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Effect of a Traffic Speed based Cruise Control on
an Electric Vehicle’s Performance and an Energy

Consumption Model of an Electric Vehicle
Anil K. Madhusudhanan and Xiaoxiang Na

Abstract—This paper proposes a Cruise Control System (CCS)
to improve an Electric Vehicle’s range, which is a significant
hurdle in market penetration of Electric Vehicles. A typical driver
or a conventional Adaptive Cruise Control (ACC) controls an
Electric Vehicle (EV) such that it follows a lead vehicle or drives
close to the speed limit. This driving behaviour may cause the
EV to cruise significantly above the average traffic speed. It may
later require the EV to slow down due to the traffic ripples,
wasting a part of the EV’s kinetic energy. In addition, the EV
will also waste higher speed dependent dissipative energies, which
are spent to overcome the aerodynamic drag force and rolling
resistance. This paper proposes a CCS to address this issue.
The proposed CCS controls an EV’s speed such that it prevents
the vehicle from speeding significantly above the average traffic
speed. In addition, it maintains a safe inter-vehicular distance
from the lead vehicle. The design and simulation analysis of the
proposed CCS were in a MATLAB simulation environment. The
simulation environment includes an energy consumption model of
an EV, which was developed using data collected from an electric
bus operation in London. In the simulation analysis, the proposed
system reduced the EV’s energy consumption by approximately
36.6% in urban drive cycles and 15.4% in motorway drive cycles.
Finally, the experimental analysis using a Nissan e-NV200 on two
urban routes showed approximately 30.8% energy savings.

Index Terms—Electric vehicle, performance, energy, control,
safety, traffic.

I. INTRODUCTION

S IGNIFICANT market penetration of Electric Vehicles
can contribute to prevent global warming from reaching

dangerous levels [1]–[3]. A major hurdle towards this goal is
limited range, where range is the distance an Electric Vehicle
(EV) can travel from full charge [4]. The limited range arises
from the current battery technologies, which have much lower
energy densities than diesel or petrol [5]. Therefore, improving
an EV’s performance and range is an important research topic.
Along this direction, this paper proposes a cruise controller to
improve an EV’s performance.

While driving on an urban road or on a motorway, a
common driver behaviour is to follow the lead vehicle, i.e. the
vehicle in front, or to drive at the speed limit. This driving style
may cause the EV to travel at significantly higher speeds than
the average traffic speed. It will also cause the EV to decelerate
frequently, e.g., due to the lead vehicle deceleration. During

Anil and Xiaoxiang are with the Department of Engineering, University of
Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
Correspondance email: ak2102@cam.ac.uk

This research was partly supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) Grant EP/R035199/1.

deceleration, although the EV will regenerate a part of it’s
kinetic energy, it will also waste a part of the kinetic energy.
In addition, at higher speeds, the EV will dissipate significantly
more electric energy to compensate the dissipative forces such
as the aerodynamic force and rolling resistance force [7].
The energy required to compensate the aerodynamic force
is proportional to the cube of vehicle speed and the energy
needed to compensate the rolling resistance is proportional to
the vehicle speed.

Drivers often engage Adaptive Cruise Control (ACC) [6],
while driving on a motorway. ACC is a driver assistance
system, which controls a vehicle’s speed such that it maintains
a safe inter-vehicular distance from the lead vehicle. The inter-
vehicular distance reference is usually proportional to the host
vehicle speed [8]. Here, host vehicle is the vehicle following
the lead vehicle. An EV with active ACC may also travel
at speeds higher than the average traffic speed due to a lead
vehicle travelling faster than the average traffic speed, which
is quite common.

Several works on cruise control design can be found in
the literature to reduce a vehicle’s energy consumption by
controlling the vehicle speed based on different considerations
[20]. In [10], [14], [16], [18], [19], [21], [23], as a vehicle
approaches a traffic signal, the traffic light status signals are
used to control the vehicle speed so that the vehicle can cross
the signal without stopping. As this strategy reduces the loss
of kinetic energy, it reduces the vehicle’s energy consump-
tion. Traffic signal based cruise controller, when combined
with a traffic demand responsive model predictive control of
traffic signal [12], can be effective in reducing vehicle energy
consumption. In [10], [15], [17], road slope data is used in
controlling the vehicle so that the change in vehicle’s potential
energy is used to reduce the vehicle’s energy consumption. In
[10], [14], [16], [23], in addition to using the traffic light status
signals, a safe inter-vehicular distance is maintained from the
lead vehicle. In [11], [17], [18], [21], [22], the vehicle’s power
train model is used to improve the vehicle’s energy efficiency.
In [16], the traffic queue length between the vehicle and the
upcoming traffic light is estimated and used to further improve
the benefit of using traffic light status signals. In [14], [15],
[19], [21], the speed limits, e.g. imposed by the road authority,
are used as constraints so that the controller does not push the
vehicle to illegal speed values. In [17], historic speed data over
a period of 4 weeks and distance along the route are used to
reduce energy consumption.

Although the cruise control designs [10], [14], [16], [18],
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[19], [21], [23], which consider the upcoming traffic signal,
can reduce a vehicle’s energy consumption, it is not effec-
tive on parts of highways without traffic lights. In addition,
although control systems based on data from network are
becoming widespread [9], it is not straightforward to access
the traffic light status signals. For example, it may require
permission from the authorities and may be expensive. It
further requires a system for wireless transmission and recep-
tion of these data between the vehicle and the traffic light
infrastructure. An alternative option would be to estimate
the traffic signal timing using deep learning methods [13].
On the other hand, accessing the average traffic speed is
relatively cheaper and easier, e.g. it is available via a TomTom
Application Programme Interface (API). In addition, a cruise
controller that considers the average traffic speed can be
effective on parts of highways with no traffic lights. Therefore,
it is worth exploring the effect of incorporating the average
traffic speed in a cruise control design.

This paper investigates a Cruise Control System (CCS),
which prevents an EV from speeding considerably above the
average traffic speed and maintains a safe inter-vehicular dis-
tance from the lead vehicle. Estimation of the inter-vehicular
distance is possible using commercial automotive radar. One
version of the proposed system assumes availability of the
average traffic speed via an infrastructure to vehicle commu-
nication, whereas the other version proposes a solution if the
average traffic speed data is absent. As the proposed system
controls the vehicle speed, it is important to ensure that the
vehicle will not collide with the lead vehicle.

The main contributions of this paper are as follows.
• An energy consumption model of an EV was developed

using data collected from an electric bus operation in
London.

• A cruise controller, which prevents an electric vehicle
from speeding significantly above the average traffic
speed and maintains a safe inter-vehicular distance from
the lead vehicle, is proposed.

• Effect of the proposed control strategy on energy con-
sumption of an EV was evaluated in a MATLAB simula-
tion environment for different urban and motorway drive
cycles.

• Safety analysis, considering the worst case scenario in-
volving the lead vehicle, was performed.

• Effect of the proposed method was analysed using exper-
imental data from an EV.

This paper is structured as follows. Section II describes the
energy consumption model. Section III shares the proposed
cruise control design. Section IV shows the analytical worst-
case safety analysis. Section V shows the simulation results
and Section VI shows the simulation based worst-case safety
analysis. Section VII shares the experimental evaluation of the
proposed method and Section VIII concludes the work.

II. EV ENERGY CONSUMPTION MODEL

As shown in Fig. 1, the energy consumption model includes
a battery pack, inverter, electric machine, transmission, brake
allocation, driver and a vehicle dynamics block. The model

was developed in a MATLAB Simulink environment. It com-
bines the modelling works in [24], [25]. The battery pack has
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Fig. 1: Schematic diagram of the EV Energy Consumption
Model.

a capacity of 138 kWh. It discharges to operate the electric
machine as a motor when the EV accelerates and charges
while the electric machine operates as a generator during
regenerative braking scenarios.
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Fig. 2: The inverter’s efficiency map as a function of the
electric machine’s speed and torque.
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Fig. 3: The electric machine’s efficiency map as a function of
it’s speed and torque.

As shown in Fig. 2, the inverter has a two dimensional effi-
ciency map as a function of the electric machine’s revolutions
per minute (RPM) and torque. As shown in Fig. 3, the electric
machine (EM) also has a two dimensional efficiency map as a



IEEE/CAA JOURNAL OF AUTOMATICA SINICA 3

function of its RPM and torque. In addition, as shown in Fig.
4, it has a one dimensional peak power map as a function of
its RPM. The electric machine’s peak power is 250 kW. The
inverter and electric machine characteristics in Fig. 2 to Fig. 4
are scaled characteristics based on [25]. The transmission has
an assumed constant efficiency of 0.95.
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Fig. 4: The electric machine’s peak power as a function of it’s
speed.

The driver block contains a proportional-integral controller,
which applies required throttle and brake inputs to track the
vehicle speed reference. The brake allocation block distributes
the brake power demand between the traditional friction brakes
and regenerative braking. The friction brakes are only used
if the brake power demand is higher than the regenerative
braking capacity, which depends on the electric machine’s
peak power at the current electric machine speed. Otherwise,
only regenerative braking is used.

The vehicle dynamics block contains equations of motion
governing the power required to accelerate, power required
to compensate the aerodynamic drag, power required to
compensate the rolling resistance and the power required to
overcome the road slope. It contains the standard longitudinal
equations of motion of a vehicle, (1) to (6) [7], [24]. Here
m is the vehicle mass, a is the longitudinal acceleration, v
is the longitudinal speed, Pw is the power applied to the
drive wheels, Pa is the power required to compensate the
aerodynamic drag, Pr is the power required to compensate the
rolling resistance, Pg is the power required to compensate the
road gradient, ρair = 1.225 kg/m3 is the density of air, Cd is
the coefficient of aerodynamic drag, A is the vehicle’s frontal
area, Cr is the coefficient of rolling resistance, g = 9.81 m/s2

is the acceleration due to gravity, θ is the road gradient and d
is the distance travelled by the vehicle. In this work, the road
gradient is assumed to be zero and the effect of wind on the
aerodynamic drag is not considered.

ma(t)v(t) = Pw(t) − Pa(t) − Pr(t) − Pg(t) (1)

Pa(t) =
1

2
ρairCdAv(t)3 (2)

Pr(t) = Crmgv(t) (3)
Pg(t) = mg sin θ(t)v(t) (4)

v(t) =

∫ t

0

a(t) dt (5)

d(t) =

∫ t

0

v(t) dt (6)

When the electric machine works as a motor, via the
inverter, electric energy flows from the battery pack to the
electric machine, where the electric energy is converted to
mechanical energy. During this process, a part of the energy
is lost in the inverter and electric machine, as shown in the
efficiency maps in Fig. 2 and 3. Further, the mechanical energy
is transmitted from the electric motor to the driven wheels. A
part of the mechanical energy is lost during this transfer as per
the transmission efficiency. The integral of Pw with respect
to time, when the electric machine works as a motor, is the
mechanical energy that reached the drive wheels. When the
electric machine works as a generator, i.e. during regenerative
braking, energy flows in the reverse direction and finally
reaches the battery pack after incurring losses in transmission,
electric machine and the inverter. The model uses the same
efficiency maps in both directions.
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Fig. 5: Simulation of the EV Energy Consumption Model
during a real-life drive cycle.

Fig. 5 shows the vehicle speed and the battery pack’s State
Of Charge (SOC) during a real-life drive cycle from an electric
bus operation in London. The measurements were collected
using an SRF Data Logger, which the co-author developed
at the Centre for Sustainable Road Freight (SRF), University
of Cambridge. It uses a smartphone and a Bluetooth dongle.
The Bluetooth dongle connects to the EV’s Fleet Management
Service (FMS) port and transmits the vehicle data using
Bluetooth communication to the smartphone. Fig. 5 also shows
the simulation model’s vehicle speed and SOC during the same
drive cycle, which correlate well with the measurements.

Fig. 6 shows the simulation model’s electric power profile
during a part of the drive cycle and the measured electric
power profile. It also shows the simulated and measured
vehicle speed profiles during this part of the drive cycle. The
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Fig. 6: Comparison of the simulation model’s electric power
profile with the measurements.

negative power values represent the electric machine working
as a motor, whereas the positive power values represent
the electric machine working as a generator for regenerative
braking. The simulated and measured electric power profiles
correlate well. In Fig. 5, the simulated energy consumption
indicator, i.e. the SOC, has less than 1% difference from the
measured value. However, this is not always the case.

TABLE I: The measured and simulated energy consumption
in different drive cycles.

Drive Cycle Simulated [kWh] Measured [kWh] Error [%]
Urban DC1 11.44 11.04 3.58
Urban DC2 21.97 23.18 −5.24
Urban DC3 25.72 25.39 1.29
Urban DC4 17.40 18.22 −4.46
Urban DC5 23.24 22.08 5.26
Urban DC6 14.89 13.80 7.92
Urban DC7 19.61 20.98 −6.50

Table I shows the simulation model’s energy consumption in
7 urban drive cycles (DCs), the measured energy consumption
in these drive cycles and the error. In these drive cycles, the
RMS error of the energy consumption model is less than 8%.

III. CRUISE CONTROL SYSTEM

The CCS design uses a two dimensional kinematic model,
represented by the following equations.

v̇h(t) = ah(t), (7)

ȧh(t) = −1

τ
ah(t) +

1

τ
uh(t). (8)

Here vh is the host EV’s speed, ah is the host EV’s longi-
tudinal acceleration, τ is the acceleration time constant and
uh is the control input of the host EV. (7) and (8) gives the
following state space model.[

v̇h(t)
ȧh(t)

]
=

[
0 1
0 − 1

τ

] [
vh(t)
ah(t)

]
+

[
0
1
τ

]
uh(t). (9)

Discretisation of (9) with a sampling time of 0.01 s gives
the following discrete-time model.

xh(k + 1) = Axh(k) +Buh(k). (10)

Here xh = [vh, ah]T is the state vector, A is the system matrix
and B is the input matrix. The proposed CCS uses a Discrete
Linear Quadratic Regulator (DLQR) gain. It was calculated

using (10), the state weighting matrix, Q =

[
103 0
0 10−5

]
,

and the input weighting matrix, R = 1. This work does not
consider non-linear control methods such as model predictive
control as the main focus is to understand the effect of a
traffic speed based cruise controller on an EV’s performance.
In addition, implementing the proposed controller does not
require high computational capacity. Fig. 7 shows the host
EV in closed loop with the CCS.

Host EV
Speed

Reference
CCS

+

-

Fig. 7: The host EV in closed loop with the CCS.

As shown below, the calculation of speed reference depends
on the host EV’s inter-vehicular distance from the lead vehicle
and the average speed of the traffic ahead.

vr,ip(t) =
dh(t) − d0

tg
, (11)

vr,nip(t) = max (vα, vh,avg(t) + ∆v) , (12)
vr(t) = min (vr,ip(t), vr,nip(t), vmax) . (13)

Here dh is the inter-vehicular distance, d0 is the desired inter-
vehicular distance when the EV is standstill, tg is the desired
minimum time gap between the host and lead vehicles, vα and
∆v are small positive values, vh,avg is the average speed of
the traffic ahead, vmax is the speed limit and vr is the speed
reference. As suggested by the the UK Driver and Vehicle
Standards Agency, tg = 2 s was chosen [26]. d0 = 5 m,
vα = 1 m/s and ∆v = 2 m/s were used. The reference prevents
the EV from speeding significantly above the average traffic
speed, while maintaining a safe inter-vehicular distance. In
(12), ∆v keeps the reference slightly above the average traffic
speed so that the EV can catch up with the lead vehicle.

The availability of average speed of the traffic ahead was
assumed, e.g. from a TomTom API. It can also be obtained
from a system using traffic cameras on motorways, which are
currently used to enforce traffic laws such as speed limits.
When the average traffic speed was unavailable, a moving
average of the host EV’s speed values in the past 5 minutes
was used.

IV. SAFETY ANALYSIS

The CCS design uses DLQR theory so that the closed
loop eigenvalues are stable. However, a stable system is not
necessarily safe. For example, in theory, an EV with the
proposed CCS, which is stable in closed loop, should reach a
positive inter-vehicular distance from the lead vehicle at steady



IEEE/CAA JOURNAL OF AUTOMATICA SINICA 5

state. However, if the inter-vehicular distance becomes non-
positive during the transient period, an accident will occur.
Therefore, it is important to perform a safety analysis to check
whether the closed loop system is collision-free.

The safety analysis was performed in the worst case sce-
nario. In the worst case scenario’s initial condition, the lead
vehicle is stationary, the host EV is cruising at the maximum
speed in the UK, i.e. 70 mph (112.7 km/h), and the time gap is
2 s. In this initial condition, the following equations represent
the inter-vehicular distance dynamics.ḋh(t)

v̇h(t)
ȧh(t)

 =

0 −1 0
0 0 1
0 0 − 1

τ

dh(t)
vh(t)
ah(t)

+

0
0
1
τ

uh(t). (14)

Discretisation of (14) with a sampling time of 0.01 s gives,

xsa(k + 1) = Asaxsa(k) +Bsauh(k). (15)

Using the DLQR gain from Section III in the control input
gives the following.

uh(k) = K

[
vh(k) − vr(k)

ah(k)

]
. (16)

Here K is the DLQR gain. Rewriting (16) gives,

uh(k) = K

([
vh(k)
ah(k)

]
−
[
vr(k)

0

])
(17)

= K

(
Mxsa(k) −

[
vr(k)

0

])
. (18)

Here M =

[
0 1 0
0 0 1

]
. During the worst case scenario, the

reference speed in (13) will be equal to the reference speed in
(11). This substitution in (18) gives,

uh(k) = KMxsa(k) −K

[
dh(k)−d0

tg

0

]
(19)

= KMxsa(k) − K

tg
Nxsa(k) +K

[d0
tg

0

]
(20)

= K

(
M − N

tg

)
xsa(k) +K

[d0
tg

0

]
. (21)

Here N =

[
1 0 0
0 0 0

]
.

Substituting uh(k) in (15) with (21) gives the following
discrete-time state equation.

xsa(k + 1) =

[
Asa +BsaK

(
M − N

tg

)]
xsa(k)

+BsaK

[d0
tg

0

]
.

(22)

At steady state, xsa(k+1) = xsa(k). Therefore, (22) simplifies
as follows.(

I −
[
Asa +BsaK

(
M − N

tg

)])
xsa,ss =

BsaK

[d0
tg

0

]
.

(23)

Here xsa,ss is the system state at steady state. Rearranging
(23) gives,

xsa,ss = O−1BsaK

[d0
tg

0

]
, where

O = I −Asa −BsaK

(
M − N

tg

)
.

(24)

At steady state, the inter-vehicular distance, dh,ss, should be
positive to ensure a collision-free operation, i.e.,

dh,ss = PO−1BsaK

[d0
tg

0

]
> 0, where

P =
[
1 0 0

]
.

(25)

Using (25), the steady state inter-vehicular distance was
found to be 5 m. Therefore, the CCS prevents collision with
the lead vehicle in the worst case scenario. In addition to the
steady state, it is important to ensure that the inter-vehicular
distance remains positive during the transient period. This was
performed using the following Linear Matrix Inequality (LMI).

P


Acl
A2
cl
...
Ancl

xsa(0)

+ P


I

Acl + I
...

An−1
cl +An−2

cl + · · · + I

Wcl > 0.

(26)

Here Acl = Asa +BsaK
(
M − N

tg

)
, Wcl = BsaK

[d0
tg

0

]
and

n is the number of samples to the steady state. The LMI
was calculated with the initial condition set to the worst case
scenario and n set to 1000, which is equivalent to 10 s. The
LMI was found to be true and the minimum value of the inter-
vehicular distance was found to be 5.33 m. This implies that
in the worst case scenario, the CCS operation avoids collision
with the lead vehicle.

V. SIMULATION RESULTS

This section describes the simulation results of the proposed
CCS in closed loop with the EV energy consumption model
from Section II. The simulations were performed in MATLAB
and employed two EV models. One was the lead vehicle and
the other was the host EV. In each simulation, the lead vehicle
received a speed profile from a set. The speed profile set were
collected from an electric bus operation in London in 2017 and
from a CNG truck operation on UK motorways in 2018. The
speed profiles collected from London have speeds less than
30 mph (48.3 km/h), representative of urban driving. On the
other hand, the speed profiles collected from UK motorways
have speeds higher than 50 mph (80.5 km/h), representative
of highway driving.

The lead vehicle tracked the speed profile, whereas the CCS
controlled the host EV’s speed. In order to analyse the effect
of the CCS on the EV performance, another simulation was
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run, where a conventional ACC controlled the host EV. The
conventional ACC controlled the host EV’s speed such that
it maintained a safe inter-vehicular distance from the lead
vehicle with a time gap of 2 s [6]. The ACC behaviour
was assumed comparable to common driver behaviour. In
numerous simulations, the host EV’s energy consumption with
the proposed CCS was compared against the case with the
conventional ACC. In addition, the two configurations of
the CCS, i.e. with the average traffic speed available and
otherwise, were evaluated. The case without the measurement
of average traffic speed is discussed first.
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Fig. 8: The host EV’s speed and inter-vehicular distance during
a simulation with the ACC. The lead vehicle follows an urban
drive cycle.

Fig. 8, 9 and 10 show the simulation results during an urban
drive cycle (DC) of 2000 s. From these results, the following
observations can be made.

• With the ACC, the host EV consumed approximately 6.84
kWh of electric energy, whereas with the proposed CCS,
the host EV consumed approximately 3.5 kWh of electric
energy. This implies the proposed CCS reduced the host
EV’s energy consumption by approximately 48%.

• With the CCS, the host EV travelled approximately the
same distance compared to the ACC case. This implies
the CCS did not increase the travel time significantly.

• Both controllers kept a safe inter-vehicular distance from
the lead vehicle.

Table II shows the simulation results during eight urban
drive cycles and eight motorway drive cycles, comparing the
performance of the proposed CCS against the conventional
ACC. From the table, the following observations can be made.

• During all the drive cycles, the host EV consumed lesser
electric energy with the proposed CCS.

• During the urban drive cycles, the CCS provided an
average 33.93% reduction in the host EV’s energy con-
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Fig. 9: The host EV’s speed and inter-vehicular distance during
a simulation with the proposed CCS. The lead vehicle follows
an urban drive cycle.
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Fig. 10: Comparison of the host EV’s performance between
the ACC case and the CCS case. During this simulation, the
lead vehicle follows an urban drive cycle.

sumption.
• During the motorway drive cycles, the CCS provided

an average 11.30% reduction in the host EV’s energy
consumption.

Table III shows the simulation results, when the measure-
ment of average traffic speed was available. From the table,
the following observations can be made.

• During all the drive cycles, the host EV consumed lesser
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TABLE II: The host EV’s performance in different drive cycles
when the average traffic speed was unavailable.

Drive Cycle kWh with ACC kWh with CCS Difference [%]
Urban DC 1 7.46 4.70 -37.00
Urban DC 2 6.61 3.55 -46.29
Urban DC 3 6.97 4.12 -40.90
Urban DC 4 7.88 4.26 -45.97
Urban DC 5 4.19 3.17 -24.17
Urban DC 6 6.64 5.92 -10.80
Urban DC 7 7.66 4.97 -35.16
Urban DC 8 6.60 4.54 -31.18
Motorway DC 1 15.12 13.96 -07.66
Motorway DC 2 12.51 11.99 -04.16
Motorway DC 3 14.56 12.10 -16.91
Motorway DC 4 14.92 12.55 -15.85
Motorway DC 5 10.19 09.27 -09.09
Motorway DC 6 13.26 12.60 -04.96
Motorway DC 7 14.99 14.52 -03.13
Motorway DC 8 12.56 08.97 -28.65

TABLE III: The host EV’s performance during different drive
cycles when the average traffic speed was available.

Drive Cycle kWh with ACC kWh with CCS Difference [%]
Urban DC 1 7.46 3.99 -46.51
Urban DC 2 6.61 3.86 -41.58
Urban DC 3 6.97 4.38 -37.12
Urban DC 4 7.88 3.88 -50.79
Urban DC 5 4.19 2.57 -38.67
Urban DC 6 6.64 5.33 -19.66
Urban DC 7 7.66 4.15 -45.80
Urban DC 8 6.60 4.35 -34.17
Motorway DC 1 15.12 15.10 -00.13
Motorway DC 2 12.51 11.26 -09.98
Motorway DC 3 14.56 11.78 -19.12
Motorway DC 4 14.92 09.99 -33.02
Motorway DC 5 10.19 06.82 -33.07
Motorway DC 6 13.26 11.31 -14.67
Motorway DC 7 14.99 13.56 -09.53
Motorway DC 8 12.56 08.05 -35.96

electric energy with the proposed CCS.
• During the urban drive cycles, the CCS provided an

average 39.29% reduction in the host EV’s energy con-
sumption.

• During the motorway drive cycles, the CCS provided
an average 19.44% reduction in the host EV’s energy
consumption.

Note that the duration of each urban drive cycle is 2000 s
and that of each motorway drive cycle is 1800 s. Therefore,
the sum of all urban simulation durations is around 9 hours
and sum of all motorway simulation durations is 8 hours.
Comparing the results in Table III against the results in Table II
shows that the availability of the average traffic speed improves
the EV performance.

VI. WORST CASE SAFETY ANALYSIS

This section describes simulation results of the worst case
scenario, where the lead vehicle was stationary and the host
EV had an initial speed of 70 mph (112.7 km/h) with an initial
time gap of 2 s. Fig. 11 shows the host EV’s speed and inter-
vehicular distance. At t = 33.1 s, the host EV had a speed of
112.7 km/h and the time gap was 2 s, i.e. an inter-vehicular
distance of 67.6 m. In addition, the lead vehicle was stationary,
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Fig. 11: The host EV’s speed and inter-vehicular distance
during the worst case safety analysis.

causing the host EV to brake. The inter-vehicular distance plot
shows that the proposed CCS stopped the host EV with a safe
inter-vehicular distance of 5.1 m from the lead vehicle. This
simulation result agrees with the findings in Section IV, i.e.
the proposed CCS keeps the host EV safe in the worst case
scenario.

Note that the safety analyses in this section and section
IV do not consider lateral stability. In situations where lateral
stability issues may arise, integration of lateral vehicle safety
systems [27]–[29] may be required to keep the host EV safe.
However, this is outside the scope of this work.

VII. EXPERIMENTAL ANALYSIS

This section describes the experimental analysis of the
proposed method. The experiments were performed using
a Nissan e-NV200 (Fig. 12b) from the Cambridge Green
Challenge. The experiments were performed on two urban
routes (Fig. 12a) in Cambridge. As it was not possible to
modify the EV, the analysis was performed using a human
driver.

The onward journey from Sainsbury’s to Waitrose & Part-
ners in Fig. 12a is called Route A and the return journey is
called Route B. First, the EV was driven on Route A and Route
B on a Wednesday afternoon such that an ACC or average
driver behaviour was imitated. An SRF Data Logger, described
in Section II, was used to measure the vehicle speed profile.
The initial and final battery pack SOCs were also noted. Using
the collected data, the average traffic speed was calculated.
On the next working day, around the same time, the EV was
again driven on the same routes. This time, the vehicle speed
was limited to slightly above the average traffic speed, as
proposed in the controller design in Section III. Whenever the
time gap between the EV and the lead vehicle was less than
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(a) The 4.9 miles long urban
route (7.9 km).

(b) The Nissan e-NV200 test vehicle
from the Cambridge Green Challenge.

Fig. 12: The test vehicle and the urban route.

approximately 2 s, the vehicle speed was controlled so that a
safe time gap of approximately 2 s could be maintained. As
before, the vehicle data were collected.
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Fig. 13: The EV’s speed profiles during the experimental
analysis.

TABLE IV: The experimental results.

Route A Route B
Initial SOC in the baseline case 95% 88%
Final SOC in the baseline case 88% 82%
Initial SOC with the proposed method 95% 91%
Final SOC with the proposed method 91% 86%
Change in SOC in the baseline case 7% 6%
Change in SOC with the proposed method 4% 5%
Start time in the baseline case 15:31 hrs 15:55 hrs
Stop time in the baseline case 15:53 hrs 16:19 hrs
Start time with the proposed method 15:32 hrs 15:55 hrs
Stop time with the proposed method 15:53 hrs 16:17 hrs
Travel time in the baseline case 22 mins. 24 mins.
Travel time with the proposed method 21 mins. 22 mins.

Fig. 13 shows the EV’s speed profiles during the tests. From
the results shown in Table IV, it is clear that the proposed
method reduced the EV’s energy consumption on average by
30.8% without increasing the travel time. Note that the tests

were performed around the same time, on consecutive working
days. On each day, the test started on Route A with the same
initial battery SOC of 95%.

VIII. CONCLUSIONS

A Cruise Control System (CCS) to improve an Electric
Vehicle’s performance, which is a significant hurdle in market
penetration of Electric Vehicles, is proposed in this work. The
proposed CCS controls an EV’s speed such that it prevents
the vehicle from speeding significantly above the average
traffic speed. The system prevents an EV from wasting energy
in unnecessary acceleration, deceleration and compensation
of dissipative forces such as the aerodynamic drag force
and rolling resistance. In addition, it maintains a safe inter-
vehicular distance from the lead vehicle so that the EV
operates safely.

An energy consumption model of an EV was also developed
using data collected from an electric bus operation in London.
The proposed controller was designed and simulated in a
MATLAB simulation environment. A safety analysis was also
performed to ensure collision free vehicle operation in the
worst case scenario. In the simulations performed, on average,
the proposed system reduced the EV’s energy consumption
by approximately 36.6% in eight urban drive cycles and by
approximately 15.4% in eight motorway drive cycles. The
experimental analysis using a Nissan e-NV200 showed 30.8%
electric energy savings on two urban routes.

Future work includes integration with a real-time average
traffic speed measurement, e.g. from TomTom API and con-
sidering the EV power train model. The next steps also include
design and testing of a traffic speed based speed limiter system,
which can be implemented in an EV without autonomous
driving capabilities.
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