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Abstract

In optimization under uncertainty for engineering design, the behavior of the system outputs
due to uncertain inputs needs to be quantified at each optimization iteration, but this can be
computationally expensive. Multi-fidelity techniques can significantly reduce the computational
cost of Monte Carlo sampling methods for quantifying the effect of uncertain inputs, but existing
multi-fidelity techniques in this context apply only to Monte Carlo estimators that can be
expressed as a sample average, such as estimators of statistical moments. Information reuse is
a particular multi-fidelity method that treats previous optimization iterations as lower-fidelity
models. This work generalizes information reuse to be applicable to quantities with non-sample
average estimators. The extension makes use of bootstrapping to estimate the error of estimators
and the covariance between estimators at different fidelities. Specifically, the horsetail matching
metric and quantile function are considered as quantities whose estimators are not sample-
averages. In an optimization under uncertainty for an acoustic horn design problem, generalized
information reuse demonstrated computational savings of over 60% compared to regular Monte
Carlo sampling.

Nomenclature

x Vector of design variables

nx The number of design variables

ω Underlying random outcome

U(ω) Random vector of uncertain input parameters

u Realization of input parameters

nu The number of uncertain input parameters

nc The number of constraints

y General system model output

Y (ω) Random variable representing a system output

n Number of sampled values

Y i The ith sampled value of Y (ω)
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y(s) The sth order statistic out of n sampled values of Y (ω)

d Quantity used in an optimization formulation

d̂ Naive Monte Carlo estimator of d from sampled values of Y (ω)

ŝ Estimator of d used in the optimization

Nboot Number of times re-sampling occurs in bootstrapping

d̂b The value of d̂ evaluated using the bth set of re-sampled values of Y (ω)

V̄ Bootstrapped estimate of the variance of an estimator

Σ̄ Bootstrapped estimate of covariance between two estimators

FY (y) Cumulative distribution function of Y (ω)

x As a subscript/superscript: of a given design point

A As a subscript/superscript: of the current design point in an optimization

C As a subscript/superscript: of the design point selected as the control point

β Minimum acceptable probability of constraint satisfaction

1 Introduction

Optimization techniques are becoming increasingly integrated within the engineering design process
when computational models of the system are available. Often, various inputs to models of the
system are uncertain in reality [1], and it is important to account during the design process for their
influence on the performance of the system. The field of optimization under uncertainty (OUU)
has therefore developed various optimization formulations for engineering design that can improve
the behavior of a system subject to uncertain inputs [2–6]. These formulations involve defining
quantities that describe the behavior under uncertainty of the system, which are then used as the
objective or as constraints in an optimization.

For practical engineering systems, the system model can be computationally expensive to evalu-
ate, and so optimizing such systems represents a significant computational burden. Surrogate-based
and multi-fidelity formulations have been developed to address this issue [7–14]. Multi-fidelity ap-
proaches leverage cheap surrogate models to reduce the computational cost, while retaining occa-
sional recourse to the high-fidelity model to ensure accuracy.

In OUU, the effects of uncertain inputs on the system must be propagated at every optimization
iteration. Various methods have been developed to achieve this propagation at low computational
expense, including (but not limited to) quadrature based integration [15], stochastic expansions
[9, 15–17], and surrogate models [18, 19]. Whilst effective in many scenarios, especially when the
problem is smooth, these methods suffer from the “curse of dimensionality” whereby their cost
increases exponentially with the number of uncertain inputs.

Monte Carlo (MC) sampling, on the other hand, is a method whose convergence rate is inde-
pendent of both the dimensionality and smoothness of the problem [20, 21], making it attractive
for problems with a large number of uncertainties or with particularly non-smooth behavior. This
convergence rate is slow, however, and some problems may simply be too computationally expen-
sive for MC sampling; for example if only a few hundred expensive high-fidelity model evaluations
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can be afforded within an optimization, then MC sampling is not recommended since a designer
would have little confidence in the accuracy of the results.

Multi-fidelity approaches can offer a way of reducing the computational expense of MC sam-
pling [22], allowing it to be useful when the cost would otherwise be marginally too high, or
allowing it to be better integrated within an engineer’s workflow for practical problems. In the
context of OUU with MC sampling, a multi-fidelity formulation based on control variates has been
proposed to reduce the number of system model evaluations required to propagate the effect of the
uncertainties [23]. The formulation in that work applies to general low-fidelity models, but of par-
ticular benefit in the OUU setting is the use of information from previous optimization iterations,
termed “information reuse” in Ref. 23. However, this control-variate-based approach, as presented
in Ref. 23, is limited to formulations of the OUU problem where estimators of the quantities being
optimized or constrained must be expressed as a sample average (e.g., estimators of the first two
statistical moments, mean and variance).

There exists a rich variety of quantities that can be optimized or constrained in OUU for
engineering design [3, 4, 24–27]. Estimators of many of these quantities cannot be represented as
a sample average, and so existing multi-fidelity approaches for OUU cannot be used to accelerate
such estimators. This paper extends the information reuse approach of Ref. 23, to estimators that
cannot be expressed as a sample average. Consequently information reuse becomes applicable to
a broader range of OUU formulations. Our “generalized information reuse” approach makes use
of the ideas behind bootstrapping [28] to evaluate both the error of estimators and the covariance
between estimators using different fidelity models.

Section 2 outlines the general formulation of an OUU for engineering design and gives examples
of quantities optimized/constrained in an OUU. Section 3 presents the generalized information
reuse approach. Section 4 tests the approach on an algebraic test problem, and applies it to the
design of an acoustic horn under uncertainty. Section 5 concludes the paper.

2 Formulations of Optimization Under Uncertainty

This section discusses a general formulation of the OUU problem and the use of Monte Carlo
simulation in solving it. We then present several specific quantities that can be used as objec-
tive or constraint functions in OUU, including statistical moments, the probability of failure, the
quantile/value at risk, and the horsetail matching metric.

2.1 General Formulation of the Optimization Problem

Models of practical engineering systems often produce various outputs of interest. These outputs
enter into the design problem through the objective or constraints. We denote a general output by
y(x,u), which is a function of controllable design variables, x, and input parameters, u. We treat u
as uncertain, and use a probabilistic representation such that u is a realization of a random vector
U(ω), where ω denotes the underlying random event with sample space Ω such that ω ∈ Ω. Thus
at a given design x, an output is a random variable Yx(ω), defined such that Yx(ω) = y(x,U(ω)).

An OUU requires an objective, denoted d0(x), and constraints, denoted dj(x), to be defined
that characterize the behavior of Yx as a function of the design x. For example the expected value
of Yx could be minimized subject to a constraint on the variance of Yx. In general, the formulation
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of a (single objective) OUU problem can be written as:

minimize
x

d0(x) (1)

s.t. dj(x) ≤ 0 j = 1, . . . , nc

where each of dj(x), j = 0, 1, . . . , nc is an appropriately defined function. Examples of functions to
use in this OUU formulation are given in Sections 2.3 to 2.6. In the following, we drop the subscript
notation to refer to a general d(x) that could be any of dj(x), j = 0, 1, . . . , nc.

2.2 Monte Carlo Sampling

To implement an OUU, an estimate of d(x) must be obtained at each design point x visited by the
optimization algorithm. Such an estimate is usually obtained by evaluating the output y(x,u) at
particular values of the input parameters. In many practical design problems, evaluating y(x,u)
involves using black box simulations that model the system being optimized, and so a non-intrusive
approach is required.

Monte Carlo (MC) simulation is a non-intrusive approach which uses an estimator, denoted by
d̂, to obtain an estimate of d(x) [20, 21]. Solving the OUU problem using MC sampling gives a
nested formulation, where in the outer loop an optimizer determines the sequence of design points
to visit, and in the inner loop MC sampling obtains estimates of dj(x), j = 0, 1, . . . , nc. Many MC
estimators are sample averages in that they are a function that can be expressed in the form:

d̂ =
1

n

n∑
i=1

Zi, (2)

where Zi, i = 1, 2, . . . , n are n independent and identically distributed (i.i.d.) random variables
that depend on Yx. A sample average estimator is an unbiased estimator of the mean of Zi, and
an analytical form of the estimator variance can be obtained as follows:

Var[d̂] =
1

n2
Var

[
n∑
i=1

Zi

]
=
σ2Z
n

(3)

where σ2Z is the variance of Zi. Therefore the standard deviation, and hence root mean squared
error, of a sample average estimator is proportional to n−1/2 [20, 21]. However, in general, MC
estimators are of the form:

d̂ = f(Z1, Z2, . . . , Zn) (4)

where f is a function that cannot necessarily be expressed as a sample average, in which case we
cannot use Equation (3) to derive their variance.

Sections 2.3 to 2.6 discuss several key choices of d(x) that can be used in OUU for engineering
design, and give their Monte Carlo estimators. Whether they are used as objectives or constraints
in the OUU formulation is left up to a designer setting up the problem.

2.3 Statistical Moments

A common quantity used as the objective function in OUU is the mean value, µ = E[Yx]. The
variance, σ2 = Var[Yx], and standard deviation, σ, are also often used. The mean and variance (or
standard deviation) are used as the objective function(s) in traditional robust design optimization,
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where they can be optimized separately in a multi-objective formulation [3, 29–33], but are often
combined into a single objective using a weighted sum [3,17,29,34,35].

Constraints are also often formulated using statistical moments, for example requiring that the
mean value is λ standard deviations away from failure. In this case, the constraint in the OUU
formulation is d = µ + λσ ≤ 0 [36–38]. In the case where Yx is distributed normally, this gives a
constraint on the probability of failure. Note that this is the approach applied to the constraints
in the original information reuse formulation [23,39].

The estimator of the mean of Yx is given by:

µ̂ =
1

n

n∑
i=1

Y i
x , (5)

where Y i
x are n i.i.d. random variables with the distribution of Yx. Thus we can set Zi = Y i

x to
express this estimator in the form of Equation (2). The estimator of the variance of Yx is given by:

σ̂2 =
1

n

n∑
i=1

n

n− 1
(Y i
x − µ̂)2, (6)

and we can set Zi = n
n−1(Y i

x − µ̂)2 to express this estimator in the form of Equation (2). Since
both of these estimators are sample averages (they can be expressed in the form of Equation (2))
we can use Equation (3) to estimate their variance.

2.4 Probability of Failure

Another common formulation of OUU uses the probability of failure:

p = Prob(Yx ≥ 0), (7)

where here failure is indicated by Yx > 0. This failure probability is usually used as a constraint in
OUU formulations, such that p − (1 − β) ≤ 0, where β is the minimum acceptable probability of
success, so (1−β) is the maximum acceptable probability of failure. The sample average estimator
of p is given by using Zi = 1[0,∞)(Y

i
x) in Equation (2):

p̂ =
1

n

n∑
i=1

1[0,∞)(Y
i
x), (8)

where 1S(.) is the indicator function that is equal to 1 when its argument is in the set S and 0
otherwise.

2.5 Quantile/ Value at Risk

An alternative to constraining the probability of failure is to constrain the quantile function (the
inverse of the CDF):

qβ = F−1Yx
(β) ≤ 0, (9)

where F−1Yx
(β) is the quantile function of Yx, evaluated at β. The quantile has previously seen much

use in OUU formulations for operational research and financial applications [40–42] (where it is
often known as the Value at Risk), and recently it is being considered more in engineering design
applications [26,27]. The following estimator of the quantile function F−1Yx

(h) is used [43]:

q̂β =

{
Y

(nβ)
x , if nβ is an integer.

Y
(bnβc+1)
x , otherwise.

(10)
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where b.c indicates rounding down to the nearest integer, and Y
(k)
x is the kth order statistic of a

set of n realizations of Yx (which is defined as the kth smallest out of the realized values).
This estimator cannot be expressed as a sample average and so an analytical form of the variance

cannot be derived from Equation (3).

2.6 Horsetail Matching Metric

Horsetail matching is a formulation of OUU that minimizes the difference between the inverse CDF
of Yx and a target [44], where this difference is given by:

dhm =

(∫ 1

0

(
F−1Yx

(h)− t(h)
)2

dh

)1/2

, (11)

where F−1Yx
(h) is the quantile function of Yx, and t(h) is the target. Note that this target does not

necessarily have to consist of the inverse of a valid CDF, it can be any function of h [44].
In [44], the horsetail matching metric is evaluated in differentiable form using kernels, but

here since only the value of dhm (not the gradient) is required, the metric is evaluated by directly
integrating the empirical CDF. This is given by the following estimator:

d̂hm =

(
1

n

n∑
k=1

(
Y (k)
x − t(k/n)

)2 )1/2

, (12)

where Y
(k)
x is the kth order statistic of a set of n realizations of Yx. Again, this is not a sample average

so an analytical expression for the error of this estimator cannot be derived from Equation (3).

3 Generalized Information Reuse

At the current design point selected by the optimizer outer loop, denoted xA, an estimator of d(xA)
must be evaluated; d could be (but is not limited to) any of the quantities discussed in Section 2.
To evaluate an estimator using regular MC, we draw n i.i.d. sampled values ui, i = 1, 2, . . . , n
from the distribution of U(ω), then evaluate the system model at each of these values to obtain n
i.i.d. sampled values of YA := y(xA,U(ω)), denoted yiA = y(xA,u

i), i = 1, 2, . . . , n. Each of these
values yiA, i = 1, 2, . . . , n is then used as a realization of each of the random variables Y i

x in the
estimator definition (such as those given in Section 2), to evaluate the estimator and obtain an
estimate of d.

If the MSE (mean squared error) of an estimator is too high such that the optimizer is not
given accurate information about the objective and constraints, the optimizer will not be able to
effectively select new design points to improve the design and meet the constraints. Therefore a
tolerance is set on the MSE of the estimator evaluated by the MC inner loop, which must be met
at each design point. The estimator that meets this acceptable error at the current design point is
denoted by ŝA. A regular MC estimator may require a large value of n, and hence require many
expensive system model evaluations, in order to achieve this acceptable error. In this section we
present and analyze the generalized information reuse estimator that can reduce this computational
cost.

3.1 The Information Reuse Estimator

Information reuse (IR) is a variance reduction method for obtaining ŝA which is based on the control
variate approach [20,45]. The control variate approach uses an auxiliary random variable to make
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a correction to a regular MC estimator. For information reuse, this auxiliary random variable is
the system output at the closest point in design space (in terms of smallest Euclidian distance)
previously visited during an optimization. We denote this closest point as the control point xC ,
and let YC(ω) = y(xC ,U(ω)) be the auxiliary random variable.

Given a set of i.i.d. sampled values ui, i = 1, . . . , n that are drawn from the distribution of
U(ω), we evaluate the system model using these sampled values at the current design point and
the control point to obtain yiA = y(xA,u

i) and yiC = y(xC ,u
i), i = 1, . . . , n respectively. Then we

use yiA and yiC , i = 1, . . . , n, to evaluate d̂A and d̂C which are regular MC estimators of d(xA) and
d(xC) respectively. The classical control variate estimator is then given by:

ŝA = d̂A + γ(dC − d̂C). (13)

where dC is the true value of d(xC), and γ is the correction factor.
In practice, the true value of d(xC) is not known and the estimator with acceptable error at

the control point, ŝC , is used instead. The information reuse (IR) estimator is thus given by:

ŝA = d̂A + γ(ŝC − d̂C). (14)

The sampled values ui, i = 1, . . . , n used to evaluate d̂A and d̂C are drawn independently for each
new design point visited. This ensures ŝC is uncorrelated with either d̂A or d̂C , and thus the
variance of the IR estimator is given by:

V [ŝA] = V [d̂A] + γ2(V [ŝC ] + V [d̂C ])− 2γΣ[d̂A, d̂C ]. (15)

where V [.] denotes variance and Σ[., .] denotes covariance. The optimal choice of γ minimizes the
variance of the IR estimator:

γ∗ =
Σ[d̂A, d̂C ]

V [ŝC ] + V [d̂C ]
, (16)

and using this value of γ gives the following variance of the IR estimator:

V [ŝA] = V [d̂A]− Σ[d̂A, d̂C ]2

(V [ŝC ] + V [d̂C ])
, (17)

which is derived from Equation (15) and so V [ŝA] ≥ 0:
If the covariance between the MC estimators at the current design point and the control design

point is high, then the variance of the estimator ŝA can be significantly reduced compared to the
regular MC estimator d̂A. Within an optimization, it is the norm that the design points visited at
consecutive iterations get closer together as the optimization progresses, therefore the covariance
between MC estimators at these design points is expected to increase the closer together they are;
it is this phenomenon of which information reuse takes advantage. Indeed, in Ref. [23], it was
shown that in 1D the correlation between y(x,U(ω)) and y(x+ ∆x,U(ω)), is quadratic in ∆x for
|∆x| << 1, and approaches 1 as ∆x approaches 0.

To implement information reuse, estimates for the variance and covariance terms in Equa-
tion (17) must be obtained. It was illustrated in Ref. [23] how the variance reduction effect of
information reuse is robust with respect to inaccuracies in estimates of these variance and covari-
ance terms. Therefore since we do not have access to exact values of these terms, we can use
estimates obtained from the values of yiA and yiC , i = 1, 2, . . . , n and still obtain significant reduc-
tion in the variance of ŝA. Such estimates in the original formulation of information reuse [23, 39]
rely on analytical expressions for the variance and covariance of sample average MC estimators
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similar to Equation (3). Therefore, of the quantities from Section 2, this original formulation is
only valid for µ̂, σ̂2, and p̂ .

Our generalization of information reuse can be applied to a general d, whose MC estimator
cannot necessarily be expressed as a sample average. Examples of such estimators include d̂hm and
q̂β. Our approach uses the idea of re-sampling from an existing set of sampled values, which is
the backbone of bootstrapping [28, 46]. Bootstrapping is widely used to estimate standard errors
of estimators for which analytical expressions based on sampled values are not available. The
formulation presented here uses this idea to estimate not only the error of an estimator, but also
the covariance between estimators at two separate design points.

3.2 Bootstrapped Estimates of Variance and Covariance

Given a set of n i.i.d. sampled values ui, i = 1, . . . , n, from the distribution of U(ω), consider the
empirical distribution consisting of a probability density function (PDF) made up of delta functions
at each sampled value ui. This empirical distribution approximates the true distribution of U(ω).
Thus, re-sampling with replacement from this empirical distribution, by randomly drawing an
index from i = 1, . . . , n and using ui as the resulting sample realization, obtains sampled values
that are from an approximation to the distribution of U(ω). The idea behind bootstrapping is
to use this re-sampling to obtain a new set of sampled values of YA(ω) and YC(ω) from which an
estimator is evaluated, giving a realization of the estimator from an approximation to the estimator’s
distribution [28,46].

In order to use bootstrapping to estimate the terms in Equation (17), firstly a set of n i.i.d. sam-
pled values ui, i = 1, . . . , n, are drawn from the distribution of U(ω), and the system model at
both xA and xC is evaluated to obtain n sampled values of both YA(ω) and YC(ω), denoted
yiA = y(xA,u

i) and yiC = y(xC ,u
i) respectively for i = 1, . . . , n.

Next, re-sampling with replacement occurs n times from ui, i = 1, . . . , N to obtain a new set
of values uj , j = 1, . . . , n, and the corresponding values of y(xA,u

j) and y(xC ,u
j) (which have

already been evaluated) are used as new sets of sampled values of YA(ω) and YC(ω) respectively.
This re-sampling is repeated Nboot times, and using each set of the re-sampled values y(xA,u

j) and
y(xC ,u

j), j = 1, 2, . . . , n, a new MC estimator is evaluated to obtain d̂bA and d̂bC , b = 1, . . . , Nboot.

These are sampled values from approximations to the true distributions of d̂A and d̂C .
The bootstrapped estimate of the variance of an MC estimator d̂, denoted V̄ (d̂), is obtained

from the sample variance of these Nboot values d̂b, b = 1, . . . Nboot. Similarly, since the re-sampled
values of YA and YC are the system model evaluated at the same values of u, the bootstrapped
estimate of covariance between the estimators at design points xA and xC , denoted Σ̄, can be
obtained from the sample covariance:

Ē[d̂] =
1

Nboot

Nboot∑
b=1

d̂b

V̄ [d̂] =
1

Nboot

Nboot∑
b=1

Nboot

Nboot − 1
(d̂b − Ē[d̂])2

Σ̄[d̂A, d̂C ] =
1

Nboot − 1

Nboot∑
b=1

(d̂bA − Ē[d̂A])(d̂bC − Ē[d̂C ])

(18)

The V̄ and Σ̄ notation highlights the fact these are sample-average estimators from the finite
number of sampled values of d̂b, and so are themselves random variables. This is in contrast to the
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estimate of variance for a sample-average estimator, which is analytically derived and so is fixed
for a given set of sampled values. The estimators V̄ and Σ̄ thus have a variance that depends on
Nboot, and this is discussed further in Section 3.5.
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Figure 1: Illustration of the generalized information reuse concept

Note that the covariance Σ[d̂A, d̂C ] is different to the covariance between y(xA,U(ω)) and
y(xC ,U(ω)), which could be estimated analytically from the sampled values yiA and yiC i = 1, . . . , n.

This bootstrapping procedure is illustrated in Figure 1, and outlined in Algorithm 1. The same
algorithm is used to obtain the regular MC estimator d̂A and its variance at a single design point,
by ignoring all the steps involving xC . These estimated values of V [d̂A], V [d̂C ] and Σ[d̂A, d̂C ], are
substituted into Equation (16) to obtain an estimated optimal γ, which we denote as γ̄∗. This γ̄∗

is subsequently used to obtain an estimated variance V̄ [ŝA] given by Equation (17).

Algorithm 1 Bootstrapping for variance and covariance of an MC estimator given n evaluations
of y at design point xA, and at the control point xC , using Nboot sets of re-sampled values.

1: for b = 1, . . . , Nboot do

2: for j = 1, . . . , n do

3: k ← random draw from {1, . . . , n}
4: yjA ← y(xA,U

k) taken from sampled values yiA, i = 1, . . . , n

5: yjC ← y(xC ,U
k) taken from sampled values yiC , i = 1, . . . , n

6: d̂bA ← MC estimator of dA from re-sampled values yjA, j = 1, . . . , n

7: d̂bC ← MC estimator of dC from re-sampled values yjC , j = 1, . . . , n

8: Ē[d̂A], Ē[d̂C ] ← 1
Nboot

∑Nboot
b=1 d̂bA,

1
Nboot

∑Nboot
b=1 d̂bC

9: V̄ [d̂A], V̄ [d̂C ]← 1
Nboot−1

∑Nboot
b=1 (d̂bA − Ē[d̂A])2, 1

Nboot−1
∑Nboot

b=1 (d̂bC − Ē[d̂C ])2

10: Σ̄[d̂A, d̂C ]← 1
Nboot−1

∑Nboot
b=1 (d̂bA − Ē[d̂A])(d̂bC − Ē[d̂C ])

To use this estimation procedure within an optimization loop, a required acceptable variance
for the estimator ŝA is specified (which for unbiased estimators corresponds to an acceptable MSE)
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and y(xA,u) and y(xC ,u) are evaluated at new realizations of U(ω) until the estimator variance is
below this value. If the covariance between estimators at a particular design point and the control
point is not sufficiently high, the IR estimator may require more computational effort than regular
MC, since it requires evaluation of the system model y at both design points. In this case, recourse
to regular Monte Carlo is required for the current design point, but in order to determine whether
IR or regular MC requires more evaluations, a way of predicting how many sampled values each
approach would use is required.

3.3 Predicting Number of Samples Required

Since a general quantity d with an unknown MC estimator d̂ is being considered, an assumption
must be made about how the terms in Equation (17) vary as a function of n.

This paper specifically considers the quantile and the horsetail matching metric, and for both
of these it is known that asymptotically the variance of their MC estimators is proportional to n−1.
Therefore for each term in Equation (17), a convergence function is fit proportional to n−1 through
each term. For example for a variance term, V̄ = v(n) = V̄0 × (n/n0)

−1 where n0 is the current
number of sampled values and V̄0 is the current estimate of variance. In general, the same could
be done for any function v(n) for estimators with different convergence behavior.

This is done for the variance of d̂A, the variance of d̂C , and the covariance between d̂A and d̂C ,
giving the predicted functions of n vA, vC and vA,C respectively. Substituting these into each of
the terms in Equation (17), with V (ŝA) set to the required value Vreq, gives a function in n whose
roots give the predicted value of n—the number of sampled values of YA(ω) and YC(ω) required to
reach the acceptable variance value:

φ(n) = vA(n)−
(
vA,C(n)

)2
V̄ (ŝC) + vC(n)

− Vreq. (19)

If there are multiple solutions to the equation the smallest is chosen, and then the solution is
rounded down to the nearest integer to get the predicted value of n.

Clearly the further into the asymptotic convergence regime each of the terms in Equation (17)
are the more accurate this prediction will be. This prediction is used at the start of each optimiza-
tion iteration with an initial ninit evaluations y at both xA and xC , and thus ninit should be chosen
to be sufficient to give a reasonable prediction. This approach is outlined in Algorithm 2.

Algorithm 2 Predicting the number of sampled values needed to reach a given acceptable estimator
variance from estimates of variance and covariance at the current number n0.

1: vA(n)← V̄ [d̂A]0 × n0/n
2: vC(n)← V̄ [d̂C ]0 × n0/n
3: vA,C(n)← Σ̂[d̂A, d̂C ]0 × n0/n
4: φ(n)← predicted variance of ŝA from Equation (19)

5: npred ← max(inf{n | φ(n) = 0}, 0)

For the regular Monte Carlo estimator, this is applied to a single term: npred,MC = n0 ×
V̄ (d̂A)0/Vreq. Once it has been decided whether to revert back to regular Monte Carlo or continue
with information reuse at a given design point, y(xA,u) and y(xC ,u) are evaluated at additional
sampled values of U(ω) until V̄ (ŝA) is below the required level.

When using bootstrapping, estimating the variance terms is no longer at negligible computa-
tional cost, especially if evaluating d̂ requires sorting of the sampled values, since this is to be
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done Nboot times. Therefore if only a small number of sampled values were added at a time, d̂
could be evaluated a large number of times and the computational cost may become non-negligible.
While in practical problems, obtaining a sampled value of Yx by evaluating the system model might
far outweigh the cost of the bootstrapping procedure and so this is a non-issue, if the number of
times bootstrapping is performed should be limited, Algorithm 2 can also be used to determine the
number of additional realizations of Yx to obtain.

When a small number of initial sampled values, ninit, are used, the prediction given by Algorithm
2 is likely to be inaccurate. Therefore to avoid over-estimating the value of n needed to give an
acceptable variance, the number of sampled values of U drawn at a time, at which the system
model is evaluated, is limited to be a constant α times the current value of n. Additionally, to
avoid iterating by a small amount many times close to the required number, sampled values are
obtained to give a total of (1 + δ)npred, where δ > 0 is a small value. This paper uses α = 10 and
δ = 0.1, but if evaluating the system model is far more expensive than bootstrapping, then δ = 0
and a smaller α can be used.

3.4 Bias

If the estimator d̂ is unbiased, then the information reuse estimator is unbiased [23]. However, for
a general quantity d with MC estimator d̂, the bias of the information reuse estimator is given by:

B[ŝA] = B[d̂A] + γ
(
B[ŝC ]−B[d̂C ]

)
, (20)

where B[.] indicates the bias of an estimator. In the case where the bias of d̂ is independent of the
number of sampled values of Yx used to evaluate it, starting from the initial guess where ŝC = d̂C
from regular MC, the last two terms always cancel out as B(ŝC) = B(d̂C); this is the case for
the quantile estimator [47]. Therefore for the optimization formulations considered in this paper
information reuse does not affect the bias of the estimator.

In general the bias can be estimated from bootstrapping using B̄[d̂] =
(

1
Nboot

∑Nboot
b=1 d̂b

)
− d̂,

and thus a bootstrapped estimate of the overall mean squared error (MSE) can be obtained from
V̄ +B̄2. Therefore Equation (20) could be used to keep track of the bias of estimators as well as the
variance, and a γ that minimizes the MSE could be chosen instead of one that minimizes variance.

3.5 Variance of bootstrapped estimators

The bootstrapped estimates V̄ and Σ̄ are random variables that depend on the re-sampled values
of d̂b. If Nboot is large enough their variance will be negligible, but since a finite number of sampled
values have to be used in reality, the variance of the bootstrapped estimator of the IR estimator
variance in Equation (15) is given by:

Var[V̄ [ŝA]] = Var[V̄A] + γ4Var[V̄SC
] + γ4Var[V̄C ] + 4γ2Var[Σ̄]+

2γ2Cov[V̄A, V̄C ]− 4γCov[V̄A, Σ̄]− 4γ3Cov[V̄C , Σ̄], (21)

where for clarity V̄ [d̂A] is denoted by V̄A, V̄ [d̂C ] by V̄C , V̄ [ŝC ] by V̄SC
, and Σ̄[d̂A, d̂C ] by Σ̄.

Since V̄ and Σ̄ are sample-average estimators, their variance is approximated by 1
Nboot

σ̂2 where

σ̂2 is the sample variance of the values being averaged. With a reasonable value of Nboot, this
variance will be small, however if γ is large, then the γ4Var[V̄SC

] term in Equation (21) is potentially
non-negligible. If the resulting value of Var[V̄ [ŝA])], is then used as Var[V̄SC

] in a subsequent
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iteration, it could be magnified further leading to an exponentially growing inaccuracy in the
estimated variance of the information reuse estimator and so giving meaningless results.

In information reuse, the optimal choice for γ is rarely greater than 1, and is often ' 1, so
this is treated as a non-issue in this paper’s implementation. Further, the main application of this
work is for problems where evaluating the system model y model is far more expensive than the
bootstrapping procedure, and a large Nboot can be used to keep the variance of the bootstrapped
estimators low. However, if desired, this variance can be kept track of in the optimization using
Equation (21), and if it is deemed that the inaccuracy is too great, a MC estimator can be resorted
back to in order to break the chain of dependence.

3.6 Overall Algorithm

The overall algorithm for performing an optimization using the proposed generalized information
reuse method is given in Algorithm 3.
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Algorithm 3 Optimization using generalized information reuse given Vrequired, α, δ, initial design
point x0, and ninit.

1: xA ← initial design point

2: npredicted, nprev, V̄ (ŝA) ← ninit, ninit, +∞
3: while V̄ (ŝA) > Vrequired do

4: n← min( bnpredicted(1 + δ)c, α× nprev )

5: for j = nprev, . . . , n do

6: uj ← sampled value of uncertainty vector from underlying distribution

7: yjA ← evaluated system model y(xA,u
j)

8: ŝA ← d̂A, regular MC estimator using stored values of yjA, j = 1, . . . , n

9: V̄ (ŝA) from Algorithm 1 (ignoring steps involving xC)

10: npredicted ← n× V̄ (ŝA)/Vreq

11: while Optimizer Not Converged do

12: xA ← next design point from optimizer

13: xC ← min
k

(||xk − xA||) from design points in optimization history

14: npredicted, nprev, V̄ (ŝA) ← ninit, ninit, +∞
15: RegularMonteCarlo ← False

16: while V̄ (ŝA) > Vrequired do

17: nprev ← n

18: n← min( bnpredicted(1 + δ)c, α× nprev )

19: if RegularMonteCarlo then

20: for j = nprev, . . . , n do

21: uj ← sampled value of uncertainty vector from underlying distribution

22: yjA ← evaluated system model y(xA,u
j)

23: ŝA ← d̂A, regular MC estimator using stored values of yjA, j = 1, . . . , n

24: V̄ (ŝA) from Algorithm 1 (ignoring steps involving xC)

25: npredicted ← n× V̄ (ŝA)/Vreq

26: else

27: for j = nprev, . . . , n do

28: uj ← sampled value of uncertainty vector from underlying distribution

29: yjA ← evaluated system model y(xA,u
j)

30: yjC ← evaluated system model y(xC ,u
j)

31: d̂A, d̂C , V̄ (d̂A), V̄ (d̂C), Σ̄(d̂A, d̂C) from Algorithm 1.

32: γ = γ∗ from Equation (16)

33: ŝA, V̄ (ŝA) from Equations (14) and (15).

34: npredicted ← Predicted required number of sampled values from Algorithm 2

35: if n× V̄ (d̂A)/Vreq < 2npredicted then

36: RegularMonteCarlo, npredicted ← True, n× V̄ (d̂A)/Vreq
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4 Numerical Experiments

In this section experiments are performed on an algebraic test problem and a physical acoustic
horn design problem.

4.1 Algebraic Test Problem

The algebraic test problem uses two design variables, x1 and x2, and nu uncertain variables,
u1, . . . , unu . There are two outputs:

y0(x,u) = (2− x1)2 + 2
(
x2 − x21

)2
+ exp

(
nu∑
i=1

1

1 + i
(1 + 0.2s2i )ui

)
+ 1,

y1(x,u) = exp

(
nu∑
i=1

1

1 + i
0.2(1 + (si + 1)2)ui

)
− 2,

where si =

{
x2, if i even

x1, if i odd

The bounds on both design variables are [−1, 1], and the uncertain inputs are all uniformly
distributed over [−1, 1].

Due to the stochastic nature of using Monte Carlo sampling to evaluate objectives and con-
straints, an optimization algorithm that is resistant to a small amount of noise is desirable.
Derivative-free methods sample over relatively large regions of design space, which can smooth
out the effect of the sampling noise, and so are suitable for sampling based optimization under
uncertainty. The derivative-free optimizer COBYLA [48] is used here, where it is run until the
magnitude of the change in design vectors is less than 10−2; it is implemented using the NLopt
toolbox [49].

4.1.1 Validation

Firstly, in order to validate general information reuse using bootstrapping, the variance of the
general information reuse estimator predicted by Equation (15) and Algorithm 1 is compared to an
empirically generated variance (both using Nboot = 5000). To achieve this, using nu = 2, a sequence
of design points are taken from an optimization and fixed, then the information reuse estimator
and its variance are obtained using the method outlined in Section 3 at each point as it would be
in an optimization, but using a fixed (N = 1000) number of sampled values. This is repeated 5000
times; the average of the information reuse variances gives the theoretical bootstrapped curve on
Figure 2 and the variance of the estimators gives the empirical curve on Figure 2. This validation
process is performed when estimating both the horsetail matching metric with t(h) = −h4 and the
90% quantile of the random variable defined by y0 from equation 4.1; both of these curves show
good agreement.

4.1.2 Optimization Acceleration

Next, using nu = 10, the horsetail matching metric for y0 is minimized subject to the 90% quantile
function on y1 being less than zero (indicating a 90% probability of constraint satisfaction). This
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Figure 2: Comparison, for two non-sample-average estimators, of the variance predicted by general
information reuse and the empirical variance from 200 runs

gives the following optimization problem:

minimize
xL≤x≤xU

dhm =

(∫ 1

0

(
F−10 (h)− t(h)

)2
dh

)1/2

s.t. F−11 (0.9) ≤ 0 (22)

where F−10 and F−11 are the inverse CDFs (quantile function) for the random variables given by
y0(x,U(ω)) and y1(x,U(ω)) respectively. These choices for objective and constraints are prop-
agated as discussed in Sections 2.5 and 2.6—neither of their estimators can be expressed as a
sample-average. For this problem, we use the risk-averse target t(h) = −(4h6) in the horsetail
matching metric. This target is risk averse because it emphasizes minimizing values of the quantile
function F−10 (h) for values of h close to 1 more than minimizing values of h close to 0, hence pre-
ferring designs with better worst-case behavior. We refer the reader to Refs. 44 and 50 for further
discussion on horsetail matching targets.

We use a required variance of 1×10−3 for the objective function and 4×10−3 for the constraint.
In preliminary experiments, using these values in a regular MC estimator of the objective required
similar computational cost to a regular MC estimator of the constraint, facilitating ease of illustra-
tion on Figure 3. The influence of this choice of requried variance is discussed in Section 4.1.3. The
optimization is run from an initial design point of x0 = [−1,−1]; additionally ninit = 50, α = 10,
δ = 0.1.

We run optimizations using only regular Monte Carlo (labeled MC) and using generalized
information reuse (labeled gIR). Figure 3 gives the convergence, in terms of computational cost (in
terms of number of evaluations of y(x,u)), of the objective function (the horsetail matching metric)
and constraint (quantile function), as well as the computational cost of each optimization iteration.
The optimization using information reuse achieves significant computational savings compared to
regular Monte Carlo, in both objective function and constraint evaluations.

Additionally we run optimizations where the input parameters are distributed according to a
gamma distribution (instead of being uniformly distributed) with shape parameter 2 and scale
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Figure 3: Optimization progress of generalized information reuse and regular Monte Carlo

parameter 0.5, such that ui is the realization of a random variable given by 1 − Ui(ω) where
Ui ∼ Γ(2, 0.5), for i = 1, . . . , nu. This random variable is skewed and has support (−∞, 1]. The
results of optimizations with these input uncertainties are given in Figure 4.
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Figure 4: Optimization progress of generalized information reuse and regular Monte Carlo, using
input parameters distributed according to a Gamma distribution

On Figure 4, information reuse performs similarly to Figure 3 (when the uncertainties were
uniformly distributed). This is because the distributions of YA(ω) and YC(ω), and hence the
correlation between d̂A and d̂C , depend on the non-linearity and variance of the system model as
well as the distribution of U(ω). Since the non-linear test function given by Equation (4.1) is being
used here, changing the distribution of U(ω) does not significantly affect the ability of information
reuse to improve upon regular Monte Carlo.

The COBYLA algorithm is not guaranteed to converge to the true optimum, and due to the
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stochastic nature of the problem it is not expected that the same design is obtained each time an
optimization is performed. To investigate this, we run the optimizations an additional 13 times
from random initial design points (with uniformly distributed input uncertainties), and plot the
convergence of the objective function on Figure 5, along with the optimal design point obtained
from each run. From Figure 5 we can see that the benefit of information reuse is not specific to a
particular initial design point. Additionally, the scatter in the optimum design point obtained by
the different runs highlights the noisy nature of using MC sampling for OUU, and that the required
variance must be low enough for the results of the OUU to be meaningful.
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Figure 5: Results of multiple optimizations of the algebraic test problem using COBYLA.

4.1.3 Influence of Required Variance

To investigate the impact of the chosen required variance values, we run an optimization using
values an order of magnitude lower than in Section 4.1.2 (so 1×10−4 for the objective and 4×10−4

for the constraint); the results are given in Figure 6.
The overall cost of the optimization is roughly an order of magnitude higher than the previous

optimizations (note the scale on the y-axis) since, as discussed in Section 2.2, the variance of the MC
estimators considered here decreases proportional to n−1. Information reuse still offers significant
speedup over regular MC, indicating that while the choice of required variance influences the overall
cost of the OUU, information reuse is still able to reduce this cost.

Additionally we can see that, compared to Figure 3, more optimization iterations are needed
before information reuse is able to obtain the required variance values using only ninit sampled
values. This is because, for only ninit sampled values to be needed to obtain a lower required
variance, a larger correlation between estimators at the design point and control point is needed;
therefore the design points need to be closer together, which occurs later in the optimization run.

In some cases it is possible for information reuse to be more expensive than regular MC: if ninit
is chosen to be too high (relative to the required variances) such that regular MC can achieve the
required variance in less than ninit sampled values, information reuse wastes the ninit evaluations
of the system model at the control point. For example Figure 7 gives the results of an optimization
where the required variances are set to be an order of magnitude higher than in Section 4.1.2, (so
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Figure 6: Optimization progress of generalized information reuse and regular Monte Carlo, using
lower required variances

1× 10−2 for the objective and 4× 10−2 for the constraint) and a value of ninit = 50 is used.
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Figure 7: Optimization progress of generalized information reuse and regular Monte Carlo, using
higher required variances

For the majority of design points, the ninit sampled values were enough to achieve the required
variance using regular MC, and so information reuse wasted the additional ninit system model
evaluations at the control point. In this case this required variance is so low that the results of this
OUU are unlikely to be meaningful. In design scenarios where a designer has a reasonable idea of
the computational cost needed to reach their required variance, they should be able to choose a
sensible value of ninit.

If only a very few number of model evaluations can be afforded such that evaluating ninit
sampled values at both the current design point and control point is too expensive, then the
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current implementation will perform poorly. However such a computational expense implies that
using MC sampling to propagate the uncertainties is perhaps not the best choice in the first place.

4.2 Application to Acoustic Horn Design Problem

This problem uses a simulation of a 2D acoustic horn governed by the non-dimensional Helmholtz
equation. An incoming wave enters the horn through the inlet and exits the outlet into the exterior
domain with a truncated absorbing boundary [23,51]. The flow field is solved using a reduced basis
method obtained by projecting the system of equations of a high-fidelity finite element discretization
onto a reduced subspace [52]; here 100 reduced basis functions are used.

This system’s single output of interest, given by y(x,u), is the reflection coefficient, which is
a measure of the horn’s efficiency. The geometry of the horn is parametrized by the widths at six
equally spaced axial positions from root to tip. The design variables give the nominal value of these
widths xk,nom, and then uncertainty is introduced representing manufacturing tolerances such that
the actual value xk is given by a random variable centered on xk,nom. Additionally the wavenumber
of the incoming wave and the acoustic impedance of the upper and lower horn walls are uncertain
input parameters. The bounds for the design variables are given in Table 1, and the uncertainty
distributions are given in Table 2.

No. Notation Lower Bound Upper Bound

1 x1,nom 0.68 1.01

2 x2,nom 1.04 1.38

3 x3,nom 1.41 1.73

4 x4,nom 1.77 1.99

5 x5,nom 2.04 2.43

6 x6,nom 2.48 2.82

Table 1: Design variables for the acoustic horn design problem

No. Uncertain Variable Notation Distribution Lower Bound Upper Bound

1 Wavenumber k Uniform 1.25 1.55

2 Lower wall impedance zu Uniform 10 90

3 Upper wall impedance zl Uniform 10 90

4 Geometry x1 Uniform 0.975x1,nom 1.025x1,nom

5 Geometry x2 Uniform 0.975x2,nom 1.025x2,nom

6 Geometry x3 Uniform 0.975x3,nom 1.025x3,nom

7 Geometry x4 Uniform 0.975x4,nom 1.025x4,nom

8 Geometry x5 Uniform 0.975x5,nom 1.025x5,nom

9 Geometry x6 Uniform 0.975x6,nom 1.025x6,nom

Table 2: Uncertain inputs in the acoustic horn design problem

As an illustration of the problem, the magnitudes of the complex acoustic pressure field for the
horn geometries given by the lower and upper bounds on the design variables are shown in Figure 8;
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the reflection coefficient, at nominal values of the uncertain inputs (the mean of their distribution)
is also given.

(a) Lower Bounds. y = 0.0522. (b) Upper Bounds. y = 0.1264.

Figure 8: Magnitude of the complex acoustic pressure field for the horn geometry given by the
lower and upper bounds on the design variables.

While derivative-free optimizers such as COBLYA are resistant to a small amount of noise, they
are local optimizers that will converge to a local minimum, and the number of iterations required for
convergence is sensitive to the initial design point. Therefore in order to fairly compare multiple
optimizations on this design problem and so more thoroughly compare information reuse with
regular MC, a global optimizer is used. Here the evolutionary strategy optimizer from the ecspy
python toolbox2 is used, run with a population size of 25 until a total of 106 acoustic horn model
evaluations have been sampled. This represents a design scenario in which a fixed computational
budget is permitted, and enables a consistent comparison between regular MC and information
reuse optimizations over multiple optimization runs.

Firstly for reference, a classical approach to robust optimization is used and a weighted sum
of the first two statistical moments of Yx(ω) = y(x,U(ω)) is minimized using regular information
reuse and it is compared to regular Monte Carlo. Then the horsetail matching metric under a risk
averse target is minimized using generalized information reuse. In both cases ninit = 100, δ = 0.1,
and α = 10.

The weighted sum of moments formulation is solving the following optimization problem:

minimize
xL≤x≤xU

dws = E(Yx(ω)) + 3
√
V (Yx(ω)) (23)

This function dws is a combination of two quantities whose estimators are sample averages, and
so the variance of its estimator can be estimated from a first order Taylor expansion of dws about
estimators of E(Y (ω)) and V (Y (ω)), both of which can be evaluated using regular information
reuse [23,39].

A required variance similar to that used to demonstrate the original information reuse formu-
lation in Ref. 23 is used here: a value of Vreq = 2× 10−6. The optimization is run from 10 random
starting populations, such that one optimization that uses regular information reuse (labeled IR)

2https://pypi.python.org/pypi/ecspy
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and one that uses regular Monte Carlo (labeled MC) is performed from each starting point. Fig-
ure 9a gives the convergence of all the IR and MC optimizations. Figure 9b gives the number of
sampled values needed to reach the required variance for the first 100 design candidates in the
optimization for both techniques for a single optimization run, as well as the correlation coefficient
between sampled values at the design point and control point for the IR run.
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Figure 9: Regular information reuse and regular Monte Carlo optimizers minimizing a weighted
sum of mean and variance of the reflection coefficient.

The results on Figure 9 demonstrate how regular information reuse leads to computational
savings compared to regular MC. On average the IR optimizations achieved the objective function
value that the regular MC optimizations took 106 evaluations to obtain in ' 2.5× 105 evaluations.
Additionally it can be seen how for the IR optimization, the computational cost is smallest when
the correlation between sampled values at the current design point and control point are close to
one; the spikes on Figure 9b where the computational cost of IR increases correspond to iterations
where the correlation drops significantly below 1.

Next generalized information reuse is used to optimize the horsetail matching metric, giving
the following optimization problem:

minimize
xL≤x≤xU

dhm =

(∫ 1

0

(
F−1(h)− t(h)

)2
dh

)1/2

, (24)

where F−1 is the inverse CDF (quantile function) for the reflection coefficient given by the random
variable Y (ω) = y(x,U(ω)) at a given design. The risk averse target t(h) = −0.05h4 and a required
variance of 4× 10−7 are used. Again ninit = 100, δ = 0.1, and α = 10.

Figure 10a plots the convergence for both generalized information reuse (labeled gIR) and MC
optimizations. Figure 10b gives the number of evaluations needed to reach the required variance for
the first 100 design points evaluated, along with correlation between sampled values at the current
design point and the control point for a single optimization run.

Comparing Figures 9 and 10, it appears that similar computational gains are achieved by the
general information reuse approach with a non-sample-average estimator as regular information
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Figure 10: General information reuse and regular Monte Carlo optimizers minimizing the horsetail
matching metric of the reflection coefficient with a risk averse target (t(h) = −0.05h4).

reuse with a sample-average estimator. Once again the gIR optimizations achieved the objective
function value that the regular MC optimizations took 106 evaluations to obtain in ' 2.5 × 105

evaluations.
It can also be observed that in both cases, there is no significant benefit of IR and gIR over

regular MC until after ' 100 × 103 evaluations. This is due to the fact that the evolutionary
strategy optimizer deals with populations of solutions, and so the first population is likely to be
spread out in design space with little correlation between design points. This is also observable on
Figures 10b and 9b, where for the first ' 20 designs evaluated, the IR and MC optimization runs
required similar number of evaluations.

To compare the designs obtained from these optimizations, an empirical CDF is obtained using
1000 sampled values of YA(ω) for the best design from all 10 runs in both the weighted sum
and horsetail matching cases, which are plotted on Figure 11b (along with the target used in the
horsetail matching formulation). Additionally, for reference an empirical CDF is obtained for the
designs at the upper and lower design variable bounds along with a random point in design space
and these are plotted on Figure 11a; these CDFs illustrates the magnitude of the variation of the
reflection coefficient induced by the uncertain input parameters, along with the variation in shape
of CDF over design space.

Figure 11 demonstrates that using the weighted sum of moments for this problem has given
rise to a design that is stochastically dominated by the design obtained by using the horsetail
matching metric: the CDFs of these two designs do not cross. This highlights part of the goal in
developing this generalized information reuse: certain quantities, whose estimators are not sample
averages, can offer more powerful formulations for design under uncertainty, but one does not
wish to take a computational penalty for using them over more traditional quantities with sample
average estimators. While it is difficult to quantitatively compare the generalized information
reuse approach optimizing the horsetail matching metric to the regular information reuse approach
optimizing a weighted sum of moments, since they use different objectives and different values
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Figure 11: Empirical CDFs of notable designs in the acoustic horn design problem.

for the required variances, the similarity between the advantage of general information reuse over
regular MC on Figure 10 and the advantage of regular information reuse over regular MC on Figure
9 suggests that this goal has been achieved.

5 Conclusions

Using Monte Carlo (MC) sampling within optimization under uncertainty (OUU) is appropri-
ate when conditions favourable for other, more efficient, uncertainty propagation methods are not
present (e.g. when the number of uncertainties is too high or the problem is not sufficiently smooth).
OUU using MC sampling requires a relatively large number of system evaluations so may be infea-
sible for computationally expensive applications, however multi-fidelity methods for MC sampling
can reduce the computational cost enough for it to become feasible in many cases.

Information reuse is a multi-fidelity method for MC sampling within OUU that treats neighbor-
ing design points in an optimization as lower fidelity models, meaning it is a multi-fidelity method
that can be applied to problems where only a single fidelity model is available. This paper pro-
poses a generalized information reuse approach that extends to optimization formulations using
quantities whose estimators that cannot be expressed as a sample average.

On an algebraic test problem, the generalized information reuse accurately predicts the vari-
ance of two non-sample average estimators, and when used in a derivative-free local optimizer
gives significant computational savings over regular Monte Carlo sampling. On a physical acous-
tic horn design problem, when used in an evolutionary strategy global optimizer, optimizations of
the horsetail matching metric using generalized information reuse provide similar computational
savings over regular Monte Carlo to optimizations of a weighted sum of mean and standard devi-
ation using regular information reuse. Additionally, the optimal design of the horsetail matching
metric stochastically dominates the optimal design of weighted sum of moments, highlighting the
importance of being able to use quantities without sample average estimators in optimization.
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