77–81.

79. Bouatia-Naji, N., Bonnefond, A., Cavalcanti-Proenca, C.,
Sparso, T., Holmkvist, J., Marchand, M., Delplanque, J.,
Lobbens, S., Rocheleau, G., Durand, E. et al. (2009) A variant
near MTNR1B is associated with increased fasting
plasma glucose levels and type 2 diabetes risk. Nat. Genet.,
41, 89–94.

80. Dupuis, J., Langenberg, C., Prokopenko, I., Saxena, R.,
Soranzo, N., Jackson, A.U., Wheeler, E., Glazer, N.L., Bouatia-
Naji, N., Gloyn, A.L. et al. (2010) New genetic loci implicated
in fasting glucose homeostasis and their impact on type 2 di-
abetes risk. Nat. Genet., 42, 105–116.

81. Renstrom, F., Koivula, R.W., Varga, T.V., Hallmans, G.,
Mulder, H., Florez, J.C., Hu, F.B. and Franks, P.W. (2015)
Season-dependent associations of circadian rhythm-
regulating loci (CRY1, CRY2 and MTNR1B) and glucose ho-
meostasis: the GLACIER Study. Diabetologia, 58, 997–1005.

82. Stamenkovic, J.A., Olsson, A.H., Nagorny, C.L., Malmgren, S.,
Dekker-Nitert, M., Ling, C. and Mulder, H. (2012) Regulation
of core clock genes in human islets. Metabolism, 61, 978–985.

83. Forrestel, A.C., Miedlich, S.U., Yurcheshen, M., Wittlin, S.D.
and Sellix, M.T. (2017) Chronomedicine and type 2 diabetes:
shining some light on melatonin. Diabetologia, 60, 808–822.

84. Mulder, H. (2017) Melatonin signalling and type 2 diabetes
risk: too little, too much or just right? Diabetologia, 60,
826–829.

85. Bonnefond, A. and Froguel, P. (2017) The case for too little
melatonin signalling in increased diabetes risk. Diabetologia,
60, 823–825.

86. Morris, A.P., Voight, B.F., Teslovich, T.M., Ferreira, T., Segre,
A.V., Steinthorsdottir, V., Strawbridge, R.J., Khan, H., Grallert,
H., Mahajan, A. et al. (2012) Large-scale association analysis
provides insights into the genetic architecture and patho-
physiology of type 2 diabetes. Nat. Genet., 44, 981–990.

87. Dimas, A.S., Lagou, V., Barker, A., Knowles, J.W., Magi, R.,
Hivert, M.F., Benazzo, A., Rybin, D., Jackson, A.U., Stringham,
H.M. et al. (2014) Impact of type 2 diabetes susceptibility vari-
ants on quantitative glycemic traits reveals mechanistic
heterogeneity. Diabetes, 63, 2158–2171.

88. Majithia, A.R., Tsuda, B., Agostini, M., Gnanapradeepan, K.,
Rice, R., Peloso, G., Patel, K.A., Zhang, X., Broekema, M.F.,
Patterson, N. et al. (2016) Prospective functional classification
of all possible missense variants in PPARG. Nat. Genet., 48,
1570–1575.

89. Saxena, R., Hivert, M.F., Langenberg, C., Tanaka, T., Pankow,
J.S., Vollenweider, P., Lyssenko, V., Bouatia-Naji, N., Dupuis,
J., Jackson, A.U. et al. (2010) Genetic variation in GIPR influ-
ences the glucose and insulin responses to an oral glucose
challenge. Nat. Genet., 42, 142–148.

90. Soranzo, N., Sanna, S., Wheeler, E., Gieger, C., Radke, D.,
Dupuis, J., Bouatia-Naji, N., Langenberg, C., Prokopenko, I.,
Stolerman, E. et al. (2010) Common variants at 10 genomic
loci influence hemoglobin A(1)(C) levels via glycemic and
nonglycemic pathways. Diabetes, 59, 3229–3239.

91. Ryu, J. and Lee, C. (2012) Association of glycosylated hemoglo-
bin with the gene encoding CDKAL1 in the Korean Association
Resource (KARE) study. Hum. Mutat., 33, 655–659.

92. Manning, A.K., Hivert, M.F., Scott, R.A., Grimsby, J.L.,
Bouatia-Naji, N., Chen, H., Rybin, D., Liu, C.T., Bielak, L.F.,
Prokopenko, I. et al. (2012) A genome-wide approach ac-
counting for body mass index identifies genetic variants
influencing fasting glycemic traits and insulin resistance.
Nat. Genet., 44, 659–669.

93. Horikoshi, M., Mgi, R., van de Bunt, M., Surakka, I., Sarin,
A.P., Mahajan, A., Marullo, L., Thorleifsson, G., Hgg, S.,
Hottenga, J.J. et al. (2015) Discovery and fine-mapping of
glycaemic and obesity-related trait loci using high-density
imputation. PLoS Genet., 11, e1005230.

94. Pare, G., Chasman, D.I., Parker, A.N., Nathan, D.M., Miletich,
J.P., Zee, R.Y. and Ridker, P.M. (2008) Novel association of
HK1 with glycated hemoglobin in a non-diabetic population:
a genome-wide evaluation of 14,618 participants in the
Women’s Genome Health Study. PLoS Genet., 4, e1000312.

95. Franklin, C.S., Aulchenko, Y.S., Huffman, J.E., Vitart, V.,
Hayward, C., Polasek, O., Knott, S., Zgaga, L., Zemunik, T.,
Rudan, I. et al. (2010) The TCF7L2 diabetes risk variant is as-
sociated with HbA(1)(C) levels: a genome-wide association
meta-analysis. Ann. Hum. Genet., 74, 471–478.

R184 | Human Molecular Genetics, 2017, Vol. 26, No. R2


	ddx293-TF1
	ddx293-TF2
	ddx293-TF3
	ddx293-TF4
	ddx293-TF5
	ddx293-TF6

