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Abstract: Tidal wetlands are expected to respond dynamically to global environmental change, 

but the extent to which wetland losses have been offset by gains remains poorly understood. We 

developed a global analysis of satellite data to simultaneously monitor change of three highly 

interconnected intertidal ecosystem types—tidal flats, tidal marshes and mangroves—from 1999 

to 2019. Globally, 13,700 km2 of tidal wetlands were lost, but these have been substantially 25 

offset by gains of 9,700 km2, leading to a net change of −4000km2 over two-decades. We found 

27% of losses and gains were associated with direct human activities, such as conversion to 

agriculture and restoration of lost wetlands. All other changes were attributed to indirect drivers 

including the combined effects of natural coastal processes and climate change.  

One-Sentence Summary: High-resolution satellite analysis quantifies the global dynamics of 30 

tidal wetlands. 

Main Text:  

Tidal wetlands are of immense importance to humanity, providing benefits such as carbon 

storage and sequestration, coastal protection, and fisheries enhancement (1, 2). Unfortunately, 

intensifying anthropogenic pressures and the growing impacts of climate change are affecting 35 

tidal wetlands and their component intertidal ecosystems in pervasive ways. Losses of tidal 

wetlands are widely reported (3-5), yet at local scales intertidal ecosystems are known to have 

the capacity to respond to environmental change, gaining extent by means of sediment 

accumulation, inland migration and redistribution (6-9). Redistribution and recovery through 

natural processes are increasingly supplemented by broad-scale ecosystem restoration activities 40 

(10). Although a number of studies have suggested that intertidal ecosystems are highly resilient 

to environmental change (11, 12), little is known about the degree to which gains in tidal wetland 

extent have counterbalanced known losses . Previous analyses have been unable to address this 
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question, owing to a focus on mapping single ecosystem types (9, 13, 14), which cannot 

distinguish losses from transitions among adjacent intertidal ecosystems, a lack of consistent data 45 

on the global extent and change of tidal marshes (15), and knowledge of the prevailing drivers of 

tidal wetland change. This has led to considerable uncertainty about how tidal wetlands have 

changed in recent decades and how they are expected to persist into the future (11, 12). 

Here, we report on an integrated, globally consistent analysis of the distribution and change 

of Earth’s three intertidal ecosystems: tidal flats, tidal marshes, and mangroves (hereafter 50 

referred to collectively as ‘tidal wetlands’; Fig. S1). Where they co-occur, these three ecosystems 

are highly interconnected, with feedback mechanisms among biological and physical 

components that interact extensively across the systems (8). We investigate the spatiotemporal 

distribution of tidal wetlands globally by applying stacked machine-learning classifiers to 

remotely sensed data to model their occurrence, detect the type and timing of loss and gain 55 

events, and assess the drivers of change over the period 1999 to 2019. The validated dataset is 

produced by combining observations from 1,166,385 satellite images acquired by the Landsat 5-

8 missions with environmental data of variables known to influence the distributions of each 

ecosystem type, including temperature, slope and elevation (Tables S1 and S2). Tidal wetland 

loss was defined as the replacement of any of the three focal ecosystems with non-intertidal 60 

ecosystems at the 30-m pixel scale, with tidal wetland gain defined as their establishment in 

pixels where they did not occur in 1999. A weighted random sample of detected changes was 

used to estimate the contribution of direct human impacts versus indirect drivers such as sea 

level rise and natural coastal processes on tidal wetland losses and gains globally (16).  

Our global dataset reveals the total observed area of tidal wetlands in 2019 was at least 65 

354,600 km2 (95% confidence interval (CI): 244,800, 363,900 km2). Tidal wetlands are unevenly 
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distributed across the world’s coastlines, with the largest remaining contiguous tracts occurring 

as deltaic mangroves fringed by extensive tidal flats in the Amazon Delta, Northern Bay of 

Bengal, New Guinea, and the Niger Delta (Fig. 1A). Previous estimates of global tidal marsh 

extent rely on spatial data compilations with large gaps in coverage that lead to underestimates of 70 

extent (15), limiting their use for estimating global blue carbon stocks (17). Our data therefore 

allow a first empirical estimate of global tidal marsh extent of 90,800 km2, obtained by 

subtracting previously derived extent estimates of mangroves (135,900 km2) and tidal flats 

(127,900 km2) from our global tidal wetland area estimate (9, 18). Our estimate of tidal marsh 

extent represents 25.6% of the total tidal wetland extent mapped in this study and is 65.1% 75 

greater than the previously reported minimum global estimate of 55,000 km2 (15). Owing to 

limitations of our methods in regions higher than 60°N latitude, where tidal marshes and tidal 

flats are known to occur, this upward revision of global tidal marsh extent should be considered 

conservative. 

Tracking change over the 20-year study period indicates that losses of 13,700 km2 (95% CI: 80 

−16,800, −8,200 km2) have been substantially offset by the establishment of 9,700 km2 (95% CI: 

+4,900, +15,700 km2) of new tidal wetlands that were not present in 1999 (Table 1). Despite 

wide geographic variation in the occurrence of tidal wetlands globally, many regions showed a 

consistent pattern of losses being substantially offset by nearby gains (Fig. 1, B-C). This pattern 

was most pronounced in the world’s major river deltas (19), where about one-fifth (19.1%) of the 85 

area of tidal wetland changes occurred, despite containing only 7.5% of the world’s tidal wetland 

extent (Fig. 2A). We recorded the greatest tidal wetland change in the Ganges-Brahmaputra 

(1,070 km2) and Amazon deltas (730 km2), both of which have increased tidal wetland extent 

since 1999 (ratio of loss to gain 0.92 and 0.98, respectively). Many deltas have experienced a net 
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increase in total extent over the past three decades due to increases in fluvial sediment supply 90 

caused by catchment deforestation and increased upland soil erosion (19). Our data, however, 

suggest a net loss of tidal wetlands on deltas globally, though gains of 2,100 km2 alongside 

losses of −2,300 km2 indicate the considerable dynamism of these systems. The latter have been 

associated with multiple direct drivers of change such as conversion to agriculture and 

aquaculture (9, 14), urban expansion (20), and geomorphic changes due to dikes and channel 95 

diversions (20), together with many indirect drivers including shoreline erosion (9, 20), 

compaction, subsidence and sea level rise (21), storm driven vegetation loss (22), pollution (23), 

and altered sediment supply (19). 

Of the three intertidal ecosystems included in the analysis, tidal flats experienced both the 

greatest loss (7,000 km2; 95% CI: 4,200, 8,600 km2) and gain (6,700 km2: 95% CI: 3,400, 100 

10,800km2), accounting for almost two-thirds (58.8%) of the total tidal wetland area change 

(Table 1; Fig. 3A). A ratio of loss to gain of 1.1 indicates that newly established tidal flats have 

made a substantial contribution to offsetting the magnitude of their net loss globally. By contrast, 

mangroves had the highest ratio of loss to gain (3.0), with an estimated net decrease in extent of 

3,700 km2  (95% CI: −5,400, −2,100 km2), indicating extensive mangrove losses have only been 105 

partially offset by the 1,800 km2 (95% CI: +900, +3,000 km2) of new mangroves detected by our 

analysis. Tidal marshes had the lowest total area change and were the only ecosystem to have a 

loss to gain ratio of <1, indicating that their gain marginally exceeded their loss for an estimated 

net increase of 100 km2 (95% CI: 0, +100 km2). Our estimates of global tidal wetland change 

partitioned by ecosystem type agree in magnitude with recently published estimates of mangrove 110 

change from 2000 to 2016 of −3,400 km2 (14). No comparable global estimates of tidal flats and 
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tidal marsh change are available due to differing coverage of change analyses of tidal flats (9) 

and a lack of any data sufficient to support global change analyses of tidal marshes (15). 

About three-quarters of the 4,000 km2 net global tidal wetland decrease between 1999 and 

2019 occurred in Asia (74.1%), with 68.6% concentrated in just three countries: Indonesia 115 

(36%), China (20.6%) and Myanmar (12%). Losses of tropical mangrove forests across 

Southeastern Asia, particularly Indonesia and Myanmar, are well-documented (14, 18), and the 

extensive impact of coastal land conversion was confirmed by our analysis (Fig. 3B). There was 

also a large net reduction of tidal flat extent in China of more than 1,000 km2 largely due to 

reclamation (24), but net gains of tidal marshes (+ 200 km2) that coincide with the rapid 120 

expansion of Spartina alterniflora across China’s intertidal zone (Fig. 3C; 25) reduced China’s 

net tidal wetland loss to 800 km2 (Table S3). Outside of Asia, tidal wetlands in Africa had the 

highest ratio of loss to gain (1.6), indicating a strong loss dynamic that has been associated with 

severe mangrove degradation, which is most intense in Nigeria, Mozambique and Guinea-Bissau 

(Fig. 1B; Table S3).  125 

Interpretation of a globally distributed random sample of tidal wetland losses and gains 

suggested that 39% of losses and 14% of gains were caused by direct human activities (Table 

S9). Direct human activities were defined as observable activities occurring at the location of the 

detected change (26), including conversion to aquaculture, agriculture, plantations, coastal 

developments and other physical structures such as the building of seawalls and dikes (9) (Fig. 130 

S8). They also include drivers of gain such as mangrove planting, restoration activities or coastal 

modifications to promote tidal exchange (Fig. 2B; Fig. S8).  

At the continental scale, Asia was identified as the global center of tidal wetland loss from 

direct human activities (Fig. S9). In Asia, direct drivers accounted for more than two-thirds of 
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the losses of each ecosystem (mangrove, 75%; tidal marsh, 69%; tidal flats; 62%; Table S10), 135 

confirming the negative effects of widespread coastal transformation on coastal ecosystems. 

Although the impact of coastal development on mangroves and tidal wetlands have been 

previously reported (9, 14), our results reveal that Asian tidal marshes have similarly been 

severely degraded by human activities. Compared with Asia, direct human activities had a much 

lesser role in the losses of tidal wetlands in Europe (28%), Africa (27%), North America (9%), 140 

South America (2%) and Oceania (0%; Fig. S9). 

Indirect or ex situ drivers include both natural coastal processes and those influenced by 

human activities remotely from the location of observed change. They include processes of 

isostatic change (21), sea level rise (8), storm impacts (22), erosion and progradation (22), along-

shore coastal development (9), and their combined effects. More than 90% of tidal wetland 145 

losses in North America (91%), South America (98%) and Oceania (100%) were attributed to 

indirect drivers (Fig. S9). Globally, indirect drivers accounted for most losses of tidal marsh 

(78%) and tidal flats (66%), whereas mangrove losses were equally a result of direct and indirect 

drivers (50%; Table S9).  

Most tidal wetland gains (86%) were the result of indirect drivers, highlighting the 150 

prominent role that broad-scale coastal processes have in controlling tidal wetland extent and 

facilitating natural regeneration. However, disentangling the specific processes underpinning 

drivers is challenging with analyses conducted at large-spatial scales. In most cases direct drivers 

could be clearly identified, but many indirect drivers operate over large spatial and temporal 

scales and may originate tens to thousands of kilometers from an observed tidal wetland change. 155 

Change in ecosystem extent can also be the result of more than one indirect driver or of 

interactions between drivers. Our work therefore suggests a need for continued monitoring, 
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experiments and models that can account for these complexities to help characterize and predict 

global tidal wetland dynamics. 

There is potential to use our analysis, which is designed to be periodically updated, to track 160 

larger-scale coastal ecosystem restoration activities. While there has been a surge in coastal 

restoration efforts worldwide (27), many of these fail (10). Monitoring progress of restoration 

remotely, independently, and at broad-scales could contribute to reporting on international 

conservation initiatives such as the UN Decade on Ecosystem Restoration, on targets associated 

with the Convention on Biological Diversity, and on mitigation commitments made under the 165 

UN Framework Convention on Climate Change (27). The driver analysis indicated that 14% of 

observed tidal wetland gains were attributable to direct human interventions (Table S9). These 

activities were most apparent for tidal marshes and were typically the product of site scale 

restoration activities (Fig. 2B; Fig. S8).  

Our analysis enables the detection and characterization of dynamic transitions among 170 

intertidal ecosystem types globally. Transitions have been linked to a number of physical and 

climatic factors, such as sea level rise, geomorphic changes, and variation in temperature and 

rainfall (28, 29). We found that 1.9% of the world’s tidal wetlands exhibited transitions among 

ecosystem types over the study period (6,700 km2; Table S4). Transition events tended to be 

spatially clustered with areas of large losses and gains, and in many cases may be linked to the 175 

same drivers (8). Over 55% of transitions (>3,600km2) were colonization of tidal flats by marsh 

or mangrove, with a further 27% being transitions from mangrove to tidal marsh or vice versa 

(Table S4).  

Our classifier accurately detected known events of coastal change across the three ecosystem 

types. For example, the magnitude 9.2 Aceh-Andaman earthquake on 26 December 2004 caused 180 
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up to 2.9m of tectonic subsidence in the Andaman and Nicobar Islands, leading to land 

submergence and a >90% loss of mangrove extent in some localities (Fig. 2C; 30). However, as 

for all earth observation-derived estimates of land cover change, there are limitations. These 

include the spatial resolution of sensor data, which limit the ability of our analysis to detect 

change in narrow linear features such as waterways; model uncertainty; errors of omission and 185 

commission; and a lack of polar coverage. Validation of our data products was effective in 

characterizing these uncertainties, which were propagated through our estimates of tidal wetland 

extent and change (Tables S5 to S8). 

By simultaneously mapping three of Earth’s intertidal ecosystems, this work enables a 

synoptic view of change of three of the world’s highly connected intertidal coastal ecosystems. 190 

This approach offers an advantage over single-ecosystem mapping studies, as short- and long-

term dynamic transitions between ecosystem types can cause considerable apparent change in 

individual ecosystems. While our study is unable to account for the impact of centuries of 

anthropogenic coastal transformation and related pressures (8), it has established an 

observational record of recent tidal wetland changes with preliminary attribution of change 195 

drivers. Such information has the potential to promote objective monitoring of conservation and 

restoration efforts, assess the impacts of elevating pressures, guide new studies of changing 

ecosystem structure, function and service provision in newly established tidal wetlands (8, 29), 

and improve our understanding of the resilience of tidal wetlands in the face of global change. In 

turn, it can support efforts to anticipate the future of the global coastal environment and to 200 

develop adaptive responses to change.  
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Table 1. Tidal wetland change estimates by intertidal ecosystem type for different regions 400 

of the world from 1999 to 2019. Change estimates are in square kilometers. Tidal wetlands in 

this study collectively refer to tidal flat, tidal marsh and mangrove ecosystems, such that area 

change of tidal wetlands is the sum of the change area of the three component intertidal 

ecosystems. Per-pixel loss and gain were summed to estimate loss and gain area of tidal wetlands 

and their component ecosystem types at these regional scales, with 95% confidence intervals 405 

derived from quantitative accuracy assessment in brackets. Analysis units are realms from the 

Marine Ecoregions of the World. 

 

Marine 

Ecoregion  

Realm 

Tidal flat Mangrove Tidal marsh Tidal wetlands 

Loss Gain Loss Gain Loss Gain Loss Gain 

Central  

Indo-Pacific 

-952  

(-1169,-570) 

1156  

(589,1871) 

-2719  

(-3338,-1626) 

758  

(387,1227) 

-12  

(-15,-7) 

7  

(4,12) 

-3683  

(-4522,-2203) 

1921  

(980,3110) 

Western  

Indo-Pacific 

-1573  

(-1932,-941) 

1741  

(888,2818) 

-1139  

(-1398,-681) 

380  

(194,616) 

-18  

(-22,-11) 

66  

(34,107) 

-2730  

(-3351,-1633) 

2187  

(1115,3541) 

Tropical Atlantic 
-1067  

(-1309,-638) 

1082  

(552,1752) 

-1541  

(-1892,-922) 

567  

(289,919) 

-14  

(-18,-9) 

5  

(2,8) 

-2622  

(-3219,-1569) 

1654  

(844,2678) 

Temperate 

Northern Pacific 

-2355  

(-2891,-1408) 

1415  

(722,2291) 

-31  

(-38,-18) 

26  

(13,43) 

-192  

(-236,-115) 

428  

(218,693) 

-2578  

(-3165,-1542) 

1869  

(954,3027) 

Temperate 

Northern Atlantic 

-594  

(-729,-355) 

827  

(422,1338) 

-2  

(-2,-1) 

2  

(1,3) 

-680  

(-835,-407) 

478  

(244,774) 

-1276  

(-1566,-763) 

1307  

(667,2116) 

Tropical Eastern 

Pacific 

-106  

(-131,-64) 

110  

(56,178) 

-93  

(-115,-56) 

86  

(44,139) 

0  

(0,0) 

0  

(0,1) 

-200  

(-246,-120) 

196  

(100,317) 

Temperate South 

America 

-110  

(-135,-66) 

117  

(60,190) 

-4  

(-5,-2) 

5  

(3,8) 

-66  

(-82,-40) 

111  

(57,180) 

-181  

(-222,-108) 

233  

(119,378) 

Arctic 
-118  

(-145,-71) 

173  

(88,280) 

0  

(0,0) 

0  

(0,0) 

-30  

(-36,-18) 

36  

(19,59) 

-148  

(-182,-88) 

209  

(107,339) 

Temperate 

Australasia 

-86  

(-105,-51) 

66  

(34,107) 

-13  

(-16,-8) 

2  

(1,2) 

-43  

(-53,-26) 

20  

(10,32) 

-141  

(-174,-85) 

87  

(44,141) 

Eastern  

Indo-Pacific 

-53  

(-65,-32) 

4  

(2,7) 

-1  

(-1,-1) 

1  

(0,1) 

0  

(0,0) 

0  

(0,0) 

-54  

(-67,-33) 

5  

(3,8) 

Temperate 

Southern Africa 

-9  

(-11,-5) 

8  

(4,13) 

-19  

(-23,-11) 

1  

(0,1) 

-6  

(-7,-4) 

11  

(6,18) 

-33  

(-41,-20) 

20  

(10,32) 

Southern Ocean 
-4  

(-5,-3) 

2  

(1,4) 

0  

(0,0) 

0  

(0,0) 

-1  

(-1,-1) 

1  

(1,2) 

-5  

(-6,-3) 

4  

(2,6) 

Total 
-7028 

(-8628,-4204) 

6700 

(3418,10849) 

-5561 

(-3326,-6827) 

1828 

(932,2960) 

-1064 

(-1306,- 636) 

1164 

(594,1884) 

-13652  

(-16760,-8166) 

9692 

(4944,15693) 
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Fig. 1. The global distribution of major tidal wetlands and their change from 1999 to 2019.  410 

(A) The 2019 distribution of tidal wetlands is modeled as the combined distribution of the 

world’s three main intertidal ecosystems, tidal flats, tidal marshes, and mangroves. Darker colors 

indicate greater area of tidal wetlands per 2° grid cell. (B) Losses, (C) gains over the period 1999 

to 2019. Circle sizes indicate the extent of tidal wetland loss and gain over the study period in 

km2 per 2° grid cell. 415 

 

Fig. 2. Representative examples of 1999‒2019 tidal wetland loss and gain.  

(A) Losses and gains of tidal flats and tidal marshes following diversion of the main channel in 

1996, Yellow River delta, China (left). Reference images acquired 1998 (middle) and 2020  

(right). (B) Tidal marsh gain due to Europe’s largest coastal wetland restoration project, United 420 

Kingdom (left). Reference images acquired 1999 (middle) and 2018 (right). (C) Mangrove loss 

due to tectonic subsidence following the Aceh-Andaman earthquake of 2004, Katchal Island, 

Nicobar Islands (left). Reference images acquired 1992 (middle) and 2019 (right). Imagery data 

are from USGS (A and C) and Google Earth Pro (B). All scale bars are 5 km. 

 425 

Fig. 3. Tidal wetland change totals from 1999 to 2019. Panels show the losses and gains of 

tidal wetlands per time step for (A) the global study area, (B) Indonesia and (C) China. Shaded 

colors represent intertidal ecosystem types mapped by this analysis. White lines indicate the net 

change of tidal wetlands. Note that area change cannot be estimated for the initial time step of 

the analysis (1999-2001). 430 
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Materials and Methods 

1. Overview

This study establishes a framework for mapping the distribution and change of the world’s 455 

tidal wetlands with satellite image archives and biophysical data. Tidal wetlands in our study 

collectively refer to three of the world’s most extensive intertidal ecosystem types: tidal flats, 

tidal marshes and mangroves (8, 12, 31). These three intertidal ecosystem types are regularly 

inundated throughout the tidal cycle correspond to the IUCN Global Ecosystem Typology (32) 

descriptions for muddy shorelines (typology code MT1.2; hereafter ‘tidal flats’), coastal tidal 460 

marshes and reedbeds (MFT1.3; hereafter ‘tidal marshes’) and intertidal forests and shrublands 

(MFT1.2; hereafter ‘mangroves’). In this study tidal flats are represented as fine to coarse 

particle-sized sediment and sand dominated ecosystems that are regularly inundated throughout 

the tidal cycle and occur primarily on low-sloping, low energy coastlines (9, 33), tidal marshes as 

salt-tolerant forbs, grasses and shrubs that occur in intertidal environments (34), and mangroves 465 

as structurally complex intertidal forests that occur mainly in warm regions (Figure S1) (35).  

Vague distribution boundaries between intertidal ecosystems present a considerable 

challenge for remote sensing analyses of coastal ecosystems. Remote sensing studies can over- 

or under-estimate the extent of single ecosystems due to continuous ecotones among each 

ecosystem type, the occurrence of complex ecosystem mosaics at a range of spatial scales within 470 

the intertidal zone, variable vegetation height within vegetated coastal ecosystems, limited height 

development of tree species on some substrates, sparse vegetation cover, the dynamic movement 

of ecotones over time, and varying tidal inundation at the time of remote observation. These 

issues tend to result in gaps or overlaps in independently developed maps of coastal ecosystems, 

limiting their ability to be used for integrated analyses of global tidal wetland dynamics. To 475 

http://www.global-ecosystems.org/
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address this, we developed a three-stage classification workflow for earth observation data that 

sought to (i) estimate the occurrence of the three intertidal ecosystems in a single map class 

(‘tidal wetlands’) for seven time-steps between 1999 and 2019 (Stage 1), (ii) detect and classify 

their change over the full 20-year study period (Stage 2), and (iii) classify tidal wetland changes 

into their component intertidal ecosystem type (tidal flats, tidal marsh or mangroves) and identify 480 

when the change occurred (Stage 3).  

Machine learning classifiers have been transformative for global-scale models of the 

distribution of land cover, largely because of their effectiveness at handling large and complex 

feature sets, ability to be deployed in parallel, and demonstrated high predictive performance 

across a wide range of applied remote sensing analyses (36). They have therefore been used to 485 

map the extent of several intertidal ecosystems, including tidal flats (9) and mangroves (13). For 

this reason, random forest classifiers were applied at in the three stages of our analysis, using 

training datasets developed for each and a set of multitemporal data layers as covariates. The 

models were applied to coastal areas between 60°N and 60°S. To reduce unnecessary analyses 

within these latitudinal bounds, the analysis was limited to the maximum area represented by the 490 

following criteria: less than 40-m water depth (37), less than 40-m elevation (37), within 5-km of 

any intertidal ecosystems mapped in existing global-scale maps of single ecosystems (9, 13, 15, 

38, 39), or less than 5-km to the coastline (40). We ran our remote sensing analysis end-to-end in 

Google Earth Engine (41) and used R (42) to conduct model tuning and develop data summaries. 

Model code is available as Supplementary Data S1 and the training data and map data products 495 

as Supplementary Data S2 and S3. 

2. Covariate data
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The Landsat Thematic Mapper (TM), Enhanced Thematic Mapper + (ETM+) and 

Operational Land Imager (OLI) instruments on Landsat 5‒8 satellites are amongst the most 

important data sources for investigating broad-scale dynamics of the Earth’s ecosystems (43-45). 500 

Landsat Collection-1 At-Surface Reflectance data (46) were used to produce a set of time-series 

covariate layers that formed the basis of the three stages of our modelling approach. We 

collected every Landsat archive image acquired over the study area between 1999 and 2019 

(1,166,385 images), masked cloud and cloud shadow pixels (46), and summarized them into 

cloud-free temporal composite metric layers over seven 3-yearly periods (1999‒2001, 2002‒505 

2004, 2005‒2007, 2008‒2010, 2011‒2013, 2014‒2016, 2017‒2019). Composite metrics are 

useful for minimizing contamination by cloud, cloud shadow and snow, characterizing the extent 

of tidal influence detectable by satellite sensors, and representing diverse aspects of coastal and 

vegetation dynamics in an efficient manner suitable for use in regional to global-scale 

classification models (9, 26, 47, 48). Analysis time-steps were timed with the launch of the 510 

Landsat 7 ETM + instrument and were fixed to three-year periods (49, 50). This balanced the 

requirement for data products of sufficient temporal resolution to investigate intertidal ecosystem 

dynamics against the need to use a sufficient number of satellite images to generate cloud-free 

composite metrics across the global intertidal area (49, 50). For each three-year time-period, 88 

composite metric layers were generated from the Landsat Archive data to serve as spectral 515 

covariates in the three classification models. Pixels where a lack of cloud-free observations 

precluded change classification accounted for only 1.7% of the total mapped area. To promote 

accurate predictions of the occurrence of tidal wetlands (Stage 1) and their component ecosystem 

types (Stage 3), we also developed additional covariate layers of biophysical variables known to 

influence local and global distributions of tidal wetlands (9, 28, 51, 52), including air 520 
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temperature and elevation. The complete list of covariate layers is presented in Supplementary 

Table S1. 

3. Intertidal ecosystem training data 

We developed a globally distributed training dataset for modelling the extent of tidal 

wetlands and their component intertidal ecosystems. This was achieved through visual 525 

interpretation of high-resolution satellite images available from Google Earth, Bing Maps and 

other mapping platforms (such as Planet Basemaps) in combination with the full set of cloud-free 

Landsat composite metrics (Table S1). Typically, pixels included in the training set met the 

following conditions: (i) a clear presence of distinguishing features of each ecosystem type, such 

as mangrove trees, tidally inundated sediments, or marsh vegetation, (ii) located along the visible 530 

natural coastline where intertidal ecosystems are clearly observable, and (iii) the ecosystem was 

confirmed as present in the reference period (2014‒2016). Where possible, other sources of 

information, including from published studies, coastal atlases and publicly available datasets, 

were used to aid image interpretation. Image analysts also used their experience and knowledge 

of the visual characteristics of each ecosystem type to inform their collection of training data and 535 

did not include records where there was any uncertainty about the ecosystem type or its presence 

during the reference period. This resulted in a tidal wetland training dataset of 23,138 occurrence 

records annotated with ecosystem type (tidal flat, tidal marsh or mangrove). Furthermore, 17,747 

occurrence records of non-tidal wetland land cover types were collected to enable separation 

from other land cover types that occur in the coastal zone (‘permanent water’ and ‘terrestrial 540 

other’; Figure S2). The permanent water class included records from deep water and shallow 

marine ecosystems, including kelp forests, seagrass meadows and photic coral reefs. The 

terrestrial other class included a variety of land cover types ranging from agriculture and 
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settlements to sandy shorelines and supra-littoral coastal ecosystems. Our ground-up compilation 

of training data, as opposed to the sampling of existing publicly available map products, reduces 545 

error propagation among global map products and enables the inclusion of training data from 

areas that are unmapped in existing global map datasets 

3. Distribution of tidal wetlands 

The Stage 1 random-forest classification model aimed to estimate the global distribution of 

tidal wetlands, formulated as the combined distribution of the three intertidal ecosystem types 550 

represented in our training set. The ‘tidal wetland’ category comprised the training data of the 

three intertidal ecosystems, with the ‘permanent water’ and ‘terrestrial other’ records combined 

and used as absence data. The covariate layers (Table S1) were sampled for the reference time 

period (2014‒2016) at the location of each record in the training set. We sought to reduce model 

complexity by removing highly correlated covariates, however, model testing with the training 555 

set indicated that lowest out-of-bag error rates were achieved with the full covariate set. Prior to 

deploying the classification model in Google Earth Engine, model hyper-parameters were 

optimized by exploring a hypergrid search space with the training set in R using the package 

‘ranger’ (53). The hypergrid search consisted of 240 simulations with varying parameter values 

of the number of trees grown, the number of covariates sampled at each split, the fraction of 560 

observations sampled at each split, and the minimum node size. Parameter values deployed in 

Earth Engine across the full global study area were the mean of the top ten models identified by 

lowest out-of-bag error rate in the hypergrid simulation. We predicted the global distribution of 

tidal wetlands for each of the seven time-periods by running random forests in probability mode, 

which represents the agreement of random forest decision trees, and yields per-pixel tidal 565 

wetland probability layers for each time period (41).  
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Owing to similar inundation dynamics, distinguishing low-elevation coastal aquaculture 

from coastal ecosystems remains a key challenge of coastal remote sensing. Initial model runs 

indicated commission error with coastal aquaculture, particularly in Java and Vietnam. For this 

reason, we developed a mask of South-east Asian aquaculture using maps developed of this land 570 

cover type for the start year of our analysis in 1999 (54). Commission error was also reduced by 

using the global training set to estimate the ecosystem type of each tidal wetland pixel above 10-

m elevation (52), corresponding to the maximum elevation of these ecosystems in our training 

set, masking those estimated as tidal marsh or tidal flat, as well as pixels identified as mangroves 

that occurred outside of the mangrove habitat layer developed by Global Mangrove Watch 575 

program (13). After applying these masks, tidal wetland extent maps were obtained by applying 

a threshold of 0.5 to the tidal wetland probability layers and then post-processed to a minimum 

mapping unit of 10 eight-way connected 30×30-m pixels. 

5. Tidal wetland change product  

The overarching aim of our study was to investigate global tidal wetland change over a 20-580 

year period. Although the Stage 1 tidal wetland extent model was designed to deliver extent 

maps that met stringent quality aspirations, variation in the number of images available per 

region and known limitations of change maps developed from optical remote sensing can lead to 

year-on-year variation in mapped extent related to model error and noise, rather than observed 

changes (55-58). We therefore developed a second classification model to classify pixels where 585 

image differencing the tidal wetland extent products suggested disturbance events may have 

occurred during the study period (Stage 2).  

We developed an additional global training set for this purpose with a stratified random 

sample of 950 points in disturbance patches identified by differencing the first (1999‒2001) and 
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last (2017‒2019) year of the tidal wetland extent products. We used high-resolution historical 590 

imagery from the Google Earth Pro time-slider and the Landsat composite metrics from 1999‒

2001 and 2017‒2019 to annotate each training point according to whether loss, gain or no change 

was evident over the 20-year study period. Tidal wetland loss was defined as the replacement, at 

the 30-m pixel scale, of any of the three focal intertidal ecosystems with non-intertidal 

ecosystems. Tidal wetland gain was defined as the establishment of any of the three intertidal 595 

ecosystems in pixels where they did not occur in 1999. According to these definitions, tidal 

wetland loss and gain training points were included without explicit knowledge of specific 

change drivers, and therefore included records resulting from diverse change drivers ranging 

from direct losses due to reclamation, seawalls, dikes, vegetation cutting, mowing, and 

agricultural development, to die back caused by drivers such as pollution, permanent inundation 600 

or altered inundation dynamics. In all cases, pixels labelled as loss indicated a clear loss of 

defining features of each ecosystem in imagery between the start to the end of the study period 

while pixels labelled as gain indicated the presence of new intertidal ecosystems that were 

initially mapped as terrestrial (non-tidal) or permanent open water. Sample pixels where no 

change was observed were labeled as no change, and any pixels that could not be allocated to a 605 

change class due to insufficient historical imagery were excluded from the sample set. Stratified 

random samples were drawn and assessed in blocks (~500 points), with a sensitivity analysis 

performed after each block to determine whether the sample size was sufficient to stabilize the 

overall accuracy estimate. The sensitivity analysis involved a bootstrap resampling approach that 

simulated an increasing number of validation samples, recording the variance of the accuracy 610 

estimate. Similarly to a previous study (9), we determined that there were enough validation 

samples once the variance stabilized such that adding more samples did not significantly change 

estimates or uncertainty levels. The training set was supplemented over model iterations with 
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manually acquired samples in areas that represented the most challenging situations of confirmed 

change. The final training set for the change classifier comprised 1,787 points that represented 615 

losses (638 points), gains (457 points) and no change (692 points) of tidal wetlands over the 20 

year study period (Figure S3). 

For covariates, we computed the difference in pixel values from our Landsat covariate set 

between the start (1999‒2001) and end of the time series (2017‒2019; 88 covariates; Table S2). 

A covariate layer representing the tidal wetland trend was also included by developing a per-620 

pixel linear model fit to the seven per-pixel probability layers of global tidal wetland extent (one 

covariate; Table S2). We applied the change classification model to all disturbance patches, 

yielding a global map of pixels depicting losses and gains of tidal wetlands between 1999 and 

2019.  

To annotate the type of loss or gain, we applied a third random forest classifier to each gain 625 

or loss pixel (Stage 3). The intertidal ecosystem type lost or gained was estimated using the 

covariates for the initial (1999‒2001; intertidal ecosystem type in loss patches) and final model 

time steps (2017‒2019; intertidal ecosystem type in gain patches), and the intertidal ecosystem 

training set (n = 17,772 records). The year of loss or gain (‘lossyear’ and ‘gainyear’) was 

computed as the last or first time-step that a pixel classified as tidal wetland was present in the 630 

time series. The change map was post-processed to a minimum mapping unit of 10 eight-way 

connected 30×30-m pixels and removed obvious classification errors. The final outputs from the 

analysis were a set of global maps, at 30-m resolution, depicting the estimated global extent of 

tidal wetlands since 1999, the distribution of tidal wetland losses and gains by intertidal 

ecosystem type, and the time-step that the loss or gain event was estimated to have occurred 635 

(Figure S4).  



Submitted Manuscript: Confidential 

Template revised February 2021 

31 

 

6. Validation and uncertainty estimates 

As noted in many global-scale studies, validation of any land cover maps and their change 

is extremely challenging (26, 48). Errors of omission and commission can arise from model 

misclassification of dynamic features (e.g., turbid water), insufficient representation of target 640 

features in training data, inappropriate formulation of map classification schemes, coarse 

resolution covariate data that can cause unreliable classifications of features at subpixel scales, 

and the presence of unmapped features that occur at spatial scales smaller than the minimum 

mapping unit (58-60). We followed convention and employed independent, high spatial 

resolution satellite data that matched the temporal span of our products to validate the model 645 

outputs. Here, we leveraged the growing archive of historical high-resolution imagery available 

in Google Earth Pro and visualizations of Landsat Archive data to evaluate the accuracy of the 

tidal wetland extent map (2017‒2019) and of the change product (1999‒2019). For each 

validation exercise, we used established practices for assessments of land cover and land cover 

change to generate validation sets and used these to independently quantify map error and bias of 650 

our map products (57, 59, 61, 62). We ensured sufficient sample size of the two validation sets 

with sensitivity analyses to identify the point at which further samples in the validation set would 

not alter accuracy results outside of a 95% confidence interval (9, 63). This process yielded two 

validation sets developed from stratified random sampling, (i) the extent validation set, 

consisting of map classes ‘tidal wetland’ and ‘other’ (n =1,359 validation points; Figure S5) and 655 

(ii) the change validation set of map classes ‘stable’, ‘gain’ and ‘loss’(n = 3,060 validation 

points; Figure S6).  

To independently annotate validation points in the two validation sets, we developed an 

online accuracy assessment application in Google Earth Engine (41) that enabled an experienced 
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analyst to concurrently view a relevant set of up to four images for each validation sample. 660 

Images available to the analyst included a subset of the time-series Landsat covariates visualized 

as the Near-Infrared Band, a true color composite, a false color composite, and the standard 

deviation of the Normalized Difference Water Index (NDWI; 64), the Modified Normalized 

Difference Water Index (MNDWI; 65) and the Automated Water Extraction Index (AWEI; 66) 

over the 2017‒2019 -year period. The analyst also used Google Earth Pro (including the time-665 

slider function), Bing Maps, and any other information source, including map figures in 

published papers that enabled an independent assessment of each validation sample. 

We used the validation datasets to calculate standard map accuracy metrics, and used 

newly developed resampling protocols that been shown to be effective for classification analyses 

of vegetation distributions (67) and coastal ecosystem extents (9) to estimate map accuracies and 670 

confidence intervals. Bootstrapping was performed by resampling the validation samples using 

1000 iterations, taking the mean of the sampling distribution as the reported accuracy value and 

the 0.025 and 0.975 percentiles of the sampling distribution as the 95% confidence interval. 

Bootstrapping routines yielded accuracy estimates (mean and 95% confidence interval) for the 

tidal wetland extent and change products (Tables S5-S8). 675 

Traditionally, uncertainty estimates are generated via parametric methods that yield 

symmetrical confidence intervals around accuracy and area estimates. However, maps derived 

from remote sensing classifications tend to have uneven omission and commission error due to 

factors including covariate data quality (such as arising from cloud or smoke haze), sensitivity to 

tidal dynamics, different spectral similarities among classes, spatiotemporal variation in land 680 

cover change, and other uncertainties related to model performance (57, 58, 61, 62, 67, 68). Our 

validation results indicated asymmetry between omission and commission error (Tables S5-S8). 

To allow propagation of this asymmetry into our estimates of global extent, we used the 95% 
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interval on the resampled distribution of omission and commission errors to estimate the upper 

and lower bounds for the area estimates of the tidal wetland class, such that:  685 

 

𝑎𝑟𝑒𝑎𝑖 𝟗𝟓%𝑪𝑰𝑙𝑜𝑤𝑒𝑟 = 𝑎𝑟𝑒𝑎𝑖 − (𝑎𝑟𝑒𝑎𝑖 ∗  𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95 ) 

𝑎𝑟𝑒𝑎𝑖 𝟗𝟓%𝑪𝑰𝑢𝑝𝑝𝑒𝑟 = 𝑎𝑟𝑒𝑎𝑖 + (𝑎𝑟𝑒𝑎𝑖 ∗ 𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95) 

 

where 𝑎𝑟𝑒𝑎𝑖 is the mapped area value for the tidal wetland class i, and 𝑷95 is the 95% percentile 690 

of the commission/omission error corresponding to tidal wetland class i. Calculating confidence 

intervals in this manner can result in uneven intervals, but this is a more objective representation 

of uncertainty for end-users given known asymmetry in commission and omission errors in the 

map products. 

 We calculated confidence intervals for the loss and gain estimates for each intertidal 695 

ecosystem class using a similar approach, except that the error was multiplicative between the 

ecosystem class and the change class. For loss estimates, 

  

𝑙𝑜𝑠𝑠𝑖 𝟗𝟓%𝑪𝑰𝑙𝑜𝑤𝑒𝑟 = 𝑙𝑜𝑠𝑠𝑖 −  (𝑙𝑜𝑠𝑠𝑖 ∗  𝑙𝑜𝑤𝑒𝑟𝑖,𝑙𝑜𝑠𝑠) 

𝑙𝑜𝑠𝑠𝑖 𝟗𝟓%𝑪𝑰𝑢𝑝𝑝𝑒𝑟 = 𝑙𝑜𝑠𝑠𝑖 +  (𝑙𝑜𝑠𝑠𝑖 ∗  𝑢𝑝𝑝𝑒𝑟𝑖,𝑙𝑜𝑠𝑠) 700 

 

where 𝑙𝑜𝑠𝑠𝑖 is the mapped area estimate of class i (one of mangrove, tidal marsh or tidal flat) 

intersected with the loss class in the change product, and 

 

𝑙𝑜𝑤𝑒𝑟𝑖,𝑙𝑜𝑠𝑠 =  (1 −  ((1 −  𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95,𝑖) ∗ (1 − 𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95,𝑙𝑜𝑠𝑠))) 705 

𝑢𝑝𝑝𝑒𝑟𝑖,𝑙𝑜𝑠𝑠 =  (1 −  ((1 −  𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95,𝑖) ∗ (1 − 𝑐𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑷95,𝑙𝑜𝑠𝑠))) 
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where 𝑷95,𝑖 is the 95th percentile of the commission/omission error for the intertidal ecosystem 

class i, and 𝑷95,𝑙𝑜𝑠𝑠 is the 95th percentile of the commission error for the loss class in the change 

product. The same process was applied for the gain estimates (i.e., replacing loss with gain 710 

above). Although this approach considerably widens confidence intervals in derived area 

estimates, particularly for change estimates of individual ecosystem types, it reflects the dynamic 

nature of tidal wetlands and the complexities of detecting their change. 

7. Tidal wetland analysis. 

We estimated the area of the tidal wetland extent and change products and summarized the 715 

results at several spatial scales, including global, continental, by country (69) (Table S3), and for 

particular regions of interest, such as the world’s 100 largest deltas (19) and marine ecoregions 

(70). To investigate the extent of transitions among ecosystems, we also estimated the area of 

tidal wetlands that changed from one ecosystem type to another (e.g., from tidal flat to 

mangrove) over the study period (1999‒2019). For example, a pixel within the tidal wetland 720 

extent map estimated as tidal flat in 1999 but mapped as mangrove in 2019 was flagged as a tidal 

flat to mangrove transition (Table S4). Only pixels that were mapped as tidal wetlands at the start 

and end of the study periods (i.e., not lost or gained over the 20 year period) were considered to 

be transition pixels. 

8. Direct and indirect driver analysis 725 

The causes of tidal wetland change are complex and are often the result of synergistic, interacting and/or 

multiplicative processes that operate at a range of spatial scales. Several studies have attempted to attribute the 

conversion of mangroves to other land cover types to anthropogenic (human-driven) and natural drivers (14,  71). 

Anthropogenic drivers are typically related to direct human activities (including conversion to aquaculture and other 
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commodities, urban land uses and infrastructure development). Natural drivers typically include erosion, sediment 730 

deposition, sea level rise, and other natural coastal processes, which may be influenced by climate change and 

remote human-induced land-use changes whose origin may be tens or hundreds of kilometers from the observed 

change event. These drivers of coastal change operate at local to global scales and complex interactions and 

synergies are evident worldwide. Disentangling ‘natural’ and ‘anthropogenic’ drivers of change is therefore 

extremely challenging (72).  735 

Here we develop a sample-based estimate (26) of the relative contribution of direct human activities (such 

as conversion to aquaculture, agriculture, urban development) and indirect drivers (representing the combined effect 

of climate change, natural coastal processes, and other remote drivers of change) to the losses and gains of tidal 

wetlands that were detected by our remote sensing analysis. For this, a global weighted probability sample over the 

tidal wetland change data was developed to estimate the proportion of direct and indirect drivers on the following 740 

tidal wetland change dynamics: 

(i) Tidal flat gain; 

(ii) Tidal flat loss; 

(iii) Tidal marsh gain; 

(iv) Tidal marsh loss; 745 

(v) Mangrove gain; and 

(vi) Mangrove loss. 

For each change dynamic, we sampled 250 3 × 3 kilometer grid cells with a weighted probability proportional to the 

area of tidal wetland change for the corresponding change dynamic detected within each grid cell. Within each 

sampled grid cell, we randomly sampled a loss or gain pixel (30-m) that matched the sampled change dynamic of 750 

the grid cell (e.g., tidal marsh gain). For each sampled pixel, we created polygon features representing the boundary 

of the pixel (30-m) for high-resolution image interpretation and an image chip boundary an order of magnitude 

larger (300-m) for scale reference (Figure S8).  

We imported the pixel boundaries into Google Earth Pro and used high-resolution images and the time-

slider tool to inspect available high-resolution imagery before, during and after the 1999‒2019 study period to assess 755 

the drivers of tidal wetland change at the 30-m pixel scale. Changes attributed to direct drivers were associated with 

visible land changes such as aquaculture, agriculture, plantations, urban and industrial development, and other 

artificial objects such as coastal infrastructure (bridges and dikes). The impact of indirect drivers was assumed 
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where samples could not be attributed to a direct driver of change (Figure S8). Samples where clear attribution to the 

two driver classes was not possible due to lack of imagery or uncertainty about tidal wetland change were removed 760 

from the sample set. The relative contribution of direct and indirect drivers of tidal wetland loss and gain were 

estimated as the proportion of the randomly sampled pixels attributed to the two driver categories. 
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Figure S1. 765 

Representative examples of the three intertidal ecosystem types included in the tidal wetland 

map class. 
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Figure S2. 770 

The global distribution of the training data collected to train the tidal wetlands classification 

model and classify each pixel to ecosystem type. All training data was collected for the reference 

period 2014‒2016. 
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 775 
 

Figure S3. 

The global distribution of the training data (n = 1,727) collected to train the global tidal wetland 

change model for the period 1999‒2019.  
 780 
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Figure S4. 

Example of change detected in tidal wetlands from 1999 to 2019. The figure shows (A) the 785 

distribution of tidal wetlands (tidal flat, tidal marsh or mangrove) in Malaysia and Singapore, 

centered at approximately 1.4°N, 103.6°E; (B) the loss (red) and gain (blue) data layers. The 

detailed insets show a new area of tidal wetland caused by sediment deposition, by gain type (C) 

and gain year (D); and (E) detailed inset of loss by deforestation for an industrial port 

development, showing loss type (E) and loss year (F). 790 
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Figure S5. 795 

The validation samples (n = 1359) used to assess the accuracy of the tidal wetland extent 

product. 
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 800 

 

Figure S6. 

The validation samples (n = 3060) used to assess the accuracy of the global tidal wetland change 

product.  
  805 
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Figure S7. 

The driver annotation samples used to assess the relative contribution of direct versus indirect 

drivers on observed losses and gains of tidal wetlands (n = 1500). The figure shows samples of 810 

observed change stratified by ecosystem type for tidal wetland gains (A) and losses (B). 
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Figure S8. 815 

Examples of direct and indirect drivers of tidal wetland loss and gain. Each row of images from 

Google Earth Pro indicates an intertidal ecosystem type (mangrove, top; tidal flat, middle; tidal 

marsh, bottom) and column by direct gain (A, E, I), direct loss (B, F, J), indirect gain (C, G, K) 

and indirect loss (D, H, L). Yellow squares are 30 x 30-m pixels used to annotate driver type and 

red squares are 300 x 300-m scale references.  820 

  



Submitted Manuscript: Confidential 

Template revised February 2021 

45 

 

 

Figure S9. 

The contribution of direct and indirect drivers to the observed tidal wetland change. The distribution of the weighted 

samples used in image interpretation to annotate drivers of gain (A) and loss (B). (C) The proportion of samples 825 

attributed to direct and indirect losses per continent. Numbers in each bar indicate the number of samples from the 

weighted probability sample used to attribute drivers of change.  
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Table S1. 

Datasets used in the global intertidal extent classification models. Each random forest model 830 

used per-pixel information from these covariate layers to classify each pixel as tidal wetland or 

not and change pixels as mangrove, tidal marsh or tidal flats. Four variables in the classification 

models were static across all years of the time series (elevation, slope, aspect and latitude). 
 

Raw Input 

Data 

Variables Reducers applied per 

3-year period 

No. covariate 

layers 

per time 

period 

Produced 

for each 

time period 

Source (web 

link) 

ALOS World 

3D - 30m 

version 2.2 

(AW3D30) 

Aspect 

Elevation 

Slope 

N/A 3 No JAXA1 

Landsat 

Collection-1 

At-Surface 

Reflectance 

Automated Water 

Extraction Index 

(AWEI) 

Enhanced Vegetation 

Index (EVI) 

Modified Normalized 

Difference Water 

Index (MNDWI) 

Normalized 

Difference Water 

Index (NDVI) 

Normalized 

Difference Water 

Index (NDWI) 

Minimum 

Maximum 

Standard Deviation 

Median 

10th Percentile 

25th Percentile 

50th Percentile 

75th Percentile 

90th Percentile 

0‒10 Interval Mean 

10‒25 Interval Mean 

25‒50 Interval Mean 

50‒75 Interval Mean 

75‒90 Interval Mean 

90‒100 Interval Mean 

10‒90 Interval Mean 

25‒75 Interval Mean 

85 Yes USGS2 
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Green band 

Near Infrared band 

(NIR) 

Short-wave Infrared 

band (SWIR) 

10‒90 Interval Mean 3 Yes USGS2 

Latitude Latitude N/A 1 No Developed 

by authors in 

Earth Engine 

Minimum 

Temperature 

(ERA5 

ECMWF) 

Minimum 

Temperature 

Minimum 1 Yes Copernicus 

Climate Data 

Store3 

1 http://www.eorc.jaxa.jp/ALOS/en/aw3d30/  835 

2
 https://www.usgs.gov/media/files/landsat-collection-1-level-1-product-definition 

3
 https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels  

http://www.eorc.jaxa.jp/ALOS/en/aw3d30/
https://www.usgs.gov/media/files/landsat-collection-1-level-1-product-definition
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
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Table S2. 

Covariate data inputs used in the tidal wetland change random forest classification model. 
 840 

Raw Input Data Variables Reducers applied per 3-

year period 

Processing for 

change 

analysis 

No. covariate 

layers 

in intertidal 

ecosystem 

change 

classification 

model 

Linear trend of tidal 

wetland probability 

layers (representing 

agreement among 

random forest trees for 

binary tidal wetland 

class) 

Random forest 

probability layer of 

tidal wetland extent 

(result of Stage 1 

analysis) 

N/A Per-pixel linear 

model of 7 

time-series 

random forest 

probability 

layers 

1 

Landsat Collection-1 

At-Surface Reflectance 

Automated Water 

Extraction Index 

(AWEI) 

Enhanced 

Vegetation Index 

(EVI) 

Modified 

Normalized 

Difference Water 

Index (MNDWI) 

Normalized 

Difference Water 

Index (NDVI) 

Normalized 

Difference Water 

Index (NDWI) 

Minimum 

Maximum 

Standard Deviation 

Median 

10th Percentile 

25th Percentile 

50th Percentile 

75th Percentile 

90th Percentile 

0‒10 Interval Mean 

10‒25 Interval Mean 

25‒50 Interval Mean 

50‒75 Interval Mean 

75‒90 Interval Mean 

90‒100 Interval Mean 

10‒90 Interval Mean 

25‒75 Interval Mean 

Difference 

between 1999-

2001 and 2017-

2019 pixel 

values 

85 

Green band 

Near Infrared band 

(NIR) 

Short-wave Infrared 

band (SWIR) 

10‒90 Interval Mean Difference 

between 1999-

2001 and 2017-

2019 pixel 

values 

3 
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Table S3. 

Global, continental and national summaries of tidal wetland loss and gain between 1999 and 

2019. Note that only countries that contribute ≥ 0.1% of global net change are included in this 845 

table. 
 

Unit Loss 

area 

(km2) 

Gain 

area 

(km2) 

Net 

change 

(km2) 

Total 

tidal 

wetland 

change 

area 

(km2) 

Contribution to 

global net 

change (%) 

Loss to 

Gain 

Ratio 

GLOBAL -13656 9698 -3958 23355 100 1.4 

ASIA -7836 4905 -2931 12741 74.1 1.6 

NORTH AMERICA -1512 1103 -409 2615 10.3 1.4 

AFRICA -1075 684 -390 1759 9.9 1.6 

SOUTH AMERICA -1777 1493 -284 3269 7.2 1.2 

OCEANIA -720 563 -157 1283 4 1.3 

EUROPE -737 951 214 1688 -5.4 0.8 

Indonesia, Republic of -2198 772 -1426 2970 36 2.9 

China, People's Republic of -2246 1433 -813 3679 20.6 1.6 

Myanmar, Union of -896 421 -475 1317 12 2.1 

Brazil, Federative Republic of -1140 828 -312 1969 7.9 1.4 

Vietnam, Socialist Republic of -347 144 -203 490 5.1 2.4 

Cuba, Republic of -264 70 -193 334 4.9 3.8 

United States of America -843 668 -174 1511 4.4 1.3 

Nigeria, Federal Republic of -185 27 -158 212 4 6.9 

Malaysia -290 148 -142 437 3.6 2 

Guinea, Republic of -93 22 -70 115 1.8 4.1 

Papua New Guinea, Independent State of -214 148 -66 363 1.7 1.4 

Korea, Democratic People's Republic of -129 79 -50 208 1.3 1.6 

Guyana, Co-operative Republic of -92 45 -47 137 1.2 2 

Marshall Islands, Republic of the -42 1 -41 43 1 41.8 

Bahamas, Commonwealth of the -67 32 -35 99 0.9 2.1 

Ghana, Republic of -34 3 -32 37 0.8 13 

Saudi Arabia, Kingdom of -36 7 -29 43 0.7 4.8 

Mozambique, Republic of -202 176 -26 378 0.7 1.1 

Thailand, Kingdom of -89 64 -24 153 0.6 1.4 

Guinea-Bissau, Republic of -85 61 -24 146 0.6 1.4 

Australia, Commonwealth of -380 357 -23 737 0.6 1.1 

Colombia, Republic of -135 113 -22 249 0.6 1.2 

Qatar, State of -22 1 -22 23 0.5 38.6 

Sierra Leone, Republic of -22 2 -20 24 0.5 8.9 

Madagascar, Republic of -217 198 -19 414 0.5 1.1 

Pakistan, Islamic Republic of -97 79 -18 176 0.5 1.2 
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New Zealand -47 30 -17 76 0.4 1.6 

Nicaragua, Republic of -34 19 -15 54 0.4 1.8 

Egypt, Arab Republic of -77 63 -13 140 0.3 1.2 

Tunisia, Tunisian Republic -20 7 -13 27 0.3 2.7 

South Africa, Republic of -32 21 -11 53 0.3 1.6 

Cambodia, Kingdom of -16 6 -10 22 0.3 2.6 

Bahrain, Kingdom of -9 0 -9 9 0.2 25.2 

Honduras, Republic of -24 15 -8 39 0.2 1.5 

Samoa, Independent State of -7 0 -7 8 0.2 33 

Peru, Republic of -20 14 -7 34 0.2 1.5 

Somalia, Somali Republic -7 2 -6 9 0.1 4.8 

Italy, Italian Republic -20 14 -6 34 0.1 1.4 

Brunei Darussalam -6 1 -5 7 0.1 8.2 

Fiji, Republic of the Fiji Islands -13 7 -5 20 0.1 1.7 

Gabon, Gabonese Republic -9 4 -5 13 0.1 2 

Belize -11 7 -4 18 0.1 1.7 

Jamaica -6 2 -4 8 0.1 2.6 

Sweden, Kingdom of -5 1 -4 6 0.1 4.1 

Cameroon, Republic of -12 9 -4 21 0.1 1.4 

Liberia, Republic of -4 1 -3 4 0.1 6.7 

Iraq, Republic of -5 2 -3 7 0.1 2.3 

Haiti, Republic of -10 7 -3 17 0.1 1.4 

Dominican Republic -6 8 2 13 -0.1 0.7 

Trinidad and Tobago, Republic of -1 4 2 5 -0.1 0.4 

Libyan Arab Jamahiriya -3 5 2 8 -0.1 0.6 

Kiribati, Republic of 0 3 2 3 -0.1 0.2 

Ireland -11 14 2 25 -0.1 0.8 

Japan -25 28 3 53 -0.1 0.9 

Mauritania, Islamic Republic of -1 4 3 6 -0.1 0.3 

Taiwan -7 10 3 17 -0.1 0.7 

Turkey, Republic of -31 34 3 65 -0.1 0.9 

Montenegro, Republic of -1 5 3 6 -0.1 0.3 

Costa Rica, Republic of -10 13 4 23 -0.1 0.7 

Mexico, United Mexican States -205 210 4 415 -0.1 1 

Ecuador, Republic of -34 39 6 73 -0.1 0.9 

Kuwait, State of -6 14 7 20 -0.2 0.5 

Cyprus, Republic of 0 9 8 9 -0.2 0 

France, French Republic -168 178 9 346 -0.2 0.9 

Korea, Republic of -121 133 12 255 -0.3 0.9 

Tanzania, United Republic of -27 40 13 67 -0.3 0.7 

Netherlands, Kingdom of the -61 75 14 136 -0.4 0.8 

Panama, Republic of -21 38 16 59 -0.4 0.6 
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United Kingdom of Great Britain & 

Northern Ireland -124 146 22 270 -0.6 0.8 

Venezuela, Bolivarian Republic of -129 154 25 282 -0.6 0.8 

Romania -6 31 25 38 -0.6 0.2 

Ukraine -25 51 27 76 -0.7 0.5 

Suriname, Republic of -101 135 35 236 -0.9 0.7 

Argentina, Argentine Republic -89 125 37 214 -0.9 0.7 

Russian Federation -225 274 49 500 -1.2 0.8 

Germany, Federal Republic of -120 212 92 332 -2.3 0.6 

Bangladesh, People's Republic of -595 709 114 1304 -2.9 0.8 

Philippines, Republic of the -80 208 128 287 -3.2 0.4 

 

 

  850 
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Table S4. 

Summary of tidal wetland pixels that transitioned from one intertidal ecosystem type to another 

between 1999 and 2019. 
 

 855 

Transition Type Area (km2) 
Percent of total 

transition area (%) 

Tidal marsh to tidal flat 643.0 9.7 

Tidal marsh to mangrove 910.3 13.7 

Tidal flat to tidal marsh 1902.1 28.6 

Tidal flat to mangrove 1779.4 26.7 

Mangrove to tidal flat 552.2 8.3 

Mangrove to tidal marsh 865.2 13.0 

Total transition pixels 6652.3 100.0 
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Table S5. 

Class accuracy results for the global tidal wetland classification model based on validation 860 

sample points over the mapped area (n = 1359). 
 

 
Reference 

Other 
Tidal 

wetland 

Mapped 

Other 673 8 

Tidal 

wetland 191 487 
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Table S6. 865 

Quantitative accuracy assessment results for the global tidal wetland classification model based 

on validation sample points over the mapped area (n = 1359). Quantitative accuracy assessments 

involved bootstrapping the validation samples (n = 1000 iterations), with the mean of the 

sampling distribution as the reported accuracy estimate and the 0.025 and 0.975 percentiles of 

the sampling distribution as the 95% confidence interval. 870 

 

Error 
Estimate 95% Confidence Interval 

 Lower Upper 

Overall accuracy 0.854 0.836 0.871 

Other (commission) 0.988 0.979 0.996 

Other (omission) 0.779 0.758 0.801 

Tidal wetland (commission) 0.719 0.684 0.754 

Tidal wetland (omission) 0.984 0.972 0.994 
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Table S7. 

Class accuracy results for the global intertidal change classification model based on validation 875 

sample points over the mapped area (n = 3059). 
 

 

Reference 

Loss Stable Gain 

Mapped 

Loss 143 65 11 

Stable 26 477 107 

Gain 6 57 86 
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Table S8. 880 

Quantitative accuracy assessment results for the global intertidal change classification model 

based on validation sample points over the mapped area (n = 3059). Quantitative accuracy 

assessments involved bootstrapping the validation samples (n = 1000 iterations), with the mean 

of the sampling distribution as the reported accuracy estimate and the 0.025 and 0.975 

percentiles of the sampling distribution as the 95% confidence interval. 885 

 

Error Estimate 
95% Confidence Interval 

Lower Upper 

Overall accuracy 0.722 0.696 0.751 

Loss (commission) 0.652 0.589 0.712 

Loss (omission) 0.817 0.766 0.871 

No change (commission) 0.782 0.748 0.815 

No change (omission) 0.796 0.773 0.820 

Gain (commission) 0.579 0.503 0.658 

Gain (omission) 0.423 0.374 0.473 
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Table S9. 

The proportion of observed tidal wetland changes attributed to direct drivers at the 30-m pixel scale. Each random 890 

sample of tidal wetland change was assessed using high-resolution time-series images available in Google Earth Pro. 

Direct drivers included changes due to land changes such as aquaculture, agriculture, plantations, urban and 

industrial development, and other artificial objects such as coastal infrastructure (bridges and dikes). Indirect drivers 

of change were not directly observable in high-resolution time-series images and include the effects of natural 

coastal processes, climate change, and remote drivers of change such as change in catchment sediment flux. Samples 895 

that could not be allocated to a direct or indirect driver due to lack of high-resolution imagery or uncertainty about 

tidal wetland change were excluded from the analysis.  

 

Change type 
No. 

Direct 

No.  

Indirect 
SE 

Direct  

(%) 

n 

(sampled) 

n  

(excluded) 

n 

(annotated) 

Mangrove gain 17 208 3.964 8 250 25 225 

Mangrove loss 110 110 7.416 50 250 30 220 

Tidal marsh gain 68 155 6.875 30 250 27 223 

Tidal marsh loss 47 169 6.064 22 250 34 216 

Tidal flat gain 7 201 2.601 3 250 42 208 

Tidal flat loss 105 134 7.673 44 250 11 239 

TIDAL WETLAND GAIN 92 564 8.894 14 750 94 656 

TIDAL WETLAND LOSS 262 413 12.661 39 750 75 675 
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Table S10. 

Attribution of observed changes to direct or indirect drivers by continent. The contribution of direct and indirect 

drivers was estimated as the proportion of a global weighted probability sample of observed changes to the direct 

driver class (% direct).  

 905 

Continent 

Tidal wetland Mangrove Tidal marsh Tidal flats 

Loss 

(% direct) 

Gain 

(% direct) 

Loss 

(% direct) 

Gain  

(% direct) 

Loss  

(% direct) 

Gain  

(% direct) 

Loss  

(% direct) 

Gain  

(% direct) 

Africa 27 3 20 5 50 0 15 0 

Asia 68 23 75 13 69 59 62 5 

Europe 28 12 0 0 38 17 7 5 

North America 9 11 18 0 8 19 0 4 

Oceania 0 0 0 0 0 0 0 0 

South America 2 0 3 0 0 0 0 0 
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