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The graph transformation (GT) algorithm robustly computes the mean first passage time to an absorbing
state in a finite Markov chain. Here we present a concise overview of the iterative and block formulations
of the GT procedure and generalize the GT formalism to the case of any path property that is a sum of
contributions from individual transitions. In particular, we examine the path action, which directly relates to
the path probability, and analyze the first passage path ensemble for a model Markov chain that is metastable
and therefore numerically challenging. We compare the mean first passage path action, obtained using GT,
with the full path action probability distribution simulated efficiently using kinetic path sampling, and with
values for the highest-probability paths determined by the recursive enumeration algorithm (REA). In Markov
chains representing realistic dynamical processes, the probability distributions of first passage path properties
are typically fat-tailed and therefore difficult to converge by sampling, which motivates the use of exact and
numerically stable approaches to compute the expectation. We find that the kinetic relevance of the set of
highest-probability paths depends strongly on the metastability of the Markov chain, and so the properties
of the dominant first passage paths may be unrepresentative of the global dynamics. Use of a global measure
for edge costs in the REA, based on net productive fluxes, allows the total reactive flux to be decomposed
into a finite set of contributions from simple flux-paths. By considering transition flux-paths, a detailed
quantitative analysis of the relative importance of competing dynamical processes is possible even in the
metastable regime.
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I. INTRODUCTION

Diverse stochastic phenomena are conveniently repre-
sented by finite Markov chains;1 probabilistic network
models for which the future dynamics depend only on the
currently occupied state and not on the prior history of
the trajectory.2 Discrete-time Markov chains3 (DTMCs)
are commonly estimated from trajectory data on a con-
tinuous potential energy landscape in the Markov State
Model (MSM) framework.4–8 In a complementary ap-
proach, continuous-time Markov chains1 (CTMCs) can
be mapped from a potential energy landscape by ge-
ometry optimization9 of local stationary points in the
discrete path sampling (DPS) framework.10–13 CTMCs
with a countably-infinite state space14,15 are widely used
to represent the number of each species in population
dynamics16–18 processes such as chemical and biochemi-
cal reaction cycles,19–24 and can be transformed to finite
Markov chains with negligible error by truncating the
state space.25,26

In previous work we have considered a discrete-state
Markov reward process27 on a finite state space S, where
individual i← j transitions in the Markov chain are asso-
ciated with a reward Rij that depends only on the iden-
tity of the currently occupied node j and not the next
node i (i.e. Rij ≡ Rj ∀ i). The graph transformation
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(GT) algorithm28–32 can be used to compute the aver-
age reward along first passage33,34 trajectories from an
initial set of nodes B to an absorbing set of nodes A in
this case. An important example of a path property of
this kind is the path time. The mean time elapsed along
an A ← B first passage path33,34 in a CTMC2 is a sum
of mean waiting times τj for transitions from nodes j in
the path.30 For a DTMC,3 the fixed lag time associated
with transitions is uniform for all nodes, τj ≡ τ ∀ j.35
The A ← B mean first passage time (MFPT),36 TAB, is
a sum of path times, taken over all possible first passage
paths, weighted by the associated path probabilities.35

The GT algorithm is numerically stable, and therefore
valuable in many practical applications.31 Markov chains
representing realistic dynamical processes are frequently
observed to encompass a separation of characteristic
timescales, and the corresponding transition probability
or rate matrix is therefore ill-conditioned.37–48 This fea-
ture arises in Markovian networks constructed using the
MSM and DPS frameworks because of the exponential
sensitivity of estimated transition probabilities or rates
to the structure of the underlying energy landscape.49,50
Metastability also emerges in reaction networks where
the rate constants for alternative competing reactions are
disparate.19–24 Markov chains that harbour metastable
communities of nodes pose numerical challenges, since
dynamical simulations become unfeasibly inefficient51,52
and conventional linear algebra methods lead to a severe
propagation of numerical error. The GT algorithm pro-
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vides a powerful alternative approach to compute MFPTs
in high-dimensional and ill-conditioned Markov chains.31

In the present contribution we generalize the GT
algorithm28–32 to the case of rewards Rij that are dif-
ferent for transitions to alternative destination nodes i
from the currently occupied node j. Relevant examples
of such rewards include the path action,53 which directly
relates to the path probability, and the entropy flow,54
which quantifies the reversibility of a trajectory.55,56 Al-
though they are not dynamical observables, the average
path action and entropy flow have rigorous interpreta-
tions, and the probability distributions for these path
properties yield important insight into the characteris-
tics of a Markov chain. For instance, the expectation
of the path action is the Shannon entropy57 associated
with the ensemble of first passage paths.58–62 A similar
quantity is employed in the maximum caliber and max-
imum entropy frameworks as the objective function in
a variational principle to estimate Markovian transition
probabilities or rates for a discrete set of states, given
constraints on the stationary distribution and additional
global dynamical information.63,64 The entropy flow is
a central quantity in stochastic thermodynamics,65 since
the average entropy production is governed by an integral
fluctuation theorem.66 Previous analytical results con-
sidering paths in Markov chains weighted by arbitrary
rewards are limited and do not lend themselves to the
design of computational procedures that have the de-
sirable scalability and stability of our generalized GT
algorithm.67

Following derivations of the expected rewards for paths
on renormalized Markov chains (Sec. II B), and of the it-
erative and block formulations for the generalized GT
algorithm (Sec. II C), we compute the mean first pas-
sage path action for a model metastable Markov chain
(Sec. III). We compare the expectation for the path ac-
tion with the full probability distribution simulated ef-
ficiently using kinetic path sampling,68,69 and with the
values for the highest-probability paths determined by
the recursive enumeration algorithm (REA) (Sec. IID).70
We demonstrate that the probability distributions of first
passage path properties are typically fat-tailed, and that
the fraction of the total probability flux to the absorbing
state accounted for by the dominant first passage paths
depends strongly on the metastability of the Markov
chain. Hence, it is often challenging to obtain an ac-
curate numerical estimate for the expectation of a first
passage path property by sampling trajectories, and it
may be unfeasible to converge the pathwise sum for the
expectation using shortest paths algorithms. We propose
an alternative shortest paths analysis to provide quanti-
tative information on the relative importance of alterna-
tive A ← B processes, using edge costs in the REA that
are based on net reactive fluxes.71 This formulation al-
lows the total A ← B reactive flux to be decomposed into
a sum of contributions from a finite set of simple flux-
paths (Sec. II E). We find that the total reactive flux
becomes increasingly localized among a small subset of

transition flux-paths with increasing metastability.

II. THEORY

A. Mathematical definitions

We consider arbitrary discrete-3 and continuous-time72
finite Markov chains. A DTMC is parameterized by
i← j transition probabilities Tij(τ) for a fixed time step
τ . A CTMC is parameterized by i ← j 6= i delete in-
finitesimal transition rates Kij .1 Equivalently, a CTMC
can be specified by a branching probability matrix73 P
with off-diagonal elements Pij = Kij/

∑
γ 6=j Kγj and di-

agonal elements Pjj = 0, and a vector of mean wait-
ing times for transitions from nodes j, with elements
τj = 1/

∑
γ 6=j Kγj . In the present work, we denote the

stochastic matrix of a Markov chain (T(τ) for a DTMC
and P for a CTMC) by T for generality. We denote the
state space of the Markov chain (i.e. the complete set of
nodes) as S, and consider two disjoint sets of endpoint
nodes A and B, where A ∪ B ⊆ S, which are the target
and initial states, respectively.

Let the i ← j transition be associated with a reward
Rij , which does not modify the dynamics but instead
is used to assign a weight R[ξ] to paths ξ. The to-
tal reward along a particular A ← B first passage path
ξ ≡ {a ∈ A ← in ← in−1 ← · · · ← i1 ← b ∈ B},
where i1, . . . , in /∈ A, is a sum of contributions from in-
dividual transitions along ξ, R[ξ] = ∑

(i←j)∈ξ Rij . An
important example of a path property of this type is the
path action,57 − lnW[ξ] = −∑(i←j)∈ξ lnTij . Here,W[ξ]

denotes the product of transition probabilities along the
path ξ, i.e. the path weight.30 The path probability P[ξ]
is equal to this probability weighted by the probability
pb(0) of starting at the initial node b ∈ B of the path
ξ, P[ξ] = pb(0)W[ξ].74 Another tangible example of a
reward is the entropy flow.54 In discrete time, the path
entropy flow is75 S[ξ] = ∑

(i←j)∈ξ ln(Tji/Tij) (in units
of the Boltzmann constant), and in continuous time76
S[ξ] =∑(i←j)∈ξ ln(Kji/Kij). The numerical results pre-
sented in Sec. III are concerned with the path action.

In addition to rewards R[ξ] along individual trajecto-
ries ξ, we are interested in the ensemble average reward
RAB, considering all trajectories that start in the state
B and are absorbed upon hitting the state A, including
revisits to B.30 We refer to this set of trajectories as the
first passage path ensemble58–62 (FPPE) and RAB as the
mean first passage reward (MFPR).

B. Expected rewards for individual paths on censored
Markov chains

Our generalized GT algorithm to calculate the MFPR
(Sec. II C) utilizes the concept of a censored Markov
chain.16,77–82 We begin by considering the effect of renor-
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malization to eliminate a single node83 n on the rewards
associated with paths on the resulting censored network.
For pairs of nodes i and j for which there exist i← n and
n ← j transitions, it is possible to define renormalized
transition probabilities T ′ij that account for the average
contribution of i← j transitions proceeding via the elim-
inated node n. Specifically, the total probability of the
i← j transition in the renormalized Markov chain is30

T ′ij = Tij +
TinTnj
1− Tnn

. (1)

Here, the first contribution corresponds to direct i ← j
transitions on the original network, and the second con-
tribution corresponds to indirect (‘round-trip’) transi-
tions, i ← n ← . . . ← n ← j, where the eliminated
node n is visited an arbitrary number of times.68 The
updated transition probabilities of Eq. 1 naturally yield
a new stochastic matrix and correctly preserves the nor-
malization.30

We wish to derive the renormalized reward R′ij asso-
ciated with the i← j transition in the censored Markov
chain for which the n-th node is eliminated. We must
account for the fact that the expected reward associated
with i← j transitions proceeding indirectly, via the elim-
inated (censored) node n, is different from the reward for
the direct i ← j transition, which does not involve the
censored node. The conditional probability that a i← j
transition is direct is given by Tij/T

′
ij (cf. Eq. 1), and

the reward for the direct transition is simply Rij . The
contribution to the renormalized i ← j reward arising
from indirect transitions via node n is more complicated.
On average, a trajectory at node n will transition from
n a total of (1−Tnn)−1 times before leaving n, including
the final transition to escape from n.3 Thus the expected
reward for an indirect i← j transition is

〈Rindir
in 〉 = Rin +Rnj +Rnn

( 1

1− Tnn
− 1
)
. (2)

The average reward associated with the i← j transition
for the renormalized (censored) network is the sum of
direct and average indirect rewards weighted by the con-
ditional probabilities of direct and indirect i← j transi-
tions, respectively,

R′ij =
1

T ′ij

(
TijRij +

TinTnj
1− Tnn

〈Rindir
in 〉

)
. (3)

Here T ′ij is given by Eq. 1 and 〈Rindir
in 〉 by Eq. 2. Eq. 3 con-

serves the average rewards R[ξ] for all individual paths
ξ, with arbitrary initial and final nodes, on a censored
Markov chain.77 The rewards associated with trajectories
on the censored Markov chain are strictly an expectation
with respect to the contributions of path segments that
visit censored nodes.77 Reducing the dimensionality of
Markov chains by renormalization provides a strategy to
facilitate the sampling of trajectories,84 and Eq. 3 allows

for the probability distributions of path rewards on the
transformed network to be estimated within this frame-
work.

Our result in Eq. 3 can also be exploited to compute
the overall A ← B MFPR. Following elimination of all
nodes of the set (A ∪ b)c using renormalization of the
transition probabilities and rewards (Eqs. 1 and 3, re-
spectively), where b ∈ B is a single node of the initial
state, the average reward associated with the ensemble
of A ← b trajectories is

RAb =
( 1

1− T ′bb
− 1
)
R′bb +

∑
a∈A

T ′abR
′
ab

1− T ′bb
. (4)

Here, we have again used the result that the expected
number of transitions from node b before hitting a differ-
ent node is (1−T ′bb)−1, all of which except the final tran-
sition are b← b self-loop transitions, and the probability
that the node a ∈ A is hit upon leaving b is T ′ab/(1−T ′bb).
The average reward for paths of the A ← B FPPE,58–62
RAB, is simply a weighted average of rewardsRAb (Eq. 4)
with respect to the initial occupation probability distri-
bution pb(0) for nodes b ∈ B.31

C. Mean first passage reward computed using a generalized
graph transformation procedure

Let the set of transient (nonabsorbing) nodes of the
Markov chain be denoted Q, and the complete set of
nodes as S ≡ Q∪A. The results of Sec. II B demonstrate
that the A ← B MFPR can be computed by iteratively
renormalizing the elements of a reward matrix R that is
initially of dimensions |Q| × |Q|, and from which the n-
th row and column are removed when eliminating node
n. In fact, it is only necessary to consider an initial |Q|-
dimensional vector of mean rewards for transitions from
the transient nodes in order to compute the MFPR to
the absorbing state, as we now show.

For a general Markov chain, the sum of path proba-
bilities to the absorbing state A from a transient node
q ∈ Q is given by the component

[
1>ATAQNQQ

]
q
, and is

unity for all q.85 Here, NQQ = (IQQ−TQQ)−1 is the fun-
damental matrix3 associated with the absorbing Markov
chain parameterized by the substochastic matrix TQQ,
for transitions between nodes of the set Q, and IQQ de-
notes the |Q|-dimensional identity matrix.

To produce a general formula for the MFPR from
the set of transient nodes to the absorbing state, RAQ,
we introduce the reweighted i ← j transition probabil-
ities T̂ij = Tij exp (ζRij). In component form we have
∂T̂ij/∂ζ

∣∣
ζ=0

= TijRij , and so

∂T̂AQ
∂ζ

∣∣∣
ζ=0

= TAQ ◦RAQ, (5)

where ◦ denotes the elementwise (Hadamard) product,
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which we write as CAQ. Here, TAQ is the substochastic
matrix for transitions from transient to absorbing nodes,
with dimensions |A|×|Q|, and RAQ is the corresponding
matrix of associated rewards for the transitions.

The A ← Q MFPR can be computed from the funda-
mental matrix NQQ of the absorbing Markov chain as

RAQ =
∂

∂ζ
1>AT̂AQN̂QQ

∣∣∣
ζ=0

pQ(0), (6)

where pQ(0) is the initial occupation probability distri-
bution within Q. We require the derivative

∂N̂QQ
∂ζ

∣∣∣
ζ=0

= NQQ
∂T̂AQ
∂ζ

∣∣∣
ζ=0

NQQ

= NQQCQQNQQ, (7)

which gives

RAQ = 1>A (CAQ +TAQNQQCQQ)NQQpQ(0)

=
(
1>ACAQ + 1>QCQQ

)
NQQpQ(0)

= r>QNQQpQ(0), (8)

where the q-th component of the column vector rQ is the
average reward for transitions from node q:

[rQ]q =
∑
γ

TγqRγq. (9)

For comparison, the corresponding formula for the
MFPT85 is TAQ = τ>NQQpQ(0), where τ is the vector
of mean waiting times (for a CTMC) or lag times (for a
DTMC) for transitions from the nodes. Eq. 8 also demon-
strates that [NQQ]ij is the expected number of times the
i-th node is visited prior to absorption for first passage
paths initialized from the j-th node.3 Using Eqs. 8 and 9,
the A ← q MFPRs for all transient nodes q ∈ Q can be
computed simultaneously by inversion of a matrix with
dimensions |Q| × |Q|.

For metastable Markov chains, the matrix inversion
operation to compute NQQ is numerically unstable. We
can instead iteratively eliminate blocks of one or more
nodes to compute A ← B MFPRs by renormalization
of an average reward vector (Eq. 9) and a transition
probability matrix. delete Consider that The set of
initial nodes B forms a subset of the transient state,
with the set of other (intervening) nodes denoted I, i.e.
Q ≡ B∪I. After eliminating nodes of the state I, so that
the Markov chain comprises only nodes of the set B ∪A,
the corresponding path probabilities can be written as
1>AT

I
ABN

I
BB, where

32,77,85

TIAB = TAB +TAINIITIB, (10a)

NIBB = (IBB −TIBB)
−1. (10b)

Here, we have used the superscript I to indicate that
nodes of the set I have been eliminated by renormaliza-

tion. Introducing the reweighted transition probabilities
T̂ij and following a derivation analogous to that for Eq. 8
yields the following expression for the A ← B MFPR:

RAB =
(
r>B + r>INIITIB

)
NIBBpB(0). (11)

Since the initial occupation probability distribution is
localized within B, the MFPR will be conserved if we
iteratively eliminate blocks of nodes N ⊆ I, renormal-
izing the probabilities for transitions from nodes in the
set Q′ ≡ Q \ N according to the usual GT formula (cf.
Eq. 10a),

TNSQ′ = TSQ′ +TSNNNNTNQ′ , (12)

and updating the average rewards according to

rNQ′
>
= r>Q′ + r>NNNNTNQ′ . (13)

Eq. 12 is the block analogue of Eq. 1. That is, Eq. 12
yields the same renormalized stochastic matrix as the
repeated application of Eq. 1 to iteratively eliminate the
nodes of the set N in any order. The generalized GT pro-
cedure to compute the A ← B MFPR based on Eqs. 12
and 13 is both numerically stable and efficient if nodes
in blocks N to be eliminated simultaneously belong to
the same metastable community.32,85 The communities
can be determined a priori by an appropriate clustering
algorithm.52,86

Eq. 13 is analogous to the result for the renormal-
ized waiting times that preserve the MFPT,30,85 with the
mean rewards for transitions from transient nodes q ∈ Q
in place of the mean waiting (or lag) times. Eliminating
a single node n ∈ I by renormalization, Eq. 12 reduces
to Eq. 1, and Eq. 13 reduces to

[rQ′ ]q = [rQ′ ]q +
[rQ′ ]nTnq
1− Tnn

. (14)

Exploiting the relation 1−Tnn =
∑
γ 6=n Tγn when Tnn →

1 avoids the propagation of significant roundoff error in
the finite precision arithmetic, and this algorithm is nu-
merically stable.37–47 The time complexity of the itera-
tive procedure depends on the average degree of nodes
and on the heterogeneity of the degree distribution,29,68
and varies between O(|Q|3) and O(|Q|4).

D. Recursive enumeration algorithm

Formally, the expected A ← B reward is a sum of
contributions R[ξ] from all paths ξ of the first passage
path ensemble35,57,62

RAB =
∑

ξ∈{A←B}

pb(0)W[ξ]R[ξ]. (15)

The weighted sum in Eq. 15 has an infinite number of
terms for Markov chains featuring loops, but the con-
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tributions to the sum from paths related by additional
traversals of a particular loop converge. delete to zero.
It is a finite sum with an infinite number of terms, and the
loop traversals converge, but not to zero. The highest-
probability first passage paths,87 and their contribution
to the A ← B reward sum in Eq. 15, can be determined
by a k shortest paths algorithm88–90 where the i ← j
edge cost is − lnTij , i.e. the contribution of the transi-
tion to the path action.74,91 For DTMCs, self-loop tran-
sitions for nodes can be eliminated by renormalization
using Tij ⇒ Tij/(1 − Tjj) ∀ i 6= j,30 while preserving
the MFPR using Rij ⇒ Rij + Rjj [(1 − Tjj)−1 − 1] (see
Sec. II B).

For metastable Markov chains, successive shortest
paths tend to differ by small modifications, such as a
single additional loop traversal or a path that differs
by a few alternative nodes.74 We therefore choose to
employ the recursive enumeration algorithm (REA) of
Jiménez and Marzal,70 which is particularly efficient in
cases where the set of k shortest paths share most of
their nodes in common, and consist of a small fraction
of the total number of nodes in the network.70 The REA
has worst-case time complexity O(E+kV log (E/V )) for
a network comprising V nodes and E edges. The algo-
rithm is empirically observed to outperform alternative
general k shortest paths algorithms that have superior
asymptotic time complexity, such as those of Eppstein
[time complexity O(E+V + k log k)],92,93 Azevedo et al.
[time complexity O(kE)],94,95 and Martins, Pascoal, and
dos Santos [time complexity O(kV log V )],96–98 because
the REA is associated with a comparatively small compu-
tational overhead.70 In the following informal derivation
of the REA, we assume that all nodes are reachable from
all nonabsorbing nodes, i.e. the set S \ A is transient.

The REA formulates the general single-source node,
single-sink node a ∈ A ← b ∈ B k shortest paths prob-
lem as a set of Bellman equations,99 which are solved
recursively.100 Let the k-th shortest path to node j be
denoted ξk(j), with associated cost R[ξk(j)], and the set
of nodes with direct transitions to node j be denoted
D(j). The first stage of the REA constructs the shortest
path tree for the transitions from the single initial node
to all alternative nodes using any appropriate procedure,
such as Dijkstra’s algorithm [worst case time complexity
O(E + V log V )].101–103 The REA exploits the fact that
the k-th shortest path to node j can be written in the
form ξk(j) ≡ ξk′(i)∪{j ← i}, where i ∈ D(j) and k′ ≤ k.
At the (k − 1)-th iteration of the REA, the next (k-th)
shortest path to the absorbing node a can therefore be se-
lected from a listM(a) of such candidate paths. For each
node i ∈ D(a), only the candidate path ξk

′
(i) ∪ {a← i}

for which ξk
′
(i) has the lowest cost, and which has not

already been chosen as a previous shortest path to the
a-th node, needs to be considered. Hence, there are at
most |D(a)| candidates for the next shortest path to node
a; one for each node with a transition to a. Here, we have
noted that ties may be broken arbitrarily, and that there
is no more than one edge connecting any pair of nodes in

a Markovian network. The REA maintains an array of
candidate pathsM(j) for all nodes j of the network, and
an array of the k-th shortest paths to each node. At each
iteration of the REA, a function is called to determine
the next shortest path to the target node a. Recursive
calls to this function are used to ensure that candidate
paths are assigned, and that with lowest cost selected, for
the shortest paths to preceding nodes, as required. The
pseudocode for this procedure applied to determine the
highest-probability first passage paths in a finite Markov
chain, employing path costs R[ξ] ≡ − lnW[ξ], is pre-
sented in Algorithm 1.

E. Transition flux-paths

The transition probabilities are a local measure of the
probability flux, and − lnTij represents only one possible
choice for the i ← j edge costs to extract dynamical in-
formation from shortest paths algorithms.87 As we show
in Sec. III, the k shortest paths for this choice of edge
costs are very closely related for Markov chains exhibiting
metastability, and may together account for only a small
proportion of the total A ← B probability flux. Hence,
for metastable Markov chains, the number of shortest
paths that can be feasibly determined by the REA is
typically insufficient to converge the pathwise sum for
the MFPR (Eq. 15).

An alternative choice, which may be especially use-
ful in the metastable regime, is to use edge costs that
represent a global measure of the probability flux. The
contribution of a transition path ξ ≡ {a ∈ A ≡ in+1 ←
in ← . . .← i1 ← b ∈ B}, where i1, . . . , in /∈ A∪B, to the
total reactive steady-state104 flux JAB is105

J [ξ] = f+i1b

n∏
k=1

f+ik+1ik

f+ik
. (16)

Here,

f+ij =

{
πjTij(q

+
i − q+j ), if q+i > q+j ,

0, otherwise,
(17)

is the net A ← B reactive flux along the i ← j edge,71
f+j =

∑
γ f

+
γj =

∑
γ f

+
jγ , πj is the stationary probability

for the j-th node,83,106 and q+j is the forward committor
probability for the j-th node,107–109 i.e. the probability
that a trajectory initialized at node j hits the target set
of nodes A before hitting the initial state B.31 Eq. 16
implies the following definition for the i← j edge costs:

R[{i← j}] =

− ln
f+
ij

f+
j

, if j /∈ B,
− ln f+ij , otherwise.

(18)

Unlike the local edge costs based on transition proba-
bilities, i.e. − lnTij , the global edge costs based on reac-
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tive fluxes (Eq. 18) represent the A ← B transition mech-
anism when the system has reached a steady-state.71
That is, f+ij (Eq. 17) is the net productive flux along the
i ← j edge for the equilibrium FPPE,104 and therefore
JAB is the total steady-state reactiveA ← B flux.105 This
stationary flux directly relates to the steady-state rate
constant, which is the dynamical observable associated
with the equilibrium FPPE.85 Note that it is also possi-
ble to define net reactive fluxes along individual edges,
and hence edge costs to determine flux-paths (cf. Eq. 18),
for the nonequilibrium FPPE,62,104 for which the MFPT
is the associated dynamical observable.

When using edge costs given by Eq. 18, the weighted
network representing the Markov chain in the shortest
paths algorithm has unidirectional edges, which are di-
rected such that paths are forced to proceed productively
through a series of isocommittor cuts in the network.110
Hence, there are no loops in the network (i.e. all paths
based on the choice of edge costs representing the net
reactive flux are simple89), and the sum over transi-
tion flux-paths to obtain the total reactive flux, JAB =∑
ξ∈{A←B} J [ξ], is finite. Since the set of nodes S \ A

is not transient when the edge costs are given by Eq. 18,
the REA as presented in Algorithm 1 must be adapted
to account for the situation where a candidate path does
not exist, as outlined in the original description of the
REA (see Ref. 70). With this minor modification, which
is also required when using local edge costs − lnTij for
Markov chains that are reducible,3 the REA can be used
to obtain the complete set of reactive A ← B flux-paths
and their contributions to the total reactive flux.

For ill-conditioned Markov chains, evaluation of the
edge costs in Eq. 18 is highly susceptible to numerical
error.37–47 Hence, in the metastable regime, the station-
ary probabilities {πj} required in Eq. 17 should be deter-
mined by a numerically stable method, for example us-
ing the GTH algorithm83,106 or an uncoupling-coupling
procedure.77,111–113 In Ref. 104, we report a state reduc-
tion algorithm for the efficient and robust computation
of the committor probabilities {q+j }.

III. NUMERICAL RESULTS

We illustrate our methodology with results for the
model eight-state CTMC considered in Ref. 115, for
which the disconnectivity graph114 is shown in Fig. 1.
The system corresponds to a coarse-grained representa-
tion of an energy landscape,57 with a discrete set of states
connected via energy barriers. The internode transition
rates have an Arrhenius form,116 dependent on the tem-
perature T ,35 and characterize the Markovian network
dynamics in terms of branching probabilities73 and mean
waiting times for transitions from nodes.30 A complete
specification of this model system is given in Appendix A.

The variation in the heights of energy barriers for tran-
sitions in the system induces a separation of timescales
that increases with decreasing temperature. Both the

FIG. 1. Disconnectivity graph114 representing the energy
landscape of the model eight-state CTMC, at a threshold en-
ergy increment of ∆E = 2. The branches of the tree ter-
minate at the energies of the corresponding nodes. A fork
indicates that there exists a path between the corresponding
sets of nodes via a highest-energy transition state that lies in
between the neighbouring energy thresholds. The branches
corresponding to the absorbing and initial nodes, which con-
stitute the setsA and B, are colored red and blue, respectively.

A ← B MFPT and the steady-state A ← B reactive flux
vary by around twenty orders of magnitude in the range
of inverse temperature 1/T from 0.1 to 2 (Fig. 2). At
low temperatures, conventional linear algebra methods
to determine MFPTs fail owing to numerical instability.36
This CTMC therefore provides a useful benchmark prob-
lem, since Markov chains representing realistic dynamical
processes are frequently metastable117–124 and therefore
ill-conditioned.37–48 We consider a single source node and
a single sink node. Thus there is no contribution to the
path probability from the initial node occupation proba-
bility distribution, and therefore W[ξ] ≡ P[ξ].

Fig. 3 shows the probability distribution for the
path action in the FPPE obtained from kinetic path
sampling68 (kPS) simulations, and the mean path ac-
tion computed by the nodewise iterative formulation of
the generalized GT algorithm (Eqs. 1 and 14), for the
eight-state CTMC at an inverse temperature of 1/T = 2.
At low temperatures, where the model Markov chain is
metastable, the use of the standard kinetic Monte Carlo
algorithm125 to sample A ← B first passage paths is un-
feasibly inefficient.52 Kinetic path sampling68,69 (kPS)
can instead be used to sample the numbers of individ-
ual i← j transitions along A ← B paths, and hence the
probability distribution for first passage path rewards.
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FIG. 2. Variation in the A ← B mean first passage time, TAB,
and the steady-state A ← B reactive flux, JAB, with inverse
temperature, for the eight-state CTMC (Fig. 1).
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FIG. 3. Probability distribution of the path action for the
ensemble of A ← B first passage paths, obtained from
100000 kinetic path sampling68 iterations, and mean path
action obtained using the generalized GT algorithm (pink),
for the eight-state CTMC (Fig. 1) at an inverse temperature
of 1/T = 2. At this temperature, the CTMC is strongly
metastable.

The path action distribution at this low value of the tem-
perature is fat-tailed.126–128 That is, there is a small but
appreciable proportion of probability mass at extreme
values, which makes a substantial contribution to the
mean, and thus the second and higher central moments
of the distribution are significant. Hence, reliable esti-
mation of the mean path action in the metastable regime
by sampling paths requires a very large number of obser-
vations, even for this low-dimensional system.

It is common in dynamical models of realistic sys-
tems for first passage time distributions associated
with transitions between two endpoint states to be
fat-tailed.52,126–128 One approach to examine this phe-
nomenon is to compute the proportion of the A ← B

probability flux that can be attributed to the dominant
first passage paths, and to examine the convergence of
the sum for the expectation of the first passage time
(cf. Eq. 15) when an increasing number of paths are in-
cluded.

In Fig. 4, we compare the mean path action com-
puted using GT to the values associated with the highest-
probability paths determined by the REA,70 for the
eight-state CTMC (Fig. 1) at an inverse temperature of
1/T = 2. Fig. 4 also illustrates the convergence of the
pathwise sum (Eq. 15) for the MFPT, TAB. The domi-
nant first passage paths are highly atypical, and are as-
sociated with values for the path action and time that
are several standard deviations smaller than the means
of the respective distributions. Because these distribu-
tions are fat-tailed, the 100000 highest-probability paths
account for a fraction of only around 5× 10−7 of the to-
tal A ← B probability flux, and the pathwise sum for
the MFPT is far from converged. The probabilities asso-
ciated with the 100000 dominant first passage paths are
close to uniform at this low temperature, suggesting that
the paths determined by the REA are all closely related.
Indeed, the small number of paths (around 5000) with
the very highest probabilities are very similar, involving
a small number of transitions via the lowest energy bar-
riers. However, subsequent shortest paths can be divided
into two families: longer paths involving only the most
favourable transitions, and short paths proceeding via
one or more alternative, less favourable, transitions. Our
analysis of this simple model demonstrates that, while
examination of the properties of the highest-probability
first passage paths is insightful, this analysis alone may
be misleading, and it is crucial to calculate the expecta-
tion for the path property of interest.

The extent to which the first passage time and path
action distributions are fat-tailed depends strongly on
the metastability of the Markov chain. Fig. 5 shows the
evolution of the cumulative sum of probabilities for the
100000 dominant A ← B first passage paths at varying
temperature. Notably, the convergence of the path prob-
ability sum follows the same pattern at all temperatures.
There are a very small number (roughly 10-100) of first
passage paths with relative probabilities that are partic-
ularly high, and the profile for the cumulative A ← B
path probability then reaches a plateau. Thus, even for
the model system with a small state space and in the
high-temperature limit, it is unfeasible to obtain the set
of paths that account for the majority (say, > 90%) of
the A ← B first passage path probability by shortest
paths algorithms, which would require an exceptionally
large number (more than 1010) of paths to be determined.
Nonetheless, at high temperatures, where there is no sig-
nificant separation of characteristic timescales, almost
50% of the total A ← B probability flux is accounted
for by the 100000 dominant paths, and therefore it is
feasible to obtain a representative picture of the global
dynamics using the REA with edge costs that represent
a local measure of the probability flux. At low temper-
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scale for the path action axis.

0 20000 40000 60000 80000 100000

Shortest path number

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

lo
g

1
0
(T

ot
al

p
at

h
p
ro

b
.) 0. 10

0. 50

1. 00

1. 50

1. 75

2. 00

FIG. 5. Cumulative sum of A ← B first passage path prob-
abilities at varying temperature for the eight-state CTMC
(Fig. 1), accounting for an increasing number of the highest-
probability paths determined by the recursive enumeration
algorithm (Algorithm 1).70 The annotations denote the value
of the inverse temperature, i.e. 1/T .

atures, however, the set of shortest paths accounts for a
negligible proportion of the total probability flux, and is
therefore not kinetically relevant.

To provide quantitative information on the relative im-
portance of alternative families of first passage paths, we
use the REA employing the edge costs given in Eq. 18,
which are based on the net reactive flux along individual
edges (Eq. 17). The decomposition of the total reactive
A ← B steady-state flux JAB (Eq. 16) into contributions

from individual simple transition flux-paths, at varying
temperature, is shown in Fig. 6. The observed order of
committor probabilities for nodes, which does not change
with temperature for this system, yields a pattern of uni-
directional net reactive fluxes associated with a total of
36 A ← B simple flux-paths. Evidently, the reactive
flux becomes increasingly localized among a small subset
of transition flux-paths with decreasing temperature (in-
creasing metastability). In the high-temperature regime
(1/T = 0.1), the single flux-path associated with the
largest contribution to the pathwise sum for JAB con-
tributes around a third of the total reactive flux, and the
15 dominant simple paths are required to account for al-
most all (> 99%) of the total reactive flux. Conversely,
in the low-temperature regime (1/T = 2), the highest-
flux simple path contributes more than half of the total
reactive flux, and the vast majority of the total A ← B
flux is associated with the four dominant flux-paths.

Because the set of simple flux-paths is finite, decompo-
sition of the total reactive flux JAB into additive contri-
butions from transition flux-paths (cf. Eq. 16) provides a
representative picture of the global dynamics even in the
metastable regime, where the set of highest-probability
first passage paths accounts for a negligible proportion
of the total path probability (Fig. 5). By effectively
grouping together paths that are related by unproduc-
tive flickering,52 a quantitative comparison of the kinetic
relevance of different competing A ← B transition mech-
anisms is recovered. This shortest paths analysis is an
alternative to the augmenting paths algorithm of Ref. 71,
which distinguishes families of simple flux-paths on the
basis of their associated dynamical bottleneck edges.105
Moreover, computation of the committor probabilities109
by a GT-like algorithm104 or alternative linear algebra
methods,108 and determination of the shortest paths us-
ing the REA, scales favourably with dimensionality of
the Markov chain. Hence, the complete set of simple
flux-paths can be feasibly computed using the REA for
sparse networks comprising several tens of thousands of
nodes.

IV. CONCLUSIONS

We have derived a general expression for renormalized
rewards (Eq. 3) associated with arbitrary paths on a cen-
sored Markov chain.16,77–82 We have also derived numer-
ically stable iterative (Eqs. 1 and 14) and block (Eqs. 12
and 13) graph transformation28–32 (GT) procedures to
compute the mean reward for the ensemble of first pas-
sage paths,57,62 i.e. the MFPR for a transition from an
initial set of nodes B to an absorbing set of nodes A.
These formulations are applicable to both discrete- and
continuous-time finite Markov chains.35 If the system is
not metastable, so that the transition probability matrix
is well-conditioned, then MFPRs for transitions from all
nonabsorbing nodes can be computed simultaneously us-
ing a single matrix inversion operation (Eq. 8).85
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FIG. 6. Cumulative sum of relative contributions (cf. Eq. 16)
to the total A ← B steady-state reactive flux, JAB, from al-
ternative simple flux-paths, for the eight-state CTMC (Fig. 1)
at varying temperature. There are 36 simple flux-paths in to-
tal, but no more than 15 transition flux-paths are required to
account for the vast majority (> 99%) of the total reactive
flux for all temperatures shown. The annotations denote the
value of the inverse temperature, i.e. 1/T . The flux-paths
were determined using the recursive enumeration algorithm70

(Algorithm 1) with edge costs based on net reactive fluxes
(Eq. 18).

Knowledge of the expectation for the probability dis-
tributions of path properties in the FPPE is useful
for assessing the convergence when sampling these dis-
tributions, which are frequently observed to be fat-
tailed126–128 owing to the existence of rare events in dy-
namical models for realistic systems.124

The mean values for first passage path properties
can also be compared to the values associated with the
highest-probability paths74,91 determined by the recur-
sive enumeration algorithm (REA),70 to assess the ex-
tent to which the characteristics of the dominant first
passage paths87 are typical or otherwise. The shortest
paths analysis allows us to evaluate the dominant terms
in the pathwise sum (Eq. 15) for the expectation of a first
passage path property, such as theA ← BMFPT.36 Even
for low-dimensional Markov chains that do not feature a
separation of characteristic timescales, a substantial pro-
portion of the A ← B probability flux is attributable to
an exceptionally large number of paths each associated
with a very small probability. Hence, the set of shortest
paths alone typically accounts for only a fraction of the
pathwise sum for the MFPR.

In the metastable regime, low-probability paths com-
prising a very large number of transitions account for
the overwhelming majority of the total first passage path
probability, and the set of shortest paths alone is there-
fore not kinetically relevant. Alternative edge costs re-
flecting the global dynamics (Eq. 18) can be employed to
exactly decompose the reactive steady-state A ← B flux,
JAB, into a sum of contributions from simple flux-paths.

This formulation is exact,105 and provides a complemen-
tary viewpoint to the typical approach of decomposing
JAB into additive contributions (cf. Eq. 17) from mem-
bers of a set of edges that together constitute an A-B
cut in the network.71 The latter framework effectively
groups together transition paths that share the same dy-
namical bottleneck edge of the cut set, and is therefore
best suited to compare the relative importance of indi-
vidual edges comprising a chosen A-B cut.129 The flux-
pathwise analysis proposed in the current work provides
a more detailed analysis that can be used to quantita-
tively understand the characteristic features of the whole
A ← B transition mechanism.

The GT and REA procedures scale favourably and
can be applied to complex networks with state spaces
comprising several hundred thousand nodes.31,91 The
methodology described herein will therefore provide fun-
damental insight into a variety of first passage processes
in stochastic models. For instance: what is the single
most probable route for the extinction of a species in a
population dynamics16–18 process? What are the most
probable paths that together account for a specified pro-
portion of the first passage probability flux, and what is
the collective contribution of these paths to the MFPT?

V. SUPPLEMENTARY INFORMATION

The graph transformation, kinetic path sampling, and
recursive enumeration algorithms are implemented in
DISCOTRESS. DISCOTRESS is a highly general C++ program
for simulation and analysis of arbitrary discrete- and
continuous-time Markov chains, including metastable
models that are numerically challenging. DISCOTRESS is
freely available software under the GNU General Public
License. Code, documentation, and tutorials are pro-
vided at https://github.com/danieljsharpe.
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Appendix A: Description of the model system

Here we provide a complete specification of the model
eight-state CTMC (for which the disconnectivity graph
is shown in Fig. 1) that was employed to demonstrate
our proposed methodology in Sec. III. Let the diagonal
element Ejj of the matrix E represent the energy of the j-
th node of the Markov chain, and the off-diagonal element
Eij (for i 6= j) represent the energy of the transition state
connecting nodes i and j, so that Eij −Ejj is the energy
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barrier for the i← j transition. The matrix E is:

E =



0 28 103 ∞ ∞ ∞ 18 ∞
... 8 20 25 30 ∞ 22 ∞
...

. . . 10 35 25 ∞ 83 ∞
...

. . . . . . 9 20 125 ∞ 24
...

. . . . . . . . . 7 26 ∞ 36
...

. . . . . . . . . . . . 1 ∞ 19
...

. . . . . . . . . . . . . . . 1 ∞
· · · · · · · · · · · · · · · · · · · · · 2


, (A1)

where off-diagonal entries Eij equal to ∞ indicate that
a direct connection between the i and j nodes does not
exist. Note that the matrix E is symmetric about the
diagonal, hence only the upper triangular elements are
specified in Eq. A1. In the numerical results of Sec. III,
we defined the initial state to be B = {1} and the ab-
sorbing state to be A = {8}.

The i ← j transition rate is then given by the Arrhe-
nius expression116

Kij = exp

(
− Eij − Ejj

T

)
∀ i 6= j, (A2)

where T is an effective temperature and we have set all
the pre-exponential factors to unity for simplicity. The
calculations in Sec. III used the Markov chain parame-
terized by the branching probability matrix as defined
in Sec. II A. The eight-state model system provides an
ideal benchmark to test the numerical stability of algo-
rithms, since the extent to which the Markov chain is
more or less ill-conditioned can be tuned by the value of
the parameter T (cf. Fig. 2).
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input : network G representing a finite Markov chain with state space S, and i← j edge
costs − lnTij ∀ i, j ∈ S

initial (source) node b ∈ B and absorbing (sink) node a ∈ A
total number of highest-probability paths to compute, ktot

output: ktot highest-probability a← b first passage paths; ξk(a) for 1 ≤ k ≤ ktot
ξk(j)← ∅ ∀ 1 ≤ k ≤ ktot, j ∈ S;
M(j)← ∅ ∀ j;
ξ1(j) ∀ j 6= b← Dijkstra(G);
/* main loop of REA */
for k = 2, . . . , ktot do
ξk(a)← NextPath(k,a);

return ξk(a) for 1 ≤ k ≤ ktot;

/* one-to-all shortest path algorithm */
function Dijkstra(G)

return ξ1(j)← argminξ(j)R[ξ(j) ≡ ξ1(i) ∪ {j ← i}] ∀ j ∈ S \ b;

function Pred(k,j)
return k′, i where ξk(j) ≡ ξk′(i) ∪ {j ← i};

/* function to determine the k-th most probable first passage path to node j, given that the
1, . . . , (k − 1)-th most probable first passage paths are known */

function NextPath(k,j)
if k == 2 then
/* Initialize set of candidates for the next most probable path to node j */
M(j)← {ξ1(i) ∪ {j ← i} ∀ i ∈ D(j) and 1, i 6= Pred(1,j) };
if j == b then

goto selectpath;
k′,i← Pred(k − 1,j);
/* the (k′ + 1)-th shortest path to node i is a viable parent segment of a candidate path to
node j. If unknown, compute this path with a recursive call to the NextPath function */

if ξ(k
′+1)(i) ≡ ∅ then

ξ(k
′+1)(i)← NextPath(k′ + 1,i);

M(j)←M(j) ∪ {ξ(k′+1)(i) ∪ {j ← i}}; // add candidate path to list
selectpath:
ξk(j)← argminξ∈M(j)R[ξ]; // assign candidate path with lowest cost
M(j)←M(j) \ ξk(j); // remove assigned candidate path from list

return ξk(j);

Algorithm 1: Recursive enumeration algorithm70 (REA) to compute the k highest-probability first passage
paths from an initial node b to an absorbing node a in an irreducible finite Markov chain. ξk(j) denotes the k-th

most probable a← b path to node j. The cost associated with the path ξ is R[ξ] = −∑(i←j)∈ξ lnTij . D(j)
denotes the set of nodes for which a direct i← j connection exists. M(j) denotes the set of candidates for the

next most probable path to the j-th node. The ordered sequence of transitions along the k-th highest-probability
path can be obtained by tracing the shortest paths array using the Pred function. For reducible Markov chains,

or when using edge costs based on net reactive fluxes (Eq. 18), the NextPath function may encounter the
situation where a candidate path to a node cannot be found. In this case, the next shortest path to the node
does not exist. If the node in question is the target node a, then the main loop of the REA is exited, the

complete set of a← b paths having been found.


