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Combining information on multiple
instrumental variables in Mendelian
randomization: comparison of allele
score and summarized data methods
Stephen Burgess,a*† Frank Dudbridgeb and Simon G. Thompsona

Mendelian randomization is the use of genetic instrumental variables to obtain causal inferences from observa-
tional data. Two recent developments for combining information on multiple uncorrelated instrumental variables
(IVs) into a single causal estimate are as follows: (i) allele scores, in which individual-level data on the IVs are
aggregated into a univariate score, which is used as a single IV, and (ii) a summary statistic method, in which
causal estimates calculated from each IV using summarized data are combined in an inverse-variance weighted
meta-analysis. To avoid bias from weak instruments, unweighted and externally weighted allele scores have been
recommended. Here, we propose equivalent approaches using summarized data and also provide extensions of
the methods for use with correlated IVs. We investigate the impact of different choices of weights on the bias and
precision of estimates in simulation studies. We show that allele score estimates can be reproduced using sum-
marized data on genetic associations with the risk factor and the outcome. Estimates from the summary statistic
method using external weights are biased towards the null when the weights are imprecisely estimated; in con-
trast, allele score estimates are unbiased. With equal or external weights, both methods provide appropriate tests
of the null hypothesis of no causal effect even with large numbers of potentially weak instruments. We illustrate
these methods using summarized data on the causal effect of low-density lipoprotein cholesterol on coronary
heart disease risk. It is shown that a more precise causal estimate can be obtained using multiple genetic variants
from a single gene region, even if the variants are correlated. © 2015 The Authors. Statistics in Medicine published
by John Wiley & Sons Ltd.
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1. Introduction

An instrumental variable (IV) can be used to estimate the causal effect of a risk factor on an outcome
from observational data [1, 2]. A valid IV must be associated with the risk factor of interest but not
associated with other factors on alternative causal pathways. This implies that it is not associated with
any confounder of the risk factor–outcome association and that any causal pathway from the IV to the
outcome passes through the risk factor [3]. Much recent attention has been devoted to IV analysis in the
context of Mendelian randomization, defined as the use of genetic variants as IVs [4, 5].

The causal effect of the risk factor on the outcome with a single IV can be estimated by dividing the
coefficient from the regression of the outcome on the IV by the coefficient from the regression of the risk
factor on the IV [6]. This is known as the ratio of coefficients method. Alternatively, the same estimate
can be obtained by first regressing the risk factor on the IV and then regressing the outcome on the fitted
values of the risk factor from the first-stage regression [7]. This is known as the two-stage least squares
(2SLS) method. The 2SLS method can be extended for use with multiple IVs [8]. As the number of
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IVs increases, overfitting in the first-stage regression model leads to systematic finite-sample bias in the
causal estimate [9]. This bias, known as weak instrument bias, acts in the direction of the confounded
observational association between the risk factor and outcome [10]. When there is a single IV, the median
bias of the ratio (or 2SLS) method estimator is negligible for all but the weakest of IVs [11]. A recent
methodological development to exploit this fact is to aggregate multiple IVs into a single univariate score,
and to use this score as a single IV rather than to use multiple IVs [12]. In Mendelian randomization, this
is known as an allele score, genetic risk score or gene score.

An alternative approach to combine information on multiple IVs is to use summarized data on the
associations of genetic variants with risk factors and disease outcomes. These data are increasingly
becoming available from large consortia, such as the Global Lipids Genetics Consortium (GLGC) for
lipid fractions [13] and DIAGRAM for type 2 diabetes [14]. Causal estimates can be obtained from these
associations for a single genetic variant using the ratio method without the need for individual-level data.
Two methods for obtaining causal estimates from summarized data for multiple IVs have been proposed: a
summary statistic method, in which the ratio estimates from each IV are combined in an inverse-variance
weighted meta-analysis [15,16], and a likelihood-based method, in which the summarized data are mod-
elled directly using a likelihood function [17,18]. The summary statistic method requires that the IVs are
uncorrelated in their distributions (for genetic IVs, the variants are in linkage equilibrium).

In this paper, we review and extend the literature on IV estimation methods with summarized data,
currently described in disparate sources. In Section 2, we lay out the assumptions made in this paper for
the identification of causal effects. In Section 3, we demonstrate how an allele score estimate with a pre-
specified choice of weights can be reproduced using summarized data. We rederive the known result for
uncorrelated IVs that the allele score and summary statistic methods using an internally derived choice of
weights give the same estimates as a (multivariable) 2SLS method; the estimates differ for other choices
of weights. We investigate the bias and coverage properties of the allele score and summary statistic
methods in simulation studies for different choices of weights, in particular with weak instruments. In
Section 4, we derive extensions to the previously described methods that can be used when the IVs are
correlated and similarly investigate their statistical properties. In Section 5, the methods are illustrated
using summarized data on the causal effect of low-density lipoprotein cholesterol (LDL-c) on coronary
heart disease (CHD) risk, comparing causal estimates obtained using a single genetic variant with those
obtained using multiple genetic variants from the same gene region. Finally, we discuss the relevance of
these methodological developments to applied practice (Section 6).

For reference, a summary of methods for IV estimation discussed in this paper is given in Table I.
Sample code for implementing the methods is given in Appendix A.1. We clarify that the individual-
level data methods require individual participant data on the genetic variants used as IVs, risk factor and
outcome. The summarized data methods only require data on the associations of the IVs with the risk
factor and with the outcome. If limited individual-level data are available (for example, on the IV–risk
factor relationship but not the IV–outcome relationship), then summarized associations can be obtained
from the individual-level data, and the analysis can proceed using summarized data only.

2. Modelling assumptions

In this paper, the situation of a continuous risk factor and a continuous outcome will be assumed, although
the binary outcome case can be handled in a similar way. We assume that the causal effect of the risk factor
on the outcome is linear and homogeneous in the population without effect modification. We also assume
that the associations of the IVs with the risk factor are linear and homogeneous in the population with-
out effect modification. As shown previously, these assumptions lead to the identification of the causal
effect [6]. These strong assumptions are not necessary for the estimation of a causal effect; alternative
assumptions, such as monotonicity of the IV–risk factor association or no additive effect modification of
the causal effect across levels of the instrument at different values of the risk factor, are able to identify a
causal parameter [19]. However, there is no guarantee that these weaker assumptions will ensure that the
same causal effect is estimated by all IVs, particularly for the monotonicity assumption, which identifies
a local average treatment effect [20]. Hence, weaker assumptions may be tenable in some cases, but the
homogeneity assumption is made in this paper.

If the IV–risk factor and IV–outcome associations are estimated in different datasets (known as two-
sample Mendelian randomization [21]), we assume that these datasets are sampled from the same
underlying population, such that the true association and causal parameters are equal in both datasets.
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Table I. Summary of instrumental variable (IV) estimation methods discussed in this paper.

Method Equation(s) Comments

Individual-level data methods
Two-stage least squares Commonly used method in IV analysis (Section 1).
Allele score Combine IVs into a single score, and use the score as a

single IV in a two-stage least squares (or equivalently,
ratio) method (Section 3.1).

Summarized data methods (uncorrelated IVs)
Allele score (2) and (3) The allele score estimate obtained using individual-level

data can be approximated using summarized data
(Section 3.2).

Summary statistic (inverse-variance weighted) (4) and (5) The summary statistic estimate combines the estimates
from each IV in an inverse-variance weighted formula
(Section 3.3). This estimate can also be motivated by
weighted linear regression through the origin using the
precisions of the IV associations with the outcome as
weights.

Likelihood-based method (6) The likelihood-based method fits a model for the
summarized data using either maximum likelihood or
Bayesian methods for inference (Section 3.4).

Summarized data methods (correlated IVs)
Allele score (2) and (8) The allele score estimate with summarized data is not

affected by correlation between the IVs; although the
estimate’s precision is altered (Section 4.1).

Summary statistic (inverse-variance weighed) (4) and (9) With correlated variants, the summary statistic
formula can be used to test for a causal effect (although
the standard error of the expression must be modified,
Section 4.2), but it does not provide an estimate of the
causal effect.

Weighted generalized linear regression (10) and (11) With correlated variants, a weighting matrix can be
obtained using the standard errors of the IV associations
with the outcome and the correlations between the
variants. The coefficient from weighted generalized
linear regression using this weighting matrix provides
an estimate of the causal effect (Section 4.2).

Likelihood-based method (A1) Correlation between summarized estimates can be
incorporated into the likelihood model for the
summarized data. (Appendix A.3).

We assume that association estimates used in Mendelian randomization analyses are not conditional on
any covariates. If the outcome is continuous, then adjustment for covariates should not affect estimates
asymptotically, provided that adjustment is performed uniformly across genetic variants, the covariates
are not on the causal pathway from the IV to the outcome, and the IVs remain valid after condi-
tioning on the covariates (so, for example, each IV is independent of confounders conditional on the
covariates). If the outcome is binary and association estimates are obtained via logistic regression, then
adjustment for covariates will affect estimates asymptotically as coefficients from logistic regression are
non-collapsible [22]. However, this should not affect the validity of causal findings, provided that the
IVs are valid both marginally and conditionally on the covariates. In particular, adjustment for baseline
covariates (such as age and sex) should not be an issue. A full discussion on adjustment of covariates in
IV analysis is beyond the scope of this manuscript; further information is available elsewhere [23].

Although these assumptions are restrictive, we note that even if these parametric assumptions are not
satisfied, a Mendelian randomization investigation can still be interpreted as a test of the causal null
hypothesis, even if the magnitude of the causal effect estimate does not have an interpretation [24, 25].
Hence, while these assumptions are necessary to ensure the same causal effect parameter is identified by
all IVs, and so that the methods provide consistent estimates of a causal parameter (even in a two-sample
setting), causal inferences from the methods (that is, rejection or otherwise of the null hypothesis of no
causal effect) are valid under much weaker assumptions. A causal estimate is nevertheless necessary
to combine evidence on the causal effect across multiple IVs. However, the causal estimate could be
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regarded as a test statistic rather than an estimate. Causal estimates from Mendelian randomization in
practice should not be regarded too literally, for example, because different mechanisms for intervention
on the same risk factor are likely to lead to different magnitudes of causal effect [5].

Practical issues with respect to the choice of datasets for two-sample Mendelian randomization are
discussed elsewhere [18]. In brief, participants in the two datasets should be as similar as possible, for
example, with regard to ethnic origin, as otherwise it is more likely that the IV assumptions are invalid
in one or other of the datasets. The reason for the particular emphasis on ethnic origin is that genetic
variants used in Mendelian randomization are often not the ‘causal’ variant but rather are correlated with
the true functional variant through linkage disequilibrium. As linkage disequilibrium patterns often differ
between ethnic groups, it would seem prudent to ensure that associations were measured in ethnically
homogeneous populations as far as possible. Additionally, if the minor allele frequencies of variants
differ between ethnic groups (or other distinct populations or subpopulations), population stratification
may bias results [26]. In publicly available data from genome-wide association studies, it is common to
adjust for genome-wide principal components to reduce the influence of population stratification [27].
This adjustment generally has a large cumulative effect on association estimates across the genome but a
small effect on the association estimates of individual variants. It therefore should not affect association
estimates substantially. Hence, although the inclusion of participants of different ethnicities does not
necessarily violate the IV assumptions, in such a case, special care should be taken to ensure that the IV
assumptions are satisfied in participants of all ethnicities and that the magnitudes of associations and the
frequencies of alleles are similar in all subpopulations.

3. Uncorrelated instrumental variables

Initially, we consider the scenario where the IVs are uncorrelated.

3.1. Individual-level data allele score method

Most genetic variants used as IVs in Mendelian randomization are biallelic single nucleotide polymor-
phisms (SNPs) that can be represented as random variables taking the values 0, 1 or 2, denoting the
number of risk factor-increasing alleles in the genotype of an individual. An unweighted allele score is
constructed as the total number of risk factor-increasing alleles for an individual across multiple genetic
variants. If an individual i has gik copies of the risk factor-increasing allele for each genetic variant
k = 1,… ,K, then their unweighted score is zi =

∑K
k=1 gik. This score takes integer values between 0 and

2K. A weighted score can also be considered, in which each variant contributes a weight reflecting the
effect of the corresponding genetic variant on the risk factor. If the weight for variant k is wk, then individ-
ual i has a weighted score zi =

∑K
k=1 wkgik. Provided that the genetic variants that comprise the score are

valid IVs, either score can then be used in an IV analysis. Weights are typically taken as estimates of the
associations of each IV in turn with the risk factor, obtained from univariate linear regression analyses.
These associations may be estimated in the data under analysis, or in an independent dataset.

If the weights in an allele score are derived from the data under analysis, then they will be the same
asymptotically as the coefficients from a multivariable regression of the risk factor on the IVs (under
the assumption that the IVs are uncorrelated). Values of the weighted score for each individual would
therefore equal the fitted values of the risk factor from that regression (up to an additive constant), meaning
that the allele score and (multivariable) 2SLS estimates would coincide [12]. In this case, the allele score
estimate would suffer from the same weak instrument bias as the 2SLS estimate, and there is no benefit
in using the allele score method. Better approaches are to estimate the weights using a cross-validation
or jackknife approach [28], to pre-specify the weights using an external data source, or else (particularly
if the variants have approximately equal effects on the risk factor) to use an unweighted score [12].

Under weak instrument asymptotics (the strength of instruments as measured by the concentration
parameter – the expected value of the F statistic from regression of the risk factor on the IVs – remains
fixed as the sample size increases), confidence intervals (CIs) from the 2SLS method using standard
asymptotic approximations are overly narrow and coverage rates are below nominal levels [29]. Under
conventional asymptotics (the strength of instruments increases as the sample size increases), the 2SLS
estimator is the most efficient combination of the ratio estimates based on the individual IVs [8, page
553], and coverage rates should tend towards nominal levels. If the weights in an allele score method
tend towards the true associations of the IVs with the risk factor, then the allele score estimate will be as
efficient asymptotically as the 2SLS estimate. If the weights do not tend towards the true associations,
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and in particular for an unweighted score, the allele score estimate will be asymptotically inefficient.
However, if the true weights of all the IVs are similar, then an unweighted analysis may be more efficient
than a weighted analysis in finite samples, as previously demonstrated in a simulation study [12].

3.2. Summarized data allele score method

We assume the context of a one-sample IV analysis in a single dataset with data on the risk factor (X),
outcome (Y) and IVs (G1,…GK) in all participants. We assume that the estimate of association for IV
k = 1,… ,K with the risk factor is 𝛽Xk with standard error 𝜎Xk, and the estimate of association with the
outcome is 𝛽Yk with standard error 𝜎Yk. These estimates are typically obtained from linear regression (or
logistic regression for associations with a binary outcome). Although the standard errors are estimated, we
assume that they are known without error. This may lead to slightly overprecise estimates, but coverage
levels have been shown to be close to nominal levels in realistic simulations [17]. With the weighted
allele score (Z =

∑
k wkGk) used as a single IV, and writing cov for the sample covariance and var for the

sample variance, the IV estimate is

cov(Y ,Z)
cov(X,Z)

=
cov(Y ,

∑
k wkGk)

cov(X,
∑

k wkGk)

=
∑

k wkcov(Y ,Gk)∑
k wkcov(X,Gk)

=
∑

k wk𝛽Ykvar(Gk)∑
k wk𝛽Xkvar(Gk)

(1)

as the association estimates are calculated as 𝛽Yk = cov(Y ,Gk)∕var(Gk) for each k = 1,… ,K (similarly
for each 𝛽Xk). The weights wk are assumed to be pre-specified and are typically taken as the association
estimates of each IV with the risk factor in an independent dataset. If the IVs explain a small proportion
of variance in the outcome, then var(Gk) is approximately proportional to 𝜎−2

Yk , and so the allele score
estimate based on summarized data (𝛽SSw) is

𝛽SSw =
∑

k wk𝛽Yk𝜎
−2
Yk∑

k wk𝛽Xk𝜎
−2
Yk

(2)

We note that at no point in this calculation have we made use of the fact that the genetic variants are
uncorrelated. With equal weights, this is equivalent to performing separate inverse-variance weighted
meta-analyses of the genetic associations with the outcome and of the genetic associations with the risk
factor (as the 𝜎−2

Xk parameters are approximately proportional to 𝜎−2
Yk ) and then taking the ratio of the pooled

estimates. Even in this unweighted case, the directions of the IV associations with the risk factor are
required to be specified, even if the magnitudes of the associations are unknown. There have been reports
of genetic variants having different directions of association with a risk factor in different datasets [30];
however, the majority of these instances were in populations of different ethnic origins, emphasizing the
need to use ethnically homogeneous populations in Mendelian randomization and in two-sample analysis
in particular.

The asymptotic standard error of the allele score estimate with uncorrelated variants (equation (2)) can
be approximated from summarized data using a delta method [31]:

se(𝛽SSw) =

√√√√√ ∑
w2

k𝜎
−2
Yk(∑

wk𝛽Xk𝜎
−2
Yk

)2
+

(∑
wk𝛽Yk𝜎

−2
Yk

)2 (∑
w2

k𝜎
−2
Yk

)(∑
wk𝛽Xk𝜎

−2
Yk

)4
− 2𝜃S

∑
wk𝛽Yk𝜎

−2
Yk(∑

wk𝛽Xk𝜎
−2
Yk

)3
(3)

where 𝜃S is the correlation between the numerator and denominator in equation (2). This correlation can
be estimated by bootstrapping with individual-level data, or else specified as the observed correlation
between the risk factor and the outcome (a sensitivity analysis for the value is advised). In two-sample
Mendelian randomization, this correlation is zero. If the genetic associations with the risk factor are
precisely estimated, then the first term will dominate this expression.
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3.3. Summary statistic (inverse-variance weighted) method

The summary statistic estimate is calculated using summarized data on the associations of each IV with
the risk factor and with the outcome. If the estimates are taken from the same individuals, this is a one-
sample IV analysis; if the estimates are from non-overlapping groups, this is a two-sample analysis [21].
The ratio method estimate of the causal effect of the risk factor on the outcome using IV k is 𝛽Yk

𝛽Xk
. The

asymptotic standard error of this estimate, derived from the first term of the delta method expansion for
the ratio of two random variables [31], is 𝜎Yk

𝛽Xk
.

Using the formula for combining estimates in a fixed-effect inverse-variance weighted meta-analysis
[32], the summary statistic estimate 𝛽SSt can be calculated as

𝛽SSt =
∑

k 𝛽Xk𝛽Yk𝜎
−2
Yk∑

k 𝛽
2
Xk𝜎

−2
Yk

(4)

The approximate asymptotic standard error of the summary statistic estimate is

se(𝛽SSt) =
√

1∑
k 𝛽

2
Xk𝜎

−2
Yk

(5)

This method was previously referred to as an ‘inverse-variance weighted’ method [17]; this refers to the
weights in the meta-analysis formula rather than the weights in the allele score. This estimate can also be
motivated as the coefficient from a weighted linear regression of the 𝛽Yk on the 𝛽Xk without an intercept
term, using the 𝜎−2

Yk as weights. The standard error from an inverse-variance weighted linear regression in
conventional statistical software is often incorrect and has to be modified by forcing the residual standard
error to be unity; this can be achieved by dividing the reported standard error by the residual standard
error in the regression analysis [33].

If the weights wk in equation (2) are set to 𝛽Xk, then the summary statistic estimate 𝛽SSt equals the allele
score estimate using summarized data 𝛽SSw, as previously noted [16]. In this case, the standard error in
equation (5) equals the first term in equation (3). For other choices of weights, the estimates and standard
errors will differ.

3.4. Likelihood-based method

A likelihood-based method has also been proposed, in which the IV associations with the risk factor and
with the outcome for each IV are modelled directly by a bivariate normal distribution, with correlation
𝜃L assumed to be the same for each IV:(

𝛽Xk

𝛽Yk

)
∼ 2

((
𝜉k
𝛽L𝜉k

)
,

(
𝜎2

Xk 𝜃L 𝜎Xk 𝜎Yk

𝜃L 𝜎Xk 𝜎Yk 𝜎2
Yk

))
(6)

where 𝛽L is the causal parameter. The IV–risk factor association estimates 𝛽Xk are the implicit ‘weights’
in this method. They could be obtained from the dataset under analysis or from an independent dataset (a
two-sample analysis). The standard errors of the association estimates 𝜎Xk and 𝜎Yk are used to specify the
variance–covariance matrix for the normal distribution and as before are assumed to be known. Model
parameters (𝛽L and 𝜉k, k = 1,… ,K) can be estimated either by numerical maximization of the log-
likelihood function or in a Bayesian framework [34]. Standard errors for maximum-likelihood estimates
can be obtained using the inverse-Hessian matrix.

The correlation 𝜃L is due to the IV associations with the risk factor and with the outcome being esti-
mated in the same data. There is likely to be little information on this parameter in the data [35], and so
it may be best specified in the analysis as the observational correlation between the risk factor and out-
come; a sensitivity analysis can be performed to assess the effect of varying the parameter value on the
causal estimate. In a two-sample IV analysis, the correlation 𝜃L will be zero.

3.5. Simulation study

We investigate the properties of estimates from these methods in a simulation study with two specific
goals. The first is to demonstrate that estimates from the allele score method are similar whether they
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are calculated using individual-level or summarized data. The second is to compare the behaviour of
the summarized data methods (allele score, summary statistic and likelihood-based) in a two-sample
setting with external weights. We have previously shown that the summary statistic and likelihood-based
methods give similar estimates and standard errors in a one-sample setting [17]. If individual-level data
were available in a one-sample setting, several other IV methods that are robust to weak instruments
could be used, such as limited information maximum likelihood and the continuous updating estimator
[36]. However, we are unaware of extensions of these methods to a two-sample setting.

Data on 5000 individuals were generated from the following model in which, for subject i, xi is the
risk factor of interest, ui a confounder, yi the outcome, and gik = 0, 1, 2 is the kth IV (k = 1,… ,K),
representing the number of risk factor-increasing alleles of a genetic variant:

gik ∼ Binomial(2, 𝜋k) independently for k = 1,… ,K

xi =
K∑

k=1

𝛼kgik + ui + 𝜖Xi

yi = 𝛽Xxi + 𝛽Uui + 𝜖Yi

(7)

ui ∼  (0, 1), 𝜖Xi ∼  (0, 1), 𝜖Yi ∼  (0, 1)
𝜋k ∼ Uniform(0.01, 0.5)
𝛼k ∼ Uniform(0.5𝛼, 1.5𝛼)

⎫⎪⎬⎪⎭ independently

The causal effect of the risk factor on the outcome is taken as 𝛽X = 0.2 throughout. The risk factor-
increasing allele frequency 𝜋k and strength of association of the kth IV with the risk factor 𝛼k are allowed
to vary between the IVs. We set 𝛼 = 0.05, 0.1, 0.2, and consider scenarios for K = 15 IVs with positive
(𝛽U = +1) and negative (𝛽U = −1) confounding. As genetic variants are defined arbitrarily with respect
to either the risk factor-increasing or risk factor-decreasing allele, the restriction to consider only positive
values of 𝛼k does not result in any loss of generality. The mean proportion of variance in the risk factor
explained by the IVs varies from 1.0% to 10.2%, corresponding to mean F statistics from 3.3 to 37.9.
10 000 simulations were undertaken for each set of parameter values.

In addition to crude weights (weights estimated naively from the data under analysis using univariate
regression of the risk factor on each IV in turn, wk = 𝛽Xk) and equal weights (wk = 1), we also consider
external weights, corresponding to a two-sample IV analysis. The external weight for the kth IV is gen-
erated by sampling from a normal distribution with mean 𝛼k and variance 1

N𝜋k(1−𝜋k)
. This is equivalent to

estimating genetic associations with the risk factor in a separate dataset of size N generated under the
same model (7). Although in practice, the sample size used for obtaining external weights is often larger
than that for the main analysis, the weights will be obtained in a slightly different study population and
so may not be entirely appropriate for the data under analysis. Less appropriate weights can be modelled
by simulating additional random error in the weights (or equivalently by using a smaller sample size),
although in practice there may be systematic as well as random differences between external weights
from the first dataset and the true IV–risk factor associations in the second dataset.

All simulations were performed in R [37]; sample code is given in Appendix A.1. The allele score
method was performed using the tsls command in the sem package [38]; the summary statistic method
was calculated ‘by hand’, and the likelihood-based method was implemented in a maximum likelihood
framework, using the optim command for numerical optimization.

3.6. Results

(a) Comparison of allele score methods
We calculated the allele score IV estimates for a crudely weighted, equally weighted and externally

weighted (N = 5000) score using individual-level data and using summarized data on the genetic associ-
ations with the risk factor and outcome as in equation (2). Median estimates and median standard errors
across simulations are given in Table II. The median estimate from an observational analysis (ordinary
least squares regression) is also given to judge the direction of confounding. The Monte Carlo standard
error, representing the variability in simulation results due to the number of simulated datasets analysed,
is 0.002 for the median estimates when 𝛼 = 0.05 and is reduced for larger values of 𝛼. We additionally
provide mean estimates and mean standard errors for this simulation in Table A1; median estimates are
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Table II. Comparison of allele score methods for uncorrelated IVs.

𝛼 R2 F OLS Crudely weighted Equally weighted Externally weighted

Using individual-level data

𝛽U = +1
0.05 0.010 3.3 0.697 0.346 (0.136) 0.198 (0.178) 0.199 (0.205)
0.10 0.030 10.2 0.687 0.246 (0.080) 0.199 (0.089) 0.198 (0.090)
0.20 0.102 37.9 0.650 0.212 (0.042) 0.199 (0.044) 0.199 (0.043)

𝛽U = −1
0.05 0.010 3.3 −0.297 0.052 (0.135) 0.201 (0.178) 0.200 (0.205)
0.10 0.030 10.2 −0.287 0.151 (0.080) 0.198 (0.089) 0.198 (0.090)
0.20 0.102 37.9 −0.250 0.186 (0.042) 0.199 (0.044) 0.199 (0.043)

Using summarized data

𝛽U = +1
0.05 0.010 3.3 0.697 0.346 (0.171) 0.198 (0.204) 0.199 (0.235)
0.10 0.030 10.2 0.687 0.246 (0.093) 0.199 (0.101) 0.198 (0.102)
0.20 0.102 37.9 0.650 0.212 (0.048) 0.199 (0.050) 0.199 (0.049)

𝛽U = −1
0.05 0.010 3.3 −0.297 0.052 (0.133) 0.201 (0.168) 0.200 (0.194)
0.10 0.030 10.2 −0.287 0.151 (0.076) 0.198 (0.083) 0.198 (0.084)
0.20 0.102 37.9 −0.250 0.186 (0.039) 0.199 (0.042) 0.199 (0.041)

Median estimates over 10 000 simulations of 𝛽X = 0.2 (median standard errors) from simulation study with 15
uncorrelated instrumental variables (IVs) varying direction of confounding (𝛽U) as shown by median observational
estimate (OLS) and average strength of IV (𝛼; strength is also expressed by the mean values of the R2 and F
statistics), using allele score methods with crude weights (derived from the data under analysis), equal weights
(unweighted analysis) and external weights (equivalent to estimates derived from an independent sample of equal
size to the data under analysis), calculated from individual-level and summarized data.

preferred as they are not influenced by extreme values and so are more representative of the estimate that
may be expected in a typical example. Additionally, the first moment of the ratio IV estimator is formally
undefined, so there is a small but finite probability that an allele score estimate takes an arbitrarily large
value [39].

Allele score estimates calculated using individual-level data and summarized data were equal to at
least the first three decimal places for almost all simulated datasets. This suggests that the approximations
used in calculating the allele score estimate using summarized data (most notably, that var(Gk) ∝ 𝜎−2

Yk )
are reasonable. Estimates with crude weights showed the same pattern of weak instrument bias as those
from a 2SLS method; estimates with equal and external weights were unbiased. Standard errors calcu-
lated from summarized data, obtained from equation (3), with positive confounding (𝛽U = +1) were
sometimes narrower but on average wider than those calculated from individual-level data. With negative
confounding (𝛽U = −1), median standard errors based on summarized data were considerably smaller.
The same phenomenon with the average size of standard errors depending on the direction of confound-
ing has been observed previously [40]; see Figure 3 of that reference for a potential explanation. Standard
errors using summarized data may be improved by including further terms from the delta expansion into
equation (3). These simulations are repeated in Table A3 for K = 5 and K = 25 IVs to investigate the
behaviour of these estimates across different numbers of IVs; similar results were observed.

(b) Comparison of summarized data methods
Table III provides the median estimate, standard deviation of estimates, median standard error, cover-

age of the 95% CI and empirical power to detect a causal effect based on the nominal 95% CI for the allele
score (calculated using summarized data, equation (2)), summary statistic (equation (4)) and likelihood-
based (equation (6)) methods, using external weights based on an independent sample of N = 5000
(imprecise weights), 50 000 (precise weights) and using the true ‘oracle’ weights. The oracle weights
are the 𝛼k parameters, corresponding to a notional sample size of infinity. The Monte Carlo error for the
coverage rate is 0.3% in all scenarios and for the empirical power is 0.5% or lower. Estimates are not pro-
vided for the likelihood-based method with oracle weights as the uncertainty in the weights (𝜎Xk) cannot

be expressed; otherwise, we took 𝜎Xk =
√

1
N𝜋k(1−𝜋k)

. The likelihood-based method failed to report a stan-
dard error using imprecise weights with 𝛼 = 0.05 for nine of the 10 000 simulated datasets when 𝛽U = 1
and for five datasets when 𝛽U = −1; these results are omitted from Table III. This simulation study was
conducted separately from that for Table II, and so results differ slightly because of random variation.
Mean estimates and mean standard errors are provided in Table A2.

Allele score estimates using external weights were unbiased, with median estimates close to the true
value of 0.2. With positive confounding, coverage levels were conservative compared with the nomi-
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nal 95% level, whereas with negative confounding, coverage levels were often slightly below nominal
levels. With imprecise weights, the summary statistic estimates were biased towards the null; this bias
disappeared as the weights become more precise. However, coverage rates were close to nominal levels.
Further investigations showed that the summary statistic estimates with external weights were unbiased
under the null (Table A4). The slight bias towards the null in the summary statistic estimates with exter-
nal weights is similar to that observed for the 2SLS method in a two-sample setting [21,41]. Bias towards
the null occurs for the same reason as regression dilution bias in a linear regression model with error
in the regressor [42]. Estimates from the likelihood-based method were unbiased, with coverage levels
occasionally dropping below the nominal 95% level, particularly with more precise weights. This may
be due to lack of convergence in the optimization algorithm.

The summary statistic and allele score methods had equal power estimates and rejected or accepted
the null together. The likelihood-based method dominated the other methods in terms of power with
imprecise weights; with precise weights, power was very similar between the methods. The power of
estimates increased as weights became more precise, although the increase from using weights estimated
in a sample size of 50 000 to the oracle weights was not substantial.

3.7. Practical implications

It is likely that the choice of weights will have a greater impact on the findings of Mendelian randomiza-
tion investigations than differences between analysis methods. For choosing weights in practice, we echo
the advice of Burgess and Thompson [12]: first, internally derived ‘crude’ weights should be avoided;
secondly, the source for externally derived weights should be primarily chosen to be relevant to the pop-
ulation under analysis (for example, in terms of ethnicity, sex and age); and thirdly, the external source
should be the largest available sample so that the weights are precisely estimated. If the weights are impre-
cise, then estimates from the summary statistic method will be biased towards the null. Although this
bias is conservative, and hence is less serious than weak instrument bias, in this context an unweighted
analysis or the summarized data allele score method may be preferred.

4. Correlated instrumental variables

The use of multiple genetic variants in a Mendelian randomization analysis is often necessary to give
clinically relevant results because of low power. In some circumstances, including multiple potentially
correlated variants from a single gene region is likely to lead to a more reliable analysis than one using
variants from multiple gene regions. Although including additional genetic variants that are perfectly
correlated will not increase the precision of a Mendelian randomization analysis, the inclusion of multiple
variants in partial linkage disequilibrium can explain a greater proportion of variance in the risk factor.
If the variants explain additional variation in the risk factor, this will lead to more powerful Mendelian
randomization analyses. We do not make any assumption on the underlying genetic architecture leading to
multiple correlated genetic variants that each explain independent variation in the risk factor but note that
a genetic variant is not required to be a ‘causal variant’ for use in Mendelian randomization [43]. If there is
one genetic variant in a particular gene region that is the single causal variant, and this variant is measured
in the dataset, then the use of multiple correlated variants will not add power to the analysis but neither
will it invalidate the analysis provided that the additional variants do not violate the IV assumptions.
However, it may lead to increased weak instrument bias and decreased efficiency.

Extensions to allow for correlated IVs have been discussed in the context of the likelihood-based
method [18] and can be implemented by allowing for a joint multivariate distribution of the 𝛽Xk and
𝛽Yk estimates, with the variance–covariance matrix incorporating the correlation between the IVs (see
Appendix A.3 for details). We proceed to consider extensions to allow for correlated variants in the
summarized data allele score and summary statistic methods.

4.1. Extension to allele score method with summarized data

An allele score composed of genetic variants that are valid IVs will be a valid IV regardless of correlation
between variants. However, if the weights for the score are taken from univariate regression analyses, IV
estimates may be inefficient. For instance, if two sets of highly correlated variants have the same strength
of association with the risk factor for each genetic variant, taking weights from univariate regression
analyses will assign weight overall in proportion to the number of variants measured in each set. A
better approach would be to take weights from a multivariable regression of the risk factor on all the

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015
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IVs in the analysis model. However, unless the weights are obtained in an independent dataset, this is
likely to exacerbate weak instrument bias as overfitting is a greater problem when the predictors in a
regression model are correlated. Moreover, in practice, it is unlikely that genetic association estimates
from a multivariable regression model in an independent dataset would be generally available, and so, we
do not pursue complex strategies for weighting allele scores further in this manuscript. We restrict our
attention to equally weighted and externally weighted scores, where the external weights are modelled
as univariate weights from an independent dataset.

As noted previously, correlation between IVs should not affect allele score estimates based on pre-
specified weights (equation (2)), although it will affect their precisions. The standard error of an allele
score with correlated IVs can be approximated using summarized data as

se(𝛽SSw) =

√√√√√∑
k1

∑
k2
𝜌k1k2

wk1
wk2

𝜎−1
Yk1
𝜎−1

Yk2(∑
k wk𝛽Xk𝜎

−2
Yk

)2
(8)

where 𝜌k1k2
is the correlation between IVs k1 and k2. Only the first term from the delta method expansion

corresponding to equation (3) is presented.
Estimates of correlations between genetic variants can be obtained from the published literature if they

are not otherwise available, for example, using the SNP Annotation and Proxy Search (SNAP, http://www.
broadinstitute.org/mpg/snap/ldsearch.php) [44]. We assume that these correlations are known without
error. However, it may be problematic to determine the direction of correlation between two variables
from published data alone. Additionally, these estimates are often based on small sample sizes and are
only available for a limited number of reference populations.

4.2. Extension to summary statistic method

Similarly, if the summary statistic method in equation (4) is used to test the presence of a causal effect,
the standard error of this expression is approximately

se
(
𝛽SSt

)
=

√√√√√∑
k1

∑
k2
𝜌k1k2

𝛽Xk1
𝛽Xk2

𝜎−1
Yk1
𝜎−1

Yk2(∑
k 𝛽

2
Xk𝜎

−2
Yk

)2
. (9)

If the weights wk in equations (2) and (8) are equal to 𝛽Xk, then the test statistic using this standard error,
𝛽SSt

se(𝛽SSt)
, is exactly the same as the test statistic for the allele score method using summarized data evaluated

using equation (8), 𝛽SSw

se(𝛽SSw)
, and the two methods will therefore reject or not reject the null hypothesis

together. However, the expression in equation (4) will not be an estimate of the causal effect as it is
affected by correlation between the IVs.

Alternatively, in the same way as the summary statistic method with uncorrelated IVs in equation (4)
can be viewed as a weighted linear regression of the 𝛽Yk parameters on the 𝛽Xk parameters with no intercept
term, we can perform a weighted generalized linear regression of the 𝛽Yk parameters on the 𝛽Xk parameters
using the 𝜎−2

Yk parameters as inverse-variance weights and taking into account the correlation between
the IVs.

If Ωk1k2
= 𝜎Yk1

𝜎Yk2
𝜌k1k2

, then the estimate from a weighted generalized linear regression is

𝛽SSc =
(
𝛽T

XkΩ
−1𝛽Xk

)−1
𝛽T

XkΩ
−1𝛽Yk (10)

The standard error of the estimate is

se
(
𝛽SSc

)
=
√(

𝛽T
XkΩ−1𝛽Xk

)−1
(11)

Unlike with uncorrelated variants, where the summary statistic and weighted linear regression esti-
mates coincide, the weighted generalized linear regression estimate 𝛽SSc does not equal the estimate
in equation (4). The weighted generalized linear regression method should provide an estimate of the
causal parameter.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015
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4.3. Simulation study

We perform a further simulation study to investigate the properties of estimates from these methods
with correlated IVs. Other than as specified, all parameters and features of the simulation study are the
same as those in the simulation with uncorrelated IVs. As previously, the main goals are to consider the
similarity of allele score estimates calculated using individual-level and summarized data and to compare
the behaviour of the summarized data methods (allele score, weighted generalized linear regression and
likelihood-based) with external weights. We do not consider the summary statistic method (equations (4)
and (9)), as this does not provide an estimate of the causal effect with correlated variants. In addition
to performing simulations with a positive causal effect, we also consider the scenario with a null causal
effect. This is because we are particularly concerned that data on correlated IVs should not artificially
add precision to IV analyses so that nominal coverage properties are maintained under the null.

The data-generating model is as follows:

Λ ∼ Wishart(K,Λ0), Φ = Cor(Λ)

𝝍1i,𝝍2i ∼ K(𝟎,Φ) independently

gik = 1𝜓1ik>𝜋
′
k
+ 1𝜓2ik>𝜋

′
k

xi =
K∑

k=1

𝛼kgik + ui + 𝜖Xi

yi = 𝛽Xxi + 𝛽Uui + 𝜖Yi

(12)

ui ∼  (0, 1), 𝜖Xi ∼  (0, 1), 𝜖Yi ∼  (0, 1)
𝜋′

k ∼ Uniform(0, 2)
𝛼k ∼ Uniform(0.5𝛼, 1.5𝛼)

⎫⎪⎬⎪⎭ independently

where Λ0 is a matrix parameter that determines the distribution of correlations between genetic variants;
it is taken to have diagonal elements 1 and off-diagonal elements 0.5. The variables 𝝍1i and 𝝍2i are
independent vectors of length K and represent the two haplotypes of an individual; for each haplotype, if
the kth component of the vector 𝜓1ik or 𝜓2ik is greater than a reference value 𝜋′

k, a risk factor increasing
allele is recorded for the kth genetic variant in individual i [45]. Correlations between IVs were generated
by simulating a matrix Λ from a Wishart distribution and then normalizing by taking the correlation
matrix Φ = Cor(Λ), so that 𝜓1ik and 𝜓2ik have marginal standard normal distributions for all k = 1,… ,K.
If 𝜋′

k = 0, the risk factor increasing allele for genetic variant k has frequency 0.5, while if 𝜋′
k = 1.96,

the frequency is 0.025. The estimated correlations between IVs (𝜌k1k2
) were mostly (78%) positive, with

an average first quartile of 0.06 and third quartile of 0.30 across all pairwise correlations. A further
simulation analyses was also performed (not reported) in which the off-diagonal elements of Λ0 were all
0.2; findings were substantially the same as those reported in this paper.

We considered two values of the causal effect 𝛽X = 0.2 and 𝛽X = 0. Rather than generating external
weights using a random draw from a normal distribution, we generated independent data from the same
data-generating model for 5000 participants and used univariate regression for each IV in these individ-
uals to derive external weights. This procedure should closely mirror an applied two-sample analysis,
particularly one using published summarized data on genetic associations with the risk factor.

4.4. Results

(a) Comparison of allele score methods
Table IV shows the median estimates, median standard errors and power of the nominal 95% CI for

the allele score method calculated using individual-level data and using summarized data (equations (2)
and (8)) with equal weights. Mean estimates and mean standard errors are provided in Table A5.

The pattern of results for the allele score methods is very similar with correlated IVs as with uncor-
related IVs. Estimates in each simulated dataset calculated using individual-level data and summarized
data were equal to at least three decimal places and were unbiased both with a positive causal effect and
with a null causal effect. Median standard errors with a positive causal effect using summarized data
were slightly larger with positive confounding, and slightly smaller with negative confounding, compared
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Table IV. Comparison of allele score methods for correlated instrumental variables (IVs).

Allele score using Allele score using
𝛼 R2 F individual-level data summarized data

Positive causal effect: 𝛽X = 0.2

𝛽U = +1
0.05 0.019 6.3 0.201 (0.116) [43.3] 0.201 (0.129) [34.9]
0.10 0.062 22.2 0.201 (0.058) [87.2] 0.201 (0.065) [84.2]
0.20 0.201 85.8 0.200 (0.029) [99.9] 0.200 (0.033) [99.8]

𝛽U = −1
0.05 0.019 6.3 0.202 (0.117) [39.4] 0.202 (0.107) [48.0]
0.10 0.062 22.2 0.199 (0.058) [91.8] 0.199 (0.053) [93.2]
0.20 0.201 85.8 0.200 (0.029) [100.0] 0.200 (0.027) [100.0]

Null causal effect: 𝛽X = 0

𝛽U = +1
0.05 0.019 6.3 0.001 (0.116) [4.4] 0.001 (0.116) [4.8]
0.10 0.062 22.2 0.000 (0.058) [4.7] 0.000 (0.058) [4.8]
0.20 0.201 85.8 0.000 (0.029) [5.1] 0.000 (0.029) [5.0]

𝛽U = −1
0.05 0.019 6.3 −0.002 (0.116) [4.3] −0.002 (0.117) [4.8]
0.10 0.062 22.2 0.000 (0.058) [5.0] −0.001 (0.058) [5.0]
0.20 0.201 85.8 0.000 (0.029) [5.1] 0.000 (0.029) [5.2]

Median estimates over 10 000 simulations of 𝛽X = 0.2 or 𝛽X = 0 (median standard errors) [power
(%) based on nominal 95% confidence interval] from simulation study with 15 correlated IVs
varying direction of confounding (𝛽U) and average strength of IV (𝛼; strength is also expressed by
the mean values of the R2 and F statistics) using allele score methods calculated from individual-
level and summarized data, with equal weights.

with those with individual-level data. With a null causal effect, median standard errors were almost the
same using individual-level and summarized data and did not vary with the direction of confounding.
The power to detect a causal effect with 𝛽X = 0 was around 5%, meaning that coverage rates (type I error
rates) were at correct nominal levels.

(b) Comparison of summarized data methods
Table V shows the median estimates, median standard errors and power of the nominal 95% CI for the

allele score method calculated using individual-level data (for comparison) and the allele score method
using summarized data, the summary statistic method calculated using weighted generalized regres-
sion (equations (10) and (11)) and the likelihood-based method with correlated IVs; all estimates were
obtained with external weights (based on an independent sample size of N = 5000). The likelihood-
based method failed to report a standard error with 𝛼 = 0.05 for between 1 and 9 of the 10 000 simulated
datasets for each set of parameter values and weights; these results were omitted from Table V. Mean
estimates and mean standard errors are given in Table A6.

Results for the summarized data methods were similar with correlated IVs as with uncorrelated IVs.
Estimates with external weights were unbiased under the null with nominal coverage rates preserved.
With a positive causal effect, estimates from the weighted generalized linear regression method were
slightly biased towards the null, reflecting the uncertainty in the IV associations with the risk factor. For
the likelihood-based method, there was bias towards the null with the strongest IVs and slight undercov-
erage under the null with the weakest IVs. Examination of the values of the optimized log-likelihood
function revealed lack of convergence for a small number of datasets, particularly with 𝛽X = 0.2.

The simulations were also repeated with crude weights (Table A7). With crude weights, estimates from
the allele score, weighted generalized linear regression and likelihood-based methods were biased in the
direction of the confounded observational estimate with undercoverage under the null. This was more
pronounced for the weighted generalized linear regression and likelihood-based methods, compared with
than the allele score methods. Additionally, further simulations were performed for a binary outcome
using external weights with the same parameters and a similar data-generating mechanism (Table A8).
Results were broadly similar to those with a continuous outcome. Estimates were generally unbiased
with nominal coverage rates maintained under the null; there was a small positive bias in the weighted
generalized linear regression and likelihood-based methods, although this did not lead to substantial
over-rejection of the null. With a positive causal effect, power to reject the null was reduced compared
with a continuous outcome, and the median estimates were attenuated towards the null; this is a known
phenomenon and relates to the non-collapsibility of odds ratios [22,46]. This simulation suggests that the
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Table V. Comparison of summarized data methods for correlated instrumental variables (IVs).

Allele score using Allele score using Weighted generalized Likelihood-based
𝛼 individual-level data summarized data linear regression method

Positive causal effect: 𝛽X = 0.2

𝛽U = +1
0.05 0.201 (0.120) [41.5] 0.201 (0.134) [33.2] 0.147 (0.109) [27.6] 0.197 (0.131) [33.2]
0.10 0.201 (0.059) [85.6] 0.201 (0.066) [82.6] 0.184 (0.061) [81.9] 0.198 (0.066) [83.0]
0.20 0.200 (0.030) [99.8] 0.200 (0.033) [99.8] 0.195 (0.032) [99.8] 0.190 (0.032) [99.8]

𝛽U = −1
0.05 0.202 (0.121) [36.7] 0.202 (0.111) [45.4] 0.147 (0.090) [38.6] 0.201 (0.109) [45.1]
0.10 0.199 (0.060) [90.2] 0.199 (0.055) [91.6] 0.182 (0.051) [91.3] 0.194 (0.054) [92.0]
0.20 0.200 (0.030) [100.0] 0.200 (0.027) [100.0] 0.196 (0.026) [100.0] 0.183 (0.026) [100.0]

Null causal effect: 𝛽X = 0

𝛽U = +1
0.05 0.002 (0.120) [4.5] 0.002 (0.120) [5.0] 0.002 (0.098) [4.9] 0.003 (0.114) [6.7]
0.10 0.000 (0.060) [4.6] 0.000 (0.060) [4.8] 0.000 (0.055) [4.9] 0.000 (0.058) [5.1]
0.20 −0.001 (0.030) [5.0] −0.001 (0.030) [5.0] 0.000 (0.029) [4.9] 0.000 (0.029) [4.8]

𝛽U = −1
0.05 0.000 (0.120) [4.5] 0.000 (0.120) [5.0] −0.001 (0.098) [4.6] −0.001 (0.114) [6.4]
0.10 0.000 (0.060) [4.6] 0.000 (0.060) [4.8] 0.000 (0.055) [4.8] 0.000 (0.058) [4.9]
0.20 0.000 (0.030) [5.1] 0.000 (0.030) [5.3] 0.000 (0.028) [5.2] 0.000 (0.029) [5.0]

Median estimates over 10 000 simulations of 𝛽X = 0.2 or 𝛽X = 0 (median standard errors) [power (%) based on
nominal 95% confidence interval] from simulation study with 15 correlated IVs varying direction of confounding
(𝛽U) and average strength of IV (𝛼) using allele score method calculated from individual-level data and allele score,
weighted generalized linear regression and likelihood-based methods all calculated from summarized data, with external
(N = 5000) weights.

methods presented in this paper will lead to appropriate causal inferences with binary outcomes, although
the precise interpretation of the causal estimate is further complicated.

4.5. Practical implications

Allele score and weighted generalized linear regression estimates using summarized data showed good
statistical properties with correlated genetic variants, particularly under the null hypothesis. With a non-
null causal effect and imprecisely estimated weights, the weighted generalized linear regression estimates
were slightly biased towards the null. This suggests that Mendelian randomization analyses can be per-
formed using summarized data on correlated genetic variants, provided that data on the correlations
between the variants are available. Although the likelihood-based method has good theoretical properties,
caution should be taken with the method in practice to ensure that the optimization routine has converged
appropriately. A sensitivity analysis can be undertaken by repeating the analysis in a Bayesian analysis
framework; software code for a two-sample analysis is provided elsewhere [18].

5. Example: effect of LDL-cholesterol on coronary heart disease risk

To illustrate the methods described earlier, we estimate the causal effect of LDL-c on CHD risk using
genetic variants from the PCSK9 gene region. We consider rs11206510, previously shown to be associ-
ated with LDL-c concentration and CHD risk [47], as the primary SNP in the analysis. We investigate
how including potentially correlated genetic variants located adjacent to the primary SNP influences the
precision of findings.

Genetic associations with LDL-c were taken from the GLGC [13] and can be downloaded from http://
www.sph.umich.edu/csg/abecasis/public/lipids2013. Genetic associations with CHD risk were taken
from the CARDIoGRAM consortium [48] and can be downloaded from http://www.cardiogramplusc4d.
org/downloads. Estimates from both GLGC and CARDIoGRAM were obtained using data on individu-
als of European descent, mostly of working age, and so the two datasets should be similar; in fact, several
studies are included in both consortia. After pruning for linkage disequilibrium at r2 > 0.8, all variants in
a 10-kilobase pair region around rs11206510 available in both the GLGC and CARDIoGRAM consor-
tia were included in the analysis; 10 variants in total were included. Associations with LDL-c and CHD
risk are given in Table A9 and displayed graphically in Figure 1. There is an apparent dose–response
relationship, with variants associated with greater per allele changes in LDL-c also having greater odds
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Figure 1. Estimated genetic associations and 95% confidence intervals with low-density lipoprotein cholesterol
(LDL-c) and with coronary heart disease risk for 10 genetic variants in the PCSK9 gene region.

Table VI. Estimates and 95% confidence intervals (CI) of causal effect of low-density lipoprotein-
cholesterol on coronary heart disease risk using genetic variants from PCSK9 gene region from
various analysis methods.

Method Equations Estimate 95% CI

Estimate based on single genetic variant (rs11206510) (4) and (5) 2.62 1.52, 4.49
Summary statistic method based on all genetic variants (4) and (5) 2.25 1.65, 3.07
ignoring correlation
Weighted generalized linear regression method based (10) and (11) 2.28 1.53, 3.38
on all genetic variants incorporating correlation
Allele score method based on all genetic variants (2) and (8) 2.25 1.41, 3.59
incorporating correlation using estimated weights
Allele score method based on all genetic variants (2) and (8) 2.14 1.18, 3.86
incorporating correlation using equal weights
Likelihood-based method based on all genetic See Appendix A.3 2.31 1.53, 3.50
variants incorporating correlation

ratios for CHD. There is no obvious heterogeneity in the causal effects from different individual variants.
Correlations between the genetic variants were taken from the SNAP database; it was assumed that all
the risk factor increasing alleles were positively correlated. The correlation 𝜃L in the likelihood-based
method (equation (6)) is taken as zero.

The causal effect estimate, representing the odds ratio of CHD per 1 standard deviation increase in
LDL-c, calculated using the summary statistic method of equations (4) and (5) based on the primary
SNP rs11206510 alone, was 2.62 (95% CI: 1.52, 4.49). The corresponding causal estimate based on all
the genetic variants, ignoring correlations between the variants, was 2.25 (95% CI: 1.65, 3.07) – this
estimate is overly precise and the CI is too narrow. Accounting for the correlations, using the weighted
generalized linear regression method of equations (10) and (11), the causal estimate was 2.28 (95%
CI: 1.53, 3.38). Using the allele score method for correlated variants of equations (2) and (8) with the
published univariate association estimates as weights, the causal estimate was 2.25 (95% CI: 1.41, 3.59);
with equal weights, the causal estimate was 2.14 (95% CI: 1.18, 3.86). Using the likelihood-based method
for correlated variants, the causal estimate was 2.31 (95% CI: 1.53, 3.50). These results are additionally
presented in Table VI. The p-value from Cochran’s Q statistic of heterogeneity in the causal estimates for
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each genetic variant calculated individually was 0.53, indicating no more heterogeneity between causal
effects estimated using the variants individually than would be expected by chance.

Overall, the results from the applied example were similar to those from the simulation analyses. Esti-
mates using all the variants were more precise than those only using the lead variant, with a relative
efficiency of 186% based on the summary statistic method results. Under the assumption that the vari-
ances of estimates are inversely proportional to the sample size, an equivalent gain in precision in the
single SNP analysis could be achieved by increasing the sample size for the genetic associations with the
outcome by 86%. Out of methods accounting for the correlation between variants, the estimate from the
weighted generalized linear regression method had the narrowest CI, followed by the likelihood-based
method and then the allele score method using external weights. The point estimate from the allele score
method using equal weights was similar to those from other methods, but the CI was wider, reflecting the
different magnitudes of association of the genetic variants with the risk factor.

By including more genetic variants from in and around this gene region, more precise causal estimates
were obtained. As the genetic associations with the risk factor and with the outcome are estimated in
samples with little substantial overlap, it is likely that any bias due to weak instruments would be in the
direction of the null [21].

6. Discussion

Much information useful for performing Mendelian randomization studies is now available in the form of
summarized data. In this paper, we have provided formulae for calculating an allele score estimate with
arbitrarily chosen weights using summarized data on genetic associations with the risk factor and with
the outcome. This enables allele score estimates using equal or external weights to be calculated without
requiring individual-level data. The allele score estimate using crude weights (those calculated from the
data under analysis) in a one-sample setting is approximately equal to a commonly used summary statistic
(inverse-variance weighted) estimate. This summary statistic estimate is equivalent to an estimate from
a weighted linear regression analysis. Both the allele score (calculated either using individual-level or
summarized data) and summary statistic estimates with crude weights are approximately equal to an
estimate from a 2SLS method. This means that allele score and summary statistic estimates using crude
weights suffer from weak instrument bias and are biased in the direction of the observational association.
In contrast, allele score and summary statistic estimates using equal or externally derived weights give
valid tests of the null hypothesis of no causal effect. Estimates from the summary statistic method using
external weights are conservatively biased towards the null when the external weights are imprecise
estimates of the true weights.

We have also provided formulae for calculating an allele score estimate using summarized data with
correlated IVs, which in Mendelian randomization correspond to genetic variants in linkage disequilib-
rium. Alternatively, a causal estimate can be calculated from summarized data using weighted generalized
linear regression. These methods enable researchers to perform IV analyses with correlated IVs using
summarized data and in particular Mendelian randomization analyses with more than one genetic vari-
ant in a given gene region. If the multiple variants explain more of the variance in the risk factor than
any single variant, then power to detect a causal effect will be improved. Inclusion of multiple genetic
variants from a single gene region may provide a better way of improving power in Mendelian random-
ization investigations than inclusion of genetic variants from multiple gene regions, as variants from a
single candidate region may be more likely to satisfy the IV assumptions.

There are several practical considerations to take into consideration when using summarized data. If
the IV assumptions are violated even for one genetic variant in a Mendelian randomization analysis,
then causal estimates will be biased and type I error rates will be inflated, as previously demonstrated
in the context of allele scores [12]. It will not be possible to assess the IV assumptions as rigorously or
as systematically in summarized data as in individual-level data. However, many analyses for assessing
the validity of the IV assumptions are still possible. If the coefficient for the association of an SNP
with the risk factor 𝛽Xk is given in standard deviation units, then the proportion of variance in the risk
factor explained by the SNP (the R2 statistic) is approximately equal to 2𝛽2

Xk × MAF × (1 − MAF),
where MAF is the minor allele frequency. The F statistic can then be calculated from the R2 statistic as
F = N−K−1

K
R2

1−R2
, where N is the sample size and K is the number of genetic variants. An overidentification

test can be performed by considering the ratio estimates from each IV individually and performing a
heterogeneity test, such as Cochran’s Q test [49]. A test for directional pleiotropy based on summarized
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data has also been proposed [50]; this considers a weighted linear regression of the 𝛽Yk on the 𝛽Xk that
is similar to the one discussed in this paper but with an intercept term. The intercept term represents the
average association of an IV with the outcome in the absence of association with the risk factor. Under
the IV assumptions that the association of each IV with the outcome is mediated via the risk factor, this
intercept term should be zero. If the estimated intercept term is different from zero, there is evidence
of direct effects of IVs on the outcome not via the risk factor that do not average out; this is known as
directional pleiotropy.

As a recommendation for using summarized data, we suggest either the allele score or weighted
(generalized) linear regression methods. If the likelihood-based method is used, care should be taken
to check whether the optimization algorithm has converged appropriately. The allele score method is
desirable as estimates are unbiased with either equal or externally derived weights, and the summary
statistic method has good intuitive justification from weighted linear regression, although there is some
bias towards the null with imprecise externally derived weights. The formulae provided in this paper
mean that evaluating a causal estimate based on multiple IVs that does not suffer from weak instrument
bias is relatively simple; ensuring that the choice of IVs and the interpretation of the causal analysis are
appropriate is the difficult step.

Appendix

A.1 Sample code

Here, we provide sample code written in R [37] to implement the methods used in this paper.
The allele score method using individual-level data was performed using the tsls command in the

sem package:

library(sem)

score = g%*%wts # g is the matrix of allele counts for the genetic variants,

# weights is the vector of weights

beta_score = tsls(y, cbind(x, rep(1,parts)), cbind(score, rep(1,parts)),

w=rep(1, parts))$coef[1]

# w are the weights in the two-stage least squares method

# (w is set to one for all individuals)

se_score = sqrt(tsls(y, cbind(x, rep(1,parts)), cbind(score, rep(1,parts)),

w=rep(1, parts))$V[1,1])

The allele score method using summarized data for uncorrelated IVs (equations (2) and (3)) was cal-
culated using the IV associations with the risk factor (bx, standard error bxse), the IV associations with
the outcome (by, standard error byse) and the allele score weights (wts):

beta_SSw = sum(wts*by/byseˆ2)/sum(wts*bx/byseˆ2)
se_SSw = sqrt(sum(wtsˆ2/byseˆ2)/sum(wts*bx/byseˆ2)ˆ2 +

sum(wts*by/byseˆ2)ˆ2/sum(wts*bx/byseˆ2)ˆ4*sum(wtsˆ2/byseˆ2) -
2*theta*sum(wts*by/byseˆ2)/sum(wts*bx/byseˆ2)ˆ3)

# theta is the correlation between the numerator and denominator of
the estimate
# if the correlation is not known, it can be taken as the
observational
# correlation between the risk factor and outcome;
# a sensitivity analysis can also be performed for its value

The summary statistic (inverse-variance weighted) method for uncorrelated IVs (equation (4)) can be
calculated using the IV associations with the risk factor (bx, standard error bxse) and the IV associations
with the outcome (by, standard error byse). The IV associations with the risk factor may be taken from
the data under analysis (one-sample analysis), or from an external data source (two-sample analysis):
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beta_SSt = sum(bx*by/byseˆ2)/sum(bxˆ2/byseˆ2)
se_SSt = sqrt(1/sum(bxˆ2/byseˆ2))

The same summary statistic (inverse-variance weighted) estimate can be obtained using weighted lin-
ear regression. We recall that the standard error of the causal estimate has to be modified by forcing the
residual standard error in the regression model to be unity; this can be achieved by dividing the reported
standard error by the residual standard error in the regression analysis [33]:

beta_SSt = lm(by˜bx-1, weights=byseˆ-2)$coef[1]
se_SSt = summary(lm(by˜bx-1, weights=byseˆ-2))$coef[1,2]/

summary(lm(by˜bx-1, weights=byseˆ-2))$sigma

A heterogeneity test based on Cochran’s Q statistic can be performed using the summarized data. We
use the metagen command, from the package meta. This assesses the similarity of the causal effects
from each IV (by/bx), given estimates of the uncertainty of the IV estimates (byse/bx):

metagen(by/bx, byse/bx)
1-pchisq(metagen(by/bx, byse/bx)$Q, metagen(by/bx, byse/bx)$df.Q)

The likelihood-based method for uncorrelated IVs (equation (6)) is here implemented in a maximum
likelihood framework, using the optim command for numerical optimization. The lack of correlation
between the IV associations with the risk factor and with the outcome in the likelihood means that this
code is valid in a two-sample setting. The log-likelihood function as defined also provides an overiden-
tification (heterogeneity) test: under the null hypothesis that all the IVs identify the same causal effect
parameter, twice the value of the log-likelihood function at the optimum value should be distributed as a
chi-squared distribution with K − 1 degrees of freedom, where K is the total number of IVs:

loglikelihood <- function(param) {
# log-likelihood function
return(1/2*sum((bx-param[1:length(bx)])ˆ2/bxseˆ2)+1/2*
sum((by-param[length(bx)+1]*param[1:length(bx)])ˆ2/byseˆ2)) }

opt = optim(c(bx, sum(bx*by/byseˆ2)/sum(bxˆ2/byˆ2)),
loglikelihood, hessian=TRUE, control = list(maxit=50000))

beta_lik = opt$par[length(bx)+1]
se_lik = sqrt(solve(opt$hessian)[length(bx)+1,length(bx)+1])
value_lik = opt$value
cat("p-value for heterogeneity test: ", round(pchisq(2*value_lik,
df=length(bx)-1,

lower.tail=FALSE),3))

The allele score estimate using summarized data for correlated IVs (equation (2)) is the same as that
with uncorrelated IVs, although the standard error of the estimate (equation (8)) must be modified to
account for the correlations:

beta_SSw_cor = sum(wts*by/byseˆ2)/sum(wts*bx/byseˆ2)
se_SSw_cor = sqrt(sum((wts*byseˆ-1)%o%(wts*byseˆ-1)*rho)/

sum(wts*bx/byseˆ2)ˆ2)
# rho is the matrix of correlations between IVs

The summary statistic (inverse-variance weighted) formula valid for uncorrelated IVs can also be used
with correlated IVs, although it no longer estimates a causal effect. As aforementioned, the standard error
(equation (9)) must be modified to account for the correlations:

beta_SSt_cor = sum(wts*by/byseˆ2)/sum(wtsˆ2/byseˆ2)
se_SSt_cor = sqrt(sum((wts*byseˆ-1)%o%(wts*byseˆ-1)*rho)/

sum(wtsˆ2/byseˆ2)ˆ2)
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This leads to the same inferences as the aforementioned allele score estimate using summarized data
for correlated IVs.

The summary statistic (inverse-variance weighted) method for correlated IVs can be performed using
weighted generalized linear regression (equations (10) and (11)):

Omega = byse%o%byse*rho
beta_SSc = solve(t(bx)%*%solve(Omega)%*%bx)*t(bx)%*%solve(Omega)%*%by
se_SSc = sqrt(solve(t(bx)%*%solve(Omega)%*%bx))

This provides an estimate of the causal effect.
The likelihood-based method for correlated IVs (equation (A1)) is here implemented in a maximum

likelihood framework, using the optim command for numerical optimization:

loglikelihoodcorrel <- function(param) {
# log-likelihood function

return(1/2*t(bx-param[1:length
(bx)])%*%Taux%*%(bx-param[1:length(bx)])+
1/2*t(by-param[length(bx)+1]*param[1:length(bx)])%*%Tauy%*%

(by-param[length(bx)+1]*param[1:length(bx)])) }
Sigmax = bxse%o%bxse*rho
Sigmay = byse%o%byse*rho
Taux = solve(Sigmax); Tauy = solve(Sigmay)
opt_cor = optim(c(bx, sum(bx*by/byseˆ2)/sum(bxˆ2/byˆ2)),

loglikelihoodcorrel, hessian=TRUE, control =
list(maxit=25000))

# optimization command
beta_lik_cor = opt_cor$par[length(by)+1]
se_lik_cor = sqrt(solve(opt_cor$hessian)[length(by)+1,length
(by)+1])
value_lik_cor = opt_cor$value
cat("p-value for heterogeneity test: ", round(pchisq(2*value_lik_cor,

df=length(bx)-1, lower.tail=FALSE),3))

A.2 Additional tables for simulation study with uncorrelated instrumental variables

In this section, we present additional results from the simulation study with uncorrelated IVs from the
main paper.

In Table A1, we report mean estimates and mean standard errors corresponding to the median estimates
and median standard errors reported in Table II. In Table A2, we report mean estimates and mean standard
errors corresponding to the median estimates and median standard errors in Table III.

In Table A3, we repeated the simulations from Table II using K = 5 and K = 25 IVs, to increase
the range of strength of the IVs considered. Results with K = 15 IVs are also repeated for comparison.
The Monte Carlo error, representing the variability in simulation results due to the limited number of
simulated datasets analysed, is 0.003 for the median estimate when K = 5 and 𝛼 = 0.05 and 0.001 when
K = 25 and 𝛼 = 0.05. The Monte Carlo error is reduced for larger values of 𝛼.

The same findings were observed as in the main manuscript, with very similar estimates for allele score
estimates using individual-level and summarized data. The same pattern of median standard errors using
summarized data depending on the direction of confounding was observed.

Table A4 displays the median value, coverage and power of the 95% CI for the summary statistic
estimate of equation (4) calculated using crude and external weights under two values of the causal
effect parameter: 𝛽X = 0.2 (as in the simulations in the main paper), and 𝛽X = 0 (null effect of the
risk factor on the outcome). With crude weights, summary statistic estimates were biased towards the
observational (confounded) association even under the null. In contrast, summary statistic estimates with
external weights were biased towards the null and unbiased under the null. This means that the summary
statistic method may give incorrect inference using crude weights, but using external weights will not
lead to false positive conclusions because of bias from weak instruments.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015



S. BURGESS, F. DUDBRIDGE AND S. G. THOMPSON

Table A1. Comparison of allele score methods for uncorrelated instrumental
variables (IVs).

𝛼 Crudely weighted Equally weighted Externally weighted

Using individual-level data

𝛽U = +1
0.05 0.342 (0.140) 0.179 (0.193) 0.172 (0.235)
0.10 0.244 (0.081) 0.195 (0.091) 0.194 (0.093)
0.20 0.211 (0.042) 0.199 (0.045) 0.198 (0.044)

𝛽U = −1
0.05 0.056 (0.139) 0.219 (0.193) 0.230 (0.242)
0.10 0.154 (0.081) 0.203 (0.091) 0.203 (0.092)
0.20 0.187 (0.042) 0.200 (0.045) 0.200 (0.044)

Using summarized data

𝛽U = +1
0.05 0.342 (0.174) 0.179 (0.214) 0.172 (0.258)
0.10 0.244 (0.095) 0.195 (0.103) 0.194 (0.105)
0.20 0.211 (0.049) 0.199 (0.051) 0.198 (0.050)

𝛽U = −1
0.05 0.056 (0.136) 0.219 (0.179) 0.230 (0.223)
0.10 0.154 (0.077) 0.203 (0.085) 0.203 (0.086)
0.20 0.187 (0.040) 0.200 (0.042) 0.200 (0.041)

Mean estimates (mean standard errors) over 10 000 simulations of 𝛽X = 0.2 from
simulation study with 15 uncorrelated IVs varying direction of confounding (𝛽U) and
average strength of IV (𝛼), using allele score methods with crude weights (derived from
the data under analysis), equal weights (unweighted analysis) and external weights
(equivalent to estimates derived from an independent sample of equal size to the data
under analysis), calculated from individual-level and summarized data.

Table A2. Comparison of summarized data methods for uncorrelated
instrumental variables (IVs).

𝛼 Imprecise weights Precise weights Oracle weights

Allele score method using summarized data

𝛽U = +1
0.05 0.175 (0.236) 0.182 (0.204) 0.183 (0.199)
0.10 0.197 (0.102) 0.197 (0.097) 0.197 (0.097)
0.20 0.198 (0.049) 0.198 (0.048) 0.198 (0.048)

𝛽U = −1
0.05 0.226 (0.194) 0.219 (0.168) 0.218 (0.164)
0.10 0.205 (0.084) 0.204 (0.080) 0.204 (0.080)
0.20 0.201 (0.040) 0.201 (0.040) 0.201 (0.040)

Summary statistic method

𝛽U = +1
0.05 0.149 (0.166) 0.193 (0.189) 0.200 (0.192)
0.10 0.184 (0.092) 0.199 (0.096) 0.201 (0.096)
0.20 0.194 (0.047) 0.199 (0.048) 0.199 (0.048)

𝛽U = −1
0.05 0.150 (0.136) 0.193 (0.155) 0.201 (0.158)
0.10 0.183 (0.076) 0.199 (0.079) 0.198 (0.079)
0.20 0.195 (0.039) 0.200 (0.040) 0.198 (0.040)

Likelihood-based method

𝛽U = +1
0.05 0.214 (0.212) 0.200 (0.193)
0.10 0.202 (0.099) 0.200 (0.096)
0.20 0.198 (0.049) 0.200 (0.048)

𝛽U = −1
0.05 0.213 (0.176) 0.199 (0.159)
0.10 0.201 (0.082) 0.200 (0.079)
0.20 0.199 (0.041) 0.202 (0.040)

Mean estimates (mean standard errors) over 10 000 simulations of 𝛽X = 0.2 from
simulation study with 15 uncorrelated IVs varying the direction of confounding
(𝛽U) and average strength of IV (𝛼) using three summarized data methods: allele
score, summary statistic and likelihood-based methods, with weights taken from
an external source corresponding to an independent sample of size 5000, 50 000
and using the true (oracle) weights.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015
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Table A4. Investigation into bias of summary statistic estimator.

𝛽X = 0.2 𝛽X = 0
𝛼 Median Coverage Power Median Coverage Power

Crude weights

𝛽U = +1
0.05 0.348 88.2 58.4 0.146 82.8 17.2
0.10 0.248 94.5 78.2 0.047 91.7 8.3
0.20 0.213 96.6 99.3 0.012 94.0 6.0

𝛽U = −1
0.05 0.056 77.9 7.3 −0.149 83.0 17.0
0.10 0.152 88.3 53.0 −0.047 91.9 8.1
0.20 0.188 91.8 99.5 −0.013 94.2 5.8

External weights

𝛽U = +1
0.05 0.144 93.7 15.5 −0.001 95.2 4.8
0.10 0.183 94.2 52.4 0.000 95.1 4.9
0.20 0.196 94.4 97.9 0.000 94.9 5.1

𝛽U = −1
0.05 0.150 92.8 19.8 0.002 94.8 5.2
0.10 0.182 93.7 67.7 0.000 95.2 4.8
0.20 0.196 94.1 99.7 0.000 95.2 4.8

Median estimates over 10 000 simulations from summary statistic method with causal
effect 𝛽X = 0.2 and 𝛽X = 0, coverage (%) of nominal 95% confidence interval for the
causal parameter and empirical power (%) based on nominal 95% confidence interval
to detect a causal effect from simulation study with 15 uncorrelated instrumental vari-
ables (IVs) varying the direction of confounding (𝛽U) and average strength of IV (𝛼)
with crude weights and with external weights corresponding to an independent sample of
size 5000.

A.3 Likelihood-based method with correlated instrumental variables

The likelihood-based method estimate with correlated IVs can be evaluated by maximizing the likelihood
from the following model:

𝜷̂X ∼ K

(
𝜉k,Σ2

X

)
𝜷̂Y ∼ K

(
𝛽𝜉k,Σ2

Y

) (A1)

where K indicates a K-variate normal distribution. The vectors 𝜷̂X = (𝛽X1 … 𝛽XK) and 𝜷̂Y are of
length K and represent the genetic associations with the risk factor and outcome respectively for IVs
k = 1,… ,K. The k1, k2th term of the variance–covariance matrix ΣX is ΣXk1k2

= 𝜎Xk1
𝜎Xk2

𝜌k1k2
, where 𝜌

represents the correlation between the IVs, similarly for ΣY . The lack of correlation between the 𝛽Xk and
𝛽Yk parameters reflects the two-sample setting; evidence for the genetic associations with the risk factor
and with the outcome is assumed to come from separate datasets (external weights). If the IV association
estimates with the risk factor and outcome are obtained on the same individuals, then a 2K-variate joint
normal distribution can be assumed for the (𝜷̂X𝜷̂Y ) parameters.

A.4 Additional tables for simulation study with correlated instrumental variables

In Table A5, we report mean estimates and mean standard errors corresponding to the median estimates
and median standard errors reported in Table IV. In Table A6, we report mean estimates and mean
standard errors corresponding to the median estimates and median standard errors reported in Table V.

In Table A7, we repeated the results from Table V for the allele score method calculated using
individual-level data, the allele score method using summarized data, the summary statistic method calcu-
lated using weighted generalized regression and the likelihood-based method with correlated IVs, except
using crude weights generated from the data under analysis.

The results show bias in the direction of the confounded observational association depending on the
direction of confounding. The coverage levels under the null causal effect (the complement of the power
to detect a causal effect that is expressed in Table A7) are below nominal levels, indicating that a type I
error will occur under the null with greater than 5% frequency for a nominal 5% test. These phenomena
are particularly marked for the summary statistic and likelihood-based methods and less evident in the

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015
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Table A5. Comparison of allele score methods for corre-
lated instrumental variables (IVs).

Allele score using Allele score using
𝛼 individual-level data summarized data

Positive causal effect: 𝛽X = 0.2

𝛽U = +1
0.05 0.193 (0.123) 0.193 (0.135)
0.10 0.199 (0.060) 0.199 (0.067)
0.20 0.200 (0.030) 0.200 (0.034)

𝛽U = −1
0.05 0.211 (0.124) 0.211 (0.112)
0.10 0.201 (0.060) 0.201 (0.055)
0.20 0.200 (0.030) 0.201 (0.028)

Null causal effect: 𝛽X = 0

𝛽U = +1
0.05 −0.007 (0.123) −0.007 (0.121)
0.10 −0.002 (0.060) −0.002 (0.060)
0.20 −0.001 (0.030) −0.001 (0.030)

𝛽U = −1
0.05 0.007 (0.123) 0.007 (0.121)
0.10 0.003 (0.060) 0.003 (0.060)
0.20 0.001 (0.030) 0.001 (0.030)

Mean estimates (mean standard errors) over 10 000 simulations
of 𝛽X = 0.2 or 𝛽X = 0 from simulation study with 15 correlated
IVs varying direction of confounding (𝛽U) and average strength of
IV (𝛼) using allele score methods calculated from individual-level
and summarized data, with equal weights.

Table A6. Comparison of summarized data methods for correlated instrumental variables (IVs).

Allele score using Allele score using Weighted generalized Likelihood-based
𝛼 individual-level data summarized data linear regression method

Positive causal effect: 𝛽X = 0.2

𝛽U = +1
0.05 0.192 (0.130) 0.192 (0.143) 0.146 (0.112) 0.202 (0.144)
0.10 0.199 (0.061) 0.199 (0.068) 0.184 (0.063) 0.197 (0.068)
0.20 0.200 (0.031) 0.200 (0.034) 0.196 (0.033) 0.192 (0.033)

𝛽U = −1
0.05 0.212 (0.131) 0.212 (0.118) 0.148 (0.093) 0.206 (0.122)
0.10 0.201 (0.062) 0.201 (0.056) 0.182 (0.052) 0.196 (0.056)
0.20 0.201 (0.031) 0.201 (0.028) 0.196 (0.027) 0.185 (0.026)

Null causal effect: 𝛽X = 0

𝛽U = +1
0.05 −0.007 (0.131) −0.007 (0.128) 0.002 (0.101) 0.009 (0.125)
0.10 −0.002 (0.062) −0.002 (0.062) 0.000 (0.057) 0.002 (0.060)
0.20 −0.001 (0.031) −0.001 (0.030) −0.001 (0.029) 0.000 (0.030)

𝛽U = −1
0.05 0.008 (0.131) 0.008 (0.128) −0.001 (0.101) 0.005 (0.126)
0.10 0.003 (0.062) 0.003 (0.062) 0.001 (0.057) 0.003 (0.060)
0.20 0.001 (0.030) 0.001 (0.030) 0.000 (0.029) 0.001 (0.029)

Median estimates (mean standard errors) over 10 000 simulations of 𝛽X = 0.2 or 𝛽X = 0 from simulation
study with 15 correlated IVs varying direction of confounding (𝛽U) and average strength of IV (𝛼), using allele
score method calculated from individual-level data, and allele score, weighted generalized linear regression and
likelihood-based methods all calculated from summarized data, with external (N = 5000) weights.

allele score methods. However, the strength of IVs considered in this example with 𝛼 = 0.1 and 𝛼 = 0.2
is perhaps larger than would be expected in the context of Mendelian randomization for the majority of
risk factors.

A.5 Additional simulation study with correlated instrumental variables and binary outcomes

Following concerns from a reviewer that the simulation studies of this paper concentrated on the contin-
uous outcome case, we repeated the simulation study of Section 4.3 (correlated genetic variants) except
with a binary outcome. The data-generating model and parameters were the same as in the main body of
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the paper for correlated genetic variants (equation (12)), except that the outcome model

yi = 𝛽Xxi + 𝛽Uui + 𝜖Yi

was replaced by

logit(𝜋i) = −2 + 𝛽Xxi + 𝛽Uui + 𝜖Yi

yi ∼ Binomial(1, 𝜋i)

The associations between IVs and the risk factor are estimated using linear regression, whereas associa-
tions between IVs and the outcome (and between the allele score and the outcome with individual-level
data) are estimated using logistic regression. Otherwise, summarized data methods proceed exactly as
in the continuous outcome setting. The allele score method with individual-level data proceeds as the
ratio of the coefficient from regression of the outcome on the IV (from logistic regression) divided by the
coefficient from regression of the risk factor on the IV (from linear regression). Estimates are presented
using external weights only in Table A8; these results correspond to those in Table V of the paper.

Results are very similar with binary outcomes as with continuous outcomes. Median estimates are
away from the null with a positive causal effect and close to the null with a null causal effect, and type 1
error rates are close to nominal levels under the null. Notable differences include attenuation towards the
null with a positive causal effect (this is due to the non-collapsibility of the odds ratio [22,46]), increased
median standard errors and reduced power to detect a causal effect (reflecting decreased information
as a result of dichotomizing the linear predictor logit(𝜋i) to give a binary outcome) and limited bias
under the null in the weighted generalized linear regression and likelihood-based methods. However, the
magnitude of this bias is not large, and bias did not lead to misleading inference (rejection rates were
still close to the nominal 5% level). Our conclusion is that the methods presented in this paper will lead
to appropriate causal inferences with binary outcomes.

A.6 Additional table for applied example

We provide additional information on the genetic variants used in the applied example from the main
paper to estimate the causal effect of LDL-c on CHD risk.

The genetic variants are all located in a 10-kilobase pair region from position 55 260 000 to 55 270 000
on chromosome 1 (all positions are from build hg18). Nineteen SNPs in this region were available in
both the GLGC and CARDIoGRAM datasets. Of these, two did not have information on linkage disequi-
librium in the SNAP database. A further seven variants were omitted because of linkage disequilibrium

Table A7. Further comparison of summarized data methods with correlated variants.

Allele score using Allele score using Weighted generalized Likelihood-based
𝛼 individual-level data summarized data linear regression method

Positive causal effect: 𝛽X = 0.2

𝛽U = +1
0.05 0.225 (0.112) [52.8] 0.225 (0.126) [43.7] 0.280 (0.117) [66.9] 0.308 (0.128) [69.3]
0.10 0.208 (0.058) [89.2] 0.208 (0.065) [86.5] 0.224 (0.063) [93.0] 0.228 (0.064) [92.9]
0.20 0.201 (0.030) [99.9] 0.201 (0.033) [99.9] 0.206 (0.032) [100.0] 0.200 (0.032) [99.9]

𝛽U = −1
0.05 0.175 (0.113) [33.8] 0.175 (0.104) [41.0] 0.122 (0.097) [26.9] 0.146 (0.108) [30.5]
0.10 0.192 (0.058) [89.3] 0.192 (0.054) [90.7] 0.177 (0.052) [88.4] 0.184 (0.054) [92.0]
0.20 0.198 (0.030) [100.0] 0.199 (0.027) [100.0] 0.195 (0.026) [100.0] 0.184 (0.026) [100.0]

Null causal effect: 𝛽X = 0

𝛽U = +1
0.05 0.024 (0.112) [6.1] 0.024 (0.114) [5.3] 0.079 (0.106) [11.6] 0.090 (0.115) [13.4]
0.10 0.006 (0.059) [5.4] 0.006 (0.059) [4.9] 0.023 (0.056) [5.3] 0.023 (0.058) [6.5]
0.20 0.002 (0.030) [5.1] 0.002 (0.030) [4.9] 0.006 (0.029) [5.3] 0.005 (0.029) [5.1]

𝛽U = −1
0.05 −0.027 (0.112) [6.6] −0.027 (0.113) [5.9] −0.080 (0.106) [12.3] −0.077 (0.113) [11.5]
0.10 −0.007 (0.058) [5.4] −0.007 (0.059) [5.1] −0.023 (0.056) [7.0] −0.019 (0.057) [5.9]
0.20 −0.001 (0.030) [5.3] 0.001 (0.030) [5.1] −0.006 (0.029) [5.6] −0.005 (0.029) [4.8]

Median estimates over 10 000 simulations of 𝛽X = 0.2 or 𝛽X = 0 (median standard errors) [power (%) based on nominal
95% confidence interval] from simulation study with 15 correlated instrumental variables (IVs) varying direction of
confounding (𝛽U) and average strength of IV (𝛼) using allele score method calculated from individual-level data and
allele score, weighted generalized linear regression and likelihood-based methods all calculated from summarized data,
with crude weights.
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Table A8. Comparison of summarized data methods for correlated instrumental variables (IVs) with binary
outcome.

Allele score using Allele score using Weighted generalized Likelihood-based
𝛼 individual-level data summarized data linear regression method

Positive causal effect: 𝛽X = 0.2

𝛽U = +1
0.05 0.150 (0.210) [10.9] 0.139 (0.191) [11.1] 0.119 (0.172) [10.8] 0.160 (0.201) [14.0]
0.10 0.148 (0.102) [31.6] 0.147 (0.100) [32.2] 0.143 (0.095) [33.4] 0.153 (0.101) [34.8]
0.20 0.146 (0.049) [80.6] 0.147 (0.049) [81.0] 0.147 (0.048) [83.3] 0.149 (0.049) [83.0]

𝛽U = −1
0.05 0.159 (0.218) [11.7] 0.149 (0.199) [12.0] 0.131 (0.178) [11.5] 0.174 (0.209) [14.8]
0.10 0.160 (0.106) [31.6] 0.159 (0.104) [35.4] 0.155 (0.099) [36.3] 0.165 (0.104) [37.5]
0.20 0.158 (0.051) [80.6] 0.159 (0.051) [84.1] 0.159 (0.049) [86.3] 0.162 (0.050) [86.2]

Null causal effect: 𝛽X = 0

𝛽U = +1
0.05 0.000 (0.219) [5.2] 0.004 (0.199) [5.2] 0.015 (0.179) [5.3] 0.018 (0.208) [6.6]
0.10 0.000 (0.108) [5.0] 0.002 (0.106) [5.0] 0.010 (0.101) [5.4] 0.010 (0.105) [5.5]
0.20 0.000 (0.054) [4.9] 0.002 (0.054) [4.9] 0.005 (0.052) [5.2] 0.005 (0.053) [4.8]

𝛽U = −1
0.05 −0.003 (0.220) [4.6] 0.002 (0.199) [4.6] 0.013 (0.179) [4.8] 0.017 (0.208) [6.0]
0.10 0.000 (0.108) [4.9] 0.003 (0.106) [4.8] 0.009 (0.101) [4.3] 0.009 (0.105) [5.3]
0.20 0.000 (0.054) [4.8] 0.001 (0.054) [4.8] 0.004 (0.052) [4.8] 0.004 (0.052) [4.3]

Median estimates over 10 000 simulations of 𝛽X = 0.2 or 𝛽X = 0 (median standard errors) [power (%) based on
nominal 95% confidence interval] from simulation study with 15 correlated IVs varying direction of confounding
(𝛽U); and average strength of IV (𝛼), using allele score method calculated from individual-level data, and allele
score, weighted generalized linear regression and likelihood-based methods all calculated from summarized data,
with external (N = 5000) weights.

Table A9. Genetic variants located in PCSK9 gene region on chromosome 1 used in applied
example from main paper: rsid, position (hg18), coding and non-coding alleles, frequency of
the coding allele, beta-coefficient for association with LDL-c with SE taken from GLGC, beta-
coefficient for association with CHD risk taken from CARDIoGRAM.

Coding/non- Coding allele Association with Association with
rsid Position coding allele frequency LDL-c (SE) CHD risk (SE)

rs1887552 55 260 222 A/T 0.29 0.037 (0.006) 0.018 (0.017)
rs11588151 55 260 236 A/G 0.81 0.059 (0.008) 0.072 (0.024)
rs9436961 55 261 419 T/A 0.27 0.046 (0.006) 0.019 (0.017)
rs2479418 55 267 465 G/A 0.49 0.018 (0.005) 0.033 (0.014)
rs2479417 55 268 332 T/C 0.35 0.017 (0.006) 0.002 (0.015)
rs2495497 55 268 583 T/C 0.12 0.035 (0.008) 0.003 (0.023)
rs11206510 55 268 627 T/C 0.78 0.083 (0.005) 0.080 (0.023)
rs17192725 55 268 719 A/G 0.07 0.048 (0.011) 0.046 (0.039)
rs17111490 55 268 764 T/C 0.07 0.002 (0.014) −0.042 (0.043)
rs2094470 55 269 890 C/T 0.10 0.036 (0.011) 0.048 (0.028)

The primary SNP (rs11206510) is displayed in italics.
LDL-c, low-density lipoprotein cholesterol; SE, standard error; GLGC, Global Lipids Genetics Consor-
tium; CHD, coronary heart disease; SNP, single nucleotide polymorphism.

with another variant at a correlation of r2 > 0.8; one of each pair of correlated variants was excluded
from the analysis at random in turn until no variants with a pairwise correlation above the pruning thresh-
old remained. This was because highly correlated variants will not add to the precision of an analysis but
may distort the univariate weights used in the externally weighted analyses. Variants were not included
or excluded from the analysis based on their observed association with the risk factor so as to avoid bias
through data-driven selection of IVs [51].

Table A9 provides for each SNP: the rsid, position (build hg18), the coding and non-coding alleles (in
each case, the coding allele is taken as the risk factor-increasing allele), the frequency of the coding allele
taken from the CARDIoGRAM dataset, the beta-coefficient and standard error for the genetic association
with LDL-c (the increase in standard deviation units per additional copy of the coding allele) and the beta-
coefficient and standard error for the genetic association with CHD risk (the log odds ratio per additional
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copy of the coding allele). The primary SNP, rs11206510, has the largest magnitude of association with
the risk factor, and the IV estimate based on this SNP alone is more precise than the IV estimate based
on any other single SNP.

Acknowledgements

Stephen Burgess is supported by the Wellcome Trust (grant number 100114). Frank Dudbridge is supported by
the Medical Research Council (grant number K006215). Simon G. Thompson is supported by the British Heart
Foundation (grant number CH/12/2/29428).

References
1. Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. Journal of the American

Statistical Association 1996; 91(434):444–455.
2. Martens EP, Pestman WR, de Boer A, Belitser SV, Klungel OH. Instrumental variables: application and limitations.

Epidemiology 2006; 17(3):260–267.
3. Greenland S. An introduction to instrumental variables for epidemiologists. International Journal of Epidemiology 2000;

29(4):722–729.
4. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environ-

mental determinants of disease? International Journal of Epidemiology 2003; 32(1):1–22.
5. Burgess S, Butterworth A, Malarstig A, Thompson SG. Use of Mendelian randomisation to assess potential benefit of

clinical intervention. British Medical Journal 2012; 345:e7325.
6. Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Statistical

Methods in Medical Research 2007; 16(4):309–330.
7. Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments

for making causal inferences in epidemiology. Statistics in Medicine 2008; 27(8):1133–1163.
8. Wooldridge JM. Introductory Econometrics: A Modern Approach. Chapter 15: Instrumental Variables Estimation and Two

Stage Least Squares: South-Western, Nashville, TN, 2009.
9. Stock JH, Wright JH, Yogo M. A survey of weak instruments and weak identification in generalized method of moments.

Journal of Business and Economic Statistics 2002; 20(4):518–529.
10. Staiger D, Stock JH. Instrumental variables regression with weak instruments. Econometrica 1997; 65(3):557–586.
11. Angrist JD, Pischke JS. Mostly Harmless Econometrics: An Empiricist’s Companion. Chapter 4: Instrumental Variables

in Action: Sometimes You Get What You Need. Princeton University Press, 2009.
12. Burgess S, Thompson SG. Use of allele scores as instrumental variables for Mendelian randomization. International

Journal of Epidemiology 2013; 42(4):1134–1144.
13. The Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nature Genetics

2013; 45:1274–1283.
14. Morris A, Voight B, Teslovich T, Ferreira T, Segre A, Steinthorsdottir V, Strawbridge R, Khan H, Grallert H, Mahajan

A, others. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2
diabetes. Nature Genetics 2012; 44(9):981–990.

15. Johnson T. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants
influencing complex traits. Queen Mary University of London, 2011. http://webspace.qmul.ac.uk/tjohnson/gtx/outline2.
pdf.

16. Dastani Z, Hivert M-F, Timpson N, Perry JRB, Yuan X, Scott RA, Henneman P, Heid IM, Kizer JR, Lyytikäinen LP, others.
Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis
of 45 891 individuals. PLOS Genetics 2012; 8(3):e1002607.

17. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using
summarized data. Genetic Epidemiology 2013; 37(7):658–665.

18. Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. EPIC-InterAct consortium. Using published data in
Mendelian randomization: a blueprint for efficient identification of causal risk factors. European Journal of Epidemiology
2015; 30(7):543–552.

19. Swanson S, Hernán M. Commentary: how to report instrumental variable analyses (suggestions welcome). Epidemiology
2013; 24(3):370–374.

20. Imbens GW, Angrist JD. Identification and estimation of local average treatment effects. Econometrica 1994; 62(2):
467–475.

21. Pierce B, Burgess S. Efficient design for Mendelian randomization studies: subsample and two-sample instrumental
variable estimators. American Journal of Epidemiology 2013; 178(7):1177–1184.

22. Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Statistical Science 1999; 14(1):29–46.
23. Vansteelandt S, Didelez V. Robustness and efficiency of covariate adjusted linear instrumental variable estimators. arXiv

2015:1510–01770.
24. VanderWeele T, Tchetgen Tchetgen E, Cornelis M, Kraft P. Methodological challenges in Mendelian randomization.

Epidemiology 2014; 25(3):427–435.
25. Burgess S, Butterworth AS, Thompson JR. Beyond Mendelian randomization: how to interpret evidence of shared genetic

predictors. Journal of Clinical Epidemiology 2015. DOI: 10.1016/j.jclinepi.2015.08.001.
26. Davey Smith G, Ebrahim S. Mendelian randomization: prospects, potentials, and limitations. International Journal of

Epidemiology 2004; 33(1):30–42.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015

http://webspace.qmul.ac.uk/tjohnson/gtx/outline2.pdf
http://webspace.qmul.ac.uk/tjohnson/gtx/outline2.pdf


S. BURGESS, F. DUDBRIDGE AND S. G. THOMPSON

27. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for
stratification in genome-wide association studies. Nature Genetics 2006; 38(8):904–909.

28. Angrist JD, Imbens G, Krueger AB. Jackknife instrumental variables estimation. Journal of Applied Econometrics 1999;
14(1):57–67.

29. Stock JH, Yogo M. Testing for weak instruments in linear IV regression. SSRN eLibrary 2002; 11:T0284.
30. Lin PI, Vance JM, Pericak-Vance MA, Martin ER. No gene is an island: the flip-flop phenomenon. The American Journal

of Human Genetics 2007; 80(3):531–538.
31. Thomas DC, Lawlor DA, Thompson JR. Re: estimation of bias in nongenetic observational studies using ‘Mendelian

triangulation’ by Bautista et al. Annals of Epidemiology 2007; 17(7):511–513.
32. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to Meta-analysis. Chapter 34: Generality of the Basic

Inverse-variance Method. Wiley: Hoboken, New Jersey, USA, 2009.
33. Thompson SG, Sharp SJ. Explaining heterogeneity in meta-analysis: a comparison of methods. Statistics in Medicine 1999;

18(20):2693–2708.
34. Thompson JR, Minelli C, Abrams KR, Tobin MD, Riley RD. Meta-analysis of genetic studies using Mendelian random-

ization – a multivariate approach. Statistics in Medicine 2005; 24(14):2241–2254.
35. Riley R, Abrams K, Sutton A, Lambert P, Thompson J. Bivariate random-effects meta-analysis and the estimation of

between-study correlation. BMC Medical Research Methodology 2007; 7(1):3.
36. Davies ND, von Hinke Kessler Scholder S, Farbmacher H, Burgess S, Windmeijer F, Davey Smith G. The many weak

instrument problem and Mendelian randomization. Statistics in Medicine 2015; 34(3):454–468.
37. R Core Team. R: a language and environment for statistical computing. Version 3.1.0 (Spring Dance), R Foundation for

Statistical Computing: Vienna, Austria, 2014. http://www.R-project.org/,.
38. Fox J. Teacher’s corner: structural equation modeling with the sem package in R. Structural Equation Modeling: A

Multidisciplinary Journal 2006; 13(3):465–486.
39. Hahn J, Hausman JA, Kuersteiner GM. Estimation with weak instruments: accuracy of higher-order bias and MSE

approximations. Econometrics Journal 2004; 7(1):272–306.
40. Burgess S, Thompson SG. Improvement of bias and coverage in instrumental variable analysis with weak instruments for

continuous and binary outcomes. Statistics in Medicine 2012; 31(15):1582–1600.
41. Inoue A, Solon G. Two-sample instrumental variables estimators. The Review of Economics and Statistics 2010; 92(3):

557–561.
42. Frost C, Thompson SG. Correcting for regression dilution bias: comparison of methods for a single predictor variable.

Journal of the Royal Statistical Society: Series A (Statistics in Society) 2000; 163(2):173–189.
43. Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist’s dream? Epidemiology 2006; 17(4):

360–372.
44. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PIW. SNAP: a web-based tool for

identification and annotation of proxy SNPs using HapMap. Bioinformatics 2008; 24(24):2938–2939.
45. Lunn DJ, Whittaker JC, Best N. A Bayesian toolkit for genetic association studies. Genetic Epidemiology 2006; 30(3):

231–247.
46. Burgess S, CHD CRP Genetics Collaboration. Identifying the odds ratio estimated by a two-stage instrumental variable

analysis with a logistic regression model. Statistics in Medicine 2013; 32(27):4726–4747.
47. Waterworth DM, Ricketts SL, Song K, Chen L, Zhao JH, Ripatti S, Aulchenko YS, Zhang W, Yuan X, Lim N, et al.

Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arteriosclerosis, Thrombosis, and
Vascular Biology 2010; 30(11):2264–2276.

48. Schunkert H, König I, Kathiresan S, Reilly M, Assimes T, Holm H, Preuss M, Stewart A, Barbalic M, Gieger C, others.
Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genetics 2011;
43(4):333–338.

49. Greco MDF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation studies with
summary data and a continuous outcome. Statistics in Medicine 2015; 34(21):2926–2940.

50. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias
detection through Egger regression. International Journal of Epidemiology 2015; 44(2):512–525.

51. Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian
randomization studies. International Journal of Epidemiology 2011; 40(3):755–764.

© 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015

http://www.R-project.org/

	Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods
	Abstract
	Introduction
	Modelling assumptions
	Uncorrelated instrumental variables
	Individual-level data allele score method
	Summarized data allele score method
	Summary statistic (inverse-variance weighted) method
	Likelihood-based method
	Simulation study
	Results
	Practical implications

	Correlated instrumental variables
	Extension to allele score method with summarized data
	Extension to summary statistic method
	Simulation study
	Results
	Practical implications

	Example: effect of LDL-cholesterol on coronary heart disease risk
	Discussion
	Appendix
	References


