
Data Driven Discovery of Cyber Physical Systems

Ye Yuan1,2, Xiuchuan Tang3, Wei Zhou1, Wei Pan4, Xiuting Li1,

Hai-Tao Zhang1,2, Han Ding2,3,∗ and Jorge Goncalves1,5,6,∗

1School of Artificial Intelligence and Automation,

Key Laboratory of Image Processing and Intelligent Control,

Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

2State Key Lab of Digital Manufacturing Equipment and Technology,

Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

3School of Mechanical Science and Engineering,

Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

4Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands

5 Department of Engineering, University of Cambridge, CB2 1PZ, United Kingdom

6Luxembourg Centre for Systems Biomedicine, University of Luxembourg,

7 Avenue des Hauts Fourneaux, 4362, Esch-sur-Alzette, Luxembourg

∗Corresponding Authors. E-mail: dinghan@hust.edu.cn, jmg77@cam.ac.uk.

Abstract

Cyber-physical systems embed software into the physical world. They appear in a wide range of

applications such as smart grids, robotics, and intelligent manufacturing. Cyber-physical systems

have proved resistant to modeling due to their intrinsic complexity arising from the combination of

physical and cyber components and the interaction between them. This study proposes a general

framework for discovering cyber-physical systems directly from data. The method involves the

identification of physical systems as well as the inference of transition logics. It has been applied

successfully to a number of real-world examples. The novel framework seeks to understand the

underlying mechanism of cyber-physical systems as well as make predictions concerning their state

trajectories based on the discovered models. Such information has been proven essential for the

assessment of the performance of cyber-physical systems; it can potentially help debug in the

implementation procedure and guide the redesign to achieve the required performance.

1

INTRODUCTION

Since the invention of computers, software has quickly become ubiquitous in our daily

lives. Software controls domestic machines, such as washing and cooking appliances, aerial

vehicles such as quadrotors, the scheduling of power generation and the monitoring of human

body vital signals. These technologies embed cyber components throughout our physical

world, in fact, almost all modern engineering systems involve the integration of cyber and

physical systems. The integration of cyber and physical components provides new opportu-

nities and challenges. On one hand, this integration produces new functionality in traditional

physical systems, such as brakes and engines in vehicles, intelligent control systems for bio-

chemical processes and wearable devices [1–3]. On the other hand, the integration of cyber

components adds new layers of complexity, potentially seriously complicating their design

and guaranteeing their performance. Cyber-Physical Systems (CPSs), such as modern power

grids or autonomous cars, require guarantees on performance to be economically and safely

integrated into society. In power grids, the failure of transformer taps, capacitors and switch-

ing operations alter the dynamics of the grid, which can be extremely costly. We have, after

all, already witnessed a massive power outage in Southern California on September 2011 due

to a cascading failure from a single line tripping (which was not detected by operators using

their model), costing billions of US dollars. In autonomous driving, autonomous cars are

expected to be well-operated in multiple complex scenarios from driving on multi-lane high-

way to turning at intersections while obeying rules. These objectives are achieved through

decisions made by high-level software and control by low-level computer systems, realizing

the command using a combination of GPS/IMU, camera, radar and LIDAR data [4]. In

such complex scenarios, guaranteeing CPS’s performance poses a fundamental challenge.

For performance guarantees, we require reliable models that capture essential dynamics.

The central question this study seeks to answer, therefore, is how to reliably and efficiently

automate mechanistic modeling of CPSs from data [5, 6]. An appropriate mathematical

model of CPS should recognize the hybridity of CPS, which comprise of discrete and con-

tinuous components due to the integration of software and physical systems, respectively.

Hybrid dynamical systems (detailed below and Supplementary Note 2) use finite-state ma-

chines to model the cyber components and dynamical systems for the physical counterparts.

Hybrid dynamical models can produce accurate predictions and enable assessments of the

2

CPSs’ performance [7]. This paper presents a new method, namely Identification of HYbrid

Dynamical Systems (IHYDE), for automating the mechanistic modeling of hybrid dynam-

ical systems from observed data. IHYDE has low computational complexity and is robust

to noise, enabling its application to real-world CPS problems.

There are various methods for identifying non-hybrid dynamical systems. Schmidt and

Lipson [8] proposed a data-driven approach to determine the underlying structure and pa-

rameters of time-invariant nonlinear dynamical systems. Schmidt and Lipson’s method uses

symbolic regression to identify the system, balancing model complexity and accuracy. How-

ever, symbolic regression has its possible limitations: it can be computationally expensive,

does not scale to real large-scale systems, and is prone to overfitting. The work in [9–11]

expanded the vector field or map of the underlying system into suitable function series;

then, they used compressive sensing and sparse Bayesian learning techniques to accurately

estimate various terms in the expansion. Later, Brunton et. al. [12] applied a sequentially

thresholded least-square method to discover ordinary differential equations. Although these

recent advances [9–12] managed to reduce the expensive computational burden using com-

pressive sensing and sparse learning, these methods cannot be applied to hybrid dynamical

systems because of the complexity and switching behaviors in hybrid dynamical systems;

basically, these algorithms cannot account for an unknown number of unknown subsystems

that interact via unknown transition logic.

There have been a number of interesting results in hybrid dynamical system identifica-

tion over the past two decades [13–24]. Reference [14] gives a comprehensive literature

review, summarizing major advances up to 2007. Methods span across several fields, such

as algebraic geometry [15], mixed integer programming [18], bounded-error [19], Bayesian

learning [20], clustering-based strategies [21], and multi-modal symbolic regression [22]. The

algebraic geometry [15] and bounded-error [19] methods can handle cases with unknown

model order and number of subsystem models. However, algebraic-geometric methods can-

not deal with discontinuous dynamics. The Bayesian approach in [20] exploits available

prior knowledge about modes and parameters of hybrid systems, which helps tuning pa-

rameters. Clustering-based methods [21] are suitable for cases with little prior knowledge

on physical systems. However, it requires prior knowledge of model order and number of

subsystems. Despite clear merits of all these pioneering contributions, most methods focus

on the simplest hybrid dynamical models: piecewise affine systems with linear transition

3

rules [19].

Recent pioneering results in [16, 17] use compressive sensing [25] to identify the mini-

mum number of subsystems by recovering a sparse vector-valued sequence from data. These

algorithms tradeoff the mismatch between data and model predictions, and the energy of

the noise. Breschi et. al. [26] proposes a regression approach based on recursive clustering

and multi-class linear separation methods. To solve time-varying parameter identification

on stochastic autoregressive models with exogenous inputs (ARX), [27] employs expec-

tation maximization algorithms to recursively solve mixed-integer optimizations problems.

The work in [28] proposes a method based on difference of convex functions programming

to optimize non-smooth and nonconvex objective functions. Finally, [29] aims to identify

switched affine models in a set membership framework, [30] uses hybrid stable spline algo-

rithms, where Gaussian processes model the impulse response of each subsystem, and [31]

uses symbolic regression.

IHYDE aims to provide a more flexible and general framework by directly discovering

the number of subsystems, their dynamics, and the transition logic from data. IHYDE

deals with this problem in two parts: first, the algorithm discovers how many subsystems

interact with each other and identifies a model for each one; second, the algorithm infers the

transition logic between each pair of subsystems. Methods in [10, 12, 16] can be viewed as

special cases of the first step in this new framework. IHYDE is illustrated on a number of

examples, ranging from power engineering and autonomous driving to medical applications,

to demonstrate the algorithm’s application to various types of datasets.

RESULTS

The IHYDE algorithm

This section is divided in two major parts. The first presents the proposed inference-

based IHYDE algorithm using a simple example – a thermostat, while the second illustrates

its applicability to a wide range of systems, from real physical systems to challenging in

silico systems, and from linear to nonlinear dynamics and transition rules. Details of both

the algorithm and how data was acquired or generated can be found in Supplementary

Information.

4

The inference-based IHYDE algorithm applied to a thermostat. This section

explains the key concepts of IHYDE using one of the simplest and ubiquitous hybrid dynam-

ical systems: a room temperature control system consisting of a heater and a thermostat.

The objective of the thermostat is to keep the room temperature y(t) near a user specified

temperature. At any given time, the thermostat can turn the heater on or off. When the

heater is off, the temperature dissipates to the exterior at a rate of −ay(t) degrees Celsius

per hour, where a > 0 is related to the insulation of the room. When the heater is on, it

provides a temperature increase rate of 30a degrees Celsius per hour (Fig. 1a).

Assume a desired temperature is set to 20 degrees Celsius. Thermostats are equipped with

hysteresis to avoid chattering, i.e., fast switching between on and off. A possible transition

rule is to turn the heater on when the temperature falls bellow 19 degrees, and switching it

off when it reaches 21 degrees (Fig. 1b). The goal of IHYDE is to infer both subsystems plus

the transition logic from only the observed time-series data of the temperature (Fig. 1c).

Next, we shall illustrate the key ideas of the proposed algorithm on this simple example.

Inferring subsystems. The first step of the proposed IHYDE algorithm is to iteratively

discover which subsystem of the thermostat generated which time-series data. Initially, the

algorithm searches for the subsystem that captures the most data, since this subsystem

would explain the largest amount of data. In this case, the algorithm would firstly discover

subsystem 2 (heater on) since more than half of the data corresponds to that subsystem (see

Fig. 1c). The time-series portion of the data (Fig. 1d) is then used to find the dynamics of

subsystem 2. The algorithm is then repeated on the remaining data (Fig. 1e). In this case,

there is only one subsystem left (heater off). Hence, the algorithm classifies all the rest data

to a subsystem and identifies the corresponding dynamics.

Inferring transition logics. The second and final step is to identify the transition

logics between the two subsystems, i.e., what triggered the transitions from on to off and

from off to on. Starting with subsystem 2 (heater on) and its associated data in Fig. 1d,

the algorithm first learns that no switch occurs when the temperature changes from just

below 19 to near 21. Since the switch happens when the temperature reaches 21 degrees,

the algorithm concludes that the switch from on to off happens when y(t) = 21 degrees. In

practice, however, the software detects the switches when y(t) ≥ 21. Similarly, from Fig. 1e,

the algorithm learns that the switch from on to off happens when y(t) ≤ 19.

In summary, IHYDE automatically learns the dynamics of all subsystems and the tran-

5

sition rules from one subsystem to another. While this is a simple system, as we will show

next, this is true even in the presence of a large number of subsystems, potentially with

nonlinear dynamics and transition rules.

Universal applications

Next, we illustrate how IHYDE can be applied to a wide range of applications, from

power engineering to robotics to medicine, showing the flexibility, applicability and power of

IHYDE to model complex CPSs. Here, we consider the following examples. 0) Benchmark

examples (see Supplementary Example 1, 2, 3 and 4); 1) Autonomous vehicles and robots:

design and validation of an autonomous vehicle (see Supplementary Example 5); 2) Com-

plex electronics: Chua’a circuit (see Supplementary Example 6); 3) Monitoring of industrial

processes: monitoring a wind turbine (see Supplementary Example 7); 4) Power systems:

transmission lines and smart grids (see Supplementary Example 8 and 9); 5) Medical appli-

cations: heart atrial active potential monitoring (see Supplementary Example 10). To test

IHYDE’s performance, these systems will include both experimental and synthetic datasets.

Details can be found below and in Supplementary Examples.

Table I contains a summary of the most important systems analyzed in the paper. The

first three examples are based on real experimental data, while the other three are based

on simulated data. The first two columns illustrate the systems and the corresponding

subsystems respectively where each subsystem is associated with a particular color. The

third column shows the original time-series data (dots) in the color associated with the

subsystem that generated it, the fitted data from the identified models (lines connecting the

dots), and the location of the transitions (changes in colors). Note that, at this resolution,

the original data and the data obtained from the fitted models are indistinguishable. The last

column presents the relative error ratio [32] between the true data and the data simulated

by the fitted model. A small error ratio indicates a good agreement between the true and

modeled systems, and serves as a measure of the performance of IHYDE. Data is either

collected (real systems) or simulated (synthetic systems) and captures all key transitions.

As seen in column 3 and column 4 of Table I, IHYDE successfully discovered the original

dynamics that generated the data in all examples with extremely high precision (nearly zero

identification errors). First, it was able to classify each time point according to the respective

6

subsystem that generated it. Second, it identified the dynamics of each subsystem with a

very small error (less than 0.3% on all simulated examples). Finally, it correctly identified

the transition rules between subsystems.

Autonomous vehicles and robots: design and validation. To demonstrate

IHYDE’s usefulness in designing and validating complex systems, we tested the algorithm

on an autonomous vehicle, custom built in the lab (Table IA). Typically, the design pro-

cess of complex systems consists of an arduous, time-consuming, and trial-and-error based

approach: start from an initial design, evaluate its performance and revise it until the

performance is satisfied. A primary issue with this iterative approach is that when a design

fails to meet desired specifications, many times engineers have little to no insight on how

to improve the next iteration. Often, an engineer cannot discern whether the issue is due

to poor mechanical design, issues with the software, or factors that were not considered.

And this is also true with other general complex CPSs that involve interactions between

physical/mechanical parts and software.

The autonomous electrical car consists of a body, a MK60t board, a servo motor, a

driving motor, and a camera. The design goal of the autonomous car was to successfully run

through a winding track as quickly as possible. Using an embedded camera, the software

captures information of the upcoming road layout to ascertain whether a straightway or a

curve is coming up. Based on this information, the motor chooses an appropriate power

to match the desired speed control strategy. For the purpose of illustration, we considered

a simple controller that provides higher velocities on straightways and lower velocities on

curves. In addition, simple feedback controllers help the car follow the chosen speed and stay

on the track. The speed control strategy is based on incremental proportional and integral

(PI) control that keeps the car at the correct speed, while the switching rule decides on the

correct speed depending on whether a straight or curve is coming up.

For the first-round design, we deliberately swapped the straightway and curve speeds to

mimic a software bug. As a consequence, the car travelled rather slow in the straights and

left the tracks in the curves (Supplementary Movie 1). While in this case it was rather easy

for engineers to spot the software bug; debugging, in general, can be extremely difficult,

sometimes only possible by trial and error, and, as a consequence, very time consuming.

One would like to check whether these types of bugs could be detected by IHYDE. Indeed,

from the data generated by the faulty system, IHYDE compared the discovered models with

7

the to-be-built ones, pinpointed the incorrect speed controllers. Hence, from data alone,

IHYDE successfully reverse engineered the control strategy of the CPS and discovered the

software bug.

Complex electronics: Chua’s circuit. Debugging and verifying large scale electronics

can be a daunting experience. Modeling could help identify whether a device has been built

according to the desired specifications by identifying faulty connections or incorrect imple-

mentations. Simple electrical circuits, such as RLC circuits, are linear and easy to model.

However, most electronic circuits introduce both nonlinear dynamics and switches (e.g.,

diodes and transistors), which can lead to extremely complex behaviors. Thus, modeling

such systems can be very challenging.

To illustrate IHYDE’s applicability in this scenario, we built an electronic circuit that

exhibits complex behaviors. We chose a well known system, called the Chua’s circuit [33],

that exhibits chaotic trajectories (Table IB). Chaotic systems constitute a class of systems

that depend highly on initial conditions, and makes simulation and modeling very challeng-

ing. Our circuit consists of an inductor, two capacitors, a passive resistor and an active

nonlinear resistor, which fits the condition for chaos with the least components. The most

important active nonlinear resistor is a conceptual component that can be built with oper-

ational amplifiers and linear resistors. The resulting nonlinear resistor is piecewise linear,

making the Chua’s circuit a hybrid dynamical system with a total of three subsystems and

a well-defined transition logic.

After collecting real data measured from the circuit, IHYDE successfully captures the

dynamics of system and the transition rules between identified subsystems. In particular,

the nonlinear dynamics are consistent with the true parameters of the circuit elements. As

with all examples, modeling of the Chuas circuit was achieved using only the data and the

basic knowledge of the field (to guide the choice of nonlinearities), without other assumptions

on dynamics or switching behaviors.

Monitoring of industrial processes: wind turbines platform. Next, we consider

the problem of real-time monitoring industrial processes. Modeling large scale industrial

processes is challenging due to the large number of parts involved, nonlinear dynamics and

switching behaviors. Switches, in particular, are caused by breaking down of parts (due

to wear and tear) and turning processes on and off, which introduce discontinuities in the

dynamics. We propose IHYDE as a tool to detect these switches as quickly as possible to

8

prevent lengthy and expensive downtimes in industrial processes.

To put IHYDE to the test, we used real data from a wind turbine platform built in

[34]. The data consists of measurements of the current generated by the wind turbine

experimental platform under different operating conditions (Table IC). The system included

a 380V power supply, a variable load, a power generator, a motor, a fan, two couplings and a

gearbox that transmits the energy generated by the wind wheel to the power generator [34].

We performed experiments under normal and faulty conditions (a broken tooth of gearbox)

and down-sampled the measuring current of the wind turbine with a period 0.3 seconds. In

both experiments, the generator speed was 200 revolutions per minute and the load was 1.5

KNm.

IHYDE was tested under two different scenarios: offline modeling, used, for example, at

the design stage; and online modeling, for real-time monitoring. In offline modeling, all the

data are available for modeling, while in real-time monitoring only past data are available,

and the system is continuously modeled as new data is gathered. In offline modeling, IHYDE

identifies two linear subsystems, corresponding to the system in the two different conditions.

In addition, it correctly detects the fault right after it happens and infers the transition

logic. In online modeling, a model predicts the next time-series data point, and compares it

with the real one, when this becomes available. If the difference is high, IHYDE detects a

transition, builds a new model, and compares it with the old model to pinpoint the location

of the fault. This example focuses on online modeling: the fault is detected within only

3 data points following its occurrence. This application demonstrates the capabilities of

IHYDE in online monitoring of industrial processes.

Power systems: smart grids and transmission lines. Smart grids have been gaining

considerable attention in the last decades and are transforming how power systems are

developed, implemented and operated. They considerably improve efficiency, performance

and makes renewable power feasible. In addition, it overhauls aging equipment and facilitates

real-time troubleshooting, which decreases brownouts, blackouts, and surges. As with all

critical infrastructures, smart grids require strict safety and reliability constraints. Thus,

it is of great importance to design monitoring schemes to diagnose anomalies caused by

unpredicted or sudden faults [35]. Here, we consider two examples of power systems: real-

time modeling to control smart grids and pinpointing the location of a transmission line

failure.

9

We start by illustrating how IHYDE can model and control smart grids in real-time.

Accurate model information is not only necessary for daily operation and scheduling, but

also critical for other advanced techniques such as state estimation and optimal power flow

computation. However, such information is not always available in distribution systems

due to frequent model changes [36]. These changes include: high uncertainty in distributed

energy resources, such as components being added and removed from the network; unex-

pected events, such as line faults and unreported line maintenance; and trigger of automatic

control and protection measures. We apply IHYDE to identify network models and infer

transition logics, capturing model changes from advanced metering infrastructure data and

in real-time. The 33-bus benchmark distribution system [37] generates the data. It is a

hypothetical 12.66 KV system with a substation, 4 feeders, 32 buses, and 5 tie switches [37].

The system is not well-compensated and lossy, and is widely used to study network recon-

figuration problems. Assume the loads on some remote nodes of a feeder suddenly increase,

causing voltage sag. Subsequently, an operator takes switch action for load balancing and

voltage regulation. (Supplementary Figure 12) depicts the switching topologies and the real

transition logic. Suppose we can measure all active and reactive power consumptions, and

voltage phasors of the nodes. Hence, the system is changing between two configurations

corresponding to topologies when some switches turn on and off. For each node and subsys-

tem, IHYDE successfully identifies the responding column of the admittance matrices with

nearly zero identification errors. The identified admittance matrices at the switching time

instants are very different from that of the previous moments, indicating a model switching

(corresponding to changes in colors on the data in Table ID). Indeed, the identified logic

is consistent with the real logic and demonstrates that IHYDE can reveal voltage drops at

specific nodes in real-time and suggest switch action to avoid sharp voltage drops.

To simulate a transmission line failure, assume a transmission line fails between two buses

in the network. We will use a standard benchmark IEEE 14-bus power network [38]. This

system consists of generators, transmission lines, transformers, loads and capacitor banks.

Looking directly at the generated data (Table IE), it is not clear when the fault occurred,

and much less what happened at the time of failure and where it was located. This is because

the power system compensated the failure by rerouting power across other lines. IHYDE,

however, can immediately detect the occurrence of this event and determine its location.

This is done by estimating the new admittance matrix using only 10 measurements follow-

10

ing the failure (corresponding to 166.7 milliseconds, according to the IEEE synchrophasor

measurements standard C37.118, 2011). Basically, it successfully discovers both subsystems

(normal and failure) from data and calculates the difference of the discovered subsystems

(leading to the location of the fault). Given the frequency at which Phasor Measurement

Units (PMUs) sample voltage and current, IHYDE is able to locate the fault in a few hun-

dred milliseconds after the event occurs, enabling the operators to detect the event, identify

its location, and take remedial actions in real-time.

Medical applications: heart atrial active potential monitoring. The development

of medical devices is another active research area. Especially, with the widespread use of

wearables and smart devices, there is an exponential growth of data collection. These data

requires personalized modeling algorithms to extract critical information for diagnosis and

treatments. Within this context, we apply IHYDE to model data gathered from a human

atrial action potential (AP) system [39]. The human atrial AP and ionic currents that

underlie its morphology are of great importance to our understanding and prediction of the

electrical properties of atrial tissues under normal and pathological conditions.

The model captures the spiking of the atrial AP. In particular, two gating variables

capture the fast and slow inactivation with switching dynamics. Following a spike, these

two variables raise, preventing a new spike. Eventually, as the AP returns to low values,

the inactivation dynamics switch back, and in time allow a new spike to take place. The

goal is to test whether IHYDE can detect these transitions, together with the rules that

led to the switch. Two scenarios are considered here: the first scenario assumes the first-

principle model parameterization is available while the second not. In the first scenario,

IHYDE indeed identifies the two subsystems, together with their dynamics, and pinpoints

the changing logic correctly (Table IF). For the second scenario, we repeat the modeling of

this system, this time assuming that the choice of dictionary functions is unclear and/or the

domain knowledge is lacking. In such cases, we consider a canonical dictionary function,

such as polynomials approximations. IHYDE can still detect the transition points. However,

the nonlinear dynamics are different than the true ones: as expected, it identifies instead

a polynomial approximation of the original nonlinear dynamics. While these dynamics can

still be used for simulation and trajectory prediction, they are not in a form that reveals

physical meaning. For an interpretable model, we require domain knowledge. Hence, IHYDE

provides a reliable model to study the system and to build devices to detect abnormal AP.

11

DISCUSSION

This work presents a new framework for identifying CPSs from data. Current state-of-

the-art methods assume either parameterization of the system and/or the exact dynamics

of subsystems, number of subsystems, or the switching rules. Instead, IHYDE only requires

similar assumptions to those in literature. For example, full state measurements, linear de-

pendence of the to-be-identified parameters and the choice of dictionary functions generally

guided by the area of the application [10, 12]. IHYDE successfully identifies complex mech-

anistic models directly from data, including the subsystem dynamics and their associated

transition logics. The proposed method differs from classical machine learning tools, such

as deep neural network models [40], which typically do not provide insight on the under-

lying mechanisms of the systems (as the state-variables and learned parameters have no

direct meaning). While IHYDE is inspired by prior work in symbolic regression [31], it has

much lower computational complexity due to the use of convex optimization formulation.

As a result, it can solve large-scale CPSs, facilitating its application to complex real-world

problems.

After IHYDE models a CPS, the resulting model can help verify the design specifications

and predict future trajectories. If the CPS model reveals bugs or flaws in the implementa-

tion, it can potentially guide the redesign to achieve the required performance. Applications

include robotics and automated vehicles, where data-driven models promise to reduce the

reliance on trial and error. Furthermore, IHYDE can monitor, detect, and pinpoint real-time

faults of CPSs (for example, power systems), thereby helping avoid catastrophic failures. As

seen in the results section, IHYDE can be applied to a wide range of applications. Sup-

plementary Information includes additional examples on canonical hybrid dynamical sys-

tems [31]. As before, IHYDE successfully identifies both the subsystems and the transition

rules (Supplementary Example 1 - Example 4).

One more thing, IHYDE unifies previous results as it can discover not only hybrid dy-

namical systems, but also non-hybrid dynamical systems (i.e., time-invariant linear and

nonlinear systems [10, 12]) as special cases. This was confirmed in (Supplementary Method

1), where IHYDE successfully identified the original canonical dynamical systems from the

data in [12] (Supplementary Table 48). Hence, IHYDE provides a unified approach to the

discovery of hybrid and non-hybrid dynamical systems.

12

While the approach has a number of advantages, there are still some open questions. First,

it requires a new theory to understand when particular datasets are informative enough to

uniquely identify a single (the true) hybrid dynamical system. Identifiability is a central topic

in system identification and provides guarantees that there does not exist multiple systems

that can produce the same data. This is illustrated in Supplementary Discussions, where

we construct several hybrid dynamical systems that yield the exact same data, and hence

cannot be differentiated from data alone. A second issue lies in the linear parameterization

of the model. For equations whose parameters enter nonlinearly, gradient descent can be

applied to obtain a local minimizer, although in this case a global optimum cannot typically

be guaranteed. Finally, the choice of dictionary functions is generally guided by the area of

the system. Any insight or domain knowledge to construct dictionary functions for hybrid

dynamical systems can help reduce computational burden and improve model accuracy.

When the domain knowledge in unclear or lacking, canonical dictionary functions, such as

polynomials, kernels, Fourier series, can approximate the true dynamics. An example in

(Supplementary Discussion 3) illustrates how a polynomial series successfully approximates

a sinusoid. However, in these cases the exact original true function may be lost or hard to

find, as illustrated in (Supplementary Example 10). There, while IHYDE can still detect

the location of switches, it discovers different dynamics based on the choice of the canonical

dictionary function. Nevertheless, these dynamics can still be used for prediction since they

still approximate the main dynamics of each subsystem (see for example, Supplementary

Discussion 3).

METHODS

The theoretical foundation of IHYDE algorithm. Motivated by the above ex-

ample, we shall give a formal definition of hybrid dynamical systems. Physical systems

are characterized by inputs u(t) ∈ Rm and outputs y(t) ∈ Rn. Based on these vari-

ables, at any given time a particular mode m(t) is chosen from a possible total of K

modes, i.e., m(t) ∈ {1, 2, ..., K}. Each mode corresponds to a particular set of physi-

cal parameters. The physical system evolves according to sets of differential equations:

dy(t)
dt

= Fk (y(t),u(t)) , k = 1, 2, . . . , K, where each Fk(y(t),u(t)) is related to the dynam-

ics of subsystem k. Assume y(t) and u(t) are sampled at a rate h > 0, i.e. sampled at

13

times 0, h, 2h, 3h.... For fast enough sampling (for small sampling period h), one of the

simplest method to approximate derivatives is to consider dy(t)
dt
≈ y(t+h)−y(t)

h
, which yields

the discrete-time system y(t+ h) = y(t) + h Fk(y(t),u(t)) , fk(y(t),u(t)), k = 1, 2, . . . , K.

At any given time, the decision of the transition logic to switch to another subsystem is

governed by transition rules of the form m(t + h) = T (m(t),y(t),u(t)). Hence, the current

input-output variables y(t),u(t) plus the current subsystem mode m(t) determine, via a

function T , the next subsystem mode. Without loss of generality, we can rescale the time

variable t so that h = 1. Thus, we can construct the following mathematical model for

hybrid dynamical systems

m(t+ 1) = T (m(t),y(t),u(t)),

y(t+ 1) = f(m(t),y(t),u(t)) =


f1(y(t),u(t)), if m(t) = 1,

... ,
...

fK(y(t),u(t)), if m(t) = K.

Given the mathematical definition of the hybrid dynamical systems, we can then propose

the IHYDE algorithm for discovering such systems from data.

Inferring subsystems. Let Y and U denote column vectors containing all the samples

of y(t) and u(t), respectively, for t = 1, 2, . . . ,M + 1, where M + 1 is the total number

of samples. The first step to identify the subsystems is to construct a library Φ(Y,U) of

nonlinear functions from the input-output data. The exact choice of nonlinear functions in

this library depends on the actual application. For example, for simple mechanical systems,

Φ would consist of constant, linear and trigonometric terms; in biological networks, Φ would

consist of polynomial (mass action kinetics) and sigmoidal (enzyme kinetics) terms. Let

Y =

 y(1) y(2) . . . y(M)



T

, U =

 u(1) u(2) . . . u(M)



T

, Ȳ ,

 y(2) y(3) . . . y(M + 1)



T

.

As an illustration, for polynomials (with U = 0) we would have Φ(Y,U) =

[
1 Y YP2 · · ·

]
where higher polynomials are denoted as YP2 ,YP3 , etc. For instance, YP2 denotes quadratic

14

nonlinearities[12]:

YP2 =



y2
1(1) y1(1)y2(1) · · · y2

n(1)

y2
1(2) y1(2)y2(2) · · · y2

n(2)

...
...

. . .
...

y2
1(M) y1(M)y2(M) · · · y2

n(M)


.

Basically, each column of Φ(Y,U) represents a candidate function for a nonlinearity in fk.

Define the residual as

Z ,

[
z1 z2 . . . zn

]
= Ȳ −ΦW − ξ,

where ξ is Gaussian noise, i.e., ξ ∼ N (0, λI). The first objective is to find the sparsest

possible Z that fits most input-output data, i.e.,

Z∗ = arg min
Z
‖Z‖`0 ,

subject to: Z = Ȳ −ΦW − ξ.

As a result, the indexes of the zero entries of Z∗ correspond to the indexes for input-output

that can be fitted by a single subsystem. This initial idea was an extension of those presented

in [16], yet the major difference is that we propose a robust Bayesian algorithm that works

for noisy data with performance (see Supplementary Method 1 for comparison).

Assume, without loss of generality, that the dictionary matrix Φ is full rank. A key step

is to define a transformation matrix Θ in which each column spans the left null space of Φ.

Then, it follows that ΘȲ = ΘZ + Θξ. Let ˜̄Y , ΘȲ and Π = ΘΘT , then

P (˜̄Y|Z) = N (˜̄Y|ΘZ, λΠ) ∝ exp

[
− 1

2λ

∥∥∥(˜̄Y −ΘZ)TΠ−1(˜̄Y −ΘZ)
∥∥∥2

F

]
. (1)

Each column of ˜̄Y (i.e., ˜̄yi) can be identified independently for i = 1, · · · , n (let zi be the

ith column of Z)

P (˜̄yi|zi) = N (˜̄yi|Θzi, λΠ) ∝ exp

[
− 1

2λ
(˜̄yi −Θzi)

TΠ−1(˜̄yi −Θzi)

]
. (2)

Once we introduce the Gaussian likelihood in (2) and the variational prior

N (zi) = max
γj>0

∏
j

N (zji|0, γj)ϕ(γj) = max
Γ�0
N (zi|0,Γ)

∏
j

ϕ(γj),

15

where Γ , diag{γ} and ϕ(γj) is a nonnegative function. The target is to maximize the

marginal likelihood as ∫
N (˜̄yi|Θzi, λΠ)N (zi|0,Γ)

∏
j

ϕ(γj)dzi. (3)

Using results in [10], we can get the following optimization problem jointly on zi and γ,

min
zi,γ

1

λ

(
˜̄yi −Θzi

)T
Π−1

(
˜̄yi −Θzi

)
+ zTi Γ−1zi + log det(λΠ + ΘΓΘT) +

∑
j

logϕ(γj).

For the case of uniform priors, let ϕ(γj) = 1. This program can be formulated as a convex-

concave procedure (CCCP), i.e., where the first part of the function

u(zi,γ) =
1

λ

(
˜̄yi −Θzi

)T
Π−1

(
˜̄yi −Θzi

)
+ zTi Γ−1zi (4)

is jointly convex in zi and γ, and the second part

s(γ) = log det(λΠ + ΘΓΘT) (5)

is concave in γ.

Now the high level plan is to optimize over each set of variables iteratively based on

CCCP, as follows:

zk+1
i = arg min

zi

u(zi,γ
k),

γk+1 = arg min
γ≥0

u(zki ,γ) +∇γs(γ
k)Tγ.

(6)

Then we propose our algorithm to solve the above procedure and the pseudo code is sum-

marized in Algorithm 1.

Algorithm 1 Reweighted `1 type algorithm
1: Initialize the unknown zi as a unit vector;

2: A tunable hyperparameter λ;

3: for k = 1, . . . ,Kmax do

4:

zk+1
i = arg min

zi

1

2

(
˜̄yi −Θzi

)T
Π−1

(
˜̄yi −Θzi

)
+ λ

∑
j

|αkj · zji|; (7)

5: γk+1
j =

∣∣∣∣ zk+1
ji

αkj

∣∣∣∣, αk+1
j =

(
θTj (λΠ + ΘΓk+1ΘT)−1θj

) 1
2
;

6: if a stopping criterion is satisfied then

7: Break.

8: end if

9: end for

16

This step classifies which time points correspond to which subsystem. The second objec-

tive identifies the actual dynamics of each subsystem. The algorithm starts with subsystem

k (we neglect the index k for notational simplicity below), which is the one associated with

the largest number of time points. Let I denote those time points associated with subsys-

tem k. Once every data point is associated to different subsystems, next, we shall infer the

dynamics of every subsystem. We set up yet another sparse regression problem to determine

the sparse vectors of coefficients. The sparse coefficients W ,

[
w1 . . . wn

]
of subsystem k

are then identified by solving the following optimization problem

W∗ = arg min
wi

1

2
‖Ȳ[I, :]−Φ[I, :]W‖2

F + λw

n∑
i=1

‖wi‖`1 ,

where λw is a hyperparameter that trades off estimation error and model complexity. These

hyperparameters are principally tuned using results in (Supplementary Method 1). The

algorithm removes the time points in I and repeats these two steps iteratively until all sub-

systems have been identified and no data is left. Further details are found in (Supplementary

Algorithm 2).

Inferring transition logics. Once every data point has been classified to different

subsystems, define ηi(t) as the set membership: it equals to 1 only if the subsystem i is

active at discrete-time t, otherwise it equals to 0. These functions are known from the

information in the subsystem identification above. Here, we are interested in learning what

functions trigger the switch from one subsystem to another. Define also step(x), which equals

to 1 if x ≥ 0, and 0 otherwise. Mathematically, we are searching for a nonlinear function

g, such that step(g(y(t),u(t))) specifies the membership. Due to non-differentiability of

step functions at 0, we alternatively relax the step function to a sigmoid function, i.e.,

ηj(t+1) ≈ 1
1+e−g(y(t),u(t)) [31], where j is a potential subsystem that can jump to at time t+1.

If we can parameterize g(y(t),u(t)) as a linear combination of over-determined dictionary

matrix, i.e., g(y(t),u(t)) , Ψ(Y,U)[t, :]v, in which Ψ can be constructed similarly to Φ in

the previous subsection and v is a vector of to-be-discovered parameters. We formulate the

following optimization problem:

min
v

M∑
t=1

ηi(t)

∥∥∥∥ηj(t+ 1)− 1

1 + e−g(y(t),u(t))

∥∥∥∥2

`2

. (8)

Further details can be found in (Supplementary Algorithm 3). It should be noted that, the

17

optimization problem in Eq. (8) is also convex in v, which yields a computationally efficient

solution.

Data availability. All data needed to evaluate the conclusions in the paper are

available at [https://github.com/HAIRLAB/CPSid] except datasets from [31] (Supple-

mentary Example 1 to 4). Code availability. The code implementation is available at

[https://github.com/HAIRLAB/CPSid].

[1] Poovendran, R. Cyber-physical systems: Close encounters between two parallel worlds [point

of view]. Proc. IEEE 98, 1363-1366 (2010).

[2] Antsaklis, P. A Brief Introduction to the Theory and Applications of Hybrid Systems. Proc.

IEEE 88, 879-887 (2000).

[3] Aihara, K. & Suzuki, H. Theory of hybrid dynamical systems and its applications to biological

and medical systems. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 368, 4893-4914 (2010).

[4] Wooden, D., Powers, M., Egerstedt, M., Christensen, H. & Balch, T. A modular, hybrid

system architecture for autonomous, urban driving. J. Aerosp. Inf. Syst. 4, 1047-1058 (2012).

[5] Kutz, J. N. Data-driven modeling and scientific computation: methods for complex systems

and big data (Oxford University Press, 2013).

[6] Wang, W. X., Lai, Y. C. & Grebogi, C. Data based identification and prediction of nonlinear

and complex dynamical systems. Phys. Rep. 644, 1-76 (2016).

[7] Van Der Schaft, A. J. & Schumacher, J. M. An Introduction to Hybrid Dynamical Systems

(Springer-Verlag, London, 2000).

[8] Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science

324, 81-85 (2009).

[9] Wang, W. X., Yang, R., Lai, Y. C., Kovanis, V. & Grebogi, C. Predicting catastrophes in

nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett. 106, 154101 (2011).

[10] Pan, W., Yuan, Y., Goncalves, J. & Stan, G. B. Reconstruction of arbitrary biochemical reac-

tion networks: A compressive sensing approach. In Proceedings of the 51st IEEE Conference

on Decision and Control, 2334-2339 (2012).

[11] Chang, Y. H. & Tomlin, C. Data-driven graph reconstruction using compressive sensing. In

Proceedings of the 51st IEEE Conference on Decision and Control, 1035-1040 (2012).

18

[12] Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by

sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 113, 3932-

3937 (2016).

[13] Ohlsson, H. & Ljung, L. Identification of switched linear regression models using sum-of-norms

regularization. Automatica 49, 1045-1050 (2013).

[14] Paoletti, S., Juloski, A. L., Ferrari-Trecate, G. & Vidal, R. Identification of hybrid systems a

tutorial. Eur. J. Control 13, 242-260 (2007).

[15] Vidal, R., Soatto, S., Ma, Y. & Sastry, S. An algebraic geometric approach to the identification

of a class of linear hybrid systems. In Proceedings of the IEEE Conference on Decision and

Control, 167-172 (2003).

[16] Bako, L. Identification of switched linear systems via sparse optimization. Automatica 47,

668-677 (2011).

[17] Ozay, N., Sznaier, M., Lagoa, C. & Camps, O. A sparsification approach to set membership

identification of a class of affine hybrid systems. In Proceedings of the IEEE Conference on

Decision and Control, 123-130 (2008).

[18] Roll, J., Bemporad, A. & Ljung, L. Identification of piecewise affine systems via mixed-integer

programming. Automatica 40, 37-50 (2004).

[19] Bemporad, A., Garulli, A., Paoletti, S. & Vicino, A. A bounded-error approach to piecewise

affine system identification. IEEE Trans. Autom. Control 50, 1567-1580 (2005).

[20] Juloski, A. L., Weiland, S. & Heemels, W. A Bayesian approach to identification of hybrid

systems. IEEE Trans. Autom. Control 50,1520-1533 (2005).

[21] Nakada, H., Takaba, K. & Katayama, T. Identification of piecewise affine systems based on

statistical clustering technique. Automatica 41, 905-913 (2005).

[22] Ferrari-Trecate, G., Muselli, M., Liberati, D. & Morari, M. A clustering technique for the

identification of piecewise affine systems. Automatica 39, 205-217 (2003).

[23] Oishi, M. & May, E. Addressing biological circuit simulation accuracy: Reachability for pa-

rameter identification and initial conditions. In Proceedings of the IEEE-NIH Life Science

Systems and Applications Workshop, 152-155 (2007).

[24] Thai, J. & Bayen, A. M. State estimation for polyhedral hybrid systems and applications to

the Godunov scheme for highway traffic estimation. IEEE Trans. Autom. Control 60, 311-326

(2015).

19

[25] Candes, E. J. Compressive sampling. In Proceedings of the international congress of mathe-

maticians, 1433-1452 (2006).

[26] Breschi, V., Piga, D. & Bemporad, A. Piecewise affine regression via recursive multiple least

squares and multicategory discrimination. Automatica 73, 155-162 (2016).

[27] Hartmann, A., Lemos, J. M., Costa, R. S., Xavier, J. & Vinga, S. Identification of switched

ARX models via convex optimization and expectation maximization. J. Process Control 28,

9-16 (2015).

[28] Dinh, T. P., Le, H. M., Le Thi, H. A. & Lauer, F. A difference of convex functions algorithm

for switched linear regression. IEEE Trans. Autom. Control 59, 2277-2282 (2014).

[29] Ozay, N., Sznaier, M., Lagoa, C. M. & Camps, O. I. A sparsification approach to set mem-

bership identification of switched affine systems. IEEE Trans. Autom. Control 57, 634-648

(2011).

[30] Pillonetto, G. A new kernel-based approach to hybrid system identification. Automatica 70,

21-31 (2016).

[31] Ly, D. L. & Lipson, H. Learning symbolic representations of hybrid dynamical systems. J.

Mach. Learn. Res. 13, 3585-3618 (2012).

[32] Ljung, L. System identification: theory for the user (PTR Prentice Hall, Upper Saddle River,

NJ 1999).

[33] Chua, L. O., Itoh, M., Kocarev, L. & Eckert, K. Chaos synchronization in Chua’s circuit. J.

Circuits Syst. Comput. 2, 705-708 (2011).

[34] He, Q., Guo, Y., Wang, X., Ren, Z. & Li, J. Gearbox fault diagnosis based on RB-SSD and

MCKD. China Mechanical Engineering 28, 1528-1534 (2017).

[35] Pan, W., Yuan, Y., Sandberg, H., Goncalves, J. & Stan, G. B. Online fault diagnosis for

nonlinear power systems. Automatica 55, 27-36 (2015).

[36] Weng, Y., Liao, Y. & Rajagopal, R. Distributed energy resources topology identification via

graphical modeling. IEEE Trans. Power Syst. 32, 2682-2694 (2017).

[37] Baran, M. & Wu, F. Network reconfiguration in distribution systems for loss reduction and

load balancing. IEEE Trans. Power Deliv. 4, 1401-1407 (1989).

[38] Christie, R. D. Power Systems Test Case Archive. Seattle, WA, USA: Univ. Washington, 2000.

[Online]. Available: http://labs.ece.uw.edu/pstca/pf14/pg_tca14bus.htm.

[39] Courtemanche, M., Ramirez, R. & Nattel, S. Ionic mechanisms underlying human atrial ac-

20

tion potential properties: insights from a mathematical model. Am. J. Physiol.-Heart Circul.

Physiol. 275, 301-321 (1998).

[40] Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015).

ADDITIONAL INFORMATION

Acknowledgements This work is supported by National Natural Science Foundation

of China through projects 91748112. General: The first author would like to thank Prof.

Claire J. Tomlin (UC Berkeley) for insightful discussion and continuous help. We thank Prof.

Guang Yang (Huazhong University of Science and Technology) for help on the experimental

setup. We thank Mr. Anthony Haynes, Mr. Frank Jiang, Dr. Anija Dokter and Mrs.

Karen Haynes for editing. We thank Dr. Daniel Ly (Stanford University) and Prof. Ke Li

(Jiangnan University) for sharing datasets. Author contributions. Y.Y. developed the

IHYDE algorithms. Y.Y. and X.T. developed simulation codes for the example problems

considered. All authors participated in designing and discussing the study and writing

the paper. Competing interests. The authors declare that they have no competing

interests. Materials & Correspondence. Correspondence should be addressed to Han

Ding (dinghan@hust.edu.cn) and Jorge Goncalves (jmg77@cam.ac.uk).

21

Temperature	y(t)

System	1	(OFF)	 System	2	
(On)	

y  19

y � 21

Temperature	y(t)

Temperature	y(t)

(A)
(C)

On On

(D)

(E)

19

20

21

Off

19

20

21

19

20

21

On On

Time

Time

TimeOff

ẏ = �ay ẏ = a(30 � y)

2019 21

(B)
Temperature	y(t)

On

Off

(a)

(b)

(d)

(c)

(e)

Subsystem 1
（OFF）

Subsystem 2
（ON）

FIG. 1. An illustrative toy example on a thermostat. (a) The physical dynamic equations plus the

transition rules of the hybrid dynamical system. A transition rule is to turn the heater on when

the temperature falls below 19 degrees, and switch it off when it reaches 21 degrees. When the

heater is off, the temperature y dissipates to the exterior at a rate of −ay(t) degrees Celsius per

hour, where a > 0 is related to the insulation of the room. When the heater is on, it provides a

temperature increase rate of 30a degrees Celsius per hour. (b) Visualization of transition rules of

the relay hysteresis based on the temperature of the room. (c) A simulation of the temperature of

the thermostat system. Red (blue) is associated with the heater on (off). (d) (e) Separated time

series of the temperature corresponding to the heater on (off) from the original temperature data.

22

TABLE I. Summary of IHYDE algorithm applied to numerous examples. IHYDE has been applied

to six examples in different applications. The first column illustrates the systems, while the second

column shows the different subsystems plus the transition rules. Each subsystem is associated

with a particular color. The third column shows the original time-series data (dots) in the color

associated with the subsystem that generated it, the fitted data from the identified models (lines

connecting the dots), and the location of the transitions (changes in colors). The last column

presents the relative error ratio [32] between the true data and the data simulated by the fitted

model. A small error ratio indicates a good agreement between the true and discovered systems,

and serves as a measure of the performance of IHYDE.

Autonomous

vehicles and robots

A

Monitoring of

industrial processes

C

Medical

applications

F

System Hybrid dynamical System Data fitting and transitions

Straight Curve

Low-voltage

model

High-voltage

model

Middle-voltage

model

Normal Broken

Base

configuration

Changed

configuration

Normal Line Fault

Normal Disease

Large scale

electronics

B

Smart grid

D

Power systems

fault

monitoring

E

Relative error ratio (%)

0.24%

5.2%

2.5%

0.000081%

0.00080%

0.029%

Differential motor input

Gating variable

Current

Derivative of Voltage

Apparent power

Current

Time

23

Supplementary Information: Data Driven Discovery of Cyber

Physical Systems

Ye Yuan et al.

SUPPLEMENTARY FIGURES

Supplementary Figure 1. Schematics of the proposed subsystems identification algorithm. We

construct a library of nonlinear functions Φ. We formulate an iterative convex optimization method

to infer the number of subsystems and the underlying system models for every subsystem. More

specifically, we first identify a best model that fits the majority of data, then we remove the fitted

data and re-do the identification until no data are left.

1

Supplementary Figure 2. Illustration of the proposed Algorithm to identify transition logics. Using

the membership of every classified data point, we apply logistic regression to infer the logic between

every pair of identified subsystems, i.e., Ti→i′ for every i and i′.

2

(a) (b)

(c) (d)

Supplementary Figure 3. The hybrid dynamical system model with the measured input-output

u and y. (a) Hysteresis Relay system. (b) Continuous Hysteresis Loop system. (c) Phototaxis

Robot system. (d) The nonlinear hybrid dynamical system.

Supplementary Figure 4. The position PI controller structure for the autonomous car.

3

Subsystem 1

Subsystem 2

Subsystem 3 Subsystem 4

∆u(k) = P (v(k − 1) − v(k))

+P (vexpect2 − vexpect1)

+I(vexpect2 − v(k))

∆u(k) = P (v(k − 1) − v(k))

+P (vexpect1 − vexpect2)

+I(vexpect1 − v(k))

∆u(k) = P (v(k − 1)

−v(k)) + I(vexpect1

−v(k))

∆u(k) = P (v(k − 1)

−v(k)) + I(vexpect2

−v(k))

Subsystem 1

Subsystem 2

Designed SystemImplemented System

straight(k) = 0

straight(k − 1) = 0

straight(k) = 0

straight(k − 1) = 1

straight(k) = 1

straight(k − 1) = 1

straight(k) = 1

straight(k − 1) = 0

straight(k) = 1

straight(k) = 0

∆u(k) = P (v(k − 1)

−v(k)) + I(vexpect1

−v(k))

∆u(k) = P (v(k − 1)

−v(k)) + I(vexpect2

−v(k))

Supplementary Figure 5. Left: a more complicated hybrid dynamical system model due to dis-

cretization and switching. Right: the correct hybrid dynamical system model that we would like

to design.

Supplementary Figure 6. The flow chart of the PI algorithm.

4

Supplementary Figure 7. The IHYDE pinpoints the implementation error that leads to a failure

in the autonomous car experiment. Left: the identified model from experimental data. Right: the

designed system. The two subsystems are swapped around due to a design bug.

Supplementary Figure 8. The experiment platform of Chua’s circuit built in the lab.

5

(a) (b)

(c) (d)

Supplementary Figure 9. Experiments of Chua’s circuit. (a) the circuit structure. (b) the current-

voltage characteristics of the nonlinear resistor. (c) the circuit structure of nonlinear resistor with

specified current-voltage realization. (d) The output trajectory associated with different colors

generated by different subsystems.

Gearbox

 Motor

Generator

Load

Power Supply
(380V)

Inverter

 Fan

Couplings

Couplings

Supplementary Figure 10. The corresponding schematic diagram of the wind turbine system plat-

form.

6

0 20 40 60 80
k

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

i

Supplementary Figure 11. The data fitting curve using data obtained from the wind turbine plat-

form using IHYDE.The original time-series data (lines connecting the dots) in the color associated

with the subsystem, the fitted data from the identified models (dots), and the location of the

transitions (changes in colors).

7

Substation

F
eed

er 1

1

2
19

3
23

20

21

2224

25

4

5

6

7

8

9

10

26

27

28

29

30

31

32

33

11

12
13

14

15

16

17

18

F
eed

er 2

F
eed

er 3

F
eed

er 4

Base configuration

F
eed

er 1

1

2
19

3
23

20

21

2224

25

4

5

6

7

8

9

10

26

27

28

29

30

31

32

33

11

12
13

14

15

16

17

18

Substation

F
eed

er 2

F
eed

er 3

F
eed

er 4

Changed configuration

ΔV10 < -0.05

ΔV21 < -0.05

Supplementary Figure 12. Subsystem models and transition logic of the smart grid example.

0 100 200 300 400 500 600

Time (ms)

-100

-80

-60

-40

-20

0

20

40

V
 (

m
V

)

Supplementary Figure 13. Model action potential V during stimulation at the frequency of 1 Hz.

8

100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8
subsystem

1

subsystem
2

100 150 200 250 300 350 400 450 500

time(ms)

0

0.2

0.4

0.6
subsystem

1

subsystem
2

Supplementary Figure 14. The value of gating variable x1 and x2. Different colors denote data

that are produced from different subsystems.

0 2 4 6 8 10

time (t)

0

0.5

1

y

Supplementary Figure 15. The observed output of Eq. (35) when a Dirac delta function is applied

to stimulate the system.

Subsystem 1 Subsystem 2

ẏ = �ay ẏ = �a(y � 30)

y  21

y � 19

Supplementary Figure 16. A counterexample of a constructed hybrid dynamical system that is not

able to be identified from data.

9

SUPPLEMENTARY TABLES

Supplementary Table 1. The identified results of method in [1] and IHYDE

Metrics # of Iterations=1 # of iterations=5

Method [1] IHYDE IHYDE

parameters
λ = 0.015,

ε = 0.1

λz = 0.015, εz = 0.25,

λw = 0.015, εw = 0.2

λz = 0.03, εz = 1e− 4,

λw = 0.008, εw = 0.1

Number

of Systems

2 2 2

Number of misclassified points 96 75 41

Dictionary 1 u u2 u3 u4 u5

Actual Subsystems 1 y = 0.5u2 + u− 0.5

Identified

Subsystems 1

y = 1.0371u5 − 0.1238u4

−0.6507u3 + 0.5462u2

+1.0627u− 0.5005

y = 0.0753u4 + 0.3866u2

+1.0079u− 0.4844

y = 0.4841u2

+0.9978u− 0.4984

Actual Subsystems 2 y = −0.5u2 + u+ 0.5

Identified

Subsystems 2

y = −0.6749u5 + 0.2908u4

+0.8616u3 − 0.7386u2

+0.8132u+ 0.4322

y = −0.5417u2

+1.0613u+ 0.4829

y = −0.4806u2

+0.9995u+ 0.4882

10

Supplementary Table 2. The identified subsystems and the selected hyperparameters based on the

minimum error principle.

Data Set λz λw εz εw
Mode

(mk)
Actual subsystem

Identified

subsystem
Dictionary

Hysteresis

Relay
0.1 0.01 1e− 4 0.0224

1 y = 1 y = 1.0020 polynomials in u up

to 5th order2 y = −1 y = −1.0014

Continuous

Hysteresis

Loop

0.1 0.1 1e− 4 0.1184

1
y = 0.5u2

+ u− 0.5

y = 0.4275u2 +

0.9954u− 0.4802 polynomials in u

up to 5th order

2
y = −0.5u2

+u+ 0.5

y = −0.5226u2 +

1.0190u+ 0.4999

Phototaxis

Robot
1e− 3 0.1 1e− 4 0.1619

1 y = u2 − u1
y = 0.9947u2 −

0.9947u1

1, u1 − u2,
1

u1−u2
, u21, u

2
2

2 y = 1
u1−u2

y = 0.9707
u1−u2

3 y = 0
y = 0.0062u1 −

0.0062u2

Nonlinear-

Hybrid-

System

1e− 4 0.01 1e− 4 1.2036

1 y = u1u2 y = 0.9951u1u2
u1+u2
u1−u2

, u1
6+u2

, u1u2,

u1, u2, sin(u1),

sin(u2), u21, u
2
2

2 y = 6u1
6+u2

y = 5.9567u1
6+u2

3 y = u1+u2
u1−u2

y = 0.9958u1+u2
u1−u2

11

Supplementary Table 3. A summary of datasets used for IHYDE.

Data Set Mode (mk) Behavior
No. of

Points

Destination

Mode
Transition No. of Transitions

Hysteresis Relay
1 y=1 1004 2 u > 0.5 33

2 y=-1 996 1 u < −0.5 32

Continuous

Hysteresis Loop

1 y = 0.5u2 + u− 0.5 999 2 u > 0.98 21

2 y = −0.5u2 + u+ 0.5 1001 1 u < −0.98 21

Phototaxis

Robot

1 y = u2 − u1 654
2 u4 = 1 10

3 u5 = 1 18

2 y = 1
u1−u2

585
1 u3 = 1 14

3 u5 = 1 11

3 y = 0 761
1 u3 = 1 15

2 u4 = 1 14

Nonlinear

Hybrid System

1 y = u1u2 605 3 u21 + u22 < 9 157

2 y = 6u1
6+u2

738 1 u21 + u22 > 25 158

3 y = u1+u2
u1−u2

657 1 u1u2 < 0 157

Autonomous

Car

(experimental

data)

1
∆u(k) = 9.5(380− v(k))

+48(v(k − 1)− v(k))
147 2 straight = 0 2

2
∆u(k) = 9.5(280− v(k))

+48(v(k − 1)− v(k))
249 1 straight = 1 2

Chua’s Circuit

(experimental

data)

1
10−5 dy1

dt
= 1.0858y2

−0.2115y1 − 0.5349
57

2 y1 > −1.5 2

2
10−5 dy1

dt
= 1.0858y2

+0.1451y1

21
1 y1 < −1.5 2

3 y1 > 1.5 1

3
10−5 dy1

dt
= 1.0858y2

−0.1994y1 + 0.5168
99

2 y1 < 1.5 2

Wind turbine

(experimental data)

1 Normal 61 2 k > 67 1

2 Fault 3 0

Power Grid

Fault Detection

1 Normal 30 2 t > 30 1

2 Fault 10 1 0

Smart Grid
1 Topology1 180 2 ∆V10 < −0.05 3

2 Topology2 180 1 ∆V21 < −0.05 2

Human Atrial Action

Potential Models

1 Normal 707 2 V < −40 1

2 Disease 560 1 0

12

Supplementary Table 4. The detailed information of Hysteresis Relay data.

Original data points 2000

Sampling rate 1

Used data points 2000

Number of points (subsystem 1) 1004

Number of points (subsystem 2) 996

Number of transitions (S1 to S2) 33

Number of transitions (S2 to S1) 32

Supplementary Table 5. The identified result and details of Hysteresis Relay.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library Φ 1

Identified subsystem 1 y = 0.9999 y = 1.0013 y = 1.0027 y = 1.0040

Identified subsystem 2 y = −0.9999 y = −1.0004 y = −1.0009 y = −1.0014

λz 1e− 3

εz 1e− 4

λw
0.05

εw 0.2

Number of

misclassified points

0

13

Supplementary Table 6. The identified result and details of Hysteresis Relay with redundant

dictionary functions.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library Φ 1 u u2 u3 u4 u5

Identified subsystem 1 y = 0.9999 y = 1.0013 y = 1.0027 y = 1.0038

Identified subsystem 2 y = −0.9999 y = −1.0004 y = −1.0009 y = −1.0014

λz 1e− 3

εz 1e− 4

λw
0.05

εw 0.2

Number of

misclassified points

0

Supplementary Table 7. The identified transition logic of Hysteresis Relay.

Systems Subsystem 1 Subsystem 2

Subsystem 1 u > 0.4995

Subsystem 2 u < −0.4987

Library Ψ 1 u

β 0.1

14

Supplementary Table 8. The identified transition logic of Hysteresis Relay when existing redundant

dictionary functions.

Systems Subsystem 1 Subsystem 2

Subsystem 1 u > 0.4995

Subsystem 2 u < −0.4987

Library Ψ 1 u e(10(sin(u2))+10) log(|u|)
sin(u) u2 u4

β 0.1

Supplementary Table 9. The detailed information of Continuous Hysteresis Loop data.

Original data points 2000

Sampling rate 1

Used data points 2000

Number of points (subsystem 1) 999

Number of points (subsystem 2) 1001

Number of transitions (S1 to S2) 21

Number of transitions (S2 to S1) 21

15

Supplementary Table 10. The identified systems of Continuous Hysteresis Loop for both noiseless

and noisy datasets. We also present the tuning parameters for different noise levels.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library Φ polynomials in u up to second order

Identified

subsystem 1

y = 0.4998u2

+1.0000u

−0.4999

y = 0.4989u2

+1.0003u

−0.4996

y = 0.4920u2

+0.9999u

−0.4982

y = 0.4842u2

+0.9980u

−0.4961

Identified

subsystem 2

y = −0.5042u2

+1.0021u

+0.5008

y = −0.5072u2

+1.0031u

+0.5015

y = −0.5172u2

+1.0055u

+0.5032

y = −0.5133u2

+0.9966u

+0.5027

λz 0.005 0.005 0.008 0.03

εz 1e− 4

λw 0.005 0.001 0.005 0.008

εw 0.04 0.04 0.08 0.105

Number of

misclassified points
0 17 45 88

16

Supplementary Table 11. The identified result and details of Continuous Hysteresis Loop with

redundant dictionary functions.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library Φ 1 u u2 e−u u3

eu
cos(2u)
sin(u)3

Identified

subsystem 1

y = 0.4999u2

+1.0000u

−0.4999

y = 0.5001u2

+1.0001u

−0.4998

y = 0.4919u2

+0.9995u

−0.4979

y = 0.4811u2

+0.9994u

−0.4956

Identified

subsystem 2

y = −0.5010u2

+0.9995u

+0.5002

y = −0.4979u2

+0.9990u

+0.5001

y = −0.5123u2

+1.0000u

+0.5034

y = −0.5275u2

+0.9999u

+0.5047

λz 0.005 0.005 0.008 0.03

εz 1e− 4

λw 0.005 0.001 0.005 0.008

εw 0.04 0.04 0.08 0.105

Number of

misclassified points
0 11 45 94

Supplementary Table 12. The identified transition logic of the Continuous Hysteresis Loop without

redundant dictionary functions using noiseless data.

System Subsystem 1 Subsystem 2

Subsystem 1 u > 0.9803

Subsystem 2 u < −0.9799

Library Ψ 1 u

β 10

17

Supplementary Table 13. The identified transition logic of the Continuous Hysteresis Loop with

noiseless data and redundant dictionary functions.

System Subsystem 1 Subsystem 2

Subsystem 1 u > 0.9803

Subsystem 2 u < −0.9799

Library Ψ 1 u 1
u2

cosu
sinu3

β 10

Supplementary Table 14. The detailed information of Phototaxis Robot data.

Original data points 2000

Sampling rate 1

Used data points 2000

Number of points (subsystem 1) 654

Number of points (subsystem 2) 585

Number of points (subsystem 3) 761

Supplementary Table 15. The transition distribution for Phototaxis Robot example.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 14 15

Subsystem 2 10 14

Subsystem 3 18 11

18

Supplementary Table 16. The identified result and details of tuning parameters in the Phototaxis

Robot example without reduntant dictionary functions.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library Φ u1 − u2
1

u1−u2

Identified

subsystem 1

y = −0.9980

(u1 − u2)

y = −0.9978

(u1 − u2)

y = −0.9964

(u1 − u2)

y = −0.9955

(u1 − u2)

Identified

subsystem 2
y = 0.9908

u1−u2 y = 0.9947
u1−u2 y = 0.9820

u1−u2 y = 0.9821
u1−u2

Identified

subsystem 3
y = 0 y = 0 y = 0.0068(u1 − u2) y = 0.0095(u1 − u2)

λz 5e− 4 5e− 4 5e− 4 0.001

εz 1e− 4

λw 0.05 0.05 0.1 0.1

εw 0.05 0.06 0.2 0.2

Number of

misclassified points
0 11 28 47

19

Supplementary Table 17. The identified result and details of tuning parameters in the Phototaxis

Robot example with redundant dictionary functions.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library Φ 1 u1 − u2
1

u1−u2 u2
1 u2

2

Identified

subsystem 1

y = −1.0000

(u1 − u2)

y = −0.9957

(u1 − u2)

y = −0.9944

(u1 − u2)

y = −0.9941

(u1 − u2)

Identified

subsystem 2
y = 0.9998

u1−u2 y = 0.9891
u1−u2 y = 0.9727

u1−u2 y = 0.9689
u1−u2

Identified

subsystem 3
y = 0 y = −0.0002u2

2

y = 0.0046(u1

−u2) + 0.0014u2
1

y = 0.0064(u1

−u2) + 0.0019u2
1

λz 1e− 4 1e− 4 5e− 4 1e− 3

εz 1e− 4

λw 1e− 3 0.1 0.15 0.15

εw 0.005 0.06 0.2 0.2

Number of

misclassified points
0 11 28 48

Supplementary Table 18. The identified result and details of tuning parameters in the Phototaxis

Robot example.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 u3 < 0.4986u4 u3 < 0.5085u5

Subsystem 2 u4 < 0.4553u3 u4 < 0.5055u5

Subsystem 3 u5 < 0.5242u3 u5 < 0.4543u4

Library Ψ 1 u3 u4 u5

β 0.5

20

Supplementary Table 19. The identified transition logic for the Phototaxis Robot example.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 u3 < 0.4986u4 u3 < 0.5085u5

Subsystem 2 u4 < 0.4553u3 u4 < 0.5055u5

Subsystem 3 u5 < 0.5242u3 u5 < 0.4543u4

Library Ψ 1 u−1
1 u2 sin(u1) cos(u2) eu1u2 u3 u4 u5

β 0.5

Supplementary Table 20. The detailed information of Nonlinear Hybrid System data.

Original data points 2000

Sampling rate 1

Used data points 2000

Number of points (subsystem 1) 605

Number of points (subsystem 2) 738

Number of points (subsystem 3) 657

21

Supplementary Table 21. The transition distribution for Nonlinear Hybrid System example.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 157

Subsystem 2 158

Subsystem 3 157

Supplementary Table 22. The identified result and details of Nonlinear Hybrid System.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library Φ u1u2
6u1

6+u2
u1+u2
u1−u2

Identified subsystem 1 y = 0.9998u1u2 y = 0.9958u1u2 y = 0.9962u1u2 y = 0.9953u1u2

Identified subsystem 2 y = 0.9983 6u1
6+u2

y = 0.9961 6u1
6+u2

y = 0.9947 6u1
6+u2

y = 0.9939 6u1
6+u2

Identified subsystem 3 y = 0.9990u1+u2
u1−u2 y = 0.9945u1+u2

u1−u2 y = 0.9901u1+u2
u1−u2 y = 0.9949u1+u2

u1−u2

λz 1e− 6 1.5e− 4 1.5e− 4 1.5e− 4

εz 1e− 4

λw
0.03

εw 0.6 2 2 2

Number of

misclassified points
0 63 129 177

22

Supplementary Table 23. The identified result and details of Nonlinear Hybrid Systems when there

exists redundant dictionary functions.

Noise Np = 0 Np = 2% Np = 4% Np = 6%

Library Φ u1u2
6u1

6+u2
u1+u2
u1−u2 u1 u2 sin(u1) sin(u2) u2

1 u2
2

Identified subsystem 1 y = 0.9997u1u2 y = 0.9999u1u2 y = 0.9944u1u2 y = 0.9953u1u2

Identified subsystem 2 y = 0.9983 6u1
6+u2

y = 0.9960 6u1
6+u2

y = 0.9960 6u1
6+u2

y = 0.9963 6u1
6+u2

Identified subsystem 3 y = 0.9990u1+u2
u1−u2 y = 0.9975u1+u2

u1−u2 y = 0.9898u1+u2
u1−u2 y = 0.9877u1+u2

u1−u2

λz 1e− 5 5e− 5 1.5e− 4 1.5e− 4

εz 1e− 4

λw 0.03 0.03 0.032 0.0282

εw 0.6 0.8 2 2

Number of

misclassified points
0 67 129 175

Supplementary Table 24. The identified transition logic of Nonlinear Hybrid System.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 u2
1 + u2

2 < 8.9993

Subsystem 2 u2
1 + u2

2 > 24.9803

Subsystem 3 u1u2 < −0.013

Library Ψ 1 u1u2 u2
1 + u2

2

β 0.01

23

Supplementary Table 25. The identified transition logic of Nonlinear Hybrid System when there

are redundant dictionary functions.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1
34.6143u2

1 + 35.8259u2
2

< 316.4377

Subsystem 2
11.8852u2

1 + 11.8905u2
2

> 296.5977

Subsystem 3 u1u2 < −0.013

Library Ψ 1 u1 u2 eu1+u2 u1u2 u2
1 u2

2

β 0.01

Supplementary Table 26. The detailed information of experiment data from car.

Original data points 400

Used data points 396

Number of points (Straightway) 147

Number of points (curve) 249

Number of transitions (straightway to curve) 2

Number of transitions (curve to straightway) 2

Supplementary Table 27. The identified transition logic of autonomous car testbed.

System Straightaway Curve

Straightaway straight < 0.3318

Curve straight > 0.6072

Library Ψ 1 straight sin(v(k)) cos(v(k)) tan(v(k)) v(k−1)−v(k−4)
v(k−2) v(k − 1) tan(v(k − 3))

β 0.001

24

Supplementary Table 28. The identified result and details of autonomous car testbed.

Library Φ 1 v(k) v(k − 1)

Speed control strategy Straightaway Curve

True strategy
∆u(k) = 9.5(380− v(k))

+48(v(k − 1)− v(k))

∆u(k) = 9.5(280− v(k))

+48(v(k − 1)− v(k))

True times 147 249

Identified

strategy

∆u(k) = 9.4957(379.9550− v(k))

+47.9742(v(k − 1)− v(k))

∆u(k) = 9.4960(279.9462− v(k))

+47.9888(v(k − 1)− v(k))

Identified

switching times
147 249

λz 0.01

εz 100

λw 1e− 5

εw 8

25

Supplementary Table 29. The identified result and details of autonomous car testbed with redun-

dant dictionary functions.

Library Φ all the polynomial combinations of v(k), . . . , v(k − 4) to fourth order

Speed control strategy Straightaway Curve

True strategy
∆u(k) = 9.5(380− v(k))

+48(v(k − 1)− v(k))

∆u(k) = 9.5(280− v(k))

+48(v(k − 1)− v(k))

True times 147 249

Identified strategy
∆u(k) = 9.4957(379.9554− v(k))

+47.9741v(k − 1)− v(k))

∆u(k) = 9.4959(279.9465− v(k))

+47.9888(v(k − 1)− v(k))

Identified

switching times
147 249

λz 0.01

εz 100

λw 1e− 5

εw 8

Supplementary Table 30. The detailed information of experiment data from Chua’s circuit.

Original data points 120000

Sampling rate 5× 106Hz

Down sampling 1:50:120000

Used data points 177

Number of points (subsystem 1) 57

Number of points (subsystem 2) 21

Number of points (subsystem 3) 99

26

Supplementary Table 31. The transition distribution of experiment data from Chua’s circuit.

System Subsystem 1 Subsystem 2 Subsystem 3

Subsystem 1 2

Subsystem 2 2 1

Subsystem 3 2

Supplementary Table 32. True parameters of the built Chua’s circuit.

Item Value Item Value

a −1.2309e− 3 c1 0.01µF

b −8.743e− 4 c2 0.1µF

b′ −8.864e− 4 dt 10−5s

τ 1.5 L 6.8mH

R 921 E 1.5V

27

Supplementary Table 33. The identified subsystems and transition logic of Chua’s circuit which

contains all subsystems with redundant dictionary functions.

Library Φ 1 y1 y2 e
y1 y1

y2

cos(0.1y1)2

1+y22
cos(y1 + y2)2

Identified subsystems

10−5 dy1
dt = 1.0758y2 − 0.2028y1 − 0.5405 y1 < −1.4348

10−5 dy1
dt = 1.0793y2 + 0.1576y1 − 1.5627 < y1 < 1.3137

10−5 dy1
dt = 1.0869y2 − 0.2127y1 + 0.4859 y1 > 1.4627

λz 0.05

εz 0.012

λw 0.01

εw 0.044

Library Ψ 1 y1 y2 sin(y2) cos(y1)
dy1
dt

sin(y1)+
dy1
dt

dy1
dt
y2

dy1
dt

β 0.01

Supplementary Table 34. The detailed information of experiment data from wind turbine system

platform.

Original data points 20701

Sampling rate 1000Hz

Down sampling 1:300:20701

Used data points 64

Number of points (normal) 61

Number of points (fault) 3

Number of transitions 1

28

Supplementary Table 35. The identified result and details of the gearbox broken tooth fault with

redundant dictionary functions.

System Gearbox

True fault time 68

Identified fault time 68

λz 1.5

εz 1e− 4

λw 5e− 5

εw 0.026

Library Φ
all the polynomial combinations

of y(k) · · · y(k − 5) to second order

Number of misclassified points 0

Library Ψ 1 k

β 0.1

Supplementary Table 36. The detailed information of data sampled during power system line fault

condition.

Original data points 40

Used data points 40

Number of points (normal) 30

Number of points (fault) 10

Normal to fault 1

29

Supplementary Table 37. The identified result and details of power system fault detection.

Bus Bus 6 and bus 12 Other bus except bus 1 Bus 1

True time for fault occurance 31 None None

Identified time for fault occurance 31 None None

λz 1e− 3 1e− 3 1e− 3

εz 0.008 0.008 0.008

λw 1e− 6 1e− 6 1e− 9

εw 0.05 0.05 0.05

Library Ψ 1 t

β 0.01 None None

30

Supplementary Table 38. The detailed information of smart gird data.

Original data points 180

Used data points 180

Number of points (subsystem 1) 90

Number of points (subsystem 2) 90

Number of transitions (S1 to S2) 3

Number of transitions (S2 to S1) 2

Supplementary Table 39. The detailed parameters of switch operators.

Transition rules Time Opened switch Closed switch Bus of load change

T1→2 31, 91, 151 11− 12 12− 22 9, 10, 11

T2→1 61, 121 12− 22 11− 12 20, 21, 22

31

Supplementary Table 40. The identified result and detailed parameters.

System model Subsystem 1 Subsystem 2

True switching time 31, 91, 151 61, 121

Identified switching time 31, 91, 151 61, 121

λz 5e− 3

εz 1.5e− 2

λw 1e− 6

εw 5e− 2

Number of misclassified points 0

Supplementary Table 41. The identified transition logic for the model switching in smart grid.

System Subsystem 1 Subsystem 2

Subsystem 1 ∆V10 < −0.0499

Subsystem 2 ∆V21 < −0.0472

Library Ψ 1 ∆V1 · · ·∆V33

β 5.8e− 5

Supplementary Table 42. The detailed information of data sampled from AP model.

Original data points 120001

Sampling rate 200Hz

Down sampling 24000:60:100000

Used data points 1267

Number of points (subsystem 1) 707

Number of points (subsystem 2) 560

Number of transitions (S1 to S2) 1

32

Supplementary Table 43. The identified results and detailed parameters of AP model.

Gating

variable

x1
x2

Actual

subsystem 1
ẋ1 = −ρ12x1 ẋ2 = −0.3x2

exp(−2.535×10−7V)
1+exp[−0.1(V+32)]

Actual

subsystem 2

ẋ1 = 0.135 exp(−V+80
6.8)−

0.135x1 exp(−V+80
6.8)− ρ11x1

ẋ2 = α21 − α21x2 −

0.1212x2
exp(−0.01052V)

1+exp[−0.1378(V+40.14)]

Actual change

time
332.10 ms 332.10 ms

Identified

subsystem 1
ẋ1 = −0.9999ρ12x1 ẋ2 = −0.3000x2

exp(−2.535×10−7V)
1+exp[−0.1(V+32)]

Identified

subsystem 2

ẋ1 = 0.1349 exp(−V+80
6.8)−

0.1349 exp(−V+80
6.8)x1 −

0.9987ρ11x1

ẋ2 = 1.0000α21 − 1.0000α21x2 −

0.1212x2
exp(−0.01052V)

1+exp[−0.1378(V+40.14)]

Identified

change time
332.10 ms 332.10 ms

λz 1e-4 1e-4

εz 3e-5 3e-5

λw 3e-5 1e-5

εw 5e-5 5e-5

Library Φ exp(−V+80
6.8) exp(−V+80

6.8)x1

ρ11x1 ρ12x1

α21 α21x2 x2
exp(−0.01052V)

1+exp[−0.1378(V+40.14)]

x2
exp(−2.535×10−7V)
1+exp[−0.1(V+32)]

Number of

misclassified

points

0 0

33

Supplementary Table 44. The identified transition logic for gating variable x1.

gating variable x1 Subsystem 1 Subsystem 2

Subsystem 1 V < −40.0093

Library Ψ 1 V

β 1e-6

Supplementary Table 45. The identified transition logic for gating variable x2.

gating variable x2 Subsystem 1 Subsystem 2

Subsystem 1 V < −40.0093

Library Ψ 1 V

β 1e-6

34

Supplementary Table 46. The detailed parameters and identified results of AP model with poly-

nomial dictionary functions.

Gating variable x1 x2

Actual subsystem

1
ẋ1 = −ρ12x1 ẋ2 = −0.3x2

exp(−2.535×10−7V)
1+exp[−0.1(V+32)]

Actual subsystem

2

ẋ1 = 0.135 exp(−V+80
6.8)−

0.135x1 exp(−V+80
6.8)− ρ11x1

ẋ2 = α21 − x2α21 −

0.1212x2
exp(−0.01052V)

1+exp[−0.1378(V+40.14)]

Actual change

time
332.10 ms 332.10 ms

Identified

subsystem 1

ẋ1 = 0.0006− 0.0003V −

2.1791x1 − 0.0608x1V −

0.2323V 2 − 0.0004x1V
2 −

0.0032x2
1V − 0.0256V 3

ẋ2 = 0.0610x2 − 0.0218x2
2

Identified

subsystem 2

ẋ1 = −1.0506x2
1 + 0.0762x1V −

5.9332× 1032x3
1 − 0.0033x1V

2 +

3.9061×1031x2
1V +7.9368×1064x3

1

ẋ2 = −0.2525x2 + 0.0003x3
2

Identified change

time
331.80 ms 331.80 ms

λz 1e-4 1e-5

εz 3e-5 3e-5

λw 3e-8 1e-4

εw 5e-5 5e-5

Library Φ
polynomials of V, x1 up to third

order

polynomials of V, x2 up to third

order

Number of

misclassified

points

1 1

35

Supplementary Table 47. The details of simulation datasets in [2].

Systems Form
Data used to train [2] Data used to train IHYDE

time points time points

Linear 2D d
dt

x
y

 =

−0.1 2

−2 −0.1


x
y

 t ∈ [0, 25] 2501 t ∈ [0, 10] 1001

Cubic 2D d
dt

x
y

 =

−0.1 2

−2 −0.1


x3
y3

 t ∈ [0, 25] 2501 t ∈ [0, 10] 1001

Linear 3D d
dt


x

y

z


=


−0.1 2 0

−2 −0.1 0

0 0 −0.3




x

y

z

 t ∈ [0, 50] 5001 t ∈ [0, 10] 1001

Logistic map
xk+1 = µkxk(1− xk)

µk+1 = µk

9990 990

Lorenz system

ẋ = 10y − 10x

ẏ = 28x− xz − y

ż = xy − 2.6667z

t ∈ [0.001, 100] 100000 t ∈ [0.01, 10] 1000

Lorenz TVDiff

ẋ = 10y − 10x

ẏ = 28x− xz − y

ż = xy − 2.6667z

t ∈ [0.001, 50] 48002
t ∈ [0.001, 50]

downsampling=25

1921

Hopf TVDiff

ẋ = ux− y − x3 − xy2

ẏ = x+ uy − yx2 − y3

u̇ = 0

399014 downsampling=100 3991

36

Supplementary Table 48. The identified results using datasets in [2]. Seven prototypical

systems were examined, IHYDE successfully discovers all of them.

Identified systems by [2] Identified systems by IHYDE

Linear 2D d
dt

x
y

 =

−0.1015 2.0027

−1.9990 −0.0994


x
y

 d
dt

x
y

 =

−0.0993 2.0054

−2.0004 −0.1048


x
y


Cubic 2D d

dt

x
y

 =

−0.0996 1.9970

−1.9994 −0.0979


x3

y3

 d
dt

x
y

 =

−0.1015 2.0005

−2.0010 −0.1002


x3

y3


Linear 3D d

dt


x

y

z

 =


−0.0996 2.0005 0

−1.9997 −0.0994 0

0 0 −0.3003



x

y

z

 d
dt


x

y

z

 =


−0.0992 2.0002 0

−1.9999 −0.0991 0

0 0 −0.2983



x

y

z



Logistic map
xk+1 = µkxk(0.9993− 0.9989xk)

µk+1 = 1.0000µk

xk+1 = µkxk(1.0005− 1.0006xk)

µk+1 = 1.0000µk

Lorenz system

ẋ = 9.9998y − 9.9996x

ẏ = 27.9980x− 0.9999xz − 0.9997y

ż = 1.0000xy − 2.6665z

ẋ = 10.0060y − 9.9968x

ẏ = 27.9480x− 0.9957xz − 0.9954y

ż = 1.0010xy − 2.6673z

Lorenz TVDiff

ẋ = 9.9999y − 9.9856x

ẏ = 27.7382x− 0.9949xz − 0.8763y

ż = 1.0000xy − 2.6618z

ẋ = 10.0087y − 10.0227x

ẏ = 27.6620x− 0.9934xz − 0.8461y

ż = 0.9993xy − 2.6640z

Hopf TVDiff

ẋ = 0.9269ux− 0.9920y − 0.9208x3

−0.9211xy2

ẏ = 0.9914x+ 0.9294uy − 0.9244yx2

−0.9252y3

u̇ = 0

ẋ = 0.9193ux− 0.9921y − 0.9109x3

−0.9179xy2

ẏ = 0.9911x+ 0.9164uy − 0.9127yx2

−0.9130y3

u̇ = 0

37

Supplementary Table 49. The tuning parameters are presented for these prototypical examples.

Noise λz εz λw εw

Linear 2D 0.05 1 1e− 4 2e− 3 0.2

Cubic 2D 0.05 1 1e− 4 2e− 3 0.2

Linear 3D 0.01 1 1e− 4 2e− 3 0.05

Logistic map 0.01 1 1e− 4 2e− 3 0.05

Lorenz system 1 1 1e− 4 1e− 3 4

Lorenz TVDiff 0.01 1 1e− 4 4e− 3 3

Hopf TVDiff 0.005 1 1e− 4 3e− 3 0.1

Supplementary Table 50. The selected hyperparameters and the identified subsystems for example

3.

Library Φ polynomials of x up to fifth order

Actual subsystem 1 ẋ = −x3

Identified subsystem 1 ẋ = −0.9975x3

Actual subsystem 2 ẋ = − cos(x)

Identified subsystem 2 ẋ = −0.9960 + 0.4651x2

λz 1e− 6

εz 1e− 2

λw 1e− 4

εw 0.1826

38

Supplementary Table 51. Directories in the IHYDE toolbox.

Directories Description

/CPSid main functions and examples

/CPSid/data the used data sets

/CPSid/tools functions for IHYDE

/CPSid/EX-grid-search examples of grid search

/CPSid/EX-nonhybrid examples of nonhybrid

/CPSid/SLR dev functions for sparse logistic regression

/CPSid/comparison compare with reference [1]

Supplementary Table 52. The introduction of function library which can construct library for

further identification.

Function library Description

yin
an m by n matrix which contains time-course input-output data.

In here, m is the sample number, and n is the number of variables.

memory the historical data (previous memory time instants) is used in yin.

polyorder used to construct the polynomial of the highest order (up to fifth order).

basis function
add more dictionary functions. It can be turned off,

if basis function.work set as ’off’.

yout constructed dictionary matrix Φ.

39

Supplementary Table 53. The introduction of function ihyde. The ihyde can be used to identify

each subsystem.

Function ihyde Description

parameter.y the output data.

parameter.normalize y set to 1 if y need to be normalized.

parameter.max s the max number of subsystems that could be identified by IHYDE.

parameter.epsilon a 2-dimensional parameter vector [εz, εw] for finding new subsystems.

parameter.lambda a 2-dimensional parameter vector [λz, λw] for identifying the subsystems.

parameter.Phi the constructed matrix Φ.

parameter.MAXITER the max number of iterations that the sparsesolver function solves.

result. idx sys the index of each subsystem.

result.sys the model of each subsystem.

result.theta z of each identified subsystem.

result.error the fitting error.

40

Supplementary Table 54. The introduction of function finetuning. Based on the minimum error

principle, it finetunes the result from ihyde and outputs the final result.

Function finetuning Description

result.lambda
the trading-off parameter λ of the sparsesolver function.

Parameter.lamdba(2) is set as the default value.

result.epsilon the threshold in finetuning. Parameter.epsilon(2) is set as the default value.

result.threshold the threshold for subsystem clustering.

final result.idx the index of each subsystem.

final result.sys the model of each subsystem.

final result.allerror the error which compared with the true output.

41

Supplementary Table 55. The introduction of function ihydelogic.

Function ihydelogic Description

para log.Phi2 constructed dictionary matrix Ψ for inferring transition logic of each subsystem.

para log.idx sys the index of each subsystem.

para log.beta the tradeoff parameter in the `1 regularized sparse logistic regression.

para log.y the output data.

para log.normalize set to 1 if Ψ need to be normalized.

42

SUPPLEMENTARY NOTES

Supplementary Note 1: Notations

Rn: denotes the n-dimensional Euclidean space.

Z: denotes the set of integers, . . . ,−1, 0, 1,

‖x‖`0 : the `0-norm of a vector x, i.e., ‖x‖`0 =
∑n

i=1 |xi|0 (defining 00 = 0).

‖x‖`1 : the `1-norm of a vector x, i.e., ‖x‖`1 =
∑n

i=1 |xi|.

‖x‖`2 : the `2-norm of a vector x, i.e., ‖x‖`2 = (
∑n

i=1 |xi|2)1/2.

‖A‖F : the Frobenius-norm of a matrix A, i.e., ‖A‖F = (trace(ATA))1/2.

A: for a matrix A ∈ RM×N , A[i, j] ∈ R denotes the element in the ith row and jth column,

A[i, :] ∈ R1×N denotes its ith row, A[:, j] ∈ RM×1 denotes its jth column.

α: for a column vector α ∈ RN×1, α[i] denotes its ith element.

Ik: a k-dimensional identity matrix.

0k: a k-dimensional zero matrix.

Supplementary Note 2: Introduction to Hybrid Dynamical Systems

A dynamical system describes how state variables (typically physical quantities) evolve

with respect to time. Following definitions in [3], we define three types of variables.

1. continuous state variables: if the state variable takes value in Rn for n ≥ 1.

2. discrete state variables: if the state variable takes value in a finite set, for example,

{1, 2, 3, . . .}.

3. hybrid state variables: if a part of the state variables are continuous and the other

discrete.

Based on the time set over which the state evolves, we classify the dynamical systems as:

• continuous time: if the set of time is a subset of the real line R. Normally we use t ∈ R

to denote the continuous time. The evolution of the state-variables in continuous time

can be described as ordinary differential equations.

43

• discrete time: if the set of time is a subset of the integers. Normally we use k ∈ Z

to denote discrete time. The evolution of the state-variables in discrete time can be

described as difference equations.

A hybrid dynamical systemH, is defined as a tuple, H = (W ,M,F , T) with the following

definitions:

• W defines a subspace in Rm+n for input-output variables u(t) ∈ Rm,y(t) ∈ Rn;

• M defines a countable, discrete set of modes in which only a single mode, m(t) ∈
{1, 2, . . . , K}, is occupied at a given time;

• F defines a countable discrete set of first-order differential equations:

F =

{
dy(t)

dt
= Fk (y(t),u(t))) | k = 1, 2, . . . , K

}
.

• T defines a countable discrete set of transitions, where Ti→j denotes a Boolean expres-

sion that represents the condition to transfer from mode i to j.

The signals y(t) and u(t) are sampled at a rate h > 0, i.e. sampled at times 0, h, 2h, 3h....

For fast enough sampling (or low h), standard system identification typically obtains first

a discrete-time system, and then coverts it to a continuous-time system [4]. One of the

simplest methods to approximate derivatives is to consider

dy(t)

dt
≈ y(t+ h)− y(t)

h
,

which yields the discrete-time system

y(t+ h) = y(t) + h Fk(y(t),u(t)) , fk(y(t),u(t)), k ∈ {1, 2, . . . , K}.

For simplification of notation, assume the system can be written as

y(t+ h) = fk(y(t),u(t)) , Ik(y(t)) + hk(u(t)), k ∈ {1, 2, . . . , K}.

Hence, the class of systems considered is discrete-time, Markovian and nonlinear. While

this is already a very rich class of systems, it can be easily extended to more general non-

linear systems, including, for example, dynamics of non-separable nonlinear functions of

(y(t),u(t)).

44

Without loss of generality, we can rescale the time variable t so that h = 1. Thus, we

can construct a mathematical model for hybrid dynamical systems

m(t+ 1) = T (m(t),y(t),u(t)),

y(t+ 1) = f(m(t),y(t),u(t)) =


f1(y(t),u(t)), if m(t) = 1,

... ,
...

fK(y(t),u(t)), if m(t) = K.

(1)

Example 1 Consider again the temperature control system in Supplementary Figure 1, con-

sisting of a heater and a thermostat. The variables in this model are the room temperature

y(t) ∈ R and the operating mode of the heater (on or off). Assuming a sampling time of

h > 0, we obtain the following approximate difference equations (discretized from an ordinary

differential equation) for the temperature

Subsystem 1 (heat off) :
y(t+ 1)− y(t)

h
≈ −ay(t), ⇒ y(t+ 1) = (1− ah)y(t).

Subsystem 2 (heat on) :
y(t+ 1)− y(t)

h
≈ −a(y(t)− 30), ⇒ y(t+ 1) = (1− ah)y(t) + 30ah.

These two equations model how the temperature changes under the heater off or on,

respectively. The transition logics between the two subsystems are

Transition logic from subsystem 1 to 2 T1→2 : y ≤ 19,

Transition logic from subsystem 2 to 1 T2→1 : y ≥ 21,

representing the controller of the operating mode of the heater. Given this hybrid dynamical

system, we can study its stability or simulate it to check possible state trajectories. Note that,

in practice, hybrid dynamical systems, such as this one, are usually unknown or only partially

known. The goal of this paper is to infer both the above subsystems and the transition logic

(Fig. 1(a)) from only time-series data of the temperature in Fig. 1(c).

SUPPLEMENTARY METHODS

Supplementary Method 1: IHYDE Algorithm

When a hybrid dynamical system has a single subsystem, i.e., K = 1 in Eq. (1), it becomes

a time-invariant nonlinear dynamical system. We start by briefly reviewing identification

45

tools for this class of systems from [2, 5], since parts of our proposed algorithm are based on

these tools. As explained before, our algorithm uses only time-series data to directly model

the system. Hence, the first step is to collect time-course input-output data (y(t),u(t))

uniformly sampled at a number of discrete time indices t = 1, 2, . . . ,M + 1. Let

Y =

 y(1) y(2) . . . y(M)


T

, U =

 u(1) u(2) . . . u(M)


T

.

Note that y(t) ∈ Rn and u(t) ∈ Rm, and so Y ∈ RM×n and U ∈ RM×m. Next, we construct

an overdetermined library Φ(Y,U) consisting of potential nonlinear functions that appear

in fk in Eq. (1). It is expected that the true nonlinearities are part of this library in order

to recover the true dynamics. The choice of these functions is guided by the particular field

of study. For example, the library would consist of sinusoidal functions in pendulums, and

polynomial and sigmoidal functions in biochemical networks. As an illustration, a library

consisting of constant or polynomials would result in the following dictionary matrix

Φ(Y,U) =

[
1 Y YP2 · · · U UP2 · · ·

]
.

Here, higher polynomials are denoted as YP2 ,YP3 , etc. For example, YP2 denotes the

quadratic nonlinearities in the state variable Y , given by:

YP2 =



y2
1(1) y1(1)y2(1) · · · y2

n(1)

y2
1(2) y1(2)y2(2) · · · y2

n(2)

...
...

. . .
...

y2
1(M) y1(M)y2(M) · · · y2

n(M)


.

Basically, each column of Φ(Y,U) represents a candidate function for a nonlinearity in

f . The number of functions in the library may be very large. However, since only a very

small number of these nonlinearities appear in each row of Φ(Y,U), we can set up a sparse

regression problem to determine the sparse matrices of coefficients W =

[
w1 w2 . . . wn

]
,

where wi ∈ RP×1 and P is the total number of candidate functions in the library. The

nonzero elements in W determine which nonlinearities are active [2, 5] and the corresponding

46

parameters. Let

Ȳ ,



y1(2) . . . yn(2)

y1(3) . . . yn(3)

...
. . .

...

y1(M + 1) . . . yn(M + 1)


.

This results in the overall model Ȳ = Φ(Y,U)W + ξ, where ξ =

[
ξ1 ξ2 . . . ξn

]
and

ξi ∈ RM×1 is zero-mean i.i.d. Gaussian noise with covariance matrix λI, for some λ ≥ 0.

The work in [5], developed methods based on Sparse Bayesian Learning for identifying each

wi in the above equation as the following optimization:

w∗i = arg min
wi

‖ȳi −Φwi‖2
`2

+ λ‖wi‖`1 . (2)

Inferring Sub-systems

When K > 1, we can use a similar formulation as above. However, the outstanding

challenge is that there is no single W typically fits all the data due to the hybrid nature of

the dynamical system. In addition, we have no information about which data point belongs

to which subsystem. Next, we introduce a new method to tackle such a challenge.

Define Z = Ȳ − ΦW − ξ, where ξ is defined similarly as realizations of zero-mean

i.i.d. Gaussian measurement noise with covariance matrix λI. The goal is to find a Z∗ ,[
z∗1 z∗2 . . . z∗n

]
, Ȳ −ΦW∗ − ξ as sparse as possible, i.e.,

W∗ = arg min
W

n∑
i=1

‖zi‖`0 ,

subject to: Z = Ȳ −ΦW − ξ.
(3)

Correspondingly, we have z∗i = ȳi − Φw∗i − ξi, where ȳi is the ith column of Ȳ. The

interpretation of this optimization is to find a W (or equivalently a subsystem) that fits

most of the input-output data. As a result, the indexes of the zero entries of Z∗ correspond

to the indexes for input-output that can be fitted by a single subsystem. This initial idea

was similar to those presented in [1] for noiseless switching subsystem identification, yet

we now extend this idea to a robust Bayesian algorithm that works well for noisy data

(for detailed comparison, please refer to the following part: Supplementary Comparison).

47

To solve Eq. (3), assume, without loss of generality, that the dictionary matrix Φ is full

rank. Define a transformation matrix Θ in which each column spans the left null space of

Φ. Then, it follows that ΘȲ = ΘZ + Θξ. Using standard maximum likelihood estimate

and an appropriate Lagrange multiplier 1
2λz

, we now can rewrite the above problem as an

unconstrained minimization:

min
Z

1

2

∥∥∥(˜̄Y −ΘZ)TΠ−1(˜̄Y −ΘZ)
∥∥∥2

F
+ λz

n∑
i=1

‖zi‖`0 , (4)

where ˜̄Y , ΘȲ and Π = ΘΘT .

Remark 1 This is the key step in the later proposed algorithm; there is no W in this

optimization after the transformation. Instead, we are optimizing over the residual Z.

However, this problem is known to be computationally expensive. Instead, we use the

following convex relaxation

Z∗ = arg min
Z

1

2

∥∥∥(˜̄Y −ΘZ)TΠ−1(˜̄Y −ΘZ)
∥∥∥2

F
+ λz

n∑
i=1

‖zi‖`1 .

We can decompose the above optimization to a number of smaller optimizations: for i =

1, . . . , n

z∗i = arg min
zi

1

2
(˜̄yi −Θzi)

TΠ−1(˜̄yi −Θzi) + λz‖zi‖`1 . (5)

Remark 2 Specifically, we used a Bayesian formulation to replace the optimizations in

Eq. (5) to achieve better empirical performance as detailed in the main text.

Once this problem is solved, we consider the index set I = {j| |z∗i [j]| ≤ εz} and further

identify the sparse coefficients w∗i using the following optimization

w∗i = arg min
wi

1

2
‖Ȳ[I, i]−Φ[I, :]wi‖2

`2
+ λw‖wi‖`1 .

The variables w∗i are the coefficients of the identified subsystem.

Remark 3 The reason to enforce w∗i to be sparse is due to the constructed dictionary matrix

Φ usually has extra terms that are not in the true dynamics.

We further define error = abs(ȳi − Φw∗i) (here abs is an elementary-wise operator which

returns the absolute value of every element of a vector) and we set the jth element of ȳi:

Ȳ[j, i] = 0 and the jth row of Θ: Θ[j, :] = 0 if the jth element of error is less than εw,

for some small εw > 0. This removes the data that has already been fitted by the subsys-

tem. Once we have the new Ȳ and Θ, we can solve the same problem with the remaining

48

time points (where the corresponding elements of Ȳ and the corresponding row of Θ are

nonzero) using the exact same procedure. The number of iterations gives the minimum num-

ber of subsystems. The proposed algorithm is summarized in Supplementary Algorithm 2.

The code implementation is available at https://github.com/HAIRLAB/CPSid with User’s

Manual in the Appendix. In what follows, we shall briefly discuss extensions and variants

of Supplementary Algorithm 2, which can empirically improve the performance of IHYDE.

Remark 4 When there is only one subsystem, we show that Zi should be a zero matrix

from the first optimization in Eq. (5). Eq. (6) should be the same as Eq. (2) since I =

{1, 2, . . . ,M+1}, which recovers the results for time-invariant nonlinear system identification

in [2, 5]. As a result, IHYDE provides a unified point of view to the subsystem identification

problem for any K ∈ {1, 2, . . .}.

49

Algorithm 2 Sub-systems Identification Algorithm
1: Input: Collect input-output data u(t) and y(t) for t = 1, 2, . . . ,M + 1. Two pre-specified

thresholds εz and εw, two tuning parameters λz and λw, the upper bound of the number of

subsystems Kmax

2: Output: Return {Wi} for i = 1, . . . ,K and the number of subsystems K

3: Construct dictionary matrix Φ(Y,U) based on prior knowledge of the system

4: for j = 1, . . . , n do

5: for i = 1, . . . ,Kmax do

6: Compute Θ in which all column span the left null space of Θ: ΘΦ = 0

7: Solve for zij from Algorithm 1

8: if zij = 0 then

9: K = i, Break

10: end if

11: h = 1 and I = []

12: for l = 1 . . . ,M do

13: if the lth element of zij , i.e., abs(zij [l]) ≤ εz then

14: Set I[h] = l and h→ h+ 1

15: end if

16: end for

17: Solve the following convex optimization

wi
j = arg min

wj

1

2
‖Ȳ[I, j]−Φ[I, :]wj‖2`2 + λw‖wj‖`1 (6)

18: error = abs(Ȳ[:, j]−Φwi
j)

19: for l = 1 . . . ,M do

20: if the lth element of error, i.e., error[l] ≤ εw then

21: Set Ȳ[l, j] = 0 and Θ[l, :] = 0

22: end if

23: end for

24: end for

25: end for

26: Return nonzero Wi ,

[
wi

1 . . . wi
n

]
for i = 1, . . . ,K and the number of subsystems K

50

Comparison to [1] in the subsystems identification procedure

Bako proposed a nice algorithm that novelly uses sparsity for identifying the switching

systems [1]. A general framework is proposed for noiseless setting and Section 3.4 of [1]

suggests two ways to deal with the identification of subsystems with noisy data. The first

method in [1] sets up an upper bound for the noise, and therefore this method is not practical

for Gaussian noise as we considered in this paper. The second method in [1] formulates an

optimization problem that tradeoffs the residual (mismatch between data and prediction

from the model) and the energy of the noise. Next, we will show that the second method

could be viewed as a special case of our framework. What is more, our method includes

several iterations that considerably improves the results, as seen in the numerical examples

below.

The identification of switching linear systems can be formulated as:

ȳi = Φwi + zi + ξi, i = 1, · · · , n, (7)

where each column of Φ ∈ RM×P is a candidate function. Note that residual zi is sparse,

and ξi is Gaussian noise. Reference [1] searches the subsystems as follows:

min
zi,ξi

λ‖zi‖`1 +
1

2
‖ξi‖2

`2
. (8)

Next, we show that, since the objective function is convex with respect to wi, it yields the

following form (where Φ+ is the pseudo inverse of Φ)

min
zi,wi

λ‖zi‖`1 +
1

2
‖ȳi −Φwi − zi‖2

`2
⇐⇒ min

zi
λ‖zi‖`1 +

1

2
‖(I−ΦΦ+)(ȳi − zi)‖2

`2
. (9)

Let Q , I−ΦΦ+, and rank(Φ) = k (k ≤ min(M,P)). Using singular value decomposition,

Φ can be written as follows:

Φ = ASVT =

[
A1M×k A2M×(M−k)

]S1 k×k 0

0 0


 VT

1 k×P

VT
2 (P−k)×P

 = A1S1V
T
1 .

Therefore, the explicit form of Φ+ is Φ+ = V1S
−1
1 AT

1 . Since A and V are unitary matrices,

one has

Q = IM −A1S1V
T
1 V1S

−1
1 AT

1 = A2A
T
2 .

51

Remark 5 Rather than having the derivation we had above, [1] gives the orthogonal projec-

tion matrix as, Q = IM −Φ(ΦTΦ)−1ΦT . Note that it is only true by assuming that Φ has

full rank (which is usually not the case in our numerical examples).

One can rewrite Eq. (9) as,

min
zi

λ‖zi‖`1 +
1

2
‖Q(ȳi − zi)‖2

`2
⇐⇒ min

zi
λ‖zi‖`1 +

1

2
(ȳi − zi)

TA2A
T
2 (ȳi − zi).

In contrast, IHYDE is based on Bayesian calculus. As stated before that the transforma-

tion matrix Θ is the orthogonal left null space of matrix Φ, namely, ΘΦ = 0. Left multiply

Eq. (7) by matrix Θ gives

Θȳi , ˜̄yi = Θzi + Θξi.

To get an estimate of zi, we use Bayesian modeling to treat all unknowns as stochastic

variables with certain probability distributions [6]. Given the characteristics of the noise ξi,

Θξi is Gaussian distributed with covariance matrix λΘΘT , i.e., Θξi ∼ N (0, λΘΘT). In

such a case, using the properties of Gaussian distributions, the likelihood of the output ˜̄yi

given the parameter zi is

p(˜̄yi|zi) = N (˜̄yi|Θzi, λΘΘT) ∝ exp

[
− 1

2λ
(˜̄yi −Θzi)

T (ΘΘT)−1(˜̄yi −Θzi)

]
. (10)

Hence, using maximum likelihood estimation, we have the following optimization

zi = arg min
zi

(˜̄yi − zi)
TΘT (ΘΘT)−1Θ(˜̄yi − zi). (11)

Next, we introduce sparse priors [7]. In Bayesian models, a prior density p(zi) is defined

as p(zi) =
∏M

j=1 p(Z[j, i]). Then, we can look at the first iteration, which yields

zi = arg min
zi

λ‖zi‖`1 +
1

2
(˜̄yi − zi)

TΘT (ΘΘT)−1Θ(˜̄yi − zi). (12)

One can get the orthogonal left null space matrix Θ = AT
2 using singular value decomposi-

tion. Therefore, Eq. (12) can be rewritten as,

min
zi

λ‖zi‖`1 +
1

2
(˜̄yi − zi)

TA2(AT
2 A2)−1AT

2 (˜̄yi − zi)

⇐⇒ min
zi

λ‖zi‖`1 +
1

2
(˜̄yi − zi)

TA2A
T
2 (˜̄yi − zi). (13)

Note that our method includes the methods in [1] as special cases by setting the number of

iterations to 1.

Next, we illustrate the performance differences between the second method in [1] and

IHYDE on the Continuous Hysteresis Loop data, with 6% noise. For both methods, 500

52

samples are used for training. Our method consists of an iterative algorithm; we are going

to compare two scenarios. First, we set the number of iterations in our method to 1, and

carefully tune the hyperparameters for both algorithms in order to make a fair compari-

son. Second, we set the number of iterations to 5 (which is a default setting for IHYDE).

Supplementary Table 1 shows the parameters and summarizes the identification results.

It can be seen that both method with the number of iterations set to 1 efficiently dis-

tinguish the number of subsystems. In theory, these two methods should have equivalent

performance. However, in practice, our present method identifies the sparse dynamics de-

scribing two subsystems; while the method in [1] does not. The reason for this could be

Eq. (8) of [1] optimizes over two variables zi, ξi. While our method in Eq. (12) optimizes

over one variable zi. Since these optimizations are solved by first-order optimization meth-

ods, such as variants of gradient descent, such searches are prone to stuck in local minimum

when there are a larger number of variables. More importantly, our method with 5 itera-

tions (default setup) accurately identifies the dynamics describing two subsystems, showing

an improved performance. In addition, the methods in [1] do not recover the transition

rules, while IHYDE does, as shown below.

Inferring Transition Logics

Once the subsystems have been identified, we can assign every input-output data point

(u(t),y(t)) to a specific subsystem as shown in Supplementary Figure 1. The next step is

to identify the transition logic between different subsystems. We first convert the problem

of identifying the transition logic to a standard sparse logistic regression problem which

can be efficiently solved by many methods in the literature. The scheme is illustrated in

Supplementary Figure 2.

To proceed, we define ηi(t) as the set membership which equals to 1 only if the sub-

system i is active at discrete-time t or otherwise it equals to 0. The goal is to identify

the transition rules Ti→j between any subsystems i, j. These functions are known from

the information in the subsystem identification above. Define also step(x), which equals

1 if x ≥ 0, and 0 otherwise. Mathematically, we are searching for a nonlinear function

g, such that step(g(y(t),u(t))) specifies the membership. Due to non-differentiability of

step functions at 0, we alternatively relax the step function to a sigmoid function, i.e.,

53

ηj(t+ 1) ≈ 1
1+e−g(y(t),u(t)) , where j is a potential subsystem that we can jump to at time t+ 1.

Assuming we are in subsystem i at time t, the fitness function to jump to subsystem j at

time t+ 1 is then
M∑
t=1

ηi(t)

∥∥∥∥ηj(t+ 1)− 1

1 + e−g(y(t),u(t))

∥∥∥∥2

`2

. (14)

To solve the optimization in (14), we can parameterize g(y(t),u(t)) as a linear combination

of over-determined dictionary matrix, i.e., g(y(t),u(t)) , Ψ(Y,u)[t, :]v, in which Ψ can

be constructed similarly as Φ in the previous section and v is a vector of to-be-discovered

parameters. The cost function only takes non-zero value when ηi(t) = 1. Let D , {t|ηi(t) =

1, t = 1, · · · ,M}, then

M∑
t=1

ηi(t)

∥∥∥∥ηj(t+ 1)− 1

1 + e−g(y(t),u(t))

∥∥∥∥2

`2

=
∑
t∈D

∥∥∥∥ηj(t+ 1)− 1

1 + e−Ψ[t,:]v

∥∥∥∥2

`2

. (15)

After this transformation, the minimization of Eq. (15) is known as the logistic regression.

Hence, we can use standard gradient descent method to solve the logistic regression [8].

Similarly, we can also add an `1 regularizer in the optimization, i.e., we minimize the

following expression ∑
t∈D

∥∥∥∥ηj(t+ 1)− 1

1 + e−Ψ[t,:]v

∥∥∥∥2

`2

+ β‖v‖`1 , (16)

where β is a predefined parameter. There are many Matlab codes for sparse linear logistic

regression. Here, we adopt the implementation framework proposed in [9].

Algorithm 3 Transition Logic Identification Algorithm
1: Input: Input-output data y(t),u(t) and ηi(t), i = 1, 2 . . . ,K and t = 1, 2, . . . ,M

2: Output: Transition logic Ti→j(y(t),u(t)) for any pair i, j

3: for i = 1, . . . ,K do

4: for j 6= i do

5: Construct the dictionary matrix Ψ from prior knowledge as described in the main text

6: The solution to the logistic regression in Eq. (16) gives the transition model for Ti→j
7: end for

8: end for

9: Return all transition logic mapping T

54

Principles for Parameter Tuning

We tune hyperparameters based on minimum error principle described below. For a set

of determined parameters λz, λw, εz, εw, we compute the fitting error for each subsystem on

test data points based on Akaike information criterion (AIC) given by

err = 2µ+ 2
n∑
r=1

√√√√ M∑
i=1

min
j∈{1,··· ,K}

(Ȳ[i, r]−Φ[i, :]wj
r)2, (17)

where µ represents the number of non-zeros terms in all identified subsystems, and K rep-

resents the number of identified subsystems. This is a similar equation to Eq. (4).

To search for hyperparameters, we empirically set an initial grid and search the optimal

hyperparameters, which is the one with the minimum AIC-type error. The initial grid is

divided into 210 combinations as follows:

λz ∈ {10−7+m|m = 1, 2, 3, 4, 5, 6, 7},

λw ∈ {10−4+m|m = 1, 2, 3},

εz ∈ {10−5+m|m = 1, 2},

εw ∈ {0.001m‖Ȳ[Itrain, i]‖2|m = 1, 3, 5, 7, 9; i = 1, . . . , n}.

Next, we detail the steps of this test strategy and illustrate it on four examples. The data con-

tains 4000 samples with 6% noise. Of those, 500 samples, denoted by Itrain = {1, 2, . . . , 500},
are used for training, and all the samples, denoted by Itest = {1, 2, . . . , 4000}, are used for

testing. Supplementary Table 2 summarizes the optimal hyperparameters and the identified

subsystems obtained from the proposed minimum error principle. These examples illustrate

that this initial grid and the minimum error principle can be useful for hyper-parameter

tuning. Indeed, the identified parameters of all subsystem are good approximations of the

true model. Note that, in general, this initial grid can be extended until the algorithm

achieves good performance (low residuals).

SUPPLEMENTARY EXAMPLES

This section applies IHYDE to a number of examples ranging from power systems to

robotics, showcasing the wide range of applicability of the proposed IHYDE method. We

55

will test the IHYDE on more than 10 different applications. The data structure of each

dataset is shown in Supplementary Table 3.

Example 1: Hysteresis Relay

One of the most common Cyber Physical Systems is the Hysteresis Relay. It is found, for

example, in almost all thermostats: the heater is turned on when the temperature is below

a threshold, and turned off when the temperature is above another threshold. Typically, the

low and high temperature switching are different to avoid frequent switching, which could

damage the system. The Hysteresis Relay can be found in physical, chemical, engineering

and biological applications.

The datasets for discovery are generated by Ly et. al. in [10]. The additive noise level

varies from 0% to 6% in 2% increments, i.e., Np = σnoise
σy
× 100%, where σnoise is the noise

variance and σy is the variance of the measurement. We apply the proposed IHYDE to data

generated by an unknown Hysteresis Relay to discover its hybrid dynamical model (shown

in Supplementary Figure 3a). Supplementary Table 4 shows the detailed information about

this data. The discovered systems are shown in Supplementary Table 5 and Supplementary

Table 6 using 2000 data-points respectively.

Using IHYDE for subsystems identification, we are able to successfully identify that

there are only two subsystems that generate the datasets. In addition, the two identified

subsystems are consistent with or close to the true ones from both noiseless and noisy data.

Specifically, with or without redundant dictionary functions, we are able to identify the true

systems, achieving very similar discovery results. This, in other words, demonstrates that

the IHYDE is able to discover the true subsystems, the number of subsystems together with

parameterizations of every subsystem.

Once all subsystems have been identified and all data points have been classified, IHYDE

identifies the transition logic between subsystems. When there is redundant dictionary func-

tion (i.e., when prior knowledge is available about the structure of transition logic), IHYDE

is able to precisely identify the correct transition logic. The identified results are shown

in Supplementary Table 7. When there exists redundant dictionary functions, IHYDE still

successfully identifies the transition logic. The identified results are shown in Supplementary

Table 8.

56

Example 2: Continuous Hysteresis Loop

A Continuous Hysteresis Loop is yet another classical hybrid system– here we use the

Preisach model [10] for data simulation. In our setup, each subsystem has its own input-

output behavior while the transitions occur when the input hits certain thresholds as shown

in Supplementary Figure 3b. The detailed information is summarized in Supplementary

Table 9. We apply the IHYDE to reverse engineering the Continuous Hysteresis Loop using

2000 data points generated by [10].

The identified systems are shown in Supplementary Table 10 and Supplementary Table

11. In contrast with the previous Hysteresis Relay example, the IHYDE will obtain false

classification results as the noise level increases. Yet, IHYDE is still able to identify the

actual subsystem dynamics up to some precision.

Once all subsystems have been identified and all data points have been classified, IHYDE

identifies the transition logic between subsystems. Supplementary Table 12 shows that

IHYDE can find the true transition logic without redundant dictionary functions. Even

when there exists redundant basis functions, IHYDE is able to precisely identify the correct

transition logic. The identified results are shown Supplementary Table 13.

Example 3: Phototaxis Robot

Consider a Phototaxis Robot with a hybrid dynamical system model shown in Supplemen-

tary Figure 3c [11], the robot has phototaxis movement: it approaches, avoids, or remains

stationary depending on the color of light. As described in [10], the output y is velocity of

the robot. There are five inputs: u1 and u2 are the absolute positions of the robot and the

light, respectively, while {u3, u4, u5} is a binary, one-hot encoding of the light color, where

0 indicates the light is off and 1 indicates the light is on.

Similar to previous examples, 2000 data points are used. The detailed information is

shown in Supplementary Table 14 and Supplementary Table 15. IHYDE will obtain false

classification results as the noise level increases (shown in Supplementary Table 16 and

in Supplementary Table 17). Yet, IHYDE is still able to identify the actual subsystem

dynamics without redundant dictionary functions when noise intensity is low. When there

exists redundant dictionary functions, IHYDE can identify all the subsystems when there is

57

no noise. When noise level increases, IHYDE still identifies the right number of subsystems,

yet the third identified subsystem is different from the true one, i.e., y = 0.

Again, once all subsystems have been identified and all data points have been classi-

fied, IHYDE identifies the transition logic between subsystems. IHYDE is able to precisely

identify the correct transition logic both when there is no redundant dictionary function

(Supplementary Table 18) and when there is (Supplementary Table 19). At a first glance,

the inferred transition logic is different from the actual ones. Given u3, u4, u5 are binary

values, still, the inferred transition logic are equivalent to the actual ones.

Example 4: Nonlinear Hybrid System

Consider the Nonlinear Hybrid System shown in Supplementary Figure 3d. This example

is a system without any physical counterpart, yet it is useful to evaluate the capabilities of

IHYDE for finding nonlinear expressions. The system consists of three subsystems, where all

of the behaviors and transition logic consist of nonlinear equations which cannot be modeled

via parametric regression. All the expressions are a function of the variables u1 and u2, the

discriminant functions are not linearly separable and the transitions are modally dependent.

The detailed information for this system is summarized in Supplementary Table 20 and

Supplementary Table 21. Using 2000 data points in dataset generated by [10], the identified

results are shown in Supplementary Table 22 and Supplementary Table 23. Using IHYDE for

subsystems identification, we are able to successfully identify that there are three subsystems

that generate the datasets. In addition, the three identified subsystems are consistent with

or close to the true ones from both noiseless and noisy data. IHYDE is also able to precisely

identify the correct transition logic both when there is no redundant dictionary function

(Supplementary Table 24) and when there is (Supplementary Table 25).

Example 5: Autonomous Car

This example presents the results of IHYDE applying to an autonomous car built in our

lab. The autonomous car consists of a body, a MK60t board, a servo motor, tow driving

motors and a camera. During execution, the embedded camera captures the upcoming road

layouts to check whether there is an upcoming straightaway or curve. Naturally, the car will

58

drive faster on straightaways and slower on the curves.

Based on this design principle, we would like to design a hybrid dynamical system with

two subsystems and simple transition logic to realize this goal as shown in the right panel

of Supplementary Figure 5. The car measures current speed by encoder and calculates the

∆u, a control input to the motor. The speed control strategy is based on an incremental PI

control algorithm, which is widely used in control systems. The incremental PI algorithm

is developed from position PI algorithm. The position PI model is described as below and

can be seen in Fig. Supplementary Figure 4. r(t) represents the input of the whole system

(the expected speed vexpect(t)) and c(t) represents the output of the whole system (the real

speed observed v(t)).

In the figure, u(t) is the output of the controller and it can be calculated from e(t):

u(t) = P

e(t) +
1

TI

t∫
0

e(t)dt

 , (18)

where P is the constant for the proportional control, TI is the time constant for the integral

control. In the Laplace domain, Eq. (18) is equivalent to U(s) = D(s)E(s), where U(s) and

E(s) are the Laplace transform of u(t) and e(t) respectively, D(s) represents the transfer

function of the controller:

D(s) =
U(s)

E(s)
= P

(
1 +

1

TIs

)
. (19)

Since the controller is implemented by a computer, it must be first converted to discrete

time. The integral can be approximated by

t∫
0

e(t)dt ≈
k∑
i=0

Te(i)⇒ de(t)

dt
≈ e(k)− e(k − 1)

T
. (20)

So we obtain the following control law

u(k) = P

[
e(k) +

T

TI

k∑
i=0

e(i)

]
. (21)

The position PI algorithm is usually approximated by an incremental PI algorithm:

∆u(k) , u(k)− u(k − 1) = P [e(k)− e(k − 1)] + Ie(k), (22)

where I , PT
TI

. In the autonomous car example, we have

r(k) = vexpect(k), c(k) = v(k), e(k) = vexpect(k)− v(k). (23)

59

Here vexpect(k) is the expected velocity depending on whether there is an upcoming straight-

away or curve from the camera. We set up a faster velocity on straightaways and slower one

on the curves. Substituting e(k) into the Eq. 22, we obtain

∆u(k) = P [v(k − 1)− v(k)] + P [vexpect(k)− vexpect(k − 1)] + I[vexpect(k)− v(k)]. (24)

When the car changes its expected velocity, this could lead to a more complicated hybrid

dynamical system than we would design as shown in Supplementary Figure 5. This side

effect is due to the abrupt switching and discretization. In practice, we normally neglect

these subsystems in the modeling, analysis and design. The flow chart of the PI control

algorithm is shown in Supplementary Figure 6.

Next, we demonstrate how IHYDE can help in the design process. In the first experiment,

the autonomous car failed to drive through the track. We collected the experimental data

and used IHYDE to discover the failed system. We compared the discovered system model

with the to-be designed one and found an implementation error that led the system to failure.

We expected a higher speed when the car is running in a straight line and a lower speed while

it is running on a curve. The model from the failed experiments showed that the transition

logistics should be reversed as shown in Supplementary Figure 7 and Supplementary Table

27. We fixed the bug and as a result the autonomous car was able to run through the

track. Finally, as a validation, we collected the data shown in Supplementary Table 26 and

repeated the modeling process in Supplementary Table 28 and Supplementary Table 29.

In summary, IHYDE successfully reverse engineered the control strategy of the CPS.

Additionally, we deliberately swapped the straightway and curve speeds to mimic a software

bug. The modeled system immediately pinpointed the location of the faulty software and

yielded important information for debugging the system.

Example 6: Chua’s Circuit

In this subsection and the next one, we shall apply IHYDE to data that is obtained

from experiments shown in Supplementary Table 30 and Supplementary Table 31. We bulit

a Chua’s circuit (see Supplementary Figure 8) in our lab which is the simplest electronic

circuit that exhibits classic chaotic behavior. It consists of an inductor, two capacitors, a

passive resistor and an active nonlinear resistor as show in Supplementary Figure 9a which

60

fits the condition for chaos with the least components. The most important active nonlinear

resistor is a conceptual component and the resistor can be built with operational amplifiers

and linear resistors. The current-voltage characteristics of the nonlinear resistor are plotted

in Supplementary Figure 9b.

By design, the current-voltage relationship can be described as follows:

i(V) =


aV + (b− a)(V − E), V > E,

aV, −E < V < E,

aV + (b− a)(V + E), V < −E,

(25)

or equivalently

i(V) = bV +
1

2
(a− b)(|V + E| − |V − E|). (26)

In both equations, a, b, E are parameters depicted in Supplementary Figure 9b.

The nonlinear resistor can be built using the circuit realization as shown in Supplementary

Figure 9c. From KCL and KVL, we obtain

C1dV1

dt
=
V2 − V1

R
− i(V1),

C2dV2

dt
=
V1 − V2

R
+ IL,

−LdIL
dt

= V2,

(27)

where

• C1: Capacity of Capacitor 1. C2: Capacity of Capacitor 2. L: Inductance of the

Inductor.

• V1 : Voltage through Capacitor 1. V2: Voltage through Capacitor 2.

• IL: Current through Inductor. i: Current through the nonlinear resistor.

• a: the slope of low voltage for the nonlinear resistor. b: the slope of high voltage for

the nonlinear resistor.

Then we introduce a number of variables to simplify the above equations:

y1 =
V1τ

E
, y2 =

V2τ

E
, y3 =

ILτ

E
, (28)

where E is the threshold voltage for the nonlinear resistor and τ is a threshold of the Chua’s

circuit, which equals to E in this experiment. Let

α =
1

RC1

, β =
1

L
, f(y)|y= τ

E
x =

Rτ

E
i(x), (29)

61

we can obtain the following equations

dy1

dt
= α[y2 − y1 − f(y1)],

RC2
dy2

dt
= y1 − y2 +Ry3,

dy3

dt
= −βy1,

(30)

where

f(x) =


k1x+ b1, x < −τ, (31a)

k0x, −τ < x < τ, (31b)

k1x+ b2. x > τ, (31c)

with

k0 = Ra, k1 = Rb, b1 = R(a− b)τ, b2 = R(a− b)τ.

The behavior of the system will be changed between chaos and non-chaos depending on the

value of R. Each mode in Eq. (31a), Eq. (31b) and Eq. (31c), corresponds to subsystem 1,

subsystem 2 and subsystem 3 respectively. We focus on the discovery of the first equation

in Eq. (30) and only collect the value of y1 and y2. The output data from the Chua’s circuit

can be seen in Supplementary Figure 9d.

From the true parameters in Supplementary Table 32, we can compute the true coefficients

of f(x) to determine dy1
dt

:

10−5dy1

dt
=


1.0858y2 − 0.2115y1 − 0.5349, y1 < −1.5, (32a)

1.0858y2 + 0.1451y1, −1.5 < y1 < 1.5, (32b)

1.0858y2 − 0.1994y1 + 0.5168, y1 > 1.5. (32c)

The algorithm accurately infers the form of Eq. (32c) from the data as shown in Supple-

mentary Table 33.

Example 7: Monitoring of Industrial Processes

The next example illustrates how IHYDE can be used for fault detection in mechanical

engineering. Experiments conducted on a wind turbine system experimental platform [12]

shown in Supplementary Figure 10 are used to verify its effectiveness.

This system contains a power supply of 380V, an inverter, a motor, a gearbox, a power

generator, and a load. The platform is used to simulate the process of air flow through wind

62

turbines to generate electricity. Specifically, the motor with a gear reducer of 20 : 1 ratio

supplies the generator with mechanical power through the gearbox. In this experiment, we

adopt the mode of gearbox inversion to simulate the operation of wind turbine system. The

gearbox has been widely used to provide speed and torque conversions from a motor to

generator in wind turbines [13]. This system has a gearbox with three shafts, i.e., shaft with

low speed, shaft with intermediate speed and shaft with high speed. The load consumes the

power generated by the generator. We can measure the root-mean-square current and voltage

of the motor from the inverter. The current of generator can be captured by oscilloscope

and its voltage is measured through multimeter. We measure the voltage of the load in the

same way.

We perform experiments under normal and faulty conditions. Both experiments are

performed in the situation where the generator speed is 200 revolutions per minute and the

load is 1.5 KNm. One-third of the tooth width cut off from the gear tooth on the high-speed

shaft is considered as the faulty condition. In the normal operation, the motor power is

383.01W and the generator power is 53.28W; the load voltage is 75V in the faulty condition.

Two sets of current data are measured at the frequency of 1000Hz connected in series

for identification. The first dataset contains 19, 995 data points sampled under normal

operating condition, the other has 20, 000 data points obtained from the faulty condition.

Then, we down-sample at the period of 0.3s and denote as i(k) in which k = 1, . . . , 133.

Supplementary Table 34 shows the detailed information for this data.

As described in the main text, here we used an online monitoring scheme. We construct

the output y ∈ R64×1, including 61 current measurements from 1.8s to 19.8s in the normal

condition and 3 data points from 20.1s to 20.7s in the faulty condition when the mismatch

is large. Specifically

y =

[
i(7) i(8) . . . i(70)

]T
.

With the candidate terms of the polynomial combinations of i(k), . . . , i(k+ 5) up to second

order, we construct a dictionary matrix Φ ∈ R64×28 as follows:

Φ =


1 i(6) · · · i(1) i2(6) . . . i2(1)

...
...

...
...

...
...

...

1 i(69) . . . i(64) i2(69) . . . i2(64)

 .

63

It is worth mentioning that this experiment is a one-shot experiment. However, many

state of the art machine learning methods [14] need (a large number of) historical data

including its labels (healthy or faulty), while industrial data is often unlabeled and scarce.

Therefore, these algorithms are not a good solution to this type of one-shot industrial prob-

lem. And, this example demonstrates the capability of IHYDE to the identification of the

fault in industrial processes. Supplementary Figure 11 shows that the relative fitting error

ratio is small. The identified results and details of the IHYDE are presented in Supplemen-

tary Table 35, which shows that the identified time for the fault occurrence is the same as

the real fault time 68. We only use three fault points to realize the fault detection.

Example 8: Power Grid Fault Detection

The next example illustrates how IHYDE can be used in real-time monitoring appli-

cations. Consider the fault detection problem in a smart grid. The design of monitoring

schemes to diagnose anomalies caused by unpredicted or sudden faults on power networks

is of great importance.

Here we consider a benchmark power network, IEEE 14 bus test system. Suppose the

line connecting buses 6 and 12 disconnects at time 31, changing the admittance between

these two buses to zero. We simulate the data summarized in Supplementary Table 36

and only pass the data to IHYDE without other information. IHYDE can immediately

detect the occurrence of this event and estimate the new admittance matrix using the next

10 measurements. The identified results and parameters are summarized in Supplementary

Table 37. It successfully discovers two different subsystems from data and pinpoints the

difference in the discovered subsystems which corresponds to the fault. Given the frequency

at which PMUs sample voltage and current, IHYDE is able to locate the fault in a few

hundred milliseconds after the event occurs, enabling the operators to detect the event,

identify its location, and take remedial actions in near real-time.

Example 9: Identification of Real-time Models for Smart Grid

This example illustrates how the proposed IHYDE method can be used to solve the

identification problem in smart grid, which contains two major parts, that is, smart infras-

64

tructure system and smart management system [15]. It is crucial to obtain real-time models

for smart management system to achieve resilient and efficient operations. Accurate model

information is not only necessary for daily operation and scheduling, but also critical for

other advanced techniques such as state estimation and optimal power flow computation.

However, such information is not always available in distribution systems due to frequent

model changes. For example, the model of a distribution system connected with photovoltaic

panels maybe change once every eight hours [16]. Furthermore, some unexpected events,

such as line faults and unreported line maintenance, can lead to model changes. Moreover,

network reconfiguration (such as switch action for balancing loads and avoiding voltage sag)

happens frequently in distribution systems. Therefore, model identification in real-time is

meaningful.

We apply IHYDE to identify network models in real-time and to infer transition logic for

model changes using data from advanced metering infrastructure. The used data detailed in

Supplementary Table 38 is generated with the 33-bus benchmark distribution system [17].

Consider the situation where the increase of loads at some remote nodes of a feeder causes the

voltage sag, an operator then takes switch action for load balancing and voltage regulation.

Supplementary Figure 12 depicts the switching topologies and the real transition logic. The

detailed actions and switching time are shown in Supplementary Table 39. Measurements

are generated via solving nonlinear power flow equations using MATPOWER toolbox [18]

in MATLAB.

Suppose that we can measure all the active and reactive power consumption, voltage

magnitudes and phases of the nodes, denoted by Y as follows

Y =


P1(1) Q1(1) V1(1) δ1(1) · · · P33(1) Q33(1) V33(1) δ33(1)

...
...

...
...

. . .
...

...
...

...

P1(M) Q1(M) V1(M) δ1(M) · · · P33(M) Q33(M) V33(M) δ33(M)

 ,
where Vi(t), δi(t), Pi(t) and Qi(t) are the voltage magnitude, voltage phase, active and

reactive power of Bus i at time instant t, respectively. The total sampling time M is set to

180 in the following simulation. Supplementary Table 38 shows the detailed information of

this data.

For each node, we apply IHYDE to identify the responding column of the admittance

matrix. The output yi ∈ R2M×1 of Bus i is yi = [Pi(1), Qi(1), · · · , Pi(M), Qi(M)]T . The

65

quadratic terms for the voltages are chosen as the dictionary function based on Ohm’s law

and power factor; sine and cosine terms are also considered, since there are voltage angle

differences for delivering power from one bus to another bus. The jth column of dictionary

matrix Φi ∈ R2M×66 is as follows:

φj = [Vi(1)Vj(1) cos δij(1), Vi(1)Vj(1) sin δij(1), · · · , Vi(M)Vj(M) cos δij(M), Vi(M)Vj(M) sin δij(M)]T ,

where δij(t) = δi(t) − δj(t) denotes the phase difference between nodal voltages of Bus i

and j at time instant t.

Supplementary Table 40 shows the identified results and the detailed tuning parameters

of the proposed algorithm. For example, at Bus 12, the maximum relative identification ratio

of Base configuration and Changed configuration are 0.00057% and 0.00182%, respectively.

The identified admittance matrices at time instants 31, 61, 91, 121, 151 are very different from

that of the previous moments, which indicates the model switching. The results demonstrate

that IHYDE can identify the models accurately and pinpoint model switching time correctly.

We add the difference of voltage magnitude between different times, denoted by ∆V = V (t)−
V (t − 1), into dictionary matrix for logic identification. Supplementary Table 41 indicates

that the identified logic is consistent with the real logic with small error. Specifically, the

result of T1→2 (switching from subsystem 1 to 2) reveals that the voltage drop of node 10

at feeder 3 are more than 0.0500 at time 30, subsequently, switch action is taken to avoid

sharp voltage drop. The tie switch between Bus 12 and 22 is closed, while the sectionalizing

switch between Bus 11 and 12 opens. This is consistent with our preset reason that loads at

Bus 9, 10, 11 increase rapidly at time 30. There are many indistinct physical phenomenons

in actual power system and IHYDE can be utilized to help engineers understand the hidden

mechanism behind it.

Example 10: Discovery of Human Atrial Action Potential Models

In this section, we apply IHYDE to a human atrial action potential (AP) model proposed

in [19] to show the applicability of IHYDE to the discovery in biology. The parameters of

the human atrial AP model are determined based on the data that is directly measured on

human atrial cells and that is from AP model of guinea pig ventricular and rabbit atrial.

The AP model can reproduce a variety of observed AP behaviors and provide potential

66

insights into its underlying ionic mechanisms. The human atrial AP and ionic currents that

underlie its morphology are of great importance to our understanding and prediction of the

electrical properties of atrial tissues under normal and pathological conditions.

Specifically, the cell membrane is modeled as a capacitor connected in parallel with vari-

able resistances and batteries representing the ionic channels and driving forces. The AP

model includes 21 differential equations and 163 parameters in total (see [19] for detailed

information). The membrane potential formulation is dV
dt

= −(Iion+Ist)
C

, where V is membrane

potential, and C is the constant total membrane capacitance. Iion and Ist are the total ionic

current and stimulus current flowing across the membrane, respectively.

Supplementary Figure 13 shows that the action potential generated by the AP model

through voltage clamp method is a spike-and-dome morphology commonly observed in hu-

man atrial AP recordings. We apply the stimulation current with 2 ms pulses of 2 nA am-

plitude across the cell membrane every 1000 ms. To check the performance of the IHYDE

method, we focus on two representative equations about gating variables x1 and x2 with

time-varying parameters as follows:
dx1

dt
= α1 − (α1 + ρ1)x1, (33)

dx2

dt
= α2 − (α2 + ρ2)x2, (34)

where x1 and x2 are fast and slow inactivation gating variables for fast inward Na+ current,

respectively. For convenience, we present the time-varying parameters α1, α2, ρ1, ρ2:

α1 =

 α11 , 0.135 exp(−V+80
6.8

), V < −40,

α12 , 0, V ≥ −40,

α2 =


α21 , [−1.2714× 105 exp(0.2444V)−

3.474× 10−5 exp(−0.04391)] V+37.78
1+exp[0.311(V+79.23)]

, V < −40,

α22 , 0, V ≥ −40,

ρ1 =

 ρ11 , 3.56 exp(0.079V) + 3.1× 105 exp(0.35V), V < −40,

ρ12 , {0.13[1 + exp(−V+10.66
11.1

)]}−1, V ≥ −40,

ρ2 =

 ρ21 = 0.1212 exp(−0.01052V)
1+exp[−0.1378(V+40.14)]

, V < −40,

ρ22 = 0.3 exp(−2.535×10−7V)
1+exp[−0.1(V+32)]

, V ≥ −40.

When the gating variables x1 and x2 are equal to 1, the fast inward Na2+ current is inactive

67

completely. Supplementary Figure 14 depicts that they gradually rise to their resting values

0.9775 and 0.9649 after stimulus.

It is clearly observed that membrane voltage gradually returns to its stable resting po-

tential −81mV after the stimulation from Supplementary Figure 13. During the process,

the dynamics for gating variables x1 and x2 has been switched as shown in Supplementary

Figure 14 when the membrane voltage V goes through −40 mV. Supplementary Table 42

summarizes the data structure that is used for identification. We apply IHYDE to discover

the different models and the transition logic only using measurements. The first-order dif-

ferential values of x1 and x2 are considered as their output, respectively. For instance, we

down-sample the differential value of x1 during 120− 500 ms as its output

y1 =

[
dx1(120)

dt
,
dx1(120 + h)

dt
, · · · , dx1(499.8)

dt

]T
∈ R1267×1.

The sampling period h is set to 0.3 ms, and there are 1267 data points for each variable.

The dictionary matrix of gating variables x1 and x2, denoted by Φ1 and Φ2, respectively,

are established based on the terms of the above equations

Φ1 =


exp(−V (t1)+80

6.8
) x1(t1) exp(−V (t1)+80

6.8
) x1(t1)ρ11(t1) x1(t1)ρ12(t1)

...
...

...
...

exp(−V (tM)+80
6.8

) x1(tM) exp(−V (tM)+80
6.8

) x1(tM)ρ11(tM) x1(tM)ρ12(tM)

 ,

Φ2 =


α21(t1) x2(t1)α21(t1) x2(t1) exp(−0.01052V (t1))

1+exp[−0.1378(V (t1)+40.14)]
x2(t1) exp(−2.535×10−7V (t1))

1+exp[−0.1(V (t1)+32)]

...
...

...
...

α21(tM) x2(tM)α21(tM) x2(tM) exp(−0.01052V (tM))
1+exp[−0.1378(V (tM)+40.14)]

x2(tM) exp(−2.535×10−7V (tM))
1+exp[−0.1(V (tM)+32)]

 ,
where t1 and tM are 120 and 499.8 ms, respectively.

The identified results and the detailed parameters are summarized in Supplementary

Table 43. We can see that IHYDE identifies the subsystem and pinpoints the changing time

correctly. The identified logic (see Supplementary Table 44 and Supplementary Table 45)

for both gating variables are V < −40.0093, which is very close to the real logic V ≤ −40.

Next, we repeat the modeling of this system with the assumption that the choice of

dictionary functions is unclear and/or the domain knowledge is lacking. In such cases, we

consider a canonical dictionary function, such as polynomials approximations. The results

are summarized in Supplementary Table 46. IHYDE can still detect the transition points.

68

However, the nonlinear dynamics are different than the true ones: as expected, it identifies

instead a polynomial approximation of the original nonlinear dynamics. While these dy-

namics can still be used for simulation and trajectory prediction, they are not in a form that

reveals physical meaning. For an interpretable model, we require domain knowledge. Please

see Supplementary Discussion 3 for another example on canonical dictionary functions.

Example 11: Non-hybrid Dynamical Systems

We also tested IHYDE on non-hybrid dynamical systems using datasets in [2] to illustrate

the applicability of IHYDE. The details of simulation datasets in [2] are presented in

Supplementary Table 47. The results are summarized in Supplementary Table 48, and

Supplementary Table 49 shows the hyperparameters tuned for IHYDE. Overall, IHYDE

unifies previous results for the discovery of non-hybrid dynamical systems, such as examples

in [2, 5].

SUPPLEMENTARY DISCUSSIONS

The IHYDE algorithm has been tested in a number of examples. As the number of

dictionary functions and the amount of noise increase, the algorithm is eventually unable to

identify the actual model. Although it can fit data very well, it usually obtains more complex

models than the true ones. This is actually a typical problem in system identification [4].

When the data is not informative, it leads to non-identifiability issues, i.e., there will exist

multiple hybrid dynamical systems that can produce the same data, which prevents the

proposed IHYDE algorithm from finding the true system.

69

Supplementary Discussion 1: Identifiability

Consider the following linear system with unknown parameters k1 and k2

d

dt

x1

x2

 =

k1 1 + k2

0 k1 + k2


x1

x2

+

0

1

u,
y =

[
0 1

]x1

x2

 .
(35)

The observed output is plotted as follows in Supplementary Figure 15 (the system is stim-

ulated by an impulse input, i.e., u(t) = δ(t) where δ(·) is the Dirac delta function):

However, any k1, k2 with k1+k2 = 0.8 produces the same input-output data. For example,

the actual system

d

dt

x1

x2

 =

0.4 1.4

0 0.8


x1

x2

+

0

1

u,
y =

[
0 1

]x1

x2

 ,
(36)

and

d

dt

x1

x2

 =

0.3 1.5

0 0.8


x1

x2

+

0

1

u,
y =

[
0 1

]x1

x2

 ,
(37)

are indistinguishable from the input-output data alone. Hence, without more information,

the true parameters cannot be identified using any methods.

Supplementary Discussion 2: Data Informativity

The previous example demonstrates that, when the parameterization is not identifiable,

no algorithm is able to identify the correct parameters. Next, we shall demonstrate an-

other example where, even though the subsystem is identifiable, the data is not informative

70

enough. For example, some of the logic transitions never occur. Consider the following

hybrid dynamical system in Supplementary Figure 16. If the system starts at initial con-

dition y(0) = 18, then it always stays in subsystem 1. Hence, with the data generated, no

algorithm is able to identify the complete hybrid dynamical system.

Supplementary Discussion 3: Canonical dictionary functions

With an example, this section explores the effect of dictionary functions when the right

choice of dictionary functions is unclear and/or domain knowledge is lacking. Consider a

hybrid dynamical system with two subsystems: subsystem 1 follows ẋ = −x3, and subsystem

2 with ẋ = − cos(x). This hybrid system switches every 0.5s during t ∈ [0, 10]. We set the

initial condition to x0 = 0.99 and the sampling period to 0.005s. Then, 2000 simulated

data points are obtained. We choose the first 1000 points as training data set, denoted by

Itrain = {1, · · · , 1000}, and the whole data as testing data set. Assume there is no prior

knowledge about the function forms of the subsystems. Then, pick a canonical dictionary

function consisting of polynomials up to fifth order, grid the hyperparameters using the

initial grid set in Supplementary Method 1, and use the minimum error principle to search

a best set of hyperparameters.

Supplementary Table 50 summarizes the identified results. IHYDE first correctly dis-

covers one of the subsystems ẋ = −x3 and then discovers a second subsystem with the

form ẋ = −1 + 1
2
x2, which is different from the true subsystem. On the other hand, this is

consistent with the Taylor series expansion of cos(x) = 1− 1
2
x2 +O(x4).

APPENDIX: USER’S MANUAL OF THE CODE

Identification of hybrid dynamical systems (IHYDE) is a open-source Matlab toolbox

for automating the mechanistic modeling of hybrid dynamical systems from observed data.

IHYDE has low computational complexity, enabling its application to real-world CPS prob-

lems. IHYDE implements the clustering-based algorithms described in the Data-driven

Discovery of Cyber Physical Systems. It can also be used, potentially, for the creation of

guidelines for designing new CPSs. IHYDE uses routines of the CVX [20] and SLR [9]

toolboxes for constructing and solving disciplined convex programs (DCPs).

71

Download the latest version of IHYDE toolbox in a directory and add its path (and the

path of the subdirectories) to the Matlab path. The IHYDE toolbox consists of directo-

ries listed in Supplementary Table 51. Supplementary Table 52, Supplementary Table 53,

Supplementary Table 54 and Supplementary Table 55 give a brief introduction to IHYDE’s

API.

To quickly get familiar with IHYDE, examples are presented in the directory /CPSid.

These .m files can also be used as templates for other experiments. We shall use the au-

tonomous car example to explain the code briefly. First, we load the data:

addpath (’ . / t o o l s ’) ;

addpath (’ . / data ’) ;

b a s i s f u n c t i o n . work=’ o f f ’ ;

data=load (’ normal car . mat ’) ; %% load Data

index = 1000 :1400 ;

f lag = data . f lag (index) ; % 1: s t ragh tway 0 : curve

dy = data . dy (index) ;

v = data . v (index) /10 ;

po lyorder = 4 ; % The h i g h e s t order o f the po lynomia l i s 4

order

A= l i b r a r y (v , po lyorder , memory , b a s i s f u n c t i o n) ;%make a

l i b r a r y

A = A(memory+2:end , :) ;

dy = dy (memory+2:end) ; %dpwm {k}
f lag = f lag (memory+2:end) ; %f l a g {k}
v k1 = v (memory+1:end−1 , :) ; % v {k−1}
v k2 = v (memory : end−2 , :) ;% v {k−2}
v k3 = v (memory−1:end−3 , :) ;% v {k−3}
v = v (memory+2:end , :) ; % v {k}

Then, we initialize the parameters and identify the systems by function ihyde.

parameter .MAXITER = 5 ; %the i t e r f o r the s p a r s e s o l v e r

a l gor i thm

72

parameter . max s = 20 ; % the max number o f

subsys tems

parameter . e p s i l o n = [100 8] ; % the f i s t e lement in

lambda i s e p s i l o n z and the second i s e p s i l o n w

parameter . Phi = A; % the l i b r a r y

parameter . y = dy ; %dpwm

parameter . normal i ze y = 1 ; % normal ize :1 unnormalize

:0

[r e s u l t]= ihyde (parameter) ; % i n f e r r i n g subsys tems

Function ihyde will return a preliminary identified result which contains the details of

subsystems. Since we want to get a better result based on the minimum error principle, we

use function finetuning to fine-tune the results.

r e s u l t . e p s i l o n = parameter . e p s i l o n (2) ;% use e p s i l o n w as

the e p s i l o n in f i n e t u n i n g

r e s u l t . lambda = parameter . lambda (2) ;% use lambda w as the

e p s i l o n in f i n e t u n i n g

r e s u l t . th r e sho ld = [0 . 0 5] ; %s e t a t h r e s h o l d f o r

c l u s t e r i n g

f i n a l r e s u l t = f i n e t u n i n g (r e s u l t) ; % f i n e t u n i n g each

subsys tems

sys = f i n a l r e s u l t . sys ; % g e t the i d e n t i f i e d subsys tems

i d x s y s = f i n a l r e s u l t . idx ;% g e t the index o f each

subsys tems

The code for inferring transition logic between subsystems is shown below.

Phi2 = [ones (s ize (f lag)) f lag 1 ./ v sin (v) cos (v) v .ˆ2

v k1 . / v k2 v k3 .ˆ2] ;% l i b r a r y f o r i n f e r r i n g t r a n s i t i o n

l o g i c between subsys tems .

para l og . i d x s y s = i d x s y s ;

pa ra l og . beta= 0 . 5 ; % the t r a d e o f f o f l1−sparse l o g i s t i c

r e g r e s s i o n

para l og . y = dy ;

73

para l og . Phi2 = Phi2 ;

[s y s l o g i c , labelMat , data] = i h y d e l o g i c (pa ra l og) ;

The identified results are saved in sys, idx sys and syslogic.

SUPPLEMENTARY REFERENCES

[1] Bako, L. Identification of switched linear systems via sparse optimization. Automatica 47,

668-677 (2011).

[2] Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by

sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 113, 3932-

3937 (2016).

[3] Lygeros, J., Tomlin, C. & Sastry, S. Hybrid Systems: Modeling, Analysis and Control (UC

Berkeley / ETH Zurich lecture notes, 2008).

[4] Ljung, L. System identification: theory for the user (PTR Prentice Hall, Upper Saddle River,

NJ 1999).

[5] Pan, W., Yuan, Y., Goncalves, J. & Stan, G. B. Reconstruction of arbitrary biochemical reac-

tion networks: A compressive sensing approach. In Proceedings of the 51st IEEE Conference

on Decision and Control, 2334-2339 (2012).

[6] Wipf, D. P., Rao, B. D. & Nagarajan, S. Latent variable Bayesian models for promoting

sparsity. IEEE Trans. Inf. Theory 57, 6236-6255 (2011).

[7] Wipf, D. P. & Rao, B. D. Sparse Bayesian learning for basis selection. IEEE Trans. Signal

Process. 52, 2153-2164 (2004).

[8] Murphy, K.P. Machine learning: A probabilistic perspective (MIT Press, 2012).

[9] Yamashita, O., Sato, M. A., Yoshioka, T., Tong, F. & Kamitani, Y. Sparse estimation auto-

matically selects voxels relevant for the decoding of fmri activity patterns. Neuroimage 42,

1414-1429 (2008).

[10] Ly, D. L. & Lipson, H. Learning symbolic representations of hybrid dynamical systems. J.

Mach. Learn. Res. 13, 3585-3618 (2012).

[11] Reger, B. D., Fleming, K. M., Sanguineti, V., Alford, S. & Mussa-Ivaldi, F. A. Connecting

74

brains to robots: an artificial body for studying the computational properties of neural tissues.

Artif. Life 6, 307 (2000).

[12] He, Q., Guo, Y., Wang, X., Ren, Z. & Li, J. Gearbox fault diagnosis based on RB-SSD and

MCKD. China Mechanical Engineering 28, 1528-1534 (2017).

[13] Hameed, Z., Hong, T. & Cho, Y. Condition monitoring and fault detection of wind turbines

and related algorithms. Renew. Sust. Energ. Rev. 13, 1-39 (2009).

[14] Yuan, Y. et al. Artificial intelligent diagnosis and monitoring in manufacturing. Preprint at

https://arxiv.org/abs/1901.02057 (2019).

[15] Fang, X., Misra, S., Xue, G. & Yang, D. Smart grid the new and improved power grid: A

survey. IEEE Commun. Surv. Tutor. 14, 944-980 (2012).

[16] Jabr, R. Minimum loss operation of distribution networks with photovoltaic generation. IET

Renew. Power Gener. 8, 33-44 (2014).

[17] Baran, M. & Wu, F. Network reconfiguration in distribution systems for loss reduction and

load balancing. IEEE Trans. Power Deliv. 4, 1401-1407 (1989).

[18] Zimmerman, R., Murillo-Sanchez, C. & Thomas, R. MATPOWER: Steady-State Operations,

Planning, and Analysis Tools for Power Systems Research and Education. IEEE Trans. Power

Syst. 26, 12-19 (2011).

[19] Courtemanche, M., Ramirez, R. & Nattel, S. Ionic mechanisms underlying human atrial ac-

tion potential properties: insights from a mathematical model. Am. J. Physiol.-Heart Circul.

Physiol. 275, 301-321 (1998).

[20] Grant, M. & Boyd, S. CVX: Matlab software for disciplined convex programming, version 2.0

beta. http://cvxr.com/cvx (2013).

75

