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Abstract

PhD Thesis - Stefan Winzeck

Methods for Data Management in Multi-Centre MRI Studies and Applications

to Traumatic Brain Injury

Neuroimaging studies are becoming increasingly bigger, and multi-centre collaborations to

collect data under similar protocols, but different scanning sites, are now commonplace.

However, with increasing sample size the complexity of databases and the entailed data

management as well as computational burden are growing. This thesis aims to highlight

and address challenges faced by large multi-centre magnetic resonance imaging (MRI) stud-

ies. The methods implemented are then applied to traumatic brain injury (TBI) data.

Firstly, a pre-processing pipeline for both anatomical and diffusion MRI was proposed, that

allows for a high throughput of MRI scans. After describing the choices for processing tools,

the performance of the integrated quality assurance was assessed based on the results from a

large multi-centre dataset for TBI. Secondly, the applicability of the pipelines for processing

mild TBI (mTBI) data from three sites was shown in a case study. For this, volumetric and

diffusion metrics in the acute phase are analysed for their prognostic potential. Further-

more, the cohort was examined for longitudinal changes. Thirdly, independent scan-rescan

datasets are examined to gain a better understanding of the degree of reproducibility which

can be achieved in imaging studies. This involves analysing the robustness of brain parcel-

lations based on structural or diffusion imaging. The effect of using different MRI scanners

or imaging protocols was also assessed and discussed. Fourthly, sources of diffusion MRI

variability and different approaches to cope with these are reviewed. Using this foundation,

state-of-the art methods for diffusion MRI harmonisation were compared against each other

using both a benchmark dataset and mTBI cohort. Lastly, a solution to localise brain lesions

was proposed. Its implications for lesion analysis, are assessed in the light of an application

to a more severe TBI patient cohort, imaged on two different scanners. Furthermore, a

lesion matching algorithm was introduced to automatically examine lesion evolution with

time post-injury. In summary, this thesis explored different options for MRI data analysis

in the context of large multi-centre studies. Different approaches are studied and compared

using a number of different MRI datasets, including scan-rescan data across different MRI

scanners and imaging protocols. The potential of the optimised solutions was illustrated

through applications to TBI data.
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Chapter 1

Introduction

1.1 Neuroimaging: A Field Moves Towards Big Data

When the first magnetic resonance (MR) images of a live human subject were acquired

in the late 1970’s, new possibilities to study human anatomy and physiology were opened

up. Shortly after, with commercially available MRI scanners, the field of neuroimaging was

born [59]. Most studies in the first three decades have been limited to small number of

subjects, but over the years medical imaging has seen many new advances in hardware and

pulse sequence design as well as image reconstruction algorithms. With MRI scanners be-

coming cheaper, faster [248] and more accessible [76] over time, and with the new emerging

fields - such as the ultra-high field MRI [201] - more scans are collected than ever. This

trend is further enforced as studies nowadays usually acquire multi-modal images to examine

anatomy, function and connectivity of the healthy and diseased brain. Besides the number

of obtained scans, their capacity has progressively transformed to capture more detailed

information about the brain. For example, the earliest functional image time series sam-

pled total volumes at a four second rate, but with better imaging technologies this interval

was more than halved while slice resolution increased [252]. Similarly, for diffusion tensor

imaging (DTI) for which initially only six volumes, each sensitised along a different gradient

direction, were acquired [16]. To better examine white matter (WM) fibre orientation, the

angular resolution was refined by increasing the number of diffusion directions [50, 279]. For

example, diffusion spectral imaging has been introduced to resolve more than 500 diffusion

directions while keeping common volume size and spatial resolution [59, 252]. Although

useful to quantify the micro-structural integrity of WM, diffusion spectral imaging is lim-

ited to research applications and today’s clinical studies often include around 60 diffusion

volumes. In addition to the general increasing size of individual datasets through multi-

1
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modal image acquisition, there is a trend to collect larger numbers of subjects to improve

statistical power. Large-scale databases enable the detection of subtle effects that would

not be statistically observable in smaller groups [233]. Acknowledging this need for larger

datasets, both population and multi-centre studies have emerged throughout the past few

years. While smaller studies remain important to look at very specific cohorts in future, the

shift towards larger databases in the field of neuroimaging is clearly observable [272]. Such

big databases can be shaped by either a large number of subjects (i.e. >1,000) scanned or

the extensive data acquisition with advanced scanning protocols (e.g. Human Connectome

Project1 [HCP] Adult Diffusion sequence with several shells and high angular resolution

amasses more than three gigabytes per scan) [233]. Both have the potential to improve im-

age analysis and foster more generalisable research. Eventually, larger neuroimaging studies

will help to understand specific patient cohorts as well as disease development in a general

healthy populations, however, they also come with many challenges for data management,

processing and analysis.

1.2 Design of Big Neuroimaging Studies

Collecting big data for neuroimaging studies can be difficult, which is why different ap-

proaches have been established to increase the size of databases. They can be broadly

categorised as single-centre studies and retrospective as well as prospective multi-centre

studies. All of them come with different advantages and drawbacks.

1.2.1 Large Single-Centre Studies

In a best case scenario, subject recruitment and data collection is centralised at one imag-

ing site. With one MR protocol used ideally on one scanner consistently, the acquisition

related variability can be greatly reduced. Besides this, the administrative effort and costs

can be kept to a minimum as no coordination between sites is required. One example for

a large-scale database is the single-site Cambridge Centre for Ageing and Neuroscience2

(Cam-CAN) study that collected neuroimaging and cognitive data for several hundred of

healthy subjects across a wide age range to research healthy ageing [226]. Another ex-

ample is the HCP which accumulated multi-parametric neuroimaging data on one scanner

from 1,200 healthy volunteers over the span of five years [251]. A little more specific is

the Philadelphia Neurodevelopmental Cohort3 (PNC) initiative. For this more than 1,400

1www.humanconnectomeproject.org
2www.cam-can.org
3www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html

www.humanconnectomeproject.org
www.cam-can.org
www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html
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adolescents underwent multi-modal MRI to examine cognitive development and its link to

psychiatric illness. To form a big database, inclusion criteria were kept to a minimum and

no screening for specific psychiatric or other medical disorders took place at the recruitment

stage [223]. All three studies have in common, that they mainly focus on healthy volunteers

or have relative wide inclusion criteria for subject recruitment.

1.2.2 Retrospective Multi-Centre Studies

Although acquiring imaging data at a single site poses much less challenges for data organisa-

tion and harmonisation, one big shortcoming may be the availability of patients. Multi-site

studies have the potential to amass a large dataset from a specific patient cohort, which

otherwise would not be obtainable at a single site. Besides increasing the sample size, com-

bined datasets from multiple centres, various cities and different countries bear the potential

to capture the full disease profile. Since many clinical facilities collect data from specific

patient cohorts for diagnosis and treatment, a great opportunity to increase sample size

is to aggregate such legacy datasets. For a small number of partnering sites, this usually

requires little organisational effort. However, such collaborations can be limited to datasets

that were acquired with similar imaging techniques to allow any combined analysis [249].

Projects could range from two research groups, that agree to share data, up to large-scale

collaborations incorporating multiple sites. A special case are consortia which aim to aggre-

gate data from many sites to provide a large database of certain cohorts. For instance, the

Autism Brain Imaging Data Exchange4 (ABIDE) project which gathered and openly pro-

vides resting-state functional MRI for more than 1,000 subjects (fairly even split between

autistic individuals and age-matched controls) from over 24 international brain imaging sites

[54]. Another prominent example is the Enhancing Neuroimaging Genetics through Meta-

Analysis5 (ENIGMA) consortium - a growing number of scientists across 340 institutions

in 35 countries - investigating the genetic impact on brain structure. Pooling imaging and

genetics data from global existing studies amplifies the sample sizes by many folds. This

fosters research of brain abnormalities in more than 20 major cognitive, psychiatric and

neurogenetic disorders (e.g. depression or schizophrenia) [18, 242]. Since imaging data are

acquired independently and combined retrospectively in a meta-analysis, the efforts for prior

coordination are low, however, with the caveat of a highly heterogeneous database.

4www.fcon_1000.projects.nitrc.org/indi/abide
5www.enigma.usc.edu

www.fcon_1000.projects.nitrc.org/indi/abide
www.enigma.usc.edu
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1.2.3 Prospective Multi-Centre Studies

Multi-centre imaging studies require the most planning and substantial effort to coordinate

the data collection. This is reaching from equalising imaging equipment and methods across

sites to building a sufficient infrastructure to centralise and share data. Such studies are very

expensive due to planning overhead, however, with the benefit of minimising the variation in

inclusion criteria, scanner calibration and imaging protocols, which facilitates the pooling of

data for a combined analysis [82, 249]. Such large databases are particularly important if the

cohort under investigation exhibits a vast heterogeneity, such as for example TBI patients,

who suffer from injuries of different severities and experience a wide spectrum of symptoms.

A well established prospective multi-centre project to investigate TBI on a large scale is the

Transforming Research and Clinical Knowledge in Traumatic Brain Injury6 (TRACK-TBI)

study. It aimed to gather neuroimaging data, including MRI two weeks after injury, at four

sites in the USA. All centres implemented equivalent imaging protocols on MRI scanners

from three different vendors [274]. Similarly, the more extended Collaborative European

Neuro-Trauma Effectiveness Research in Traumatic Brain Injury7 (CENTER-TBI) study

has been set up as a prospective collaboration between 22 countries (ca. 80 sites) across Eu-

rope and Israel with the aim to collectively gather extensive data to improve characterisation

of TBI. This included the collection of longitudinal clinical and epidemiological information

as well as blood biomarkers. Some of the sites have been contributing to an extended data

acquisition, which included multi-contrast MRI data collected up to two years post-injury

[162]. In order to minimise acquisition related differences, site-specific MR protocols were

designed with similar parameters. To ensure the image quality and provide a baseline, scan-

ning protocols were validated on custom-built phantoms. To foster a combined analysis and

allow data harmonisation, additionally to the phantoms, healthy volunteers were scanned

at each site [28]. Less targeted towards any specific disease cohort, is the UK Biobank8

project. To date it is one of the largest, highly coordinated imaging studies planning to scan

100,000 volunteers9 to collect data from 22 centres across the UK [175, 192]. The aim is to

build a homogeneous database that, in combination with follow-up metrics (both clinical and

imaging), can serve as an analysis pool for early biomarker detection within a middle-aged10

population cohort. Although subjects appear to be healthy during the recruitment, patient

groups will be identified with follow-up clinical assessments over time. It is estimated that

in the sub-cohort that underwent MRI approximately 1,800 individual will have developed

6www.tracktbi.ucsf.edu
7www.center-tbi.eu
8www.ukbiobank.ac.uk
9as a subset of 500,000 participants, for which clinical variables were collected

1040 to 69 years

www.tracktbi.ucsf.edu
www.center-tbi.eu
www.ukbiobank.ac.uk
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Alzheimer’s disease, 8,000 will suffer from diabetes and another 1,800 will have experienced

a stroke [4, 175].

1.3 Challenges

1.3.1 Data Management

As previously established, neuroimaging databases are growing due to increasing number

of subjects, enhanced image quality as well as multi-parametric and longitudinal image ac-

quisition. This is fostered by breakthroughs in computational science (e.g. deep learning),

clinical needs to study complex diseases in larger cohorts and improved infrastructure to

acquire and share data. While beneficial for research purposes, storage, computing memory

and computational speed become a difficulty for these large-scale databases. An essential

part of neuroimaging studies is the removal of artefacts and the extraction of structured

information relevant to the research question. Although this extraction usually condenses

the available information and in theory compresses the database size, image processing tools

often create intermediate output files that further increase the demand for (temporary) disk

space. Moreover, some image analyses, such as computing brain connectivity on a voxel

level from a functional MRI time series, can even lead to expansion of data size [233]. A

centralised database that provides the same curated data for all researchers involved can

help to minimised storage needs. This, however, requires an easily accessible infrastruc-

ture to share data, transparent quality control (QC) mechanisms and constant database

maintenance [200]. With more imaging data available and the development of data-hungry

algorithms, there is a shift towards use and optimisation of modern graphical processing

units [152]. Besides advanced hardware and improved computing architecture, data man-

agement can further be supported by streamlined image processing pipelines. Since many

software tools for neuroimaging data were not designed for large-scale analysis [252], there is

also a need for new algorithms that accelerate processing performance. The combination of

new state-of-the-art methods, integrated in optimised processing pipelines, and the design

of modern computing clusters allow a high throughput of imaging data. Although optimal

data management is the backbone to any research flow, this is only one of the challenges

faced when dealing with large and heterogeneous databases.

1.3.2 Confounding Factors

Large neuroimaging studies can often be less specific as one of the primary goals is to amass

a vast amount of data to cover the variability within a cohort. Population studies, such as for
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example the UK Biobank project, have no single disease focus and data are collected before

any subgroups are identified. Therefore, acquiring a big dataset is needed to improve the

chances to detect subtle effects that were otherwise statistically not observable. Although

large sample sizes are beneficial to highlight real effects, it also increases the sensitivity to

confounding factors. This particularly holds true for large imaging studies, as the potential

for imaging artefacts increases with sample size. Such artefacts can directly affect the imag-

ing variables of interest. For example head motion or scanner hardware changes11 are much

more likely to occur in large and longitudinal studies [233]. Thus, it is important to apply

sophisticated acquisition and processing methods to reduce the impact of these confounds

while avoiding the alteration of the true signal [233]. For instance, accelerating image acqui-

sition could help to reduce head motion artefacts. In addition, methods have been developed

to reduce the effect of motion-related confounds, however, it was recently shown that this

is non-trivial as different pre-processing steps can also influence subsequent data analysis

[191]. On the other hand, there are confounding effects driven by the imaging hardware used

and scanner software. These mostly will have the same effect on different subjects, however,

will greatly vary for different imaging sites. For example, different vendors, magnetic field

strengths and type of coils have been found to affect volumetric measurements extracted

from anatomical MR scans [49, 120, 139]. Furthermore, the MR acquisition protocol was

shown to impact image quality. For example, different magnitude [24] and number [41] of

b-values were found responsible for variation in diffusion metrics. Both the angular [279]

and spatial [194] resolution had an impact on the measured diffusion signal. Even when

choosing identical imaging systems and setups, differences are inevitable, partially, since

operator inconsistency can also alter image quality [233, 252]. Moreover, some confounding

factors are unrelated to the image acquisition, but a result of anatomical differences between

subjects. For example, cortical thinning is a natural age-related phenomenon and needs to

be considered when examining tissue atrophy in diseased brains [233]. Other subjects de-

pendent effects such as alcohol [243] and caffeine [148] consumption have been shown to

influence MRI signal. Particularly when dealing with multi-centre studies, inequalities in

databases need to be addressed to avoid any site-specific biases.

1.3.3 Data Harmonisation

Combining heterogeneous databases from multiple studies retrospectively often requires dif-

ferences in image acquisition to be rectified. As a first step this could mean removing field

inhomogeneities of individual scanners, resampling images to a common spatial resolution

and/or projecting them to the same physical space. For prospective multi-centre studies,

11or inevitable hardware difference in multi-centre studies due to the different scanning location
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with matched scanning parameters, site-specific biases are ideally less pronounced but can-

not be ruled out completely. With more neuroimaging data available through collaborative

projects there is a rising awareness of MRI inconsistencies across sites. A large empirical

study showed that MR scans from 17 different databases could easily be associated with

their origin by a standard machine learning classifier (≈72% accuracy) [258]. Similarly, it

has been shown that even after meticulous pre-processing of anatomical brain scans, MR

images from different studies could still be identified by a randomised forest (RF) classifier

with high accuracy (≈80-99% for two databases) [81]. This indicates that commonly ap-

plied processing steps may not be sufficient in reducing site-specific differences. Even after

applying harmonisation methods and successfully reducing inter-site variations, scans from

different sites could still be distinguished easily (≈40-55% for 17 databases) [36, 258]. In

fact, some techniques such as Z-scoring, were reported to also diminish the underling signal

of interest [258]. This is especially problematic for prognostic analysis of multi-site data,

where differentiation between patient cohorts could be hampered or even misled by site-

specific influences. Therefore, standardised MR protocols have been employed to minimise

differences across scanners [77, 92]. This is indeed a viable option for prospective multi-

site imaging projects, however, currently many databases exists that could be harvested

for clinical research if adequate harmonisation methods were available. Moreover, today’s

multi-centre studies may be tomorrow’s legacy data. In other words, there will always be a

trend to combine different databases to leverage the vast information from previously col-

lected MR scans. Additionally, a recent survey has shown that more guidance is needed for

medical data harmonisation [119]. In particular, the impact of current techniques on MR

scans of different disease cohorts is little understood. For those reasons, harmonisation of

neuroimage data remains an open research question that will become even more important

with the increasing number of emerging multi-centre projects.

1.4 Overview of Thesis

Some of the core challenges for large-scale multi-centre studies involve optimising workflow

for processing large-scale MRI databases, understanding the impact of different MR scan-

ners and protocols on image derived features as well as general data harmonisation. This

thesis aims to explore some of these concepts with direct application to a TBI cohort. Trau-

matic brain injuries are interesting to study, since diverse injury mechanisms and pathology

development lead to highly heterogeneous disease patterns. While some patients show very

subtle changes in WM, others experience severe head injury including lesions and brain

tissue atrophy. This heterogeneity makes TBI a particular challenging cohort and some
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concepts could also be transferred to simpler neurological diseases (e.g. tumour segmen-

tation is less challenging than TBI lesion segmentation). At first, pre-processing pipelines

will be introduced that were specifically, but not exclusively, designed for TBI data. These

entail state-of-the art methods for artefact correction and preparing the data for subsequent

analysis for clinical research questions (Chapter 2). Thereafter, the applicability of the

pipelines will be tested on a mTBI study including data from three different sites. As a

direct output from the pipelines, QC metrics will be employed to curate the dataset. Image

derived features automatically computed via the pipelines will then be used for analysis of

the mTBI cohort (Chapter 3). Furthermore, brain parcellation methods will be examined

for their reproducibility when applied to multi-scanner data. Regional diffusion metrics will

be compared for different scanners and/or MR protocols (Chapter 4). Acknowledging the

site-specific differences in diffusion MRI, different harmonisation methods will be evaluated

(Chapter 5). Finally, lesions of severe TBI patients scanned on two different scanners will

be analysed (Chapter 6).

The following paragraph briefly describes the content of each chapter:

• Chapter 2 presents two flexible pipelines that allow processing anatomical and diffusion

MRI. Besides the tailored artefact correction, the image derived features as well as the

integrated QC are described.

• Chapter 3 showcases the application of the processing pipelines for TBI analysis. Re-

gional volumetric and diffusion differences between controls and mTBI patients are

examined and linked to patient outcome.

• Chapter 4 evaluates the robustness of anatomical white and grey matter parcellation

methods with regards to different scanner hardware and investigates the influence of

different acquisition protocols on diffusion MRI metrics.

• Chapter 5 compares different diffusion MRI harmonisation techniques and examines

their application to a small mTBI study.

• Chapter 6 studies contusion and oedema in TBI patients scanned on two different

scanners and introduces algorithms for automated lesion localisation as well as for

lesion matching for longitudinal lesion analysis.

• Chapter 7 summarises the contributions of this thesis and provides an overview of

future research directions.



Chapter 2

Data Analysis Pipelines

2.1 Requirements and Concept of Processing Pipelines

With data being collected for hundreds of subjects at several time points across different

sites and vendors, datasets become quickly very complex [264]. As a consequence, a lot of

time needs to be invested to curate and process a database such that it is ready to use for

analysis by a multi-disciplinary team of clinicians, machine learning researchers and statis-

ticians. Therefore, there is a demand for robust pipelines that facilitate image processing,

data curation and information extraction. To build effective pipelines that support neurosci-

entific research they need to fulfil a number of requirements. To allow a high throughput of

data, the pipelines need to be computationally efficient. This can be achieved by using fast

methods, parallelising processes and connecting modules smartly together. Furthermore,

data need to be processed in a robust way to minimise variation when rerunning the same

pipeline on the same data. In addition, it is desirable to have a modular pipeline that allows

the seamless integration of well-validated tools and new state-of-the-art methods. Since it

becomes intractable to visually inspect large databases, QC metrics will need to assess the

processed output and flag up corrupted scans and failed processing steps. Eventually, after

removing artefacts and enhancing image quality, the pipelines will need to extract meaning-

ful image features that can then be used to answer clinical questions. Ideally, input data fed

to the pipeline and any processing steps are thoroughly documented, to provide information

about what data were used and how it was handled.

Two pipelines were designed for this project, one for structural MRI, and another for dif-

fusion MRI data. Both pipelines were implemented with the python library nipype (version

9
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1.1.8) [86]. Alternatives could be FDT1 (FSL’s Diffusion Toolbox) or FreeSurfer 2, however,

these mostly focus on algorithms developed for the particular toolbox. On the other hand,

nipype is scriptable library facilitates the access to various sophisticated software packages

(e.g. FSL, ANTS, MRtrix3, Dipy) via unified semantics. Many of them have been applied

throughout multiple neuroimaging studies making results more replicable. One great ad-

vantage is, that once a processing module has been completed, it will be stored in a cache.

So, when rerunning the pipeline on the same data again, processed data can be retrieved

without any further computational effort as long as the input and the parameters for the

particular module were unchanged. This makes the pipelines not only more efficient, but

also more robust. Generally, if rerunning a processing module without any changes, the

output quality might still be influenced by statistical variance of an applied tool (for ex-

ample because of random initialisation of an algorithm). Besides the access to well known

neuroimaging tools, nipype also enables the implementation of customised interfaces. This

allows the integration of any command line tool or script, in order to link together the most

suitable methods and tailor the pipelines to one’s needs. The pipelines include modules to

compute QC metrics for different tools as well as modules to extract image derived pheno-

types (IDPs). Both QC metrics and IDPs are stored in comma-separated values (CSV) file

format for each subject individually. After prepossessing a whole database, those CSV files

can easily be concatenated within seconds to combine information for one study all together.

Another great advantage of nipype is that all parameters for any applied processing tool are

saved as text file such that the information can be retrieved and processes repeated any

time. Furthermore, a custom text file is generated and stored for each processed scan, that

exactly documents which pipeline version was run and what data were fed into it. The setup

of both pipelines will be described in detail in the following sections.

2.2 Data Acquisition

Cam-CAN Database. Images for the Cam-CAN study were collected on a three Tesla (3T)

Siemens Trio Tim scanner with a 32-channel head coil at the Medical Research Council (UK)

Cognition and Brain Sciences Unit (MRC-CBU) in Cambridge, UK. The T1-weighted (T1w)

magnetisation-prepared rapid acquisition with gradient echo (MPRAGE) scans were collected

with an echo time TE = 2.99ms, a pulse repetition time TR = 2250ms, an inversion time

TI = 900ms and a 9◦ flip angle. A 2-fold acceleration factor was applied (generalised auto-

calibrating partial parallel acquisition) to cover the field of view (FOV) (256×240×192) with

1www.fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
2www.surfer.nmr.mgh.harvard.edu

www.fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
www.surfer.nmr.mgh.harvard.edu
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isotropic 1mm3 voxels. Diffusion weighted images (DWI) were acquired for two different b-

values (b = 1000, 2000 s/mm2) with each 30 non-co-linear directions and three non-diffusion

sensitised images (b = 0 s/mm2). Images with isotropic 2×2×2 mm3 voxels (axial slices;

FOV = 192×192) were all acquired with TR = 9100ms and TE = 104ms. More details

are available in the Cam-CAN repository publication [239]. Although DWI are relatively

low in angular resolution for today’s standard, this represents a state-of-the-art imaging

protocol given a limited acquisition time (approximately 10 minutes) at the time when the

MR sequence was designed (multi-band imaging was not yet established).

To create a new age-unspecific T1w template and a corresponding atlas, T1w images of 652

healthy subjects (aged 18-87) from the Cam-CAN study were iteratively registered. For this,

images were initially affinely registered to Montreal Neurologcial Institute (MNI) template

space. After merging data to create an initial template (average image), images were repeat-

edly registered and merged, whereas for each new iteration the previous generated average

image served as registration target. The iterative approach included three rigid, three affine

and six deformable registration steps. T1-weighted images were parcellated in native space

[151] (for more information see next section). Eventually, these individual parcellations were

projected to template space with the corresponding transformation for non-linear registra-

tion (last step of registration iteration) and merged. All registration steps were performed

with ANTS antsRegistration.

CENTER-TBI Database. For this multi-centre study multi-contrast MRI data were

collected on 17 3T scanners (three different vendors: General Electrics [GE], Philips and

Siemens) at 14 different sites. The various contrasts acquired during a scan session entailed

T1w, T2-weighted (T2w), fluid attenuated inversion recovery scans (FLAIR) and susceptibil-

ity weighted imaging (SWI) as well as DWI.3 Acquisition protocols were harmonised across

all participating sites as well as possible, while coping with site-specific limitations (e.g.

number of diffusion directions that can be acquired at once). Table 2.1 provides an example

of MR parameters for one site (other sites are similar). Structural scans were acquired with

1×1×1 mm3 voxel size. Diffusion images were collected with 2×2×2 mm3 voxel size and

the angular resolution varied between 30 or 32 gradient directions (site-dependent). Some

centres collected a rescan of the same diffusion directions, which can be useful for analysing

intra-scanner reproducibility. Further information can be found online.4

Scan-Rescan Database Twelve subjects (10 female, two male, age = 33.7 ± 6.8), were

3resting-state functional MRI was also acquired, but will not be specified here
4www.center-tbi.eu/project/mri-study-protocols

www.center-tbi.eu/project/mri-study-protocols
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scanned twice within a few months on each of two scanners (Siemens Prisma & Trio) to ac-

quire T1w MR image. In addition, six subjects underwent diffusion MR imaging during the

same session. The scanning protocols were equal for T1w images except for slight difference

in TE. A longer TE allows more time for the net magnetisation to return to its initial max-

imum value parallel directed to the main magnetic field. This results in decay of the T1w

signal, which can lead to lower contrasts between tissues (given that the TR is short, and

no T2w image is acquired, for which both TE and TR are long). A decreased contrast could

directly influence image parcellation, however, this effect is expected to be minimal for this

data due to the very small difference in TE (i.e. 0.04 ms). Besides the different TE, the total

number of channel varied for the T1w images (40 and 32 for Prisma and Trio, respectively).

Generally, a higher number of channels will result in a better signal-to-noise ratio (SNR),

however, the spatial distribution of the receiver coils will need to be considered as well.

Therefore, the impact of the different number of channels on this dataset cannot directly be

assessed. Since the number of channel is fairly similar (only 8 more on Prisma than Trio),

the differences are expected to be small. A recent study [199] has shown a high reliability

between MR images collected on Prisma and Trio scanners, but a significant higher SNR

for Prisma than Trio scans was found. This could be linked to larger (e.g hippocampus)

or smaller (thalamus) volumes derived from Prisma scans (FreeSurfer). Diffusion imaging

protocols mainly differed in the applied TR, but were otherwise mostly identically. On both

scanners single-shell data (b = 1000 s/mm2) with 64 non-collinear gradient directions were

collected. While for Trio DWI scans one non-diffusion sensitised image (b0) was acquired,

DWI scans on Prisma included five b0 volumes. For better compatibility of both scanner

protocols, the four additional baseline image were not considered. Since, these were acquired

at the very end of the scan no artificial time gap between consecutive diffusion volumes was

created. For both scanners 64 channels were employed. All scans were collected via parallel

imaging in k-space (GRAPPA) covering 100% of FOV. Protocol parameters are summarised

in Table 2.2.

2.3 Pipeline for Structural Magnetic Resonance Images

The pipeline for structural MR images takes several files as input. This consists of most

importantly a T1w image and several other MR scans, here collectively defined as additional

structural scans. Among those are T2w, FLAIR, SWI, gradient echo (GRE) and proton

density (PD) images. The most commonly acquired MRI sequences are T1w and T2w scans,

as they show excellent soft tissue contrast within the brain. While T1w images show brain

anatomy most clearly (cerebrospinal fluid [CSF] dark and brain tissue bright), T2w scans can
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Table 2.1: Example of Acquisition Parameters of CENTER-TBI Database

Contrast TR TE TI Flip Angle PxBW

T1w 2300 2.98 900 9◦ 240

T2w 3000 222 - 90◦ 751

FLAIR 6000 394 2100 90◦ 781

SWI 29 20 - 15◦ 120

DWI 9800 91 - 90◦ 1698

TR: Repetition time in ms, TE: echo time in ms, TI: Inversion time in ms, PxBW: Pixel
bandwidth in Hz/Px

Table 2.2: Acquisition Parameters of Scan-Rescan Database

Prisma Trio

T1w DWI T1w DWI

FOV Read 256 mm 192 mm 256 mm 192 mm

Slice Thickness 1 mm 2 mm 1 mm 2 mm

TR 2250 ms 8500 ms 2250 ms 8400 ms

TE 3.02 ms 90.0 ms 2.98 ms 90ms

TI 900 ms n/a 900 ms n/a

Flip Angle 9◦ 90◦ 9◦ 90◦

Pixel

Bandwidth

230 Hz/Px 1628 Hz/Px 230 Hz/Px 1628 Hz/Px

Echo Spacing n/a 0.77ms n/a 0.72 ms

EPI Factor n/a 96 n/a 96

also highlight pathology, which appears bright. Since, CSF also is bright on T2w images,

FLAIR images are acquired which allows to suppress the signal originating from normal

CSF (appears dark) while signal in abnormalities remain bright. Since all of the above

mentioned scans are three dimensional (3D) images showing complementary information of

brain anatomy, they are clearly differentiated from diffusion and functional MR images. Of

course the latter show brain anatomy as well, but due to their more complex data structure,

they will be processed in separate pipelines specifically designed for DWI. While the T1w

scan is essential to run the structural MR pipeline, all other additional scans are optional

and the pipeline would run completely without or with any subset of those scans. This is an

important feature, as scan availability varies within and across studies, which may include

different image contrasts. Usually, a T1w scan is always acquired by default and additional

scans are collected as needed to answer research questions. But even scan sessions within



14 CHAPTER 2. DATA ANALYSIS PIPELINES

one study may be incomplete due to corrupted MR images or interrupted scanning session

(for example due to patient discomfort). The flexible data input enables to automatically

process different sets of anatomical scans more easily. Figure 2.1 provides an overview of

the different pipeline modules.

Figure 2.1: Schematic Overview of Pipeline for Structural MRI

2.3.1 Processing Modules

Neck Cropping. Although not the most pivotal step, cropping the neck reduces the num-

ber of voxels5 and will accelerate many subsequent computing steps. Any registration based

step, such as brain extraction and parcellation tools, will process images faster if less voxels

are present. Besides reducing the computational costs, it also helps to make some processing

steps more robust, as algorithms do not have to consider large areas solely including neck or

background. In an earlier development stage, for example, it was observed that multi-atlas

registration needed for the brain parcellation (see below) failed due to images showing a big

proportion of the neck. So initially, the FSL [112] tool robustfov was used for neck cropping.

However, this often led to cutting the image through the cerebellum and brainstem (Fig-

ure 2.2 B). This was mostly, but not exclusively, linked to images with tilted head position.

Therefore, a simple but more robust tool was introduced (custom nipype interface): At first,

T1w image intensities were corrected for inhomogeneity in the magnetic field, also known

as N4 bias field correction [2]. This image was then affinely registered to a template (here:

Cam-CAN template, Section 2.2) via ANTS antsRegistration [12]. Then, the transforma-

tion found was inversely applied (ANTS antsApplyTransforms) to the template’s FOV mask

5voxels are the 3D building block of image volumes, analogous to pixels in a two dimensional image
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(practically a mask that fills out the complete template image space). Subsequently, the

most inferior point of the projected FOV mask was identified (if oriented in standard space,

this is usually the mask’s lowest z-coordinate, i.e. the lowest point along the neck) and used

as location to crop the image within the transverse plane (Figure 2.2 C).

Figure 2.2: Example of Neck Cropping. As seen on the sagittal slice, the originally acquired
T1w image included a big portion of the neck (A). Attempting to crop the image with com-
mon tool robustfov cut off parts of the cerebellum and brainstem (B). Affinely coregistering
the T1w image to a template, and backprojecting the template’s FOV mask (red area),
allowed to find a more conservative lower bound (yellow line) to crop the image (C).

Eventually, the actual neck cropping is applied to the input T1w image, rather than the N4

bias corrected one, to preserve the original intensities. Applying robustfov to an early release

of CENTER-TBI data (CENTER Core 1.0), including 1252 T1w scans, 132 scans (>10%)

were incorrectly cropped. The customised approach turned out to be more conservative and

has failed only in two cases (failed cases were identified as described later in Section 2.3.2 QC

#1). These were then manually cropped to support affine coregistration to the template,

before applying the same tool successfully again.

Brain Extraction. Generating a brain mask is often one of the first steps in brain image

processing. This allows to focus the computational effort and the analysis only on voxels that

actually show brain. Before integrating one or the other tool in the pipeline, several algo-

rithms were applied to a severe TBI database (number of subjects N>100)6, and compared

directly against each other. Brain lesions and other abnormalities can drastically affect the

quality of brain extraction, which is why the algorithms were tested on a clinical cohort. The

included T1w images showed head deformations and lesions of various sizes and at different

locations. After correcting T1w images for gradient field inhomogeneities (N4 correction),

three different brain extraction tools were applied. The output of ANTS antsBrainExtraction

[12], FSL’s brain extraction tool (BET) [231] with different parameter settings and ROBEX

[106] was blindly evaluated through visual inspection by a clinician. The total of 396 T1w

6This was part of a legacy dataset, as described in Section 6.2.1
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scans included 136 scans of healthy controls as well as 260 scans of severe TBI patients. All

three algorithms were designed for non-lesioned brains, which is why a perfect segmentation

for all scans is unlikely. Hence, the superiority of an algorithms was defined as the one

that failed on the least cases based on the visual quality control. Although BET extracted

the brain accurately on 294 or 322 scans (depending on settings), it was outperformed by

ROBEX and antsBrainExtraction with 348 and 353 successful segmentations, respectively.

Furthermore, ANTS performed better than ROBEX on 18 scans. While BET often under-

or oversegmented the brain, ROBEX and antsBrainExtraction performed almost equally well

(Figure 2.3). In failed cases antsBrainExtraction included the eyes or CSF, which could be

observed for both healthy subjects and patients. Since, antsBrainExtraction is based on a

registration framework, the oversegmentation may be caused by inadequate alignment of

T1w images to template space, however, no systematic bias was identified. Since subdural

haematomas are found on the surface of the brain, antsBrainExtraction sometimes fails to

include those lesions into the brain mask. This is patient specific and may be problematic

if lesions were only located within the brain mask as subdural haematomas would not be

detected.

Figure 2.3: Example Comparison of Brain Masking Algorithms. Both options for BET with
fractional intensity 0.4 (A) and 0.5 (default setting, B) showed over- (green arrow) and
undersegmentation (blue arrow), here illustrated on a sagittal slice of a T1w image with
frontal contusion. ROBEX (C) and antsBrainExtraction (D) performed equally well, both
including the pathology. All masks highlighted in red.

The latter slightly tended to cope better with challenging anomalies in and around the brain.

Skull stripping with ROBEX relies on brain shape priors, which cannot be changed, as they

are part of the tool. Contrary, antsBrainExtraction is based on non-linear registration of

the T1w scan to an atlas, and backprojection of a corresponding atlas mask from template

to T1w image space. The atlas and its brain mask can be chosen by the user. Although

being the slowest of all tools, antsBrainExtraction was eventually chosen for the pipeline, as

it seemed to be most robust and allows for an external atlas to be provided, that might be

best suited for challenging datasets (here: Cam-CAN template, Section 2.2).

Brain Parcellation and Cortical Thickness Estimation. One important aim in clin-
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ical neuroscience is to examine whether for example a patient cohort differs from a control

group. Usually, measuring global metrics within the entire brain, e.g. total brain volume

or amount of grey matter (GM), is too crude to capture subtle differences and provides not

enough information to draw a clinical conclusion. Therefore, a common process is to subdi-

vide the brain into different anatomical regions, which allows for changes to be observed on

a more local level. Once the brain is parcellated, information such as volume, GM content

or cortical thickness, can be retrieved from each individual region. This enables a more

detailed analysis while still summarising the images’ information in contrast to considering

all voxels as a single unit (e.g. voxel based morphometry).

Figure 2.4: Example of T1w Image and Computed Feature Maps from a Healthy Subject.
T1w bias-corrected image (T1w) and the corresponding brain parcellation (MALP-EM,
random colours for different ROIs), its GM probability map (GM, yellow indicates a higher
probability than red) and cortical thickness map (CorT, blue indicates a thicker cortex than
purple).

The multi-atlas label propagation with expectation maximisation based refinement (MALP-

EM) tool was chosen for parcellation, as it has been shown to work well for deformed brain

anatomy including TBI cases [151]. The better performance of MALP-EM can be attributed

to the multi-atlas segmentation approach and the retrospective intensity refinement based

on the segmentation posteriors. In theory, any region atlas could be used in combination

with MALP-EM’s underlying algorithms, however, this would require several pairs of T1w

images and their corresponding ROI atlases. In brief, this approach makes use of 30 atlases

from the Open Access Series of Imaging Studies (OASIS) database [167] that have been

manually subdivided into 138 regions of interests (ROIs). After non-linear registration of

the 30 atlases to the T1w image that is supposed to be segmented, the manual label maps

are projected onto the T1w image and merged to calculate probabilistic posteriors for each

ROI. With those posteriors7 the parcellation is refined via expectation maximisation. The

registration is based on T1w image intensities as well as tissue segmentation maps, so that

besides the brain parcellation MALP-EM provides also tissue probability and label maps.

7the posterior distributions are actually first relaxed to facilitate the refinement
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The tool can easily be applied via the command line, but it was integrated in the nipype

pipeline for a streamlined use. Although MALP-EM comes with an innate brain masking

algorithm, the mask previously computed with ANTS was used, as it provided more ac-

curate and more robust results. The output of probabilistic tissue maps for GM and WM

were further fed to the diffeomorphic registration-based cortical thickness (DiReCT) [46] es-

timation (via nipype’s built-in interface for the ANTS KellyKapowskialgorithm). Figure 2.4

shows an example of T1w images and the corresponding maps for MALP-EM parcellation,

GM segmentation and cortical thickness estimation.

One of the IDPs that can be computed from the brain parcellation are the ROI volumes.

Besides the 138 ROI volumes, MALP-EM further provides summarised volumes for total

brain volume, cortical as well as deep GM, WM and CSF. Furthermore, the average tissue

densities or cortical thickness (i.e. the mean value of the GM probabilities within a region)

could be computed within each ROI (IDP #1).

Processing of Additional Magnetic Resonance Sequences. The strength of multi-

parametric analysis lies in observing several MR contrasts simultaneously to derive clinically

useful information. To achieve direct correspondence between all MR scans for the same

individual, the different image contrasts were aligned to one another, commonly known as

coregistration. Usually, a high resolution (1mm3) T1w image is acquired by default, which

is why it served as reference to which all other images were registered to. Therefore, ANTS

antsRegistration was integrated to rigidly8 align all additional MR sequences to the neck

cropped T1w image. Mutual information (MI) served as similarity metric during optimisa-

tion. All sequences are treated equally and individually, so that regardless of which sequence

was present, the pipeline will align all available raw images. However, since T2w and PD

were acquired simultaneously, the pipeline was designed to keep the perfect alignment be-

tween PD an T2w images intact. So, in case both PD and T2w images were present the

transformation of the T2w to T1w scan was simply applied to the PD image (antsApply-

Transforms). Furthermore, all additional scans were also N4 bias corrected, analogous to the

T1w image. After that, the corresponding transformation for each scan was applied to the

bias corrected image. This order was chosen, to prevent any possibly failed N4-bias correc-

tion (for example because of pathology) to hamper the coregistration process. Eventually,

all raw and bias-corrected images were projected to T1w image space.

After coregistration two additional feature maps were computed, given that the particular

scans were available: One was the ratio of the aligned bias-corrected T1w and T2w image

(T1w/T2w), because this has been suggested as a surrogate for mapping myelin. It has been

8only translation and rotation of moving image
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shown that signal intensities on those myelin maps correlated well with subcortical myelin

development [74]. Measuring a surrogate of the myelin content could help to estimate WM

related brain atrophy if diffusion weighted MRI was unavailable. The other feature map was

the product of the aligned bias-corrected T2w and FLAIR image (FLAIR2), which has been

shown to provide higher grey-white matter contrast-to-nose ratio (CNR) than the standard

FLAIR image. Furthermore, it has been observed to yield an increased CNR between WM

and lesions in comparison to T2w and FLAIR images [266]. Since it has been reported to

improve automated segmentation for multiple sclerosis lesions [149], this enhanced image

contrast could also be beneficial for analysing other WM pathologies.

Spatial Normalisation. The spatial normalisation was performed with ANTS as it has

been shown to be one of the most capable algorithms [134]. The process was split into two

stages: the linear and the non-linear registration of the T1w scan to the template (antsReg-

istration). A custom template created from the Cam-CAN T1w scans (Section 2.2) was

chosen over the standard MNI atlas. The former provides better anatomical detail and is

less age biased, due to the larger number and wider demographic range of included subjects.

The linear registration entails both the rigid and affine transformations. At first, the rigid

registration phase aims to align both images via translation and rotation of the T1w image.

Thereafter, the similarity function is further optimised in the affine registration stage by

allowing shearing and scaling alongside rigid transformations. For both stages MI between

the two whole images served as cost function for optimisation. The non-linear registration

(SyN) was then initialised with the previously found affine transformation. For this stage,

cross-correlation within the brain mask was chosen as similarity measurement.

As previously mentioned, the integrated brain extraction was also based on spatial normal-

isation. To understand whether the additional spatial normalisation provided any benefit

over the deformable alignment entailed in the brain extraction (both are based on ANTS

SyN), their effect on 424 T1w scans from the severe TBI database was compared. For this,

the transformations found in both approaches were first equally applied to the same T1w

images. Then, the normalised cross-correlation (NCC, also see Equation 2.2) between all

pairs of warped images and Cam-CAN template was computed. In 98% of all cases (414

out of 424) the additional deformable registration resulted in a higher NCC than the initial

spatial normalisation during brain extraction. This can likely be attributed to a longer op-

timisation phase and uni-modal registration approach. The optimisation process focuses on

minimising the cost-function between template and T1w image only. In contrast, the spa-

tial normalisation performed during brain masking is driven by multi-modal registration,

including T1w images and tissue prior maps, which may hamper the optimal alignment.
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In addition, a more customised spatial normalisation could also be beneficial when working

with brain scans that show lesions (see below).

White and grey matter probability maps are generated as a by-product of MALP-EM ROI

parcellation. Both tissue maps and the maps for cortical thickness are projected to Cam-

CAN atlas space. By calculating the gradients at each element of the deformable trans-

formation field, a Jacobian matrix was derived (ANTS CreateJacobianDeterminantImage),

indicating the relative position of neighbouring voxels. The Jacobian determinants are often

used to modulate the intensities of the spatially normalised tissue maps, to preserve the

actual amount of tissue within each voxel (multiplication of Jacobian with tissue probability

maps after spatial normalisation). Besides that, they also have been shown to be useful

for analysing brain volume changes in moderate to severe TBI patients [38]. If satisfied

with the spatial normalisation and using a study-unspecific atlas, the user could compare

the maps for tissue density, cortical thickness and Jacobian determinants in a voxel-based

morphometry (VBM) [10] analysis right after the data have been fully processed (IDP #2).

Lesion Data Processing. Although this branch of the pipeline is not yet fully inte-

grated, it will still be described to explore ideas about how modules could be tied into the

grand scheme of the structural MRI pipeline.

A very important first step is the detection and segmentation of a lesion. For the purpose of

a fully automated pipeline, a lesion segmentation tool is needed, that does not require any

user interaction. Current state-of-the-art methods for lesion segmentation involve convolu-

tional neural networks (CNNs). For the presented pipeline, a version of DeepMedic [125] will

be integrated, as it has been shown to outperform many other approaches (including other

neural networks) for different types of lesions such as TBI [124] or stroke [123]. DeepMedic

is a supervised neural network, meaning it is trained on MR scans and their corresponding

label maps, which specify the presence of a lesion on a voxel-wise level. Besides differentiat-

ing between lesion and healthy tissue (binary case), DeepMedic can also learn to distinguish

lesion types (multi-class case). It can be trained on single image contrast, but performs

best when multiple (ideally complementary) MR contrast are used. Furthermore, this open

software tool has been developed by collaborators on the CENTER-TBI project, so that

their expertise can be directly leveraged for the pipeline. Usually, before feeding the images

to a neural network, their intensities are standardised. One approach would be to calculate

global mean (µ) and standard deviation (σ) of the voxel intensities within a brain mask

for each scan individually, and then subtract µ and divide by σ (Z-score normalisation).

To deal with gross intensity outliers, the mean and standard deviation can be computed

only for voxels within a percentile range. This process results in centred image intensities
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(µ=0) with unit variance (σ2=1) [109]. This potentially increases comparability of images

from different scanners an sites (multi-centre data), but also supports the training of CNNs.

Features of similar range help numerical optimisation during neural network training.

From the segmented lesion, it is straightforward to compute total and relative lesion volume

(IDP #3), however, it would be also important to analyse where the lesion is located within

the brain. This could be achieved by comparing the detected lesion against an atlas and

derive informative metrics. More details for brain lesion localisation can be found in Chap-

ter 6. Once a lesion is automatically detected, it could also be used to improve the spatial

normalisation, since cost function masking of lesioned areas has been shown to be necessary

for deformable registration of brains with large lesions [5, 27].

2.3.2 Quality Control Metrics

The processing tools were selected and designed to be as robust as possible, however, it is

important to check the quality of their output. Quality control metrics should help to high-

light situations where the processing steps failed or corrupted the data. Good QC metrics

are robust and provide an interpretable, quantitative measurement that can be computed

efficiently.

QC #1: Neck Cropping. First, the ROBEX mask was computed on the raw T1w im-

age. After cropping the T1w image, the cropping mask found was applied to the ROBEX

brain mask as well. Since, the aim is only to prune the neck, the brain volume estimated

by the ROBEX mask should be unaffected. This concept was tested on the CENTER-TBI

database. If there was a discrepancy between brain volumes before and after neck cropping,

the images were checked visually. Only two out of 1245 cases failed, which were manually

cropped with fslroi and then pre-processed successfully.

QC #2: Brain Masking. The earlier mentioned experiment for brain masking has shown

that antsBrainExtraction and ROBEX were both fairly robust. Ideally, they would generate

the same brain mask resulting in equal brain volumes. In practice this is rarely the case

due to the different nature of the underlying algorithms. Nonetheless, if both worked ac-

curately the ratio of the extracted brain volumes should be close to 100% and any strong

deviation might flag a sup-optimal performance of one of the two algorithms. When plot-

ting the ratio of the total brain volume as extracted from antsBrainExtraction (VANTS) and

ROBEX (VROBEX) for all CENTER-TBI T1w scans (139 control & 1252 patient scans),

the QC metrics showed a slightly different distribution for controls and patients (Figure

2.5 left). While the average ratios were fairly similar for controls (104.8%) and patients
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(103.8%), there was a large number of patient scans with brain volume ratios below 98%.

Both subject categories tended to have a larger ANTS than ROBEX brain volume, which was

cohesive with the general observation when checking brain masks visually. Inspecting both

masks for outliers revealed different causes for the diverging brain volumes. The first scan

(Figure 2.5 A1 & B1) displays the control subject with the highest volume ratio (111.7%),

which resulted from ROBEX under segmenting the cerebellum. The outlier with the highest

ratio (128.7%) showed that ANTS strongly oversegmented a patient’s brain laterally (Fig-

ure 2.5 A2 & B2). The large amount of soft tissue around the skull, might have hindered

an accurate spatial normalisation during antsBrainExtraction. At the lower end with ratios

lower than 95% it was observed that ROBEX commonly oversegmented patients’ scans as

displayed in Figure 2.5 A3 & B3 (90.0%). Furthermore, ROBEX was found to underperform

in the presence of lesions. It seemed to exclude pathological areas which consequently led

to undersegmentation (111.8%, Figure 2.5 A4 & B4)

Figure 2.5: Quality Control of Brain Extraction for CENTER-TBI Database. Left: The
distribution of the brain volume ratio shows wider spread for patients (Inter Quartile Range:
IQR=2.8%) than for controls (IQR=2.3%). Right: Top row shows the ROBEX brain mask
on four different scans with different performances: Undersegmentation of cerebellum in
controls scan (A1), adequate brain extraction for patient (A2), oversegmentation of patients
frontal brain region (A3), exclusion of lesion tissue (A4). Bottom row shows antsBrainExtrac-
tion performance on the same scans: It failed to deal with large amount of tissue surrounding
the skull (B2), but performed better than ROBEX for all other scans (B1, B3, B4).

QC #3: Spatial Normalisation. Experiments that require spatial correspondence be-

tween different subjects or alignment to a template (e.g. VBM or lesion localisation) rely an

accurate registration to a template. When correctly spatially normalised, the template and

warped image would show similar anatomical structures at certain locations. This similarity

was estimated by computing the NCC between both images images. The closer the value is
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to one the better the image matching. The NCC was computed within the template brain

mask as follows:

NCC =
1

N

N∑
i=1

(xi − µx)(yi − µy)

σx σy
(2.1)

where x and y represent both images and mean (µx) and standard deviation (σx) were

defined as (analogous for y):

µx =
1

N

N∑
i=1

xi σx =

√√√√ 1

N

N∑
i=1

(xi − µx)2 (2.2)

Considering such a QC measurement before any analysis could help to spot failed spatial

normalisation and flag corrupted scans, that both, if included, could adversely influence the

final results. Extracting this information from the QC report from the structural pipeline for

all CENTER-TBI T1w scans, a clear difference between scans from controls (mean=0.804)

and patients (mean=0.778) was observed. While NCCs for controls stayed well above 0.70,

NCCs for patients were as low as 0.37.

Figure 2.6: Quality Control of Spatial Normalisation for CENTER-TBI Database. Top:
Scans for patients had much more distributed NCCs (interquartile range IQR=0.051) than
controls (IQR=0.026). Middle: Scans with low NCCs exhibited prominent image features
such as lesions (A, C), head motion artefacts of different severity (B, E) or tissue atrophy
and enlarged ventricles (D). Bottom: The mosaic, chequerboard images alternating between
atlas and registered images provide the means for a quick visual QC (F).

Figure 2.6 shows five examples of spatially normalised T1w scans from patients with some
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of the lowest NCCs. The first example shows a brain scan with large subdural haematoma

(Figure 2.6 A). Its low NCC (0.370) could be explained by the high intensities within the

lesion, skewing the measurement unfavourably. Although the spatial normalisation was not

necessarily unsuccessful, such a case probably should be excluded in a voxel-wise group

analysis and for any parcellation based extraction. To derive a NCC that is less sensitive to

pathology, the similarity metric could be computed in healthy tissue only. This, however,

would require a lesion annotation (manually or automatically generated) and in the presence

of large lesions the similarity metric would be computed on a lower number samples, which

may hamper the comparability to other scans. Another case with low NCC (0.383) displayed

a T1w scan severely corrupted by motion (Figure 2.6 B). Scans with severe blurring must

be excluded from any analysis. A low NCC could also indicate the presence of dominant

anatomical abnormalities, such as a large contusion and oedema (NCC=0.397, Figure 2.6 C)

or significantly enlarged ventricles (NCC=0.432, Figure 2.6 D). Severe pathological patterns

can impede spatial normalisation and should be excluded from analysis reliant on spatial

correspondence. Besides flagging up cases with severe deviations from the template due to

artefacts or pathology, NCC was also found to gradually change with scan quality. A mod-

erate low NCC (0.605) could highlight less dominant acquisition artefacts, such as ringing

from head motion (Figure 2.6 E). Those scans might still be used for certain experiments,

but have to be inspected to avoid potential biases in subsequent processing steps or analysis.

By design, the pipeline also provides a mosaic overview of the chequerboard image, alter-

nating between the template (here Cam-CAN in red) and the spatial normalised T1w image

(grey, excerpt shown in Figure 2.6 F). This allows a quick and easy visual quality check. The

chequerboard displayed here corresponds to the scan in Figure 2.6 C. Although the NCC

was quite low, the registration seemed successful, as boundaries of anatomical structures

(see ventricles) seamlessly continue across the mosaic tiles. The findings suggest that low

NCC could pick up on a variety of different problems for spatial normalisation, including

image artefacts and brain pathologies.

QC #4: Coregistration. Multi-parametric analysis requires the alignment of different

sequences from one scan session. For example, coregistered scans are needed for predictive

lesion segmentation, or if anatomical information such as ROI parcellation should be used

to derive features from other sequences than T1w images. Similarly to the spatial normali-

sation, the accuracy of coregistration can be estimated by computing the similarity between

aligned images. Again NCC was chosen as it is less sensitive to intensity scaling than, for

example, mean absolute error and can be applied to sequences with different contrast. The

metrics were calculated between the T1w image and a resampled image of the sequence
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(matched resolution but no change of position or orientation) as well as between the T1w

image and the coregistered scan. If successful, the metric should be closer to one after coreg-

istration than before. The quality assessment on the CENTER-TBI database was two fold.

Firstly, to flag scans that had a generally low NCC, and secondly, to inspect scans with a

lower NCC after coregistration than before.

Table 2.3: NCC for Coregistered Sequences. Values displayed as mean [IQR].

Controls Patients

resampled coregistered resampled coregistered

T2w 0.364 [0.171] 0.696 [0.094] 0.353 [0.145] 0.666 [0.116]

FLAIR 0.393 [0.499] 0.830 [0.096] 0.376 [0.186] 0.796 [0.146]

SWI 0.220 [0.201] 0.632 [0.106] 0.207 [0.179] 0.663 [0.102]

Besides T1w images, T2w, FLAIR and SWI images were available for the CENTER-TBI

database. Table 2.3 lists the average NCC results for the resampled and coregistered se-

quences for both healthy controls and patients. The improvement was quantified by the

ratio of average NCC of coregistered over resampled scans (NCCcoregistered/NCCresampled

× 100%). The NCC improved for all T2w (average NCC ratio = 191%) and FLAIR (av-

erage NCC ratio = 211%) scans of the control group through coregistration. Only three

SWI controls scans did not improve upon coregistration, however, this was due to severely

corrupted images (Figure 2.7 A), and overall the coregistration was advantageous (average

NCC ratio = 287%). For patients the NCC was higher after registration for all 1211 FLAIR

scans (average NCC ratio = 212%). Just eight out of 1251 T2w scans and 14 out of 1230

SWI scans for the patients showed a lower NCC after coregistration. Nonetheless, there

was an average overall improvement for T2w and SWI patient scans of 189% and 321%,

respectively. The best relative improvement was yielded for SWI patient and control scans,

which is likely due to the low starting point (≈ 0.2) to begin with. Furthermore, flagged

scans could be associated with poor image quality (Figure 2.7 A, B and C1). Interestingly,

the NCC for patient scans was always slightly lower than the NCC for control scans, except

for coregistered SWI scans. This may be explained by the presence of lesions that are more

prevalent on MR contrasts other than T1w images. Moreover, this could indicate a bias

in the acquisition of patient scans, possibly caused by increased head movement resulting

motion-induced blur, ultimately leading to lower image similarities.
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Figure 2.7: Quality Control of Coregistration of CENTER-TBI Database. Top: NCC
between T1w and addition sequences improved for all three contrasts through coregistra-
tion (T2wcoreg, FLAIRcoreg, SWIcoreg) in comparison to simple image resampling (T2wres,
FLAIRres, SWIres). Mostly, NCC was slightly higher for controls than for patients, however,
both groups were comparable for all three sequences before and after coregistration. Bot-
tom: Scans with low NCC could be associated with poor image quality, such as corrupted
acquisition (A) and noise artefacts (B) on SWI scans. A noisy FLAIR scan was flagged with
a low NCC (C1), however, structures between FLAIR and T1w images still aligned as seen
in the chequerboard image (C2).

2.4 Pipeline for Diffusion Magnetic Resonance Images

The pipeline for diffusion MR images also takes several files as input. Most importantly this

is the diffusion weighted images (DWI) and its corresponding text files with the information

for b-values (bvals) and b-vectors (bvecs). During DWI, different gradients of magnetisation

are applied to encode a spatial correspondence of received MR signal. While the duration

and strength of the employed gradients are defined by the b-values, the direction is indicated

by the b-vectors. Diffusion along the b-vectors direction causes signal attenuation which is

reflected in lower intensities in the diffusion sensitised scan. The diffusion pipeline takes as

further input a T1w image and its associated brain mask. The pipeline coregisters diffusion

tensor imaging (DTI) parameter maps to the T1w image (see below). Thus, for optimal

results the T1w image must be from the same subject as the diffusion images and ideally

also from the exact same scan session. Furthermore, it is advisable to use the cropped
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and bias-corrected output files from the previously described structural MRI pipeline. After

applying both pipelines, all anatomical MR sequences and the diffusion feature maps for one

scanning session are aligned all together in the T1w image space. For artefact correction the

pipeline also expects a text file with acquisition parameters (ACQP). In addition, the user

has the option to provide a previously computed or manually delineated DTI mask and an

extra b0 volume. Both options will be discussed in more details below. Figure 2.8 provides

an overview of the different components of the pipeline.

Figure 2.8: Overview of Pipeline for Diffusion MRI

2.4.1 Processing Modules

Denoising. Diffusion weighted imaging is affected by acquisition noise stemming from

signal reconstruction. Especially for images with low SNR, the noise distribution deviates

from a Normal distribution [90, 55], which makes noise reduction non-trivial. This is par-

ticularly important for advanced DWI that includes higher b-values, as this leads to images

with lower SNR, which could hamper the correct estimation of diffusion measures [197, 118].

One effective way of suppressing noise is based on local principal component analysis (PCA).

Assuming multi-directional signal redundancy within the diffusion images, PCA can be used

to find components that are associated with statistical noise rather than structured infor-

mation. By excluding components of low magnitude noise can be reduced. The initial

suggestion to eliminate components by thresholding the associated eigenvalues [166] was
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later improved through a data driven way through matrix theory (Marcenko-Pastur-PCA,

MPPCA) [255]. This technique has been found to reduce noise while preserving anatomical

structure and outperformed other approaches, such as adaptive non-local means or total

generalised variation. Denosing is the very first step for image enhancement in the diffusion

MRI pipeline, and was integrated via nipype’s MRtrix3 interface for dwidenoise. Figure 2.9

shows an example of a multi-shell DWI image before and after denoising. The difference

between both images shows that mostly random noise was eliminated.

Gibbs Ringing Removal. Magnetic resonance images are reconstructed by applying

Fourier transforms to the raw signal. In practice, only a finite number of frequencies can

be sampled, which is why the images are only approximated by a few components of the

Fourier representation. This signal truncation is unproblematic for gradual changes in sig-

nal intensity (i.e. homogeneous regions), however, results in multiple fine ripples directly

adjacent to high-contrast interfaces (e.g. the boundary of brain tissue such as at ventricles).

Also known as Gibbs ringing, this artefact can be diminished by increasing the number of

phase-encoding steps 9 or reducing the FOV, but cannot be completely avoided [44, 254]. A

variety of methods have been suggested to reduce this effect of signal truncation. For the

pipeline the MRtrix3 command mrdegibbs was integrated via a customised interface.10 This

algorithm is based on the technique proposed by Kellner et al. [130]. Here, the idea is to

sample the image not at the sinc-function’s extrema but rather close to its zero-crossings.

To achieve this for all edges across the image, a local subvoxel-shift is enforced.

Brain Extraction. Many tools for brain extraction of diffusion MR data rely on thresh-

olding the b0 volume, as this usually provides the highest SNR and highest contrast between

brain tissue and background. However, thresholding is not very robust and error-prone

for noisy data. For the pipeline a simple method based on coregistration to T1w images

was integrated. Therefore, the denoised and Gibbs artefact corrected b0 volume was rigidly

coregistered (antsRegistration) to the provided input T1w image. Subsequently, the input

mask for the T1w image was backprojected (antsApplyTransforms) to diffusion image space.

This approach underlies two assumptions: First, the brain mask for the T1w image must

be accurate. Second, both T1w and b0 volumes show the same brain shape and size, and

neglects distortions resulting from echo-planar imaging (EPI) of the diffusion images. The

user has also the choice to provide a DWI brain mask, in which case the automated brain

masking would be suspended to save computing time. The pipeline recognises which path-

9usually less samples are collected in phase-encoding direction making the artefact more noticeable
10mrdegibbs is part of nipype since version 1.2.0, thus the custom interface will be replaced in future
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Figure 2.9: Example of Multi-Shell DWI Denoising from Cam-CAN Database. The first
row shows a representative images for all three different b-values: Left to right, the diffusion
unsensitised image, the first shell with b=1000 s/mm2 and the outer shell with b=2000
s/mm2. The second and third row show the corresponding images after MPPCA denosing
and noise (difference) maps, respectively. The average absolute difference within the brain
mask of the noise was 2.9 for the b0 volume and 3.7 for both diffusion sensitised volumes.
Image contrasts were adjusted for each shell individually, noise was scaled equally for all
three difference maps for direct comparison.
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way - using the input or automatically computed mask - has been triggered and selects the

appropriate mask for the subsequent processing steps (Figure 2.8: Mask Selection). After

head-motion correction (see next paragraph) another brain mask was calculated with MR-

trix3 dwi2mask [53] mostly for subsequent QC (Section 2.4.2 QC#3).

Distortion & Head-Motion Correction. When performing spin-echo EPI, the result-

ing diffusion images can look distorted due to the acquisition’s sensitivity to non-zero off-

resonance fields. These will be induced by both the susceptibility distribution of the subject’s

head and eddy currents resulting from rapid changes of the diffusion weighted gradients. Ad-

ditionally, for DTI multiple images with different gradient directions need to be acquired,

which leads to longer scanning times and unavoidable head motion. Strong susceptibility

induced artefacts can be problematic when comparing to undistorted T1w images. Further-

more, the distortion of anatomy might introduce inaccuracies when extracting region-based

IDPs. If an extra b0 volume was collected with reversed polarity of the phase-encoding

blip relative to the diffusion weighted images, this can be used to correct for susceptibility

artefacts (b0 field map correction is not yet supported). Providing the images with oppos-

ing phase direction and the acquisition parameters, the pipeline estimates the susceptibility

induced off-resonance field via FSL’s topup [6]. This tool aims to find the deformation field

that would match the b0 volumes with opposing directions of distortions such that their

similarity (sum-of-squared differences) is maximised. Once the susceptibility induced field

was approximated, topup output can be fed to FSL’s tool eddy , which concurrently corrects

for eddy current distortions and head movements [7, 8]. In case no extra b0 volume was

acquired, the pipeline skips the correction of susceptibility distortions and moves straight to

reducing eddy current and head motion artefacts. The pipeline currently does not support

any alternative correction of susceptibility artefacts.

Bias Correction. To remove effects of the inhomogeneous magnetic field, a bias correction

approach was included in the pipeline. This followed the approach as initially suggested by

Jeurissen et al. [114]. First all non-diffusion weighted images (b=0 s/mm2) within the scan

are averaged before estimating field inhomogeneity via the N4 algorithm (analogous to T1w

images). Subsequently, the bias is removed from all diffusion images separately. Since this

approach assumes spatial correspondence between all DTI volumes, this process is applied

after the head motion correction. This method was already implemented as complete work-

flow within nipype (nipype.workflows.dmri.fsl.artifacts.remove bias), ready to be integrated

into the diffusion pipeline.
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Diffusion Feature Maps. Depending on the tissue composition in the brain, the dif-

fusion of water molecules is more or less restricted. While diffusion is equal in all direction

in cavities such as ventricles, it is more directional in structured tissue like WM fibres.

The reason for this are cell structures that form a barrier for water molecules, forcing the

diffusion to be more anisotropic in organised tissue compartments. Very briefly, diffusion

can be measured by applying gradients of magnetic fields in different directions. To de-

scribe anisotropic diffusion in a three dimensional space adequately, at least six diffusion

weighted and one non-diffusion weighted image will need to be acquired. From this the

proportion of diffusion along the principal axis (diffusion coefficients) can be estimated and

described as a symmetric 3×3 matrix called the diffusion tensor. The diffusion tensor can

also be represented as an ellipsoid, characterised by the three orthogonal eigenvectors and

their eigenvalues λ1, λ2 and λ3. These define the orientation and shape of the ellipsoid.

Therefore, diffusion can also be characterised by the eigenvalues’ relationship. To express

this as a scalar value, different options have been suggested [197]. For example, fractional

anisotropy (FA) is measuring the anisotropic portion at each position (i.e. every voxel),

with high values indication strong directional diffusion (for example in WM).

FA =

√
1

2

(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ1
2 + λ2

2 + λ3
2 (2.3)

The average of the eigenvalues characterises the mean diffusivity (MD), with high values

representing less restricted diffusion (for example CSF in ventricles).:

MD =
1

3
(λ1 + λ2 + λ3) (2.4)

Although MD is rotational invariant, it can be affected by the choice of b-values [194]. For

the pipeline, both were computed via least weighted squares optimisation through nipype’s

FSL interface for dtifit). In addition DWI trace maps11 were calculated, as they can provide

a good contrast for manual lesion delineation:

DWItrace = S0e
−b MD (2.5)

With b representing different b-values, so consequently, multi-shell diffusion data would have

several DWI trace maps. Furthermore, the anisotropic power (AP) map was computed. The

aim of the AP map was to introduce a noise robust measurement to characterise anisotropy.

It has been reported to have a similar contrast to a T1w image, which is why it could

facilitate coregistration of diffusion to anatomical scans [47]. This map was defined as the

sum of the angular power spectrum of each spherical harmonic (SH) of even order l:

AP =
∑

l=2,4,6

1

2l + 1

l∑
m=−l

‖Cl,m‖ (2.6)

11not to be confused with Trace, which is the sum of the eigenvalues
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where Cl,m is the coefficient for the SH base of order l and degree m (further explanation to

SH in Section 5.1.2). This was computed via the nipype interface (dipy.anisotropic power).

Figure 2.10: Overview of Diffusion Parameter Maps for an Individual Subject

Although standard DWI assumes a Gaussian distribution of water molecule diffusion, this

does not hold true for complex biological tissue. This deviation from a normal distribution,

becomes stronger when stronger diffusion gradient are applied (i.e. higher b-values) and can

be characterised by the kurtosis [113]. The pipeline automatically recognises if any b-values

larger than 1500 s/mm2 are present and in that case models the diffusion kurtosis imaging

(DKI) tensor to compute diffusion parameter maps such as mean kurtosis (MK, see Figure

2.10). Resolving the image of the brain into small discrete units during acquisition can result

in partial volume effects, where different tissue types are influencing the signal within one

voxel. This is particularly problematic when free water (FW) reduces the apparent diffu-

sion coefficients of tissue structures. Different approaches have been proposed to estimate

FW diffusion on DWI images. The method integrated in the pipeline does not require any

local spatial constraints and works reliably for multi-shell DWI data [100]. So if more than

one non-zero b-value exists, the pipeline automatically triggers a custom interface applying

Dipy’s (version 0.15.0) FW elimination model. This allows to estimate the FW volume

(Figure 2.10) and corrected FA and MD parameter maps accordingly (not shown).

Fibre Tract Segmentation. Analogous to the anatomical pipeline, the brain was parcel-
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lated based on the diffusion data. For this, the open source tool TractSeg12 was used as

it has been shown to rapidly and accurately segment WM tracts in healthy subjects [263].

The technique is based on a neural network that predicts the labels of 72 fibre tracts. The

network was trained on semi-automatically segmented fibre tracts for 105 selected HCP sub-

jects. For this, tracts were first automatically identified after whole brain tractography and

refined where needed. After several quality checks and manual adjustments, binary maps

for all tracts for all subjects could be generated. Those served as reference segmentations

to train a 2-dimensional encoder-decoder CNN. TractSeg has been shown to outperformed

other fibre tract segmentation methods (e.g. ReconBunlde, TRACULA or multi-atlas ap-

proaches) and is fast to apply. The available pretrained model can be applied via command

line, hence was easily integrated as a custom nipype interface.

From the automated segmentations the tract volumes, mean and standard deviation for

FA and MD of each ROI were automatically computed (IDP #1). Since the tool provides

probabilistic estimates for voxels belonging to a region, both statistical metrics were also

calculated with a weighted voxel input. All computed metrics were stored in one CSV file

for easy access. Eventually, those single files could simply be concatenated for all processed

data within one study.

Coregistration. In order to understand which modality is most beneficial for the coregis-

tration of diffusion parameter maps to T1w image, a short experiment was conducted. First

the diffusion MR images from the Scan-Rescan database were corrected for artefacts (noise,

Gibbs ringing, removal, head motion, and bias-field) and diffusion parameter maps were ex-

tracted. The T1w image was bias field corrected and masked (as described in the structural

pipeline). Then single diffusion maps (b0, FA or AP) or different combinations (FA+b0,

FA+AP, FA+AP+b0)13 were rigidly coregistered to the masked T1w image (antsRegistra-

tion). For this MI within the brain mask was chosen as cost function. The transforms found

were then equally applied to the FA map to project it to T1w image space (WelchWin-

dowedSinc interpolation). Thus, the only variable factor was the transforms used. Then,

NCC between all projected FA maps and corresponding T1w images were calculated to es-

timate the registration quality. The impact of using different diffusion parameter maps was

very subtle, with average NCC ≈ [0.634 − 0.635]. Registration with b0 maps only led to

one out of 24 failed coregistration (NCC = 0.245), however, the overall performance was

slightly worse than all other methods (NCC = 0.614). Coregistration seemed to be slightly

hampered by inclusion of the b0 volume (b0, FA+b0, FA+AP+b0), but almost identical for

12https://github.com/MIC-DKFZ/TractSeg
13b0+AP was not tested

https://github.com/MIC-DKFZ/TractSeg
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all other combinations. There was a tendency of AP maps alone performing marginal better

than FA maps alone or FA+AP maps. Despite that, a coregistration based on FA+AP maps

was integrated in the pipeline to leverage the robustness of a multi-parametric approach.

The b0 volumes were not included as they seemed to have an adverse effect on registration

quality and including of more image contrasts prolongs the registration process. Besides

this, coregistration mostly benefited from T1w images to be masked and starting the align-

ment with a good initialisation. ANTS allows for an image intensity based initialisation,

which led to a robust overall performance. A statistical significant difference between all ap-

proaches could not be found (repeated measurement ANOVA: p = 0.3034, individual t-tests

for repeated samples: all p > 0.2). In the end, a multi-modal coregistration of FA and AP

maps to T1w images was integrated into the pipeline as it provided qualitatively best results.

All diffusion maps (FA, AP, MD, trace maps) were eventually projected to T1w image space.

Spatial Normalisation. Analogous to anatomical scans, spatial normalisation of diffu-

sion images would be beneficial to analyse DTI data via VBM or tract-based spatial statis-

tics (TBSS) [232]. Since, tensor-based registration [281] has been shown to outperform

intensity-driven registration of diffusion parameter maps [260], the former was favoured to

be integrated into the pipeline. However, diffusion tensor registration can be error prone and

is most successful when using a study-specific template. Which is why, artefact corrected

DWI images are converted to a tensor-format readable by the DTI-ToolKit (DTI-TK).14

This allows to conveniently compute a study-specific template right after all scans of in-

terest have been pre-processed. Such a template is usually not very generalisable and has

to be computed for each study individually, which it why it was not integrated in the pre-

processing pipeline.

2.4.2 Quality Control Metrics

QC #1: Denosing. To evaluate the noise level of the diffusion scans the SNR was com-

puted. This was defined as the ratio of the mean µ of the denoised b0 signal and the standard

deviation σ of the noise estimated by the denoising algorithm (difference between original

and denoised signal). For this, only voxels x within the brain mask M were considered:

SNR =
µ(Xb0)

σ(Xnoise)
with X = {x1, ..., xn | x ε M} (2.7)

Examining the metric on all CENTER-TBI DWI scan, the average SNR was found to be

lower for controls (N=271, mean [IQR] = 116.4 [97.3]) than for patients (N=2355, mean

14http://dti-tk.sourceforge.net/pmwiki/pmwiki.php

http://dti-tk.sourceforge.net/pmwiki/pmwiki.php
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[IQR] = 153.1 [94.3]). Usually, better signal would be expected for control subjects, how-

ever, hyper-intense pathology in patients can skew SNR to higher levels. Generally, a varying

SNR was observed across different centres (Figure 2.11), which will need to be taken into

account for a multi-centre analysis. While some centres (A, I, K, N) showed an SNR well

below the overall average across all centres, some other had a much higher SNR (e.g L). An

image with one of the lowest SNR (16.3, centre I, Siemens scanner) had a high variation

in noise (σ=17.0) but low b0 signal (Figure 2.11 A). In contrast, a high SNR scan (1008.7,

centre L, Philips scanner) had a low noise variance (σ=5.9), but a twice as high b0 signal,

which was likely a consequence of hyper-intense pathology being present (Figure 2.11 B).

The discrepancy between healthy and lesioned brains will need to be taken into account

when curating a TBI database.

Figure 2.11: Distribution of SNR across Centres. Left: The SNR distribution was centre
specific. The dotted lines show the average over all controls (green) and patients (purple)
Right: Images with very low (16.3, A) and high (1008.7, B).

QC #2: Physically Implausible Signal. Diffusion leads to signal decay, which is why

for each voxel the signal should be higher in the non-diffusion weighted image than in the

diffusion sensitised image. However, because of acquisition artefacts (e.g. Gibbs ringing)

this might be violated, leading to measurements of physically implausible signal (PIS). With

PIS defined as the voxels x within brain mask M for which the signal in the first DWI

volume is higher than that in the b0 volume

PIS = {x ε M | (xDWI − xb0) > 0} (2.8)

the number of voxels with PIS were counted before (PISbefore, that is right after denosing)

and after (PISafter) Gibbs ringing removal. To combine both metrics into one, the ratio
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of both counts was computed (PISafter/PISbefore). A lower ratio would indicate a signal

improvement after Gibbs artefact correction. The PIS count ratio was below 100% for all

scans, but for the two images with excessive noise corruption (see example later in Figure

2.12 A). Excluding those two scans, the number of PIS voxels after the corrections was

slightly higher for patients (mean [IQR] = 945 [794]) than for controls (mean [IQR] = 861

[643]). The PIS ratios for controls (mean [IQR] = 43.7% [16.1%]) and patients (mean[IQR]

= 45.6% [21.6%]) were similar and indicated that on average more than half of the voxels

with PIS were eliminated by Gibbs correction.

QC #3: Brain Masking. Similar to the quality control for the T1w image brain extrac-

tion, two masks are computed for DWI scan as described earlier. The ratio of the MRtrix3

and ANTS brain mask could yield information about the quality of the brain mask. Both

controls (mean [IQR] = 98.4% [3.2%]) and patients showed a very similar average ratio

(mean [IQR] = 98.9% [3.7%]), however, patients included more outlier scans on both sides

of the spectrum. The lowest ratio for controls (75.4%) was the result of MRtrix3 strongly

undersegmenting the brain, the ANTS brain mask used for all subsequent processing steps,

however, was intact. The 2nd lowest ratio for controls (90.0%) was not noticeably corrupted.

The two control scans with the highest ratio (117.6% and 122.4%) belonged to the same

subject and showed severe noise artefacts (Figure 2.12 A). Brain masking via coregistration

to T1w images seemed to be successful, but sometimes failed when applying MRtrix3. This

discrepancy is reflected in the ratio of the brain mask volumes. Other outliers among the

controls showed an over- or undersegmentation of MRtrix3. Ratios varied more for patients,

and various causes for low QC rations were observed. These included strong brain distor-

tions (Figure 2.12 B: 50.3%), flawed mask back projection from T1w space (Figure 2.12 C:

81.7%) or deformed brains due to injury (Figure 2.12 D: 82.1%, E: 88.8%). Scans with ratio

higher than 90% seemed to have only minor discrepancies between both brain extractions.

However, scans with high ratios started to show different artefacts, such as signal fading

where MRtrix3 grossly oversegmented the brain (Figure 2.12 F: 129.2%). Besides this, a

systematic corruption of scans through failed distortion correction could be identified. Al-

though displaying susceptibility artefacts the brain mask (ANTS) could still be computed

fairly accurately before the correction (Figure 2.12 G1). However, the failed susceptibility

correction left the brain deformed (Figure 2.12 G2) and resulted in a much larger MRtrix3

brain mask. Consequently, this was reflected in a high QC ratio (125.6%). Upon closer

visual inspection, a corrupted and misaligned extra b0 volume (with opposite phase encod-

ing direction) was found. A QC mask ratio within the range 90-110% seemed to indicate

sufficiently accurate brain masking.



2.4. PIPELINE FOR DIFFUSION MAGNETIC RESONANCE IMAGES 37

Figure 2.12: Quality Controls for DWI Brain Masking. Left: Comparison of controls and
patients showed a fairly similar distribution of the QC mask ratio, although, patients showed
unsurprisingly more outliers. Right: Displayed are different examples of cases with low or
high QC ratio and the respective ANTS brain mask (red). Noticeably different ratios could
point out flawed image acquisition such as excessive noise (A, 117.6%) or distortions (B,
50.3%), failed brain extraction (C, 81.7%), deformed brains due to brain injury (D, 82.1%
and E, 88.8%) as well as scans for which correction of susceptibility distortion failed (G1
and G2, 125.6%). G2 shows the MRtrix3 brain mask (red).

QC #4: Head Motion Parameters. FSL eddy provides as output the estimated average

and maximum head motion during the DWI acquisition. This includes both the total mo-

tion, which is relative to the very first acquired volume (usually b0), and the relative motion,

which is the motion with respect to the preceding volume.

Table 2.4: Quality Metrics for Head Motion During DTI Acquisition. Quality control metrics
displayed as mean [IQR]

Total Motion Relative Motion

average max average max

controls 0.364 [0.217] 0.675 [0.361] 0.177 [0.074] 0.514 [0.281]

patients 0.476 [0.264] 0.863 [0.496] 0.193 [0.106] 0.608 [0.340]

t-test p < 0.001 p < 0.001 p = 0.084 p = 0.027

While total motion could help to identify a head drift throughout the scan, relative mo-

tion could highlight a subject’s sudden head movements. Since head motion can have an

impact on diffusion parameters, it is important to detect outlying subjects and a possi-

ble bias between control and patient groups. Table 2.4 summarises the QC results for the

CENTER-TBI database. Apart from relative average motion, patients were observed to
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have a significantly higher total and relative motion compared to controls.

When inspecting subjects with increased QC metrics, obvious head motion was observed.

For example, a patient that tilted the head mid-scan, such that all subsequent scans were

strongly rotated relative to the first volume, resulting in the highest average total motion

(5.082, Figure 2.13 A). Severe head movements also led to inter-scaling signal across slices

and striping artefacts (Figure 2.13 B, maximum total motion = 9.183). Such scans should

be excluded from analysis. Once corrupted scans are excluded, the motion parameters of

the remaining subjects would need to be checked across groups of interest to rule out any

group-effects. Eventually, motion metrics may be incorporated as covariates in the analysis.

Figure 2.13: Quality Control for DWI Head Motion for CENTER-TBI Subjects. Left:
Inspecting the patient with the highest average total motion (5.082) revealed a strong tilt
of the head mid-scan that was kept through the rest of the scan (A, left: volume #18,
right: volume #28, brain axis visualised in red). Left: Scans with high motion QC metrics
associated also showed striping artefacts, such as the ones visible on the sagittal DWI image
slice (B, maximum total motion = 9.183).

QC #5: Coregistration. For joint analysis of T1w and diffusion MRI scans (e.g. FA

metrics within MALP-EM ROIs), it is useful to align both to create a spatial correspon-

dence. To monitor the quality of coregistration of FA maps to T1w space, again the NCC

between the two scans was computed. Since two different contrast images were compared,

a generally lower NCC was expected than for the T1w images spatially normalised to the

Cam-CAN template (see Section 2.3.2 QC) #3). For the CENTER-TBI database the av-

erage NCC was slightly higher for controls (mean [IQR] = 0.613 [0.115]) than for patients

(mean [IQR] = 0.597 [0.119]). The control scans with the lowest NCC could again identify

the noise corrupted images as shown before (Figure 2.12 A). Lower NCC cases were found

for patients and some of those cases are shown in Figure 2.14. Overall, the coregistration

between T1w images and DTI scans was successful and lower NCC values mostly flagged

images with pathology. This could be useful to pre-sort scans for visual inspection, but also

to exclude those scans from analysis based on processing steps that are likely to fail due to
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the presence of lesions (for example brain parcellation). Possibly the NCC could be linked

to size and type of pathology.

Figure 2.14: Assessment of DTI Coregistration. Left: Similar distribution of QC ratio
for patients and controls, although patients displayed more outlier cases. Right: Top
column shows the T1w image (A1-D1) and bottom column shows the aligned FA maps
(in colour) overlaying on top of the corresponding T1w images (A2-D2). Cases with low
NCC included different types of pathology, such as hyper-intense subdural haemorrhage (A1,
NCC = 0.243), contusions in occipital (B1, 0.303) and frontal (C1, NCC = 0.357) lobes and
lowered intensity in pathological frontal lobe (D1, NCC = 0.446).

2.5 Discussion

2.5.1 Database Management and Quality Control

As neuroimaging studies grow in sample size, so do the challenges to process and analyse

databases adequately. In the past, suitable subjects were pre-selected, based on the clinical

questions that should be answered, before processing any of the MRI data. This, however,

easily leads to inefficient data handling, because different researchers may choose overlap-

ping subsets of subjects from a larger study. While this not only takes up unnecessary disk

space to store duplicates of the database, it is also computationally ineffective to recompute

common processes that have already been completed. Moreover, different and sometimes

sub-optimal tools would be chosen, as there is a bias towards familiar methods, rather

than potentially more complicated state-of-the-art techniques. Consequently, findings from

different researchers (even in the same lab) may be less comparable when using different pro-

cessing tools. Thus, centralising imaging databases should be strongly advocated. Instead

of processing a subset of the imaging study, the whole database should be sorted, curated
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and processed in the same way and made easily accessible for collaborating researchers.

Processing and IDP extraction could change flexibly with new requirements for analysis.

Besides centralising data processing, the emphasis lies also on methods for automated qual-

ity control. The more data are available the less feasible visual quality assessment becomes.

Imagine 1000 scans that shall be processed: Visually checking each input is already tedious,

but checking in addition the output of one single processing step already doubles the work

load. With many, inter-connected processing steps the complexity increases exponentially,

and an initially daunting task becomes intractable.

The quality control metrics introduced in this chapter have been shown to be useful to

detect corrupted imaging data or flawed results of processing steps. However, one current

limitation is that they are unspecific, as they act more as a surrogate then actually explain-

ing the source of failure. The ratio of the two different brain masks, for example, indicates

whether either of the two algorithm failed to extract the brain. However, the reason for

failed brain extraction is currently not characterised automatically. Only a visual check can

reveal whether the image is completely distorted, includes minor acquisition artefacts or

the brain anatomy is too uncommon (e.g. deformed brain due to TBI, or large amount of

tissue surrounding the head). In order to improve the pipeline, it is important to assess if

a processing tool failed because of a flawed image or an unsuitable algorithm. If an algo-

rithm’s performance is found to be systematically inadequate for a challenging dataset, it

should be replaced by a more powerful or better tailored tool. On the other hand, if images

are corrupted during data collection, they will need to be detected early on to minimise

computational costs and call the researchers attention to exclude this scan from any anal-

ysis. Therefore, after processing large databases, MR scans that have been flagged by the

current QC metrics, will need to be assessed and categorised. Once patterns of problematic

images have been identified, more specialised QC tools could be developed and integrated

into the pipeline. Different machine learning models have already been suggested for au-

tomated quality assessment [17, 160, 63, 145, 235, 87]. Future work will focus on tools

that target specific artefacts to first detect whether the images are usable for any further

processing. Eventually, each processing step within the pipeline should be assessed for qual-

ity in one or the other way. Currently the pipelines only provide QC metrics summarised

in a spreadsheet. Although already useful to support subsequent image analysis, machine

learning methods could help to flag flawed data and failed processing steps based on the full

set of QC measurements. Ultimately, a comprehensive QC report could be generated that

enables imaging researchers to confidently set up their experiments and also could be in-

cluded in publications. Furthermore, QC metrics that flag severe failure cases should evoke

the abortion of the pipeline while informing the user immediately in order to save time and
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resources.

Although other open-source toolboxes - such as DTIprep [190] - exist, the pipelines pre-

sented here were tailored to the needs of clinicians working on TBI neuroimaging data. One

of the main advantages of the in-house pipelines are their flexibility that easily allows to inte-

grate any new tools required. For example, DTIprep indeed provides similar pre-processing

modules as the diffusion pipeline, but it does not automatically segment WM tracts via

TractSeg, which is a fairly novel method. Furthermore, DTIprep seems to only allow to

process DTI data, whereas the diffusion pipeline described here also allows to estimate dif-

fusion kurtosis parameter maps. Another advantageous example is that LPCA was used

for denoising diffusion images, whereas DTIprep employs the linear minimum mean squared

error algorithm. The latter has been shown to be inferior, introducing artefacts at frontal

areas due to inaccurate noise estimation [166].

2.5.2 The Pipeline - An Ever Evolving Process

The current state of the pipelines has to be understood as one version of many towards the

perfect workflow, as it will change over time with new demands. Although the presented

pipeline has been developed for and applied to different datasets, new databases might come

with different challenges and processing requirements. These may need to be addressed with

adjusted parameters or completely new approaches. Since novel algorithms and techniques

will constantly be developed, the pipeline will need to integrate such improvements to re-

main state-of-the-art. Moreover, clinicians and neuroimaging researchers will come up with

new ideas for image derived features, which may require additional processing modules.

All this together asks for agile development of the pipeline, and only if it is considered an

ongoing process will it provide the best possible output in future. Some changes may be

only enhancements of the pipeline, such as including new IDPs, others might change the

state of the data completely (e.g. new methods for denoising [209]). Consequently, this

means that databases would co-exist in different versions, depending on the applied process-

ing pipelines. Centralised data management and processing will allow for versions of the

previously processed data to be kept, while providing the most recently updated output.

2.5.3 Future Developments

One obvious improvement will be to update nipype to the most recent version, as this will

allow to use newly developed interfaces. For example the diffusion pipeline currently inte-

grates a custom interface that accesses MRtrix3 mrdegibbs for Gibbs ringing removal. Newer

nipype versions have a readily implemented interface for that, which will be used in future
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versions of the pipeline.

Many processing tools and analyses are based on an accurate brain masking, however, this

is far from trivial for deformed brains due to lesions and other pathology. For structural

T1w images the ANTS brain extraction tool seemed to work best, but this accuracy comes

with high computational costs. These are caused by intermediate steps, such as tissue seg-

mentation, which results are not used for later processing steps. Additionally, this brain

extraction is based on spatial normalisation which is inherently slow. As previously de-

scribed (Section 2.3.1) this spatial normalisation seemed to be inferior to the subsequent

deformable registration results, hence, it will not find any application later in the pipeline.

So, ANTS brain extraction could be replaced with a tool that is much faster, but at least

as accurate. Alternatives could for example aim to segment GM, WM and CSF separately

and combine tissue segmentations retrospectively. However, this approach likely will fail for

brains with large TBI lesions, that skew the intensity profile. One possible improvement

could be obtained by integrating a predictive brain extraction model. Many new deep learn-

ing methods have been suggested to perform skull stripping [52, 105, 133] including on TBI

data [221]. Ideally models for brain extraction would be directly linked to brain tissue seg-

mentation [207]. The advantage of such approaches would be the very quick computing time

as well as the ability to incorporate lesion information. Even more challenging is the brain

extraction on diffusion MRI. Coregistering the b0 volume to T1w images and projecting

the ANTS brain mask from the T1w scans back to DWI space was fast and rather robust.

Nonetheless, by design this involves only a rigid registration, which could introduce errors

when susceptibility distortions on DTI scans are too severe. Using a learning approach could

easily consider information from T1w images, while still being tailored to the exact brain

shape (including distortions) on a DWI scan. So, future developments could be to test new

machine learning tools for brain extraction for reliability and integrate the most appropriate

one. Furthermore, uncertainty measures from the model could be leveraged to estimate the

brain mask accuracy. This could replace the repeated computation of brain masks for QC

in both pipelines (ROBEX and MRtrix3 in structural and diffusion pipeline, respectively).

On the other hand, the overlap between different brain mask could be estimated via Dice

scores, a common metric to compute congruence between segmentations maps, and serve as

QC metric.

Once an automated lesion segmentation has been integrated in the pipeline, the information

can directly be used for spatial normalisation. This has been shown to be advantageous

[5, 27] and ANTS conveniently provides an option for cost function masking during reg-

istration. Deep learning tools could also be beneficial to accelerate spatial normalisation

through deformable image registration. Promising results for neural network frameworks
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have been reported to reach accuracy levels close to state-of-the-art methods [14, 140, 185].

Moreover, neural network based spatial normalisation [14] could also help to drastically ac-

celerate registration approaches based on multi atlases, such as MALP-EM. Alternatively,

neural networks could be integrated to directly segment structural images [220]. However,

further investigation is needed to understand the impact of such approaches on lesioned

brains.

Besides that, deep learning could also help to enhance image quality such as removing mo-

tion artefacts [144, 195] or improving resolution [237]. Certainly, deep learning tools have

improved performances for many MRI processing tasks (e.g. lesion segmentation) and with

new developments the boundaries of data processing will be pushed even further. Nonethe-

less, one pitfall to avoid for future versions of the pipelines is to replace each conventional

tool by a better performing neural network. Instead, tasks should be combined to be solved

together. For example, rather than having a neural network predicting the brain mask and

another segmenting tissue compartments, it would be more beneficial to have one model that

does both simultaneously. Although more challenging, aiming for multi-task approaches will

provide more efficient and stronger solutions.

This chapter focused on the the modularity of the pipelines and the integration of efficient as

well as accurate image processing tools. However, it did not examine the effects of different

methods on clinical research questions (e.g. finding differences between patients and control

subjects). While it is generally desirable to use robust and precise algorithms, marginal

changes in accuracy may not have a strong impact in the grand picture of the clinical data

analysis. The influence of different modules on effect size between patients and controls

could be investigated in future.

2.5.4 Integrated Lesion Segmentation

One very important branch of the pipeline will be the integration of lesion analysis. Modern

machine learning methods such as CNNs have helped to make great progress in accuracy

and precision of lesion detection and segmentation. Despite the convincing performance on

controlled training and validation datasets, the applicability in a general setting of a pipeline

remains complex and poses different challenges. One of them is to achieve a high accuracy

on unseen data. Currently, the best results for lesion detection are achieved with supervised

deep learning algorithms. This means, however, that lesions of interest will always have to

be annotated first to be able to train a strong model. Multi-centre MRI data might vary

enough to break an algorithm that had performed well on a validation dataset. So annota-

tions have to be generated either for most centres, or models have to be included that can

deal with the different intensity domains [122].
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Commonly, CNNs are trained on a given set of image contrasts (e.g. T1w, T2w, FLAIR

etc.)15, which for most network designs means the model can only detect lesions when the

exact same contrasts are given (or a surrogate if one assumes two images are interchange-

able). For a scan session where one contrast is missing due to inadequate or interrupted

acquisition, lesions cannot be detected with such a model in a straightforward way. Con-

sidering for example four different MRI contrasts, this leads possibly to 15 different cases

where none, one or several scans are missing. Training a model for all scenarios is impracti-

cable and has implications for more complex analyses. That is because lesions are likely to

be detected more accurately with four sequences than when some scans are missing. One

way to deal with heterogeneous data input for segmentation could be to compute statistical

features of the image representation in the latent space of the neural network [94], but this

requires further exploration to evaluate its applicability.

2.6 Chapter Summary

Two automated MRI pre-processing pipelines were introduced. The structural pipeline

is centred around T1w images, while facilitating the inclusion of other anatomical scans,

such as for example T1w or FLAIR images, for flexible application to different databases.

The core elements are the brain parcellation via MALP-EM, coregistration of all anatomical

sequences to T1w images as well as spatial normalisation to an age-agnostic template created

from T1w image of the Cam-CAN study. The diffusion pipeline is based on two pillars:

Firstly, the minimisation of image artefacts through denoising and Gibbs ringing removal

as well as head motion and eddy current distortion correction. Secondly, the extraction of

diffusion parametric maps (e.g FA or MD) and their co-registration to T1w space as well

as WM tract parcellation (i.e. TractSeg). Both pipelines extract QC metrics for convenient

post-processing data curation. These metrics have been validated on a TBI cohort. Data

processed with the pipelines are not only prepared for further analysis, but also extract IDPs

that can directly be used for statistical analysis of patient and control cohorts to investigate

clinical question.

15CNNs can also be trained on a single image contrast if there is only one available
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Application to Mild TBI

3.1 Introduction

3.1.1 Brief Introduction to Traumatic Brain Injury

Risk Factors & Epidemic Character. Traumatic brain injury is defined as an alteration

in brain function, or other evidence of brain pathology, caused by an external force [173]. In-

duced by a sudden event, initial injuries generally could happen to anyone regardless of sex,

demographic or ethnic characteristics. However, with traffic accidents, falls, assaults and

sport-related concussions being the leading causes for TBI, some groups are at higher risk.

For example, men are almost three times more likely to suffer a TBI than women. Another

strong risk factor is age, as elderly (≥65) and children (age<14) may be more vulnerable to

traumatic incidents [75, 161]. It is estimated that approximately 69 million people world-

wide suffer a TBI each year [51]. Overall, more TBI incidents were found in high-income

countries which, however, may be biased by better reporting systems [51]. With increasing

median age, falls becoming proportionally the greatest cause for TBIs in western countries,

and a clear change in the epidemiological patterns of TBI has been observed [217]. In con-

trast, for developing regions - such as Africa or Southeast Asia - road traffic incidents remain

the leading cause of TBI closely linked to uprising industrialisation in these countries. The

traumatic injury is often only the start of disease progression and recovery from TBI can

possibly take years, with some individuals requiring lifelong care and support. In 2016, the

annual financial costs associated with TBI were estimated between nine to ten billion US

dollars [75]. Due to its ubiquitous character and the wide spanning consequences, TBI has

often been described as a silent epidemic which creates an immense socio-economic burden

globally [161, 217].

45
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Pathological Patterns. Depending on the mechanism and the strength of the initial

impact, brain injuries occur with different severities. Although these cover a wide spectrum,

patients are usually trichotomised as mild, moderate or severe TBI (approximately 80%,

10% and 10% of all cases, respectively), usually based on the Glasgow Coma Scale (GCS)

[240].1 Besides this classification, patients can be grouped according to radiological evidence

of brain damage. Primary traumatic injuries can include focal injuries such as cortical contu-

sions, intraparenchymal haemorrhage and subdural or epidural haematomas. Each of these

are a consequence of impact site and severity as well as different underlying pathological

mechanism. Cortical contusions, for example, mostly appear where the brain makes contact

with irregular, prominent bone structures on the inner surface of the skull, and commonly

occur in the inferior frontal or temporal lobes. Contusions can be observed both directly

at and opposite to the site of impact termed coupe and contre-coupe injuries, respectively.

Moreover, vascular damage can result in haemorrhage and haematoma. Besides this, impact

forces can cause skull fractures that further damage the brain and can cause for example

injury to nerves and arteries (at the base of the skull). Alongside those patterns, diffuse

vascular and diffuse axonal injury may occur. These are usually caused by rapid accelera-

tive and decelerative forces. After the trauma and the initial presentation of pathological

patterns, a complex cascade of mechanisms causes secondary injuries to the brain. Vascular

damage can lead to a formation of new haemorrhages within hours after the TBI, resulting

in increased intracranial pressure or hypoxic ischaemia [75]. Additionally, secondary injuries

are triggered on a cellular level through an immune system response [111, 229] and on a

molecular level as an unregulated flux of ions due to compromised cell membrane integrity

[196]. Furthermore, neuroinflammatory processes can take place minutes to months after

the traumatic event and the release of neurotransmitters may create a toxic environment

exacerbating the initial tissue damage [75, 141]. This heterogeneity in pathological patterns

also brings a great variation of symptoms in TBI patients.

Consequences & Outcome. While TBIs can be very different, all grades of severity

share common linkages to acute and long-term neuropathologic damage and brain dysfunc-

tion [172]. Some symptoms may resolve within days, weeks or months post-injury. However,

others such as fatigue, poor cognitive performance, depression or chronic pain may develop

and persist for years, drastically impairing life quality. A meta-analysis [224] of 39 studies

revealed that cognitive functioning (e.g. memory or attention capacity) is restored most

quickly within the first few weeks after mild injury and reaches a plateau during one to

three months post-injury. Moderate to severe TBI patients may experience continuing im-

1other metrics can be the level of consciousness or post-traumatic amnesia
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provement within the first two years after the incident, but their cognitive functions might

remain impaired beyond that time point [224, 262]. Although difficult to distinguish from

somatic symptoms, depression and social impairment have been repeatedly linked to TBI.

Both have been described as consequence after TBI since the mid 1980’s [128], and were

shown to be present at least up to 12 months post-injury [84]. Symptoms of depression

were reported by patients of any injury severity, and may even be pronounced in patients

who had suffered a mild TBI (mTBI) [204]. Further long-term consequences can be chronic

pain and closely linked sleep disorders [265], or other secondary psychiatric sequelae such

as post-traumatic stress syndrome [61, 146] or sexual dysfunctions [216]. A long term study

showed that, despite high levels of independent daily living, approximately 40% of patients

were dependent on more support than before the injury. Moreover, problems that were

present at two years after the TBI (e.g. fatigue or balance problem), often persisted un-

til the ten year mark post-injury [202]. Further down the line, TBI have been associated

with increasing the risk for neurodegenerative diseases (e.g. Alzheimer’s disease) [208, 230].

Finding early biomakers that help to characterise injury better and quantify the likelihood

of recovery or disability is crucial to improving patient management, outcome and quality

of life.

3.1.2 Role of Neuroimaging for Mild Traumatic Brain Injury

The majority of TBIs (75-85% in 2003) are considered to be mild with a GCS score of

13 to 15 [68]. However, the definition of mTBI has been challenging due to the lack of

reliable biomarkers of injury [22] and the influence of various factors (e.g. education and

training of the physician observing the patient) on the GCS score [214]. Most mTBI patients

experience a full recovery from neurological deficits, but a substantial subgroup (5–30%)

develops prolonged neurocognitive problems [45, 172]. Distinguishing those patients with

persistent symptoms from those making a full recovery in a mTBI cohort is difficult based

on clinical assessment exclusively. Therefore, radiological metrics bear a great potential to

characterise injury severity and predict outcome. Nonetheless, while skull fracture and large

lesions often mark severe cases, mTBI can be much more subtle. Sudden acceleration or

deceleration forces acting on the brain induce deformation and shearing within the brain

causing microscopic, multi-focal or diffuse tissue damage on a cellular level. Particularly

affected are axons due to their elongated cell structure. Besides cortical contusions and

hyper-intensities or micro-haemorrhages linked to shearing related WM injury, most mTBIs

appear normal on conventional MR images [188]. Since diffusion MRI is able to characterise

the state of cerebral WM integrity [3], DTI has seen a tremendous interest in the field
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of TBI research.2 Substantial evidence of the effectiveness of DTI in detecting TBI has

emerged over the last decade. This established the consensus of lowered FA in WM as a

characteristic of TBI-related abnormalities [102]. Decreased FA can reflect less isotropic

diffusion as it can be observed in traumatic axonal injuries [88], which may potentially

indicate the disruption of the integrity of WM fibre tracts. For example lower FA values

within some ROIs (i.e. internal and external capsules, or corpus callosum [CC]) were found

to correlate with worse three and six months outcome after injury [276]. A systematic review

revealed that an unfavourable outcome in TBI with diffuse axonal injury was three times

more likely compared to TBI in the absence of such axonal pathology [250]. Another meta-

analysis of mTBI studies, confirmed the decrease or increase of FA and MD, respectively,

within the CC [9]. Further examinations of mTBI using DTI have shown that frontal and

temporal WM pathways are predominantly affected. Such micro-structural changes in WM

could be linked to behavioural and cognitive performance measurements [188, 157]. In fact,

severities of traumatic axonal injury and TBI seem to correlate. Physical alterations found

in different regions such as the CC, fornix, subcortical WM, as well as the cerebellum are

believed to contribute to the extent of symptoms after mTBI [172]. Although aberrations

of DTI metrics could be associated with specific brain locations and patient outcome, the

heterogeneity of patient cohorts have hampered the generalisability of abnormal DTI findings

[102]. A recent meta-analysis summarising 42 studies reaffirmed previous discoveries of

lower FA and higher MD values in TBI subjects and reported more subtle WM changes

for mild patients in comparison to moderate and severe TBI cases. Moreover, the measured

differences in DTI parametric maps seemed widespread3, indicating global WM damage after

TBI [259]. Imaging derived diffusion characteristics were repeatedly reported to be useful

biomarkers for WM injury [211] and differentiate TBI at a group level. However, there is

still a lack of strong evidence to prognosticate patient outcome at the level of individual

patients [58, 261]. One step in this direction could be the analysis of multi-modal images,

including volumetric measurements from structural MR (i.e. T1w scans) and quantification

of abnormal diffusion within the brain [246]. Besides cross-sectional analysis, longitudinal

studies could provide further information for disease progression in TBI patients.

3.1.3 Related Work for Analysis of Mild TBI MRI Data

Although not exhaustive, this section aims to provide a broader overview of volume and

diffusion changes in the brain after mTBI.

2Number of Google Scholar results for ”DTI mTBI” (Jan. 2020): 1480 in 2001-2010; 7720 in 2011-2020
3abnormalities were observed for 35 different ROIs across the studies included for the meta-analysis
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Volumes. Structural brain volume changes in mTBI have been investigated in several

reports, and overall highlighted the influence of time after the traumatic incident on devel-

opment of tissue atrophy. A comparison of mild and moderate TBI patients three months

after injury found no differences in brain parenchyma or CSF volume when compared to

healthy controls [163]. However, global brain volume loss was detectable in mTBI patients

one year after the injury, with atrophy observed both in GM and WM [284]. Moreover, a

decrease in brain volume was found to be present in the chronic stage (approximately two

years post-injury), with regional volume losses in the forebrain, cerebral WM and cerebellum

appeared to be affected [218]. More recently, significantly reduced cortical and subcortical

volumes (in the nucleus accumbens, and caudate) were found in mTBI when comparing

one year follow-up scans to the initial image obtained one month post-TBI. [98]. These

findings may suggest that tissue loss in mTBI evolves over time. Nonetheless, a longitu-

dinal study has reported regional volume decrease (in the caudate, putamen or thalamus)

as early as two month after injury [278]. And another study found that mTBI patients

experience significant cortical volume loss and an increase in ventricle size within one month

post-injury [247]. Furthermore, mTBI patients were found to have a significantly higher at-

rophy rate than controls a few months (>3) after the injury [163]. While discrepancies have

been repeatedly found between patients and controls, differences between patient groups

with varying symptoms or outcome is less consistent. For example, there were no significant

longitudinal changes observed when comparing patients with complicated or uncomplicated

mTBI. [98]. However, volume of brain parenchyma was observed to decrease more in pa-

tients with loss of consciousness [163]. In addition, an elevated rate of tissue atrophy was

linked to the inability to return to work [218] and decreased ROI volumes were associated

with neurocognitive performance [284].

While brain volume loss in mTBI patients has been observed multiple times, increases in the

volume of brain regions has also been reported, but far less frequently. A very recent study

has found abnormally enlarged cortical GM areas in mild to moderate TBI patients when

compared to a large database of control subjects. At the same time, however, the authors

found tissue atrophy in cerebral WM [219].

General volume loss in mTBI patients has been well established, but most of the above

mentioned studies included less than 20 [163, 218, 247, 284] or up to approximately 60

[98, 219, 278] mild and moderate TBI patients. A small sample size introduces biases as-

sociated with patient selection and reduces the robustness of these studies and limit their

generalisability. In fact, a recent review [93] concluded that observations of brain tissue

atrophy after mTBI remain inconclusive, but moderate and severe TBI patients show more

distinct patterns of general and focal atrophy on a global or regional level. More specifi-
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cally, this includes widening of cortical sulci, cortex thinning, shrinking of the hippocampus

and increase in ventricle size [93]. The underlying mechanisms for brain atrophy are direct

disruption of structural cell components, but also a cascade of secondary responses on a

molecular level [93]. While the incidence of a TBI may have a direct impact on brain tissue

loss, it also seems to trigger an ongoing process of accelerated tissue atrophy months and

years after the insult [20, 39].

Diffusion. Besides volumetric changes in anatomical brain regions, mTBI has frequently

been associated with abnormal water diffusion within the brain. This reflects the disintegrity

of axons in the WM, which are particularly vulnerable to mechanical loading of brain tis-

sue during rapid head accelerations due to their elongated cell structure and anisotropic

arrangement [116]. The mechanical impact on the WM can lead to disconnection of axons

at the time of injury, however disruption is mostly induced by secondary damage caused by

axon swelling [116]. Progressive degradation of WM has been shown to extend long after

the impact, resulting in loss of brain connectivity in the entire brain [20]. White matter

alterations in mTBI can be subtle and highly dependent on the examined cohort and the

choice of analysis [103]. However, a comprehensive meta-analysis summarising 28 DTI stud-

ies showed the robust findings of significant FA reduction and increase in MD in the CC after

mTBI [9]. The splenium was mostly affected, with marginal and no significant differences

for the mid-body or genu of the CC, respectively [9]. Nonetheless, measuring differences in

WM integrity in TBI is far from trivial as diffusion metrics change dynamically with days

post-injury (DPI) [227].

Early on, DTI metrics were analysed for mTBI patients at different time points. Inglese et

al. [107] have examined two patient groups, scanned in the acute or chronic phase (approx-

imately 4 DPI or 6 years post-injury, respectively). At both time points, patients showed

significantly reduced FA and increased MD (splenium, internal capsule) compared to con-

trols. A link to neuropsychological data was not reported for this study [107]. Lowered

FA values have also been reported for the corticospinal tract (CST), sagittal stratum and

superior longitudinal fascicle (SLF) in chronic (approximately 7.5 years post-injury) mTBI

patients [138]. Kraus et al. [138] could show that the number of WM tracts in TBI patients

with lower FA than the control group had worse executive functions and memory. However,

for this they have pooled patients scans from both available time-points (approximately 7.5

and 10 post-injury), which does not allow the assessment of progression of neuropsychologi-

cal functions over time. In contrast to examining patients at a very chronic stage, mTBI has

also been investigated on hyper-acute MRI scans (on average 10 hours post-injury). This

has revealed a similar pattern of decreased FA and MD within in the splenium, internal
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capsule or cingulate gyrus (CG) in patients compared to controls [253].

Besides contrasting patients against controls, different patient groups have also been com-

pared to one and another. Patients that showed intra-cranial lesions at admission also dis-

played decreased FA at follow-up. However, patients without visible lesions, demonstrated

no abnormal diffusion in comparison with controls [276]. Despite patients deviating from

controls, diffusion was not found to be different for two separate patient groups scanned in

the acute (approximately 4.5 DPI) and chronic phase (approximately 6 years post-injury)

[107]. Patients dichotomised as achieving good or poor outcome according to their functional

status at follow-up (three months post-injury) showed different diffusion patterns on MRI

scans approximately two weeks post-trauma [174]. While those patients with good outcome

had similar DTI measures to controls, patients with poor outcome showed increased MD

compared to controls as well as patients with good outcome. Regions for which such differ-

ences were observed included the CC, the inferior fronto-occipital tracts (IFOs), the anterior

thalamic radiations (ATR), the CST as well as the superior and inferior longitudinal fasci-

cles (ILFs). Although no differences were discovered between groups when examining FA,

this provided evidence that abnormal diffusion measured on sub-acute scans could be useful

for TBI outcome prognosis [174]. No changes were detected between sub-acute and 3-months

scans [174]. Likewise no variation was found between the two patient groups scanned dur-

ing the acute or chronic phase [107]. These data suggest that DTI can detect both initial

microstructural injury and late tissue status following TBI.

Although many studies replicated the findings of lowered FA and increased MD, discordant

results have also been reported. For example, increased FA and reduced MD values were

found in smaller mTBI cohorts both during the hyper-acute (approximately 3 DPI) [270],

semi-acute (6 DPI) [267] and sub-acute stage (within 21 DPI) [156].

Longitudinal Diffusion Changes. With the growing awareness of time-dependence of

TBI, recent studies have addressed changes of diffusion in WM over time. A tract-based

comparison of hyper-acute (approximately 24 hours) and three-months scans did not reveal

any differences in DTI metrics. With initially elevated MD for the mTBI cohort, this in-

dicated the persistence of WM damage few months post-injury [184]. The comparison of

DTI data from two and 12 months after injury has shown different patterns for FA and

MD in mTBI patients. While some fibre tracts (e.g. CC, CST) showed decreasing FA and

increasing MD over time, others (e.g. internal capsule, ILF and SLF) showed decreased MD

values between the two visits [19]. Longitudinal changes both in FA and MD were more

pronounced in patients than in the control group [19]. A recent longitudinal study showed

initially lower FA (internal capsule, IFO) during the semi-acute phase (seven DPI), which
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however, seemingly recovered to baseline one month after injury. Other tracts (e.g. CC)

showed evidence of evolving injury, detected by progressive changes up to three months

after the TBI [273]. In contrast, in another report, patients with mTBI were found to show

initial regional elevations in FA during the semi-acute phase (on average six or 12 DPI),

which partially recovered to normal levels within three to five months [171] or a year [43]

after injury. Moreover, the examination of a smaller mTBI cohort on several scans within

the first eight days revealed complex changes in diffusion patterns with patient-individual

trajectories [268].

A substantial amount of research has focused on mTBI, establishing the picture of brain

atrophy after injury. Generally the CC seems to be one of the most affected locations of

abnormal diffusion in mTBI patients [103]. However, many earlier studies only included

around 20 patients [107, 138, 171, 174]. Although more recent studies increased the patient

numbers [19, 43, 184, 253, 273, 276], the largest sample size of 80 patients is still very low

given the vast heterogeneity of the mTBI patient cohort. In addition, the variation in time

points and inconsistency in the chosen analysis tools hamper comparison across studies. A

key factor that needs to be taken into consideration for an adequate interpretation of DTI

metrics seems to be the time post-injury [48]. Despite the existing efforts, more research is

needed to gain a better insight in disease progression after mTBI.

3.1.4 Aims

Although more recent studies have started to recruit larger number of patients, most previous

observations are based on small TBI cohorts. Undoubtedly, this limits the generalisation of

the findings. To date, there is seemingly only one combined analysis of TBI data from more

than one site. This, however, enrolled less than 15 patients from two out of the three centres

(104 patients in total). Moreover, this study relied on visual inspection of images, rather

than quantitative metrics [228]. Changes in regional volumes (derived from MALP-EM)

and DTI metrics (tract count) have been investigated before, but only addressed a smaller

cohort of moderate to severe TBI patients [186]. Therefore, the aim for this chapter is to

retrospectively build a multi-centre database to examine a larger cohort of mTBI patients.

The analysis entails volumetric measures obtained from the MALP-EM atlas as well as

regional FA and MD metrics derived from the relatively new TractSeg WM atlas. Besides

investigation of site-specific differences, results are presented for three individual databases

and their joint analysis. The clinical aim of the study was to assess whether features derived

from acute MRI scans are different for controls and patients with good or poor outcome.

Furthermore, the prognostic value of regional volumes and diffusion for functional outcome
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was examined. Lastly, a longitudinal analysis of all acquired scans looked at the disease

progression in patients and whether it differed for patients with good or poor outcome.

3.2 Data Acquisition, Processing & Curation

3.2.1 Databases

Data from three separate TBI studies were examined independently, as well as pooled to-

gether for a retrospective multi-centre analysis. The following section provides information

for acquisition parameters and numbers of scanned subjects in each of these studies.

Cambridge Database. Mild TBI patients were scanned on a 3T Siemens Verio Mag-

netom at the Wolfson Brain Imaging Centre in Cambridge, UK. Structural MR images,

T1w MPRAGE with FOV: 256×240×192 and isotropic 1mm3 voxels, were acquired with

TE = 2.98ms, a TR = 2300ms, and TI = 900ms and a 9◦ flip angle. Diffusion weighted

images included 63 different directions on a single shell (b = 1000 s/mm2) and five non-

diffusion sensitised images (b = 0 s/mm2) evenly distributed across the acquisition time. A

2-fold acceleration factor was applied (GRAPPA) to obtain images with isotropic 2×2×2

mm3 voxels (63 axial slices; FOV = 96×96) were all acquired with TR = 11700ms and

TE = 106ms. Additional data (e.g. b0 volumes with reversed phase encoding direction) to

correct for susceptibility artefacts were not collected. The database included 20 healthy and

22 trauma4 controls as well as 51 patients. These were scanned at different time points up to

approximately 24 months post-injury to capture the TBI progression. With those follow-up

scans of the the 51 patients, the databases encompassed a total number 183 patient scan

sessions.

Trondheim Database. Structural and diffusion MR images were also collected for 156

mild TBI patients along side 83 healthy control subjects. Subjects underwent imaging on a

3T Siemens Skyra scanner upon admission at the St. Olavs University Hospital Trondheim,

Norway, and at follow-up times of three and 12 months. This longitudinal study eventually

included 402 and 206 scan sessions for patients and controls, respectively. All those scan

sessions included a T1w and DWI scan. The T1w MPRAGE scans were acquired with

TE = 4.21ms, a TR = 2300ms, and TI = 996ms and a 9◦ flip angle. T1w images entailed

176 slices covering a FOV of 256×256 with isotropic 1mm3 voxels. Diffusion weighted scans

included four baseline volumes (b = 0 s/mm2) and 60 diffusion sensitised volumes with two

4trauma controls were patients who experienced an external trauma that has not directly affected the

head, e.g broken leg
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different b-values (b = 1000, 2000 s/mm2, same 30 directions each). Scanner parameters

were set at TR = 8800ms and TE = 95ms to image DWI images (60 axial slices; FOV =

96×96) with isotropic 2.5×2.5×2.5 mm3 voxels. Additional b0 volumes with opposite phase

encoding directions were acquired (otherwise same parameters).

Turku Database. From the TBI study at the Turku University Hospital (Tyks), Turku,

Finland, 114 mTBI patients and 30 trauma controls subjects with both T1w and DWI scans

(3T Siemens Verio) were selected based on GCS scores (GCS ≥ 13). Follow-up scans around

∼6-8 months post-injury make this a longitudinal database consisting of 204 patient and 51

control scan sessions. The T1w scanning parameters were TE = 2.98ms, TR = 2300ms,

TI = 900ms and a 9◦ flip angle. The 176 slices covered a FOV of 256×240 isotropic 1mm3

voxels. The 65 volumes of the DWI scan included one baseline volume (b = 0 s/mm2) and

64 diffusion sensitised volumes (b = 1000 s/mm2). Isotropic images (voxel size: 2×2×2

mm3; 81 axial slices; FOV = 96×96) were acquired with TR = 11700ms and TE = 106ms.

Additional scans to correct for susceptibility artefacts were no collected.

3.2.2 Specifications of MRI Processing

All images were processed with both the structural and diffusion pipelines, as described

in the previous chapter. The additional b0 volumes acquired alongside the DWI scans for

the Trondheim database were used to correct the diffusion scans for susceptibility distor-

tion. Both other databases did not include such a scan. The Trondheim databases included

multi-shell diffusion imaging with higher b-values, which would allow employing more sophis-

ticated models to calculate diffusion in WM microstructure. However, diffusion data from

Cambridge and Turku were collected using single-shell acquisition, restricting the diffusion

estimation to standard tensor modelling. With the aim in mind to compare and combine all

three databases, the same tensor fitting model was applied to all data (FSL dtifit). Since the

assumption of linearity of the logarithmic signal attenuation does not hold true for higher

b-values [176], the diffusion tensor model was only fitted to the lower (b = 1000 s/mm2)

single shell for Trondheim scans. Moreover, to consider a similar number of non-diffusion

weighted images (b = 0 s/mm2) for the tensor estimation, b0 volumes after the acquisition

of the first shell (b = 1000 s/mm2) were disregarded. So, only one b0 volumes was included

for Trondheim, despite several b0 volumes having been acquired. All b0 volumes have been

used for Cambridge data, as they were interleaved between the diffusion sensitised scans.5

Study data from Trondheim and Cambridge included mTBI subjects only. Turku patients

were defined as mild when their GCS score was larger than 12 (GCS ≥ 13). Only controls

5This was a choice based on practicability, but is acknowledged as a limitation of this study.
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and mTBI patients that had both a T1w and a DWI scan were included. The extracted

IDPs were regional volume (as provided by MALP-EM) and average diffusion metrics (FA

and MD) within TractSeg parcellations. These tools were chosen as MALP-EM has been

shown to cope well with TBI-related deformations [151] and ROI based approaches were

found to be more sensitive than voxel-wise DTI analysis [103]. Although other structural

scans were acquired and processed as part of the automated pipeline, they were not con-

sidered for this analysis. Assuming latent axonal injury, patients with visible pathology

(in particular lesions visible on T1w scans) were excluded to avoid any bias due to brain

parcellation failures.

3.2.3 Data Curation Prior to Analysis

The diffusion processing pipeline provides QC metrics as output (Section 2.4.2) that help

to identify problematic scans for which, for example, the acquisition was corrupted. Any

scan that was associated with exceeding or unexpected QC measures was visually exam-

ined. Cut-off values were empirically chosen for each QC metric individually based on the

metrics observed in the whole mTBI database. Once a scan was rejected, its QC metrics

were not considered anymore for the subsequent curation. At first, the PIS ratios were

checked. Highlighted by a low value (PIS ratio = 66%), one Cambridge scan was excluded

as it showed strong striping artefacts due to head motion. Both available scans of one Turku

control were picked up on: one showed visible ghosting artefacts outside the brain mask (PIS

ratio = 57%), the other displayed noticeable hyper-intensities (PIS ratio = 53%). As the

scan quality within the brain seemed unaffected, both scans were kept for analysis. Then,

the SNR of the non-diffusion weighted images were analysed. None of the retained scans

showed any obvious artefacts. It is noteworthy, that nine scans with the lowest SNR were all

collected in Cambridge, while most scans with the highest SNR were from the Trondheim

database. Checking the ratio of the actual and control DTI brain mask highlighted a few

subjects. Some of those with high ratio were picked out, because the control algorithm

(MRtrix3) failed and oversegmented the brains. Since the actual skull stripping algorithm

(ANTS) performed as expected, flagged scans were not excluded. Similarly, at the lower

bound of the mask ratio, the control mask (MRtrix3) severely unsegmented the brain, but

the used mask (ANTS) was acceptable. However, two Trondheim scans highlighted by a

low ratio showed strong signal drop-out in the frontal part of the brain. Both scans were

rejected to avoid inaccurate results. Two further scans demonstrated very high intensities

in the cerebellum, which seemed to have neither directly affected brain masking nor tensor

fitting. Therefore, they were kept for the analysis. The scans with the lowest NCC between

FA and T1w images after coregistration were checked. Two scans (NCC = 0.38 and 0.43)
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were excluded from the analysis due to observable lesions on the DTI scans affecting the

WM parcellation. The corresponding follow-up scans were also inspected, and one of them

was excluded for the same reason. Remaining scans that were highlighted by greater head

motion QC values showed no apparent motion artefacts, such as striping or blurring, upon

visual inspection.

The curation process described above led to excluding a total of six scans (one Cambridge,

two Trondheim, three Turku). Quality control values were checked for significant differences

between the healthy and trauma controls from Cambridge. Since they could not be dis-

tinguished statistically (p > 0.3 for all t-tests), both categories were considered as a single

group for subsequent analysis. Table 3.1 summarises the number of available subjects and

scan sessions after the curation process.

Table 3.1: Number of Subjects and Scans of the mTBI Databases

Category Cambridge Trondheim Turku All

controls (subjects/scans) 42/47 83/206 30/51 155/304

patients (subjects/scans) 50/182 155/400 112/201 317/783

3.3 Experiment Setup

3.3.1 Data Categorisation

Brain tissue atrophy and changes in WM are a consequence of healthy ageing [67]. This

is why the age of a subject at scan time needs to be taken into account for any analysis

measuring brain volume loss and WM integrity. Dependent on study design and availabil-

ity, cohorts can vary in age and the time point of imaging after injury across different sites.

Plotting the distribution of age at scans revealed that overall Trondheim included younger

subjects than both other databases. While Trondheim and Turku showed matching distri-

butions of age for patients and controls, Cambridge patients were spread over a wider range

than control subjects (Figure 3.1 left). When combining the databases, the age distribution

was mostly driven by the large Trondheim dataset. Pathological patterns in TBI vary over

the course of the injury (Section 3.1.3). Therefore, it is important to consider the time point

of image acquisition for analysis of TBI patients. All three TBI studies were setup with a

different MR collection scheme. In Cambridge patients were scanned at five distinct time

points over the course of two years. Trondheim focused on acquiring a hyper-acute scan

(DPI≤3) as well as two follow-up scans at three and 12 months. Turku collected scans at

mostly the acute phase and six months after the injury, as well as a few follow-up scans one
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year post-injury (Figure 3.1 right). Five time frames were defined based on the scan time

point distribution and clinical relevance: Acute phase6 (DPI ≤ 42), three months (42 < DPI

≤ 150), six months (150 < DPI ≤ 300), 12 months (300 < DPI ≤ 500), and chronic phase

(DPI > 500).

Figure 3.1: Overview of Age and Scan Time Distribution. Left: The distribution of ages at
scans shows that the Trondheim cohort included younger subjects that the other two TBI
databases. Patients and controls scanned at Cambridge showed a different age distribution.
Right: All three studies collected scans at different time points. Cambridge patients were
scanned from the acute to chronic phase. Trondheim subject were scanned very early on
and at the three (3 M ) and 12 months (12 M ) mark post-injury. Turku patients were mostly
scanned during the acute and 6 months (6 M ) periods after injury (each point represents a
patient scan).

3.3.2 Region Selection for Analysis

Volumetric Analysis. Regional volumes within the brain were estimated via MALP-EM

(Section 2.3.1). As summarised previously (Section 3.1.3), mTBI has been associated with

regional volume loss at different stages post-injury. This analysis focused on similar anatom-

ical regions, as found in the MALP-EM atlas including: Nucleus accumbens (ROI #3 & #4)

[98], caudate nuclei (ROI #8 & #9) [278], cerebellar WM (ROI #12 & #13) [218], lateral

ventricles (ROI #23 & #24) [247], putamen (ROI #27 & #28) [278], thalami (ROI #29 &

#30) [278], anterior CG s(ROI #41 & #42) [284] and precuneus (ROI #101 & #102) [284].

Besides these ROIs, the cerebral WM [218], cortical GM [247] and ventricles were analysed

as a whole [278].

6including all three stages of hyper-, semi- and sub-acute



58 CHAPTER 3. APPLICATION TO MILD TBI

Diffusion Analysis. Analogous to the volumetric analysis, regional diffusion was com-

pared between patient groups and the control group. As described above (Section 3.1.3),

differences in diffusion pattern were found in various regions at all phases after the injury.

The analysis examined 24 regions that were previously found to be affected by mTBI. These

were segmented by TractSeg and included: The ATRs (ROI #2 & ROI #3) [174], and in

both hemispheres the cingulum (ROI #12 & ROI #13) [253], the CSTs (ROI #14 & ROI

#15) [19, 138, 184], the IFOs (ROI #24 & ROI #25) [174, 273], both ILFs (ROI #26 &

ROI #27) [19], the SLFsI,II,III (ROI #35-40) [138] and the uncinate fascicles (UF: ROI

#43 & ROI #44) [171]. Furthermore, the CC as a whole (ROI #45) [19, 103, 174, 184]

and its sub-parts such as the rostrum (ROI #5), genu (ROI #6) [142, 171], anterior and

posterior mid-body (AMB: ROI #8 and PMB: ROI #9, respectively) [273] and the splenium

(ROI #11) [9, 107, 142, 253] were included. Although the internal and external capsules

[107, 184, 253, 273] as well as the corona radiata [171, 273] were also reported to show devi-

ating diffusion they were not included, since they are not explicitly segmented by TractSeg.

3.3.3 General Statistical Analysis

After scan selection (see below), volumes or diffusion measurements were harmonised across

sites by standardising the distributions for each ROI separately. For this, mean (µ) and

standard deviation (σ) of the control population within a centre were computed at first.

Then, Z-scores (z) for the particular cohort were derived by subtracting the mean from the

metrics (x) and dividing by the standard deviation (z = (x− µ)/σ).

Linear regression analysis was chosen to identify differences between subject groups while

considering age, sex and acquisition site as confounding factors. Since an initial test showed

that a simple linear model with least square fitting resulted in non-normally distributed

residuals, a generalised linear model (GLM) was employed (statsmodels python library) to

fit a Gamma distribution. Non-linear models were not tested to keep statistical model as

simple as possible. To respect the domain of the Gamma family of real positive values, all

Z-scores were shifted towards positive values with a global constant (i.e. subtracting the

global minimum Z-score per ROI metric and adding a vanishing small constant such that the

minimum Z-score was just above zero). These Z-scored data were used for all experiments.

To account for multiple comparisons, all results were corrected for false discovery rate (FDR)

via the Benjamini-Hochberg method (statsmodels) and reported as statistically significant

when the corrected p-values were below 0.05. False discovery rate was chosen over Bonfer-

roni, as the latter is more conservative and may produce false negatives when correction for

a large number of tests. Throughout this chapter, the terms prediction and prognosis are

used to describe the fitting of statistical models to regress imaging data (mostly collected in
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the acute phase) against the functional outcome (i.e. GOSE assessed several months after

MR acquisition). In other words, no prediction in the sense of data science was performed

(e.g. cross validation).

3.3.4 Site-Specific Biases

Since data were included from three centres, at first differences between control subjects

were analysed for regional volumes and diffusion metrics (i.e. FA and MD). For this, a GLM

was fitted to the control data (subject i) to assess the influence of the acquisition site on

the ROI metric (Yi) while accounting for age at scan and sex. These covariates were chosen

as they are know to affect volumes and diffusion in the brain and, furthermore, are widely

available.

Model #1: fγ(Y ) = β0 + β1Sitei + β2Agei + β3Sexi + εi

with fγ representing for the log link function to fit a Gamma distribution, β0,...,3 repre-

senting the parameters to be fitted by the GLM and εi is the error unexplained by the

model. A separate GLM was employed for each ROI individually.

Besides applying a GLM to all three databases pooled together, all combinations of two

different databases were examined via regression analysis as well to identify the impact of

different centres. To visualise regional differences, another GLM was fitted analogously, but

excluding Site as predictive variable. That way, the GLM residuals represented the site-

specific differences while adjusted for age and sex. Table 3.2 lists the number of controls

included.

3.3.5 Acute MRI Differences between Controls and Patient Groups

The aim was to examine databases in a joint analysis to investigate whether IDPs from the

acute phase can be associated with patient outcome. Patients were dichotomised accord-

ing to their extended Glasgow Outcome Scale (GOSE) [269] score into groups with good

(GOSE=8) and poor (GOSE<8) functional outcome. Clinically it is more of interest if

a patient will show symptoms later on (GOSE<8) or has fully recovered from the TBI

(GOSE=8), rather than identifying how bad the symptoms are (GOSE 3-7). Furthermore,

combining all patients with unfavourable outcome (GOSE<8) improves the class imbalance.

Even when pooling them together, patients with poor outcome only made up 39% of the

whole patient cohort (Table 3.2). Examining Cambridge patients with GOSE scores at both
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three and six months showed that eight out of 37 subjects had a changing outcome (good

vs. poor) between both time points. Seven of those patients changed towards a good out-

come, showing a general trend towards improved outcome from three to six months. So, the

assumption was that patients functional outcome is mostly stable after three months, but

if it was changing it seemed more likely to improve. Thus, GOSE scores from either three

and six months were used, since Trondheim and Turku only measured GOSE at three or six

months, respectively. In case GOSE scores had been recorded at both time points (i.e. in

Cambridge database) the three-months GOSE score was used as it was available more often.

In case a patient had multiple scans within the acute phase, the earliest scan was chosen.

Eighteen patients had to be excluded, because they had no GOSE score recorded. Any miss-

ing records of GCS scores were imputed for patients with the majority value (i.e. GCS=15).

Table 3.2 shows the number of subjects included. The employed model included Category as

predictive variable, indicating a subjects belonging to the control or patient group with ei-

ther good or poor outcome, while also accounting for age, sex and site as confounding factors.

Model #2: fγ(Y ) = β0 + β1Categoryi + β2Agei + β3Sexi + β4Sitei + εi

with fγ representing for the log link function to fit a Gamma distribution, β0,...,4 repre-

senting the parameters to be fitted by the GLM and εi is the error unexplained by the

model. The continuous dependent variable (Y ) was replaced with the volume or diffusion

metric of a particular ROI. An individual GLM was fitted for each ROI.

To visualise regional differences, a GLM was fitted analogously, but excluding Category as

predictive variable. That way, obtained GLM residuals represented the category-specific

differences while adjusted for age, sex and site.

3.3.6 Prognostic Value of Acute MRI for Mild TBI Outcome

To test whether regional metrics derived from acute MRI have a prognostic value to differen-

tiate patients with good or poor outcome, a GLM was fitted considering age, sex, acquisition

site as well as GCS and DPI as covariates. Control subjects were excluded.

Model #3: fη(Y ) = β0 +β1ROIi+β2Agei+β3Sexi+β4Sitei+β5GCSi+β6DPIi+εi

with fη standing for the logit link function to fit a Binomial distribution, β0,...,6 repre-

senting the parameters to be fitted by the GLM and εi is the error unexplained by the

model. The binary dependent variable (Y ) indicated the patients’ good or poor outcome.
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Table 3.2: Overview of Available Data for MRI Analysis

Category Cambridge Trondheim Turku All

C
on

tr
ol

s # Subjects 42 83 30 155

Sex (M/F) 23/19 50/33 14/16 87/68

Age 39 [18,78] 33 [16,59] 51 [22,91] 38 [16,91]

A
cu

te
P

at
ie

n
ts

# Subjects 39 134 82 255

Sex (M/F) 28/11 84/50 52/30 164/91

Age 41 [17,76] 33 [16,60] 47 [18,84] 39 [16,84]

DPI 14 [0,23] 2 [0,5] 17 [1,42] 8 [0,42]

Good (%) 26 (67%) 95 (71%) 34 (41%) 155 (61%)

Poor (%) 13 (33%) 39 (29%) 48 (59%) 100 (39%)

GCS 13/14/15 2%/13%/85% 3%/15%/82% 7%/26%/67% 4%/18%/78%

GOSE 6 [5, 7] 7 [5, 7] 6 [3, 7] 7 [3, 7]

Sex displayed as male (M)/female (F). Age at scan (Age), days post injury (DPI ) sown as
mean[min, max]. Patients dichotomised in groups with good (GOSE=8) or poor (GOSE<8)
outcome, are displayed as absolute number and as percentage, indicating the portion of all
patients. GCS indicates the proportion of patients with GCS scores equal 13, 14 or 15.
GOSE shown only for poor outcome patients as median [min, max]

Models mentioned above were fitted to individual ROIs, which did not account for depen-

dencies between ROIs. Hence, a GLM was fitted to predict outcome using the information

of all ROIs from the pooled databases simultaneously.

Model #4:

fη(Y ) = β0 + β1Agei + β2Sexi + β3Sitei + β4GCSi + β5DPIi + α1−nROIi,1−n + εi

with ROIi,1−n representing the regional information and n is the number of ROIs (e.g.

24 for TractSeg). Complexity of the model was neglected for this analysis. The variables

β0,...,5 and α1−n are the parameters to be fitted.

3.3.7 Longitudinal Analysis

For the longitudinal comparison patients were only included if they had at least two MR

scans (Table 3.3). The aim was to examine whether volumes or diffusion metrics change

over time differently for patients with good or poor functional outcome. Therefore, regional

metrics were expressed as a linear function of time after injury (i.e. DPI) in interaction with

the dichotomised outcome. Since each patient was likely to have a different baseline to start
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Table 3.3: Overview of Available Data for Longitudinal Analysis

Category Cambridge Trondheim Turku All

C
on

tr
ol

s # Subjects/Scans 42/47 83/206 30/51 155/304

Sex (M/F) 23/19 50/33 14/16 87/68

Age 39[18,78] 33[16,59] 49[22,91] 37[16,91]

P
a
ti

en
ts

# Subjects/Scans 41/172 136/377 87/174 264/723

Sex (M/F) 29/12 87/49 56/31 172/92

Age 42[17,74] 34[16,60] 47[18,84] 39[16,84]

DPI (acute) 11[0,23] 2[0,5] 17[1,42] 8[0,42]

DPI (3 months) 94[81,123] 96[80,122] 56[43,100] 93[43,123]

DPI (6 months) 198[174,253] - 223[151,299] 215[151,299]

DPI (12 months) 381[357,431] 371[348,426] 394[336,491] 374[336,491]

DPI (chronic) 736[681,798] - - 736[681,798]

Good (%) 25(61%) 96(71%) 34(39%) 155(59%)

Poor (%) 16(39%) 40(29%) 53(61%) 109(41%)

GCS 13/14/15 2%/13%/85% 4%/15%/81% 9%/24%/69% 5%/17%/78%

GOSE 6 [5, 7] 7 [5, 7] 6 [3, 7] 7 [3, 7]

Sex displayed as male (M)/female (F). Age at scan (Age), days post injury (DPI ) sown in
mean[min, max]. Patients dichotomised in groups with good (GOSE=8) or poor (GOSE<8)
outcome, are displayed as absolute number and as percentage, indicating the portion of all
patients. GCS indicates the proportion of patients with GCS scores equal 13, 14 or 15.
GOSE shown only for poor outcome patients as median [min, max]

with, a linear mixed effect model was fitted to the data to allow a random intercept for each

patient. Age, sex, acquisitions site as well as GCS were considered as confounding factors.

Model #5:

fγ(Y ) = β0 + β1Outcomei ∗DPIi + β2Agei + β3Sexi + β4Sitei + β5GCSi +

β6Outcomei + β7DPIi + εi

where β0,...,7 are the parameters to be fitted by the GLM, fγ representing the log link

function to fit a Gamma distribution and εi is the error unexplained by the model. The

dependent variable (Y ) was replaced with continuous volume or diffusion measurement of

an individual ROIs, for which a separate GLM was fitted.
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3.4 Results

3.4.1 Site-Specific Biases

Volumes. Initial results of the regression analysis of Z-scored volumes have disclosed that

half of the examined ROIs (ten), demonstrated on average different volumes across cen-

tres. Among these were the whole cortical volume (pfdr = 0.0367), the right precuneus

(pfdr = 0.0496), and in both hemispheres the nucleus accumbens (left: pfdr = 0.0223,

right: pfdr = 0.0035), putamen (left: pfdr = 0.0041, right: pfdr = 0.0041), thalamus

(left: pfdr = 0.0087 right: pfdr = 0.0121) and the anterior cingulum (left: pfdr = 0.0228

right: pfdr = 0.0223). Although the total brain volume was increased for Turku subjects

(p = 0.0496), this was statistically not significant after FDR correction (pfdr = 0.0763).

The number of ROIs with deviating volumes was reduced to three by normalising the regional

volumes by the total brain volume for each subject individually before Z-scoring. Nonethe-

less, among the 19 selected ROIs (excluding total brain volume), control subjects from

Turku showed significantly higher volumes for the right nucleus accumbens (pfdr = 0.0164,

β1 = 0.2770) as well as the left and right putamen (left: pfdr = 0.0286, β1 = 0.1192, right:

pfdr = 0.0329, β1 = 0.2717). Figure 3.2 shows a shift towards higher volumes in Turku

controls compared to both other databases. Other regions with increased volumes in Turku

controls were the left nucleus accumbens (p = 0.0334) and both the left and right anterior

CG (p = 0.0365 and p = 0.0373, respectively), however, these trends were not statistically

significant.

Figure 3.2: Examples of Regional Volume Differences Across Sites. The residuals of the
GLM after correcting for age and sex differences, still showed a deviation between controls
from Turku and the other two imaging sites within the accumbens and putamen. Area
shaded in grey highlights the area under the distribution of all subjects.

Examining combinations of pairs of databases, showed no differences between Cambridge

and Turku, but significant differences between Trondheim and the other two databases were

present. Affected regions were WM and cortex overall as well as the caudate and thalamus
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in both hemispheres (pfdr < 0.05). Differences between imaging sites were most pronounced

for Trondheim and Turku.

Fractional Anisotropy. When jointly analysing all three databases together, no sig-

nificant differences were found for any of the 24 pre-selected TractSeg ROIs between the

three sites (for all ROIs: p > 0.4344). The rostrum showed a trend of higher FA values

for Turku controls compared to Cambridge controls (p = 0.0414, β1 = 0.1109), however,

this could not statistically be confirmed (pfdr = 0.7494). Comparing Cambridge controls

against Trondheim data showed no significant differences (for all ROIs: p > 0.2909). In

contrast, Turku controls were found to have divergent FA values from Cambridge controls

in the right ART (p = 0.0285, β1 = 0.0775), rostrum (p = 0.0458, β1 = 0.1433), right CST

(p = 0.0160, β1 = 0.2263) and right SLFIII (p = 0.0499, β1 = 0.0785). However, none of the

ROIs showed significant FA differences after FDR correction (for all ROIs: pfdr > 0.2200).

Similarly, the left ATR (p = 0.0463, β1 = 0.0683), rostrum (p = 0.0144, β1 = 0.1215) and

genu (p = 0.0395, β1 = 0.0819) demonstrated higher FA values for Turku than Trondheim,

but differences were not statistically significant after correction for multiple comparisons

(for all ROIs: pfdr > 0.3444).

Figure 3.3 shows the distribution of the GLM residuals (accounted for age and sex) for the

detected ROIs with FA variation across sites. While the distributions of Cambridge and

Trondheim mostly align, FA metrics seemed slightly elevated for Turku controls.

Mean Diffusivity. None of the chosen TractSeg ROIs showed significantly different MD

values across the sites in a joint analysis of all three databases (p > 0.3742). Similarly,

combining Cambridge either with Trondheim or Turku data alone revealed no noticeable

different regions (for all ROIs: p > 0.2489 and p > 0.2552, respectively). Only when leav-

ing out Cambridge data, MD in the left ATR (p = 0.03307, β1 = −0.2133) and right IFO

(p = 0.0426, β1 = −0.2115) was found to be slightly decreased in Turku with respect to

Trondheim. Both findings were not statistically significant after FDR correction (ATRleft:

pfdr = 0.4487, IFOright: pfdr = 0.4487).

3.4.2 Acute Differences between Controls and Patients

Volumes. Volumes of ventricles overall (p = 0.0298, β1 = 0.1696) and specifically the right

lateral ventricle (p = 0.0470, β1 = 0.1622) were found to be increased in patients with poor

outcome compared to controls, however, this was not statistically significant after FDR cor-

rection. Likewise, the right anterior CG showed a decreased volume for both patients with

good (p = 0.0266, β1 = −0.1087) and poor outcome (p = 0.0336, β1 = −0.1192) compared
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Figure 3.3: Regional FA Differences in Control Subjects. The residuals of the GLM after
correcting for age and sex differences, still showed a deviation between controls from Turku
and the other two imaging databases within the ATR, CST, SLFIII , rostrum and genu.
Differences were not significant after FDR correction.

to controls, but neither of the differences was statistically significant after FDR correction.

Analysis of individual data did not reveal any deviations between the three subject groups.

Fractional Anisotropy. A comparison of data from all three sites revealed 15 ROIs

with significantly lower mean FA values in patients with poor outcome relative to controls.

However, patients with good outcome did not show any significant deviation from subjects

without head injury (Table 3.4). Considering only subjects scanned in Cambridge, FA val-

ues in both the left and right IFO (pfdr = 0.04717 and pfdr = 0.0403, respectively), as well

as in the left UF (pfdr = 0.0471) were significantly lower in the patient group with poor

outcome. However, patients with good outcome did not statistically differ from controls. No

significant FA differences were found between the three subject groups within the Trond-

heim database. In contrast, Turku patients with poor outcome demonstrated reduced FA

values in 17 ROIs compared to controls (Table 3.5). Turku patients with good outcome were

statistically indistinguishable to controls.

Analysing regional FA differences in the three databases individually and together revealed

various patterns. For example, FA was reduced in IFOleft for Cambridge patients with poor
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outcome. This difference was not observed in the two other databases, but remained present

in the joint analysis. On the other hand, regions such as the ILFleft, showed no significantly

different FA values between subjects at individual sites, but revealed lowered FA values

in patients with poor outcome in the combined databases. Cambridge patients with poor

outcome had lower FA values in ILFleft, which, however, was deemed non-significant after

FDR correction. The joint analysis allowed to recover this difference. In contrast, combin-

ing databases also diminished previously found differences. While FA value in SLFI,left was

lower for Turku patients with poor outcome, this difference was not statistically present in

the pooled dataset. Besides those changes, some regions showed decreased FA values across

databases. For example the UFleft demonstrated significantly decreased FA values for pa-

tients with poor outcome in the Cambridge and Turku as well as the fused databases (Figure

3.4). From this analysis we can only infer changes when looking at different databases, but

cannot say with certainty which differences between changes are true discrepancies between

subjects.

Table 3.4: Overview of ROIs with Different FA in Acute Phase Across Sites

Cambridge & Trondheim & Turku

ROI good - β1 good - pfdr poor - β1 poor - pfdr

FA

ATRright -0.0130 0.9748 -0.0504 0.0271

Rostrum -0.0549 0.7731 -0.1142 0.0110

Genu -0.0292 0.9748 -0.0731 0.0271

PMB -0.0013 0.9748 -0.0984 0.0498

CGleft -0.0157 0.9748 -0.1366 0.0152

CGright -0.0081 0.9748 -0.1260 0.0115

IFOleft -0.0243 0.9748 -0.0921 0.0271

IFOright -0.0052 0.9748 -0.1079 0.0115

ILFleft -0.0035 0.9748 -0.0972 0.0271

ILFright -0.0025 0.9748 -0.1243 0.0123

SLFI,right -0.0300 0.9748 -0.0950 0.0271

SLFII,right -0.0091 0.9748 -0.0625 0.0311

UFleft -0.0635 0.7731 -0.1184 0.0123

UFright 0.0252 0.9748 -0.0942 0.0271

CC -0.0067 0.9748 -0.0846 0.0311

Model #2 coefficients (β1) and p-values after FDR correction (pfdr) for patients with good
and poor outcome.
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Figure 3.4: Examples of Regional FA Differences in Individual Databases and Joint Analysis
After Correction for Confounding Factors. IFOleft: FA values were lowered in Cambridge
data (red) and combined analysis (All). Trondheim (blue) and Turku (green) subject were
indistinguishable within the particular database. ILFleft: FA values, despite lowered in poor
Cambridge patients, were not significantly different when examining databases individually,
however, joint analysis recovered this difference. SLFI,left: FA was significantly reduced
in patients with poor outcome in Turku, but not in Cambridge or Trondheim. In a joint
analysis this difference was not present. UFleft: Mean FA values were decreased for patients
with poor outcome in Cambridge and Turku as well as the combined analysis. Mean values
are marked with a cross (×). Regions with significantly lowered FA are highlighted with an
asterisk (*)
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Table 3.5: Overview of ROIs with Different Diffusion Metric in Acute Phase

Cambridge

ROI good - β1 good - pfdr poor - β1 poor - pfdr

FA

IFOleft 0.0175 0.9752 -0.3066 0.0471

IFOright 0.0287 0.9752 -0.3370 0.0403

UFleft -0.0380 0.9752 -0.2717 0.0471

MD

Rostrum 0.0843 0.9143 0.5686 0.0203

CSTleft -0.0024 0.9879 0.5374 0.0186

IFOleft -0.0767 0.9143 0.5188 0.0430

ILFleft 0.0271 0.9572 0.4974 0.0296

UFleft 0.1092 0.8390 0.4080 0.0203

Turku

ROI good - β1 good - pfdr poor - β1 poor - pfdr

FA

ATRright -0.0423 0.3783 -0.0724 0.0418

Rostrum -0.0566 0.4517 -0.1391 0.0331

Genu -0.0679 0.3783 -0.1298 0.0283

AMB -0.1126 0.3783 -0.1337 0.0319

PMB -0.2540 0.3590 -0.3795 0.0145

CGleft -0.2720 0.3590 -0.3341 0.0148

CGright -0.1957 0.3590 -0.2713 0.0145

IFOright -0.1005 0.3783 -0.1712 0.0283

ILFright -0.2375 0.3590 -0.3246 0.0145

SLFI,left -0.1466 0.3783 -0.2429 0.0222

SLFI,right -0.1152 0.3783 -0.2037 0.0222

SLFII,left -0.0949 0.3783 -0.1696 0.0331

SLFII,right -0.0772 0.3783 -0.1508 0.0222

SLFIII,left -0.0747 0.3783 -0.1125 0.0319

SLFIII,right -0.0498 0.3783 -0.0880 0.0418

UFleft -0.1134 0.3783 -0.1327 0.0474

CC -0.1138 0.3783 -0.1990 0.0222

MD

ATRright 0.1922 0.5885 0.2326 0.0385

PMB 0.1367 0.5885 0.3304 0.0037

ILFright 0.0993 0.5885 0.1456 0.0496

Model #2 coefficients (β1) and p-values after FDR correction (pfdr) for patients with good
and poor outcome.
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Mean Diffusivity. None of the examined TractSeg ROIs showed different mean MD values

between controls and patients with good outcome in the pooled dataset. Patients with poor

outcome had a trend towards elevated MD values relative to controls within the rostrum

(p = 0.0222, β1 = 0.1381), the right ILF (p = 0.0391, β1 = 0.0780) and the left UF

(p = 0.0234, β1 = 0.0964). However, those results were statistically insignificant (for all three

ROIs: pfdr > 0.2805). Analysing differences between subject groups within the Cambridge

databases, uncovered increased MD values for patients with poor outcome in the rostrum

(pfdr > 0.0203, β1 = 0.5686) as well as in the CST (pfdr = 0.0186, β1 = 0.5374), IFO

(pfdr = 0.0430, β1 = 0.5188), ILF (pfdr = 0.0296, β1 = 0.4974) and UF (pfdr = 0.0203,

β1 = 0.4080) in the left brain hemisphere. No differences were found for patients with good

outcome (Table 3.5). Similarly to previous findings, MD values were statistically inseparable

for the controls and patients within the Trondheim databases. The Turku database also

demonstrated increased MD values in the ATRright (pfdr = 0.0385, β1 = 0.2326), the PMB

(pfdr = 0.0037, β1 = 0.3304) and the ILFright (pfdr = 0.0496, β1 = 0.1456) for patients

with poor outcome, but overall no MD differences for patients with good outcome (Table

3.5).

3.4.3 Prognostic Value of Acute MRI

Volumes. Although regression analysis indicated a volume difference for the right caudate

between patients with good and poor outcome (p = 0.0478), none of the 19 selected MALP-

EM ROIs were predictive of functional outcome several months post-injury. The left nucleus

accumbens (p = 0.0330) and the right cerebellar WM (p = 0.0132) showed a potential

predictive power within the Trondheim data, however, differences were not strong enough to

remain statistically significant after FDR correction. Similarly, the right nucleus accumbens

(p = 0.0376) and both caudates (left: p = 0.0050, right: p = 0.0145) in Turku data showed

differences for both patient groups but differences did not remain after FDR correction.

Regression analysis in Cambridge database alone did not allow to derive any results, as the

variables used as covariates perfectly separated the small number of patients. Hence, the

suggested regression model could not be fitted to infer differences between patients with

good or poor outcome. Only when jointly analysing of Cambridge and Turku data while

excluding Trondheim patients, volumes for the cortex (pfdr = 0.0065) and the caudates

(left: pfdr = 0.0049, right: pfdr = 0.0037) were predictive of functional outcome. Linear

regression analysis of all selected MALP-EM ROIs (Model#4 ) did not reveal any regional

volumes that were predictive of patient outcome.
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Fractional Anisotropy. Considering all three databases together, FA in the right IFO

fascicle (p = 0.0310), left ILF (p = 0.0463) and right UF (p = 0.0177) had the potential

to predict patients with good and poor outcome. However, after FDR correction none of

the regions showed a statistically significant impact on outcome prediction. Examining only

Trondheim data did also not reveal any statistical significant FA differences between patient

with different outcome. In Turku patients, the FA of the right CST (p = 0.0203) may be

predictive for poor outcome, but this was not statistically significant after FDR correction.

As before, Cambridge database included too few patients for the regression analysis. Note-

worthy, the acquisition site was a strong predictor of outcome. In fact, when leaving out

Trondheim patients, 14 ROIs showed a discriminative power (pfdr ≤ 0.05) to distinguish

both patient groups. Among the three different centres, Trondheim scanned patients with

the mildest TBI. This means it is hardest to differentiated patient groups. Including Trond-

heim patients may diminish the discrepancy between both patient groups that may be more

prevalent in Cambridge and Turku data. This discrepancy was uncovered when exclud-

ing Trondheim patients, which previously have masked the subtle differences (hence the 14

ROIs). This suggested site-/cohort-specific biases. Other combinations of two databases did

not show the same effect. Although it is difficult to say what effects are truly a characteristics

of patients with good or poor outcome, this shows the heterogeneity of TBI patients. A GLM

(Model#4 ) fitted to mean FA values from all ROIs simultaneously for the fused databases

revealed the AMB (p = 0.031) and right UF (p = 0.048) to be predictive of patient outcome.

Mean Diffusivity. Similar to FA, none of the 24 TractSeg ROIs showed a predictive

influence on patient outcome. This was observed in both the analysis of fused databases

as well as in Trondheim and Turku individually. As before, sample size for Cambridge was

too small to infer results. On the other hand, excluding Trondheim patients resulted again

in an increase of relevant ROIs. Average values for MD were predictive of outcome in 17

TractSeg ROIs (pfdr ≤ 0.05). When fitting a linear regression model to all regional MD

values for the pooled databases (Model#4 ) both ATRs (left: p = 0.002, right: p = 0.026)

as well as the left cingulum (p = 0.038) and right IFO (p = 0.010) were predictive of patient

outcome. Considering all ROIs simultaneously to predict outcome may be more sensitive to

find outlier regions than analysing individual fibre tracts. With more information provided,

the linear model seems to be fitted to the data differently to map the random variables (i.e.

here MD values) to patient outcome. From this analysis it is not clear whether this is due

to better or worse data fitting through the GLM.
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3.4.4 Longitudinal Analysis

Volumes. After accounting for age, sex, site and injury severity only volumes of the right

and left caudate demonstrated a minimal negative dependency on DPI (left: p = 0.0132,

β1 < −0.0002, right: p = 0.0132, β1 = −0.0002). In other words, both regions showed

a trend of progressing volume loss. The left cerebellar WM showed a positive association

with time after injury (p = 0.0044, β1 = 0.0005), indicating a higher volumes at a later

stage. These findings were, however, not statistically significant after correction for multiple

comparison (pfdr > 0.0831). Fitting a regression model to all three databases together did

not reveal any differences in regional volume loss over time between patients with good and

poor outcome. Similarly, analysing Cambridge and Trondheim databases individually re-

sulted in the same findings. A difference in temporal tissue atrophy between both outcome

groups was found for the overall cortex in Turku patients (p = 0.0428, β1 = 0.001), but this

difference was not significant after FDR correction (pfdr = 0.6667).

Fractional Anisotropy. A dependency of FA on time after injury was found for six

TractSeg ROIs. The CST in both hemispheres (left: pfdr = 0.0297, β1 = −0.0004,

right: pfdr = 0.0045, β1 = −0.0006) and the IFO (pfdr = 0.0014, β1 = −0.0006), ILF

(pfdr = 0.0017, β1 = −0.0006) and SLFI (pfdr = 0.0297, β1 = −0.0004) on the right side

showed a significant negative correlation with DPI. This suggested progressively lower FA

values in those regions after mTBI. On the other hand, the rostrum showed a significantly

positive association with DPI (pfdr = 0.0017, β1 = 0.0005), indicating an increase in FA

values over time. The right IFO (pfdr = 0.0490, β6 = −0.4950) and right UF (pfdr = 0.0490,

β6 = −0.4190) showed a significantly stronger decreased of FA in patients with poor than

with good outcome. Analysing the three databases individually revealed slightly negative

trends for patients with poor outcome in the rostrum for the Trondheim cohort (p = 0.0096,

β1 = −0.001) and in the PMB for the Turku cohort (p = 0.0323, β1 = −0.002). Differences

could not be statistically verified after FDR correction (pfdr > 0.2295).

Mean Diffusivity. Time post injury was found to also have an effect on regional MD. In

particular, diffusion in the splenium (pfdr = 0.0049, β1 = 0.0005), CST (left: pfdr = 0.0069,

β1 = 0.0006, right: pfdr = 0.0049, β1 = 0.0006), right IFO (pfdr = 0.0049, β1 = 0.0005),

ILF (left: pfdr = 0.0313, β1 = 0.0004, right: pfdr = 0.0158, β1 = 0.0005) and right SLFI

(pfdr = 0.0204, β1 = 0.0005) showed a significant dependency on DPI. This implied an in-

crease of MD values over time in those seven regions. In contrast, the rostrum (pfdr = 0.0234,

β1 = −0.0004) and genu (pfdr = 0.0371, β1 = −0.0004) were associated with negative slopes
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for DPI, indicating decreased MD. Although MD seemed raised at later stages, there were

no significant differences between patients with good or poor outcome. This was also the

case, when fitting an individual regression model to either Cambridge or Turku data. Trond-

heim patients with poor outcome by themselves demonstrated a negative slope for the left

and right SLFI (left: p = 0.0411,β1 = −0.001, right: p = 0.0121,β1 = −0.001), right

SLFII (p = 0.0427,β1 = −0.001) and right SLFIII (p = 0.0487,β1 = −0.001). These obser-

vations in the Trondheim database were not significant after multi-comparison correction

(pfdr > 0.2893).

3.5 Discussion

3.5.1 General Challenges in Database Comparability

Since TBI disease patterns are time-dependent [19, 43, 171, 273] the imaging time point

needs to be considered for any analysis. However, independently designed studies may offer

a different scan collection scheme that hampers pooling all data for a cross-sectional analy-

sis. Among the databases presented here, for example, Trondheim acquired scans at three,

but not six months post-injury. In contrast, Turku collected almost all of the follow-up

MR scans at the six months time-window. Thus, both time-points - three and six months

post-injury - cannot be examined in a joint analysis of all three databases. Furthermore, this

deviation was also observed for other clinical assessments such as the GOSE scores. Both

Trondheim and Turku collected GOSE scores during a patient’s follow-up visit. Hence, for

the prognostic evaluation of acute MR scans GOSE scores from three and six months had

to be combined. This followed the assumption that the functional outcome is fairly stable

between three and six months post injury (80% of the 37 Cambridge patients showed a

stable GOSE score between both time points, see also Section 3.3.5).

Even if clinical and imaging data are available for the same time points, retrospective multi-

centre studies are likely to combine databases for which images were acquired with different

scanning parameters. Some variations can be rectified fairly easily, such as for example

the selection of equal number of b0 volumes. Other parameters may be more difficult to

harmonise, and could have a more direct impact on image quality. For all three datasets

only single-shell data (b = 1000 s/mm2) was chosen to apply the same tensor fitting model.

Cambridge and Turku acquired approximately 60 directions on one shell, whereas, Trond-

heim only acquired DWI along 30 non-collinear gradient directions. While MD metrics have

been reported to be more affected by variations in the b-values, FA was found to be sensitive

to the number of diffusion gradient directions [15]. Hence, acquisition-/site-specific biases
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were expected to be more reflected in FA, due to different angular resolutions, than in MD

values. The fact that ROIs were observed to be more often significantly different between

subject groups could be an indication of site- and population-specific biases still present

despite harmonising metrics (Z-scoring) and considering site as a co-variable in the linear

regression models. Future experiments could investigate the impact of choosing the same

number of diffusion directions. For this data this would mean to artificially reduce the an-

gular resolution for Cambridge and Turku data by selected a subset of 30 directions that are

most similar to the 30 directions acquired for Trondheim data. However, the retrospectively

selected 30 directions would not have been optimised to find the best spatial distribution of

directions and might lead to suboptimal results. The effect of number of directions has been

explored for Parkinson [206] and similar experiments could provide valuable insight for the

design of future multi-centre studies in the context of TBI. Since there is no groundtruth

available for this clinical dataset, simulation of such datasets could help to understand the

impact of different number of directions (the reader is also referred to [279]).

3.5.2 Biases Across Imaging Sites

Despite Z-scoring volumes and considering acquisition site as a confounding factor in the re-

gression analysis, a site-specific bias was detected for half the MALP-EM ROIs. Differences

between Trondheim and Turku were most pronounced, which may reflect the age differences

between the cohorts despite accounting for age in the linear regression model (average age

was 33 and 51 for Trondheim and Turku, respectively).7 While this bias could be cohort-

specific (larger heads or younger age) this should be reduced by normalising to the average

volume in control subjects at each site. Alternatively, Z-scoring itself may introduce a bias.

Control subjects scanned in Turku showed the widest range of ages (i.e. 69 years, compared

to Cambridge: 60 years, and Trondheim: 43 years). This is also reflected in the highest

average absolute age difference between controls and the cohort mean age (i.e. 17 years,

compared to Cambridge: 10 years, and Trondheim: 11 years). This higher variation in

the Turku control subjects may lead to less accurate volume normalisation with respect to

age, particularly, as tissue atrophy was reported to accelerate with increasing age [67]. This

hypothesis seems supported by the drastic decrease in number of ROIs with site-specific

differences for controls after normalising regional volumes to total brain volume (including

CSF). Since both the left and right putamen persisted to have a different volume across

sites, this may indicate a potential systematic difference in segmentation.

No difference in diffusion metrics were found between Cambridge and Trondheim controls,

which suggests that differences were either not prevalent despite the difference in angular

7Future experiments could aim to statistically model non-linear age effects.
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resolution, or that Z-scoring could account for some of the acquisition-induced variation.

In contrast, Turku control subjects showed slighter elevated FA values in a few ROIs com-

pared to Cambridge controls. This again may be due to a bias introduces via Z-scoring.

Fewer deviations were observed for MD than for FA. This may be attributed to the use of

single-shell data benefiting MD, which FA is more sensitive to the different angular reso-

lutions across centres. Since none of the findings were statistically significant, subsequent

experiments are likely to show indeed differences resulting from TBI pathology rather than

acquisition-specific biases exclusively.

3.5.3 Differences between Patients in Comparison to Controls

Patients with poor outcome were found to have increased ventricle volumes compared to

control subjects. Since ventricles did not show a site-specific bias in the previous analysis,

this indicates potential TBI-related brain tissue atrophy. Patients with good outcome did

not show a similar trend, thus, enlarged ventricles in the acute phase could hint a worse

outcome a few month after the injury. Both patient groups demonstrated a volume decrease

of the right anterior CG. All findings were, however, not statistically significant after FDR

correction, which shows the subtlety of differences between controls and patients with dif-

ferent outcome.

More prominent were the differences seen for FA. Among the examined WM tracts, 15

ROIs showed decreased FA for patients with poor outcome during the acute phase. Since

this number of regions exceeded the few regions for which potential site-specific differences

between controls were found, reduced regional FA could indeed be an indication for poor

outcome, especially, as lower FA values were not observed for patients with good outcome.

The finding of FA values in the good outcome group similar to control subjects, may indicate

a lack of injury, which could explain the better functional outcomes for that patient group

three to six months post-injury. Alternatively, this could indicate a better brain plastic-

ity that allows those patients to recover from TBI more easily. When analysing individual

databases, Trondheim and Cambridge patients showed none or only a low number of ROIs

with deviating FA. In contrast, Turku patients with poor outcome had decreased FA values

compared to controls in 17 ROIs. These more prevalent FA changes may be connected to the

initial severity of injury [172]. Turku patients showed the largest proportion of patients with

lower GCS scores (i.e. GCS=13: 7%, GCS=14: 26% of all patients) and with poor outcome

(59%). In addition, some Turku patients had a worse outcome (minimum GOSE=3) than

the other two patient cohorts. The discrepancy between individual databases and the fact

that the analyses that were either based on Turku data alone, or in combined analysis with

Turku data, had a similar number of abnormal ROIs, suggests that the differences found in
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the joint analysis were strongly driven by Turku patients. Some differences observed in in-

dividual databases were both weakened or strengthened by the fusion of all three databases.

The joint analysis of all three databases showed that poor outcome patients followed a trend

towards elevated MD values in some of the regions during the acute phase. Although these

findings were not statistically significant, the higher MD values may mark a differences

between patients that will recover and ones that show persistent symptoms later on. Ex-

amination of individual databases also underlined this. Cambridge and Turku patients with

poor outcome showed significantly higher MD values. In contrast, Trondheim patients, who

had generally less severe injuries, did not demonstrate any deviating MD values, regardless

of their outcome. Overall, abnormalities in MD were less pronounced - showing differences

in a lower number of ROIs - than those for FA. Disregarding that MD benefited from better

rectification of sites-specific acquisition (i.e. number of b0 volumes, also see Section 3.5.1),

one reason for this could be the inclusion of acute scans over a wide time span post-injury.

Mean diffusivity has been shown to pseudo-normalise during the semi-acute phase [19], which

may balance out any abnormalities found in the hyper-acute phase. Subdividing the acute

phase in smaller time increments could help to identify more transient changes in FA and

MD [60].

3.5.4 Prognosis Based on Acute MRI

Although the volume of the right caudate showed some predictive influence for patient out-

come, none of the examined structural volumes showed significant values for mTBI progno-

sis. Regions such as the caudate, nucleus accumbens or cerebellar WM had slightly different

volumes between both patient groups in individual databases. However, these trends were

not statistically significant, and only achieved significance as predictors of outcome when

Trondheim data were excluded. The early time-point of acute data acquisition for Trondheim

patients and the lack in prognostic value of volume difference may indicate that progressive

volume loss, although induced by the injury, may take some time to become severe enough

to be measured on a group-wise level.

Similar observations were made for FA, where some regions showed a discrepancy between

patient groups, but were not strong enough to provide any power for outcome prediction.

Outcome in Trondheim patients could not be distinguished by FA metrics, supporting the

idea of low injury severity and FA differences on acute MR were not present or too subtle to

be observed. Excluding Trondheim patients from the analysis resulted in a higher number

of ROIs with different FA between patients. Combining Cambridge and Turku patients may

enhance differences between patients by increasing power, but not diluting the magnitude

of difference between groups. Acquisition parameters (e.g. number of diffusion directions)
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were similar for both databases, and site-specific biases were accounted for by Z-scoring and

using site as covariate. Moreover, the previous comparison of control subjects from the three

different centres has shown only potential site-specific biases in FA for four ROIs (none were

significant). Therefore, abnormal FA may indeed show patient differences related to TBI,

rather than only site-specific biases. Nonetheless, it is likely that some centre-biases persist,

and allow a statistical model to identify whether data originated from Turku or Cambridge.

Since Turku patients had worse outcome than Cambridge patients, identifying the site could

falsely seem to help to predict outcome more accurately.

Similarly, MD did not provide any significant prognostic value to differentiate patients based

on outcome, unless Trondheim patients were excluded.

3.5.5 Longitudinal Findings in Mild TBI Patients

Both the progressive volume loss [98] and unchanged volumes [278] between early and follow-

up scans have been reported for regions such as the nucleus accumbens, caudate, putamen or

thalamus. In the mTBI cohort presented here, an ongoing tissue atrophy could be observed

for GM regions such as the caudate in both hemispheres. Furthermore, WM volume in the

left part of the cerebellum seemed increased with time after injury. However, time-dependent

differences between patients with good or poor outcome were not found. One reason for the

lack of differences could be that conventional MRI is not very sensitive to mTBI pathology

[188]. Although loss of cerebral WM volume between three and 17 DPI was recently observed

for mTBI patients compared to control subjects, the study did not examine volumetric

changes between patients with different functional outcome [215]. Further investigation is

needed to understand if WM volumes derived from T1w images could provide sufficient

information to distinguish patient groups with different outcomes. Another reason could be

the complex subject-dependent pathological evolution within different regions. Although the

regression model estimated a different baseline per subject, a group-wise analysis might be

to crude to detect patient-specific volume loss. To account for different patient trajectories

of regional tissue atrophy, a model could be trained to fit a different slope and interception

for each subject. However, the available data did not allow optimal convergence of such a

model. Future experiments on a larger dataset might be more successful.

As expected, diffusion metrics were much more sensitive to capture longitudinal differences.

Some of the examined regions showed a progressive decrease of FA over time indicating

ongoing disease evolution. This is coherent with findings in previous studies (e.g. [19, 273]).

In contrast, mean FA values in the rostrum increased with time after injury, which may be

attributed to tissue recovery over time. The CC is one of the largest WM tracts allowing

the communication between the two hemispheres of the brain. As anterior part of the CC,
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the rostrum connects parts of the frontal lobes. These are often involved in TBI due to

the prevalence of impact at the front of the head. An increase in FA suggests an elevated

anisotropic diffusion, which possibly could indicate better more structured and well aligned

fibre tracts. Hence, an increase in FA in the rostrum, may be associated with a stronger

connection between the frontal lobes. One previous study reported initially decreased FA

values in the internal capsule and the IFO at seven DPI, which recovered at one month after

the injury. Increased FA values in both tracts were positively linked to better performances

in cognitive information processing [273]. So, one can cautiously hypothesise that over time

neural structures are enforced within the rostrum to strengthen the connection between

frontal lobes to account for possible deficiencies in the frontal lobes due to TBI. However,

more experiments would be needed to confirm such a hypothesis. Despite accounting for

confounding factors, the longitudinal analysis presented here might not be completely free

from site-specific factors. Comparing controls across sites, showed a trend for higher FA

values in the rostrum for Turku than for Trondheim or Cambridge patients. This could

have had an effect on the longitudinal analysis. However, patient data from later stages

(12 months or chronic phase) were predominantly acquired at Trondheim and Cambridge.

Consequently, their site-specific lower FA values from these centres would be more likely

to support a decrease in rostrum FA values over time. Hence, the rostrum increase cannot

directly be associated with site-specific effect, which may suggest a true recovery of FA

values over time.

The longitudinal analysis also showed a positive association of DPI and MD in some regions,

such as the CST, IFO or ILF. Increasingly higher MD values could indicate less structured

WM with time after injury. The IFO tract passes from the frontal lobe radiating into

the temporal and occipital lobes. The latter is the visual processing centre within the brain

[212], and the temporal lobe is involved in visual memory as well as language comprehension

[42]. Similarly, the ILF has been recognised to be involved in processing visual cues and its

disruption has been linked to neuropsychological impairments of visual cognition [99]. So,

deterioration of WM in the IFO and ILF could lead to problems in processing visual and

verbal information. Indeed, differences in FA and MD between TBI patients and controls

in IFO and ILF were observed to correlate with visual and verbal memory [23]. Again,

rostrum was the exception with seemingly lower MD values at a later stage. Despite the

sensitivity of diffusion metrics to pathophysiology in TBI, neither FA or MD demonstrated

greater temporal changes for patients with poor than with good outcome. Diffusion may

change differently for each patient following an individual trajectory [268, 273], which makes

it more difficult to find group-wise differences.
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3.5.6 Heterogeneity of the TBI Cohort

Apart from site-specific confounding factors, the heterogeneity of subjects suffering from

mTBI makes diagnosis/prognosis difficult [75, 102] and poses a challenge for any model

to fit the data. In theory, patients could have the same GOSE score and similar clinical

characteristics, but different regions that are affected by the TBI. A model based on group-

wise analysis may not be flexible enough to fit to this complex data distribution. Including

many more patients possibly enhances the changes of two subjects show similar patterns,

which however, is uncertain due to the high variation of observed pathologies after TBI.

Nonetheless, expanding the database would enable application of more data driven machine

learning algorithms such as neural networks. However, these are not necessarily a guarantee

for better performance [89]. Moreover, inference of valuable knowledge for clinical research

from neural networks is more difficult, since it is not yet fully understood how these algo-

rithms draw their conclusion [79]. Besides this, extending the database would incorporate

data from many different sites, which comes with the drawback of an increased variation

of non-diseases related biases. Consequently, the solution to these issue may lie in build-

ing models which, rather than targeting group differences, focus on anomaly detection for

single-subjects. Such an approach based on TractSeg ROIs has been suggested for paediatric

WM analysis [34]. Future experiments could investigate its application to TBI subjects.

3.6 Chapter Summary

Traumatic brain injuries are complex and show different pathological patterns closely linked

to the time after injury. While most studies have been based on smaller single-site datasets,

this chapter presented results from a multi-centre analysis including three mTBI databases.

Experiments focused on imaging features, such as regional volumes and diffusion, derived

from acute MRI as well as longitudinal changes. Hereby, differences between acquisition

sites were accounted for via Z-scoring IDPs and including site as confounding factor for the

regression analysis. Patients with good outcome seemed to display features similar to control

subjects, whereas, patients with poor outcome showed enlarged ventricles and decreased FA.

Nonetheless, patients with different outcome could not easily be differentiated based on their

acute MR scans. Although longitudinal analysis revealed progressive tissue atrophy in the

caudate, no differences were found for patients with good or poor outcome. Diffusion metrics

displayed a stronger dependency on DPI, with more decreased FA or increased MD. However,

patients with different outcome showed no differences in diffusion changes. The individual

databases included mTBI cohorts of different severity and age, which also influenced the

joint analysis. Acquisition-specific biases may have had an impact on enhancing differences
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between subjects groups, but cannot be accounted for all observed variation.



Chapter 4

Reproducibility of MRI Metrics

4.1 Introduction

For many neuroimaging studies, features are derived from the MRI scans and compared for

different groups of interest. This could involve volumetric changes over time or divergence

between control and patient groups. Furthermore, mean intensity values of images within

anatomical regions are often calculated to quantify differences between a patient cohort and

healthy volunteers. Such findings can only be interpreted correctly if the applied methods,

used to extract image derived features, are robust. With well validated tools this assumption

usually holds true for MR images that were acquired under the same protocol on the exact

same scanner. However, tools and measurements could be biased when considering multi-

centre data. This could be especially problematic for the comparison of signal intensities

across centres, since voxel values in common MRI sequences do not reflect quantitative

absolute measurements. Different acquisition protocols or imaging equipment could lead to

inherent biases that affect the performance of neuroimaging tools and with it the imaging

derived results. To gain a better understanding of inter-scanner variability, this chapter first

summarises related work and proceeds then to examine differences in brain parcellation and

signal magnitude for datasets of various complexity.

4.1.1 Variability of Anatomical Brain Segmentation

While a number of studies have analysed the accuracy between automated brain region seg-

mentations, only few have investigated the magnitude of inter-scanner variability. Jovicich

et al. [120] examined the impact of acquisition variables on FreeSurfer’s brain parcellation.

The variability of major brain volumes (hippocampus, thalamus, caudate, putamen, lateral

ventricles and total intracranial volume) was measured to be less than 4.3% on MR im-

80
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ages collected on the same scanner within a few days. The reproducibility error was higher

for smaller anatomical structures such as pallidum, amygdala and inferior lateral ventricle.

Differences in bias field correction, MRI sequences, scanner updates and brain extraction

affected the region volumes only minimally. However, a bias was identified when comparing

inter-vendor data (Siemens vs. GE) and different field strengths (1.5T vs. 3T). Image qual-

ity factors (e.g. SNR) were found to have a strong influence on the segmentation outcome.

Similar results were observed when subdividing T1w images with the topology-preserving

anatomy-driven segmentation algorithm into nine cranial structures (cerebral GM and WM,

cerebellar GM and WM, brainstem, caudate, putamen, thalamus, and ventricular CSF).

Scan-rescan volume variation was less than 5% for all structures. The reproducibility of

structural scans was found to be higher than for imaging modalities aiming to measure

physiological quantities (e.g. DTI, functional MRI) [147]. A comparative study of hip-

pocampal volume change has reported more coherent findings for automated segmentation

than for manual annotations. Noteworthy is that FreeSurfer provided a higher reproducib-

lity than manual segmentation or volume estimation with FSL FIRST. This was, however,

only achieved when failed cases had been excluded after visual inspection [183]. Another

recent study also explored the consistency of automated segmentation of the hypocampus

in comparison to a manual approach. The intra-scanner variability for FreeSurfer volume

estimation was less than 2% and comparable to that of manual annotations. Automatically

derived hypocampal volumes were systematically different for Siemens and Philips scanners,

resulting in a higher inter-vendor variation (coefficient of variation [CV], CV = 4.4%) than

that observed for manual region delineations (CV = 2.6%) [49].

4.1.2 Reproducibility of Diffusion Magnetic Resonance Imaging

Diffusion tensor imaging metrics have been reported to show good scan-rescan repeatability

on the same scanner regardless of vendor and scanner models [121], however, significant dif-

ferences could be observed when comparing diffusion data across scanners. Various studies

measured the intra- and inter-scanner variability for DTI metrics for different datasets and

experiment setups. The following paragraphs aim to provide a non-exhaustive overview.

Hereby, the focus lies on human brain imaging data analysing FA and MD metrics. The

studies were roughly categorised according to whether their experimental design incorpo-

rated rescans on the same scanners, travelling volunteers or both.

Scan-Rescan Studies. To evaluate intra-scanner variation of DTI scans, Marenco et

al. [168] scanned 20 subjects twice on one scanner and compared FA and MD measurements

within 14 manually drawn regions. Variability was measured by the CV, which was defined



82 CHAPTER 4. REPRODUCIBILITY OF MRI METRICS

as the ratio of standard deviation and mean (see Equation 4.1). While nine out of 14 ROIs

had a CV below 10%, there were noticeable regional differences, with CV scores ranging

between 2.5% and 20.5% for FA and from 2.1% to 6.2% for MD. Highest CV for FA was

found in the cerebellar cortex and frontal GM, and lowest was seen in the CC. The CV for

MD was highest in the peduncles and lowest in the insula. Overall, MD showed more precise

reproducibility (lower CV) than FA.

A later study, conducted by Lemkaddem et al. [154], compared intra- and inter-scanner vari-

ability of DTI scans on four different scanners. Two of them were located at the same site and

shared the same configurations, hence thereafter referred to as twin-scanners. Although the

intra-scanner measurements showed a lower variability than the inter-twin-scanner, overall

no significant differences were observed. Intra- and inter-twin-scanner experiments revealed

low CV for both region-based (CV ≈ 1.0%− 4.2%) and tract-based (CV < 3.0%) analysis.

Comparing images across scanners showed a substantially higher variability with CV rang-

ing between 4.0% and 8.9% for FA and from 4.2% to 10.0% for MD measurements. Some

ROIs and tracts showed significant differences across the two scanners for MD but not for

FA maps. The DTI metric deviation in ROIs and tracts was found to be larger between

the two Siemens scanner models (Trio vs. Verio) than between scanners of the same model

(both Trio), despite the unequal number of radiofrequency head coil channels for the latter.

Noteworthy, data acquired with the lower number of channels exhibited a two fold reduction

of SNR. Since, FA metrics have been shown to be sensitive to SNR [66], the characteristics

of a head coil array may be an important factor to consider for multi-centre studies.

Vollmar and colleagues [256] analysed the reproducibility of DTI metrics in nine healthy

subjects scanned twice on two different, but identical scanners. The variability of FA mea-

surements was assessed both in the whole brain and in three manually outlined ROIs (sple-

nium of CC, left frontal WM and left UF). The CV for FA within site ranged from 0.8% to

3.0%, and slightly increased across sites ranging from 1.0% to 4.1%. Highest variance was

found in the smallest regions (left UF), and lowest in the whole brain average FA. Overall

variation was lower in WM tracts (<5%) then in GM regions (10-15%). It has been men-

tioned that non-linear image coregistration improved reproducibility metrics in comparison

to affine coregistration [256].

Another large multi-centre study [283] included 27 scanners (two vendors: Siemens & GE;

six scanner models; seven software versions). Except for one scanner, MR data were collected

with a harmonised single-shell DWI protocol (64 gradient directions, b = 700 s/mm2). To

assess the variation across centres, a single and for each scanner different healthy volunteer

was scanned twice.1 The CV was computed for WM masks within single scanners and across

1one subject per centre, scanned twice: 27 subjects and 54 scans in total
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scanners of the same vendor. This revealed no statistical deviation between intra-scanner

images, however, significant differences were found for FA metrics across vendors. On aver-

age, FA and MD values were both lower on GE than on Siemens scanners. Cross-scanner

variability was observed to be higher for FA (CV = 5.7%) than for MD (CV = 2.9%) [283].

This study showed overall good repeatability of DTI metrics across different scanners, but

the results were only based on a single subject per scanner and were restricted to whole WM

analysis. This may underestimate non-linear regional variability.

Travelling Head Studies. While studies with multiple scans and rescans on one scan-

ner can confirm the reproducibility of DTI metrics at one site, they do not provide direct

comparability between centres. Therefore, some studies have focused on acquiring data for

the same subjects at different imaging sites and/or scanners. One of those [241] examined

the comparability of DTI metrics in a multi-centre setup, involving 16 different scanners at

12 different imaging sites. Apart from one scanner (GE), all scanners were manufactured

by Siemens, including various models, software versions and field strength (1.5T and 3T).

The analysis of reproducibility was based on one healthy subject only2. For all scanners

single-shell DWI data (b = 0, 1000 s/mm2) was acquired, however, with a different num-

ber of diffusion-weighting gradient directions (either 12 or 30). To measure the differences

across scanners, the CV was computed in manually placed ROIs as well as for automated

TBSS and deformation based analysis. For the latter, FA maps were affinely coregistered to

T1w images, which were then spatially normalised, such that FA maps could be warped to

template space. This revealed a variation of FA with a mean CV of 14% for TBSS and 29%

for the deformation based analysis. The variation found was similar to the one observed

between 12 healthy subjects and 26 Alzheimer’s disease patients scanned at a single imaging

site. Such a comparability shows the need to account for inter-scanner variances in clinical

multi-centre studies. The magnitude of FA variation was only decreased marginally when

choosing a subset of similar scanners and acquisition parameters. This could indicate that

harmonised scanning protocols and identical scanners only partly diminish inter-scanner

divergence. Interestingly, increased variability was observed for less organised fibre tracts,

such as the fornix and SLF (in contrast to splenium). Despite the insight into inter-scanner

DTI variability, findings are difficult to generalise as they are exclusively based on a single

travelling subject. The impact on MD measurements was not analysed.

Slightly more elaborate was a study that included two travelling volunteers. These were

scanned on five different scanners (three Siemens Trio and two GE Signa) with a harmonised

DTI protocol including 33 directions. Mean values of FA and MD were evaluated within

2and a phantom, which will not be discussed here
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16 manually delineated GM and WM ROIs. The intra-scanner CV within the WM was

slightly lower (8.7%) than that across all five scanners (9.1%). Although a similar trend

was found for MD, the relative discrepancy between intra- and inter-scanner CV (2.2% and

4.8%, respectively) was stronger. Overall, MD showed less variability than FA. Comparing

regional DTI metrics across scanners revealed high concordance correlation coefficients for

both FA (0.96) and MD (0.88). This high correlation of inter-scanner data indicates a good

comparability of DTI metrics obtained with same imaging protocols, however, the low num-

ber of subjects may hamper generalisability [72].

For many studies, acquiring scans for one or several volunteers was not the main aim under

investigation, but rather the methods for assessing the variability between scanners for a

larger patient study. For example, in the case of the TRACK-TBI study, diffusion MR

images were acquired for one travelling volunteer on 13 scanners at 11 different centres.

Inter-scanner variability of DTI metrics was assessed by comparing intensities of the whole

WM skeleton obtained from the standard FSL TBSS pipeline. This revealed small regional

differences for the 14 selected fibre tracts, with CV ranging between 2.1% and 7.8% for FA

and from 2.6% to 7.0% for MD. The globally measured CV values were below 5%, with MD

exhibiting a lower variation than FA (CV = 2.4% and CV = 4.2%, respectively). Moreover,

DTI measurements were found to be more similar across imaging sites for large central fibre

tracts (e.g. CC) than in small regions at the WM periphery (e.g. UF) [193].

Multi-Centre & Multi-Scan Studies. More advanced are studies that scanned sev-

eral subjects repeatedly on all involved scanners, with the main aim to measure variability

of DTI metrics in larger multi-centre data. For example, Magnotta and colleagues [164]

scanned five healthy controls multiple times at eight imaging sites. Four DWI scans were

acquired with a protocol that complied with the standard sequence for the employed scan-

ner’s vendor (30 directions on Siemens scanners or 32 directions on Philips scanners). Two

further scans were collected with a semi-harmonised sequence with 71 directions but varying

repetition times. All scans were single-shell data (b = 1000 s/mm2). Reproducibility was

measured via CV within six selected ROIs from the Talairach3 atlas [236] (cerebrum, frontal

lobe, temporal lobe, parietal lobe, occipital lobe, and subcortical regions). Significant dif-

ferences, assessed via mixed-effects model analysis, were found for inter-vendor comparison

of DTI metrics. Mean FA values for Siemens scanners were slightly lower that for Philips

scanners. Contrary, mean MD values were lower for Philips than for Siemens scans. While

no differences were found for MD between the scanning protocols, the mean FA based on 71

directions was observed to be slightly lower than that calculated from the 30 or 32 directions.

3http://www.talairach.org

http://www.talairach.org
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For most sites, the intra-scanner variability was below 1.0% for all DTI metrics. Coefficients

of variation were slightly increased for inter-site comparison (CV ∼ 1.0%− 3.0%), whereas

FA showed marginally higher variability than MD. Variation was similar across regions, how-

ever, slightly elevated for all metrics within the occipital lobe. The mean CV for 30 or 32

direction images was lower (1.8%) than than for 71 direction scans (2.2%). Images were also

denoised via median filters, which resulted in decreased CV scores. Variation scores were

lower in Siemens than in Philips data for the 71 directions protocol, but the opposite was

observed for 30 or 32 DWI scans. Mixed-effect model analysis suggested a significant impact

on variability between sites through due to protocol type, vendor and median filtering [164].

In a recent study, Tong et al. [245] analysed the fibre-tract density on a voxel- and region-wise

level and structural connectome for three travelling volunteers across eight imaging centres.

The same multi-shell (b = 1000, 2000, 3000 s/mm2) diffusion MRI scanning protocol was

implemented on each of the similar scanners4 (Siemens Prisma) to create ideal conditions of

inter-scanner comparability. To form a baseline for intra-centre variability and investigate

scan reproducibility on one scanner, the same subjects were scanned thrice at each site.

Besides comparing the full DWI acquisition, all different combinations of shells and single-

shell data were examined. A fair reproducibility of fibre-track density within and across

centres (CV < 15.0%) was observed. However, for all single- and multi-shell combinations

the intra-centre variability was lower (average CV = 10.4%) than for data across centres

(average CV = 11.3%). A closer look at tissue compartments revealed lower CVs for intra-

than inter-scanner data at WM-GM boundaries (CVintra = 16.7% vs. CVinter = 19.9%) and

pure WM regions (CVintra = 6.6% vs. CVinter = 8.0%). Interestingly, regions with more

complex directional fibres (e.g. crossing fibres) showed generally higher variances than re-

gions with single-directional fibres, which is consistent with the previously mentioned finding

from Teipel et al. [241]. Reproducibility of links in the structural connectome was higher for

intra-centre data, however, was also dependent on the number of considered regions. Finer

parcellations resulted in less reproducible connections [245].

Besides considering the influence of scanners, the variability for different sequences has been

systematically assessed as well. Eight healthy subjects were scanned with three diffusion

imaging protocols (both with a different set of six gradient directions, and b-values of 1044

and 1034 s/mm2) on two different scanners (Siemens & Philips). Additionally four healthy

volunteers underwent diffusion imaging twice on the same scanner to quantify intra-scanner

variability. This was measured by CV of histogram metrics within the whole brain exclud-

ing CSF. Among the derived quantities were the mean as well as the position and relative

height of the peak of the histogram. Inter-sequence MD metrics exhibited less variation

4Here: inter-scanner and inter-centre are equivalent
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(CV = 1.7%−5.6%) than FA measurements (CV = 5.5%−7.3%). Variability for scans and

rescans were comparable to inter-sequence CV scores [31].

Longitudinal Reliability. A different approach was pursued by Hawaco et al. [95] where

four healthy subjects underwent annual DWI on five different scanners at three sites re-

peatedly over three years. Eventually, this longitudinal dataset included 27 MRI sessions

acquired with a semi-harmonised scanning protocol (60 gradient directions, b = 1000 s/mm2,

but varying TR). After spatial normalisation, mean FA values in 63 ROIs from the Johns

Hopkins University (JHU) WM atlas [181] were computed. Estimating variability with

mixed effect models highlighted a significant cross-scanner difference for FA. Furthermore,

the aim was to investigate whether DTI metrics are reliable descriptors for individual sub-

jects. Therefore, present inter-scanner effects were corrected for by regressing those from

each ROI and a hierarchical clustering method was employed to classify subjects based on

their image derived metrics. The high accuracy achieved, indicated a good reliability of FA

metrics.

4.1.3 Overview & Aims

A number of studies [49, 120, 147, 183] have found that parcellating anatomical regions

on structural MRI is fairly robust for data collected on different scanners. Automated

region segmentation (i.e. FreeSurfer) has been reported to be equal or superior to manually

outlined ROIs of inter-vendor data, but a bias between Siemens and Philips scanners has

been observed [164].

A common finding of all DTI reproducibility studies was the lower variation for MD than

for FA metrics. More specifically, a higher variability has been reported for FA in GM than

in WM tissue regions [256]. Inter-scanner variability for different but identical scanners

was low. However, statistical discrepancies for DTI metrics were observed for different

scanner models from the same vendor as well for inter-vendor data. Although most studies

report similar trends, a direct comparison is hampered, as different approaches were use to

measure variability. Often analysis was performed on basis of manually delineated regions,

which usually did not cover the full extent of WM fibre tracts. Despite offering a high

precision of ROI segmentation, results become less reproducible when using non-automated

brain parcellation. Furthermore, some studies were based on a low number subjects (1-2),

which challenges the generalisability of those observations.

The objectives of this chapter is the evaluation of inter-scanner robustness of novel brain

parcellation tools (i.e. MALP-EM [151] and TractSeg [263]) and measure the variability

in DTI metrics for datasets with various complexity. Previous studies have restricted their
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analysis on single subjects or small cohorts (n ≤ 3), which limits the generalisability of any

findings. Here the robustness of brain parcellations was measured in healthy subjects that

were scanned twice on two scanners (T1w: n = 12, DWI: n = 6). This allowed the direct

caparison of both intra- and inter-scanner variation of automated T1w and DWI parcellation

as well as the variability of FA and MD metrics. Besides scanner differences, the influence

of DTI parameter are examined in a cohort of healthy subjects (n = 16) scanned multiple

times on the same scanner, with varying DWI acquisition protocol. Eventually, FA and MD

variation was examined for a multi-centre study including nine physically different scanners.

The chapter aims to provide a better insight in variation of MR data as a result of either

different scanners, changing imaging protocols or both.

4.2 Data & Methods

4.2.1 Databases

Scan-Rescan Database As introduced previously (Section 2.2), this database included 12

subjects each scanned twice on each of two scanners. Six out of those subjects also under-

went DWI. Acquisition protocols were mostly harmonised.

Multi-Acquisition Database For 16 subjects (nine female, seven male, age = 25.8±5.4),

five DWI scans were acquired within the same scan session with identical acquisition pa-

rameters, but with different number of b-values. A total of 60 volumes with non-collinear

gradient direction, evenly distributed across one to five shells, were collected. These schemes

included a scan consisting of five shells (b = 250, 450, 700, 950 and 1200 s/mm2) with

each twelve directions (DTI 12×5), another included four b-values (b = 300, 600, 900 and

1200 s/mm2) with each 15 directions (DTI 15×4). Alongside these, a scan with three b-

factors (b = 400, 800 and 1200 s/mm2) with each 20 directions (DTI 20×3) and a scan

incorporating two b-values (b = 600 and 1200 s/mm2) with each 30 directions (DTI 30×2)

were collected. In addition to the multi-shell data a single-shell scan (b = 1200 s/mm2)

with 60 directions (DTI 60×1) was acquired. For each DWI scan 13 non-diffusion weighted

volumes (b0) were obtained, whereas one was always in the beginning and the remaining

twelve were equally distributed between volumes of different shells and the very first b0 vol-

ume (this means for single-shell data, all b0 volumes are concatenated at the very beginning

of the scan). Other parameters, such as TR = 8000ms, TE = 93ms, flip angle of 90◦ and

pixel bandwidth of 1628 Hz/Px, were shared across the different DWI schemes. In addition

one T1w images was collected (TR = 2250ms, TE = 2.9ms, flip angle= 9◦ and pixel band-
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width of 230 Hz/Px). All images were acquired on one Siemens Trio scanner.

Multi-Centre Database The general MRI parameters for the CENTER-TBI data have

been described previously (Section 2.2). To assess reproducibility healthy subjects were only

included if they underwent a rescan with the same number of directions (hence, excluding

three centres: a72b20, ac3478 & cb4e52 ). Another centre (8effee) was excluded as only four

scans from two subjects were left, which was deemed to be too low for this experiment. A

further centre (fe5dbb) was excluded as scan and rescan had been processed with and with-

out extra b0 volume, respectively, as the additional b0 scan with opposite phase encoding

direction was not always available.

4.2.2 Experiment Setup

Reproducibility of brain parcellation and tissue segmentation via MALP-EM, TractSeg and

JHU atlas projection was assessed. For this purpose, the Scan-Rescan dataset was used,

as it allowed the direct comparison of multiple scans of healthy controls (12 for T1w, and

6 for DWI) on the same and a different scanner (Prisma & Trio). The harmonised MRI

protocol and the paired scans on both scanners make this a highly controlled dataset. Mean

intensities of FA and MD within TractSeg and JHU ROIs were compared to intra- and

inter-scanner variation. The Multi-Acquisition database was used to examine the impact

of different scanning parameters on FA and MD metrics as well as WM parcellation. Same

principles were applied to the DWI data of the less well-matched multi-site CENTER-TBI

database. For this, all healthy subjects, scanned twice, were selected and curated via the

diffusion pipeline’s QC metrics. These were then compared across centres to highlight any

site-specific biases. Eventually, FA and MD variability was compared in different regions in

native as well as template space.

Images were all pre-processed with the same structural and diffusion pipelines as outlined

in the previous chapter (Chapter 2). The following sections describe the experimental setup

in more detail.

Reproducibility of T1w Brain Parcellation Since MALP-EM is driven by image regis-

tration and ROI refinement through expectation maximisation, its parcellation is dependent

on image intensities. While smaller errors of falsely deformed atlas regions might be can-

celled out by fusing information from several atlases, it is not entirely clear how much impact

differences in the image acquisition have on the region refinement. The examination of the

robustness of MALP-EM was subdivided in three experiments.

Firstly, MALP-EM was applied to the 48 T1w scans of the Scan-Rescan database (12 sub-
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jects, two scanners with each two sessions). For this the individual brain mask calculated

via antsBrainExtraction was used. Besides the comparison of tissue and region parcellation,

differences across scanners for relative region volumes were compared (relative volumes were

computed by dividing ROI volumes by total brain volume).

Secondly, intensities of T1w images were first matched across scanners before re-applying

MALP-EM. For this, T1w images collected on the Prisma scanner were matched to the mean

intensity profile of the Trio T1w images with the recently suggested NDFlow5 algorithm.

This was chosen as it has been shown to be superior to standard intensity scaling. In brief,

Dirichlet process Gaussian mixture models are fitted to the histograms of intensities found

in the images to be matched. This allows to adapt the number of components to fit the

histograms best, rather than being confined to a predefined, fixed number (as it would be

the case for Gaussian mixture models). After an initial affine alignment of the histograms

(similar to scaling image intensities), a non-linear transformation between histograms is es-

timated. This is done by considering the non-linear problem from the point of view of fluid

mechanics: Particles, equating the source histogram’s support points, follow individual tra-

jectories to ’flow’ to the target histogram. This forms a velocity field (the non-linear warp

between histograms) that can be solved via ordinary differential equations [30]. For all scans

the exact same brain masks as before were used, and since intensities for Trio scans were

not adjusted, the previous MALP-EM results were reused. Another attempt for intensity

harmonisation matched all scans from both Prisma and Trio scanners to the intensity space

of a study-independent database (i.e. Cam-CAN, see Section 2.2).

Thirdly, for each subject separately all four T1w scans were rigidly coregistered to a common

subject-specific template (NCC between registered images and subject-specific templates:

NCC = 0.988± 0.004). Corresponding ANTS brain masks were projected to this template

space and fused by averaging them, thresholding the output at 0.5 and finally binarising the

image to a common brain mask for all four scans. This was then used to re-apply MALP-EM

on the coregistered T1w scans.

While the first experiment provides results from using a standard prepossessing approach,

both other experiments aim to eliminate the impact factor of intensity shifts or skull strip-

ping. Brain vessels and CSF (that is all CSF that is not in ventricles) were observed to be

insufficiently segmented. Therefore, these regions (classified as ”other” by MALP-EM) were

excluded from any statistical analysis, reducing the number of ROIs for comparison from

138 to 133.

Reproducibility of DWI Parcellation & DTI Metrics Analogous to anatomical brain

5https://github.com/dccastro/NDFlow

https://github.com/dccastro/NDFlow
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scan parcellation, WM parcellation was examined on the Scan-Rescan database. This in-

cluded six subjects with two DWI scans each on both scanners. For this reproducibility

analysis two different approaches were chosen. Firstly, the brain was parcellated into 72

regions by applying TractSeg [263], a model based prediction algorithm. Secondly, 20 re-

gions of the Johns Hopkins University (JHU) WM tractography atlas were projected to the

DWI scan space via non-linear image registration. Volumes and weighted mean values for

TractSeg were automatically computed by applying the diffusion pipeline to the DWI scans,

hence no further processing was required. For JHU tract projection, each individual FA

map was spatially normalised with antsRegistration to the JHU FA atlas as provided by FSL

(JHU-ICBM-FA-1mm). The 20 JHU fibre tract probability maps were then backprojected

from template to native space, thresholded at 25% and binarised to compute the volumes.

A threshold of 25% was used as such binarised maps are also provided by FSL in MNI space,

hence were considered as commonly used threshold.6 Weighted mean values of FA and MD

were computed before binarising projected tract probability maps. Incorporating proba-

bilistic values for both TractSeg and JHU atlas (weighted mean values) aimed to minimised

the effect of partial volume effects by marginalising the effect of voxel at ROI boundaries.

To compute binarised ROI volumes and weighted mean intensities from the TractSeg prob-

abilistic parcellation a threshold of 0.5 was applied. This was chosen, as it considered voxels

to be part of a region when the particular region class was predicted with a 50% certainty.

To understand the impact of different scanning protocols on the diffusion MRI derived fea-

tures, the same methods were also applied to the Multi-Acquisition database. This included

16 healthy subjects who underwent DWI imaging on the same scanner, but with five differ-

ent protocols, all varying in number and strength of b-values.

Multi-Centre Differences in DTI Acquisition The previous experiments were con-

ducted on strongly regulated databases that included the same subjects. These were either

scanned multiple times under the same protocol, but on different scanners (Scan-Rescan), or

imaged with varying acquisition parameters, but on the same scanner (Multi-Acquisition).

Moreover, MR scans were all collected at the same imaging site, minimising the bias intro-

duced by different operators or imaging policies. However, for multi-centre studies different

scanners and unharmonised MRI protocols may be involved. To examine the variability of

diffusion MRI metrics across imaging sites, the previous methods for DWI parcellations were

applied to the Multi-Centre database (a subset of the healthy controls from the CENTER-

TBI imaging database).

After pre-selection of the sites (see above), the QC metrics from the diffusion pipeline were

6A threshold of 50% eliminated some of the 20 ROIs, both in DWI and atlas space.
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analysed to identify and exclude any outliers due to image corruption. The PIS ratio ranged

between 0.24 and 0.66, and no gross outliers were found. Nonetheless, both scans with the

highest PIS QC ratio (0.66) and with the highest number of voxels with PIS (2343) were

checked visually and deemed to appear normal.7 Furthermore, both scans with the lowest

(43.0) and highest (270.2) SNR, were inspected and found without any obvious artefacts.

Brain mask QC ratio ranged between 92.5 % and 105.1%, which was accepted as sufficient.

One subject from centre B with the highest average total head motion QC metric (1.06) was

examined visually and strong noise artefacts were detected. Hence this scan and the corre-

sponding rescan were excluded. The scan with the next highest average total head motion

(0.9863) seemed unaffected. After exclusion of the abnormal scan and rescan already men-

tioned, none of the other head motion QC metrics led to noticeably different scans and no

obtrusive artefacts were found. The NCC values between FA maps and T1w images ranged

from 0.43 to 0.69. Apart from susceptibility artefacts, no aberrant deformations were found

on the scan with the lowest NCC.

An overview of the final curated dataset is provided in Table 4.1, listing the scanner ven-

dor and model, the number of diffusion sensitised volumes (#Dir.) as well as age and sex.

Furthermore, it indicates whether susceptibility distortions were corrected with an extra b0

volume of opposite phase encoding direction. Additionally, the NCC between the JHU FA

map and the subjects FA maps, spatially normalised to JHU space, is shown (NCCjhu, not

to be confused with the NCC between coregistered FA maps and T1w images).

After this curation, one scan of both a female and male subject from each scanner was cho-

sen that matched the mean age across all centres (40.6 years) the closest. This pre-selection

resulted in 18 subjects with an average age (39.8 years) similar to that of all control subjects,

but with a slightly narrower age range. Those were then used to compute a study specific

template via tensor registration using DTI-TK [280, 282]. Eventually, the final DTI-TK

average FA map was parcellated with the JHU atlas as previously described. All scans

(138 from 69 subjects including the ones used to create the template) were then spatially

normalised to this template.

Before analysing variance in DTI metrics, the curated dataset was examined for inter-centre

compatibility. Therefore, the different QC metrics from the diffusion pipeline were compared

across centres. Subsequently the local variability of FA and MD metrics were studied both

in native as well as template space. These experiments aimed to investigate the differences

present within centres, across same scanner vendor located at different sites, as well as the

overall variation in the complete dataset.

7Reminder: A high PIS ratio indicated that more voxels with PIS remained after artefact correction.

Hence, high values are undesirable.
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Table 4.1: Overview of Included Data of CENTER-TBI Controls. Age (in years) and
NCCjhu displayed as mean±std.

Centre Vendor Model #Dir. b0 Age Sex NCCjhu

A Siemens Trio 30 no 41.7±15.3 1F/5M 0.758±0.021

B Siemens Skyra 30 yes 41.8±11.5 3F/5M 0.776±0.029

C1 GE MR750w∗ 32 no 38.0±11.1 4F/4M 0.726±0.016

C2 GE MR750∗ 32 no 43.3±11.2 4F/5M 0.754±0.019

D Siemens Prisma 30 no 41.6±13.1 3F/6M 0.775±0.017

F GE MR750∗ 32 no 45.1±13.0 3F/6M 0.738±0.018

G Philips Ingenia 32 no 31.0±6.2 2F/4M 0.759±0.005

H Philips Ingenia 32 yes 39.1±15.3 3F/5M 0.777±0.015

L Philips Achieva 32 no 40.2±14.3 5F/1M 0.758±0.010

Total 40.6±12.4 28F/41M 0.758±0.025

DTI-TK Template 39.8±9.6 9F/9M 0.974
∗GE Discovery MR750 & MR750w models. F=female, M=male

4.2.3 Evaluation Metrics

A common metric to estimate the deviation across scans is the CV, which is defined as

the ratio of standard deviation σ and mean µ of a distribution. For ROI analysis there

are different approaches over which distribution the CV can be calculated [256]. Here, for

images in native space, first the mean intensities in each ROI for each scan were computed,

and then the CV was calculated on basis of those means:

CV rmean =
σ(X̄r)

µ(X̄r)
× 100% (4.1)

where X̄r is the collection of means of a specific ROI r for all images to be investigated.

Analogously, the CV for volumetric measurements was computed by dividing the standard

deviation of the volume by the mean volume of the examined cohort (denoted as CV rvols for

region r).

With spatial normalised scans, the CV maps were derived on a voxel wise level, before

averaging those variation scores within each ROI:

CV rvoxel =
1

N

N∑
i=0

[
σ(xri )

µ(xri )

]
× 100% (4.2)

with xri representing the voxel intensities at a specific location i within a ROI r with N

number of voxels.
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Besides this, the statistical difference of ROI metrics (i.e. region volumes or mean intensi-

ties of FA and MD within ROIs) was estimated with an analysis of variances for repeated

measurements (rm-ANOVA). This was chosen under the assumption of equal variances.

To account for multiple comparisons, p-values were adjusted with FDR correction and the

more stringent Bonferroni correction. For this the modules AnovaRM and multipletests from

the python library statsmodels were used. If statistical differences were detected with rm-

ANOVA, a post-hoc paired t-test was applied and likewise controlled for FDR. Corrected

p-values for post-hoc tests are marked with hoc (phocfdr) to avoid confusion with p-values from

rm-ANOVA (pfdr). T-tests were conducted with ttest rel from python library scipy.

For aligned atlases in template space, the overlap between regions was measured by cal-

culating the Dice score with f1 score from the scikit-sklearn python library. The Dice score

is generally defined as the size of the intersection of two sets A and B over the sum of sizes

of both individual sets:

2 |A ∩B|
|A|+ |B|

(4.3)

4.3 Results

4.3.1 Reproducibility of Anatomical Brain Parcellation

Comparing total brain volumes and four MALP-EM tissue compartments (i.e. ventricles,

non-cortical GM, cortical GM and WM) within and across scanners showed very similar

average volumes on both scanners. Testing volume differences with rm-ANOVA and FDR

correction, identified total brain (pfdr < 0.001) and WM (pfdr = 0.0248) volumes to be sig-

nificantly different (cortical GM volume differences were close to significance: pfdr = 0.0615).

The post-hoc paired t-tests revealed only a statistically relevant difference of total brain vol-

ume between (all: phocfdr < 0.001), but not within scanners (Prisma: phocfdr = 0.1707, Trio:

phocfdr = 0.8460). The total brain volume discrepancy across scanners was on average 10.5

cm3, which corresponds to approximately 11 voxels or a 1% volume difference, which can

be considered marginal. White matter volumes were different between the rescan group

on Prisma (Prisma #2) and both scan groups on Trio (Trio #1: phoc = 0.0262, Trio #2:

phoc = 0.0191), however, this was not statistically significant after FDR correction (for both

inter-scanner: phocfdr = 0.0785). The WM volume difference for this data corresponded to

approximately 8 voxels, or a discrepancy of 1.6%. All volumes for tissue compartments and

total brain are summarised in Table 4.2 .

In a rm-ANOVA 47 ROIs had a p-value<0.05, however, after correction for multiple com-
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Table 4.2: MALP-EM Volumes for Tissue Compartments. Volumes displayed as mean ±
std in cm3

Scan Total Brain Ventricles Non-cGM cGM WM

Prisma #1 1241.2 ± 140.7 20.2 ± 6.4 179.9 ± 14.5 564.9 ± 63.8 474.7 ± 64.5

Prisma #2 1242.8 ± 140.9 20.2 ± 6.4 178.1 ± 12.2 566.0 ± 61.5 477.1 ± 67.4

Trio #1 1231.4 ± 141.8 20.2 ± 6.4 179.0 ± 12.5 562.0 ± 58.9 468.7 ± 72.0

Trio #2 1231.6 ± 142.0 20.2 ± 6.3 178.1 ± 14.2 561.9 ± 59.8 469.9 ± 70.5

parison with FDR only 34 ROIs were significantly different. This number further decreased

to 13 with more stringent Bonferroni correction.

Volume discrepancies were found mostly across scanners, and only the brainstem was signif-

icant different between both Prisma scanners (phocfdr = 0.0132). Regions in both hemispheres

with volumetric differences across scanners included the cerebellar WM (pfdr ≤ 0.0158), the

palladium (pfdr ≤ 0.0298), the thalamus proper (pfdr ≤ 0.0025), the ventricle DC (pfdr ≤

0.0155), the superior temporal (pfdr ≤ 0.0011) and lateral orbital gyrus (pfdr ≤ 0.0213),

the central operculums (pfdr ≤ 0.0074) as well as the frontal (pfdr ≤ 0.00337) and occipital

poles (pfdr ≤ 0.0001). Apart from left and right cerebral WM compartments being the

largest ROIs (≈ 218 cm3) in the MALP-EM atlas, all other mentioned ROIs were neither

particularly large or small. Figure 4.1 shows four ROI examples for both equal and deviating

volumes across scanners. There was no systematic bias of volumes being consistently larger

on Prisma or Trio.

When comparing relative ROI segmentations, the number of ROIs with deviating volumes

on different scans could be reduced (no correction: 40) and was approximately halved when

considering multiple comparison correction (FDR: 17, Bonferroni: 8).

Instead of computing relative volumes post-parcellation, image intensities were harmonised

via NDFlow before applying MALP-EM. Matching intensities from Prisma scanners to the

Trio intensity space reduced the volume discrepancy to 17 ROIs with significantly different

volumes across scanners. After multiple comparison correction with FDR or Bonferroni this

was decreased to seven ROIs or one region, respectively. Among the seven ROIs identified

with different volumes across centres were the left and right WM of the cerebellum (ROI

#12 & #13), the left putamen (ROI #28), the left thalamus proper (ROI #28), the right

ventral DC (ROI #31), the right lateral orbital gyrus (ROI #71) and the right occipital

pole (ROI #91). All ROIs that were different after intensity matching were also different

without this pre-processing step, implying the intensity matching does not introduce any

volume deviation itself. The p-values of the post-hoc t-test after FDR correction are listed

in Table 4.3. Visual inspection of ROIs with and without intensity matching showed only
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Figure 4.1: Distribution of Volumes from MALP-EM Regions Deviating Across Scanners.
Top row: ROIs which were segmented cohesive on all four T1w scans and were found to be
statistically indifferent (ROI #11, 23, 43, 63). Bottom row: ROIs with volumes that were
statistically different across, but not within scanner (ROI #12, 13, 31, 71). Deviations be-
tween both scanners were minimal. No systematic tendencies for over- or undersegmentation
was detected on either of the scanners. ROIs: 11: Left cerebellum exterior, 23: Right lat-
eral ventricle, 43: Right anterior insula, 63: Right gyrus rectus, 12: Right cerebellum WM,
13: Left cerebellum WM, 31: Right ventral DC, 71: Right lateral orbital gyrus. Boxplots:
In each subplot from left to right: Prisma #1, Prisma #2, Trio #1, Trio #2.

minimally deviating volumes. Despite the positive effect of matching intensities to the study-

independent Cam-CAN database prior to the parcellation, regional volume differences were

still present. The number of different MALP-EM ROIs across scanners was almost identical

(no correction 46, FDR: 31, Bonferroni: 13) as when no intensity harmonisation was applied.

Lastly, the analysis of MALP-EM volumes derived from scans previously coregistered showed

a slightly reduced number of ROIs with segmentation discrepancies. Forty-one regions were

highlighted as significantly different, whereas 24 or 11 remained after FDR and Bonferroni

correction, respectively. Although the same mask was provided initially, the total brain

volume was significantly different between Trio and Prisma scanners (inter-scanner compar-

isons: phocfdr ≤ 0.0007), but not within scanner (Prisma: phocfdr = 0.0867, Trio: phocfdr = 0.8450).

Apart from the lateral orbital gyrus, same regions8 were found to have different volumes as

when computing MALP-EM in native space. Intra-scanner differences were found on only

for Prisma scans for the brainstem (phocfdr ≤ 0.0182) the right pallidum (phocfdr ≤ 0.0485) and

8cerebellar WM, palladium, the thalamus proper, the ventricle DC, the superior temporal gyrus, the

central operculums, frontal and occipital poles
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Table 4.3: P-Values After FDR Correction for Comparison of MALP-EM ROI Volumes
Within and Across Scanners After Intensity Matching. P-values of post-hoc t-test phocfdr <
0.05 printed in bold.

Intra-Scanner Inter-Scanner

ROI
rm-

ANOVA
P1-P2 T1-T2 P1-T1 P1-T1 P2-T1 P2-T2

12 0.0190 0.5301 0.3487 0.0112 0.0372 0.0131 0.0333

13 0.0190 0.8589 0.5438 0.0114 0.0114 0.0402 0.0440

28 0.0259 0.5465 0.6011 0.0010 0.0002 0.1638 0.1061

30 0.0190 0.1599 0.7383 0.0074 0.0002 0.1599 0.1063

31 0.0190 0.2244 0.2244 0.0137 0.0197 0.0197 0.0363

71 0.0083 0.0899 0.6355 0.0112 0.0016 0.0091 0.0066

91 0.0223 0.0978 0.7358 0.0034 0.0042 0.2687 0.3924

ROIs: 12: right cerebellum WM, 13: left cerebellum WM, 28: left putamen, 30: left
thalamus proper, 31: right ventral DC, 60: left frontal pole, 71: right lateral orbital gyrus,
91: right occipital pole. Scans: P1: Prisma scan #1, P2: Prisma scan #2, T1: Trio scan
#1, T2: Trio scan #2.

the left middle frontal gyrus (phocfdr ≤ 0.0446).

Since T1w images were previously registered to one and another, the MALP-EM atlases

were also aligned, allowing computation of the overlap for each region. The Dice scores for

all regions were on average marginally higher on Prisma (Dice = 0.930 ± 0.034) than on

Trio (Dice = 0.925±0.037) scanners. Overlap of regions were overall lower when comparing

images across scanners (Prisma #1 vs Trio #1: Dice = 0.896 ± 0.043 and Prisma #2 vs

Trio #2: Dice = 0.893±0.046). This finding is in agreement with the previous observations

of more significant volume deviations for inter-scanner than for intra-scanner comparisons.

4.3.2 Variation of White Matter Region Segmentation

TractSeg. The rm-ANOVA on the TractSeg volume revealed significant differences (p <

0.05) for 23 out of 72 fibre tracts. Correcting for multiple comparisons reduced this number

to 13 (FDR) and nine (Bonferroni). The p-values for the 13 ROIs with statistical differences

between the four groups (scan and rescan on both scanners) are listed in Table 4.4. A post-

hoc t-test with FDR correction revealed only significant p-values for ROI volume differences

across scanners. Intra-scanner volume measurements were comparable to one another. Par-

ticularly important are the eight ROIs which showed inter-scanner differences for all four

scan-rescan combinations, such as for example the right SLFI (ROI #36) or the CC (ROI

#45). Volumes that were observed to be different only for one scan pair, such as the genu of
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CC (ROI #6) or the left thalamic premotor cortex (ROI #48), potentially highlight single

outliers. Noteworthy, the rostral body of CC (ROI #7) as well as the left inferior cerebel-

lar peduncle (ROI #22) were found to have different inter-scan volumes (both rm-ANOVA

and uncorrected post-hoc t-test, p-values < 0.05), however, FDR correction eliminated this

statistical difference.

Table 4.4: P-Values After FDR Correction for Comparison of TractSeg ROI Volumes Within
and Across Scanners. P-values of post-hoc t-test <0.05 printed in bold.

Intra-Scanner Inter-Scanner

ROI
rm-

ANOVA
P1-P2 T1-T2 P1-T1 P1-T1 P2-T1 P2-T2

0 0.0023 0.3460 0.4776 0.0210 0.0210 0.0210 0.0210

6 0.0365 0.9091 0.2230 0.1042 0.0266 0.1042 0.1042

7 0.0274 0.8333 0.8333 0.0736 0.0717 0.0717 0.0717

22 0.0365 0.6104 0.9630 0.0759 0.0759 0.0759 0.1004

25 0.0005 0.1192 0.3390 0.0090 0.0107 0.0032 0.0032

30 0.0040 0.2038 0.5703 0.0339 0.0339 0.0223 0.0223

31 0.0038 0.4538 0.7709 0.0118 0.0118 0.0680 0.0611

32 0.0008 0.9094 0.6386 0.0092 0.0105 0.0092 0.0105

36 0.0040 0.2865 0.2862 0.0388 0.0388 0.0388 0.0388

45 0.0009 0.9420 0.1751 0.0058 0.0094 0.0167 0.0256

48 0.0453 0.4980 0.6083 0.1105 0.0978 0.1105 0.1105

57 0.0023 0.2598 0.5339 0.0162 0.0162 0.0099 0.0099

71 0.0040 0.7229 0.8952 0.0025 0.0205 0.0205 0.0242

ROIs: 0: left arcuate fascicle, 6: genu, 7: rostral body of corpus callosum, 22: left inferior
cerebellar peduncle, 25: right IFO, 30: right optic radiation, 31: left parieto-occipital pon-
tine, 32: right parieto-occipital pontine, 36: right SLFI , 45: CC, 48: left thalamo-premotor
tract, 57: right thalamo-occipital tract, 71: right striato-occipital tract. Scans: P1: Prisma
scan #1, P2: Prisma scan #2, T1: Trio scan #1, T2: Trio scan #2.
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Figure 4.2 shows the volume distributions of four ROIs without discrepancies (top row) and

four of the ROIs that were found statistically different (bottom row). No systematic bias

of consistently smaller volumes on one or the other scanner was found. Some ROIs had a

larger volume on Trio, such as the left arcuate fascicle (ROI #0) or the CC (ROI #45).

Other ROIs, such as the left IFO (ROI #25) or the right SLFI (ROI #36) were larger on

Prisma scans.

JHU. Parcellating the brain scans via projection of the JHU-atlas ROIs did not show any

obvious volumetric differences across the four scan session. The rm-ANOVA highlighted six

ROIs to be potentially different (p < 0.05), however, after multiple comparison correction

with either Bonferroni or FDR none of the ROIs examined showed a significantly different

volume.

Figure 4.2: Distribution of Volumes from TractSeg Regions Deviating Across Centres. Top
row: Four examples of TractSeg ROIs with highly reproducible volumes. Bottom row:
Some regions showed deviating volumes when comparing across scanners, while remaining
similar on the scanner. ROIs: 10: Isthmus, 17: Right middle longitudinal fascicle, 54: Left
thalamo-parietal tract, 68: Left striato-parietal tract, 0: left arcuate fascicle 25: right IFO
fascicle, 36: right SLFI , 45: CC. Boxplots: In each subplot from left to right: Prisma #1,
Prisma #2, Trio #1, Trio #2. Whiskers show the full range of the distribution.
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4.3.3 Inter-Scanner Differences of DTI Metrics

After assessing the volume differences, local variance in DTI parameter maps was measured

by comparing weighted means of FA and MD within TractSeg and JHU ROIs.

TractSeg FA. Out of the 72 fibre tracts, 25 ROIs were flagged as having a significantly

different FA (p < 0.05). From those, mean FA values of 14 ROIs remained statistically

different after FDR correction (pfdr < 0.05). This was further reduced to five ROIs when

correction for multiple comparison with Bonferroni. Figure 4.3 shows four selected ROIs

which were detected as different by the rm-ANOVA analysis alongside ROIs with compa-

rable inter-scanner mean FA values. Regions with significantly different FA values between

Prisma and Trio scans showed no consistent bias on one of both scanners. Lower FA mean

values were found for Prisma than for Trio in regions such as for example the right superior

thalamic radiation (ROI #41: pfdr < 0.001, Prisma vs Trio: phocfdr < 0.002). A similar trend

was observed in regions such as the left CST (ROI #14: pfdr = 0.0060, Prisma #1 vs Trio:

phocfdr < 0.0076) or the left striato-postcentral tract (ROI #66: pfdr = 0.0163, Prisma #1

vs Trio: phocfdr < 0.0274). For both regions no statistical significance between Prisma #2

and Trio scans was measured (ROI #14: phocfdr > 0.0610, ROI #66: phocfdr > 0.1190). In con-

trast, the left striato-fronto-orbital tract (ROI #58: pfdr = 0.0040) exhibited lower mean

FA values on Trio scans than Prisma scans (all post-hoc paired t-tests between Prisma and

Trio scans phocfdr < 0.05). No intra-scanner differences were detected for the four mentioned

regions. A detailed list of ROIs with deviating mean FA values and p-values is provided in

the Appendix (Table A.1).

Calculating the CV of the mean FA within ROIs revealed that the inter-scanner vari-

ances (CVmean = 3.2% ± 1.2%) was comparable to the ones found on Prisma (CVmean =

3.0%±1.2%) and Trio (CVmean = 3.1%±1.4%). On Prisma scans all CV scores for individ-

ual ROIs lay below 9%. For Trio scans only the right fornix (CV 21
mean = 12.5%) was above

the 10% threshold. This was also reflected when computing the inter-scanner CV scores

(CV 21
mean = 10.6%).

TractSeg MD. More ROIs with significantly different mean values were found for MD

maps (41). Almost half of the segmented fibre tracts (30) showed different mean MD val-

ues between the scanners after FDR correction (pfdr < 0.05). With Bonferroni correction

nine ROIs remained statistically different. Similar to FA, there was no consistent bias and

higher average MD values were found in ROIs both on Prisma and Trio. Four representative

ROIs with no inter-scanner and with obvious differences are presented in Figure 4.4. So
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Figure 4.3: Differences of Average FA Intensities within Selected TractSeg ROIs. Top
row: ROIs where no statistical difference was found. Intra- and inter-scanner variation was
comparable. Bottom row: ROIs for which significant differences were observed. Scanner-
specific biases are inconsistent, so that both elevated and decreased means could be found on
Trio compared to Prisma. ROIs: 3: Right anterior thalamic radiation, 13: Right cinculum,
46: Left thalamo-prefrontal tract, 63: Right striato-premotor tract, 14: Left CST, 41: Right
superior thalamic radiation 58: left striato-fronto-orbital tract, 66: Left striato-postcentral
tract. Boxplots: In each subplot from left to right: Prisma #1, Prisma #2, Trio #1, Trio
#2. Whiskers show the full range of the distribution.

for example the middle and superior cerebellar peduncles (ROI #28: pfdr = 0.0004; ROI

#33: pfdr = 0.0016) showed higher MD values on Prisma than Trio. Both, however, had

lower significance levels for the Prisma rescan (Prisma #2) in comparison to Trio scans,

than the initial Prisma scan (Prisma #1). Contrary, higher MD values were found on Trio

scans for the left thalamo- and striato-postcentral tracts (ROI #51: pfdr = 0.0103; ROI

#67: pfdr = 0.0004). Again, all four combinations of inter-scanner comparisons showed

differently pronounced deviations. All 30 ROIs had comparable MD values for scans and

rescans on both Prisma and Trio scans. An overview of p-values is provided in the Appendix

(Table A.2).

Comparing the CV of mean MD values within ROIs revealed a higher variability for Trio

scans (CVmean = 2.4%±1.2%) than for Prisma scans (CVmean = 2.0%±1.2%). This was also

propagated, but not further elevated, for inter-scanner comparison (CVmean = 2.4%±1.2%).

All CV scores fell below the 10% mark except for the MD values in the right fornix

(CV 21
mean = 10.1%) on Trio scans. Overall CV was lower for MD than for FA metrics.

Six TractSeg ROIs (#14, #18, #28, #33, #41 & #45) showed significant inter-scanner
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Figure 4.4: Differences of Average MD Intensities within Selected TractSeg ROIs. Top
row: ROIs which appeared to have a comparable distribution between all 4 scans. Bottom
row: ROIs for which significant deviations were found. Means within ROIs were increased
as well as reduced for Trio scans relatively to Prisma. ROIs: 1: Right arcuate fascicle, 11:
Splenium, 17: Left middle longitudinal fascicle, 70: Left striato-occipital tract, 28: Middle
cerebellar peduncle, 33: Superior cerebellar peduncle, 51: Left thalamo-postcentral tract,
67: Left striato-postcentral tract. Boxplots: In each subplot from left to right: Prisma #1,
Prisma #2, Trio #1, Trio #2.

differences for both FA and MD. Among those only the CC (ROI #45) was previously re-

ported to show a different volume across scanners.

JHU FA. Comparing mean DTI metrics in the 20 JHU ROIs via rm-ANOVA and FDR

correction on the same dataset, revealed mean FA differences for seven ROIs (with and

without FDR correction). This was reduced to four ROIs after Bonferroni correction. Sim-

ilar to TractSeg, the FA inter-scanner variability (CVmean = 4.6% ± 2.1%) was compara-

ble to that within scanners. However, CV scores were on average slightly lower for Trio

(CVmean = 4.2% ± 2.0%) than for Prisma (CVmean = 4.7% ± 2.4%) or both datasets com-

bined. Thirteen out of 20 ROIs showed lower individual CV scores on Trio than on Prisma.

Only the left CG had a high variability above 10% for both Prisma scans and inter-scanner

comparison (CV 4
mean = 11.7% and CV 4

mean = 10.1%, respectively). Average variability

scores for mean FA values calculated within JHU ROIs were higher than for TractSeg ROIs.

JHU MD. Analysis of mean MD differences (rm-ANOVA) identified ten ROIs after FDR

correction as significantly different across scanners (eleven ROIs without correction and
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seven ROIs after Bonferroni correction). Intra-scanner variation of MD mean values in JHU

ROIs was practically equal for Prisma and Trio (CVmean = 2.4% ± 0.8% and CVmean =

2.4% ± 0.7%, respectively), but slightly elevated when fusing datasets from both scanners

(CVmean = 2.8%±0.8%). Coherent with the previous TractSeg findings, the variation found

for MD was lower than for FA maps.

Six of the 20 JHU ROIs were different for both FA and MD, including the left and right

anterior thalamic radiation (ROI #0: pfdr < 0.030; ROI #1: pfdr < 0.002), the left CST

(ROI #2: pfdr < 0.001), the hippocampal cingulum bundle (ROI #6: pfdr < 0.004) and

the (temporal) left SLF (ROI #14: pfdr ≤ 0.020; ROI #18: pfdr < 0.05). For a complete

list of p-values see Appendix Table A.3.

4.3.4 Impact of Acquisition Protocol on Fibre Tract Segmentation

Analysing TractSeg volumes via rm-ANOVA identifies significant differences (pfdr < 0.05)

for all regions, but the right fornix (ROI #21), across acquisition protocols. TractSeg ROI

segmentations were found to be dependent on the number of shells and directions the DWI

image was acquired with. Out of 72 TractSeg ROIs, 69 showed volumes that were on DTI

20×3 larger than on DTI 12×5, but simultaneously smaller on DTI 60×1 (DTI 12×5 < DTI

20×3 < DTI 60×1). A strict staircase pattern (Figure 4.5), where protocols with less shells

and more directions showed larger volumes (DTI 12×5 < DTI 15×4 < DTI 20×3 < DTI

30×2 < DTI 60×1), was observed for more than 60% (i.e. 45) of the ROIs. Comparing

volumes of JHU fibre tract segmentations did not reveal any significant differences after

FDR correction of rm-ANOVA results.

4.3.5 Acquisition Protocol Specific Differences in DTI Metrics

TractSeg. Analysis of mean FA and MD values within TractSeg ROIs highlighted all re-

gions as significantly different (rm-ANOVA pfdr < 0.05). When comparing mean FA or MD

values of DTI 60×1 to any other protocol, significant differences (phocfdr < 0.05) were found

almost for all regions. Discrepancy was lowest for DTI 12×5 and DTI 15×4, with twelve

or six regions observed significantly different for FA and MD metrics, respectively. Fewer

significant regions were found for protocols that had a more similar angular resolutions (and

number of shells) than for those with more deviating acquisition parameters. For example

when comparing DTI 15×4 to DTI 30×2 37 ROIs showed significant different mean MD

values, but compared to DTI 20×3 only six regions were detected.

Comparing the variation of TractSeg ROIs for data from single protocols against each other
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Figure 4.5: Reputability of Tract Volumes for Different DWI Acquisitions. Most ROIs
showed the same staircase-pattern for volumes as found for the right cingulum (ROI #13).
Larger ROI volumes were segmented on scans acquired with more directions and less shells.
Nonetheless, there were a few ROIs which disrupted this pattern such the here displayed
ROI #31 and #59. ROIs: 13: Right cinculum, 31: Left parieto-occipital pontine tract, 59:
Right striato-fronto-orbital tract. Boxplots: In each subplot from left to right: Protocols
with different number of directions per shells [dir×shell]. DTI 12×5, DTI 15×4, DTI 20×3,
DTI 30×2, DTI 60×1.

showed similar levels of CVmean ≈ 5.0% for FA. Only a significant difference was found

between data from protocol DTI 12×5 and DTI 30×2 (phocfdr = 0.0214). The TractSeg

MD ROI variation was similar for all acquisitions (CVmean ≈ 4.1%) except for DTI 60×1,

which showed a lower regional MD variance (CVmean = 3.8%) than any other protocol

(phocfdr < 0.0310).

Comparing TractSeg’s CV for volumes (CVvols) against CVmeans for FA or MD values for

all single protocol data (intra-protocol variation showing differences between subjects) and

combinations of two protocols (inter-protocol variation showing differences between acqui-

sition parameters) revealed only a weak correlation (Spearman’s correlation: rFA=0.4318

and rMD=0.1376). When plotting CVmeans for FA against CV for TractSeg ROI volumes

(CVvols, Figure 4.6 Left) the variation of mean FA values in TractSeg ROI mostly clus-

tering together around the 5% mark. However, with increasing variation in ROI volumes

(CVvols > 30%) the variations for regional FA mean values also increased to variations of

8% to 12%. Analogous for MD (Figure 4.6 Right), the variations for different TractSeg

ROIs clustered around 4% and outliers with variations between 10% to 19% were detected

mostly for highly deviating volumes (CVvols > 30%). For both FA and MD this increased

variance was not exclusive to Inter-Protocol observations, but also to data from one single

acquisition scheme. Identifying the ROIs that showed the highest CV of volumes within

data from the same protocol flagged the anterior commissure (CV 4
means = 27.1%) as well as

the left and right fornix (CV 20
means = 28.0%, CV 21

means = 38.1%). All three regions have on
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Figure 4.6: Relationship Between CV of DTI Metrics and Volumes of TractSeg Parcellation.
Left: CV values for FA are clustered between 3%-8% for regions with lower volumetric
variation. TractSeg ROIs with volume deviations above 25% also displayed increased dis-
crepancy in FA values (8%-12%). Right: CV values for MD mostly score between 2%-6%.
Similarly to FA, difference in regional MD values increased (12%-19%) with elevated volume
variation. Each dot represents one ROI comparison.

average the lowest volumes (4874, 905 and 794 mm3, respectively). Indeed excluding these

three volumes also eliminates all outliers detected on Figure 4.6.

JHU. Mean values in all JHU regions were identified to be significantly different across

different acquisition protocols. On average mean FA values were found to be lower for scans

with higher angular resolution per shell (i.e. DTI 30×2 and DTI 60×1), which held true

particularly for DTI 60×1. While data with three or more shells (i.e. DTI 12×5, DTI 15×4

and DTI 20×3) showed similar mean FA distributions in JHU tracts, strong significant dif-

ferences were observed when compared to DTI 30×2 and DTI 60×1 (phocfdr < 0.001). The

same effect was observed for MD mean values.

The average CV within JHU ROIs on FA maps was highest for DTI 60×1 (CVmean = 5.5%)

and was significantly (phocfdr < 0.05) larger than any other protocol CVmean (ranging from

4.9-5.1%). Average CVmean was overall lower for MD than for FA, ranging from 3.9-4.3%.

For MD CVmean in JHU ROIs, a significant difference (phocfdr = 0.05) was only observed

between DTI 12×5 and DTI 15×4. Figure 4.7 displays the CVmean distributions of FA and

MD means in JHU ROIs for data from single protocols and any other combination. When

pooling data from any arbitrary protocol together with data acquired under the DTI 60×1
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scheme, the CVmean for both FA and MD increased. This further underlines the differences

of DTI metrics of this protocol compared to any of the other four acquisition schemes.

Figure 4.7: Distribution of Regional Coefficients of Variances Across Different Protocols.
The intra-protocol CV for all JHU volumes are represented as colour coded boxplots, all
combinations of data from different DTI protocols are displayed as grey boxplots. On
average variation was found to be lower for MD than fro FA. Overall CV values for both
FA and MD are slightly elevated for data acquired with 60 directions and one shell (DTI
60×1), however, data from single protocols showed similar variations ranging between 4-5%.
Combining datasets across protocol mostly did not elevate the regional variation, excepts
when including the single-shell dataset (DTI 60×1). The latter combined with any other
single protocol data increased the average CV for FA as well as MD. Whiskers show the full
range of the distribution.

For JHU ROIs, FA deviated most for DTI 60×1 while the MD variation was similar across

protocols. This is in contrast to TractSeg ROIs, where FA showed similar variation across

acquisition schemes, but MD variation was decreased in scans acquired on one shell (60×1).

This discrepancy might be caused by underlying algorithmic methods behind both segmenta-

tion approaches (JHU: registration based, TractSeg: model prediction based). An overview

of the average CVmean for both DTI metrics and atlases is provided in Table 4.5.
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Table 4.5: Average CV of DTI Metrics for JHU and TractSeg ROIs

Atlas Metric DTI 12x5 DTI 15x4 DTI 20x3 DTI 30x2 DTI 60x1

TractSeg
FA 5.1±1.3 5.0±1.0 5.0±1.4 4.9±1.3 5.0±1.5

MD 4.0±2.1 4.1±1.7 4.1±2.0 4.1±1.7 3.8±1.4

JHU
FA 5.1±2.2 5.0±1.9 4.9±2.2 4.9±1.8 5.5±2.4

MD 3.9±1.1 4.1±1.1 4.1±1.3 4.3±1.4 4.2±1.3

4.3.6 Comparability of Multi-Centre Data Acquisition

Figure 4.8 displays the different distributions of the QC metrics for the nine scanners in-

cluded. A high PIS ratio is undesired, as it means that a large proportion of voxels with PIS

was still present after correction. For all centres, on average at least 40% of the voxels with

PIS were corrected (PISratio < 0.6). Centres A, B and D displayed lower mean PIS ratios

than all other centres. This may be related to the vendor of the MRI scanner, as those three

centres collected data on Siemens scanners (PISratio = 0.360±0.077). Philips scanners (G,

H, L) showed on average lower PIS ratios for all three scanners (PISratio = 0.466± 0.055),

than the three GE scanners (C1, C2, F; PISratio = 0.583 ± 0.033). Distributions of PIS

ratio were highly comparable for scan and rescans within centres.

Although differences between centres were observable, the SNR on b0 volumes was overall

fairly evenly distributed for most centres with average values ranging between 126.2 and

196.1. The exception was centre A which showed a much lower average SNR (SNR =

58.1 ± 9.8) than any other centre. All centres, including A, showed a reproducible SNR

distribution on the rescans.

Different levels of NCC between T1w images and coregistered FA maps were observed across

centres. No particular pattern was recognisable, however, centre G had a much lower mean

NCC than any other centre (NCC = 0.464 ± 0.023). All coregistered FA maps for centre

G were visually inspected through the QC images provided by the diffusion pipeline and

no failed coregistration was discovered. Since FA maps seemed adequately coregistered on

visual inspection and intensities are inherently scaled between [0,1], lower NCC scores poten-

tially were a consequence of different intensity ranges of the reference T1w images. Indeed,

T1w scans scanned at centre G had much higher average intensities within the brain mask

(1518.5± 337.6) than for example T1w images from centre H (223.5± 37.7), for which high

NCC values were found (NCC = 0.651± 0.019), despite images collected on scanners from

the same vendor (Philips).

Similarly, centre G showed low brain mask volume ratios (93.6% ± 0.8%), which could in-

dicate an oversegmentation of the brain when backprojecting the T1w mask to DTI space.
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Visual inspection confirmed this small discrepancy between both brain masks (T1w mask

back projected and MRtrix3 brain mask, see Section 2.4.2 QC #3). Although the backpro-

jected T1w mask did indeed slightly oversegment the brain, the MRtrix3 brain mask tended

to cut of part of the brain. Since brain mask volume ratios on H and L showed the 2nd and

3rd lowest average values (96.4%± 1.5% and 95.0%± 1.8%, respectively), this could suggest

a systematic bias on Philips scanners.

Less scattered values were seen for all four motion QC metrics, and values were comparable

for scans repetitions on individual MRI scanners. However, one exceptions was centre C1

that particularly stood out regarding average and maximum relative head motion (bottom

row Figure 4.8). Interestingly, C1 and C2 are both GE scanners at the same imaging site.

Therefore, it was expected that operational differences (e.g. different fixation of head) were

minimal. Since control subjects were fairly matched in age and sex (Table 4.1), an increased

head motion was not expected due to vastly different cohorts. Most prominent difference

in acquisition parameter was the TR which was almost twice as long for scans at centre C1

(TR = 15555 ms) than at centre C2 (TR = 8000 ms). Since head motion and shorter TR at

centre C2 were both comparable to other imaging sites, the observed increased head motion

at centre C1 is likely a direct consequence of the prolonged scan time. The average values

for all QC metrics for each centre are summarised in Table 4.6.

4.3.7 Variation of DTI Metrics for Multi-Centre Data

TractSeg & JHU rm-ANOVA. When comparing volume distributions of TractSeg ROIs

across centres, a strong undersegmentation of fibre tracts was observed for centres that em-

ployed a Philips scanner (G, H, L). An example of two volume distributions is shown in the

Appendix (Figure A.1). Concluding that TractSeg did not provide satisfactory brain par-

cellations for Philips data, the three centres were excluded from any further TractSeg ROI

analysis. Comparing volumes of segmented fibre tracts across scanners showed significant

differences (rm-ANOVA pfdr < 0.05) for most regions (64) of the TractSeg parcellation.

This was also reflected for FA (65) and MD (59) metrics across the six scanners. Regions

that showed no significant differences for all three metrics (volumes, FA and MD) included

the left fornix (ROI #20), the right IFO fascicle (ROI #23) and the right SLFI (ROI #34).

The JHU segmentation appeared to be more robust, with significant volume differences only

for the forceps major (ROI #8) as well as the left and right ILF (ROI #12 & #13). Regional

mean FA values statistical deviated across all nine scanners for more than half of the JHU

regions. Mean MD values were significantly different for all 20 ROIs.

TractSeg CV. Furthermore, the variance within and across scanners was measured via
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Figure 4.8: Distribution of Quality Control Metrics for Control Subjects from the CENTER-
TBI Database
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Table 4.6: Quality Controls Metrics Across Scanner for CENTER-TBI Controls. Average
values that were noticeably different are printed in bold. All values displayed as mean ± std
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0.402

± 0.039

58.1

± 9.3

0.634

± 0.014

101.4

± 2.3

0.184

± 0.037

0.322

± 0.055

0.090

± 0.026

0.224

± 0.059

B
0.312

± 0.053

156.1

± 23.5

0.633

± 0.046

99.4

± 2.0

0.482

± 0.222

0.680

± 0.430

0.164

± 0.134

0.576

± 0.350

C1
0.565

± 0.025

147.9

± 17.3

0.519

± 0.028

98.4

± 3.0

0.574

± 0.100

1.263

± 0.222

0.614

± 0.050

1.485

± 0.190

C2
0.589

± 0.029

126.2

± 28.0

0.572

± 0.029

99.6

± 2.3

0.355

± 0.066

0.586

± 0.092

0.149

± 0.017

0.359

± 0.057

D
0.374

± 0.089

134.8

± 23.5

0.618

± 0.034

99.5

± 0.9

0.241

± 0.073

0.381

± 0.120

0.099

± 0.036

0.258

± 0.081

F
0.592

± 0.036

175.6

± 37.6

0.539

± 0.035

97.9

± 1.7

0.469

± 0.140

0.845

± 0.295

0.162

± 0.030

0.379

± 0.112

G
0.495

± 0.047

155.4

± 10.8

0.464

± 0.023

93.6

± 0.8

0.302

± 0.074

0.624

± 0.164

0.205

± 0.027

0.657

± 0.053

H
0.435

± 0.050

167.7

± 23.3

0.651

± 0.019

96.4

± 1.5

0.331

± 0.092

0.604

± 0.223

0.160

± 0.038

0.423

± 0.137

L
0.477

± 0.046

196.1

± 44.8

0.554

± 0.023

95.0

± 1.8

0.346

± 0.209

0.679

± 0.371

0.124

± 0.032

0.410

± 0.241
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CV for ROI mean values of DTI metrics (CVmean, see Equation 4.1. The distribution of

CVmean values for FA TractSeg ROIs was similar for most imaging sites, except for centre A,

which had a higher average CV (CVmean = 5.4%± 4.8%) than any other centre (CVmean ≈

3.2% − 3.7%). Images collected on GE scanners showed a slightly lower average variation

(CVmean = 4.7%±1.1%) than scans acquired on Siemens scanners (CVmean = 4.9%±3.7%).

Centre A showed higher variation alone than when combined with other centres. Variation

was highest when pooling all data together (CVmean = 5.8 ± 2.3; Figure 4.9 top left). A

similar pattern was observed for TractSeg MD variations, where centre A was again show-

ing a widely spread distribution of CV scores. Centres A (CVmean = 4.9% ± 3.7%) and F

(CVmean = 3.7%±1.6%) had a higher variation than the other centres (CVmean ≈ 2%−3%).

Although average CV values for inter-scanner datasets seemed elevated, the effect was not

as prominent as for FA metrics (Figure 4.9 top right). Overall variation was less for MD

than FA metrics.

JHU CV. Generally, a higher intra-scanner variation (CVmean ≈ 4.5%− 7%) was observed

for mean FA values within JHU ROIs than for TractSeg ROIs. Although merging datasets

from different scanners increased the variation slightly with respect to some single centre

data (CVmean ≈ 5.5%− 6%) the effect was not as prevalent as for TractSeg ROIs. Highest

variation in single scanner dataset was again detected in centre A (CVmean = 6.7%± 2.5%;

Figure 4.9 bottom left). Deviation between means of MD within JHU ROIs was similar to

that observed for TractSeg ROIs (CVmean ≈ 2.5%−4%) Variation of MD on combined data

from all GE scanners (CVmean = 3.4% ± 0.9%) was comparable to the variation on single

GE scanners (CVmean ≈ 2.5%− 3.5%), and lower than for Philips (CVmean = 4.3%± 1.8%)

or Siemens (CVmean = 4.1%± 1.1%) scanners (Figure 4.9 bottom right).

Template Space. After tensor-based spatial normalisation the voxel-wise CVs were com-

puted for intra- and inter-scanner data. Subsequently, the average of the CV maps within

JHU atlas ROIs were calculated (CVvoxel, see Equation 4.2). The mean and standard de-

viation for the 20 different mean CV values within JHU regions are presented in Table 4.7.

Most obvious was the much higher average CV for FA imaged from Philips scanners (CVvoxel

= 24.7% - 27.2%) compared to Siemens (CVvoxel = 16.1%-18.5%) and GE (CVvoxel = 14.7%

- 17.2%). This discrepancy was also observed when comparing average CV scores of inter-

scanner data for each of the three vendors. While data scanned on different Siemens or GE

scanners showed a similar level of variation (CVvoxel = 18.2± 2.9 and CVvoxel = 16.3± 2.3,

respectively), the average CV on Philips scanners was much higher (CVvoxel = 27.9± 8.1).

Pooling data together across vendors (All or Siemens & GE) showed that variation is settled
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Figure 4.9: Intra- and Inter-Scanner Distribution of CV within ROIs for CENTER-TBI
Imaging Sites. Each boxplot represents the variation of all ROIs of the particular atlas. Top
left: Most centres/scanners showed a similar variation of FA mean values within TractSeg
ROIs, averaging around ≈ 3%−4%, however, centre A showed an elevated average variation
(> 4%) compared to all other centres. Variation across sites was found to be substantial
higher, and was comparable for intra-vendor (GE or Siemens) and inter-vendor (ALL: GE &
Siemens combined). Data collected on GE scanners showed tendentially less variations than
that acquired on Siemens scanners. Top right: MD variation was observed to be highest for
the single centre A. Generally intra-scanner variation was on average lower than for pooled
data from different scanners. Variation on GE scanner was lower on GE scanners than on
Siemens scanners. Bottom left: Overall higher intra-scanner variation (≈ 4% − 7%) was
observed for mean FA values within JHU ROIs than for TractSeg ROIs. Although merged
datasets from different scanners increased the variation the effect was not as prominent as
for TractSeg ROIs. Bottom right: MD variation was overall similarly distributed for intra-
and inter-scanner variations. Whiskers show the full range of the distribution.
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in between the variation measured for data collected on single-vendor scanners. Highest FA

variation for the combined dataset from Siemens and GE scanners was found in the left

hippocampal cingulum (ROI #6, CVvoxel = 22.3%). This was coherent with the highest

variation in Siemens data for the same region (CVvoxel = 24.4%). Maximum FA for GE

data were observed within the left ILF (ROI #12, CVvoxel = 20.0%). Lowest FA vari-

ability for GE and inter-vendor data (Siemens & GE) were found in left CST (ROI #2,

CVvoxel = 12.4% and CVvoxel = 14.1%, respectively). Minimum variation for Siemens data

were measured in the right CST (ROI #2, CVvoxel = 14.0%).

Variation for MD was observed to be lower (CVvoxel = 5.9% - 12.6%) than that for FA,

which is in agreement with the previous analysis of regional variation in native space. Mean

diffusivity variability was highest for Philips data, although the difference to other centres

was not as drastic (centre A showed high CV for MD as well). For GE and inter-vendor

data, the highest MD variability was observed in the forceps major (ROI #8, Siemens:

CVvoxel = 15.3%, GE: CVvoxel = 18.6%, Siemens & GE: CVvoxel = 17.7%). The left tem-

poral SLF showed the lowest for all three inter-scanner comparisons (ROI #18, Siemens:

CVvoxel = 6.4%, GE: CVvoxel = 5.1%, Siemens & GE: CVvoxel = 6.0%).

Generally, data from A showed a higher variation for FA and MD than other Siemens scanner

data. Inspecting data from Philips scanners visually showed more inadequately deformed

fibre tracts (e.g. CC showed a more unusual shape). This seemed to indicate a less accurate

spatial normalisation for Philips scans than for data from both other scanners, which might

explained the elevated variation.

Figure 4.10 presents the CV maps of the DTI maps for the CENTER-TBI controls after

spatial normalisation. For comparison it includes two maps for the centres with the highest

(A) and the lowest (C2) variations (among Siemens and GE scanners). Philips scanners

were not included in this analysis due to potentially insufficient registration to the study-

specific template (based on visual examination). When including more subjects the maps

become inherently smoother (averaging more images reduces single voxel outliers) and vari-

ation is conjointly reduced. Nonetheless, lower levels of variation were observed for single-

than multi-scanner data. Overall variation was found to be higher in cortical GM areas

(up to 80%) than in WM fibre tracts on FA maps (top panel: FA). Lower CV scores were

detected for centre C2 than for centre A. This also translates to multi-scanner intra-vendor

data (Siemens, GE) where GE showed lower CV scores than Siemens. This is particularly

visible in cortical regions and to a certain extent in WM areas. While intra-vendor variation

is likely an effect of different DWI acquisition and hardware biases of different scanners,

the generally higher CV in cortical areas is partly also caused by more anatomical variation

across subjects, that cannot fully be eliminated by spatial normalisation. Pooling data from
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Table 4.7: Average of CV Maps within JHU ROIs. CV displayed as mean ± std in %

Centre Vendor FA MD

Intra-Scanner

Intra-Vendor

A Siemens 18.5 ± 3.3 10.2 ± 1.8

B Siemens 16.1 ± 2.3 7.4 ± 1.8

C1 GE 15.6 ± 2.3 6.8 ± 2.4

C2 GE 14.7 ± 2.3 5.9 ± 2.3

D Siemens 17.2 ± 3.5 7.8 ± 2.2

F GE 16.1 ± 2.5 8.0 ± 3.1

G Philips 24.7 ± 7.6 9.1 ± 3.7

H Philips 27.2 ± 7.8 12.6 ± 6.4

L Philips 25.8 ± 6.4 11.0 ± 7.4

Inter-Scanner

Intra-Vendor

A, B, D Siemens 18.2 ± 2.9 9.3 ± 2.0

C1, C2, F GE 16.3 ± 2.3 7.6 ± 2.8

G, H, L Philips 27.9 ± 8.1 12.8 ± 6.8

Inter-Scanner

Inter-Vendor

A, B, C1, C2, D, F Siemens & GE 17.6 ± 2.5 8.9 ± 2.4

All All 24.5 ± 6.3 12.2 ± 5.4

Siemens and GE scanners together yielded CV levels in between that of both single-vendor

CV maps. A more detailed view of the FA displays lower variation (deeper blue) in the

forceps major of the CC for C2 than for A. This tendency could also be observed for the CV

of GE data compared to that of Siemens data (middle panel: FA-CC). These observations

could also be quantified by counting the number of voxels within the brain mask that had

higher CVs for one dataset than the other. This uncovered that 64% of the voxels had higher

CVs on Siemens than on GE. Combining both datasets together (Siemens & GE) resulted in

71% or 42% of the voxels in a higher CV compared to GE or Siemens data, respectively. This

further underlined the fact that a higher degree of variation is observed in Siemens data.

Similar results were observed for CV maps of MD (bottom panel: MD). Data collected at

centre C2 showed a much lower overall variation (deeper blue) than data acquired at centre

A. Particularly noticeable in the WM, this lower variability was also visible when compar-

ing inter-scanner data from single scanner manufacturers (Siemens vs. GE). Coefficients of

variation were higher on Siemens than on GE scanners in 66% of the voxels within the brain.

Pooling together data from both vendors resulted in increased variation compared to GE

(73% voxels showed higher CV scores for Siemens & GE than for GE alone), however, in

a lower variation with respect to Siemens data (43% voxels had a higher CV in Siemens &

GE data than in Siemens alone).
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Figure 4.10: Coefficients of Variation Maps for FA and MD of CENTER-TBI Controls.
Top row: CV maps for FA show higher variability for inter-scanner than in single scanner
data. FA metrics derived from scans collected on GE had lower variation than Siemens data,
which was visible for both single scanner (A vs. C2) and multi-scanner (Siemens vs. GE)
comparisons. Middle row: Less variation was for example found on FA maps within the
forceps major of the CC (FA - CC) for GE data. Bottom row: This trend was also present
for MD maps, with lower CV scores for GE scans (C2 and GE). Colourbar is the same for
all plots.

4.4 Discussion

4.4.1 Parcellation of Structural Brain Scans

Although partly robust, regional volume estimation via MALP-EM also deviated for data

acquired on different scanners. Significant differences were found for both total brain and

WM volume. This was even the case when starting with the exact same brain mask. Brain

parcellation with MALP-EM is dependent on spatial alignment and deformable registration

of multiple atlases and intensity based refinement. Both might be influenced by head orien-

tation, SNR levels and voxel resolution, which makes the algorithm’s robustness dependent

on the image acquisition parameters. For the Scan-Rescan database, volume differences

were subtle, and a 1-2% variation for volumes of tissue compartments across scanners seems

to be a fair limitation for an automated process, as even variation between two manual

annotators cannot be avoided completely [115, 210]. Nonetheless, this might be more pro-

nounced for scans collected under different protocols or on scanners from different vendors.

While travelling heads are not always feasible for large multi-centre studies, a quality check
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of volumes derived from age and sex matched controls should be conducted prior to any

analysis. Some of the regions found to be significantly different across scanners had de-

viating volume estimates for symmetric ROIs in both hemispheres. However, the affected

ROIs were not of particularly large or small volumes, which may indicate a size independent

systematic bias. Furthermore, the findings suggest that matching intensity spaces across

scanners, could result in a positive effect diminishing volume discrepancies. However, this

effect was only observed when intensities were matched across scanners with paired T1w

scans. Since projecting all scans to the intensity space of an independent database (Cam-

CAN) did not achieve the same result, the applicability for multi-centre studies will need to

be investigated further. This holds especially true for patient cohorts with visible lesions on

T1w images, as this might skew the intensity matching leading to a disadvantageous result.

Simply computing relative region volumes with respect to the total brain volume showed

that that discrepancy can partially be eliminated. However, this was only demonstrated for

a fairly small set (12) of T1w scans of matched healthy controls. Normalising volume esti-

mates to the whole brain size may be skewed if pathological patterns affect brain extraction.

Regions of the MALP-EM atlas are directly adjacent to one and another. So, if one region

is segmented more, it almost always means that another ROI segmentation needs to shrink.

Future experiments could aim to understand the interplay between regions that were found

to have significantly different volumes.

4.4.2 Segmentation of White Matter Tracts

Despite using a harmonised diffusion protocol, significant volume differences were observed

when comparing TractSeg segmentations on different scanners, using the Scan-Rescan data-

base. One reason for that could be the model based nature of the algorithm. TractSeg

is a neural network that was trained in a supervised way to predict a voxel’s association

to a specific tract based on the peak of the fibre orientation distribution function (ODF).

Although TractSeg has been shown to outperform many other segmentation approaches

[263], its superiority was shown on test data from the same cohort acquired for the HCP.

Since machine learning models are susceptible to domain shifts as they are present for

different MRI datasets, predictive segmentation might not generalise well to unseen data.

Since TractSeg’s neural network was trained on HCP, it also learned to identify/segment

fibre tracts based on intensities as they were present in the HCP dataset. For diffusion

images that were acquired differently or on a different scanner, intensities for the same fibre

tract may deviate from that in the HCP database. This would result in a TractSeg failing

to segment WM tracts adequately. This became obvious when examining the TractSeg

region volumes on differently acquired diffusion weighted scans (Multi-Acquisition dataset).
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Protocols with higher angular resolution improve the accuracy of the computed ODF [279],

which directly impacts the peaks of the ODF and with-it the segmentation performance of

TractSeg. Although the Multi-Acquisition dataset consisted of 60 diffusion weighted images

for all five different protocols, the acquisitions were distributed on a different number of

shells. It is not entirely clear how much impact the different number of shells had on

computing the ODF’s peaks, however, TractSeg seemed to be biased towards the data it was

trained on. This observation was underlined, when aiming to parcellate data for CENTER-

TBI. While decent results were obtained for data collected on Siemens and GE scanners,

parcellation was inadequate for data acquired on Philips scanners. This was consistent

for Philips scanners at different imaging sites, suggesting a vendor-specific negative bias.

Training data for TractSeg was exclusively collected on a Siemens scanner. Why TractSeg

performed better on data from GE than Philips scanners may be part of future investigations.

Volumes computed for tracts from the JHU atlas seemed to be affected less by different

protocols. This may be explained by the underlying method, based on registration, to

segment WM fibre tracts. While registration can be affected by different intensities, it

is less sensitive to variability in the data - when choosing an appropriate cost function -

than predictive models. This holds especially true for registration of FA maps, as these

are normalised metrics, normally ranging between [0, 1]. By definition there is a high

contrast between WM tracts and GM tissue on FA maps. A segmented fibre tract that also

unintentionally includes GM voxels, possibly exhibits a higher variation than more precisely

segmented tracts only including WM. The fact that FA variability was overall higher for JHU

ROIs (> 4%) than for TractSeg ROIs (≈ 3%), could be a consequence of this segmentation

inaccuracy. Comparing JHU and TractSeg against each other is difficult, as there set of

ROIs is different and same regions may not overlap entirely. Nonetheless, this observations

are coherent with TractSeg being reported to be superior to single atlas segmentation [263].

4.4.3 Variability of DTI Metrics

Variation of MD was consistently found to be lower than that for FA metrics. This ro-

bust finding was observed for both the TractSeg and JHU analysis and could be replicated

for all different datasets (Scan-Rescan, Multi-Acquisition and CENTER-TBI database). A

lower MD variability agrees with previous studies and makes this result highly generalis-

able. It has been hypothesised that individual variability in eigenvalues of the diffusion

tensor may compound when combined to calculate FA metrics [72]. The lower contrast

seen on MD maps leads to an inherent lower variation within the scan itself (and also lower

impact of miss-registrations and -segmentations). Particularly WM regions usually appear

to have mostly homogeneous MD. This became also obvious when inspecting the voxel-wise
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CV maps. These displayed mostly equal CV values throughout the brain for MD metrics,

whereas in contrast FA maps showed a strong divergence between GM and WM regions.

This is in line with the previously reported higher FA variation in GM than in WM [256],

and is likely a consequence of better congruence of anatomical WM structures. While central

fibre tracts, such as the CC, can be more easily aligned or segmented, peripheral endings of

fibres within GM vary much more in shape and orientation. Interestingly, when considering

the number of ROIs with significant differences, more were counted for MD than for FA

maps. A higher number of ROIs with inter-scanner divergence for MD than for FA has been

found beforehand [66].

Furthermore, the inter-scanner variation was similar to the highest observed intra-scanner

variation. For example, FA CV scores for combined GE data (CV = 16.4%) was of compara-

ble to the CV of GE data from centre F (CV = 16.1%), but increased with respect to centre

C1 ad C2 (CV = 15.6% and CV = 14.7%, respectively). For inter-vendor analysis the total

variation (Siemens & GE CV = 17.6%) was in between the intra-vendor variation (Siemens

CV = 18.2%, GE CV = 16.3%). Coefficients of variation are based on average values across

datasets, thus, combining datasets with different levels of variation mostly resulted in CV

scores that were settled in between (compare values Table 4.7). Additionally, including

more data can also smooth out natural differences in anatomy among subjects leading to

reduced noise and eventually lower variability. This observation is further supported by the

previously reported decrease in variability through image denoising via median filters [164].

There was an evident bias between scanners in the CENTER-TBI database, where lower

variability was found for GE than for Siemens scanners. This is cohesive with aforemen-

tioned findings [283].

Despite the total number of unique gradient directions being the same across the MRI

protocols of the Multi-Acquisition database, they were distributed on one to five shells of

different b-values. This had an effect on both FA and MD metrics. The most distinct dif-

ference was found for the single-shell data with 60 gradient directions in comparison to the

multi-shell data. One reason could be that multi-shell imaging schemes show a higher re-

producibility than single-shell data [245]. This result, however, was produced for multi-shell

data with b ≥ 1000 s/mm2, whereas the data presented here relied on inner shell b-values

(b ≤ 1000 s/mm2). Future experiments may need to consider number of shells and directions

as two separate variable factors. Possibly, splitting different acquisitions into their different

shells may help to build a more descriptive model. Furthermore, it has been shown that the

choice of parameters may impact FA and MD maps unequally [206]. Understanding each

parameter’s contribution to DTI variability will help to design more robust MRI protocols

for multi-centre studies and foster solutions for diffusion MRI harmonisation.
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Regarding multi-centre data, the findings suggest that even with quasi harmonised pro-

tocols, MR image acquisition will be affected by hardware settings (scanner model and

vendor etc.) and scanner operators (different magnitude of head motions at different cen-

tres). Nonetheless, one should aim to collect data under a harmonised protocol to minimise

chances for variation. Specifically, for CENTER-TBI data, Philips scanner data will need

to be examined closely to understand its discrepancy to Siemens and GE data.

4.4.4 The Difficulty of Measuring Variability

The experiments presented here have shown variability for brain region segmentation and

DTI metrics. Although this is expected to a certain extent, quantifying differences between

data can be challenging. Any region based analysis will only be as good as the region

segmentation. White matter parcellation via TractSeg, for example, was unsuccessful for

data collected on Philips scanners for CENTER-TBI. While the discrepancy for the given

data was obvious and the systematic error was easy to detect, this might not be the case for

more subtle differences. A bias of volume segmentation for measuring regional variability

of DTI maps might be inevitable, but should be closely monitored throughout the analysis.

For the Multi-Acquisition database no strong correlation between volume variation and

FA or MD variation was found. However, some outlier regions were detected that showed

high variation for both volumetric and DTI measurements. These regions were the ones

with smallest segmented volumes. The effect of high variation in smaller regions has been

reported before [193, 256]. This seems characteristic for low volume ROIs as small deviations,

due to scan differences or flawed segmentation, strongly impact CV scores. One way to

avoid mistakes from methodological biases is to examine the problem from different angles.

Besides the ROI analysis, a voxel-wise approach was chosen to estimate reproducibility of

diffusion data. This facilitates the identification of robust results, such as the previously

mentioned lower variability for MD than for FA, but also the detection of problematic

data (i.e. here Philips MR scans). Most previous studies for reproducibility rely on CV

scores to estimate the differences between data. However, comparing CV scores of mean

values within ROIs (CVmean) against the CV values on a voxel-wise level (CVvoxel) showed

very different magnitudes. This has been reported previously [241], strongly suggesting the

dependence of CV values on how they were measured. Therefore, it might be more important

to examine the change of variation when pooling data together, rather than accepting a

cut-off threshold for acceptable reproducibility (e.g. 10% as suggested by Morenco et al.

[168]). Overall, the experiments focused on assessing variation in different datasets. Future

investigation will need examine more closely, how these differences are caused. The findings

showed that IDPs vary for different MRI acquisition parameters or imaging hardware. These
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factors and subject-specific confounding effects (e.g. head motion) jointly influence the image

signal. Disentangling the contributions of individual factors, however, is complex. Statistical

regression models will need to incorporate QC variables and other confounding factors into

any analysis.

4.5 Chapter Summary

In this chapter different datasets were analysed to estimate the reproducibility of brain

region segmentation as well as the variability of DTI metrics. Discrepancies between ROI

segmentation were found for both the parcellation of T1w and DTI scans. The former,

based on MALP-EM, shows regional differences which can be partially reduced by using a

robust mask9 or by matching intensity domains. However, further investigation is needed

to assess the applicability of such methods to more complex multi-centre data. White

matter parcellation through TractSeg seemed less replicable for data collected on different

scanners or different MRI acquisition protocols. Tract segmentation via JHU atlas appeared

to be more robust, but also less precise. Differences for DTI metrics were region-specific and

highlighted the non-linear inter-scanner variability. A direct connection between parameters

such as number of gradient directions per shell and number of shells could be drawn, but

will need further experiments to gain a deeper insight. Variation of DTI metrics was also

dependent on the employed scanner’s vendor. Overall, a lower variability for MD than for FA

was measured consistently in all experiments on various datasets. Inter-scanner variability

may impede analysis for combined multi-centre databases, in particular if variation is high for

individual scanners. Complexity of those databases will need to be addressed with advanced

harmonisation techniques and statistical modelling. Although these techniques can mitigate

effect, they likely will not remove all biases. Generally, more data may help to regress

out confounding factors and the more similar the cohorts and acquisition parameters across

sites the better. Without doubt, databases will need to be carefully examined to understand

hidden stratification [189] to allow drawing sensible conclusions from any experiment.

9for experimental purposed the same mask for different scans was used



Chapter 5

Harmonisation of DWI for

Multi-Centre Studies

5.1 Introduction

5.1.1 Sources of Variation in Diffusion MRI

Acknowledging the benefits of larger databases, multi-centre studies have been gaining in-

creasingly more attention over the years. However, as seen in previous chapters, diffusion

weighted MRI are dependent on scanning parameters as well as imaging hardware. Diffusion

MRI signal is influenced by the number, direction, strength and duration of different gradi-

ent pulses. Regional FA differences have been reported when comparing different b-values

[24]. In particular larger b-values have been associated with reduced DTI measurements

[194]. Besides their magnitude, the number of b-values used has also been shown to affect

the diffusion signal. For example, a multi-shell acquisition was found to be beneficial to re-

duce Rician noise related biases [41]. Moreover, a higher number of diffusion directions was

shown to improve contrast between GM and WM on FA maps, but had little effect on MD

metrics [80]. A more elaborate study showed empirically that a higher angular resolution

improved SNR and recovery of the orientation density function [279]. Interestingly, different

diffusion parameter maps required more gradient directions to achieve a near-optimal SNR

than others (e.g. FA: 62-66 vs. MD: 58 directions) [279]. Furthermore, spatial resolution

(i.e. voxel size) has been reported to affect DTI metrics. A larger voxel size was linked to

increased MD values, but decreased FA measurements [194]. Moreover, scanner hardware

such as, for example, field strength of the magnet [101] also have an impact on image quality.

While some sources of variations can be avoided by a careful study design (e.g. using same

120
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acquisition protocol), some others are inevitable. To address this problem, harmonisation

of diffusion MRI data has become a more active research field in recent years.

5.1.2 Spherical Harmonics & Rotation Invariant Features

Some harmonisation techniques operate in the DWI space, while some others employ SHs1

[129] as an alternative representation. Generally, these are a mathematical notation to

represent any spherical function f(θ, φ) as a sum of its harmonics:

f(θ, φ) =

∞∑
l=0

m=l∑
m=−l

Cl,mYl,m(θ, φ) (5.1)

with Yl,m(θ, φ) representing the SH basis function of order l and degree m, and Cl,m are the

corresponding SH coefficients. The energies of the SH coefficients for each order l form a set

of rotation invariant spherical harmonics (RISH) features:

‖Cl(f)‖2 =

m=l∑
m=−l

(Cl,m)2 (5.2)

Orders of SH are even numbers only. Hereafter, only the highest order will be mentioned

to indicate the computation of SH orders up to that maximum order (e.g. lmax=4 means

order 0, 2 and 4 were computed).

5.1.3 Related Work

Meta-Analysis. A classic approach to boost sample size is the meta-analysis that spans

across imaging centres and studies. For this, group-wise analysis is at first performed inde-

pendently for each site and findings are then statistically examined to find consistent results

across sites. Alternatively, data are analysed together by reducing variation through metric

standardisation and modelling site-specific biases as random effects [198] (also see Chapter

3). Ideally, all image processing steps should be the same to minimise variability introduced

through unequal data handling [222]. A simple approach is Z-scoring, that standardise

images by transforming the signal to a standard distribution (mean µ = 0 and standard

deviation σ = 1) for each site individually [70]. However, this is highly dependent on the

subject cohort at each site and may be too crude to account for non-linear changes across

different brain regions. More recently, new approaches have been introduced, which will be

summarised in the following paragraphs. The interested reader is further referred to the

review published by Pinto et al. [198].

1reminder: spherical harmonics
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ComBat. The combined association test (ComBat) was initially introduced for gene ex-

pression analysis [117], but was later adapted for diffusion MRI harmonisation by Fortin et

al. [70]. Hereby, differences across scans and sites are estimated by modelling the diffusion

signal as an adjustment of intensity location (additive factor) and scale (multiplicative fac-

tor). The underlying assumption is that both factors follow a parametric distribution that

can be retrieved by an empirical Bayesian model to reduce site-specific effects. A diffusion

metric y can be represented for each voxel v in scan n from site i as:

yi,n,v = αv + Xi,n βv + γi,v + δi,v εi,n,v (5.3)

where αv is the overall signal for voxel v with residual error εi,n,v. Covariates of interest

(e.g. sex, age) are represented as X with a corresponding vector of regression coefficients

βv. The terms γi,v and δi,v stand for the additive and multiplicative effects, defined as prior

Gaussian and Inverse-gamma distributions, respectively.

Once the distributions of hyper-parameters are estimated (α̂v, β̂v, γ̂i,v, δ̂i,v ), the harmonised

signal y∗i,n,v can be calculated as:

y∗i,n,v =
yi,n,v − α̂v −Xi,n β̂v − γ̂i,v

δ̂iv
+ α̂v + Xi,n β̂v (5.4)

The advantage of this method is the possible application to any diffusion parameter map

(e.g. FA, MD) and in fact has also been successfully applied to harmonise non-diffusion met-

rics such as cortical thickness [69]. Due to its voxel-wise modelling of site-specific effects,

ComBat can account for local scanner differences. It has been shown to outperform other

strategies based on voxel-wise linear regression, such as RAVEL (removal of artificial voxel

effect by linear regression [71]) or surrogate variable analysis [70].

However, ComBat assumes that location and scaling factors are represented by specific para-

metric prior distributions, which may not generalise for all diffusion measurements [126].

Furthermore, ComBat is applied to DTI parameter maps rather than the DWI signal. The

performance of pre-processing steps could be biased by the differences of the unharmonised

images. According to Karayumak et al. [126], this could lead to site-specific effects be-

ing latently propagated through the processing pipeline, and make it harder to detect and

correct for those effects. Furthermore, it has been shown, that ComBat possibly has an

adversary effect on between-group differences if data were processed slightly differently [33].

This, however, can be mitigated by applying the same processing pipelines.

Linear Scaling of Spherical Harmonics. A different approach was suggested by Mirza-

alian et al. [177], for which diffusion MRI data were first parcellated2 and converted to

2FreeSurfer parcellation of T1w images, which were projected to diffusion images.
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their SH representation (Section 5.1.2). Next, a regional linear mapping between the RISH

features was calculated to map SH images from one acquisition site to the image domain

of the reference site. After scaling the images region-wise, SH coefficients were adjusted

for each voxel within the brain. Later on, this approach was improved by sub-dividing the

regions into smaller segments and refining this finer parcellation on basis of RISH feature

intensities [178]. To circumvent the sub-optimal parcellation (i.e. registration errors for too

large ROIs) entirely, the same concept of SH scaling was embedded into a registration-based

framework [179]. For this, a study specific template was calculated via multi-modal regis-

tration of RISH feature maps. For each site and each RISH feature map the expected value

was calculated from the spatially normalised images:3

E l
i(v
′) =

1

Ni

Ni∑
n=1

‖Cl(v′)‖
2
i,n (5.5)

where ‖Cl(v′)‖2i,n is the value of voxel v′ in the RISH feature map of order l for the nth

subject at site i within template space. Here, v′ corresponds to the voxel v in subject native

space, such that v′ = Ψn(v), with Ψn defining the subject’s diffeomorphic deformation field

that projects image from native to template space. The scaling map was then defined per

RISH feature map:

S l(v
′) =

√√√√ ‖Cl(v′)‖2 + E l
ref (v′)− E l

src(v
′)

‖Cl(v′)‖2
(5.6)

For new DTI scans, RISH feature maps are computed and registered to the template. This

allows the backprojection of the scaling maps in order to map SH components from the

source site to the reference site domain in native space:

f̂(v, θ, φ) =

∞∑
l=0

m=l∑
m=−l

Sψ
l (v)Cl,m(v)Yl,m(θ, φ) (5.7)

with Sψ
l representing the backprojected scaling map Ψ−1n (S l).

Karayumak et al. [126] redefined the scaling map for an independent study as:

S l(v
′) =

√
E l
ref (v′)

E l
src(v

′) + ε
(5.8)

with ε representing a very small number to avoid division by zero. Being model-independent,

the calculated site-specific mapping can easily be applied to any other data from the same

cohort site. Hereby, the scaling of SH coefficients allows the harmonisation of the signal am-

plitude without altering the principal diffusion directions [177]. In addition, linear scaling

of SH coefficients has been reported to harmonise the signal more accurately within most

3spherical function term (f) is dropped for brevity
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of the WM fibre tracts than ComBat [126]. Once the diffusion signal had been harmonised,

any desired downstream analysis can be applied. However, this method also needs matched

controls across sites (ideally the same subjects scanned repeatedly) scanned with relatively

similar acquisition parameters. The voxel-wise scaling is dependent on spatial normalisa-

tion, which can be time-consuming in practice, especially for the required multi-model RISH

feature map registration.

Non-Linear RISH Feature Regression. Besides computing linear scaling maps, ma-

chine learning methods were used to learn non-linear functions in order to harmonise DTI

or RISH feature maps across databases [127]. The employed models were a RF regressor [26]

to scale either DTI (RF-DTI) or RISH feature maps (RF-RISH) and a CNN [150] trained

on RISH features (CNN-RISH). All these approaches required a direct voxel-wise correspon-

dence of images from the same subjects acquired on two scanners. Comparing diffusion

parameter maps from harmonised and reference data showed that all three non-linear re-

gression models (RF-DTI, RF-RISH and CNN-RISH) outperformed the linear RISH feature

scaling. Moreover, training a RF on RISH features seemed more beneficial than training on

DTI maps. The CNN regression showed the best performance for all evaluation metrics [127].

Spherical Harmonics Mapping with Neural Networks. With the success of deep

learning, many neural network approaches have been suggested to harmonise diffusion MR

scans. In contrast to the previous RISH feature regression, most methods operate directly

on the SH coefficient maps. Tax et al. [238] provided a benchmark dataset to challenge

researchers to submit approaches for diffusion imaging harmonisation.4 The harmonisation

task required the mapping of DWI images from one scanner (Prisma) to another (Connec-

tom), for which data of ten subjects imaged on both scanners was provided. The summary

of the submitted results revealed a clear trend towards deep learning. While the neural

network architecture and training strategies varied for different approaches, they had in

common the use of pairwise 3D patches extracted from SH images matched on a subject-

an voxel-wise level across scanners. The spherical harmonic network (SHNet) consisted of

three fully connected layers operating on SH coefficient maps to learn the mapping between

both scanners. Built up on that, the spherical harmonic residual network (SHResNet) in-

cluded different convolutional pathways for each of the SH orders (i.e. l = 0, 2, 4). While

both networks were trained on small patches (3×3×3 voxel) matched between scanners, the

SHResNet also included residual blocks (ResBlocks) that combine the in- and output of the

4this challenge was hosted as part of MICCAI 2018, the 21st International Conference on Medical Image

Computing and Computer Assisted Intervention
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different pathways. Such residual connections are a common approach for neural networks

to improve its performance [96] and in theory can be included multiple times. The authors

found an optimal performance with two ResBlocks (with only marginal improved compared

to the use of one unit) [135]. Similarly, Tanno et al. suggested a fully-convolutional shuf-

fling network (FCSNet, also see [237]) that included four convolutional layers and one skip

connection that concatenates the input to the first layer and the output of the last convolu-

tional layer. In contrast to SHResNet, FCSNet operates on a much larger receptive field size

(isotropic patches of 11 voxels) and consisted of only one single pathway for all SH orders

(lmax = 6 or 8). Furthermore, the channel-wise loss function (same as for SHResNet, i.e.

mean square error [MSE] between the raw input and harmonised output SH signal) was

enhanced with a RISH feature based loss. Besides applying convolutions in SH image space,

Koppers et al. also introduced a spherical network. This samples at first 30 equidistant

gradient directions from the input SH signals and subsequently performs spherical convo-

lutions before converting the signal back to original SH space [136]. Among the mentioned

architectures, FCSNet outperformed all other neural networks on the Multi-shell Diffusion

MRI Harmonisation and Enhancement Challenge (MUSHAC) benchmark database [238].

Scaling of DWI Data. Many previously mentioned methods operate in the SH or RISH

feature space, however, direct harmonisation of DWI signal has been suggested as well. One

approach is the method of moments (MoM) [104], which effectively is a voxel-wise linear

scaling of DWI images from source (Ssrc) to reference space (Ŝsrc), where the multiplicative

factor α and the additive factor β are derived from the first spherical moment (M1) and

second central (C2) spherical moment of the DWI data:

Ŝsrc = αSsrc + β with α =

√
C2,ref

C2,src
and β = M1,ref − αM1,src (5.9)

The first and second moments correspond to the spherical mean and variance of the DWI

signal, respectively. In practice, spherical moments are first computed for all subjects and

then projected to a common space (spatial normalisation). For each individual site the

median of the first and second moments are computed before the scaling factor maps are

derived. These are then backprojected to the native space of each subject from the source

site to eventually project the DWI signal to the reference site domain. The authors reported

that MoM harmonisation preserved both the shape and directional information of the signal

profile.

Representation Learning. A different research direction for data harmonisation aims

to find a new representation of diffusion MR images that removes undesirable variation
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across scanners, but preserving the underlying biological variability of interest. One sug-

gested approach is the learning of a sparse dictionary [165], that consists of base elements D

that can linearly be combined with weighting coefficients αn to reconstruct any sample xn

in the dataset. The dictionary acts as sparse representation only keeping features necessary

to describe a database.

xn ≈ Dαn (5.10)

The dictionary can be iteratively learned to adapt to training samples X = {x1, ..., xn}:

arg min
D,αn

1

N

N∑
n=1

(
1

2
‖xn −Dαn‖22 + λi ‖αn‖1

)
(5.11)

whereas the `2-norm and `1-norm promote data similarity and sparsity of the coefficients

α, respectively. St-Jean et al. [234] applied this concept to diffusion MRI harmonisation

to implicit mapping between domains of a source and reference scanner. One option is

to construct reference dictionary to encode the information in the data from the reference

scanner. This can then be applied to data from the source scanner. The idea is that the

reference dictionary reconstructs images that preserve only common scanner feature, while

filtering out source-specific properties. This implicitly maps source data to the reference

scanner domain. Alternatively, a dictionary can be jointly learned on data from multiple

scanners such that the base elements represent only the common features (i.e. diffusion

signal) and discard site-specific effects (i.e. scanner variations). Such a dictionary would

project images from different sites to one common domain, rather than projecting one dataset

to the space of another pre-selected reference scanner. For diffusion data harmonisation, St-

Jean et al. [234] extracted 3D patches of a DWI volume and spatially corresponding patches

from the angular neighbouring volumes to learn dictionary.

Similar in its core idea to learn a scanner-agnostic representation, Moyer et al. [182] has very

recently developed a variational auto-encoder (VAE) framework to harmonise diffusion MRI

data. This neural network consists of two parts: The encoder that compresses the input

information to an intermediate representation, and the decoder that tries to reconstruct the

input image data from the latent space variables. For data harmonisation the goal is to

learn an encoding for the input images such that the latent representation is independent of

the scanning site. The employed architecture consisted of two fully connected layers for each

the encoder and decoder. These were trained on voxels and their immediate six neighbours

sampled from from SH images (lmax = 8) for multi-shell data and one non-diffusion weighted

b0 volume. The network parameters were learned via the reconstruction loss for the SH

signal (all seven voxels) and two auxiliary losses. These were the reconstruction error for

the DWI signal (centre voxel only) as well as an adversary loss, which captures the potential
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to distinguish samples from different sites. This approach has been shown to outperform a

re-implementation of linear RISH feature scaling as previously suggested [179].

5.1.4 Advantages and Limitations of Existing Methods

While global scaling (Z-Scoring) is straight-forward to apply, there is little potential to re-

move region-specific biases across the brain scans. Harmonising data with ComBat provides

the important advantage of simultaneously considering also clinical variables. A covariate

matrix holding such information can individually be designed for any research questions.

This also means that images from multiple sites can easily be harmonised all together. On

the other hand, ComBat operates on diffusion parameter maps (i.e. FA and MD), meaning

DWI scans were fully pre-processed before applying the harmonisation. Site-specific differ-

ences in acquisition could already lead to biases in data processing. For example registering

data to a common template is dependent on diffusion image intensities. Data from a par-

ticular site may register less successfully to a template than others, due to different image

properties (e.g. noise level).

With the initial success of RISH feature harmonisation by Mirzaalian et al. [177], many

following approaches also used either SH or RISH features representation. One of the most

promising techniques is the SH scaling via RISH feature matching in a registration framework

[126, 179]. This has been shown to outperform ComBat [126] as well as other competitive

methods (including neural networks) [238]. Since this harmonisation method operates on

a voxel-wise level, it can account for regional differences. However, similar to ComBat5

this relies on accurate spatial normalisation which is both time consuming and error-prone.

Especially, as the suggested approach requires multi-modal registration. With increasing

number of subjects, the computational burden increases, as each scan has to be individually

spatially normalised. Moreover, in case of more than two imaging sites, one would need

to select one reference site [32] and it is not entirely clear how to chose that. Although

successful in both a ROI and registration framework, simple scaling of RISH models may

not be able to capture non-linear intra-site differences. For example, if site-specific biases

had a stronger impact on a subgroup of subjects than for others within a site, the data used

to compute scaling maps might not adequately represented this subcohort. A single scaling

map per site may not be enough to account for that, which is why non-linear regression

models for RISH feature matching might have been superior [127]. The limitation of one

scaling map per imaging site was later counted for by introducing an adaptive approach

learning different scaling maps per subject. Hereby scale maps were computed from three

subjects form the training data that were most similar (MSE between RISH features) to

5ComBat can also applied on a ROI level
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the test subject. This could further boost the harmonisation performance, showing a strong

improvement in comparison to competing algorithms [187]. Despite this, the dependency of

spatial normalisation and selection of a reference site remains.

Tax et al. presented the performance of different algorithms on a benchmark dataset [238].

This revealed the superiority of linear scaling of SH (see above [126]) over most deep learn-

ing approaches. One explanation could be that the data may not be sufficient to train a

successful mapping via neural networks, however, FSCNet showed an equivalent strong per-

formance. One distinct difference between FSCNet and other neural network architectures

presented (e.g SHResNet), is the receptive field size. While most approaches operated on

small patches (3×3×3 voxels), FSCNet used large 3D patches (11×11×11 voxels), hence,

including much more image semantic context. The benefits of a larger receptive field have

been shown multiple times in other computer vision tasks [37, 64, 91]. Therefore, different

architectures might be important, but cannot outweigh including enough information. How-

ever, the larger the patches the higher the computational burden and neural networks can

be difficult to train adequately particularly with limited number of data. In addition, the

neural networks presented also did not support direct multi-site data harmonisation.

Moyer et al. [182] addressed this shortcomings by deriving a site-unspecific representation

via a VAE. This does not require any registration to template space and further allows

model learning for multiple sites simultaneously. Imaging data from various sites can either

be projected to a common scanner-agnostic space or to one selected site. The authors could

show that this approach outperformed linear SH scaling as suggested by [179], however, it is

not clear whether it would perform better than the adaptive scaling approach (see above).

5.1.5 Aims

Firstly, the linear RISH feature scaling framework as well as a neural network baseline

(i.e. FSCNet) were re-implemented to test their harmonisation performance on a bench-

mark dataset. The aim was to understand whether multiple, individual network pathways

for SH images of different orders are beneficial for diffusion data harmonisation. This was

inspired by the SHResNet architecture described above, however, was trained under simi-

lar conditions as the FSCNet, which did not happen in the benchmark publication [238].

Secondly, two options to improve the scaling maps for linear RISH feature scaling for the

CENTER-TBI database were explored. This included the denoising of the scaling maps as

well as the subselection or weighting of images from available subjects to compute the scal-

ing maps. Concepts were then applied to harmonise CENTER-TBI data from two different

scanners and evaluated based on RISH features and DTI metrics. Finally, the impact of

data harmonisation on mTBI subject analysis was examined.
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5.2 Data & Methods

5.2.1 Databases

MUSHAC. The MUSHAC data provided by Tax et al. is a benchmark dataset for diffusion

MR image harmonisation. Diffusion and structural images were acquired for ten healthy vol-

unteers on a Siemens Prisma scanner (max. gradient 80 mT/m) and a Siemens Connectom

scanner (max. gradient 300 mT/m). The DTI protocol was the same on both scanners and

entailed 30 directions for two shells with b = 1000 and 3000 s/mm2 and seven non-diffusion

weighted images (b0). The scans were collected through parallel imaging (GRAPPA=2)

with TE = 89ms and TR = 7200ms. The acquired voxel size was isotopic of 2.4mm3.

All data were already corrected for susceptibility and eddy-current distortion, head motion

and bias fields. Further, images from different scanners were aligned to each other for each

subject individually. A brain mask, was computed on T1w images that was than inversely

projected to DWI space via rigid coregistration of b0 to T1w images. For more detail the

reader is referred to the original publication [238].

CENTER-TBI. This database has been described previously (Section 2.2) and more in-

formation can be found online.6 For this analysis the subset acquired at Cambridge was

chosen, as it was the only site that scanned the same control subjects on two different scan-

ners. All other centres either employed only one scanner or collected diffusion images of

different healthy volunteers on each of their scanners. To analyse mTBI patients, data from

the two week period post-injury were selected, as this provided the most patient scans. An

overview of the data is given in Table 5.1.

5.2.2 Benchmarking Implementations of Harmonisation.

Among the previously mentioned algorithms, the linear RISH feature scaling as well as a

deep learning approach similar to the FSCNet (Section 5.1.3) were re-implemented as these

seemed most promising at the time of experiment setup. To benchmark the implementa-

tions the algorithms were applied to the openly available diffusion images from the MUSHAC

database. For this analysis, the focus laid on the inner shell data (b = 1000 s/mm2), since

the ultimate goal was to apply these concepts to the CENTER-TBI database, which col-

lected single-shell diffusion MR images only. The DWI scans of the ten available subjects

were transformed to SH representation (MRtrix3 amp2sh). Thereby, the default settings

were used which did not normalise the data by the accompanied b0 image, as initial tests

6www.center-tbi.eu/project/mri-study-protocols

www.center-tbi.eu/project/mri-study-protocols
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Table 5.1: Overview of Cambridge Data for CENTER-TBI

Prisma Trio Both

C
on

tr
ol

s # Subjects/Scans 7/7 7/7 7/14

Age at Scan 45 [32, 62] 45 [32, 62] 45 [32, 62]

Sex (M/F) 5/2 5/2 F 10/4

P
a
ti

en
ts

# Subjects 14 18 32

Age at Scan 51 [21, 62] 44 [21, 67] 47 [21, 67]

Sex (M/F) 10/4 12/6 22/10

DPI 21 [8,33] 17[11,26] 19 [8, 26]

GCS (13/14/15) 1/1/12 0/3/15 1/4/27

GOSE ≤ 8 8 8 16

GOSE = 8 6 10 16

had shown strong outlier signal introduced by normalisation. The data allowed to estimate

coefficients of SH up to order six (lmax=6). Besides FSCNet, two multi-path neural networks

were designed. These were inspired by the SHResNet (Section 5.1.3), however, were trained

under the same conditions as the FSCNet to allow a fairer comparison. First and foremost,

this meant to train the multi-path neural networks on patches of 11×11×11 voxels rather

than 3×3×3 voxels. The success of harmonisation was assessed in a 5-fold cross validation:

In five separate training cycles eight subjects were used to learn the model parameters or

compute scaling maps and performance of the algorithms was validated on the remaining

two subjects. The split into the different training and validation sets was fixed for all exper-

iments. Bootstrapping was not applied, since neural networks take very long to train and

the dataset size was very limited.

Linear RISH. After converting DWI data to SH representations in native space, RISH

features were computed as described previously (Equation 5.2). Together with b0 images

the four derived RISH feature maps (for each order l=0,2,4,6) were used to calculate a study

specific template from all ten available subjects via multi-modal non-linear registration (ants-

MultivariateTemplateConstruction2.sh as recommended by [126]). For each of the five folds

scaling maps were calculated for all image contrasts (b0 and RISH features) from the respec-

tive eight training subjects (Equation 5.8). These scaling maps were then backprojected

from template space to native image space for the two remaining subjects. Eventually, SH

coefficients were scaled accordingly (Equation 5.7).
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CNN Baseline. The baseline model aimed to follow mostly the specifications of the previ-

ously described FSCNet. It operates on three dimensional patches of 11×11×11 voxels from

all SH coefficient maps and the b0 image. For example, fitting SH up to the 6th order results

in 28 SH coefficient maps (l=0: 1 map, l=2: 5 maps, l=4: 9 maps, l=6: 13 maps). Hence,

the input would be comprised of 29 images (b0 and SH images). Input images were all scaled

by estimating mean and standard deviation for each volume individually (e.g. b0 or first

SH coefficient map), but collectively for all training scans from one scanner (i.e. Prisma or

Connectom). Input patches were passed through four convolutional layers with 75, 150, 300

and 200 feature maps (Figure 5.1). At each layer an isotropic convolutional kernel (3×3×3

voxels) and a dropout rate of 50% was applied. The output of the last convolutional layer

was concatenated with the central part (3×3×3 voxels) of the input patch, before eventually

feeding it to a bottleneck convolutional layer to reduce the number of output feature maps

(Figure 5.1 CONCAT) to the number of b0 and SH images. The network was then trained

on the MUSHAC database sampling 50,000 random patches evenly from all eight training

subjects (6250 patches per subject) for each of the 200 epochs. The network parameters were

learned on batches of size 20 via Adam optimiser [132] with a learning rate of 10−4. The

mean absolute error between output patches (projected Prisma images) and the matching,

scaled patches of the reference scanner (Connectom images) served as cost function. Since

the CNN learned a mapping between scaled image intensities, the final prediction of the

images was generated by backscaling images to the Connectom image space (i.e multiply by

standard deviation and adding the mean as estimated from Connectom training scans),

CNN Multi-Path. This network follows the same training scheme as the baseline model,

however, instead of processing b0 and all SH images together, the input was split accord-

ing to the SH order (Figure 5.1). The b0 image and the SH coefficient map of order zero

were processed together, since they show generally similar anatomical structures. Each of

the split input was passed through a block of four convolutional layers (conv block). The

number of feature maps was chosen to overall match the ones in the baseline model to allow

the comparison of networks with similar learning capacity (for example L1: 4×20=80≈75,

L3: 4×75=300). A second version of the multi-path CNN was constructed, which averages

the output of the conv blocks for the higher order SH coefficient maps (i.e. l=4, 6) before

adding this value to the input SH coefficients. This aimed to simulate a global scaling of

the coefficients rather than learning a local mapping.

Global Scaling. Since the neural networks also included global scaling of SH intensi-

ties, this was also implemented as a stand-alone harmonisation approach. In practice, mean

and standard deviations for all training input volumes were estimated for Prisma and Con-
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Figure 5.1: Schematic Architecture of Convolutional Neural Networks. The baseline CNN
consisted of four convolutional layers that act sequentially on an input of the coefficient
images of the SH representations (here lmax=6, hence 29 input channels). The output of
the last convolutional layer (L4) was concatenated with the input, before going through a
bottleneck convolution. The multi-path CNN splits up the SH input images according to
their order (l=0,2,4,6) and processes them with four individual convolutional layers (conv
block). Eventually the different paths are concatenate all together with the input, before
feeding them again through a bottleneck convolution. A second approach for the multi-path
CNN first averages (averaging operation) the output of paths for the higher order SH maps
(l=4,6), then adds this average from the SH input images (adding operation).

nectom scans separately. Prisma images were mapped to Connectom intensity space by first

subtracting the Prisma mean and dividing by the Prisma standard deviation. Then, these

scaled images were scaled to Connectom space by multiplying with the Connectom standard

deviation and adding the Connectom mean.

Quantitative Assessment. The harmonisation performance of the different models was

measured via a global and regional root mean square error (RMSE) between the harmonised

Prisma RISH feature maps and the Connectom RISH feature maps (analogously for b0 im-

ages):

RMSE =

√√√√ 1

N

N∑
n=1

(xi − yi)2 (5.12)

with x and y representing the images to be compared and N the number of voxels within

a given ROI. The global RMSE was computed within the whole brain mask. Regional
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RMSEs were calculated in selected TractSeg ROIs, such as the IFO fascicles (ROI #24 &

#25), the ILFs (ROI #26 & #27), the SLFsI (ROI #35 & #36), the UFs (ROI #43 &

#44) and the whole CC (ROI #45).7 These regions were selected as they were found to be

affected in TBI patients (Chapter 3), but also to provide a general overview, rather than

comparing all 72 TractSeg ROIs. The underlying assumption was that a lower RMSE reflects

less diverging SH coefficient between scanners, which would lead to better harmonised DTI

parameter maps. Differences between methods were statistically assessed via rm-ANOVA

and post-hoc pairwise Tukey test (GraphPad Prism 8).

5.2.3 Inter-Scanner Variation for CENTER-TBI Substudy

Seven healthy controls, who underwent DWI on both a Trio and Prisma scanner for the

CENTER-TBI study, were included. After pre-processing the DWI scans with the diffusion

pipeline introduced in section 2.4, images were converted to SH representation (lmax = 4)

and RISH features were calculated. These were used alongside b0 volumes to create a study

specific template via multi-modal registration (antsMultivariateTemplateConstruction2.sh).

Subsequently, warped RISH feature images were used to compute CV maps for both scan-

ners separately as well as both datasets combined. The mean and standard deviation was

derived on a voxel-wise level. The CV maps were then calculated by dividing the standard

deviations by the means again on a voxel-wise level (see Equation 4.2). Mean and standard

deviation maps were either computed from Trio scans or Prisma scans only (intra-scanner

CV: each seven scans, seven subjects) or from all available scans (inter-scanner CV: 14 scans,

seven subjects). For quantitative comparison, mean of CV maps were computed within the

whole brain mask and selected TractSeg ROIs (see above).

5.2.4 Denosing of RISH Feature Scaling Maps

Spatial normalisation of brain scans aims to create a voxel-wise correspondence between

multiple scans usually from different subjects. The accuracy of this generally depends on the

natural anatomical variation across subjects and the success of the deformable registration.

To relax the assumption of voxel-wise comparability, images can be smoothed to include

for each voxel information from its neighbouring voxels. This can have a denoising effect if

voxels with outlier intensities are present. Therefore, the impact of smoothing RISH feature

scaling maps for diffusion data harmonisation was examined. For this, the same seven

CENTER-TBI controls were used as above. To assess the impact of different scale maps a

leave-one-out cross validation was performed. In other words, the corresponding scans of

7bilateral ROIs were combined
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six subjects were used to compute scaling maps, to then project the RISH feature maps of

the remaining validation subject. Smoothing of scaling maps was conducted with either a

median filter (kernel size 3) or a Gaussian filter (σ = 1.5). The b0 images and RISH feature

maps were directly scaled within template space without conversion back to SH space (this

also meant not to take the square root of the computed scalemaps). The RMSE error was

computed between harmonised Prisma and Trio RISH feature maps. Differences between

methods were quantified via rm-ANOVA and post-hoc paired Tukey test.

5.2.5 Subject Selection for RISH Feature Scaling Maps

The initial (standard) approach of RISH feature scaling was later on improved by computing

expected RISH feature values only on the basis of the three most similar subjects within the

training dataset [187]. The applicability of adaptive subject selection to compute scaling

maps was explored for the CENTER-TBI database in three different ways:

1. Computing of scaling maps from the three most similar subjects. For this, the similar-

ity between a test subject’s Prisma image and all Prisma training images was estimated

via global mean square error (MSE, i.e. computing the voxel-wise square error be-

tween images and average values within brain mask). The three scans with the lowest

MSE and the corresponding Trio scans were used to compute the scaling map.

2. Calculating a weighted average of all training subjects. Scale maps were computed

from the weighed mean of the different training subjects. The weighting was defined

by the test scans similarity to the training samples (reciprocal value of the relative

MSE normalised to the maximum MSE between scans). This aimed to be more adap-

tive than the standard approach, but more inclusive than the hard selection of three

subjects.

3. Computing a weighted average of all training subjects on a voxel-wise basis. Instead

of estimating a global weight for the whole feature map, a voxel-wise weighting map

was computed. This was based on the reciprocal, relative square error between test

and train scans at each voxel. The intention of this approach was to compute more

local scaling factors than the other two options.

Scaling maps were all denoised with a median filter (kernel size 3×3×3). Analogous to

the previous experiment, the performance was assessed in a leave-one-out cross-validation

and by computing the global RMSEs between Trio and scaled Prisma RISH features and b0

images. Again, differences between approaches were quantified via rm-ANOVA and post-hoc

paired Tukey test.
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5.2.6 Evaluation of Harmonisation of CENTER-TBI SH Images

Evaluating harmonisation of RISH features in template space can give an indication of a

method’s performance, however, it is also important to understand the impact on scans in

native space. For this, control subjects images on the Prisma scanner were harmonised and

compared to the corresponding Trio scans. To allow a voxel-wise comparison between Prisma

and Trio scans for each subject, Trio scans were aligned to their corresponding Prisma scan

by affinely coregistering b0 images. This allowed to examine the harmonised Prisma scans

and the original Trio scans both in their native space. If Prisma scans were harmonised

in a coregistered state, they would need to be backprojected to be analysed in their native

subject space. This would lead to multiple interpolation steps and with it blurring images

unnecessarily.

Prisma scans were harmonised via linear RISH feature scaling, a CNN with the Multi-Path

architecture (Section 5.2.2) and global scaling of b0 and SH volumes. All three methods

were evaluated in leave-one-out cross-validation as before.

1. For linear RISH feature scaling, the spatial normalised images of six control subjects8

(Section 5.2.3) were used to calculate scaling maps for the b0 and RISH feature images

(Equation 5.8). These scaling maps were denoised with a median filter (kernel size

3×3×3) and then backwarped to the native space of the held out test subject scanned

on Prisma. Eventually, Prisma SH were scaled as described previously (5.1.3).

2. The hyper-parameters for the CNN Multi-Path were set as for previous experiments

on the MUSHAC database, with the exception of an increased number of samples

extracted per subject during each training epoch. Since only six (instead of eight)

subjects were available for training, the samples per subject per epoch were set to

8,320 to keep the total sample number per epoch close to 50,000. Furthermore, SH

coefficient could only be estimated up to the 4th order, which is why there were only

three convolutional pathways.

3. For comparison, a global scaling of Prisma scans was applied as well. Mean and

standard deviation for both scanners were estimated globally for each b0 image and

SH coefficient maps. Each Prisma b0 and SH volume was then projected to match the

mean and variance of Trio scans (see global scaling in Section 5.2.2).

After harmonising SH coefficient images, the RMSE between the RISH feature maps were

computed for each subject. Differences between methods were quantified via rm-ANOVA

and post-hoc paired Tukey test.

8Note: Since multi-modal spatial normalisation is computationally expensive the same template generated

for all seven control subjects was used.
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5.2.7 Data Harmonisation of CENTER-TBI DTI Metrics

Global and Regional RMSE. To compare the impact of different methods on DTI met-

rics, the harmonised Prisma SH data were converted back to DWI representation. In addi-

tion, the unharmonised Prisma SH data were also backprojected to DWI space to examine

the information loss through conversion between representation spaces. After this, FA and

MD maps were computed (FSL dtifit with weighted least squares) for all harmonised, back-

projected and original Prisma data as well as coregistered Trio data (b-vectors had been

rotated accordingly). RMSE was computed both in the whole brain as well as selected ROIs

(Section 5.2.2). Differences between methods for the global RMSE were quantified via rm-

ANOVA and post-hoc paired Tukey test.

ROI Mean Analysis. Eventually, mean FA and MD values were extracted from the

selected TractSeg ROIs (Section 5.2.2) for Prisma scans, native as well as coregistered Trio

scans, and harmonised Prisma scans (CNN and Linear-RISH). Besides this, regional mean

Prisma values were projected to the Trio domain through ROI-wise standard scaling (analo-

gous to global scaling before, but mean and standard deviation were estimated on a regional

level).

5.2.8 Impact of Data Harmonisation on Mild TBI

Another multi-pathway CNN was trained on all seven matched CENTER-TBI control sub-

jects (training parameters the same as for the cross-validation above). This was then applied

to b0 and SH coefficient images of the CENTER-TBI mild TBI patients scanned on Prisma

(Table 5.1). Harmonised SH images were than converted back to DWI space. A tensor model

was fitted (FSL dtifit with weighted least squares) to extract FA and MD maps for original

Prisma, harmonised Prisma and Trio scans in native space. Eventually, regional mean FA

and MD values were computed within 24 pre-selected TractSeg ROIs relevant for TBI (Sec-

tion 3.3.2). As before, Prisma mean DTI metrics were also projected to the Trio domain

via ROI-wise standard scaling (see ROI Mean Analysis above). Depending on their GOSE

at six months post-injury, patients were dichotomised into a group with good (GOSE=8)

and poor (GOSE<8) outcome. Then a linear regression analysis (analogous to Model #3

in Section 3.3.6) was performed to test whether ROI mean DTI metrics were predictive for

patient outcome.
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5.3 Results

5.3.1 Comparison of Selected Harmonisation Methods

When compared to non-harmonised data, the different approaches for RISH feature harmon-

isation all led to a reduced global RMSE between matched Prisma and Trio scans (Figure

5.2, repeated measurement ANOVA: p ≤ 0.022). While linear and global scaling were con-

sistent in performance, CNN approaches produced outliers for b0 and RISH0 feature images

that had a worse global RMSE than the original inter-scanner difference. This higher varia-

tion in harmonisation results could also be observed quantitatively (see standard deviation

in Table 5.2). The lowest average global RMSE for RISH0 features were achieved with lin-

ear scaling of RISH feature maps (Linear-RISH). The multi-path CNN, however, achieved

lowest global RMSE for b0 and RISH2 features. Interestingly, the more local operating

method of linear RISH feature scaling performed worse than global scaling of higher order

of RISH features (RISH4: ptukey = 0.011; RISH6: ptukey = 0.008). Similarly, global scaling

of RISH6 feature maps reduced RMSE between scanners significantly more than the baseline

CNN model (RISH6: ptukey = 0.018). The multi-path CNN approaches could significantly

decrease the RMSE between higher order RISH features compared to the baseline CNN

(Multi-Path RISH4 & RISH6: ptukey ≤ 0.001; Multi-Path #2 RISH6: ptukey = 0.041). The

second approach of the multi-path neural network (CNN Multi-Path #2 ) aimed to emulate

globally scaling of RISH4 and RISH6 features maps. Indeed, average RMSE were similar to

that of global RISH feature map scaling, albeit not statistically significant (Table 5.2 and

Figure 5.2).

Figure 5.2: Comparison of Global RISH Feature Differences after MUSHAC Data Harmoni-
sation. All five harmonisation methods led to reduced RMSE between. The CNN approaches
seemed most successful for b0 images, however, showed also outliers with higher RMSE than
before harmonisation (Inter-Scanner). Global scaling was most beneficial for higher order
RISH features (RISH4 and RISH6). While the multi-path approach (CNN Multi-Path) could
improve RISH feature harmonisation, only the adjusted second model (CNN Multi-Path #2 )
achieved similarly low levels for higher order RISH features than global scaling.

Although differences across regions could be observed, the general magnitude of inter-scanner
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variation before and after harmonisation was similar for all selected ROIs. Harmonisation

based on CNNs showed outliers for b0 images and RISH0 feature maps with higher RMSE

within the examined ROIs than non-harmonised data. Overall, all methods showed similar

trends of reduced RMSE for b0, RISH0 and RISH2 images. Stronger differences were found

for RISH4 and RISH6 feature maps, where the linear RISH feature scaling and the baseline

CNN performed worse than the other harmonisation methods. Only the CNN Multi-Path

networks could reach similar levels for higher order RISH feature maps (l=4,6) than simple

global scaling. Although data harmonisation seemed to be slightly more beneficial for UF

(e.g RISH2 or RISH4), the performances were generally robust across all ROIs (Figure 5.3).

5.3.2 Variation in CENTER-TBI Substudy

Figure 5.4 displays the average of all 14 scans from seven subjects scanned on both scanners

and corresponding CV maps. Variation was generally higher in cortical areas where anatom-

ical differences between subjects are more likely. Higher order RISH features (RISH2 or

RISH4) also showed more variation than b0 images or zeroth order RISH features (RISH0).

While structured variation was observed in b0 CV maps, for example around ventricles,

RISH4 feature maps revealed the least structured deviation. Coefficients of variation are

similar for scans collected on Prisma or Trio, but increased when combining both datasets.

The visual observation of increased variation was also confirmed quantitatively (Table 5.3).

Measuring mean CV within the whole brain and selected ROIs, revealed higher variation in

all imaged for the pooled dataset in comparison to both individual datasets. Overall, vari-

ation in b0 and RISH0 feature maps was higher for Trio than for Prisma scans. In contrast,

RISH2 and RISH4 feature maps mostly demonstrated higher mean CV for Prisma than for

Trio scans.

5.3.3 Impact of Denoising on RISH Feature Scaling Maps

Linear scaling of images generally had a positive impact on minimising differences between

RISH features from both scanners (Figure 5.5, Table 5.4, all rm-ANOVA: p ≤ 0.023). How-

ever, the standard linear scaling (Baseline) significantly increased the RMSE between Trio

and Prisma scans for RISH4 feature maps (Inter-Scanner vs. Baseline: ptukey = 0.008).

Denoising scaling maps prior to their application could counteract that adverse effect, but

not improve RMSE beyond the original inter-scanner differences (Inter-Scanner vs. Median:

ptukey = 0.008; Inter-Scanner vs. Gaussian: ptukey = 0.008). The RMSE between b0 images

and all RISH feature maps could be reduced by denoising scaling maps with a median filter
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Table 5.2: Global RMSE for Different Harmonisation Methods. RMSE displayed in 103 as
mean (median) ± std. Lowest RMSE values for each contrasts across methods are printed
in bold.

Inter-Scanner Linear-RISH Global Scaling

b0 0.098 (0.095) ± 0.025 0.079 (0.076) ± 0.013 0.074 (0.070) ± 0.014

RISH0 36.97 (37.18) ± 9.50 22.90 (20.40) ± 8.20 24.87 (23.34) ± 7.82

RISH2 0.715 (0.741) ± 0.177 0.461 (0.456) ± 0.067 0.426 (0.428) ± 0.080

RISH4 0.084 (0.086) ± 0.019 0.058 (0.055) ± 0.013 0.042 (0.042) ± 0.009

RISH6 0.097 (0.101) ± 0.024 0.065 (0.064) ± 0.016 0.041 (0.041) ± 0.009

CNN Baseline CNN Multi-Path CNN Multi-Path #2

b0 0.072 (0.064) ± 0.028 0.068 (0.061) ± 0.031 0.070 (0.067) ± 0.032

RISH0 24.87 (20.95) ± 11.79 24.28 (21.37) ± 11.45 24.79 (23.45) ± 11.44

RISH2 0.449 (0.398) ± 0.159 0.418 (0.386) ± 0.115 0.428 (0.406) ± 0.109

RISH4 0.053 (0.047) ± 0.019 0.047 (0.043) ± 0.018 0.043 (0.045) ± 0.009

RISH6 0.062 (0.059) ± 0.021 0.055 (0.052) ± 0.020 0.043 (0.044) ± 0.009

P-Values of Post-Hoc Paired Tukey-Test

Method #1 Method #2 b0 RISH0 RISH2 RISH4 RISH6

Inter-Scanner Linear-RISH 0.271 0.116 0.012 <.001 <.001

Inter-Scanner Global Scaling 0.177 0.189 0.017 <.001 <.001

Inter-Scanner CNN Baseline 0.206 0.318 0.107 0.056 0.056

Inter-Scanner CNN Multi-Path 0.148 0.264 0.030 0.021 0.026

Inter-Scanner CNN Multi-Path #2 0.159 0.273 0.026 <.001 <.001

Linear-RISH Global Scaling 0.016 0.029 0.251 0.011 0.008

Linear-RISH CNN Baseline 0.753 0.979 1.000 0.9828 0.998

Linear-RISH CNN Multi-Path 0.564 0.993 0.578 0.668 0.840

Linear-RISH CNN Multi-Path #2 0.803 0.988 0.725 0.007 0.006

Global Scaling CNN Baseline 0.998 >0.999 0.985 0.197 0.018

Global Scaling CNN Multi-Path 0.995 >0.999 0.998 0.764 0.099

Global Scaling CNN Multi-Path #2 0.995 >0.999 >0.999 0.207 0.226

CNN Baseline CNN Multi-Path 0.633 0.947 0.693 <.001 <.001

CNN Baseline CNN Multi-Path #2 0.994 >0.999 0.906 0.395 0.041

CNN Multi-Path CNN Multi-Path #2 0.783 0.988 0.806 0.944 0.214

rm-ANOVA p-val 0.022 <.001 0.003 0.001 <.001
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Figure 5.3: Comparison of Regional RISH Feature Differences after MUSHAC Data Har-
monisation. The extend of inter-scanner differences varied for different regions and different
image contrasts (b0 and RISH features. All harmonisation approaches helped to reduced the
RMSE between scanners, however, CNN approaches resulted in outlier cases with higher
RMSE than before harmonisation (particularly for b0 and RISH0). Overall, global scaling
and the CNN multi-path approaches were more successful to harmonise RISH4 features.
The CNN baseline showed a high variation is RMSE for most higher order RISH features
(l=2,4,6). Linear RISH features scaling seemed most beneficial for RISH0 features.
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Figure 5.4: Intra- and Inter-Scanner Variation for CENTER-TBI Cambridge Subset. Top
row: Average b0 images and RISH feature maps for all 14 scans from seven subjects scanned
on Prisma and Trio. Row 2-4: Lowest variation within and across scanners was found in the
WM of b0 images. Cortical areas showed generally higher variance, particularly on RISH2

feature maps. Variation was similar within both scanners (both middle rows), but increased
when combining data from both scanners (bottom row). All CV maps are shown using the
same scale.
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Table 5.3: Global and Regional Variation within and Across Scanners for CENTER-TBI
Subset. Coefficients of variation displayed as mean ± std in %. Mean values larger than the
equivalent metric at the other single scanner data printed in bold.

ROI b0 RISH0 RISH2 RISH4

P
ri

sm
a

Whole Brain 23.2 ± 15.2 28.1 ± 20.0 52.0 ± 25.2 48.6 ± 19.8

CC 16.3 ± 12.4 17.5 ± 8.5 45.6 ± 23.4 41.6 ± 15.4

IFO 16.2 ± 11.0 17.7 ± 8.9 47.2 ± 23.7 45.2 ± 17.5

ILF 12.9 ± 7.6 17.7 ± 9.3 44.5 ± 20.5 46.4 ± 19.0

SLFI 12.5 ± 11.5 13.6 ± 5.6 39.1 ± 19.9 37.3 ± 13.8

UF 12.5 ± 6.5 23.5 ± 11.3 38.1 ± 16.5 46.9 ± 17.1

T
ri

o

Whole Brain 24.0 ± 14.8 28.2 ± 17.2 50.2 ± 21.5 48.3 ± 19.6

CC 17.5 ± 12.1 19.1 ± 7.4 45.0 ± 19.7 42.2 ± 15.2

IFO 16.7 ± 10.5 19.3 ± 7.1 45.2 ± 20.1 43.8 ± 17.4

ILF 14.2 ± 7.5 20.5 ± 8.0 43.9 ± 17.9 45.4 ± 18.2

SLFI 13.8 ± 11.2 15.9 ± 5.5 42.1 ± 16.9 40.1 ± 13.2

UF 12.5 ± 6.6 20.6 ± 9.4 36.0 ± 13.0 43.1 ± 15.0

P
ri

sm
a

&
T

ri
o

Whole Brain 24.7 ± 13.6 32.5 ± 17.4 53.8 ± 21.8 55.1 ± 19.4

CC 18.4 ± 11.1 23.2 ± 6.6 47.0 ± 19.3 47.4 ± 15.0

IFO 18.4 ± 9.7 24.2 ± 6.9 48.4 ± 20.2 48.9 ± 16.8

ILF 15.1 ± 6.5 22.8 ± 6.7 45.5 ± 17.5 51.2 ± 18.0

SLFI 14.7 ± 10.3 20.0 ± 4.1 42.4 ± 16.1 44.1 ± 12.9

UF 14.8 ± 5.3 26.4 ± 9.1 41.0 ± 13.8 48.8 ± 14.2
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Figure 5.5: Effect of Denoising of Scaling Maps for Data Harmonisation. Linear scaling of b0
images and RISH features had a positive effect on reducing the RMSE (base) in comparison
to the inter-scanner differences (inter). The exception was RISH4 features for which an
increase in RMSE was observed. Denoising scaling maps with a median filter (med) had
overall a small but beneficial effect on further reducing the RMSE. Gaussian filtering (gauss)
was less effective and negatively impacted b0 image scaling.

(Baseline vs. Median: all ptukey ≤ 0.006). This was not observed for Gaussian filtering,

with the exception of RISH4 features maps (Baseline vs. Gaussian: ptukey ≤ 0.036).
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Table 5.4: Impact of Denoising of Scaling Maps on Harmonisation between Scanners for
CENTER-TBI Subset. RMSE displayed as mean ± std ×103. P-values<0.05 printed in
bold (no correction for multiple comparison).

Method b0 RISH0 RISH2 RISH4

Inter-Scanner 0.10 ± 0.03 103.65 ± 40.80 2.92 ± 0.77 0.48 ± 0.08

Baseline 0.08 ± 0.01 64.23 ± 20.60 2.10 ± 0.36 0.53 ± 0.08

Median 0.08 ± 0.01 61.81 ± 20.69 1.98 ± 0.35 0.48 ± 0.06

Gaussian 0.09 ± 0.01 61.89 ± 19.32 2.03 ± 0.39 0.48 ± 0.06

P-Values of Post-Hoc Paired Tukey-Test

Method #1 Method #2 b0 RISH0 RISH2 RISH4

Inter-Scanner Baseline 0.335 0.082 0.069 0.008

Inter-Scanner Median 0.231 0.073 0.043 0.994

Inter-Scanner Gaussian 0.869 0.093 0.024 0.959

Baseline Median 0.005 0.003 0.002 0.006

Baseline Gaussian 0.569 0.389 0.569 0.005

Median Gaussian 0.151 1.000 0.709 0.036

rm-ANOVA p-val 0.161 0.023 0.012 <0.001

5.3.4 Scan Selection and Weighting for Scaling Maps

Scaling Maps. Figure 5.6 shows an example of differently computed scaling maps for

one healthy CENTER-TBI subject. The baseline scaling maps, computed from all available

training subjects, showed the most spatially continuous values. Selecting only the three most

similar subjects to compute scaling maps resulted in higher variation. Weighting the subjects

according to image similarity resulted in very similar scaling maps that obtained from the

baseline approach (basically, weighting all subject equally). Computing scaling values for

each voxel independently resulted in more speckled scaling maps. For all approaches the

variation in scaling values was highest for RISH4 features. Scaling maps for b0 images showed

the most values close to one, which compounds to no change between scanner intensities.
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Figure 5.6: Example of Scaling Maps of CENTER-TBI Subject. Selecting a subset of
subjects resulted in slightly more structured scaling maps (Selected). Weighting the subjects
(Weighted) obtained very similar scaling maps compared to when no weighting was applied
(Baseline). Computing a voxel-wise weighting resulted in spatially less continuous scaling
values (Voxel-Weighted). Most variation was found for RISH4 features. The least impact of
scaling was observed for b0 images.
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Global RMSE. Overall, differences between the various calculations of scaling maps were

subtle (Figure 5.7). Voxel-wise weighting resulted in the lowest RMSE between scanners for

all RISH feature maps (Table 5.5). Voxel-wise weighting was also significantly better than

global weighting (Weighted vs. Voxel-Weighted: ptukey = 0.001). Selecting the three most

similar subjects to calculate scaling maps (Selected) led to higher RMSEs than any other

approach, which was most obvious for RISH4 feature maps (post-hoc paired Tukey test: all

ptukey ≤ 0.025). No direct impact of different computation methods for scaling maps was

observable for b0 images (post-hoc paired Tukey test: all ptukey ≥ 0.962).

Table 5.5: Impact of Subject Selection and Weighting on Harmonisation for CENTER-TBI
Subset. RMSE displayed as mean ± std ×103. P-values<0.05 printed in bold.

Method b0 RISH0 RISH2 RISH4

Inter-Scanner 0.10 ± 0.03 103.65 ± 40.80 2.92 ± 0.77 0.48 ± 0.08

Baseline 0.08 ± 0.01 61.81 ± 20.69 1.98 ± 0.35 0.48 ± 0.06

Selected 0.08 ± 0.01 62.87 ± 22.88 2.07 ± 0.38 0.52 ± 0.06

Weighted 0.08 ± 0.01 61.72 ± 20.61 1.98 ± 0.35 0.48 ± 0.06

Voxel-Weighted 0.08 ± 0.01 60.10 ± 19.20 1.94 ± 0.31 0.45 ± 0.05

P-Values of Post-Hoc Paired Tukey-Test

Method #1 Method #2 b0 RISH0 RISH2 RISH4

Inter-Scanner Baseline 0.251 0.098 0.060 1.000

Inter-Scanner Selected 0.206 0.077 0.085 0.060

Inter-Scanner Weighted 0.274 0.092 0.060 1.000

Inter-Scanner Voxel-Weighted 0.311 0.092 0.063 0.240

Baseline Selected 0.997 0.998 0.128 0.025

Baseline Weighted 0.996 0.976 0.996 1.000

Baseline Voxel-Weighted 0.998 0.757 0.933 0.002

Selected Weighted 0.994 0.995 0.154 0.018

Selected Voxel-Weighted 1.000 0.989 0.303 0.003

Weighted . Voxel-Weighted 0.962 0.919 0.904 0.001

rm-ANOVA p-val 0.061 0.015 0.012 <0.001

Median filtering was applied to all four approaches.
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Figure 5.7: Impact of Selection of Subjects on Image Harmonisation. All methods re-
duced the global RMSE for b0, RISH0 and RISH2, but differences between approaches were
marginal. Selecting a subset of subjects (sel) increased the global RMSE for RISH4. Only
voxel-wise weighting (vxl) had an observable positive effect on RISH4 feature maps. All
approaches included the same median filtering of scaling maps.

5.3.5 Harmonisation of CENTER-TBI SH Images

Figure 5.8 shows the impact of different harmonisation methods on the inter-scanner variance

(measured via RMSE) for the CENTER-TBI control subjects. Linear RISH feature scaling,

global scaling and the CNN resulted in reduced RMSEs between Prisma and Trio scans

for b0 images as well as RISH0 and RISH2 features. While the neural network could also

successfully harmonise SH coefficients of higher order (RISH4), both other methods seemed

to fail to minimise the RMSE. In fact, global scaling resulted in increased RMSE between

both scanners for RISH4 features maps. Looking at RMSE for individual subjects showed

that harmonisation was not entirely consistent for all subjects. For example, two subjects

(B & G) had a higher RMSE for RISH2 features after harmonisation with CNN than with

linear scaling (Linear-RISH or Global Scaling).

All three harmonisation methods reduced the RMSE compared to non-harmonised data

(Table 5.6). The exception was global scaling for RISH4 features which yielded significantly

higher RMSE (Inter-Scanner vs. Global-Scaling: ptukey < 0.001). Linear RISH feature

scaling was beneficial to reduce RMSE for RISH0 and RISH2 feature maps (Inter-Scanner

vs. Linear-RISH: ptukey = 0.005 and ptukey < 0.001, respectively). The lowest mean RMSE

for b0 images and all RISH feature maps were achieved by the CNN Multi-Path. The

neural network outperformed both the linear RISH feature and global scaling for b0 and

RISH4 images (All: ptukey ≤ 0.025). Global scaling performed worse on higher order RISH

features.
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*

* *

Figure 5.8: Comparison of Harmonisation Methods on CENTER-TBI Controls. Top: All
three methods were able to reduced the global RMSE between the data from different
scanners for b0 images, RISH0 and RISH2 feature maps. Global scaling was overall similar in
performance to linear RISH feature scaling, however, worsened the inter-scanner differences
for RISH4 feature maps. The CNN Multi-Path provided the lowest RMSE. Significantly
lower RMSE than Inter-Scanner RMSE marked with an asterisk. Bottom: RMSE for
individual subjects (A-G) sorted according to descending inter-scanner RMSE for b0 images.
Harmonisation for subjects B and G was less successful than for other subjects.

5.3.6 Evaluation of Harmonisation for CENTER-TBI DTI Metrics

Global RMSE. Figure 5.9 shows the global RMSE of FA and MD maps before and after

harmonisation. For both DTI metrics, the differences in RMSE were all highly significant

between all harmonisation methods as well as no data harmonisation. Backprojection of SH

to DWI space led only to marginal, but significant (FA: ptukey = 0.025, MD: ptukey < 0.001)

differences.9 Linear RISH feature scaling had a negative effect on both DTI metrics as

the observed RMSE was significantly increased after harmonisation (both for FA and MD

Inter-Scanner vs. Linear-RISH: ptukey < 0.001). Both global scaling and CNN Multi-Path

harmonisation could significantly reduce the deviation between DTI metrics from the two

scanners (All: ptukey < 0.001). The CNN Multi-Path harmonisation achieved overall the

lowest average of global and regional RMSE among the methods analysed (Table 5.7).

9Changes are not directly reflected in the mean RMSE, but were consistent for all subjects; RMSE was

lower for FA and higher for MD for all subjects after backprojection.
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Table 5.6: Comparison of Harmonisation Methods on Control Subjects from CENTER-TBI.
Global RMSE displayed as mean ± std ×103. Lowest mean RMSE per contrast printed in
bold.

Method b0 RISH0 RISH2 RISH4

Inter-Scanner 0.11 ± 0.03 122.93 ± 46.73 4.27 ± 0.97 0.60 ± 0.13

Linear-RISH 0.08 ± 0.02 73.87 ± 27.63 2.71 ± 0.72 0.63 ± 0.12

Global Scaling 0.08 ± 0.02 72.36 ± 26.71 2.98 ± 0.84 0.78 ± 0.18

CNN Multi-Path 0.07 ± 0.01 62.08 ± 15.27 1.93 ± 0.39 0.34 ± 0.06

P-Values of Post-Hoc Paired Tukey-Test

Method #1 Method #2 b0 RISH0 RISH2 RISH4

Inter-Scanner Linear-RISH 0.059 0.005 <0.001 0.184

Inter-Scanner Global Scaling 0.043 0.004 <0.001 <0.001 ∗

Inter-Scanner CNN Multi-Path 0.026 0.008 0.005 0.006

Linear-RISH Global Scaling 0.630 0.006+ 0.015+ 0.004+

Linear-RISH CNN Multi-Path 0.008 0.082 0.141 0.002

Global Scaling CNN Multi-Path 0.025 0.103 0.093 0.002

rm-ANOVA p-val 0.007 0.005 0.002 <0.001
∗global scaling significantly worse than Inter-Scanner RMSE, +global scaling significantly
worse than Linear-RISH RMSE

Regional RMSE. A similar observation was made for regional FA metrics (Figure 5.10).

Within the ROIs examined, the RMSE was increased after harmonisation with linear RISH

feature scaling. In contrast, both global scaling of FA maps as well as the neural network

harmonisation could reduce the RMSE between matched scans from Prisma and Trio. The

CNN approach showed the best potential to minimise differences between scans. Nonethe-

less, harmonisation performance varied for the regions investigated. For example, SLFI and

UF showed low and very high variation of RMSE, respectively (Table 5.7).

Harmonisation of the MD metric between scanners showed a different pattern. Although

both linear RISH feature and global scaling could reduce the RMSE for some regions, the

effect of data harmonisation was marginal. Globally, the RMSE was increased for MD values

after linear RISH feature scaling (Figure 5.9), however, within selected WM tracts, such as

the SLFI and UF, this harmonisation approach could decrease inter-scanner differences. The

RMSEs in both ROIs were increased after global scaling of MD metrics. Overall, harmon-

isation via global scaling worked much better for FA than MD values. The neural network

was most successful in lowering regional RMSE between images from both scanners, which

was consistent with the observation made for the global RMSE.
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Figure 5.9: Comparison of DTI Metrics Before and After Harmonisation for CENTER-TBI
Controls. Backprojecting the data from SH to DWI representation did not show any impact
on the RMSE between scans from Prisma and Trio. Linear RISH feature scaling resulted
in an increase of global RMSE for both FA and MD. While global scaling could lower the
RMSE between scanners, the CNN Multi-Path showed the best potential for harmonising
DTI metrics.

Figure 5.10: Comparison of Regional DTI Metrics Before and After Harmonisation for
CENTER-TBI Controls. The RMSE between FA from different scanners could be reduced
via global scaling and the CNN Multi-Path harmonisation, whereas the latter seemed more
successful. Linear RISH feature scaling increased the RMSE of regional FA. Both linear
RISH feature and global scaling showed no clear reduction of RMSE between MD values
across scanners. Regions such as the SLFI and the UF slightly benefited from linear RISH
feature harmonisation (reduced RMSE compared to inter-scanner differences). Only the
CNN Multi-Path approach displayed reduced RMSE for regional MD between scanners.
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Table 5.7: Global and Regional RMSE for FA and MD Within and Across Scanners for
CENTER-TBI Controls. All RMSE displayed as mean ± std. MD represented as ×10−3

ROI Inter-Scanner Linear-RISH Global Scaling CNN M.P.

F
A

Global 0.093 ± 0.005 0.105 ± 0.005 0.078 ± 0.005 0.070 ± 0.006

CC 0.099 ± 0.006 0.107 ± 0.006 0.083 ± 0.006 0.072 ± 0.006

IFO 0.095 ± 0.008 0.105 ± 0.007 0.081 ± 0.007 0.072 ± 0.006

ILF 0.104 ± 0.011 0.115 ± 0.011 0.087 ± 0.011 0.079 ± 0.009

SLFI 0.094 ± 0.006 0.098 ± 0.007 0.077 ± 0.004 0.068 ± 0.002

UF 0.109 ± 0.019 0.117 ± 0.019 0.093 ± 0.019 0.085 ± 0.018

M
D

Global 0.215 ± 0.028 0.249 ± 0.026 0.196 ± 0.027 0.151 ± 0.024

CC 0.122 ± 0.013 0.121 ± 0.013 0.119 ± 0.010 0.087 ± 0.011

IFO 0.121 ± 0.017 0.122 ± 0.017 0.118 ± 0.014 0.089 ± 0.014

ILF 0.110 ± 0.009 0.110 ± 0.009 0.111 ± 0.007 0.084 ± 0.005

SLFI 0.098 ± 0.010 0.096 ± 0.009 0.102 ± 0.007 0.069 ± 0.005

UF 0.115 ± 0.009 0.112 ± 0.009 0.121 ± 0.008 0.093 ± 0.008

P-Values of Post-Hoc Paired Tukey-Test

Method #1 Method #2 FA MD

Inter-Scanner Linear-RISH <0.001 <0.001

Inter-Scanner Global Scaling <0.001 <0.001

Inter-Scanner CNN Multi-Path <0.001 <0.001

Linear-RISH Global Scaling <0.001 <0.001

Linear-RISH CNN Multi-Path <0.001 <0.001

Global Scaling CNN Multi-Path 0.003 <0.001

rm-ANOVA p-val <0.001 <0.001

Values for Backprojection not displayed for brevity and since they were near equal to Inter-
Scanner values (FA: ptukey = 0.025; MD: ptukey < 0.001). CNN M.P. stands for CNN
Multi-Path approach.
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Regional Mean DTI Metrics. Comparing mean FA metrics within the selected ROIs

revealed only marginal differences between Prisma and Trio scans (Figure 5.11 left). Inter-

estingly, there was an obvious drop in mean FA values of coregistered Trio scans compared

to the original scans. The multi-path CNN had been trained to map Prisma scans to the

coregistered Trio scans. This was also reflected in the harmonised regional mean FA val-

ues (Prisma - CNN Multi-Path), as these match the FA values from coregistered Trio scans

(Trio Coreg) much more closely than the ones extracted from the native scans (Trio). Linear

RISH and ROI-wise scaling resulted in slightly increased FA values compared to native Trio

FA values. The differences between scanners were not as obvious for MD values (Figure 5.11

right). Linear RISH scaling and CNN harmonisation showed increased MD values in the

SLFI , despite Trio MD values being lower than unharmonised Prisma MD values. Mapping

Prisma MD values to Trio space via ROI-wise scaling also resulted in outliers (e.g. reduced

MD in the CC).

Figure 5.11: Comparison of Means DTI Metrics in Controls Before and After Harmonisa-
tion. Regional mean values were marginally different between Trio and Prisma scans. Both
Linear-RISH and ROI-wise scaling overly increased Prisma FA values (e.g. ILF). The CNN
Multi-Path harmonisation strongly decreased FA values in comparison to the original values,
but matched most closely regional mean FA values extracted from coregistered Trio scans.
Differences in MD between scanners were not as drastic as for FA. However, ROI-wise scaling
led to some outliers (i.e. UF or CC).

5.3.7 Impact of Data Harmonisation on Mild TBI

The regression analysis showed that none of the 24 selected TractSeg regions was predictive

of patient outcome. This result was consistent regardless whether the examined scans came

from one of the two scanners, both scanners, or the pooled Trio and harmonised Prisma
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data. Nonetheless, a general trend of lower FA and higher MD values was observed in TBI

patients with poor outcome. As for the control subjects from CENTER-TBI, regional DTI

metrics were very similar for both Prisma and Trio scans, and the CNN harmonisation

decreased FA metrics substantially. Furthermore, it seemed that the separation between

patients with good and poor outcome increased through CNN harmonisation. Regional MD

values seemed mostly robust to any applied harmonisation method and strong effects could

not be observed visually (Figure 5.12).

Figure 5.12: Regional Mean FA and MD Before and After Harmonisation for Mild TBI
Patients in Selected Regions. Harmonisation via CNN substantially reduced the FA mean
values. This could not be observed for MD values, which seemed mostly stable regardless
whether data harmonisation was applied or not.

5.4 Discussion

5.4.1 Potential and Limitations of Harmonisation Methods

MUSHAC Database. Although not the strongest harmonisation method, the linear RISH

feature scaling performed most consistently in lowering the RMSE between b0 and RISH

feature images of the MUSHAC benchmark database. In contrast, all three neural network

approaches showed strong RMSE outliers for b0 and RISH0 images. Generally, this could

indicate an overfitting of the model. However, upon visual inspection, the outlier RMSE

metric could be associated with a particular Prisma scan that had a higher intensity range

than the other Prisma scans even in unharmonised state. Later on, this particular subject

was also excluded from a different experiment conducted by the authors who provided the
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MUSHAC database [244]. Nonetheless, this shows how machine learning models can be

sensitive to outliers and do not necessarily generalise well. Such a sensitivity could be prob-

lematic for analysis of patient data, as a neural network trained on control subjects could

artificially enhance abnormalities found in patient scans. Global scaling of SH volumes per-

formed surprisingly well and in particular outperformed more complex methods for RISH4

and RISH6 features in the MUSHAC dataset. While b0 images and lower order SH images

display anatomical structures, higher order SH images are more noisy. Approaches that

harmonise on a local level (Linear-RISH & CNN Baseline and CNN Multi-Path) may fail

to learn to scale unstructured image intensities. Therefore, methods based on global scaling

(including CNN Multi-Path #2) were more beneficial for higher order SH harmonisation.

Previous publications on the same database [187, 238] have only assessed harmonisation

methods based on lower order RISH features (i.e. RISH0 and RISH2). The experiments

presented in this chapter have shown that a neural network that processes SH of different

orders on multiple individual pathways performs better than a neural network with one

pathway. This and the fact that global scaling for higher order SH images was more ben-

eficial, is a clear indicator, that information from SH images may need to be harmonised

differently dependent on the SH order.

CENTER-TBI Database. When comparing RISH features from the CENTER-TBI

database, the multi-path neural network performed best to reduce the RMSE between Trio

and Prisma scans. Although a high variation for the different models was observed, Cohen’s

measure showed that the harmonisation was indeed effective. All three harmonisation ap-

proaches could reduce inter-scanner differences for b0, RISH0 and RISH2 images (Cohen’s

effect size d > 0.2). The strongest effect was observed for CNN Multi-Path (Cohen’s effect

size d > 1.3), which also was more effective than Linear-RISH harmonisation (Cohen’s effect

size d > 0.5) and global image scaling (Cohen’s effect size d > 0.4) for all four images (Table

7.4 in Appendix). The Linear-RISH harmonisation failed to harmonise SH of the 4th order

(RISH4) and could not significantly reduce differences between b0 images. This could be a

reason why RMSEs between FA and MD maps were increased after Linear-RISH harmon-

isation. Nonetheless, this could also be a consequence of previous processing steps: The

RMSE computed for validation is based on averaging on voxel-wise differences between the

harmonised images and the coregistered Trio scans. The CNN was trained on the match-

ing pairs of Prisma and coregistered Trio scans, hence could learn a direct mapping to the

coregistered Trio scans, later also used for validation. In contrast, the linear RISH feature

scaling maps were computed from spatially normalised images warped directly from the na-

tive space. This means a mapping between intensities of native Prisma and Trio scans was
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learned instead of native Prisma and coregistered Trio scans. Examination of regional mean

FA confirmed this hypothesis. The neural network was able to best project Prisma scans

to coregistered Trio scans. However, coregistered Trio scans introduced a bias that lowered

the FA values. This might be caused by intensity interpolation and rotation of b-vectors

during the coregistration. The mapping learned by the neural network also adapted to that

bias. Consequently, FA values after CNN harmonisation were much lower than the target

Trio FA intensity domain. For clinical applications, researchers will have to take this and

the model complexity into consideration to choose an appropriate harmonisation method.

For the control subject of both databases, MUSHAC and CENTER-TBI, the harmoni-

sation methods are qualitatively comparable. While all methods could effectively minimise

the RMSE between scans, the CNN with multiple pathways was overall more successful in

reducing the scanner differences. This was particularly evident for RISH features of higher

order (RISH2 and RISH4). For b0 and RISH0 images the benefits of CNN Multi-Path har-

monisation was not as prominent in the MUSHAC database than in the CENTER-TBI

database. As described above, data for one outlier subject were not harmonised well, which

shows the sensitivity of neural networks to such outliers.

5.4.2 Enhancement of Scaling Maps Through Post-Processing

The standard approach of linear RISH feature scaling involves computing scaling maps for

the expected values of RISH features (i.e. the average image per scanner) in template space

and apply these to SH coefficients after backprojection to native space. Inherently, there is

a disconnection between RISH features maps, that are the sum of squared SH coefficients,

and the SH images themselves. While RISH0 feature maps are only derived from one SH

image, higher order RISH features condense information from several SH images. With less

structured signal distribution in higher order SH images, the RISH features might be less

representative of SH coefficients on a voxel-wise level. Denoising images with a median filter

generally can remove speckles. For RISH feature scaling maps this means removing voxels

that are disconnected between RISH and SH images and avoid arbitrary scaling. This was

observed to be beneficial on RISH4 images, however, merely to recover the original inter-

scanner differences. A similar observation was made for Gaussian filter, but its blurring

effect was disadvantageous for more structured images such as the b0 image. Although the

benefits of denoising scaling maps were marginal, this experiment revealed a general flaw in

the concept of SH coefficient scaling via RISH features.

The linear RISH feature scaling was later on improved by including an adaptive approach

to compute the scaling maps [187]. This idea of selecting subjects to derive the scaling
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factors was applied to CENTER-TBI data. Furthermore, this was extended by computing

weighted averages of feature maps, instead of a strict subselection of a few subjects, to derive

scaling maps. Overall, these approaches resulted in very similar performances. However, the

selection of a few subjects did not bring the previously reported boost in performance. This

may be explained by the previous observation that an optimal performance was achieved

with a minimum of 16 training subjects used to calculate expected RISH feature values

[126]. Including more subjects leads to smoother average images hence less speckled scaling

maps, which further would improve scaling of higher order RISH features. Indeed, selection

of the three most similar subjects resulted in noisier scaling maps and was a disadvantage

for RISH4 images. This is coherent with the previous observation that smoother RISH4

scaling maps led to better data harmonisation. The voxel-wise weighting to compute scaling

factors was most beneficial for RISH4 feature maps, as it is most capable to adapt to the

unstructured intensities for each individual test subject.

5.4.3 Application to Traumatic Brain Injury Data

Both differences between scanners and patient groups with good and poor outcome were too

subtle to be measured on a region-wise level. This made it difficult to estimate the impact of

mapping intensities via ROI-wise scaling. The more complex neural network resulted in the

adversary effect of reduced FA. As mentioned above this is likely due to a learned mapping

between Prisma and coregistered Trio scans, rather than the raw Trio data. Important is

also the observation that the FA difference between patients with good and poor outcome

slightly increased. The models presented in the literature and in this chapter are usually

trained on control subjects. This could particularly be problematic for TBI, as the model

learns to project diffusion metrics that appear healthy, but possibly will fail for outlier

intensities associated with subtle pathology. This could lead to an artificial enhancement of

differences between patient groups.

The examined methods are based on a one-to-one mapping between scanners. This is not

necessarily feasible for a large multi-centre study, such as CENTER-TBI, that includes

more than ten acquisition sites. Not only is it computationally expensive to compute one

model for each mapping, but there is not yet a consensus how to pick the optimal reference

site to harmonise all data to. Regarding the CENTER-TBI database, there are many other

challenges to overcome. By design only a maximum of nine healthy controls were scanned at

each site. With at least 16 subjects required for an optimal mapping between scanners [126],

the Linear-RISH harmonisation might not be suitable, in particular, as Cambridge was the

only CENTER-TBI site that collected data for the same controls on all available scanners.

Both the acquisition protocol and the scanned volunteers will differ between imaging sites.
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This and the limited number of control subjects makes it much harder - or even impossible

- to match control scans across sites, which hampers the computation of adequate scaling

maps.

5.4.4 Future Work

The experiments presented in this chapter have shown that neural networks have the capa-

bility to learn a mapping between different scanner domains. However, the models presented

here and compared previously [238] rely on matched scans of travelling volunteers, which

often are not available for multi-centre studies. The Linear-RISH harmonisation has been

successfully applied to larger databases without travelling volunteers [32, 225], but require at

least 16 well matched control subjects [126]. There have been efforts to compute mappings

between RISH feature images via deep learning models that do not rely on directly matched

control subjects [127], however, these are based on Cycle-GANs [285], which are difficult to

train. In addition, any machine learning model will perform best on its training data. To

avoid a bias, training subjects would need to be excluded from any following analysis. For

a study with limited number of healthy volunteers, such as CENTER-TBI, control subjects

could be used for data harmonisation, but not for any subsequent analysis. Future investi-

gation will need to look into harmonisation methods focusing on limited data and explore

ideas how to incorporate non-imaging patient data to avoid introducing any biases.

A further development is the simultaneous harmonisation of scans from multiple sites. The

VAE introduced by Moyer et al. [182] learns scanner independent representations between

several scanners, hence could be useful for a multi-centre study. The auto-encoder out-

performed Linear-RISH harmonisation, however, could still be improved by using a larger

receptive field (patches instead on directly adjacent neighbour voxels). Furthermore, it could

benefit from including multiple-pathways for the different SH orders. The VAE could also be

extended to use more variables than just the site/scanner identifier as covariates. This could

possibly allow to include patient data as well. A recent study has successfully shown the

joint reconstruction of diffusion metrics from multiple-sites, while simultaneously reducing

scanner biases [244]. Such a model could possibly be adapted to fit control and TBI patient

data together to minimise inter-site variation while preserving information from pathological

diffusion.

Besides the use of more data, covariates or different neural network architectures, the cost

function to train the model is also worth investigating more in the future. The FSCNet

optimised the network parameters not only by computing the loss function between SH im-

ages but also RISH feature maps, that were computed from harmonised signal throughout

the training phase. Likewise, the VAE designed by Moyer et al. [182] incorporated both
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differences between SH and DWI images.

5.5 Chapter Summary

This chapter examined different methods for diffusion MRI harmonisation. The results

showed that neural networks are best at learning a non-linear mapping between scanners

based on SH representation. Thereby, it was highlighted that different orders of SH benefit

from being processed separately on multiple neural network pathways. The experiments

also revealed potential pitfalls, such as, for example, relying the harmonisation on coregis-

tered data. Here, it was shown that coregistering data from the reference site changed the

diffusion signal. Mapping data from the source site to such modified data from the reference

site may result in a skewed data harmonisation. Further investigation is needed to make

harmonisation a reliable processing step for clinical multi-centre databases.



Chapter 6

Lesions Analysis in Severe TBI

6.1 Introduction

Examination of brain lesions is a broad research field for many different pathologies. In

contrast to other brain diseases that may show distinct patterns across patients (e.g. multiple

sclerosis or stroke), TBI lesions are very heterogeneous showing a wide range of severity [21].

Dependent on the strength and site of the external force impacting the head, traumatically

induced pathologies may include focal lesion masses, such as contusions and haematomas, or

diffuse axonal and microvascular injury. Although injuries are predominately focal or diffuse,

most lesions consist of both components [172] and vary greatly in size, shape and location. To

add to the complexity, secondary brain injuries evolve long time after the traumatic incident

[40] leading to changing lesion patterns and eventually to late-life consequences [25, 172, 257].

Understanding lesion formation and evolution throughout different stages post-injury is

crucial to gain insight into traumatic head injuries and ultimately improve patient outcome.

Therefore, many studies have been undertaken to identify and characterise TBI lesions

[73, 170, 271]. Detecting abnormalities is indeed a very challenging task in itself and the first

step to analyse lesions. Therefore, much justifiable research has been conducted to detect

brain lesions on MR images [13, 110, 159]. However, far less attention has been given to

subsequent analysis strategies to derive clinically valuable information from segmented brain

lesions. Once the lesions have been manually or automatically outlined on the brain scans,

the total lesion volumes can be quickly computed. Gaining a comprehensive understanding

of the pathology, however, requires further effort. Imagine two lesions on different scans with

the exact same total volume. While one lesion may affect one large region within the brain,

the other could be separated in smaller clusters more widely distributed. Many smaller

lesion clusters may have a different effect than one large lesion, despite in sum having the

159
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same volume. Nonetheless, in a simple volumetric assessment both lesions would appear to

be equal. Besides that, a lesion in one brain region could be more detrimental than a lesion

of similar size found in another. Thus, lesions may be better characterised by assessing their

volume as well as their location and distribution within the brain.

6.1.1 Motivation from a Clinical Research Perspective

The following section describes some examples of TBI research in which lesion location was

linked to clinical variables, such as patient outcome. The focus lies here on visible lesions

(e.g. contusions or oedema apparent on FLAIR scans), that could be annotated and visu-

ally located by the naked eye. Latent lesions that manifest for example as changed diffusion

metrics based on ROI analysis or voxel-wise statistics will not be considered.

Moen et al. [180] evaluated the prognostic value of visible traumatic axonal injuries by

identifying and counting lesions on several MRI contrasts. Analysing 641 severe TBI pa-

tients, revealed that the number of DWI lesions and the volume of FLAIR lesions in the

CC, brainstem and thalamus were predictive of patient outcome measured by the GOSE.

The number of cortical contusions on MRI scans were more informative for moderate TBI

patients [180]. Another study that included longitudinal data with acute and chronic scans

from 16 TBI patients found lesion volumes correlated with patient outcome. It was dis-

covered that only larger TBI lesions in the temporal lobes, as found on GRE and FLAIR

scans, were connected to brain tissue volume loss. Such lesions could be associated with

worse neuropsychological outcome.2 In contrast, tissue atrophy was not tied to frontally

located lesions and their volumes seemed to have no impact on patients outcome scores.

This study, however, was only based on 16 TBI patients, with 11 lesions detected in the

frontal lobes [169]. A comparative study used different MRI contrasts to qualitatively assess

lesion locations in 38 TBI patients. For this, the brains were subdivided into a superficial,

deep and posterior fossa brain zone. Lesions were only associated with a single zone, and in

case the lesion crossed more than one zone it was assigned to the zone containing most of

the lesion. This revealed that volumes, number and regional distribution of early T2w and

FLAIR lesions were useful to distinguish patients with good and bad outcome (dichotomised

by Glasgow outcome scale [GOS]3 score). The latter was associated with larger volumes and

higher lesion numbers. Particularly, median total volumes of lesions in the superficial zone

were most consistently disseminating between different patient outcomes. The authors hy-

1the study included a total of 128 moderate or severe TBI cases
2oral and written Symbol Digit Modalities Test
31: Death, 2: Neurodegenerative state, 3: Severe disability, 4: Moderate disability, 5: Good recovery



6.1. INTRODUCTION 161

pothesised that this might be because the superficial zone comprises the four major brain

lobes, hence includes most of the brain volumes. However, there was not differentiation

between subcortical WM and cortical areas. Susceptibility weighted images were found to

be beneficial to highlight intraparenchymal injury, but weakly linked to outcome scores [35].

Furthermore, neurocognitive effects4 of TBI were studied in 71 patients. Lesion location

was estimated qualitatively by associating them to different brain zones, such as for exam-

ple prefrontal cortex or temporal lobe. Large prefrontal lesions were linked to an impaired

performance in the neurocognitive tests assessed. Patients with lesions that were located in

and beyond the frontal regions had the worst test performance [155].

While head trauma is an incidental event, the brain injury is often progressing during the

first hours after impact. This is due to expansion or development of new hemorrhagic le-

sions after cerebral contusions. Since this could result in tissue with likely unrecoverable

loss of function, it is important to study lesion development to gain better understanding

of secondary brain injury [143]. Rehman et al. [213] have studied the progression of hemor-

rhagic contusions in 246 patients with TBI that underwent an initial and follow-up (within

24h) computer tomography (CT) scan. Contusion volumes on CT scans were manually esti-

mated by measuring lesion diameters and counting the affected image slices (this approach

to estimate lesion volume is also known as the ABC method). Progression was defined as

an increase of > 30% of the initial volume [213]. Furthermore, the location, laterality and

multiplicity of the lesion was assessed through visual inspection. Hemorrhagic contusion

progression could be associated to initially large contusion volumes (> 20 ml) and low score

on the GCS. A retrospective study of 491 TBI patients with admission and follow-up CT

scans within 72 hours revealed a progression of intra-parenchymal haemorrhage for three

quarters of the patients. Thereby, the lesion expanded on average by approximately 62%

(∼ 5 ml). Several factors were found to contribute to the rate of haemorrhage progression,

but lesion volume on the admission CT seemed most predictive [29].

6.1.2 General Concept for Lesion Localisation

Figure 6.1 displays an example of a MR scans showing a TBI with two different lesion clusters

that were annotated manually (Figure 6.1 B). The lesion is clearly visible on different MRI

contrast images such as FLAIR (Figure 6.1 A) and T1w (Figure 6.1 C). In order to locate

the lesion, it has to be seen in context with anatomical regions within the brain. Once the

brain is divided into meaningful areas, the overlap between the lesion annotation and each

region provides information about the lesion’s location. One way to define this overlap is to

4performance in gambling test
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calculate the relative volume of a lesion that lies within a particular brain region (e.g. 20%

of the lesion is within left middle frontal gyrus). To automatically parcellate the brain in

subregions, the multi-atlas tool MALP-EM was chosen as it has been shown to deal well with

distorted brain anatomy [151]. Nonetheless, lesion pathology often introduces an additional

challenge for parcellation algorithms. Brain parcellation via MALP-EM is based on locally

non-linear registration of multiple atlases and a subsequent refinement of the regions by

means of expectation maximisation. While this latter adjustment is highly advantageous

to improve region segmentation, it is also sensitive to abnormal intensity profiles in the

images. Therefore, in the presence of lesions the algorithm could be hindered in its ability

to parcellate the brain into anatomical plausible regions leading to corrupted segmentations

(see right top corner within the brain Figure 6.1 D). Comparing any lesion segmentation

to the erroneous region atlas would be flawed and lead to incorrect results. Alternative

brain parcellation methods, such as FreeSurfer’s recon-all, would also suffer from distorted

parcellations since these algorithms were not designed to cope with large lesions. Thus,

instead of using an accurate but lesion-sensitive algorithm, the idea is to use an estimate

for the brain parcellation that was derived by projecting the MALP-EM atlas of a healthy

subject population onto a patient’s brain. While not perfectly accurate, this parcellation will

be more robust. This idea of atlas registration to a lesioned brain is not new and has been

employed to localise stroke lesions [137], however, it has not been widely adopted for TBI

research, in which lesions are often located via visual inspection. Further methodological

details will be described later on.

Figure 6.1: Problematic of Automated Brain Parcellation via MALP-EM in Presence of
Lesions. On a FLAIR scan (A) of lesioned brain, two clusters were identified and manually
annotated (B). Since the lesion is also prevalent on the T1w scan (C), the brain region par-
cellation, driven by the T1w image intensities, are disturbed (D different regions highlighted
in different colours, see right top corner within the brain).
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6.1.3 Assessment of Lesion Progression

Lesions observed in patients suffering from TBI are vastly heterogeneous. To gain a better

understanding of pathological changes over time, lesions need to be compared across longi-

tudinal scans. The usual approach for analysis is the use of manual lesion annotations to

evaluate the lesion burden at different time points. Previous studies mostly assessed lesions

by measuring the total lesion volume [213, 277] and counting the number of lesions as seen

on different imaging contrast (FLAIR, SWI, etc.) [11, 78]. However, comparing total lesion

volumes over time may oversimplify the evolution of individual lesion clusters. For example

the tissue recovery from a small lesion could go unnoticed when a different lesion cluster on

the same scans substantially grew. Measuring the total lesion volume for comparison across

time points would show an increase in lesion burden, while failing to reflect the salvageable

tissue. Therefore, it may be important to examine individual lesion clusters independently

to capture more nuanced changes. For a direct comparison, single lesion clusters will need

to be matched between scans. In other words, for each lesion cluster found on the initial

scan the corresponding part in the follow-up scan needs to be identified. With increasing

numbers of patients in recent imaging studies, the tracking of each lesion part across longi-

tudinal scans can be a tedious task, and calls for automated approaches to measure lesion

changes. Automated lesion matching across scans, however, bears many challenges. At

first, a spatial correspondence between both scans needs to be established. Two scans of

a healthy subject could be registered rigidly, assuming the scans were acquired temporally

close, as no brain tissue atrophy is expected. However, TBI patients may display different

pathological patterns at different stages, as brain tissue swelling and deformation can take

place at different time points post-injury [108]. Thus, a deformable registration is often more

successful to bring brain tissues in alignment. Secondly, lesions in the two scans will need to

be matched depending on their spatial overlap. This is simple for one large, corresponding

lesion in both scans, and is fairly straight-forward to generalise for several lesion clusters as

long as their number remains constant across scans. However, this becomes quickly more

complicated when lesions dissolve or newly form, or one big lesion partially recovers such

that is appears to split into several smaller lesion clusters at a later stage. Algorithms to

match lesions will need to account for this variability in lesion evolution.

6.1.4 Aims

The aim of this chapter is to introduce two approaches to localise TBI lesions and estimate

longitudinal lesion changes. Both methods were designed to be fully automated, without

the need for an expert to decide via visual inspection where the lesion are located or how
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they evolve. Applied to a cohort of severe TBI patients, the localisation algorithm was used

to examine in which brain areas TBI lesions are found predominantly. Experiments will

also investigate differences for cohorts scanned on two different scanners as a case study for

potential variability in multi-centre data. Furthermore, locations of lesions will be assessed

for three different time points after injury. Lesion characteristics, such as volume and loca-

tion, will be estimated both in template and subject-space to compare the validity of both

approaches. A registration-based algorithm for matching lesions between longitudinal scans

will be introduced. This methods will then be validated qualitatively and used to examine

lesion changes over time in a subset of TBI patients.

6.2 Data & Methods

6.2.1 Severe TBI Database

Following experiments made use of a severe TBI patient cohort scanned on a Siemens Prisma

and Verio scanner. For both scanners T1w image were acquired with the same sequence

parameters as follows: TR = 2300ms, TE = 2.98ms, TI = 900ms and FOV read = 256

mm with percent phase FOV= 93.8% and a flip angle of 9 degrees. The FLAIR scans were

acquired with TR = 27840ms, TE = 95ms, TI = 2500ms and FOV read = 224 mm with

percent phase FOV= 80.8% and a flip angle of 9 degrees. Various lesion types and artefacts

were manually annotated by clinicians. However, the focus laid on the contusion core and

oedema, seen on FLAIR images, as these have been delineated within this database most

frequently. The database included 112 patients with scans at different time points after

injury. Patient were scanned fairly evenly on both scanners (Trio: 59 patients, Verio: 53

patients). In total there were 187 scan sessions with both T1w and FLAIR images. All of

these had a manually annotated oedema lesion. Contusion cores were annotated on 183 of

those FLAIR scans. Manual segmentations were generate by a clinical expert outlining both

lesion types (contusion and oedema) on FLAIR scans by means of ImSeg, an in-house tool5 to

view and annotate medical images. The selected data were processed via the structural MRI

pipeline (Section 2.3), so that the bias field corrected and spatially normalised T1w images

as well as coregistered FLAIR sequences were available afterwards. Further processing steps

for lesion localisation and longitudinal matching will be described below.

5originally developed by Microsoft Research



6.2. DATA & METHODS 165

6.2.2 Localisation of Lesions

The inverse of the transformation from T1w space to the Cam-CAN template from the

structural MRI pipeline was used to backproject the template’s MALP-EM ROI atlas to

each individual T1w scan. Thereby, nearest neighbour interpolation was chosen to keep

the integer ROI labels intact. The transformation for coregistering FLAIR to T1w images

was applied to the manually created binary lesion maps of FLAIR contusion and oedema,

again using nearest neighbour interpolation. Both projections led to the alignment of an

uncorrupted ROI atlas (i.e. the healthy subjects Cam-CAN ROI atlas) and the binary lesion

maps within a subject’s T1w image space. In practice the backprojection of the ROIs could

lead to part of the lesion not being covered by the atlas. To prevent this, the ROIs in the

template atlas were fully expanded to cover the whole FOV within template space. For

this, each voxel without ROI label was assigned the one of the closest ROI (estimated via

Euclidean distance). Backprojecting this expanded template atlas ensured full coverage of

any lesion. Figure 6.2 shows two examples of the original MALP-EM atlas along side the

backprojected Cam-CAN ROI atlas.

Figure 6.2: Comparison of Original and Projected Parcellation. Each row shows axial
slices of two example subjects. The first column show the T1w MR scan that was used
for brain parcellation. The corresponding FLAIR images (second column) clearly shows
the contusion core and oedema (e.g. hyper-intense regions in the frontal brain regions).
When subdividing the lesioned brains into brain regions via MALP-EM (third column) an
erroneous parcellation could be observed (white arrows). In contrast, backprojecting the
parcellation of the Cam-CAN template shows a less lesion-affected parcellation, albeit not
as precise (fourth column)
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An in-house python implementation took the aligned atlas and lesion maps as input and

first split the binary lesion annotation into individual lesion clusters by means of connected

component analysis (measure.label algorithm from the skimage python library). Then, for

each lesion cluster the overlap with all 138 MALP-EM ROIs was computed as the ratio of

the lesion volume within the particular ROI and the total lesion volume. Besides this lesion

overlap, further characteristics were computed automatically. This included the total lesion

volume, the average lesion cluster volume, the number of lesion clusters as well as the lesion

distribution, computed as the average distance between the centres of lesion clusters to one

and another.

For an alternative group-wise comparison, lesions were also directly projected from na-

tive FLAIR space to Cam-CAN space. This was achieved by applying transformations

from coregistration and spatial normalisation simultaneously to avoid multiple interpolation

steps (one nearest neighbour interpolation). To quantify the occurrence of lesions in tem-

plate space, the projected binary lesion maps were averaged to compute a probability map,

indicating each location’s relative frequency to have been labelled as FLAIR contusion core

or oedema. The mean value of these probability maps within the ROIs of the Cam-CAN

MALP-EM atlas were used to determine a region’s group-wise lesion burden/occurrence. A

comparison of the lesion burden at different time points after the incidental brain injury

was used to estimate a lesion type’s progression within the cohort. All projections were

performed with the antsApplyTransforms tool.

6.2.3 Longitudinal Lesion Matching

Subjects from the severe TBI database were selected when they have had a FLAIR con-

tusion core and oedema manually annotated on both a hyper-acute (scan within 72 hours)

and an acute follow-up scan approximately one week post injury. These inclusion criteria

were fulfilled by 21 patients (DPI [mean±std]: 1.3±0.6 or 7.6±2.1 for the hyper-acute and

acute stage, respectively).

Figure 6.3 schematically visualises the registration-based approach for longitudinal lesion

matching. At first, FLAIR scans were rigidly registered to the corresponding T1w im-

age at each scan session (Figure 6.3: 1. Coregistration to T1w Images). This alignment

has been completed as part of the structural MRI processing pipeline as discussed earlier

(Section 2.3) Afterwards the T1w scans from the hyper-acute and acute phases were regis-

tered to one and another to create a subject-specific template (Figure 6.3: 2. T1w Image

Registration). For this, the follow-up scan was at first rigidly aligned to the early scan.

Afterwards both scans were repeatedly registered to the common template, that was the

average of the aligned images of the previous registration stage. The iterative registration
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process entailed three affine and three deformable registrations. Within the subset of 21

patients, initial and follow-up scans showed strong anatomical deviance, which is why a

deformable registration was required to ensure an optimal spatial overlap between lesions

in both scans. Eventually, the NCC was computed between the last registered images and

the particular subject-specific template, to flag any cases of failed registration. High NCC

scores (average NCC=0.953±0.028) and a visual quality check confirmed the success of the

template creation process. The final deformable transformations were then applied together

with the rigid transformation, found during FLAIR image coregistration, to the FLAIR

lesions maps. This projected the delineated lesion labels with a single interpolation step

from native FLAIR to subject-specific template space. Subsequently, projected lesions were

split into individual lesion clusters, to categorise all unconnected parts of the binary lesion

map. Thereafter, the overlap between each lesion cluster within both scans was computed

to match individual lesion parts to one another (Figure 6.3: 3. Lesion Projection & Match-

ing). All matched scan pairs were visually inspected and no obvious errors, such as wrongly

assigned labels between corresponding lesion cluster, were observed. Nine lesion clusters in

total were excluded, as their volume was 1 mm3 (which corresponded to one voxel in this

database) because the registration based matching algorithm was not expected to have a

single voxel precision. Eventually, the volume of each separate lesion cluster in native T1w

scan space could be associated with the matched clusters (Figure 6.3: 4. Derive Informa-

tion from Matched Lesions). This allowed to measure the volume change, unbiased by the

deformable registration, for individual clusters between scans. Lesion volumes were derived

from binary lesions in T1w space as lesion maps are normalised to isotropic voxel space.

6.3 Results

6.3.1 Group-Wise Lesion Burden Across Scanners

After spatial normalisation of T1w images and the projection of FLAIR lesions to Cam-

CAN template space the binary maps were averaged for both scanners separately to detect

predispositions in both patient groups (in the following referred to as Trio and Verio pa-

tients/scans depending on the MR scanner model). The results presented include 89 and

96 lesion maps from Trio scans for contusion core and oedema, respectively. From Verio

scans, 92 contusion core and 89 contusion oedema annotations were found. The probability

maps of the projected lesion maps are displayed in Figure 6.4. While patient groups on both

scanners showed contusion cores predominantly in frontal brain regions, subjects scanned

on Trio had a higher lesion burden in the right hemisphere (i.e. left hand side on the image
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Figure 6.3: Schematic Overview of Lesion Matching Between Longitudinal Scans. At first,
the sequence images with annotate lesions (here FLAIR) were linearly coregistered to cor-
responding T1w images. Secondly, a subject-specific template was generated by iteratively
registering T1w images from two different time points. This was followed by projecting
lesion annotations (red & blue outlines) directly from native to template space. Spatial
alignment allowed to computing overlaps between all different lesion clusters from longitudi-
nal scans to match lesions (yellow & green) and identify single lesions (purple). Eventually,
this association between scans was propagated to lesion annotations on T1w images to derive
characteristics for matched lesion clusters.

with radiological orientation). In contrast, Verio patients revealed a higher lesion density in

the left hemisphere (right side of image). Contusion oedema were more evenly distributed

in both hemispheres for Trio and Verio patients, but also much wider spread than contusion

cores. Additionally, a much higher occurrence of oedema was found in the Verio patients.

For the two patient groups from both scanners, the highest occurrence of contusion cores

was detected in the anterior orbital gyrus (frontal lobe). Thereby, lesions were found slightly

more often on the right (ROI #45: 6.4%) then on the left (ROI #46 4.0%) for Trio patients,

and vice versa for Verio scans (right ROI #45: 6.7%, left ROI #46: 8.4%), Generally, a

tendency for higher lesion density within the right frontal lobe was observed for Trio scans

with comparable high mean probability value in the medial orbital (ROI #81: 2.8%), in-

ferior frontal (ROI #97: 2.8%) and posterior orbital (ROI #111: 3.0%) gyri. In contrast,

contusion cores on Verio scans were more likely to be in the left frontal lobe, in partic-
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Figure 6.4: Distribution of FLAIR Contusion Core and Oedema. All axial slices show the
Cam-CAN T1w template overlayed with the lesion probability maps displayed as jet map
ranging between 0-10%. The two images on the left hand side show the distribution of
the contusion cores for all subjects and time points separated by scanner (Trio & Verio).
The Trio patients had a higher lesion occurrence in the right frontal lobe (left image side)
compared to Verio patients, that displayed a stronger contusion core presence in the left
frontal lobe (right image side). For both patient groups lesions are dominant in the frontal
areas, but also spread across temporal lobes. The two images on the right show the contusion
oedema probability maps for both patient groups. Overall, oedema is much more widely
distributed over the whole brain and fairly evenly present in both hemispheres than core
lesions. Noticeable is the high occurrence of oedema in the frontal lobes for patients imaged
on the Verio scanner. (radiological orientation)

ular in the lateral orbital (ROI #72: 4.9%) and inferior frontal (ROI #98: 4.0%) gyri.

These findings are in coherence with the previous visual observations in Figure 6.4. Besides

this opposite laterality, contusion cores were also found in the medial-frontal cortex (ROI

#76: Trio=5.6%, Verio=10.7%) and the posterior orbital gyrus (ROI #112: Trio=5.3%,

Verio=11.1%) of the frontal lobe in either of the two patient groups. Furthermore, the left

(planum polare - ROI #114: Trio=6.5%, Verio=11.9%) and right (temporal pole - ROI

#134: Trio=5.5%, Verio=11.9%) temporal lobes were affected.

Oedema was found to be mostly present in the right frontal lobe (anterior orbital gyrus -

ROI #45: 5.3%) for Trio patients and more often in the left inferior frontal gyrus (frontal

lobe - ROI #98: 12.7%) for Verio patients. Overall, contusion oedema had occurred much

more in Verio than Trio patients (lesion burden for top five ROIs: Trio∼5%, Verio∼10%).

6.3.2 Lesion Volume Progression After TBI

All scans were subdivided into three classes according to the acquisition time point mea-

sured. These were the hyper-acute (≤72 hours post-injury), acute (∼1-2 weeks post-injury)

and subacute (∼1-3 months post-injury) stages. The selected number of scans was fairly

comparable, ranging from 44 to 71 (Table 6.1), for all three defined time windows. The

number of scans were mostly balanced between both scanners (Trio:40, Verio: 60%) across

all time points. The comparison of total lesion volumes within Cam-CAN space revealed
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that contusion cores were much smaller (≈10-15 cm3) than oedemas (≈30-55 cm3) during

all three observed stages. Both, core and oedema seemed to be on average largest during

the acute phase. However, while the contusion core volume increased by approximately 15%

from the hyper-acute to the acute stage, oedema expanded on average by 81% within the

same time frame (Table 6.1).

Table 6.1: Overview of Lesion Volumes for Different Time Windows after TBI

Scan Time

Window

Avg. DPI

mean ± std

DPI Range

[min, max]

# Scans

(Trio/Verio)

Volume∗ [cm3]

mean ± std

C
o
re

hyper-acute 1.8 ± 0.8 [0, 3] 59 (35/24) 12.8 ± 19.9

acute 7.1 ± 2.5 [4, 12] 71 (31/40) 14.7 ± 22.2

sub-acute 24.6 ± 12.8 [13, 64] 44 (19/25) 10.4 ± 16.7

O
e
d

e
m

a hyper-acute 1.8 ± 0.8 [0, 3] 61 (37/24) 30.6 ± 39.6

acute 7.0 ± 2.4 [4, 12] 71 (32/39) 55.4 ± 54.7

sub-acute 26.2± 16.4 [13, 91] 43 (19/24) 30.9 ± 42.9
∗Total volume in Cam-CAN template space
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Figure 6.5 shows the occurrence of both lesion core and oedema throughout the different time

points on one axial slice. Both lesion types were most prevalent in the acute phase, where

they spread over frontal and temporal lobes. Although already present in the hyper-acute

stage, in particular oedemas seemed to be much more dominant during the acute phase,

indicating a delayed development. The strong presence of oedemas appeared to diminish

with more time passing after the incident of the traumatic injury. These visual observations

were in agreement with the previous quantitative analysis.

Figure 6.5: Progression of Contusion Core and Oedema after TBI. The probability maps of
contusion core and oedema at different time points are displayed as overlays of the Cam-
CAN T1w template. Both lesion types were most prominent during the acute phase. Lesions
occurred predominantly in the frontal and temporal lobes. All jet colour maps ranging
between 0-10%. (radiological orientation)

A subset of 21 subjects (11/10 Trio/Verio; 7/14 female/male; average age: 42.6 ± 17.2;

initial GCS: 6.4 ± 3.1) was selected which had an available manual annotation of contusion

core and oedema at the hyper-acute (mean ± std [min, max] DPI = 1.3 ± 0.6 [1, 3]) and

acute (DPI = 7.6 ± 2.0 [5, 11]) stages. For this subset of subjects the total core lesion

volume (measured in T1w space) was on average indistinguishable (paired t-test: p=0.5990)

between the hyper-acute (19.5 ± 25.5 cm3) and the acute (18.5 ± 24.9 cm3) phases. In

contrast the total lesion volume of oedema showed a substantial (paired t-test: p<0.001)

growth between the hyper-acute (40.1 ± 47.5) and acute (58.4 ± 55.6) stages. Thirteen

subjects had on average a 37.0% (range: [0.2%-98.5%]) smaller core lesion volume in the

acute phase than in comparison in the hyper-acute phase. Six other subjects showed a

moderate 22.9% (range: [2.1%-76.2%]) core lesion growth from the hyper-acute to the acute
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phase. Only two patients experienced substantial core volume increase (465.7% and 587.4%).

Five subjects showed a small shrinkage of oedema volume (17.4% on average, range: [0.2%-

40.2%]), while the other 17 patients experienced an oedema growth (105.9% on average,

range: [0.3%-310.4%]) from the hyper-acute to the acute phase. Not only did more patients

have an increased oedema lesion, but also the volume expansion was greater (76.5%) than

that for core tissue.6 Measured by the GOS scores, there was a tendency of better outcome

for patients with contusion core lesion shrinkage (number of patients: 13, average GOS:

3.6) in comparison to patients with core lesion volume growth (number of patients: 8,

average GOS: 2.8). However, low sample numbers and small differences did not manifest

statistically (t-test: p-value=0.1067). A similar trend was not observed for oedema volume

change, remarking again the unbalanced ratio between patients with oedema volume loss

(5) and gain (17).

6.3.3 Subject-Wise Cross-Scanner Comparison of Lesions

Location. After locating all contusion cores and oedemas for all subjects separately (Sec-

tion 6.2.2), the relative frequency of lesion occurrence was estimated within each region.

For this, a patient’s brain region was counted as affected, whenever any part of the lesion

was found within that parcellated area. This low threshold (effectively one voxel would be

enough to count the lesion as affected) was chosen as any other arbitrary threshold (e.g.

50% of the lesion must be in a region to be affected) would need to be justified empirically.

It is acknowledged here that this makes the count of affected lesions very sensitive. For both

Trio and Verio scans the most frequently affected regions were the left (ROI #16: Trio =

36.8% scans, Verio = 37.1% scans) and right cerebral WM (ROI #17: Trio=32.9% scans,

Verio=28.1% scans). This means, more than a third of the patients’ scans had at least a

part of the contusion core within WM regions. Approximately, 7-8% of the scans displayed

a contusion core within cortical regions such as the orbital, frontal and temporal gyri. On

average, approximately 30%-60% of the contusion core volume was laying in one of those

mentioned regions. This was cohesive with the group-wise analysis showing a higher lesion

load in frontal and temporal areas of the brains. Likewise, oedemas most frequently were

found in the cerebral WM for cohorts scanned on both scanners (left ROI #16: Trio =

41.4% scans, Verio = 35.4% scans; and right ROI #17: Trio = 31.0% scans, Verio = 33.8%

scans). Furthermore, the right superior frontal (ROI #121: Trio = 10.2% scans, Verio =

9.4% scans) and the left middle frontal (ROI #78: Trio & Verio = 8.8% scans) gyri were

affected by oedema.

6excluding the two patients with major core volume increase
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Volumes & Distribution. The average volumes of contusion core lesion clusters were

similar for both scanners (Trio: 1.5±2.6 cm3, Verio: 1.5±2.8 cm3; t-test: p = 0.4006). In

contrast to that, oedemas for patients scanned on Verio (6.5±6.3 cm3) were larger than for

the cohort imaged on Trio (3.9±6.3 cm3; t-test: p = 0.0009). Oedemas were generally larger

than lesion cores. The distance between individual lesion clusters on single scans averaged

between approximately 5.5-5.9 cm and were comparable for both scanners (Trio & Verio)

and lesion types (core & oedema). Unsurprisingly, the mean FLAIR intensities within the

annotated lesions were different for the two scanners, as no intensity harmonisation was

performed.7 Generally, oedema displayed higher intensities than contusion cores. However,

mean intensities were lower on Trio than on Verio for both core lesions (Trio=310.5, Ve-

rio=399.4) and oedema (Trio=411.6, Verio=500.0). Interestingly, mean intensities in Verio

cores seemed closer to Trio oedema (‖∆‖ = 12.2)8 than both the differences between mean

intensities of core (‖∆‖ = 88.9) and oedema (‖∆‖ = 88.4) across scanners.

6.3.4 Subject-Wise Lesion Characteristics on Longitudinal Scans

Location. Counting the instances where at least one part of the MALP-EM ROI was

affected by core lesion tissue (overlap between atlas ROI and annotated lesions), showed

again that the most affected regions where left and right cerebral WM throughout all three

imaging stages (hyper-acute/acute/sub-acute).

Approximately 30-40% of the scans showed an overlap with cerebral WM in at least one

brain hemisphere. For both regions the average lesion overlap was highest during the acute

phase (ROI #16: 61.0%, ROI #17: 56.6%, see Figure 6.6 left), and lower for hyper-acute

ROI #16: 53.5%, ROI #17: 45.9%) and sub-acute stages (ROI #16: 52.1%, ROI #17:

47.7%). In both brain hemispheres the superior frontal gyrus (left: ROI #121, right: ROI

#122) as well as the temporal pole (left: ROI #133, right: #134) were affected with similar

frequency in 7-11% of the scans. Both superior frontal gyrus regions displayed a higher

average overlap in the hyper-acute phase (ROI #121: 49.6%, ROI #122: 45.3%) than in

the acute (ROI #121: 32.2%, ROI #122: 35.5%) or sub-acute phases (ROI #121: 39.0%,

ROI #122: 18.8%). Although lesions overlapping with the left temporal pole (ROI #133)

were progressively larger (hyper-acute: 53.5%, acute: 61.8%, sub-acute: 67.8%) no obvious

difference was found for the right counterpart (ROI #134 ∼55-58%, see Figure 6.6 left).

Likewise 30-40% of the scans showed oedema overlapping with the cerebral WM regions.

Generally, proportional overlap of oedema lesions with particular regions tended to be lower

7Adjusting intensities across scanners in lesioned brains in non-trivial and standard approaches such as

histogram matching can have an adversary effect.
8‖∆‖ representing here the absolute intensity difference.
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than that found for contusion cores. This was a side effect of oedema being larger and

more widespread across several regions. Nonetheless, the average overlap with cerebral WM

seemed slightly larger in the acute (ROI #16: 53.5%, ROI #17: 53.3%) than in the hyper-

acute stage (ROI #16: 48.9%, ROI #17: 49.0%, see Figure 6.6 right), which could indicate a

growth in lesion volume after 72 hours post-injury. Other areas affected by oedema were the

left posterior orbital gyrus (ROI #112) and the superior frontal gyri (ROI #121 & #122).

For these regions, however, the overlap tended to decrease with more time after injury

(e.g. ROI #112 - hyper-acute: 21.0%, acute: 5.8%, sub-acute: 9.1% or ROI #122 - hyper-

acute: 35.2%, acute: 29.5%, sub-acute: 24.3%). A similar but less prominent tendency was

observed for the left middle frontal gyrus (ROI #78 - hyper-acute: 31.7%, acute: 31.2%,

sub-acute: 27.6%).

Figure 6.6: Lesion Overlap at Different Phases Post-Injury. Left: Average overlap of core
lesions with MALP-EM ROIs. Displayed are lesions that were most frequently affected. The
overlaps vary depending on the anatomical regions. While core lesion seem to overlap with
cerebral WM (16 & 17) more during the acute phase, superior frontal gyri (121 & 122) show
a decrease in overlap from hyper-acute to acute stage. An opposite effect was observed for
temporal poles (133 & 134), for which the overlap appeared to steadily increase with time
after injury. Right: On average oedema overlap was highest for WM regions (16 & 17),
which seemed larger after the hyper-acute phase. Other areas such as the middle frontal
gyrus (78), the posterior orbital (112) gyrus and the superior frontal (121 & 122) gyri were
affect less by oedema. For these the overlap seemed to diminish with more time after injury.
Whiskers show the full range of ROI overlap. X-axes show the different MALP-EM ROIs.

Volumes. For all three time windows lesion volumes strongly varied for different subjects

(Figure 6.7). Table 6.2 summarises the characteristics of the lesions found in T1w space for

all subjects. The total volume of the contusion core lesions during the hyper-acute phase

averaged to 12.9 cm3. Considering the whole cohort together, the core lesion volume seemed

to slightly increase during the acute time window (14.3 cm3) and then shrunk below the
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initial state with more time elapsed after the injury (sub-acute: 10.0 cm3). A statistical

significance of total volume difference for the three time points, however, was not detected

(ANOVA: p=0.5044).

Comparing the individual core lesion clusters showed similar average volumes during the

hyper-acute (1.2 cm3) and acute (1.3 cm3) imaging time points, however, the maximum

number of clusters increased. This could indicate that a tendency for larger total core lesion

volumes may be attributed to development of new small core lesions, rather than growth

of the initial lesions. In contrast, individual clusters seemed to have become bigger during

the sub-acute phase (1.8 cm3), but both the average and maximum number of clusters was

decreased (6 and 19, respectively). This could suggest that some core lesion tissue was

salvaged, while other core lesions expanded. The observed trend for the change in cluster

volumes was not statistically supported (ANOVA: p=0.4037).

Figure 6.7: Longitudinal Comparison of Contusion Lesion Volumes Post-Injury. Left: Total
volumes of manually annotated FLAIR contusion cores seemed to be mostly stable across
all three considered time points centring around 10-15 cm3 and not exceeding 100 cm3.
In contrast oedema volume seemed to expand (∼50 cm3) after 72 hours during the acute
phase, but residing to the initial state in the sub-acute phase (∼30 cm3). Oedema volumes
were found to be on average much lager than core volumes. Right: Volumes of individual
core clusters appeared to grow marginally with more time elapsed post injury. Comparable
to total volumes, single clusters of oedema expanded during the acute phase, but resolved
at the later sub-acute stage. Note, y-axis for cluster volumes was restricted to 2 cm3 for
visualisation purposes (90% of all found clusters had a volume below 2 cm3). Whiskers show
the full range of lesion volumes.

A growth of total contusion oedema volume from hyper-acute (30.5 cm3) to acute (54.9 cm3)

stage was much more prominent than for core tissue (ANOVA: p=0.0022, post-hoc t-test:

p=0.0025). The scans acquired during the sub-acute stage showed on average lesion volume

(30.5 cm3) that was closer to the initial state when imaged within 72 hours (ANOVA:
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Table 6.2: Lesion Characteristics After TBI

Scan Time

Window

Total Volume1

mean[median]±std

Cluster Volume2

mean[median]±std

# Clusters3

mean[median, max]

C
o
re

hyper-acute 12.9[4.5]±19.3 1.2[0.06]±5.7 11[9, 34]

acute 14.3[4.9]±20.2 1.3[0.09]±5.3 11[9, 39]

sub-acute 10.0[5.2]±14.9 1.8[0.13]±6.3 6[4, 19]

O
e
d

e
m

a hyper-acute 30.5[13.9]±38.5 3.6[0.16]±14.5 8[6, 24]

acute 54.9[43.7]±50.9 6.0[0.17]±20.4 9[8, 31]

sub-acute 30.5[15.8]±39.7 4.3[0.10]±16.9 7[6, 29]
1Total lesion volume [cm3] found in T1w space; 2Average volume [cm3] of lesion clusters
found in T1w space; 3Minimum number of found cluster for all stages was 1

p=0.0022, post-hoc t-test p=0.9909). The observation (Table 6.2) of an early growth of

oedema in the acute phase and its subsidence in the sub-acute stage (ANOVA: p=0.0022,

post-hoc t-test: acute vs. sub-acute p=0.0010) is in alignment with the previous results

from the group-wise analysis in Cam-CAN space. Both the maximum number of clusters

and their average lesion volume increased during the acute phase, and followed the trend

of the total lesion volumes. However, a statistically significant volume change of individual

lesion clusters across the three time points was not found (ANOVA: p=0.0629).

A linear correlation between total lesion volume and DPI was neither found for core lesions

(Spearman correlation coefficient ρ=-0.04, p=0.61) nor for oedema (Spearman correlation

coefficient ρ=-0.02, p=0.74). This underlines the findings in Figure 6.7 and Table 6.2, where

a lesion growth was observed between hyper-acute and acute phase, but lesion volumes

seemed to shrink between acute and sub-acute stage. However, a correlation between the

volume of lesion clusters against DPI could not be rejected (Spearman correlation coefficient:

Core: ρ=0.12, p<0.001; Oedema: ρ=-0.07, p=0.01). The results from volume differences for

different time points and the correlation with DPI emphasised the non-linear development

of lesions. These did not monotonically grow or subside within the first three months post

injury.

6.3.5 Automated Lesion Matching

The same 21 subjects as before (Section 6.3.2) were used to match individual lesion clusters

between the hyper-acute and acute scans (Section 6.2.3). Three selected subjects with

lesion annotations in subject-specific template space are displayed in Figure 6.8. This shows

not only the successful alignment between subjects despite severe pathology, but also the
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association of individual lesion clusters between the two imaging time points. Despite the

change in size or vanishing contusion, large contusion clusters were easily matched across

scans (Patient B & C). For smaller lesions, the matching might be challenging when clusters

do not show an overlap. On the other hand, the algorithm was able to separate contusion

core clusters in spite of close proximity (Patient A - blue & green). The association of

oedema clusters between hyper-acute and acute scans was consistently successful, even with

many new forming clusters (Patient A - green, blue & red).
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Figure 6.8: Examples of Matched Contusions between Hyper-Acute and Acute Scans. Each
row shows a different patient’s FLAIR scans from the two different time points with outlines
of the manual lesion annotations for contusion core and oedemas. Outlines with the same
colours indicate matched lesion clusters for each individual lesion type (e.g. hyper-acute and
acute core clusters matched). Patient A: One contusion cluster was successfully matched
(red). Two other clusters were recognised as independent (blue & green) since there was
no spatial overlap. The detailed scope view highlights the spatial separation between both
clusters, nonetheless, both clusters might belong to the same pathological structure. New
oedema formed after the hyper-acute scan (red, green & blue), while the existing clusters
(orange & purple) were matched to the right clusters at a later stage. Note, the orange
cluster appears only separated on this axial slice. Patient B: Despite vanishing core lesion
(red), the 2nd cluster was matched adequate (blue). Successful matching of oedema clusters.
Patient C: Both two core lesions (red & blue) and growing oedema were associated correctly
across scans. All scans in subject-specific template space, image intensities were minimally
adjusted for better visualisation. (radiological orientation)
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Table 6.3: Volume Changes of Matched TBI Contusion Clusters. Volumes displayed mean
[min, max]

Type # Clusters× Hyper-Acute Volume Acute Volume Growth+

C
o
re

All 326 1.6cm3 2.3cm3 58.0%

Forming
65

∼20.0%
-

0.1cm3

[3.0mm3, 3.1cm3]
-

Growing
60

∼18.5%

2.5cm3

[13.0mm3, 62.0cm3]

3.2cm3

[21.0 mm3, 68.3cm3]
128.8%

Shrinking
47

∼14.5%

5.3cm3

[19.0mm3, 68.8cm3]

4.0cm3

[4.0 mm3, 57.7cm3]
-32.4%

Vanishing
154

∼47.0%

0.1cm3

[2.0mm3, 1.7cm3]
- -

O
e
d

e
m

a

All 253 5.2cm3 7.3cm3 96.7%

Forming
91

∼36.0%
-

0.4cm3

[2.0mm3, 5.4cm3]
-

Growing
59

∼23.5%

12.5cm3

[39.0mm3, 162.6cm3]

19.0cm3

[94mm3, 210.8cm3]
137.0%

Shrinking
18

∼7.0%

4.8cm3

[72mm3, 4.3cm3]

3.9cm3

[ 16.0mm3, 4.3cm3]
-35.6%

Vanishing
85

∼33.5%

0.2cm3

[2.0mm3, 1.5cm3]
- -

All: Considering all lesion cluster volumes of 21 severe TBI patients. Forming: Lesion
clusters that were not present during hyper-acute phase but were visible on the acute scans.
Growing: Matched lesion clusters with larger volumes during acute than hyper-acute phase.
Shrinking: Matched lesion clusters with smaller volumes during acute than hyper-acute
phase (negative growth). Vanishing: Lesion clusters in the hyper-acute phase, that were
not observed in the acute phase.×Number of clusters found on either of the hyper-acute and
acute scan. +Growth was defined as the volume difference between matched clusters divided
by the hyper-acute cluster volume, negative growth indicated a loss in lesion volume.
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Table 6.3 summarises the volume and the growth of the matched lesion clusters. Almost half

(∼47.0%) of the contusion core clusters vanished from the hyper-acute to the acute phase.

Noteworthy is that those were overall small lesions with average volumes of 100 mm3 (and

not exceeding 1.7 cm3). Approximately a fifth (∼20.0%) of all core clusters were not present

during the hyper-acute phase, but developed later, hence, were only visible on the acute MR

scans. Similarly to the vanishing clusters, the forming cluster volume averaged to 100 mm3,

however, with a slightly higher maximum volume (3.1 cm3). The rest of the core clusters

were either growing or shrinking, whereas slightly more clusters seemed to grow (∼18.5%)

than shrink (∼14.5%). While clusters shrunk about a third (∼32.4%) in volume, growth

was much more pronounced (∼128.8%). On average, growing clusters were initially smaller

(2.5 cm3) than shrinking clusters (5.3 cm3) during the hyper-acute stage. This difference

was almost eradicated at the acute imaging phase (3.2 cm3 and 4.0 cm3 for growing and

shrinking cluster volumes, respectively). Although core lesion clusters grew more than they

shrunk, much more clusters vanished than newly formed between the hyper-acute and acute

phases. So, although there is a measurable change for individual lesion clusters the overall

burden due to contusion lesions might be consistent over time.

Fewer clusters were found for oedemas, which is likely due to their larger volumes and less

fragmented distribution. Indeed, during both imaging stages, oedema lesions were much

larger than core cluster volumes. With a substantial growth between hyper-acute and acute

injury phases. Roughly a third (∼36.0%) of the oedema clusters formed after 72 hours post

injury and were only observed on the acute scan. Another third (∼33.5%) were present

on the hyper-acute scans, but were not observed on the acute scan anymore. Both of these

cluster types showed low average volumes, whereas newly forming clusters (mean: 400 mm3,

max: 5.4 cm3) tend to be slightly larger than vanishing clusters (mean: 200 mm3, max: 1.5

cm3). Oedema lesions were observed to grow more (137.0%) than they shrank (35.0%).

With comparable numbers and volumes of forming and vanishing clusters, oedema lesion

burden seemed to increase after 72 hours.

Table 6.4 shows the total volume changes of contusion cores and oedemas between the

hyper-acute and acute phase for the individual subjects. The majority of subjects (16)

showed a gain in oedema volume, whereas seven patients experienced an increase in total

core lesion tissue (Patients 1-7). The other nine patients (Patients 9-17) showed lower core

lesion volumes. Shrinking oedema lesions were observed only in five patients (Patients 8 &

18-21), which was accompanied by contusion core growth exclusively for one single patient

(Patient 8). This highlighted the tendency of growing oedema and shrinking core lesions

volumes between the hyper-acute and the acute stage after injury.



6.3. RESULTS 181

Table 6.4: Patient-Wise Changes of Contusion Core and Oedema Volumes. Total volume
differences (∆) between hyper-acute and acute stage listed in cm3 except for marked (×)
values, that are shown in mm3.

Core Oedema

Patient ∆ Growth Loss Total+ ∆ Growth Loss Total+

1 2.2 5.6% 2.4% 3.3% 26.7 21.7% 0.3% 21.4%

2 4.7 15.2% 2.9% 12.3% 15.5 31.7% 8.3% 23.4%

3 12.6 17.1% 1.9% 15.2% 47.6 29.6% 1.5% 28.1%

4 0.3 13.4% 11.3% 2.1% 14.2 44.2% 0.4% 43.8%

5 9.0 470.3% 4.7% 465.6% 12.3 46.0% 0.0% 46.0%

6 4.2 619.9% 32.4% 587.4% 4.1 149.0% 67.0% 81.9%

7 0.1 144.6% 68.4% 76.2% 32.0 220.8% 0.0% 220.7%

8 6.0 29.7% 1.6% 28.1% -1.1 5.1% 7.2% -2.1%

9 -2× 3.5% 7.0% -3.5% 3× 41.6% 41.4% 0.3%

10 -1.8 3.2% 31.7% -28.4% 1.6 9.2% 4.1% 5.1%

11 -6.9 2.7% 29.2% -26.5% 41.9 64.0% 0.6% 63.4%

12 -2.9 1.4% 18.7% -17.2% 32.0 97.2% 0.0% 97.2%

13 -0.2 24.9% 46.8% -21.9% 8.5 148.5% 22.6% 125.9%

14 -5.2 0.5% 70.2% -69.7% 19.0 147.5% 6.9% 140.6%

15 -3.5 4.2% 24.3% -20.0% 36.4 227.8% 7.2% 220.6%

16 -34.9 1.0% 46.8% -45.8% 59.5 270.2% 5.2% 265.0%

17 -3.9 9.3% 33.8% -24.5% 39.4 314.1% 3.8% 310.4%

18 -1.4 1.5% 100.0% -98.5% -4.0 0.0% 40.2% -40.2%

19 -44× 0.0% 66.7% -66.7% -0.1 27.2% 61.3% -34.1%

20 -0.5 2.7% 61.1% -58.4% -0.3 29.8% 40.0% -10.2%

21 -31× 2.1% 2.3% -0.2% -0.2 0.9% 1.0% -0.2%

Sorting according to total lesion change (Total): Patients 1-7: Growth of both core and
oedema lesions. Subject 8: Contusion core growth but oedema shrinkage. Patients 9-17:
Shrinking contusion core, but growing oedema. Patients 18-21: Both lesions decreased
overall in size. +Positive and negative values represent a total gain or loss of volume, respec-
tively.
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For many patients, the total lesion volume change reflected the underlying changes of lesion

clusters. This was particularly true for patients where either lesion volume gain or loss,

was dominant compared to the other. Exemplary was the oedema lesion development of

patient 4 (dominant oedema growth): The growth of the oedema volume (44.2%) was much

more prominent as its observed volume loss (0.4%). Therefore, the total oedema volume

change (43.8%) accurately represents the overall development of oedema size. Similarly for

patient 14 (dominant core loss), for which the contusion core clusters hardly grew (0.5%),

but the core lesion volume substantially decreased (70.2%). Hence, the total measured

volume loss (-69.7%) accurately reflected the overall change in contusion core size. However,

some patients’ overall lesion volume failed to represent both the gain and loss of lesion

tissue (printed bold in Table 6.4). Total contusion core change for patient 7 was observed

as 76.2%. Although there was a great growth in lesion volume (144.6%), the substantial

decrease in contusion core lesions of 68.4% was missed when measuring only the total lesion

change (0.1 cm3). Similarly, patient 6 experienced a substantial growth in oedema lesion

volume (149.0%). Although this was accompanied by a considerable loss of oedema lesion

volume (67.0%) as well, this was not reflected in the total oedema lesion change of 4.1 cm3

(81.9%). In contrast, patient 13 showed a total loss of contusion core volume of -21.9%,

while missing a lesion growth of 24.9%. Likewise, a total decrease of oedema volume was

observed for patient 19 (-34.1%), which reflected a combination of substantial oedema lesion

growth (27.2%) and loss (61.3%). Noteworthy, apart from patient 6 the total core/oedema

lesion volume differences of the four mentioned examples are below 0.3 cm3.

6.4 Discussion

6.4.1 Summary of Findings

The analysis of group-wise lesion burden showed opposite uni-lateral dominance of contusion

cores in the two TBI patient cohorts scanned either on Trio or Verio. Oedema was found

to be more evenly distributed in both hemispheres for both patient groups, however, more

strongly present in patients scanned on Verio. While categorising the patients according

to the used MR scanner was arbitrary and their opposing lesion locations is likely due to

coincidental difference in trauma impact site, it highlights the heterogeneity of TBI patient

cohorts. This advocates for an analysis of large patient database across multiple imaging

sites to capture the heterogeneity in TBI cohorts and avoid any site-specific biases. For

example, a machine learning model for automated lesion segmentation trained on data from

one scanner could learn that lesions are predominantly in one hemisphere. But when applied
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to a different cohort with lesions in both or the opposite hemisphere (as seen in core lesions

for Verio and Trio scans, Figure 6.4), the segmentation algorithm may perform poorly due

to its site-specific bias introduced by the skewed training data. Contusion cores were mostly

found in the frontal and temporal lobes. This is in agreement with previous reports of con-

tusions appearing in brain tissue that comes in contact with irregular bony protuberances

of the skull [172].

Lesion volumes were found to be largest during the acute phase (1-2 weeks post injury).

Examining a subset of 21 subjects showed that the total lesion volume of contusion cores

either grew moderately or often also decreased in a later stage post-injury. In contrast, most

of the selected subject experienced a growth of oedema volume, which strongly expanded

between the hyper-acute and acute stage. This is in agreement with previous studies, which

also have reported a delayed appearance of oedema after a few hours post injury and the

increase to its peak volume a few days later [108, 203]. There are two types of oedema,

cytotoxic and vasogenic. The former is characterised by an increase in water content in the

intra-cellular space caused by dysfunctional ion pumps that fail to regulate cell osmolarity.

An unbalanced ion gradient results in influx of extracellular water into the cells [56]. In

contrast, vasogenic oedema is caused by water movement from the vasculature system to

extracellular compartment due to an impaired blood–brain barrier (BBB). Both types of

oedema occur in TBI in a biphasic profile. Vasogenic oedema emerges within the first few

hours after TBI. This is followed by cytotoxic oedema which develops more slowly over few

days and can persisted for up to 2 weeks [56]. The increased oedema volume during the

acute phase for the available data (time frame after injury: mean [min, max] = 7 [4, 12] DPI,

see Table 6.1), may indicate the observed oedema is of cytotoxic nature. Examination of the

BBB has shown, that its permeability is highest at 4-6 hours after TBI and the commences

to close over the week following TBI. The recovery of the integrity of the BBB is the reason

why oedema stop increasing after a few days and subside eventually during the sub-acute

phase [56].

The subject-wise analysis of lesion location showed that cerebral WM regions were most

frequently affected. One reason for this is the fact that the WM regions defined by the

MALP-EM atlas are spanning the largest area within the brain. Therefore, any fairly large

lesion will almost certainly be at least partially within one of the cerebral WM regions. The

specificity of WM lesions could be increased by incorporating a more detailed subdivision

of the WM areas. Besides WM, contusion cores were observed in frontal, temporal and

orbital gyri. Hee Kwak et al. [97] have recently reported that patients with frontal lesions
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showed higher agitation (e.g. aggressiveness, restlessness or mood swings measured by on

the Agitated Behaviour Scale) and poorer performance in executive and emotional functions

(measured by Wisconsin Card Sorting Test, for more detail the reader is referred to [83, 97]).

These metrics were not available for the cohort presented in this chapter. Future investiga-

tions will have to tie together radiological observations with behavioural data. Furthermore,

contusions in the temporal lobes may be associated with with worse functional outcome after

six months [275].

While the average lesion cluster volume of contusion cores was similar for both patient co-

horts, oedema volumes were larger for the patient group scanned on Verio. The differences in

volumes might be explained by the fact that oedema volumes were largest during the acute

phase, and proportionally more acute scans were acquired on Verio (∼45%) than on Trio

(∼36%). Since MRI intensities are not standardised, another difference was found between

FLAIR intensity distributions between both lesion types and scanners. Such potential bias

between scanners will need to be considered and prevented for predictive models built for

multi-centre image analysis. For example, lesion segmentation tools dependent on image

intensities may fail to segment lesion adequately and lesion volumes might be under- or

overestimated.

Comparing the lesions for the three time points, showed that overlap with cerebral WM

was largest during the acute phase for both lesion types examined. This could indicate

a growth in lesion volume. However, the overlap with smaller ROIs (e.g. middle frontal

gyrus) simultaneously decreased. Potentially, the lesion could shrink within smaller regions,

increasing the relative portion of lesion within the large lesion without actually increasing

the overlap. Therefore, the metric of lesion overlap with certain regions needs to be consid-

ered together with lesion volumes.

The lesion matching algorithm introduced in this chapter showed potential, however, it

might face challenges in the presence of small lesion clusters. For almost half of the anno-

tated core lesion clusters on hyper-acute scans no corresponding cluster on the follow-up

scan was found. Although this might indicate actually dissolving contusion core lesions, it

also highlights the difficulty to match lesions of small volumes. Smaller lesions are more

challenging to associate across scans, since their size lowers the chance of a spatial overlap

after spatial alignment of both scans. Furthermore, small lesions are much harder to detect

and may have been missed at the annotation stage. Small lesions, however, are less likely to

progress [1], hence may not lead to major behavioural deficits. Nonetheless, the automated

lesion matching between hyper-acute and acute scans was successful for larger lesions. Since
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contusion core lesions are naturally smaller than oedema, the former are more prone to in-

accurate matching. Therefore, analysis based on the suggested automated lesion matching

approach should take into account lesion type and size. Matching individual lesion clusters

across longitudinal scans could provide better insight of lesion volume gain and loss. This

separation, rather than a single value for total volume change, may potentially be more

suitable to differentiate between patients with good and poor outcome.

6.4.2 Limitations of Study

Localisation. The results presented showed that TBI lesions could be located automati-

cally within the brain, however, this remains a challenging problem. The current approach

is strongly dependent on the successful spatial normalisation of a patient’s brain scan to

the Cam-CAN template. For severely deformed brains this could be error prone, and re-

sults will need to be considered cautiously. Assuming the spatial normalisation has worked

sufficiently well, the backprojected template ROI atlas shows an average brain anatomy

and does not perfectly align with subjects individual structures. Since it is unlikely that

a patient underwent a MRI scan prior, but timely close to the TBI, the comparison of a

lesioned brain to its true healthy anatomy is practically impossible. The suggested approach

builds on the assumption that lesions affect tissue without any occurring deformations of

anatomical regions. For example, a lesion in one region could cause swelling, pushing other

tissue compartments aside, but leaves them otherwise unaffected. Such dislocated, but still

functional brain tissue would not be captured by projecting a healthy atlas onto the lesion

scans, but would require complex physical modelling of brain tissue properties. Nonethe-

less, for a general estimate of lesion location, particularly for larger lesions, superimposing

a healthy brain atlas has worked sufficiently for the available data.

Quantification. With the successful alignment of lesion maps and anatomical atlas, quan-

tifying lesion localisation is far from trivial. One of the metrics introduced in this chapter

is the lesion overlap with an anatomical region, which was defined as the volumetric pro-

portion of a lesion cluster associated with a particular ROI. However, this measure does

not represent the lesion burden by itself. For example two lesions could both half overlap

(50% proportion within ROI) with the same region, but the region’s lesion burden could be

drastically different depending on the lesion size. The straight-forward way to measure a

region’s lesion burden would be to compute the percentage of a region that is covered by a

lesion, but because lesions clusters often have low volumes in comparison to the anatomical

region, the measured lesion burden can be vanishing small. Thus, subtle differentiation of

small lesions would be numerically difficult. Quantifying lesion burden will need to be a
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combination of lesion location, size, shape and co-occurrence with other lesion types.

Lesion Matching. The approach suggested for lesion matching was based on image reg-

istration. This is challenging for heavily distorted brains, and will have a direct impact

on the lesion matching performance. While mostly unproblematic for large lesions, small

lesion clusters are more prone to not be paired across corresponding scans. As shown earlier,

small contusion cores that were spatially apart were classified as independent core clusters,

while they might actually belong to the same pathology (Figure 6.8 Patient A - Core). The

insufficient overlap of lesion clusters could be a result of inadequate spatial correspondence

or interpolation errors of lesion masks introduced by the registration. Findings suggested

that vanishing and newly forming lesions have all lesion sizes below 0.5 cm3. While it makes

sense, that rather smaller than larger lesion were salvageable and formed at a later stage,

this indicated strong built-in biases against matching small lesions successfully. Firstly,

small lesions are generally harder to detect and to annotate, which is why small lesions

might be missing on the initial or follow-up scan. If indeed detected on both scans, finding

an overlap of small lesions via registering is much less robust than for large volumes. So

the suggested approach of lesion matching via spatial correspondence, might only be robust

for larger lesions. Although tracking the progression of individual lesion clusters was more

informative than measuring the change in total lesion volume for a few subjects, the results

did not clearly support the need for lesion matching. Considering the results as proof of

concept, future experiments will need to focus on larger cohorts to understand the benefits

of matching individual lesion clusters for overall lesion progression.

Sample Size. The presented analysis was based on manually lesion annotations. Al-

though many scans were visually inspected to label lesions, finding patients that fulfilled

all requirements (e.g. delineated contusion core and oedema on both hyper-acute and acute

scans) quickly reduced the sample size (here: 21). While this allowed to test algorithmic

concepts and per case studies, it is challenging to draw more than simple and general con-

clusions. This holds especially true for TBI cohorts as patients are very different to one and

another. High variability of lesion characteristics (size and location), demographics (age at

injury, sex) as well as clinical observations (initial injury severity, responsiveness) hinder

correlation of lesion findings to patient outcome.

6.4.3 Future Work

As mentioned, the heterogeneity of TBI patients makes it hard to find similar patterns of

lesion development within a small cohort. Since manual lesion labelling is time-consuming,

the generation of an annotated dataset is limited. However, with an automated lesion seg-
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mentation tool [125] it will be possible create lesion maps for a larger TBI database. The

same concepts for lesion localisation and matching will then be applicable to analyse le-

sion changes in an extended patient cohort. This will also help to further find strength

and weaknesses of the algorithms here suggested to examine lesions. Besides expanding the

available data, both the lesion localisation and the lesion matching algorithms can further

be improved. One obvious choice for future enhancement will be to use a more detailed

WM atlas, that allows a more refined localisation of sub-cortical lesions. In addition, a more

advanced algorithm could be developed that builds upon MALP-EM, that allows full brain

parcellation in the presence of lesions. One option would be to build a predictive model,

that learns to remove lesions [65, 205] on a scan such that MALP-EM could be applied

to pseudo-healthy brains without corrupting the underlying multi-atlas projection by the

present lesions. However, removal of pathology via inpainting is a challenging open research

question and this approach would still rely on MALP-EM’s time consuming parcellation.

Alternatively, a model could be build that predicts ROI parcellations [153, 158] and lesion

segmentation simultaneously [57, 85].

The lesion matching algorithm associated clusters when there was any overlap, however, as

discussed previously small lesions may not overlap despite belonging to the same pathology.

One possibility to avoid missed matching could be to connect smaller lesion clusters when

they are in very close proximity and have not been associated with any other clusters. A

threshold for maximum distance would need to be found empirically. Another enhancement

could be to build a graph connecting lesion clusters within the same and across longitudinal

scans to find a better correspondence between clusters. Although it is unclear how the dif-

ferent number of lesions would affect the structure of such a graph. Matching lesion clusters

by proximity and graph metrics would need extensive visual validation. The lesion matching

algorithm could be tested on synthetic data, however, generating artificial TBI lesions that

is challenging due to heterogeneous location and appearance. Furthermore, TBI lesions may

cause brain tissue deformation, why is difficult to simulate. So, synthetic lesions possibly

do not reflect the complexity found in real TBI data.

Eventually, information from both lesion location and changes over time could be combined

to fully characterise lesions. This could further be used to predict outcome measures in a

larger cohort to distinguish patients with different outcomes. One limitation of the experi-

ments presented in the chapter is the link to outcome metrics (i.e. GOS), which might be

to crude. Future investigations should also focus on examining correlations between lesion

derived metrics and more nuanced cognitive behaviour or symptom scale. For example the

Rivermead Post Concussion Symptoms Questionnaire [62, 131] could be used. Comprised

of 16 questions concerned with physical, cognitive and behavioural symptoms it provides a
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more detailed insight in a patient’s well-being. A larger sample size in combination with

a more elaborated analysis of cognitive deficits and behavioural changes will also be more

conclusive, whether longitudinal matching of individual lesion clusters actually will have a

clinical impact.

6.5 Chapter Summary

In this chapter, two concepts for a fully automated lesion analysis were examined: Firstly,

atlas registration-based lesion localisation (which has previously applied to other disorders,

such as stroke [137]), and secondly, lesion cluster matching between longitudinal MR scans.

Their potential was explored for manually annotated contusion cores and oedema found on

FLAIR scans of TBI patients. Lesions were located based on their overlap with regions of

the MALP-EM atlas. Visual inspection has shown the superiority of the backprojection of

a healthy atlas over a using the MALP-EM parcellation calculated for individual patients.

Although less detailed, the former showed better robustness in the presence of lesions visible

on T1w scans. Contusion cores and oedema were found to be predominantly in frontal and

temporal regions. Lesion volumes were generally larger for oedema, and seemed to expand

after the hyper-acute phase, but may grow or resolved later on. The overlap of lesions

with specific atlas ROIs showed a strong bias towards region size (e.g. large cerebral WM

regions were most frequently affected) and more precise metrics may need to be derived to

gain a better insight. The lesion matching between hyper-acute to acute MR scans showed

promising results for larger lesions. However, small lesions were found to be more prone to

failed matching. Despite the difficulty of accurate segmentation, lesions of lower volumes

naturally have smaller chance of overlap between with corresponding lesions, which may

limit the application of these methods. Enhancing the association of lesions between scans

through more sophisticated methods could help to improve the matching of smaller lesions.
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Summary

With the recognition of the potential of large sample sizes and the previously unseen avail-

ability of data, the field of neuroimaging is experiencing a shift towards big data science.

To answer more complex clinical research questions, new collaborations are formed to built

multi-centre studies that acquire thousands of MRI scans. This goes hand in hand with new

innovative analysis tools, such as deep learning, that both demand and foster the collection

of large datasets. While they need many samples to fit adequately to a data distribution,

they also allow to learn complex relations in data that could not easily be explored before.

Although big databases open up new opportunities for clinical research and data science,

they also come with challenges. These include efficient data management as well as identifi-

cation of biases and heterogeneity within the databases. This thesis aimed to address some

of the challenges in the light of TBI analysis.

7.1 Summary of Findings

Data Analysis Pipelines. At first, two complementary pipelines were introduced for

pre-processing structural or diffusion MRI scans. Both were designed with efficiency and

flexibility in mind. The pipelines run independently for each subject, which allowed to

process multiple scan sessions on a high performance computing cluster in parallel. The

goal was a balance between accurate processing steps and minimised computation time.

The structural pipeline first and foremost processes T1w images, however, also incorporates

processing of other structural scans if available (e.g. FLAIR, T2w, SWI). For example,

any provided complementary scan is coregistered to the T1w images, and additional feature

maps are calculated (e.g. FLAIR2). The diffusion pipeline allows to process DWI data with

and without an extra b0 image to apply EPI distortion correction. Furthermore, diffusion

189
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parameter maps are coregistered to T1w space to make use of the T1w brain mask and

allow multi-parametric data analysis that may require voxel-wise correspondence between

T1w and diffusion images. Additionally, the pipeline automatically recognises multi-shell

acquisitions and then applies free water elimination and kurtosis fitting. Besides extract-

ing image derived features useful for clinical neuroscience, both pipelines provide several

quality metrics which can be used to ensure the image usability and assess the accuracy of

pre-processing steps. Quality control metrics were shown to pick up on scans with artefacts

such as excessive head motion or noise corrupted images.

Application to Mild TBI. Both pipelines were employed to analyse mTBI data in a

retrospective multi-centre study including three imaging sites. The heterogeneity of the

data posed both possibilities and challenges. Scanning patients with varying severity of

mTBI internationally bears the potential for the pooled database to reflect the spectrum

of mTBI more accurately. However, differences in data collection scheme (e.g. scan time

point after injury) and acquisition parameters hampered a straight-forward analysis. Despite

rectifying data differences (e.g. using single-shell data exclusively) and applying the same

processing pipeline, site-specific biases remained. To account for this, data were Z-scored

and the acquisition site was used as covariate in the regression analysis. The focus laid on

regional loss of brain tissue and changes in diffusion patterns. A comparison of control sub-

jects and patients with different outcome revealed that patients with good outcome showed

similar IDPs as control subjects. In contrast, patients with poor outcome experienced tissue

atrophy, demonstrated as enlarged ventricles, and decreased FA indicating impaired WM

integrity. Mean diffusivity was less sensitive to differences between controls and patient

groups. Neither anatomical brain volumes nor diffusion parameters were found to be pre-

dictive of patient outcome. This suggested that injuries may not deviate strongly enough to

separate between patient cohorts during the acute phase. The longitudinal analysis showed

progressive tissue atrophy and changes of diffusion, suggesting IDPs may vary more between

patient groups at a more chronic stage. However, there was no clear indicator that patients

with poor outcome had stronger tissue atrophy or quicker deterioration of WM integrity.

Predicting the outcome of mTBI patients remains a difficult problem, and it might be easier

to assess how control-like the imaging features of a patient are.

Reproducibility of MRI Metrics. Combining different databases appropriately is chal-

lenging. To foster multi-centre studies it is important to understand the MR image repro-

ducibility and its dependency on factors such as different acquisition parameters or scanners

employed. For adequate analysis, the processing tools chosen to extract image features need
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to be as robust to site-specific biases as possible. The analysis of whole brain parcellation

(MALP-EM) revealed regional volume differences for the same subjects imaged on differ-

ent scanners. The deviations could me minimised by standardising volumes to total brain

volumes or partly by normalising image intensity prior to the ROI parcellation. Generally,

smaller regions were more challenging to segment and showed higher variation when scans

were acquired on different scanners or with different MR parameters. A registration based

parcellation of WM (JHU) was found to be more robust to different MRI parameters than

a model based ROI segmentation (TractSeg). However, registration was observed to be

less precise in defining region boundaries. Besides ROI volumes, diffusion metrics were also

found to be dependent on the acquisition scheme. Applying a different number of gradi-

ents of different strength and duration (single or multiple b-values) had an impact on both

FA and MD. In particular, single-shell acquisition showed more variation in diffusion pa-

rameters than scans acquired on several shells. Overall, findings suggest that more similar

parameters lead to less variation. Nonetheless, even with closely matched protocols image

quality remains dependent on hardware settings. Pooling data from multiple different sites

and scanners showed that variation did not exceed the highest variation found in individual

databases.

Harmonisation of DWI for Multi-Centre Studies. With improved data available and

the development of data-hungry algorithms, studies aim to increase sample sizes. Despite

the effort of designing large prospective multi-centre studies, there is a demand to harmonise

data across acquisition sites. Some promising methods were examined in depth to better un-

derstand their potential under a fair comparison. The previously reported success of linear

scaling of SH coefficients via RISH feature mapping could only partly be reproduced in the

experiments presented here. In particular higher order SH coefficients could not easily be

mapped between scanners. Enhancements of scaling maps had only minor positive impact.

In contrast, neural networks were shown to be more beneficial to learn non-local mappings

between diffusion data to reduce site-specific biases. However, model based approaches were

less robust to outliers than, for example, linear RISH feature scaling. The experiments also

showed that neural networks could indeed profit from learning different feature maps on

the various SH images of different orders. A caveat was that the designed neural networks

were trained to learn a mapping between coregistered scans. Coregistering images resulted

in decreased FA values for the data used for the experiments presented here. Consequently,

the neural network learned to shift data to the wrong image domain (i.e. the coregistered

images rather than the images in native space), which is why neural networks underper-

formed. Despite showing some potential to minimise site-specific variations, a benefit for
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application to TBI patient data could not be observed.

Lesions Analysis in Severe TBI. Besides the analysis of mTBI, patients with more

severe injuries were examined as well. One important factor in TBI is the presence and

location of lesions visible on MR images. In the available dataset, FLAIR contusion cores

and oedema were mostly found in the frontal and temporal lobes. Comparing two cohorts

imaged on different scanners showed that contusions were predominately in opposite brain

hemispheres. Although this is unrelated to the scanners employed, it highlighted potential

variations in different cohorts across centres. The longitudinal data revealed that volumes

for contusion cores initially grew in the acute phase, but seemed to shrink or vanish later on.

In contrast, oedema volumes consistently increased with time post-injury. The algorithm

introduced to match lesions between initial and follow up scans was successful for larger

lesions. Therefore, measuring the lesion development of individual clusters has the potential

to be more informative than simply assessing the total lesion volume.

7.2 Limitations & Future Directions

Data Analysis Pipelines. An obvious change for the pipeline will be to exchange tools

for newer methods to keep the processing pipeline state of the art. This will involve the

integration of improved methods such as, for example, reducing noise in diffusion weighted

images. To streamline the pipelines even more, some modules will need to be replaced to

accelerate processing steps. For example, instead of relying on registration (MALP-EM),

the brain parcellation could be predicted by machine learning models. With respect to TBI,

an important new extension of the pipeline will be the automated lesion segmentation and

derivation of clinically relevant information such as the lesion location. Another extension

will be the use of machine learning models trained on QC metrics to identify corrupted scans

and processing steps. This will be more beneficial than relying on finding empirical thresh-

olds for each particular QC metric to flag suspicious scans. Apart from that, the usability

could be improved. The current state of the pipeline is easily applicable via command line,

however, this might be challenging for the less trained clinical researcher. A better interface

could strongly improve usability. A challenge will be to anticipate as many different scenar-

ios as possible. The more flexible the pipeline will be, the higher the chance data will be

processed inadequately.

Application to Mild TBI. Appropriate study design and processing becomes even more

important if data from different databases are used. The pipelines were flexible enough to
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allow their application to three different mTBI databases. Processing steps were mostly

equally, but site-specific biases remained. Although these were also accounted for via Z-

scoring and linear regression modelling, it is not entirely clear whether biases could be fully

eliminated. For example, the higher shell diffusion data from Trondheim were disregarded

which likely had a positive effect on the comparability of MD across centres. However, an-

gular resolution - that rather influences FA than MD - was different across sites. This may

have left FA more vulnerable to site-specific biases. These could be helpful in differentiating

subjects based on their origin of acquisition, since the cohorts from the sites examined had

different severities of injury (Trondheim patients had experienced milder TBI than Turku

patients). Indeed, FA showed a higher sensitivity to differentiate controls and patient groups

than MD. Future investigations will need to focus on better harmonisation strategies as well

as being more patient-specific to combat the heterogeneity in imaging data and TBI cohorts.

Furthermore, the data could be enhanced in two folds. Either increasing the sample size,

by for example including CENTER-TBI data, or by exploiting multi-shell acquisition for

better diffusion modelling (i.e. DKI and free-water elimination). The latter would need to

rely on Trondheim data only.

Reproducibility of MRI Metrics. Experiments have shown the influence of MRI acquisi-

tion on image derived features (volumes and diffusion). Any study that pools data acquired

on different scanners and/or with different parameters will be affected by site-specific bi-

ases, and analysis will need to account for that. Various datasets with different sources of

variation were examined to understand their impact on image derived features. However,

influences of various parameters were still very much entangled, and more experiments are

needed to better understand the effect of single parameters. Although different acquisition

schemes affected WM parcellation, a bigger challenge was the segmentation of WM tracts

on Philips scanners. Since TractSeg is a predictive model, it drastically under-performed on

unseen data, such as the Philips scans from CENTER-TBI. Tract segmentation via regis-

tration (JHU) tract segmentation was more robust but less precise. Therefore, future work

will need to focus on multi-centre WM parcellation to allow a reliable analysis of the whole

CENTER-TBI database. This could involve either data harmonisation prior to the parcel-

lation or designing models that learn to adapt to different domains.

Harmonisation of DWI for Multi-Centre Studies. Diffusion MRI harmonisation

remains an open research question. One of the limitations in the experiments presented

here was the low sample size. Both the linear RISH feature scaling and neural networks

would benefit from including more data. However, acquiring data for travelling healthy
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controls is expensive and highly unpractical for large multi-centre studies. Even collecting

MRI data for enough matched (e.g. age, sex) control subjects is challenging. With respect

to CENTER-TBI, only a maximum nine healthy volunteers were scanned per site. Since

most of these volunteers are different for each scanner, matching controls will be difficult.

Furthermore, a small number of control subjects may not reflect the full data distribution,

which could skew any analysis following the harmonisation. Therefore, new methods will

need to be developed that can be applied to small datasets of possibly unmatched controls.

Furthermore, the methods investigated here all aim to project one database to another.

This is infeasible for multi-centre studies as one mapping for each individual database would

need to be learned which makes data harmonisation less robust. A key development will be

simultaneous representation learning of diffusion MRI, such that the information of all data

can be leveraged at once. Possibly this would also allow the inclusion of patient data in the

learning process. Instead of learning a mapping between control subjects to harmonise pa-

tient data before analysis, a strong model could learn to reduce site-specific variation while

simultaneously finding disease related differences. This could especially be advantageous for

studies such as CENTER-TBI where control subjects are limited. In addition, non-imaging

characteristics could be directly incorporated during the learning phase. One challenge, how-

ever, will be the interpretability of the neural network’s decisions to infer clinically relevant

information. Another research direction could focus on disentangling the different effects

that lead to site-related biases. If the influences of different acquisition parameters could be

differentiated from hardware induced effects, control subjects from another study, imaged

with different MRI protocol but on the same scanner, could help to learn site-specific biases.

Disentanglement learning is, however, a fairly new research field.

Lesions Analysis in Severe TBI. Lesion analysis is an important factor to examine

severe TBI cohorts. Two algorithms were introduced to foster automated examination of

FLAIR lesions. The region-based localisation of lesion is highly dependent on the atlas em-

ployed. If the atlas is too crude, it is difficult to actually locate lesions. For example, the

MALP-EM atlas does not parcellate WM regions. With WM as the largest region, almost

any lesion was located within WM, which makes differentiation of lesions by location more

difficult. On the other hand if the parcellation is too fine, a lesion will be present in many

small regions, which may hamper the identification of a distinct lesion location. Future

experiments will need to investigate the use of different atlases and the automated extrac-

tion of addition quantifiable measures (for example sphericity or surface area of a lesion).

If lesions are more prone to grow than others, therapy could focus on those. Therefore,

besides assessing the momentary characteristics of a lesion on one scan, it is important to
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understand the lesion evolution over time. The lesion matching algorithm was designed to

connect individual lesion clusters between initial and follow-up scan. Since this algorithm

is based on registration and overlap of lesion annotations, it is prone to fail to match small

lesions. This can lead to spurious results as small lesions may appear to be salvageable or

appear at a later stage. More experiments on a larger database are needed to understand

the full potential. Once lesions will be segmented automatically for the full CENTER-TBI

database, these algorithms will be applicable to investigate the connection between extracted

lesion characteristics and clinical variables (e.g. outcome or mortality) on a larger scale.

7.3 Conclusion

Neuroimaging studies are increasing in size. While this can beneficial for data analysis to

boost statistical power and examine bigger patient cohorts, this comes also with challenges.

Databases need to be managed and processed in an efficient and transparent way that fos-

ters reproducible data analysis. Flexible processing pipeline that robustly remove artefact

and extract image derived features, while being adaptive to the needs of different databases,

support answering clinical neuroscience questions. These are particularly complex for het-

erogeneous databases such as TBI patient cohorts. Depending on the severity of the injury,

patients show diffuse axonal injury best observed on diffusion MRI, or clearly visible lesions.

This high variability in pathology requires different analysis strategies. While the challenge

for mTBI cases lies in detecting very subtle differences between patients, severe TBI cases

may benefit from extraction of lesion characteristics. Generally, collecting big neuroimaging

data is challenging which is why there is demand to merge databases across sites. This

can happen retrospectively for independent studies, or as part of a prospectively designed

multi-centre study. Either way, pooling data from different centres comes with increased

variation. Acquisition dependent biases are inherently introduced and need to be accounted

for. Especially for diffusion MRI for which angular resolution and the strength and duration

of the applied gradients strongly influence the measured diffusion signal. Newest develop-

ments in MRI data harmonisation showed the great success of deep learning neural networks

to minimise site-specific biases, however, more experiments are needed to fully understand

the potential for clinical analysis of TBI data. Big databases, such as CENTER-TBI, and

advanced algorithms make TBI research an exiting field that still holds many challenges.

The hope is that larger datasets, more consistent pre-processing tools and improved data

harmonisation methods will help to analyse TBI cohorts to ultimately lead to revelations

that improve patient care.
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Table A.1: P-Values After FDR Correction for Comparison of TractSeg ROI Mean FA
Within and Across Scanners. P-values of post-hoc t-test <0.05 printed in bold.

Intra-Scanner Inter-Scanner

ROI
rm-

ANOVA
P1-P2 T1-T2 P1-T1 P1-T1 P2-T1 P2-T2

FA

14 0.0060 0.4021 0.9177 0.0049 0.0076 0.0613 0.0720

17 0.0157 0.0419 0.3799 0.0419 0.0640 0.0776 0.2369

18 0.0094 0.1580 0.9113 0.0058 0.0248 0.0341 0.1157

28 0.0157 0.0077 0.8507 0.0521 0.0236 0.1255 0.0671

31 0.0405 0.2440 0.9996 0.0132 0.0148 0.2440 0.2440

32 0.0116 0.0133 0.9658 0.0156 0.0156 0.1395 0.2797

33 0.0001 0.0941 0.9065 0.0000 0.0006 0.0182 0.0286

41 0.0000 0.1965 0.2454 0.0033 0.0007 0.0078 0.0016

45 0.0157 0.0405 0.9467 0.0828 0.1073 0.0405 0.0562

50 0.0157 0.2874 0.2874 0.0536 0.0536 0.1488 0.1003

52 0.0129 0.3720 0.8004 0.0197 0.0189 0.0829 0.0829

58 0.0040 0.1873 0.8554 0.0414 0.0128 0.0251 0.0128

64 0.0321 0.2533 0.2533 0.0588 0.0588 0.2303 0.1578

66 0.0163 0.4278 0.5731 0.0274 0.0155 0.1443 0.1198

ROIs: 0: left arcuate fascicle, 6: genu, 7: rostral body of CC, 22: left inferior cerebellar
peduncle, 25: right IFO, 30: right optic radiation, 31: left parieto-occipital pontine, 32:
right parieto-occipital pontine, 36: right SLFI , 45: CC, 48: left thalamo-premotor tract, 57:
right thalamo-occipital tract, 71: right striato-occipital tract. Scans: P1: Prisma scan #1,
P2: Prisma scan #2, T1: Trio scan #1, T2: Trio scan #2.
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Table A.2: P-Values After FDR Correction for Comparison of TractSeg ROI Mean MD
Within and Across Scanners. P-values of post-hoc t-test <0.05 printed in bold.

Intra-Scanner Inter-Scanner

ROI
rm-

ANOVA
P1-P2 T1-T2 P1-T1 P1-T1 P2-T1 P2-T2

MD

5 0.0333 0.2757 0.5226 0.0998 0.1502 0.0998 0.0998

6 0.0149 0.4974 0.1078 0.0733 0.0733 0.0768 0.0768

9 0.0395 0.4232 0.4232 0.1560 0.1560 0.1560 0.1560

10 0.0164 0.3067 0.4024 0.0783 0.1968 0.0537 0.1289

14 0.0131 0.3854 0.7387 0.0057 0.0218 0.1268 0.1268

18 0.0164 0.3438 0.8842 0.0081 0.0081 0.2077 0.2077

20 0.0186 0.2993 0.0279 0.7648 0.1002 0.1284 0.0279

21 0.0163 0.6538 0.2363 0.1361 0.0660 0.0707 0.0583

22 0.0117 0.6179 0.4133 0.0190 0.0190 0.1356 0.0190

23 0.0027 0.4060 0.4060 0.0211 0.0131 0.0131 0.0131

24 0.0161 0.5126 0.2198 0.0825 0.1338 0.0519 0.0825

26 0.0159 0.5372 0.1369 0.0713 0.0454 0.1063 0.0282

27 0.0285 0.3001 0.1370 0.1370 0.1370 0.1370 0.1370

28 0.0004 0.6087 0.6087 0.0057 0.0040 0.0205 0.0057

30 0.0200 0.1145 0.1472 0.1159 0.1145 0.1159 0.1145

33 0.0016 0.4546 0.7146 0.0020 0.0021 0.0446 0.0261

34 0.0004 0.2149 0.7085 0.0044 0.0048 0.0054 0.0248

36 0.0094 0.7743 0.2857 0.0438 0.1112 0.0300 0.0678

41 0.0006 0.1460 0.4354 0.0016 0.0062 0.0323 0.0323

45 0.0015 0.3929 0.1415 0.0196 0.0394 0.0196 0.0394

51 0.0103 0.1159 0.4680 0.0378 0.1159 0.0127 0.0378

53 0.0004 0.1016 0.5783 0.0013 0.0194 0.0008 0.0167

54 0.0347 0.4286 0.4705 0.0611 0.2813 0.0611 0.1962

55 0.0175 0.3381 0.4923 0.0988 0.1888 0.0609 0.1198

57 0.0163 0.5059 0.1373 0.1249 0.1040 0.1363 0.1040

65 0.0044 0.1344 0.3487 0.0297 0.1200 0.0074 0.0297

67 0.0004 0.1711 0.4556 0.0007 0.0157 0.0001 0.0131

68 0.0175 0.3594 0.3594 0.0564 0.1880 0.0564 0.1419

69 0.0164 0.2132 0.4434 0.1025 0.1856 0.0552 0.1025

71 0.0175 0.1426 0.4318 0.0738 0.0738 0.0738 0.0738

ROIs: 0: left arcuate fascicle, 6: genu of corpus callosum, 7: rostral body of corpus callosum,
22: left inferior cerebellar peduncle, 25: right IFO fascicle, 30: right optic radiation, 31: left
parieto-occipital pontine, 32: right parieto-occipital pontine, 36: right superior longitudinal
fasicle I, 45: full corpus callosum, 48: left thalamo-premotor, 57: right thalamo-occipital,
71: right striato-occipital. Scans: P1: Prisma scan #1, P2: Prisma scan #2, T1: Trio scan
#1, T2: Trio scan #2.
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Table A.3: P-Values After FDR Correction for Comparison of JHU ROI Mean DTI Metrics
Within and Across Scanners. P-values of post-hoc t-test <0.05 printed in bold.

Intra-Scanner Inter-Scanner

ROI
rm-

ANOVA
P1-P2 T1-T2 P1-T1 P1-T1 P2-T1 P2-T2

FA

0 0.0327 0.1230 0.7117 0.0944 0.1148 0.1837 0.2866

1 0.0002 0.0413 0.7112 0.0042 0.0042 0.0413 0.0065

2 0.0001 0.2382 0.2382 0.0017 0.0021 0.0017 0.0132

6 0.0032 0.9136 0.0662 0.0085 0.0662 0.0085 0.1444

9 0.0151 0.7641 0.9010 0.0889 0.0550 0.0550 0.0051

14 0.0026 0.2890 0.8990 0.0043 0.0098 0.0858 0.0679

18 0.0471 0.3484 0.3484 0.0352 0.2030 0.2482 0.2616

MD

0 0.0011 0.1790 0.8637 0.0202 0.0202 0.0202 0.0299

1 0.0021 0.2882 0.8223 0.0207 0.0209 0.0207 0.0455

2 0.0007 0.5181 0.7019 0.0048 0.0048 0.0048 0.0128

4 0.0255 0.4138 0.5224 0.1033 0.1033 0.1182 0.1381

6 0.0031 0.5208 0.7153 0.0389 0.0094 0.0971 0.0161

7 0.0226 0.9535 0.0050 0.2173 0.0728 0.2156 0.0728

12 0.0022 0.1880 0.4423 0.0270 0.0270 0.0270 0.0270

13 0.0031 0.5581 0.3812 0.0763 0.0344 0.0763 0.0344

14 0.0200 0.4770 0.4992 0.0031 0.0405 0.2046 0.2046

18 0.0022 0.4397 0.3083 0.0007 0.0048 0.0806 0.0698

ROIs: 0: left anterior thalamic radiation, 1: right anterior thalamic radiation, 2: left CST,
4: left CG, 6: left hypocampal cingulate, 7: right hypocampal cingulate, 9: forceps minor,12:
left ILF, 13: right ILF, 14: left SLF, 18: left SLF. Scans: P1: Prisma scan #1, P2: Prisma
scan #2, T1: Trio scan #1, T2: Trio scan #2.
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Figure A.1: TractSeg Volume Distribution for CENTER-TBI. Volume distributions in dif-
ferent CENTER-TBI imaging sites. Left: The corpus callosum (ROI #45) as largest seg-
mented region in the TractSeg atlas was segmented for in all centres, however, much lower
volumes on Philips scanners (G, H, L) were observed. Right: Volumes of the left striato-
occipital tract (ROI #69), measured on Philips scans, were strongly undersegmented in
comparison to all other centres that employed a different vendor (i.e. GE or Siemens). This
region is representative for many other undersegmented ROIs on Philips data.

Table 7.4: Effect Size of Harmonisation Methods on Control Subjects from CENTER-TBI.
Cohen’s effect size d was computed between global RMSE values. Effect sizes can be small
(d = ±0.2), medium (d = ±0.5) or large (d = ±0.8).

Method #1 Method #2 b0 RISH0 RISH2 RISH4

Inter-Scanner Linear-RISH 0.97 1.14 1.40 -0.31

Inter-Scanner Global Scaling 0.89 1.17 1.22 -1.08

Inter-Scanner CNN Multi-Path 1.38 1.37 1.73 1.61

Linear-RISH Global Scaling 0.10 0.06 -0.37 -0.95

Linear-RISH CNN Multi-Path 1.03 0.55 1.18 1.72

Global Scaling CNN Multi-Path 1.03 0.49 1.31 1.75

Cohen’s effect size measure: d = (x − y)/σ, with x and y representing the mean of the
RMSE (between the corresponding images from both scanners) for method #1 and method
#2, respectively. σ represents the pooled standard deviation of the RMSE of both methods.
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[144] Thomas Küstner, Karim Armanious, Jiahuan Yang, Bin Yang, Fritz Schick, and Sergios Ga-

tidis. Retrospective correction of motion-affected mr images using deep learning frameworks.

Magnetic resonance in medicine, 2019.
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Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic

brain injury with persistent neurobehavioral impairment. Human brain mapping, 32(6):999–

1011, 2011.

[175] Karla L Miller, Fidel Alfaro-Almagro, Neal K Bangerter, David L Thomas, Essa Yacoub, Jun-

qian Xu, Andreas J Bartsch, Saad Jbabdi, Stamatios N Sotiropoulos, Jesper LR Andersson,

et al. Multimodal population brain imaging in the uk biobank prospective epidemiological

study. Nature neuroscience, 19(11):1523, 2016.

[176] Ludovico Minati and W ladys law P Weglarz. Physical foundations, models, and methods of

diffusion magnetic resonance imaging of the brain: A review. Concepts in Magnetic Resonance

Part A: An Educational Journal, 30(5):278–307, 2007.

[177] Hengameh Mirzaalian, Amicie de Pierrefeu, Peter Savadjiev, Ofer Pasternak, Sylvain Bouix,

Marek Kubicki, Carl-Fredrik Westin, Martha E Shenton, and Yogesh Rathi. Harmonizing

diffusion mri data across multiple sites and scanners. In International Conference on Medical

Image Computing and Computer-Assisted Intervention, pages 12–19. Springer, 2015.

[178] Hengameh Mirzaalian, Lipeng Ning, Peter Savadjiev, Ofer Pasternak, Sylvain Bouix,

O Michailovich, G Grant, CE Marx, Rajendra A Morey, LA Flashman, et al. Inter-site

and inter-scanner diffusion mri data harmonization. NeuroImage, 135:311–323, 2016.

[179] Hengameh Mirzaalian, Lipeng Ning, Peter Savadjiev, Ofer Pasternak, Sylvain Bouix, Oleg

Michailovich, Sarina Karmacharya, Gerald Grant, Christine E Marx, Rajendra A Morey,

et al. Multi-site harmonization of diffusion mri data in a registration framework. Brain

imaging and behavior, 12(1):284–295, 2018.

[180] Kent G Moen, Veronika Brezova, Toril Skandsen, Asta K H̊aberg, Mari Folvik, and Anne Vik.

Traumatic axonal injury: the prognostic value of lesion load in corpus callosum, brain stem,

and thalamus in different magnetic resonance imaging sequences. Journal of neurotrauma,

31(17):1486–1496, 2014.

[181] Susumu Mori, Setsu Wakana, Peter CM Van Zijl, and LM Nagae-Poetscher. MRI atlas of

human white matter. Elsevier, 2005.



BIBLIOGRAPHY 217

[182] Daniel Moyer, Greg Ver Steeg, Chantal MW Tax, and Paul M Thompson. Scanner invariant

representations for diffusion mri harmonization. Magnetic Resonance in Medicine.

[183] Emma R Mulder, Remko A de Jong, Dirk L Knol, Ronald A van Schijndel, Keith S Cover,

Pieter J Visser, Frederik Barkhof, Hugo Vrenken, Alzheimer’s Disease Neuroimaging Ini-

tiative, et al. Hippocampal volume change measurement: quantitative assessment of the

reproducibility of expert manual outlining and the automated methods freesurfer and first.

Neuroimage, 92:169–181, 2014.

[184] Ponnada A Narayana, Xintian Yu, Khader M Hasan, Elisabeth A Wilde, Harvey S Levin,

Jill V Hunter, Emmy R Miller, Vipul Kumar S Patel, Claudia S Robertson, and James J

McCarthy. Multi-modal mri of mild traumatic brain injury. NeuroImage: Clinical, 7:87–97,

2015.

[185] Abdullah Nazib, Clinton Fookes, and Dimitri Perrin. A comparative analysis of registration

tools: Traditional vs deep learning approach on high resolution tissue cleared data. arXiv

preprint arXiv:1810.08315, 2018.

[186] Virginia FJ Newcombe, Marta M Correia, Christian Ledig, Maria G Abate, Joanne G Out-

trim, Doris Chatfield, Thomas Geeraerts, Anne E Manktelow, Eleftherios Garyfallidis, John D

Pickard, et al. Dynamic changes in white matter abnormalities correlate with late improve-

ment and deterioration following tbi: a diffusion tensor imaging study. Neurorehabilitation

and neural repair, 30(1):49–62, 2016.

[187] Lipeng Ning, Elisenda Bonet-Carne, Francesco Grussu, Farshid Sepehrband, Enrico Kaden,

Jelle Veraart, Stefano B Blumberg, Can Son Khoo, Marco Palombo, Iasonas Kokkinos, et al.

Cross-scanner and cross-protocol multi-shell diffusion mri data harmonization: algorithms

and results. NeuroImage, page 117128, 2020.

[188] Sumit N Niogi and Pratik Mukherjee. Diffusion tensor imaging of mild traumatic brain injury.

The Journal of head trauma rehabilitation, 25(4):241–255, 2010.

[189] Luke Oakden-Rayner, Jared Dunnmon, Gustavo Carneiro, and Christopher Ré. Hidden strat-
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