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 12 

As magmas ascend in the crust, they exsolve volatiles (e.g., carbon, oxygen, sulphur, 13 

hydrogen and chlorine). Gas bubbles evolve chemically and physically as magma 14 

decompression and crystallization proceed. In less viscous magmas, bubbles may rise at 15 

faster rates than the melt. While it is generally assumed that gas remains in thermal 16 

equilibrium with the melt, the relationship between gas and melt redox state in degassing 17 

magmas is debated. Here we report equilibrium conditions for gas emissions from the 18 

summit lava lake of Kīlauea volcano, Hawaii, calculated from gas abundances measured in 19 

the atmosphere by absorption spectroscopy. Our observations, which span a transition 20 

between more and less vigorous degassing regimes, reveal a remarkable temperature span 21 
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of up to 250°C. They also show a progressive increase of the redox state of the gas, relative 22 

to solid rock buffers, with decreasing gas temperature. We explain both phenomena as the 23 

result of variation in gas bubble size, and show that even for magmas more viscous than 24 

those encountered at Kīlauea, fast-rising bubbles can cool adiabatically and lose the redox 25 

signature of their associated melts. Our findings reveal a hitherto unrecognized process 26 

that can result in rapid changes in abundances of redox-sensitive gas species. Gas 27 

composition is monitored operationally at many volcanoes in support of hazard assessment 28 

but, often, consecutive sets of observations are time averaged. This can mask variability 29 

arising from the dynamics of degassing. Further, such redox decoupling between gas and 30 

melt as we observe calls for caution in using lava chemistry to infer the composition of 31 

associated volcanic gases. 32 

 33 

The redox state of magmatic gases is pertinent to understanding atmospheric evolution1 and ore 34 

formation2, and bears on interpretation of gas geochemical data for volcanic hazard evaluation3. 35 

Gas ratios such as CO2/CO, SO2/H2S and H2O/H2 are redox sensitive and may show complex 36 

variations associated with changes in eruptive style4,5. Numerical models show that, during 37 

magma ascent, melt-gas equilibria can drive magmatic redox state away from that of the 38 

reservoir or source region6,7. Such models assume, however, maintenance of thermal and 39 

chemical equilibrium between fluid and melt during decompression. While this assumption may 40 

hold for more viscous magmas, it may not be valid for basalts, by far the dominant product of 41 

global volcanism. For such low viscosity melts, physical models predict that decoupling between 42 

gas and melt is likely during ascent8.  Here we consider the case for the ongoing basaltic eruption 43 

at Kīlauea volcano, Hawaii. 44 
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Composition of K īlauea gas emissions 45 

The bulk of gas geochemical data for Kīlauea stem from laboratory analyses of samples collected 46 

in the field, with necessary corrections made to account for air contamination, back-reaction 47 

during cooling, and interaction with sampling apparatus or host rocks9,10. More recent surveys 48 

have used open-path Fourier transform infrared spectroscopy (OP-FTS) to estimate relative 49 

proportions of C-, S- and halogen-bearing species11, and the pressure of gas segregation and its 50 

relationship to eruption style12. We extend this approach by measuring the redox-sensitive 51 

species carbonyl sulfide (OCS), which permits evaluation of gas redox state with high-temporal 52 

resolution13. Previous work at Kīlauea, based on collection of gas samples, reached the 53 

conclusion that melt or rock buffers the gas redox state via oxygen exchange, even below the 54 

basalt solidus9. We revisit this hypothesis in the light of precise OP-FTS determinations of the 55 

molecular composition of gas emissions from the summit lava lake of Kīlauea volcano. 56 

The spectrometer was positioned at the rim of Overlook Vent in Halema’uma’u crater and 57 

viewing towards the lava surface, which acted as the infrared source, approximately 200 m 58 

distant (Fig. 1a; Methods). Gases emitted from the lava lake surface, following ascent through 59 

the magma, continually crossed the spectrometer’s field-of-view. Our observations spanned two 60 

degassing regimes: initially, the lake surface motion was sedate (Fig. 1b) with sporadic isolated 61 

bubble bursts, but we later captured an episode of vigorous degassing associated with sustained 62 

lava spattering at points along the lake perimeter, driven by the ascent and rupture of bubbles of 63 

up to several metres in diameter (Fig. 1c and S5). During this more energetic activity, we 64 

directed the spectrometer’s field-of-view toward one of the spatter sources to maximize the 65 

contribution of its associated gas emission to the recorded absorption spectra. Over the long 66 

term, these degassing regimes are found to alternate, with spattering being the more prevalent14. 67 
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We analyzed the abundances of H2O, CO2, CO, OCS, SO2, HF and HCl in each spectrum 68 

acquired, correcting for water and CO2 contributions from ambient air so as to yield relative gas 69 

contents for these seven species (Methods). Spectra were recorded approximately every 5 s, and 70 

we regard each as a temporally-discrete gas sample. The average composition, based on 995 71 

spectra spanning the two degassing regimes, is as follows (all quantities in mol%): H2O 91.6; 72 

CO2 4.37; SO2 2.89; CO 0.089; HCl 0.047; HF 0.030; OCS 0.00031. The mean molar ratios of 73 

SO2/HCl and H2O/CO2 are ~68 and ~25, respectively. This composition is more water-rich and 74 

sulphur-poor than some prior measurements of summit degassing from Kīlauea15, though 75 

comparable to others16. Certain molecular ratios, such as CO2/CO vary significantly (Fig. S1) for 76 

reasons explored below. The CO2/H2O ratios for the two degassing regimes overlap. 77 

Low-pressure degassing 78 

The high water content suggests the magma has degassed its complement of volatiles up to 79 

atmospheric pressure12 , consistent with interpretations of variability in lava lake level, gas 80 

chemistry and bulk outgassing17. To corroborate this, we re-examined analytical data for lavas 81 

dredged from the Puna ridge, which trends northeast of Kīlauea, reaching about 6 km below sea 82 

level18,19. These lavas were quenched as they erupted on the seabed, and span a wide range of 83 

depths (and hence ambient water pressures). The volatile contents in their glassy rinds enable 84 

calculation of equilibrium gas compositions and eruption pressures using solubility laws for 85 

equivalent melts20,21,22,23 combined with gas equilibrium constants for the C-O-H-S system24.  86 

Although the recovered samples represent different eruptions, a conspicuous trend of increasing 87 

H2O with decreasing pressure emerges (Fig. 2a). Taken with the near 1:1 correlation between 88 

calculated and collection pressures (Fig. 2b), it demonstrates that this lava suite faithfully 89 
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captures the first-order characteristics of degassing of shallow magmas beneath Kīlauea. 90 

Extrapolation of the Puna trend towards atmospheric pressure indicates that the gases we 91 

measured with OP-FTS must have maintained gas-melt equilibrium over much of their ascent 92 

path into the lava lake that feeds the plume. Gas-melt separation at significant depths would be 93 

recorded by gas compositions richer in CO2 (i.e., a water mole fraction of 0.6 at about 30 bar 94 

near the base of the lava lake, Fig 2a), such as observed for some explosive events at Stromboli5. 95 

Sulfur and chlorine contents in the quenched glass of the Puna samples further substantiate this 96 

conclusion. The calculated trend, using a fluid-melt partition coefficient for Cl of 10 (refs. 25; 97 

26), shows consistently increasing molar S/Cl ratio as pressure falls, reaching, at atmospheric 98 

pressure, ~60 (NNO = Nickel-Nickel Oxide, Fig. 2c), consistent with the value of ~68 that we 99 

observe in the gas emission.  100 

Equilibrium temperature and redox calculations 101 

Having established that the gas emissions from the lava lake have equilibrated to atmospheric 102 

pressure, we can use our measurements of CO, CO2, SO2 and OCS in the gas plume to 103 

determine, spectrum-by-spectrum, the fO2 and equilibrium temperature of the emitted gas (Fig. 104 

3; Methods). Two striking features emerge from the data distribution. First, the computed 105 

equilibrium temperatures span a wide range, from about 900 to 1150˚C, extending below the 106 

solidus of Kīlauea basalt (980˚C; ref. 27). The higher computed temperatures are mostly 107 

associated with the mild degassing regime and the lower temperatures with the spattering 108 

episode but there is overlap between the two. Second, the temperature range corresponds to a 109 

change in the computed fO2 values from slightly above the Quartz-Fayalite-Magnetite (QFM) 110 

redox buffer at 1150˚C to slightly above the NNO redox buffer at 900˚C. We consider first the 111 

implications of the temperature variation and then those of the relative fO2 shift. 112 
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Effects of variable bubble size 113 

The wide range in calculated temperatures suggests gas cooling accompanying near adiabatic 114 

expansion of bubbles during ascent through the magma column. To test this hypothesis, we 115 

developed a simple thermodynamic model accounting for the radiative effects and expansion of 116 

bubbles due to decompression (Methods). This permits calculation of the degree of cooling of a 117 

rising bubble as a function of melt viscosity and final bubble size, which control speed of ascent 118 

(Fig. 4). The effect is strongest when the conductive heat flux from the melt is unable to keep 119 

pace with the work done as the bubble expands, i.e., in the case of larger bubbles rising in lower 120 

viscosity melts. For a typical viscosity of Kīlauea basalt of order 100 Pa s, a 2-m-radius bubble 121 

(as measured at the surface) has cooled ~95˚C, and a 3-m-radius bubble has cooled about 122 

170˚C. Due to the accelerating ascent of bubbles as they expand and the decrease in gas 123 

emissivity at low pressure, the cooling is most pronounced in the final tens of metres of passage 124 

below the surface, i.e., within the lava lake.  125 

This analysis leads us to view the computed equilibrium temperature for an individual spectrum 126 

(Fig. 3) as a proxy for bubble size population at an instant in time. As lake degassing becomes 127 

more vigorous, with larger bubbles reaching the surface and dominating the gas plume chemical 128 

signature that we record, gas temperatures drop due to increased cooling. Gas chemistry thus 129 

reflects the dynamics of degassing of the magma in the lake such that measurements made 130 

during even a brief period of variable activity yield a range of computed equilibrium 131 

temperatures. Each measurement captures the gas signature at an instant in time and cautions 132 

against temporal averaging of such compositional data. 133 
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The shift in equilibrium temperature accompanies a corresponding trend in fO2 and notably 134 

oxygen fugacity relative to established and empirical mineral buffers (Fig. 3). Between 1000˚C 135 

and 1100˚C, the correspondence between our measurements and previously reported estimates 136 

(squares in Fig. 3) is close, especially considering the distinct means by which the datasets were 137 

obtained (the “Type I” gas properties were calculated from analyses made at Halema’uma’u in 138 

1917; ref. 9). However, at temperatures below the solidus, our measurements increasingly trend 139 

towards the NNO buffer, in contrast to calculations for “Type II” gas samples collected at 140 

Kīlauea’s East Rift Zone in 1983 (ref. 9). We interpret this decoupling as a further consequence 141 

of changes in bubble size, with larger bubbles increasingly unable to sustain gas-melt 142 

equilibrium as they rise (i.e., gas in bubble interiors cannot effectively exchange oxygen with the 143 

melt). However, the internal equilibrium of the gas mixture can be expected to adjust rapidly to 144 

decompression and cooling – redox kinetics involving the species of interest at magmatic 145 

temperatures are fast (timescales of order 10-2 s) with respect to bubble ascent rates in the 146 

conduit and lava lake28. 147 

To test whether closed-system cooling can explain our observations, we compute the molecular 148 

speciation and fO2 for a gas-only mixture, as a function of temperature, starting with the 149 

observed elemental composition (C-O-S-H-Cl-F) at 1150˚C. This mimics the trend of our 150 

spectroscopic observations closely (dashed line with arrow in Fig. 3) providing compelling 151 

evidence that the internal redox state of the gas is controlled by closed-system cooling during 152 

bubble expansion, with a dominant role played by sulphur owing to its abundance and range of 153 

oxidation states. The gas-only cooling trend is extrapolated in Fig. 3 to 1200˚C, reaching the 154 

QFM redox buffer, and into the range of fO2 reported for matrix glasses of samples from the 155 

Overlook Vent ejected in 2008 and 2010 (ref. 29). 156 
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The relationship of the fO2-temperature trend to the rock buffers for “Type I” and “Type II” 157 

Kīlauea gases (Fig. 3) has been explained by continuous exchange of oxygen between the gas 158 

and lava, even to sub-solidus temperatures9. The discrepancy with our observations may reflect 159 

differences in gas/lava interaction immediately after the escape of gases from the lava surface. In 160 

the case of our measurements, there was no obstruction to gas-air exchange above the exposed 161 

lava lake. In contrast, the “Type II” gases were sampled via tubing inserted into a confined space 162 

accessed through a narrow ‘vigorously fuming’ fissure 1–2 m above active lava9. The fissure was 163 

‘closed to the atmosphere at most points’, and air contamination of the samples, determined 164 

analytically, was very low9. These circumstances may permit oxygen exchange between gas and 165 

lava even after gases escape, and as they expand and cool in the enclosure above the lava 166 

surface.  167 

In Fig. 4, we contrast the gas cooling for bubbles rising through a cooler, more viscous magma 168 

(105 Pa s, 1000°C), and a hotter, less viscous magma (10–1 Pa s, 1500°C) than Kīlauea’s. For the 169 

high-viscosity case, the cooling is less pronounced owing to the lower rise speed of the bubble 170 

and the greater heating of the gas.  The low viscosity case is intended to simulate the higher 171 

temperatures (>1400–1600°C) and more mafic melt compositionof the early Earth30,31. Here, the 172 

modelled cooling is somewhat less than the case for Kīlauea. As the magma becomes less 173 

viscous (102 to 10–1 Pa s), the bubbles rise with inertial speed and so temperature plays a stronger 174 

role owing to the T4 dependence. Hence, at 1500°C, the radiative heating of the bubble is 175 

stronger.  Nevertheless, the cooling remains significant, and we speculate that decametre-sized 176 

bubbles rising rapidly through such hot and fluid melt would cool by hundreds of degrees, 177 

accompanied by significant redox shifts. If this is realistic, then the redox difference between 178 
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magmas and their emitted gases should have been higher for the Early Earth making the link 179 

between Earth's atmosphere and magmatism not as straightforward as commonly assumed32,33.  180 

 181 
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Figure captions 197 

Fig 1. Instrument set up and lava lake behaviour at Halema’uma’u on 5 March 2013. (a) 198 

Fourier transform infrared spectrometer with 10-inch telescope pointed at the lava lake some 200 199 

m distant; (b) initial regime of mild degassing (non-spattering); (c) subsequent regime of 200 

vigorous degassing (spattering). The lava lake is approximately 200 m across. 201 

Fig 2. Observed and calculated gas properties for glass samples dredged from the Puna 202 

ridge.  (a) Evolution of the mole fraction of water in the gas (xH2O) with pressure; dashed-line 203 

logarithmic fit in is intended simply to guide the eye. (b) Comparison between modelled pressure 204 

of volatile saturation and the seabed pressure where each sample was collected (dashed line 205 

shows 1:1 correspondence). (c) Evolution of the SO2/HCl molar ratio with pressure, calculated 206 

for fO2 = NNO–0.5. Our spectroscopic measurements of gas emissions from the lava lake are 207 

indicated by square symbols in (a) and (c). Gas compositions were computed by combining 208 

thermodynamic models of H2O and CO2 solubilities with measured volatile contents, assuming 209 

saturation at all levels, and incorporating a model for fS2 (ref. 21). These give the mole fractions 210 

of C-O-H-S species (i.e., H2O, SO2, CO2, etc.). Temperatures for each sample were computed 211 

using a suitable geothermometer34. Error bars reflect ±10 ppm uncertainty in measured CO2 212 

contents in glass, the largest source of uncertainty (particularly at low pressure). 213 

Fig 3. Computed equilibrium temperature and fO2 for spectrosccopic measurements of gas 214 

emissions from Kīlauea’s lava lake. The dataset is classified into mild-degassing (12:14 to 215 

13:14 h local time) and vigorous-degassing (15:16 to 15:23 h) regimes on 5 March 2013. Also 216 

shown are NNO and QFM buffers; the solidus temperature of Kīlauea basalt; ranges of CO2/CO 217 
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and SO2/H2S, temperature-fO2 calculations for “Type I” and “Type II” gases (Kīlauea Summit 218 

and East Rift Zone emissions, respectively ) and associated empirical fit9; and reported fO2 at 219 

1200˚C for 2008 and 2010 matrix glasses for ejecta from the Overlook Vent (mean and range 220 

shown)29. Note that, below the solidus, our analyses for ‘vigorous degassing’ are more oxidized 221 

than “Type II” gases at equivalent equilibrium temperatures. The white/black dashed line with 222 

arrow shows temperature-fO2 calculations for closed-system, gas-only cooling starting with our 223 

measured gas composition at 1150˚C (open triangle), showing a close fit to the dataset. 224 

Fig 4. Amount of gas cooling as a function of final bubble radius (at the surface) and 225 

magma viscosity. Three temperature and viscosity scenarios are shown. The 1200˚C, 102 Pa s 226 

case corresponds to Kīlauea lava lake; the 1000˚C, 105 Pa s case is applicable, for instance, to 227 

the phonolite lava lake of Erebus volcano, Antarctica; while the 1500˚C, 10-1 Pa s case is 228 

intended to reflect early Earth magmas. 229 

Methods 230 

Fourier transform infrared spectroscopy 231 

We used a MIDAC FTIR spectrometer with a Stirling-engine-cooled MCT detector. Incoming 232 

light was collimated with a 10-inch Newtonian telescope (field of view 3 mrad). All spectra were 233 

recorded with a nominal optical path difference (retardation) of 2.0 cm, corresponding to a 0.5 234 

cm-1 spectral resolution. Interferograms were Fourier transformed with a Mertz phase correction 235 

and triangular apodization. We then determined the column amounts of gases contributing to the 236 

recorded absorption spectra, employing a forward model35 that simulates the atmospheric 237 

transmittance in several discrete wavebands using line parameters for selected gas species taken 238 

from the HITRAN database (hitran.org). The model considers a one-layer atmosphere with 239 
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pressure, temperature and initial column amounts specified for both atmospheric and volcanic 240 

gas species. Simulated spectra are adjusted to fit each observed spectrum using an optimal 241 

estimation method36.  242 

There are several sources of uncertainty in the retrieved column amounts, notably the limitation 243 

of assuming a single-layer atmosphere (with uniform temperature), and the sensitivity of the 244 

instrument line shape to off-axis rays striking the interferometer. Much care, therefore, needs to 245 

be exercised in defining the limits of the spectral windows used for fitting. Our retrieval 246 

procedure includes calculation of a solution covariance matrix, whose diagonal elements 247 

represent the variance of each retrieved parameter, and which provides a measure of the retrieval 248 

error for each parameter fitted in each spectrum. The measurement error required to derive the 249 

covariance matrix is given by the standard deviation of the residual in the fit (i.e., forward model 250 

minus observed spectrum). These calculated variances include contributions from the forward 251 

model error (arising from the selected instrument line shape used to represent the spectrometer’s 252 

field of view and retardation), measurement noise, the information content of the measurement 253 

for each parameter fitted (dependent on the spectral microwindow for the fit), and the degrees of 254 

freedom (an inverse function of the number of parameters in the fit). Laboratory experiments 255 

using very similar equipment and retrieval methods have indicated that absolute accuracies of 256 

~5% or better can be achieved37.  257 

Often, when absorption spectra such as ours are collected on a volcano over a span of an hour or 258 

so, scatter plots of retrieved column amounts for two gases are presented and used to compute 259 

average molecular ratios (e.g., CO2/CO, CO2/SO2, CO2/H2O). These regressions may hide real 260 

source variation, however38. If we treat each spectrum as an individual measurement, then we 261 

can examine rapid variations in gas composition. This requires careful correction for ambient air 262 
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contributions to the measured water and CO2 abundances. Since other measured volcanic gas 263 

species, i.e., CO, OCS, SO2, HCl and HF are present in negligible quantities in the ambient 264 

atmosphere, we can estimate background air contributions to CO2 and H2O from the intercepts of 265 

linear regressions of suitable scatter plots (e.g., CO2 vs. SO2; Fig. S1). Note there is a spread of 266 

observations around the linear fit shown in the figure. A much wider variation is evident when 267 

looking at the redox pair CO2 vs. CO (Fig. S2). 268 

Our gas ‘samples’ represent the molecules lying within the optical path between spectrometer 269 

and lake surface (the infrared source). Thus, an individual sample is likely to contain gas just 270 

released at the lava/air interface, as well as gas that has been circulating within the crater for a 271 

period. Given the continuous dispersion of the plume by convection and advection, most of gas 272 

molecules sensed under the conditions encountered were emitted within seconds or a few tens of 273 

seconds of the measurement. Thus, each spectrum approximates the near-instantaneous emission 274 

from the lava surface. Previous studies of the lava lake at Erebus volcano, Antarctica, using 275 

similar equipment and methods have demonstrated the potential to track rapid variations in 276 

plume chemistry13. 277 

Calculation of redox state and temperature 278 

Volcanic gas compositions are often evaluated in terms of redox equilibria. This permits 279 

assessment of gas-rock or gas-melt exchange, and reactions between magmatic and hydrothermal 280 

fluids, or between gases and air. We consider two here, since they represent, sample-by-sample, 281 

the relationship between temperature, pressure and fO2 at equilibrium. We also have 282 

measurements for all the species concerned (CO, CO2, OCS, SO2). 283 

The first is: 284 
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3CO + SO2 = 2CO2 + OCS (1) 285 

and the second: 286 

CO + ½O2 = CO2 (2). 287 

Equation (1) is useful because the equilibrium is a function of pressure, p, as well as temperature, 288 

T (K):  289 

log10݌ =  −15224ܶ + 9.22608 − log10 ൜ቀݔCO CO2ൗݔ ቁ2 . ቀݔCO OCSൗݔ ቁ .  SO2ൠ           (3) 290ݔ

 291 

in which the constants (K), which are based on the reference state of the pure gaseous 292 

components at 1 bar, have been calculated using data tables in ref. 39 and by regressing log K 293 

against 1/T for the temperature range 727–1227°C. For each spectrum (sample), we readily 294 

obtain ݔCO CO2ൗݔ and ݔCO OCSൗݔ  from the corrected retrieved column amounts of each gas. ݔSO2 is 295 

obtained by normalizing all the seven species measurements (CO, CO2, OCS, H2O, SO2, HCl 296 

and HF, after air correction). Adjustments can be made for estimated H2 and H2S abundances but 297 

these only shift computed temperatures by 1–2°C. The key assumption we then make is that the 298 

internal redox of the magmatic gas mixture equilibrates to atmospheric pressure, which is 299 

reasonable since gases will very rapidly reach equilibrium at temperatures above 800°C (ref. 40). 300 

This enables calculation of the equilibrium gas temperature, T (in Kelvin), for each sample. 301 

For equation (2), the equilibrium constant, K2, is a function of T and fO2, as follows: 302 

CO2/CO = K2√fO2 (4). 303 

This yields: 304 
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log10 ቀݔCO2ݔCO ቁ =  14724.5ܶ − 4.5057 + 1 2ൗ log10ሺ݂O2ሻ                (5) 305 

where fO2 is in bars and constants are again calculated from (39). Taking equilibrium T 306 

computed as above (3), we can then compute fO2 for each sample.  307 

For these calculations, the largest single source of uncertainty arises from the estimation of the 308 

background CO2 and H2O abundances (column amounts), as shown in Fig. S1. The relative error 309 

in this correction is greatest for spectra with low volcanic gas contributions, so we excluded from 310 

further analysis those spectra for which the recorded CO2 column amount was less than 20% 311 

above background. We also looked closely at uncertainties in OCS determinations. Although the 312 

proportion of OCS that we calculate in the gas phase is only around 0.0004 mol%, the 313 

comparatively small abundance is compensated for by the strength of the molecule’s absorption 314 

cross section in the mid infrared region of the spectrum, and the retrievals are robust. We 315 

excluded analyses for which the retrieved error on OCS exceeded 25%.  To test the sensitivity to 316 

uncertainties in these parameters, we varied them systematically to obtain error estimates of 317 

approximately ±20°C in temperature and ±0.3 log units in fO2, as indicated in Fig. 2. We note 318 

that the precision on the measurements is much higher because most of the error sources are 319 

systematic, and we have analysed datasets collected over short intervals of time, which 320 

minimises the effect of temporal variation in background atmospheric abundance of H2O. 321 

To justify further our assumption that equilibration proceeds to atmospheric pressure, we 322 

investigated the alternative scenarios. If we assume that fO2 follows the empirical buffer reported 323 

by ref. 9, then we calculate again a wide range of equilibrium temperatures but pressures are 324 

found to be considerably less than atmospheric for most of the vigorous degassing spectra. 325 

Further, computed pressure decreases with decreasing equilibrium temperature, which we cannot 326 
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rationalize. Alternatively, if we fix the gas temperature to that of the magma, and compute fO2 327 

and pressure, the latter values range between 30 and 400 bars. In this case, we cannot reconcile 328 

how the emitted high-temperature gas could preserve all the way to the surface such a high-329 

pressure signature acquired at depth. 330 

Model for bubble cooling 331 

To estimate cooling of a bubble of mass m rising through magma, we require a model of the rate 332 

of heat transfer, H, to the bubble from the melt, which buffers the cooling as the bubble expands. 333 

If the bubble volume changes by an amount ΔV in time Δt, the work done by the bubble is pΔV, 334 

where p is the pressure, and this, along with the heat transfer, HΔt, leads to a change in the 335 

internal energy of the bubble, mcgΔTg, according to the relation: 336 

mcgΔTg =  –p ΔV + HΔt     (6)  337 

where m is the bubble mass, cg is the specific heat capacity of the gas, and ΔTg its change in 338 

temperature. The pressure in the conduit is approximated by the magmastatic pressure, which 339 

applies provided that the bubble concentration in the conduit remains small. For a bubble of 340 

fixed mass rising at speed u, we can express equation (6) in terms of the height of the bubble in 341 

the conduit, in differential form: 342 

mcgdTg/dz = –p dV/dz  +  H/u  (7) 343 

where z is the distance above a reference level. Experimental data suggest that, if the Reynolds 344 

number (Re, given by ρmur/μm where ρm and μm are the melt density and dynamic viscosity, 345 
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respectively, and r is the bubble radius), exceeds 100, the speed follows the approximate inertial 346 

law41: 347 

u = 0.3 √(2g r)  (8) 348 

where g is the acceleration due to gravity. Alternatively, for Re≲10, the speed may be 349 

approximated by41: 350 

u = 2g(ρm – ρg )r2 / 9μm  (9) 351 

where ρg is the gas density. We assume a simple transition from one regime to the other, as the 352 

bubble rises and Re increases, when the two speeds (8) and (9) are equal. 353 

The heat flux, H, from the melt to the bubble depends on the bubble rise speed, and is given in 354 

terms of the average thickness of the thermal boundary layer in the melt around the bubble. As 355 

melt is displaced by the bubble, the boundary layer thickens from the top to the base of the 356 

bubble. Since the flow around the bubble has time scale 2r/u, the average boundary layer 357 

thickness is of order √(κmr/u), where κm is the thermal diffusivity of the melt. Experiments and 358 

numerical calculations42 for spherical bubbles with low Re (<100), as is the case for the majority 359 

of calculations herein, suggest the constants of proportionality for the average heat flux from the 360 

melt, leading to the following approximate law:   361 

H = (8/π½) ρmcm  π r 2 κm (Tm − Ts) / (κmr/u)½  (10) 362 

where cm is the specific heat capacity of the melt, Tm its temperature, and Ts is the average 363 

surface temperature of the bubble. This heat flux balances that from the melt surface to the gas in 364 

the bubble. This involves both convective and radiative heat transfer from the bubble surface to 365 
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the gas in the bubble. The convective heat transfer, Hconv, scales with the Rayleigh number of the 366 

bubble, with a shape factor associated with the convective flow in the bubble. As a simplified 367 

parameterisation, we write the convective flux using the relation for high Rayleigh number 368 

convection43:  369 

Hconv = 0.4 πr ρgcgκg [g (Ts – Tg) r3/ T0 κg νg]1/3 (Ts – Tg)      (11)  370 

where T0 is a reference temperature for the gas in the bubble, here assumed to equal Tm, and κg 371 

and νg are the thermal diffusivity and kinematic viscosity of the gas, respectively.  The radiative 372 

heat transfer between the melt at the surface and the gas in the bubble, Hrad, is given by the 373 

Stefan-Boltmann law: 374 

Hrad = 4π r2 σ Ε(Tg,r,p) (Ts
4 – Tg

4)     (12) 375 

where σ is the Boltzmann constant and Ε(Tg,r,p) is the emissivity of the gas in the bubble. The 376 

emissivity depends on the mean path length of the radiation passing through the bubble (4r/3 for 377 

a spherical geometry), with certain wavelengths of the radiation being absorbed and re-emitted 378 

by the gas. It also depends on the pressure and temperature of the gas. We simplify the 379 

estimation of emissivity by assuming that the gas is pure water vapour, which is reasonable given 380 

the high measured water contents in the pressure range of relevance (Fig. 2a). Emissivities of 381 

water at elevated temperatures and pressures have been investigated in the context of industrial 382 

furnaces and we have built an empirical model for emissivity as a function of bubble radius, gas 383 

temperature and pressure using the look up tables in ref. 44. 384 

By equating the heat flux from (10) with the sum of heat fluxes from (11) and (12), we can find 385 

the average surface temperature of the gas bubble, Ts, in terms of the far-field magma 386 
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temperature, Tm, and the mean gas temperature within the bubble, Tg. With this value for Ts, we 387 

can calculate the heat flux using (10) and the gas temperature, Tg, of the bubble as it ascends by 388 

integration of equation (7).  389 

We have solved the model for the case of water vapour bubbles rising from a depth of 1500 m 390 

(the depth of the magma chamber located beneath the lava lake) to the surface. We find that, as 391 

the pressure falls off towards atmospheric pressure and the bubble accelerates upwards in the 392 

uppermost conduit and lava lake, the heat flux from the magma is unable to keep pace with the 393 

work done in expanding the bubble. It is here that the cooling is most pronounced. On reaching 394 

the surface, the gas temperature may be tens or even a few hundred degrees cooler than the 395 

magma, depending on the size of the bubble and the viscosity of the magma, which control the 396 

rise speed (Fig. 4).  397 

The temperature of the bubble surface as well as of the vapour in the bubble for a given 398 

temperature and magma viscosity is shown in Fig. S3. It is seen in this case that the surface 399 

temperature lags the gas cooling by between 5 and 50˚C. 400 

We stress that our treatment here is simplified. There is uncertainty in the exact coefficients in 401 

(9–10), owing to the complexity of actual bubble shapes. For simplicity, we have taken them to 402 

be spherical but in reality they would have different shape factors as they stretch and become 403 

more elliptical. Also, the details of the flow associated with the convective mixing inside the 404 

bubble (9) and the model of the absorption of radiation (10) provide representative but simplified 405 

expressions for the magnitude of the heat transfer. For example, we neglect temperature 406 

variations around the bubble surface. To illustrate the sensitivity of the calculations to the 407 

detailed parameterisation, Fig. S4 compares the computed gas cooling as a function of final 408 
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bubble size for gas emissivities 0.5 and 1.5 times the values taken from the look up tables of ref. 409 

44. While this changes the predictions, the magnitude of the cooling remains of a similar order. 410 

These changes in the value of the emissivity can be interpreted as uncertainty in the shape factor 411 

of the gas bubble, which may evolve into a non-spherical shape, as well as some of the 412 

uncertainty in the emissivity (which is only partially constrained at elevated temperatures and 413 

pressures). We conclude that these simple cooling estimates corroborate our explanation for the 414 

span of equilibrium temperatures calculated for the gas emissions from Kīlauea and evident in 415 

Fig. 3. 416 

Some estimates of bubble sizes are quoted in the literature cited in the main text. Fig. S5 offers 417 

an impression of the sizes attained by rupturing bubbles during spatter episodes at Kīlauea. 418 

Additional Information 419 

Correspondence and requests for materials should be addressed to C.O. co200@cam.ac.uk  420 

Data availability 421 

The datasets generated and analysed during the current study are available from the 422 

corresponding author upon reasonable request and with permission of USGS Hawaiian Volcano 423 

Observatory. 424 

425 
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