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Abstract 13	  

The occurrence of manganese-rich coatings on foraminifera can have a significant effect 14	  

on their bulk Mg/Ca ratios thereby biasing seawater temperature reconstructions. The 15	  

removal of this Mn phase requires a reductive cleaning step, but this has been suggested 16	  

to preferentially dissolve Mg-rich biogenic carbonate, potentially introducing an 17	  

analytical bias in paleotemperature estimates. In this study, the geochemical 18	  

composition of foraminifera tests from Mn-rich sediments from the Antarctic Southern 19	  

Ocean (ODP Site 1094) was investigated using solution-based and laser ablation ICP-MS 20	  

in order to determine the amount of Mg incorporated into the coatings. The analysis of 21	  

planktonic and benthic foraminifera revealed a nearly constant Mg/Mn ratio in the Mn 22	  

coating of ~0.2 mol/mol. Consequently, the coating Mg/Mn ratio can be used to correct 23	  

for the Mg incorporated into the Mn phase by using the down core Mn/Ca values of 24	  
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samples that have not been reductively cleaned. The consistency of the coating Mg/Mn 25	  

ratio obtained in this study, as well as that found in samples from the Panama Basin, 26	  

suggests that spatial variation of Mg/Mn in foraminiferal Mn overgrowths may be 27	  

smaller than expected from Mn nodules and Mn-Ca carbonates. However, a site-specific 28	  

assessment of the Mg/Mn ratio in foraminiferal coatings is recommended to improve the 29	  

accuracy of the correction. 30	  

1. Introduction 31	  

Foraminiferal Mg/Ca ratios show strong temperature sensitivity owing to the temperature-32	  

dependent partitioning of Mg during calcification, with more Mg incorporated into the 33	  

carbonate when ambient seawater temperatures are higher (e.g. Nürnberg et al., 1996; 34	  

Rosenthal et al., 1997; Lea et al., 1999). During the past two decades, foraminiferal Mg/Ca 35	  

thermometry has been successfully used to reconstruct past temperature changes in the 36	  

surface and deep ocean (e.g. Lea et al., 2000; Barker et al.; 2009; Elderfield et al., 2012). 37	  

Reliable seawater temperature reconstructions require the removal of extraneous material that 38	  

may bias the Mg/Ca ratio away from that of the biogenic carbonate. Cleaning procedures 39	  

designed for Mg/Ca paleothermometry routinely involve the removal of clays and organic 40	  

matter (Elderfield and Ganssen, 2000; Barker et al., 2003; Rosenthal et al., 2004). The 41	  

removal of Mn-rich contaminant phases requires an additional reductive step (Boyle and 42	  

Keigwin, 1985), but there has been some debate as to whether their removal is necessary. On 43	  

the one hand, if Mn-rich phases associated with foraminifera have Mg/Mn ratios typical for 44	  

marine Mn nodules and Mn-Ca carbonates, on the order of 0−0.4 mol/mol (e.g. Cronan, 1975; 45	  

Peacor et al., 1987; Baturin, 1988; de Lange et al., 1992; Wen et al., 1997), measured Mn/Ca 46	  

ratios of 0.1 mmol/mol would imply a bias in the original Mg/Ca ratio by only about 0.02 47	  

mmol/mol. This is insignificant in most cases and supports the argument for omitting a 48	  

reductive step (Barker et al., 2003). On the other hand, the potential presence of Mn-rich 49	  

phases with high Mn/Ca ratios (Boyle, 1983; Pena et al., 2005; 2008) would argue in favor of 50	  
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the inclusion of a reductive cleaning step (Martin and Lea, 2002; Pena et al., 2005, 2008; Bian 51	  

and Martin, 2010).  52	  

However, the reductive cleaning step has been shown to adversely affect the Mg/Ca ratio of 53	  

the remaining, cleaned, biogenic carbonate, lowering the Mg/Ca ratio of core-top and low-Mn 54	  

samples much more than expected from Mg/Mn estimates for the Mn-rich contaminant phase 55	  

(Barker et al., 2003; Rosenthal et al., 2004; Elderfield et al., 2006; Yu et al., 2007; Yu and 56	  

Elderfield, 2008; Bian and Martin, 2010). Although there is some debate about the exact 57	  

mechanism involved (Yu et al., 2007; Bian and Martin, 2010), this offset in Mg/Ca has been 58	  

attributed to the selective removal of Mg from the carbonate lattice. Incongruent dissolution 59	  

of carbonates has also been observed during acid leaching experiments and post-depositional 60	  

dissolution on the sea floor, indicating that Mg-rich carbonate is more dissolution-prone than 61	  

low-Mg carbonate (Russel et al., 1994; Brown and Elderfield, 1996; Rosenthal et al., 2000; 62	  

Haley and Klinkhammer, 2002; Benway et al., 2003; Barker et al., 2003; Sadekov et al., 63	  

2010; Fehrenbacher and Martin, 2014).  Due to the bias introduced by reductive cleaning, it 64	  

has been recommended to omit this step and to clean foraminifera according to the method 65	  

published by Barker et al. (2003) (Barker et al., 2003; Yu et al., 2007; Yu and Elderfield, 66	  

2008). While this may be a valid approach for most samples considered for 67	  

paleoceanographic research, there is a need for alternative strategies for samples that are 68	  

significantly contaminated by Mn-enriched phases.  69	  

In this study, we demonstrate that a promising solution to this potential problem is to 70	  

quantitatively determine the Mg/Mn ratio in the Mn-rich phase of the foraminifera used for 71	  

Mg/Ca thermometry. The combination of solution-based and laser ablation inductively 72	  

coupled plasma mass spectrometry (solution-based ICP-MS and LA-ICP-MS, respectively) 73	  

applied to chemically cleaned Mn-enriched planktonic and benthic foraminifera allows 74	  

differentiation between the Mg/Mn ratio of the material removed during reductive cleaning 75	  

and the Mg/Mn ratio of the Mn-rich contaminant. If the coating Mg/Mn is constant over time, 76	  
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the obtained ratio can be employed to correct for Mg in the contaminant phase using the 77	  

foraminiferal Mn/Ca down core record following the equation 78	  

 𝑀𝑔
𝐶𝑎 !"##$!%$&

=
𝑀𝑔
𝐶𝑎 !"

−
𝑀𝑛
𝐶𝑎 !"

×
𝑀𝑔
𝑀𝑛!"#$%&'

 (1) 

where the subscript ox represents the oxidative cleaning procedure. 79	  

2. Study area 80	  

The samples selected for this study are from Ocean Drilling Project (ODP) Site 1094 (53.2°S, 81	  

05.1°E, water depth of 2807 m) retrieved from the Atlantic sector of the Southern Ocean 82	  

south of the Antarctic Polar Front. The study site is currently bathed by Circumpolar Deep 83	  

Water and is well ventilated, sitting immediately downstream of newly formed Antarctic 84	  

Bottom Water (AABW) (Jaccard et al., 2016). Recent studies have suggested that the deep 85	  

South Atlantic underwent large changes in oxygenation both on millennial and glacial-86	  

interglacial timescales (e.g. Jaccard et al., 2016; Gottschalk et al., 2016). These changes in 87	  

oxygenation stem from a combination of decreased deep water production and increased 88	  

organic matter remineralization (and thus oxygen demand) resulting from increased iron 89	  

fertilization during past ice ages (Jaccard et al., 2016). The sediments are thus characterized 90	  

by significant changes in redox conditions thereby affecting the sedimentary incorporation of 91	  

redox-sensitive trace metals, such as Mn and U (Hayes et al., 2014; Jaccard et al., 2016). 92	  

Jaccard et al. (2016) recently reported substantial sedimentary Mn accumulations during the 93	  

last glacial termination, illustrating the return to oxic conditions at times when remineralized 94	  

carbon was released back to the atmosphere. A literature compilation showed that these Mn 95	  

peaks had previously been reported from South Atlantic sediments and more broadly from the 96	  

equatorial- and subarctic Pacific (e.g. Jaccard and Galbraith, 2012; Jaccard et al., 2016). As 97	  

such, the conditions encountered at the study site may be more common than previously 98	  

assumed. 99	  

3. Background and experimental approach 100	  
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A 1.5 Ma long planktonic N. pachyderma (s.) Mg/Ca record (n = 988) has been established at 101	  

ODP Site 1094 (Figure 1). The foraminifera were picked from a relatively narrow size 102	  

fraction (mostly 200−250 µm; on rare occasions 150−250 µm), and cleaned following the 103	  

protocol outlined by Barker et al. (2003), i.e. omitting the reductive step (see details in 104	  

Section 4.2). The results reveal a positive correlation between Mg and Mn, over a range of 105	  

Mn/Ca ratios up to 3.2 mmol/mol (Figure 1a), with shell weight changes having only a small 106	  

impact on their covariation. Mn/Ca in unaltered planktonic foraminiferal carbonate collected 107	  

from plankton tows, sediment traps and sediment core-tops (e.g. Boyle, 1983; Russell et al., 108	  

1994; Eggins et al., 2003; Barker et al., 2003) are typically well below 0.05 mmol/mol, 109	  

suggesting that most of the Mn is of post-depositional origin. Application of Mg/Ca 110	  

paleothermometry (using the calibration by Vázquez Riveiros et al., 2016) to interglacial 111	  

sequences with high Mn accumulation at this site resulted in unrealistically high sea surface 112	  

temperatures (SST) of more than 10 °C. This temperature overestimation in sediments with 113	  

high Mn enrichment, as well as the clear positive correlation of Mg and Mn points to the 114	  

incorporation of Mg into the Mn-rich contaminant phase.  115	  

A closer examination of the correlation between Mg and Mn in Figure 1a shows that only a 116	  

small portion of the variance can be explained by a linear fit (r2 = 0.03) for samples with 117	  

Mn/Ca lower than 0.1 mmol/mol. Consequently, Mg/Ca values that are accompanied by low 118	  

Mn/Ca primarily reflect Mg variations in the calcite lattice that vary with ambient seawater 119	  

temperature. In contrast, the correlation coefficient for Mn-rich foraminifera samples (Mn/Ca 120	  

> 0.5 mmol/mol) is relatively high (r2 = 0.57), with Mg/Ca varying primarily due to changes 121	  

in post-depositional Mn accumulation. Around one third of these Mn-rich samples are from 122	  

two short-lived spikes within Marine Isotope Stage (MIS) 9 and 11, where Mn/Ca correlates 123	  

strongly with Mg/Ca (r2 = 0.96 and 0.89, respectively) (Figure 1b).  124	  

The main goal of this study is the analytical determination of the Mg/Mn ratio in the coatings 125	  

of foraminifera from ODP Site 1094 in order to be able to correct for the Mg present in the 126	  

Mn-rich phases. The Mg/Mn ratio of the Mn-rich phase can be determined by taking the 127	  
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difference in Mg/Ca and Mn/Ca between samples cleaned using the oxidative and the 128	  

reductive cleaning protocol, respectively, and can be obtained by 129	  
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where x represents the element of interest, and subscripts red and ox represent the reductive 130	  

and oxidative cleaning procedures, respectively.  131	  

The N. pachyderma (s.) samples were selected to cover several depth intervals characterized 132	  

by high Mn levels (n = 75, 125−950 ka), representing foraminiferal Mn/Ca ratios ranging 133	  

from 0.1 to 3.2 mmol/mol (Figure 1a). The experiment conducted on N. pachyderma (s.) was 134	  

complemented by investigation of the planktonic species Globigerina bulloides (n = 10, 135	  

332−401 ka) and Globorotalia puncticuloides (n = 7, 332−335 ka), and the benthic species 136	  

Melonis pompilioides (n = 25, 335−1450 ka) and Melonis barleeanum (n = 2, 1164−1408 ka) 137	  

whenever their respective abundances were high enough to allow meaningful analysis. All 138	  

these samples were analyzed by solution-based ICP-MS to obtain bulk trace element ratios. In 139	  

addition, five of the samples (0.8−3.2 mmol/mol Mn/Ca), along with two samples with 140	  

minimal coating (< 0.05 mmol/mol Mn/Ca), were analyzed by laser ablation ICP-MS to 141	  

investigate the spatial distribution of trace elements within and on the surfaces of the 142	  

foraminifera. 143	  

4. Methods 144	  

4.1 Cleaning strategy 145	  

The polar species N. pachyderma (s.) in sediments of ODP 1094 have very low shell weights 146	  

(3−10 µg per individual picked from the 200−250 µm size fraction) and are thus prone to 147	  

dissolution during chemical cleaning. A preliminary test showed that the reductive reagent 148	  

(Boyle and Keigwin, 1985), applied to a subset of N. pachyderma (s.) samples, dissolved 149	  

more than 80 % of the carbonate for average starting shell weight of less than ~7 µg. In this 150	  
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study, an attempt was made to minimize sample loss by reducing the corrosivity of the 151	  

reagent applied. 152	  

Although reductive cleaning was originally designed to facilitate the removal of Mn and Fe 153	  

oxides from the test surface by reducing Mn4+ and Fe3+ to soluble Mn2+ and Fe2+ (Boyle and 154	  

Keigwin, 1985), this step has also been shown to be efficient in removing Mn-rich carbonate 155	  

phases (Pena et al., 2005). The reductive reagent commonly used consists of 31 M hydrous 156	  

hydrazine (N2H4), 16 M ammonium hydroxide (NH4OH), and a solution of 0.25 M citric acid 157	  

(C3H5O(COOH)3) and 16 M ammonia (NH3 ), mixed together in proportions of 1/8:1:1 158	  

(Boyle and Keigwin, 1985; Yu et al., 2007). In this study, the concentrations of hydrazine and 159	  

ammonium citrate (with molarities of 1.75 M and 0.13 M in the standard solution, 160	  

respectively) were reduced to 50 % and 25 % of their original concentrations in order to 161	  

decrease citrate-induced carbonate dissolution (Yu et al., 2007; Bian and Martin, 2010). In 162	  

samples with abundant N. pachyderma (s.) and high shell weight (38 of 75 samples), the 163	  

reductive cleaning step was applied to three subsets of foraminifera samples using three 164	  

different reductive cleaning solutions: the standard reductive solution, and the two more dilute 165	  

solutions. Additionally, the “25 %” reductive reagent solution was applied to replicate 166	  

samples in 28 cases, in order to test the reproducibility of the results. As shown below, the 167	  

results revealed that the “25 %” reductive cleaning solution was able to remove the majority 168	  

of the Mn-rich coating, leading to the decision to apply this less corrosive reductive reagent 169	  

solution to the samples where foraminifera were sparse and/or shell weights were low. 170	  

Because the planktonic foraminifera G. bulloides and G. puncticuloides are generally larger 171	  

and more robust than the N. pachyderma (s.) in the samples considered here, they were 172	  

cleaned using both the standard and “25 %” reductive solution along with some replicates for 173	  

the latter method where sufficient material was available. The benthic foraminifera were 174	  

cleaned using the standard reductive cleaning solution only, as a preliminary test revealed that 175	  

the diluted solutions were not able to remove the Mn phases adequately. 176	  

4.2 Cleaning procedures 177	  
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Depending on their shell weight and the abundance of the foraminifera, a varying number of 178	  

well-preserved and visibly clean individuals (usually > 300 µg and > 40 planktonic and > 9 179	  

benthic individuals) were picked for each of the cleaning procedures applied. The planktonic 180	  

foraminifera were selected from a relatively narrow size range (N. pachyderma (s.): 200−250 181	  

µm; G. bulloides and G. puncticuloides: 355−425 µm), and the benthic foraminifera were 182	  

picked from the >150 µm size range. Prior to cleaning, foraminifera tests were weighed and 183	  

gently crushed between two glass plates under a microscope to allow contaminant phases to 184	  

be removed during cleaning (Boyle and Keigwin, 1985). The crushed material was then 185	  

transferred to acid cleaned thin walled 500 µl polypropylene vials (Greaves, 2008). The 186	  

oxidative cleaning procedure applied in this study is that published by Barker et al. (2003). 187	  

Briefly, clays were removed by multiple rinses with ultra-purified water and methanol. 188	  

Organic matter was removed by oxidation in a hot alkali-buffered (0.1M NaOH) solution of 1 189	  

% hydrogen peroxide (H2O2). Subsequently, the test fragments were checked under a 190	  

microscope to remove any remaining silicates. Finally, samples were leached with 0.001M 191	  

double distilled HNO3 to remove any adsorbed contaminants from the foraminifera tests. The 192	  

reductive cleaning protocol includes all steps described above, but with an additional step to 193	  

remove trace metal enriched Fe-Mn contaminant phases (Boyle, 1981; Boyle and Keigwin, 194	  

1985). Briefly, after the clay removal step, 100 µl of reductive cleaning solution was added to 195	  

each sample, which was then placed into a hot water bath for 30 minutes.  196	  

4.3 ICP-MS analysis 197	  

The cleaned foraminifera material was dissolved in ~300 µl 0.1M double distilled HNO3, 198	  

centrifuged for 5 minutes (5000 rpm) and transferred to trace-metal cleaned Savillex PFA 199	  

vials, leaving 30 µl of solution behind to avoid contamination from any non-carbonate solid 200	  

impurity. Element/Ca ratios were measured by ICP-MS at ETH Zurich using a single 201	  

collector, high-resolution magnetic-sector Thermo Scientific Element XR instrument. The 202	  

instrument was tuned for maximum sensitivity, concurrently paying attention to oxide and 203	  
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hydride production and isobaric and molecular interferences. Samples were introduced into 204	  

the plasma via a self-aspirating microconcentric nebulizer (flow rate of 100 µl/min) in 205	  

conjunction with a quartz cyclonic spray chamber. Element/Ca ratios were calculated using a 206	  

synthetic in-house standard. Results were corrected for instrument and dissolution-acid blank 207	  

(on average three orders of magnitude smaller than a typical sample). Accuracy and precision 208	  

of the instrument were assessed by routine measurements of six gravimetrically prepared 209	  

consistency standards of which two are in-house standards (Mg/Ca and Mn/Ca) and four are 210	  

standards from the University of Cambridge (Mg/Ca) (Greaves et al., 2005). The standards 211	  

have a composition similar to foraminiferal carbonate and were run at similar Ca 212	  

concentrations (Greaves et al., 2005). The consistency standards measured throughout the 213	  

past 20 months are within 0.9 % ± 3.6 % (2 SD) and 0.6 % ± 4.2 % (2 SD) of the gravimetric 214	  

value for Mg/Ca and Mn/Ca, respectively. The average long-term reproducibility of Mg/Ca 215	  

and Mn/Ca is ± 2.6 % (2 RSD) and ± 2.2 % (2 RSD), respectively.  216	  

4.4 LA-ICP-MS analysis 217	  

Laser ablation ICP-MS was performed on oxidatively cleaned foraminifera (excl. leaching; 218	  

Vetter et al., 2013) from 7 samples selected to cover the entire range of Mn concentration 219	  

(0.02−3.2 mmol/mol Mn/Ca; Figure 1). The laser ablation system consists of a GeoLas 220	  

(Coherent) 193 nm ArF excimer laser coupled to an Elan 6100 DRC (Perkin Elmer) 221	  

quadrupole ICP-MS. The sample was targeted by a laser fluence of ~2 J/cm2 that ablated a 222	  

layer 30 µm in diameter and about 0.1 µm in depth from the surface of the foraminifera test 223	  

with each laser pulse, with a repetition rate of 2 Hz. 24Mg, 25Mg, 42Ca, 44Ca, 55Mn, 57Fe, and 224	  

238U were measured by sequential peak-hopping with dwell times of 10−30 ms. The material 225	  

ablated was carried via He (1.1 L/min gas flow) to the ICP-MS that had been optimized for 226	  

high sensitivity and a low oxide ratio (ThO/Th of ~0.5 %). Four whole foraminifera from 227	  

every sample were targeted at three different chambers, resulting in 12 depth profiles per 228	  

sample. Additionally, chamber fragments from 3 of the 7 samples were ablated towards both, 229	  
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the outer and the inner surface. The end of the shell wall was identified as the depth where the 230	  

44Ca signal reaches an inflection point (see Figure 4a) (Vetter et al., 2013). 231	  

4.5 Scanning electron microscopy 232	  

Scanning electron microscopy (SEM) images were obtained using a Zeiss Supra 50 VP, with 233	  

a secondary electron detector, a working distance of 12 mm, and an accelerating voltage of 15 234	  

kV. The cleaned foraminifera fragments were mounted on carbon tape and coated with 10 nm 235	  

of platinum prior to analysis. 236	  

5. Results 237	  

5.1 Cleaning efficiency of the reductive cleanings 238	  

Mn/Ca and Mg/Ca ratios for N. pachyderma (s.), processed without the reductive step, and 239	  

cleaned using the standard, the “50 %”, and the “25 %” reductive cleaning solution, are 240	  

shown in Figure 2a−b. Reductive cleaning reduces Mn/Ca concentrations by 87 to 90 %, with 241	  

gradually increasing efficiency at higher concentrations. For samples with initial Mn/Ca 242	  

lower than 1 mmol/mol, reductive cleaning reduces Mn/Ca to values generally below 0.1 243	  

mmol/mol, independent of the concentration of the reductive solution used (average Mn/Ca 244	  

after reductive cleaning was 0.05, 0.06 and 0.07 mmol/mol for the standard, “50 %”, and “25 245	  

%” reductive cleaning solutions, respectively). In contrast, for samples with initial Mn/Ca 246	  

ratios ranging between 1 and 3.2 mmol/mol, the standard reductive cleaning solution is 247	  

slightly more efficient than the more dilute solutions, decreasing Mn/Ca values to an average 248	  

of 0.13 mmol/mol compared to 0.17 and 0.21 mmol/mol for the “50 %” and “25 %” reductive 249	  

method, respectively. Insufficent removal of Mn by reductive cleaning may be related to Mn 250	  

phases that are located in pores and spine holes within the test, whose reductive elimination 251	  

has been observed to be more difficult (Boyle, 1983; Pena et al., 2005; Pena et al., 2008) 252	  

SEM images obtained from oxidatively cleaned N. pachyderma (s.) and G. bulloides from 253	  

samples containing high bulk foraminifera Mn concentrations (3.2 and 1.9 mmol/mol Mn/Ca, 254	  
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respectively) reveal a thin layer at the inner surface of the shell not observed in corresponding 255	  

tests that have undergone the reductive cleaning step (Figure 2c−d).  256	  

5.2 Composition of the material removed during reductive cleaning  257	  

The decrease in Mn/Ca in N. pachyderma (s.) following the reductive step is accompanied by 258	  

a significant decrease in Mg/Ca (Figure 2b). Taking the ratio of the differences in Mg/Ca and 259	  

Mn/Ca between oxidative and reductive cleaning (equation (2)) allows determination of the 260	  

Mg/Mn ratio of the material removed during reductive cleaning (∆Mg/∆Mn). Figure 3a shows 261	  

the ∆Mg/∆Mn ratio for the three reductive cleaning solutions applied as a function of the 262	  

Mn/Ca difference between the oxidatively and reductively cleaned samples (∆Mn/Ca). The 263	  

∆Mg/∆Mn ratio decreases with increasing removal of Mn coating, approaching a constant 264	  

value for ∆Mn/Ca larger than ~1.25 mmol/mol. The reproducibility of the ∆Mg/∆Mn ratio for 265	  

the replicated samples, cleaned using the “25 %” reductive method, is relatively high for low 266	  

∆Mn/Ca, decreasing to 0.04 for ∆Mn/Ca greater than 1.25 mmol/mol. The three different 267	  

reductive cleaning solutions gave very similar results for samples with high ∆Mn/Ca (Figure 268	  

3b). The ∆Mg/∆Mn average of N. pachyderma (s.) with ∆Mn/Ca > 1.25 mmol/mol was 0.25 269	  

± 0.04 (n = 20, 1SD), similar to ∆Mg/∆Mn for G. bulloides (0.23 ± 0.06, n = 9), and G. 270	  

puncticuloides (0.20 ± 0.04, n = 3). The ∆Mg/∆Mn values of M. pompilioides and M. 271	  

barleeanum were less dependent on the amount of the Mn phase removed, averaging 0.19 ± 272	  

0.04 mol/mol for samples with ∆Mn/Ca > 0.25 mmol/mol (n = 26). The Fe/Mn ratio of the 273	  

material removed during cleaning (∆Fe/∆Mn) averages 0.02 ± 0.01 (n = 70) and 0.04 ± 0.01 274	  

(n = 24) for planktonic and benthic foraminifera with ∆Mn/Ca > 0.25 mmol/mol (Figure 3d). 275	  

5.3 Trace element distribution within the foraminifera test 276	  

Laser ablation ICP-MS element depth profiles obtained from a series of cleaned N. 277	  

pachyderma (s.) from seven samples provide additional insight into the trace element 278	  

distribution through the shell wall and its surface. Figure 4 shows a representative selection of 279	  

depth profiles for three of the five investigated samples, with bulk foraminifera Mn/Ca 280	  
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ranging from 0.8 to 3.2 mmol/mol (Figures 4a−i). The most striking feature in most of the 281	  

profiles is the systematic increase in Mn/Ca at the inner part of the shell wall, accompanied by 282	  

a smaller increase in Mg/Ca. In contrast, Fe/Ca is consistently low throughout the entire 283	  

profile, showing no concurrent trend with Mn/Ca or Mg/Ca (Fe is at or slightly above the 284	  

detection limit of ~30 ppm; Figure 4c). At the outer part of the shell Mn/Ca is typically an 285	  

order of magnitude lower than at the inner shell wall, but exceeds the natural range of 286	  

variability of (uncoated) foraminiferal carbonate from the same site by an order of magnitude 287	  

(Figure 4j). The accumulation of the Mn phase within the biogenic carbonate makes it 288	  

practically impossible to define a clear boundary between carbonate and secondary Mn 289	  

coating, particularly if the Mn enrichment is small (e.g. Figure 4g, 4h). In order to investigate 290	  

the relationship between Mn and Mg within the higher coated intervals systematically, the 291	  

Mn-rich part of the depth profile is specified as coating from the point where the Mn/Ca value 292	  

is twice as large as the test Mn/Ca close to the outer surface (i.e. the average Mn/Ca of the 293	  

outermost ~1 µm of the profile). Although the definition of the boundary is somewhat 294	  

arbitrary, it allows us to investigate the Mg/Mn of the Mn phase more quantitatively. From 295	  

the 86 laser ablation profiles that have been produced on samples with high bulk Mn/Ca 296	  

values, 49 profiles, measured on 30 different foraminifera, registered an identifiable increase 297	  

in Mn/Ca. 298	  

The Mn/Ca profiles within the coated intervals show a gradual increase towards the inner 299	  

surface where the maximum Mn/Ca ratio is reached (Figures 4a−i). The pattern of Mn/Ca 300	  

enrichment (gradual to sharp), its lengthscale (~0.2−4 µm), and the values at the inner surface 301	  

(~1−14 mmol/mol) all show significant variation, even within a single foraminifer. Mg/Mn 302	  

within the foraminifera tests decreases with increasing Mn concentration, showing ratios of 303	  

~0.3−1.4 at the inner surface of the shell (Figures 4a−4i). This large range of Mg/Mn is 304	  

explained by the variability of Mn/Ca in coatings and its dominant effect on the Mg/Mn ratio. 305	  

Importantly, coating Mn/Ca and Mg/Mn correlate negatively (Figure 4k−4l). While low 306	  

Mn/Ca values correspond to Mg/Mn ratios that are very variable, Mg/Mn ratios level off with 307	  
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higher Mn/Ca. The profiles that resulted from ablation from the inner to the outer surface 308	  

record higher Mn/Ca values at the inner surface, with their Mg/Mn (~0.2 to 0.4) approaching 309	  

the value determined by bulk measurements of planktonic and benthic foraminifera. 310	  

6. Discussion 311	  

6.1 Origin of Mn-rich foraminifera coatings 312	  

Mn phases associated with foraminifera tests are Mn-oxyhydroxides and Mn-rich carbonates 313	  

(Boyle, 1981, 1983; Pena et al., 2005, 2008). As the saturation of seawater with respect to Ca-314	  

Mn carbonate requires very high dissolved Mn concentrations (Pedersen and Price, 1982; 315	  

Landing and Lewis, 1991), sedimentary Mn-rich phases are thought to be originally 316	  

precipitated as Mn-oxyhydroxides, which then potentially dissolve upon burial and when 317	  

oxygen-depleted conditions are encountered (Calvert and Pedersen, 1993, 1996). Reduction 318	  

of Mn4+ to soluble Mn2+ is a prerequisite for the dissolution of Mn oxyhydroxides, a process 319	  

that will increase the concentration of dissolved Mn in porewaters (Calvert and Pedersen, 320	  

1993; King et al., 2000). Mn is then removed from porewater by the formation of Mn-rich 321	  

carbonates, preferentially forming at the inner surface of foraminifera tests due to the even 322	  

more reductive microenvironment (Murray, 1991) and the reactive surfaces that promote 323	  

nucleation (Pedersen and Price, 1982; Mucci, 2004).  324	  

The laser ablation depth profiles through coated tests of N. pachyderma (s.) show consistently 325	  

elevated Mn/Ca values at the inner surface of the shell, corroborating the SEM images that 326	  

revealed a coating of unknown nature at the inner surface of N. pachyderma (s.) and G. 327	  

bulloides. Systematic enrichments in Mn/Ca at the innermost margin of foraminifera shells 328	  

have also been observed in Neogloboquadrina dutertrei from the Panama basin (Pena et al. 329	  

2005, 2008). Pena et al. 2005 have identified the Mn phase as a kutnohorite, a Ca-Mn 330	  

carbonate with typically 5−10 mol% MgCO3 (Peacor et al., 1987). In contrast to Mn-331	  

oxyhydroxides, which are often accompanied by Fe-rich phases, Fe is generally low in Ca-Mn 332	  

carbonates (Peacor et al., 1987; Calvert and Pedersen, 1996). The present study did not 333	  
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involve mineralogical analysis of the contaminant phase due to the large amount of 334	  

foraminiferal material required. However, the suboxic conditions prevailing within the 335	  

sediments of ODP 1094 (Shipboard Scientific Party, 1999; King et al., 2000) suggest that the 336	  

Mn-rich contaminant phase is likely a carbonate, as preservation of oxyhydroxides is only 337	  

possible where the environment remains oxic (Calvert and Pedersen, 1996). This is 338	  

corroborated by the low Fe/Mn ratios of the material removed during cleaning (Figure 3d) 339	  

and the lack of correlation between Fe and Mn within the coatings, as shown by the laser 340	  

ablation profiles (Figure 4c). However, we cannot completely exclude the possibility that a 341	  

small fraction of the Mn phase is associated with oxyhydroxides. 342	  

6.2 Mg/Mn in foraminifera coatings  343	  

The Mg/Mn ratio of the material removed during reductive cleaning varies with the amount of 344	  

Mn-rich contaminant eliminated, leveling off with increasing ∆Mn/Ca (Figure 3a−c). To our 345	  

knowledge, the only other study that has investigated the effect of reductive cleaning on 346	  

foraminifera from Mn-rich sediments is that of Pena et al. (2005). Their measurements, 347	  

conducted on the planktonic foraminifera N. dutertrei and Globigerinoides ruber from the 348	  

Panama Basin, show a similar trend, with lower ∆Mg/∆Mn values associated with removal of 349	  

greater amounts of coating material (Figure 3c). Similarly, the ∆Mg/∆Mn ratio remains stable 350	  

for samples with ∆Mn/Ca > ~1.25 mmol/mol (0.19 ± 0.07), although the range of bulk 351	  

foraminifera Mn/Ca values is twice as large as in our study. There could be two possible 352	  

interpretations of the hyperbolic curvature: that the coating Mg/Mn varies with the degree of 353	  

Mn contamination, or that Mg/Mn is constant in the Mn-bearing phase and another process 354	  

leads to the observed variation in ∆Mg/∆Mn.  355	  

If ∆Mg/∆Mn were controlled only by the variation of Mg/Mn in the Mn contaminant phase, 356	  

then our results would imply that Mg is less readily incorporated into the Mn phase if Mn 357	  

concentrations increase in the latter. Mg/Mn ratios in natural Ca-Mn carbonates compiled by 358	  

Peacor et al. (1987) tend to decrease with higher MnCO3 contents (Figure 5). Furthermore, 359	  
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Mucci (1988) showed in laboratory experiments that the amount of Mg incorporated in 360	  

carbonate overgrowths decreases with increasing MnCO3 content of the precipitated solid, 361	  

further corroborating the suggestion that the Mg/Mn ratio in Ca-Mn carbonates decreases 362	  

with increasing MnCO3 content (Figure 5b).  363	  

While acknowledging that Mg/Mn can vary with the MnCO3 content, the following 364	  

arguments argue against substantial variation of MnCO3 in coatings of foraminifera from 365	  

ODP Site 1094. First, the strong linear correlation of bulk N. pachyderma (s.) Mg/Ca and 366	  

Mn/Ca in two defined intervals within MIS 9 and 11 indicate that the variation in Mg/Mn in 367	  

samples from ODP 1094 cannot be large (Figure 1b). Second, a close variation between 368	  

MnCO3 content and coating Mg/Mn would imply that ∆Mg/∆Mn changes uniformly for all 369	  

the foraminifera species, and over the entire ∆Mn/Ca range. In contrast, the variation of 370	  

∆Mg/∆Mn in samples from this study and the Panama Basin where a lot of coating has been 371	  

removed is small, while the benthic species show almost no variation at all (Figure 3c). 372	  

Given that Mg/Mn varies only within a narrow range in the Mn phase accumulating on the 373	  

inner foraminifera surface, the ∆Mg/∆Mn ratio of the samples would be expected to cluster 374	  

around a nearly constant value. If this assumption is true, then we require another explanation 375	  

for the variations in ∆Mg/∆Mn observed in this study, and in samples from the Panama Basin. 376	  

Previous studies have demonstrated that Mg is preferentially removed from carbonate during 377	  

reductive cleaning (e.g. Barker et al., 2003; Rosenthal et al., 2004; Yu et al., 2007; Bian and 378	  

Martin, 2010), which would result in greater deviation from the Mg/Mn endmember of the 379	  

Mn coating the smaller the contribution of the contaminant. The coating end member 380	  

dominates ∆Mg/∆Mn with increasing amount of material removed, which constrains the 381	  

coating Mg/Mn value for all the planktonic foraminifera investigated to 0.24 ± 0.05, and for 382	  

the benthic foraminifera to 0.19 ± 0.04. The good correspondence of the Mg/Mn ratio 383	  

between the different foraminifera species, which are from sediments whose age ranges from 384	  

125 to 1450 ka, indicates that the amount of Mg incorporated into the Mn-rich coatings is 385	  

species-independent and temporally stable. The slightly lower average of the two benthic 386	  
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species is consistent with the observation that benthic foraminifera are usually less affected by 387	  

preferential dissolution during reductive cleaning (Yu et al., 2007; Yu and Elderfield, 2008), 388	  

implying that their coating Mg/Mn average of 0.19 ± 0.04 is more reliable. This value is close 389	  

to the average Mg/Mn ratios observed in Mn nodules (Table 1) and Ca-Mn carbonates (Figure 390	  

5c). 391	  

Laser ablation depth profiles through shells of N. pachyderma (s.) reveal great variation in 392	  

Mn/Ca and Mg/Mn at the inner surface of the shell, within a single profile as well as between 393	  

profiles from the same foraminifer and sample. However, coating Mn/Ca and Mg/Mn are 394	  

correlated, with decreasing Mg/Mn ratios for high Mn/Ca values. Given that Mg/Mn in 395	  

inorganic Mn-rich carbonates coated on foraminifera is consistent across foraminifera species, 396	  

the variations in Mn/Ca and Mg/Mn might be due to increasing accumulation of the Mn phase 397	  

in pores close to the inner surface of the test as observed by Pena et al. (2008), leading to an 398	  

increased proportion of biogenic carbonate ablated with the Mn phase as the inner test surface 399	  

is approached. Furthermore, the rounded test surface of the small spherical N. pachyderma 400	  

(s.) hinders a perpendicular ablation of the target, increasing the probability of obtaining a 401	  

mixed signal of primary and secondary carbonate. Last, if ablation starts at the outer surface, 402	  

the laser beam is forced to pass through the ablation pit before ablating the higher coated 403	  

intervals, promoting the co-ablation of material from the adjacent shell walls. Notably, 404	  

highest Mn/Ca ratios at the inner surface are observed if the test is ablated from inner to outer 405	  

surface. Mg/Mn in these highly coated intervals matches the Mg/Mn range determined by 406	  

solution-based ICP-MS (Figure 4k–l).  407	  

6.3 Preferential dissolution during reductive cleaning 408	  

In order to quantify the extent to which Mg is preferentially dissolved from the biogenic 409	  

carbonate during reductive cleaning, we estimate ∆Mg/∆Mn for the N. pachyderma (s.) data 410	  

using the amount of coating removed (∆Mn/Ca), the Mg/Mn determined for the coatings of N. 411	  

pachyderma (s.), and estimates of the decrease in Mg/Ca of the carbonate during reductive 412	  
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cleaning. The estimated ∆Mg/∆Mn is a function of the degree to which Mg is preferentially 413	  

dissolved and is given by 414	  

 
Δ𝑀𝑔
Δ𝑀𝑛

=
𝑀𝑔!"#$%&' +𝑀𝑔!"#$%&"'(

!"#$  !"#$

𝑀𝑛!"#$%&'
  =

Δ𝑀𝑛𝐶𝑎 𝑎 +
𝑀𝑔
𝐶𝑎 !" −

𝑀𝑛
𝐶𝑎 !" 𝑎 𝑓

Δ𝑀𝑛𝐶𝑎
 (3) 

where ∆Mn/Ca represents the difference in Mn/Ca between oxidatively and reductively 415	  

cleaned samples, a denotes Mg/Mn in the coating, the term in brackets represents the estimate 416	  

for the unaltered Mg/Ca in the carbonate, and f is the proportion of Mg that is preferentially 417	  

lost from the biogenic carbonate during reductive cleaning (i.e., the extent by which Mg/Caox 418	  

is lowered). The value taken for the coating Mg/Mn (a) is 0.19 mol/mol, the average for Mn-419	  

rich coatings associated with the more dissolution-resistent benthic foraminifera from ODP 420	  

Site 1094. Importantly, the outcome of the calculations is not sensitive to the exact value 421	  

chosen for a. Mn in biogenic carbonate, typically well below 0.05 mmol/mol Mn/Ca (e.g. 422	  

Boyle, 1983; Russell et al., 1994; Eggins et al., 2003; Barker et al., 2003), is neglected here 423	  

due to its minor effect on the results. 424	  

Figure 6 shows the estimated ∆Mg/∆Mn as a function of 5 %, 15 % and 30 % preferential 425	  

dissolution of Mg-enriched carbonate along with the analytically determined ∆Mg/∆Mn 426	  

values for each of the reductive cleaning methods (Figure 6a−c) and their averages (Figure 427	  

6d). ∆Mg/∆Mn estimated assuming that 15 % of Mg is preferentially dissolved agrees well 428	  

with the analytical data, its linear fit plotting close to the 1:1 line in each of the scatter plots. 429	  

These results correspond well to previous studies showing that the Mg/Ca ratio of reductively 430	  

cleaned core top planktonic foraminifera is ~10−15 % lower than those that have only seen an 431	  

oxidative clean (Barker et al. 2003; Rosenthal et al., 2004, Bian and Martin, 2010). Other 432	  

studies have shown that reductive cleaning decreases Mg/Ca of benthic foraminifera by ~8 % 433	  

more than expected from Mg/Mn in Mn phases (Yu et al., 2007; Yu and Elderfield, 2008), in 434	  

agreement with our assumption that benthic foraminifera are less susceptible to preferential 435	  

dissolution of MgCO3.  436	  
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Remarkably, the degree to which Mg/Ca is offset from the value expected from the Mg/Mn 437	  

ratio in the Mn phase does not seem to depend on the corrosivity of the cleaning solution 438	  

used, although the solubility of carbonates increases with increasing citrate concentration (Yu 439	  

et al., 2007; Bian and Martin, 2010). This is consistent with cleaning experiments of Bian and 440	  

Martin (2010) showing that the Mg/Ca offset of foraminifera cleaned with varying citrate 441	  

concentrations are all very similar, though consistently lower compared to samples cleaned 442	  

with a solution containing no citrate. The leveling off of Mg/Ca with increasing corrosivity of 443	  

the cleaning solution suggests that the lowering of Mg/Ca during reductive cleaning does not 444	  

act like post-depositional dissolution (Brown and Elderfield, 1996; Sadekov et al., 2010). 445	  

Bian and Martin (2010) invoke other mechanisms to explain the lowering of Mg/Ca in low-446	  

Mn samples after reductive cleaning, such as the preferential removal of Mg restricted to the 447	  

surface or to Mg-enriched portions of the test.  448	  

6.4 Implications for paleoceanographic reconstructions of foraminiferal Mg/Ca 449	  

temperatures 450	  

The results presented in this study confirm that Mn-rich contaminant phases associated with 451	  

foraminifera can have a significant impact on the Mg/Ca ratio of biogenic carbonate. When 452	  

translated into temperature using the recently published species-specific calibration for N. 453	  

pachyderma (s.) (Vázquez Riveiros et al., 2016), the Mg within the coating can produce a 454	  

temperature overestimation of up to 7.0 ± 2.2 °C, given the 1σ range of the Mg/Mn ratio in 455	  

the contaminant phase determined in benthic foraminifera (Figure 7d−f). Using the average 456	  

Mg/Mn ratio of 0.19 mol/mol, 14 % of the samples analyzed are shown to be contaminated to 457	  

a degree that leads to a temperature bias of more than 0.9 °C, equivalent to the calibration 458	  

uncertainty of N. pachyderma (s.) (Vázquez Riveiros et al., 2016). To circumvent this 459	  

problem, we corrected for Mg in the contaminant phase using the downcore Mn/Ca record of 460	  

the oxidatively cleaned foraminifera samples. 461	  
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We applied a correction to the 1.5 Ma long N. pachyderma (s.) Mg/Ca record from ODP Site 462	  

1094, using the average Mg/Mn ratio obtained for benthic foraminifera from the same core. In 463	  

order to assess the sensitivity of the corrected Mg/Ca to the value for the selected Mg/Mn 464	  

ratio, Mg/Mn was varied within the 1σ range (Figure 7a−c). The difference between the 465	  

measured and the corrected Mg/Ca is small for Mn/Ca below 0.2 mmol/mol, equivalent to 466	  

0.25 ± 0.14 °C (75 % of all samples). In contrast, the corrected Mg/Ca for samples with 467	  

Mn/Ca higher than 0.2 mmol/mol show a larger and increasing deviation from the original 468	  

data, removing the positive trend between Mg and Mn. The degree of offset between 469	  

measured and corrected data is strongly dependent on the value of Mg/Mn employed, the 470	  

reasons for which are twofold. Firtsly, the high Mn/Ca ratios obtained in this study exert great 471	  

leverage on the corrected Mg/Ca values. Secondly, the low sensitivity of Mg/Ca to 472	  

temperature at the lower end of the calibration curve (Vázquez Riveiros et al., 2016) 473	  

translates small Mg/Ca changes into relatively large temperature changes in these cold 474	  

Southern Ocean waters.  475	  

These obervations illustrate the crucial importance of the accurate quantification of the 476	  

Mg/Mn ratio to correct Mg/Ca. While acknowledging that there might be some variability 477	  

associated with the incorporation of Mg into the Mn phase, we suggest that the average value 478	  

of the coating Mg/Mn obtained from the benthic foraminifera, which are less prone to 479	  

dissolution during reductive cleaning, is the best estimate for the Mg/Mn ratio of the Mn 480	  

phase in samples from ODP Site 1094. Correcting Mg/Ca using Mg/Mn = 0.19 mol/mol 481	  

eliminates the positive correlation between Mg and Mn observed in the oxidatively cleaned 482	  

samples with Mn/Ca > 0.5 mmol/mol (slope: 0.02; r2 = 0.02) (Figure 7b). 483	  

7. Conclusions 484	  

SEM images and laser ablation ICP-MS profiles through foraminifera shells reveal Mn-rich 485	  

coatings at the inner surface of planktonic foraminifera from the Antarctic Southern Ocean 486	  

that can have a significant effect on the bulk foraminiferal Mg/Ca ratio. The removal of this 487	  
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Mn phase requires a reductive cleaning step, but this is known to preferentially dissolve Mg-488	  

rich biogenic carbonate. In this study, two different approaches were adopted to assess the 489	  

coating Mg/Mn in foraminifera from ODP Site 1094 in the Southern Ocean. First, solution-490	  

based ICP-MS measurements of oxidatively and reductively cleaned Mn-rich foraminifera 491	  

allowed determination of the Mg/Mn ratio of the material removed during reductive cleaning. 492	  

Second, laser ablation ICP-MS provided high-resolution trace element profiles through coated 493	  

foraminifera shells, corroborating the Mg/Mn results obtained from bulk measurements. The 494	  

determination of the Mg/Mn ratio in foraminiferal coatings allows correction for Mg 495	  

incorporated into the Mn phase, by using the down core Mn/Ca record of oxidatively cleaned 496	  

samples from the same site.  497	  

Considering the various sources of Mn in the ocean and sediment, and the occurrence of 498	  

foraminiferal Mn overgrowths as both oxide and carbonate phases whose formation involves 499	  

very different processes, the incorporation of Mg into Mn-rich foraminiferal coatings is not 500	  

expected to be spatially constant. However, coating Mg/Mn ratios observed in samples from 501	  

the Panama Basin and the Antarctic Southern Ocean are very similar, which render it 502	  

probable that the range of Mg/Mn in foraminiferal Mn overgrowths is smaller than expected 503	  

from Mn-rich nodules and Mn-Ca carbonates (~0−0.4 mol/mol). In order to be able to make a 504	  

broader assessment of the variations in the Mg/Mn ratio in foraminiferal coatings, more 505	  

studies from other oceanic regions with high Mn accumulation rates would be required. 506	  

We recommend application of the protocol presented in this study when foraminiferal Mn/Ca 507	  

is high enough to introduce a significant bias to measured Mg/Ca ratios and the temperatures 508	  

calculated from them, for example, in excess of the calibration uncertainty of the species 509	  

investigated (e.g. 0.9 °C for N. pachyderma (s.); Vazquez et al., 2016).  There is, however, no 510	  

absolute Mn/Ca ratio that can be taken as a threshold to indicate a ‘contaminated’ sample 511	  

because the degree of contamination depends on several factors such as the average Mg/Ca 512	  

ratios and the temperature sensitivity of the foraminifera species investigated. 513	  
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Captions 673	  

Table 1. Average Mg/Mn ratios in Mn nodules and Mn encrustations of the Atlantic, Indian, 674	  

and Pacific Oceans, and the average for the global ocean. Mg/Mn ratios of individual sites can 675	  

deviate markedly from the basin average. 676	  

Figure 1. (a) Covariance between Mg/Ca and Mn/Ca measured in oxidatively cleaned N. 677	  

pachyderma (s.) from sediments of ODP Site 1094, covering the past 1.5 Ma. The linear fits 678	  

show the correlation between the two parameters at the lower (< 0.1 mmol/mol; r2 = 0.03) and 679	  

upper end (> 0.5 mmol/mol; r2 = 0.57) of the Mn/Ca range. The white, blue, yellow, and gray 680	  

symbols show N. pachyderma (s.), G. bulloides, G. puncticuloides and M. pompilioides 681	  

samples that were used in this study. The red stars mark samples that have been investigated 682	  

by LA-ICP-MS. (b) Correlation of Mg/Ca and Mn/Ca for two short-lived Mn spikes within 683	  

MIS 9 (open symbols) and MIS 11 (solid symbols).  684	  

Figure 2. (a–b) Mn/Ca and Mg/Ca ratios for N. pachyderma (s.) after cleaning with three 685	  

different reductive solutions, compared to samples that have only been cleaned oxidatively. 686	  

Reductive cleaning results in a clear decrease in Mn/Ca (87−90 %) and Mg/Ca ratios (each of 687	  

the gray lines represents the results of a sample). (c–d) SEM images of an oxidatively cleaned 688	  

N. pachyderma (s.) and G. bulloides chamber fragment with high bulk Mn/Ca values show a 689	  

distinctive layer at the inner surface of the test. In contrast, SEM images of the same samples 690	  

after the reductive cleaning step show no evidence of such a layer, indicating that the Mn 691	  

coating at the inner surface of the test has been successfully removed. 692	  

Figure 3. The Mg/Mn and Fe/Mn ratio of the material removed during reductive cleaning 693	  

(∆Mg/∆Mn, ∆Fe/∆Mn) as a function of the amount of Mn/Ca removed. (a) ∆Mg/∆Mn of the 694	  

different reductive cleaning solutions applied to samples of N. pachyderma (s.). (b) Average 695	  

∆Mg/∆Mn of the reductive cleaning solutions for N. pachyderma (s.) compared to ∆Mg/∆Mn 696	  

of the planktonic species G. bulloides, and G. puncticuloides, and the benthic species M. 697	  

pompilioides and M. barleeanum. (c) Compilation of ∆Mg/∆Mn data presented in this study 698	  
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and samples from the Panama Basin (ODP 1240), on the latter for planktonic N. dutertrei and 699	  

G. ruber (Pena et al., 2005). (d) ∆Fe/∆Mn of planktonic and benthic foraminifera from this 700	  

study. 701	  

Figure 4. Representative selection of laser ablation ICP-MS Mg/Ca (black), Mn/Ca (red), and 702	  

Mg/Mn (blue) profiles from reductively cleaned N. pachyderma (s.) samples of four intervals 703	  

covering the entire range of Mn/Ca (0.02−3.2 mmol/mol) (a−j). In the first three rows, the 704	  

two plots on the left show profiles that were produced within a single foraminifer by ablating 705	  

towards the inner surface (a, b, d, e, g, h, j). Samples plotted in the third column were ablated 706	  

towards the outer surface (c, f, i). The 44Ca profile, with an example shown in (a), was used to 707	  

identify the beginning and the end of the shell wall. The dashed line marks the boundary 708	  

between primary shell and coating, defined as the depth when Mn/Ca reaches twice the value 709	  

at the outer part of the shell. The example Fe/Ca data shown in (c) are at or only slightly 710	  

above the detection limit (~30 ppm). Note the different scales on the y-axes. (k) Negative 711	  

correlation between coating Mg/Ca concentrations and coating Mg/Mn ratios for all 712	  

measurement points within the coated intervals. (l) Negative correlation between average 713	  

coating Mg/Ca concentrations and average coating Mg/Mn ratios. The blue and yellow bars in 714	  

Figure (k) and (l) represent the coating Mg/Mn 1σ range determined by solution-based ICP-715	  

MS for planktonic and benthic foraminifera. 716	  

Figure 5. (a) Compilation of natural Ca-Mn-Mg carbonates whose composition has been 717	  

projected onto a CaCO3-MnCO3-MgCO3 ternary phase diagram (replotted from Peacor et al., 718	  

1987). (b) Mg/Mn of all carbonates from the ternary phase diagram as a function of their 719	  

MnCO3 content. Carbonates with 0.5−20 mole% Mg and 1−95 mole% Mn are highlighted in 720	  

black. Compositions of carbonates that have been precipitated during lab experiments from 721	  

artificial seawater using different Mn concentrations are shown in red (Mucci, 1988). The 722	  

legend in (b) is also valid for (a). (c) Histogram of Mg/Mn values in natural Ca-Mn-Mg 723	  

carbonates with 0.5−20 mole% Mg and 1−95 mole% Mn. Three of the 239 samples, with 724	  

Mg/Mn > 1, were excluded in calculating the Gaussian fit and the average Mg/Mn ratio. 725	  
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Figure 6. Assessment of preferential dissolution for N. pachyderma (s.) during reductive 726	  

cleaning for the three different cleaning solutions applied (a−c), and the average of the 727	  

cleaning solutions (d). The Mg/Mn ratio of the material removed (∆Mg/∆Mn) is estimated by 728	  

using the determined Mg/Mn ratio of the coating and by varying the relative amount of Mg 729	  

that is preferentially dissolved between 5 % and 30 %. Comparison between the analytically 730	  

determined and estimated ∆Mg/∆Mn indicates that 15 % of the Mg in the carbonate is 731	  

dissolved during reductive cleaning, its linear fit plotting close to the 1:1 line in each of the 732	  

scatter plots (see insets). The percentage of Mg dissolved from the carbonate is independent 733	  

of the corrosovity of the solution used. 734	  

Figure 7. (a−c) Covariance between the measured Mg/Ca and Mn/Ca on the one hand 735	  

(black), and the corrected Mg/Ca and measured Mn/Ca on the other hand (yellow). The linear 736	  

fits indicate the correlation of Mg/Ca and Mn/Ca for Mn/Ca > 0.5 mmol/mol before (black) 737	  

and after correction (red). (d−f) Mg/Ca temperature overestimation owing to Mg incorporated 738	  

into the Mn phase as a function of the measured Mn/Ca. Correction is based on (a, d) the 739	  

lower bound, (c, e) the average, and (c, f) the upper bound of the obtained 1σ range of 740	  

Mg/Mn. 741	  


