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Abstract

Considerable observational efforts are being dedicated to measuring the sky-averaged (global) 21 cm signal of
neutral hydrogen from Cosmic Dawn and the Epoch of Reionization. Deriving observational constraints on the
astrophysics of this era requires modeling tools that can quickly and accurately generate theoretical signals across
the wide astrophysical parameter space. For this purpose artificial neural networks were used to create the only two
existing global signal emulators, 21CMGEM and GLOBALEMU. In this paper we introduce 21CMVAE, a neural-
network-based global signal emulator, trained on the same data set of ∼30,000 global signals as the other two
emulators, but with a more direct prediction algorithm that prioritizes accuracy and simplicity. Using neural
networks, we compute derivatives of the signals with respect to the astrophysical parameters and establish the most
important astrophysical processes that drive the global 21 cm signal at different epochs. 21CMVAE has a relative
rms error of only 0.34%—equivalently 0.54 mK—on average, which is a significant improvement compared to the
existing emulators, and a run time of 0.04 s per parameter set. The emulator, the code, and the processed data sets
are publicly available at https://github.com/christianhbye/21cmVAE and through https://zenodo.org/record/
5904939.

Unified Astronomy Thesaurus concepts: Early universe (435); Cosmology (343); Astronomy software (1855)

1. Introduction

The 21 cm line of neutral hydrogen is one of the most
promising probes of Cosmic Dawn and the Epoch of
Reionization (EoR). Emitted by neutral hydrogen at redshifts
z> 6, the signal is redshifted to frequencies below 200MHz
and can therefore be observed by radio telescopes (Tozzi et al.
2000). The global 21 cm signal, obtained by averaging the
spectrum across all sky, traces the cosmology and astrophysics
of the high-redshift universe. The intensity of the signal is
observed in contrast to the background radiation, which is
normally assumed to be the cosmic microwave background
(CMB), and is quantified by the differential brightness
temperature. This temperature depends on the excitation
temperature of the 21 cm transition (the spin temperature),
the temperature of the background radiation, and the abundance
of neutral hydrogen. During Cosmic Dawn and the
EoR, processes including the Wouthuysen–Field effect
(Wouthuysen 1952; Field 1959), X-ray heating (Madau et al.
1997), and reionization of neutral hydrogen affect the
differential brightness temperature and leave characteristic
features in the global signal (Shaver et al. 1999). The
Wouthuysen–Field effect describes how the spin states of
neutral hydrogen are mixed through absorption and reemission
of Lyα photons, thus coupling the spin temperature to the
kinetic temperature of the hydrogen gas. This effect was
dominant in the beginning of the Cosmic Dawn, when the gas
temperature was cooler than the background radiation temper-
ature, hence making the differential brightness temperature

negative. Later, the first X-ray sources heated the intergalactic
medium (IGM), making the gas go from absorption to emission
against the background. Finally, the abundance of neutral
hydrogen decreased owing to reionization of the gas, and the
signal vanished. We refer to Furlanetto et al. (2006), Pritchard
& Loeb (2012), and Barkana (2016) for in-depth reviews of
these physical processes.
There are several ongoing efforts to detect the global signal

with one reported detection (Bowman et al. 2018), made by the
Experiment to Detect the Global EoR Signature (EDGES;
Bowman & Rogers 2010; Monsalve et al. 2017, 2018, 2019).
Other experiments include Probing Radio Intensity at high-Z
from Marion (PRIZM; Philip et al. 2019), Mapper of the IGM
Spin Temperature (MIST),6 Shaped Antenna measurement of
the background RAdio Spectrum (SARAS; Singh et al. 2022),
Radio Experiment for the Analysis of Cosmic Hydrogen
(REACH; de Lera Acedo 2019; Cumner et al. 2022), and Dark
Ages Polarimeter PathfindER (DAPPER; Burns et al. 2019).
The EDGES detection showed a deep and narrow absorption
profile, which cannot be explained by standard cosmological
models. In particular, the lower 99% confidence bound on the
best-fit amplitude was 0.3 K, which is approximately 50%
greater than the largest predicted amplitude (Bowman et al.
2018).
With the surprising first results and awaited new measure-

ments, it is important to model the range of possible 21 cm
signals from the early universe and explore the associated
astrophysical parameter space. To this end, a flexible method is
required to realize the global signal efficiently, allowing
parameters to be constrained from measurements with the use
of sampling techniques such as Markov Chain Monte Carlo
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(MCMC; Liu & Shaw 2020). Simulations of the 21 cm signal
(e.g., Visbal et al. 2012; Fialkov et al. 2014) take a few hours to
run and, thus, cannot be directly employed in a parameter
estimation pipeline. Instead, emulators trained on the results of
these simulations are becoming a popular tool for fast model
generation. Currently available software include EMUPY (Kern
et al. 2017), which emulates the 21 cm power spectrum;
21CMGAN (List & Lewis 2020), which generates tomographic
samples of the 21 cm brightness temperature; and the two
global signal emulators 21CMGEM (Cohen et al. 2020) and
GLOBALEMU (Bevins et al. 2021). Given seven astrophysical
parameters, 21CMGEM calculates five auxiliary parameters and
uses a series of neural networks, a bagged tree classifier, and
principal component analysis to emulate the global signal over
redshifts z= 5–50. It is fast and accurate: the emulator has a
running time of 0.16 s per parameter set and an average relative
error of 1.59%. The emulator has already been used to
constrain the astrophysical parameters using the data of the
EDGES High Band experiment (Monsalve et al. 2019).
GLOBALEMU emulates the global signal from the same
parameters as 21CMGEM, using just a single neural network.
The simpler prediction algorithm emulates the global signals
significantly faster, with a run time of only 1.3 ms, and with a
smaller average relative error of 1.12%.

In this paper we present 21CMVAE, a new emulator of the
global signal from the same seven astrophysical parameters
used in 21CMGEM and GLOBALEMU: the star formation
efficiency ( f*), the minimum circular velocity of star-forming
halos (Vc), the X-ray radiation efficiency ( fX), the optical depth
(τ) of the CMB radiation, the power-law slope (α) and low-
energy cutoff (νmin) of the X-ray spectral energy distribution
(SED), and the mean free path of ionizing photons (Rmfp). The
emulator uses the same data set as 21CMGEM and GLOBA-
LEMU, with global signals simulated from the parameters using
the method described in, e.g., Cohen et al. (2020). We refer to
Cohen et al. (2020) for more details on the modeling.

The objective of this work is to use artificial neural networks
to learn relationships between parameters and signals without
enforcing any physical models. Compared to 21CMGEM, we
aim to use a simpler prediction algorithm that does not
calculate auxiliary parameters or depend on the input
parameters. However, unlike GLOBALEMU, we do not aim to
make the fastest or simplest model that meets a target
performance—instead, we explore a wider range of models
and prioritize very accurate predictions. As a result, our
emulator uses only one neural network that predicts global
signals given the seven astrophysical parameters. This allows
21CMVAE to be flexible and predict a wide range of signals.
The emulator is written in Python, using the machine-learning
libraries TensorFlow (Abadi et al. 2015) and Keras (Chollet
et al. 2015), making it easy to modify or retrain. 21CMVAE is
available on GitHub,7 where the data set and documentation
also can be found.

This paper has six sections. After the introduction, Section 2
discusses how we designed and optimized our models, and the
performance and speed of the emulator are presented in
Section 3. In Section 4 we evaluate the impact of the
astrophysical parameters on the global signal, and in
Section 5 we use the emulator to interpret an intermediate
(latent) representation of the signals. We conclude in Section 6.

2. Methods

This section assumes familiarity with basic principles and
terminology of neural networks; we refer to Goodfellow et al.
(2016) for a review of this topic.

2.1. Architecture

The emulator has a seven-dimensional input layer (for seven
astrophysical parameters) and a 451-dimensional output layer,
since it outputs realizations of global signals at 451 redshifts. It
also has four hidden layers—of 288, 352, 288, and 224
dimensions, respectively—which all are fully connected and
use the activation function ReLU (Fukushima 1969). We also
trained an emulator that utilized an autoencoder to create a low-
dimensional representation of the global signals; this emulator
appeared to be both less accurate and slower, but it is described
in Appendix A. We earlier tried to use a variational
autoencoder (Kingma & Welling 2013), which uses a
regularized latent space that we believed would preserve data
structures better than the latent space of a vanilla autoencoder
and thus work better in the emulator. However, we found that
this regularization came at the cost of increased reconstruction
error of the autoencoder and that the emulator error was larger
with a variational autoencoder than a standard autoencoder.
We use the rms error as a fraction of signal amplitude to

evaluate the performance of the emulator. This is defined for
each signal by
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Here ˆ ( )nT denotes the frequency-dependent signal predicted by
the emulator, whereas T(ν) represents the simulated signal from
the data set. The figure of merit is the same as used by
21CMGEM, making the results directly comparable.

2.2. Data Set

We use the publicly available data set created for 21CMGEM
of 29,641 signals, including a training set with 27,455 signals
and a test set with 2186 signals. We restrict the data sets to only
include signals in the parameter ranges given by Cohen et al.
(2020) (the ranges for the test set in parentheses): f* =
0.0001–0.50 (0.0003–0.50), Vc= 4.2–100 (4.2–76.5) km s−1,
fX= 0–1000 (0–10), τ= 0.04–0.2 (0.055–0.1), α= 1.0–1.5
(1.0–1.5), νmin= 0.1–3.0 (0.1–3.0) keV, Rmfp= 10–50 (10–
50)Mpc. Figure 1 shows a representative sample of the global
signal models in the training set.
Approximately 10% of the training set is used as a validation

set. This results in a total of 28,996 global signals split into a
training set with 24,562 signals, a validation set with 2730
signals, and a test set with 1704 signals. The three data sets
were divided randomly, ensuring distributions that are
statistically similar, with the only difference being the
restrictions on the parameter ranges. The larger parameter
ranges on the training and validation set make the emulator
capable of exploring a variety of astrophysical scenarios, but
we keep narrower ranges on the parameters in the test set to
make the results comparable to 21CMGEM and GLOBALEMU.
Before training the emulator, the training signals are

preprocessed. This is done by computing the mean temperature
at each frequency across all signals and subtracting this from
the respective signals. Afterward, every signal is divided by the7 https://github.com/christianhbye/21cmVAE
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standard deviation across all signals and frequencies. The
preprocessed signals thus have zero mean in every frequency
bin and are scaled to units of standard deviation. Standard
practice is to divide by the standard deviation in each frequency
bin; we deviate from this because the low standard deviation
between signals at small frequencies would make the
preprocessed signals blow up.

We train the emulator on the signals in the training set, while
monitoring the performance on the training set and validation
set. Only the errors on the training set are being back-
propagated through the neural networks; thus, the errors on the
validation set measure whether the model is able to emulate
signals that are statistically similar to the training signals but
not propagated through the network. The validation error is
therefore an important metric for overfitting and the ability of
the emulator to generalize to unseen signals. We use it to
regulate the learning rate of the model, to trigger early
stopping, and during hyperparameter tuning; see Sections 2.3
and 2.4 for more details.

The test set is not seen by the emulator until after training
and hyperparameter tuning. The performance on the test set is
therefore a measure of how well the emulator can predict global
signals from parameters it was not optimized for. Hence, the
test error is the best estimate of the performance of the emulator
in a real setting and is therefore the figure of merit we use.

2.3. Training

We trained the emulator for 350 epochs, using minibatches
with 256 signals in each, and a loss function defined as the
square of the figure of merit (Equation (1)). We used the Adam
(Kingma & Ba 2014) optimizer and an initial learning rate of
0.01. Together, these define the gradient descent algorithm
used to minimize the loss function.

During training, we also used a learning rate schedule, which
reduces the learning rate if the validation loss does not decrease
over 5 epochs, and early stopping, which stops the training if
the validation loss does not decrease over 15 epochs. We also
saved the model weights and biases after each epoch and
loaded the weights and biases that correspond to the epoch with
the smallest validation loss after training. This is normally
toward the end of the training, but it will be at an earlier epoch
in the case of overfitting.

2.4. Hyperparameter Tuning

In our neural networks, there are several parameters that
cannot be optimized during training. These are called
hyperparameters; examples include the number of layers in
the network, dimensionality of each layer, and the loss
functions. We performed hyperparameter tuning to optimize
the number of layers and dimensionality of each layer.
Although there exist dedicated Python packages to do this,
we wrote our own script based on a random grid search to get
full control over the tuning. We specified an appropriate
hyperparameter space, used the script to randomly generate
parameters in the space, and built the emulator with these
parameters. The model was trained, and the validation loss of
the emulator was saved. We trained 500 emulators with
different hyperparameters. The hyperparameters associated
with the emulator with the lowest validation loss were used
to build the final product; these define the architecture, which is
described in Section 2.1.

3. Performance

3.1. Test Errors

The training algorithm is stochastic; hence, training the same
model twice on the same data set may yield different results.
We therefore trained the emulator 20 times after optimizing the
architecture with hyperparameter tuning. For each of the 20
trials, we computed the error for each signal in the test set. We
get a mean error across signals for each trial; the distribution of
these mean errors is showed in Appendix A, in Figure 6.
21CMVAE has a mean error across the 20 trials of
0.354%± 0.001% and a median error of 0.305%± 0.001%.
The results of the best trial of 21CMVAE are displayed in the
histogram in Figure 2, which also shows how the performance
compares to 21CMGEM and GLOBALEMU.
We list the relative (as defined in Equation (1)) and absolute

(the rms in mK) errors of the best trial across the entire
simulated frequency range (approximately 28–237MHz) and
for selected frequency bands in Table 1: 50–100MHz
(corresponding to EDGES Low Band), 60–120MHz (corresp-
onding to EDGES Mid Band), 90–200MHz (corresponding to
EDGES High Band), and 50–200MHz. The mean error across

Figure 1. 500 global signal models randomly drawn from the training set.
Figure 2. The histogram shows the distribution of errors for the test set of 1704
astrophysical signals with mean, median, and 95th percentile marked (solid
lines). It also shows the results for GLOBALEMU (dashed–dotted line) and
21CMGEM (dashed lines). Note that GLOBALEMU does not report the median
error and that the 95th percentile errors of GLOBALEMU and 21CMGEM are
2.41% and 3.49%, respectively, hence out of the range used for the x-axis here.
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the entire frequency range is 0.54 mK, or 0.34% of the signal
amplitude. For comparison, the rms between the global signal
predicted from all parameters in the middle of the test range
and the global signals of a model with all the parameters
simultaneously shifted by ±1% is 0.70 mK. Hence, the
emulator is sensitive to ( )1% changes in the astrophysical
input parameters.

For a sample view of the performance of 21CMVAE on the test
set, we show in Figure 3 the predicted signals with error closest to
the 10th percentile, the median, and the 95th percentile, as well
as the signal with the largest error. This can be directly
compared to the analogous Figure 9 of Bevins et al. (2021)

and Figure 13 of Cohen et al. (2020), which show the
performances of GLOBALEMU and 21CMGEM, respectively.

3.2. Speed

We measure the time from inputting astrophysical para-
meters to when an output is produced on a computer with a
GeForce RTX 2080 Ti Rev. A. GPU. By randomly drawing
parameters from the parameter ranges of the training set 1000
times, we find that it takes on average 0.0414± 0.0007 s to
predict one global signal. We also measured the time it takes to
predict 1000 signals simultaneously—that is, inputting 1000
parameter combinations to the emulator at once—obtaining an
average time of 0.0418± 0.0002 s.

4. Impact of Astrophysical Parameters

We use 21CMVAE to investigate the impact of each
astrophysical parameter on the global signal, both qualitatively
and quantitatively. First, we show visually how each parameter
affects the emulated global signal. We use the signal emulated
from the mean parameters in the test set as our nominal model
and vary each parameter uniformly between its minimal and
maximal value in the test set. The mean parameters
are given by ¯ {º = -X flog 0.800

*
, ( )=-Vlog 1 km sc

1

1.4803, = -flog 0.1190X , τ= 0.07, α= 1.25, νmin=
0.85 keV, Rmfp= 29.60Mpc}.
Figure 4 shows the effect of each parameter on the global

signal. In general, larger values of f* and smaller values of Vc

Table 1
The Mean and Median of the Error of 21CMVAE across the Full Frequency
Range the Global Signals Are Sampled at, and across Examples of Frequency

Bands Used by the EDGES Experiment

ν z
Mean
Error

Median
Error

Mean
Error

Median
Error

(MHz) (%) (%) (mK) (mK)

28–237 5.0–50.0 0.34 0.29 0.54 0.50

50–100 13.3–27.4 0.36 0.29 0.50 0.45

60–120 10.9–22.6 0.38 0.30 0.57 0.52

90–200 6.2–14.7 0.82 0.56 0.90 0.79

50–200 6.2–27.4 0.45 0.39 0.71 0.65

Figure 3. Comparison of true signal (blue solid line) in the test set and emulated signals (orange dashed line) for the case with error closest to the 10th percentile,
median, 95th percentile, and the largest error. The errors and the values of the astrophysical parameters of each corresponding model are shown in each panel of the
figure.
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are both associated with the center of the absorption trough
being shifted to earlier times (lower frequencies); this is as
expected since this combination of parameters corresponds to
earlier star formation. Furthermore, we note that the amplitude
of the global signal is regulated by X-ray heating: it increases
with decreasing fX and increasing νmin, both of which
correspond to less X-ray heating. Less heating also led to later
absorption, as can be seen in the figure. Whereas the four
parameters discussed have combined a significant impact on
the center, amplitude, and width of the absorption trough, the
global signal is much less sensitive to the last three parameters.
As anticipated, τ is only important at late times and regulates
the amplitude during reionization. The variations in amplitude
are below the 10 mK level, but the 21 cm line can be seen in
emission at low redshifts for sufficiently small values of τ.
Being associated with X-ray heating, the global signal varies
with α along the same trends as it varies with fX and νmin, but
the variations are smaller and α is more constrained than the

other parameters. Finally, Rmfp has no apparent effect on the
global signal at the scales considered here.
Since 21CMVAE maps astrophysical parameters to realiza-

tions of the global signal, we can compute the derivative of this
map with respect to the input parameters. This allows us to
quantify the impact I of each astrophysical parameter on the
global signal, which we define as the rms of the derivative of
the mean global signal—that is, the global signal corresponding
to the mean parameters of the test set (X̄ )—with respect to its
inputs. We define the impact of each parameter X̄i by

⎜ ⎟
⎛
⎝

⎞
⎠

( ¯ )
¯ ( ) ( )n

º D
n

I X
dT

dX
X . 2i

i
i

2

We also compute the impact of the combinations
( · )f flog X*

, which is proportional (up to the minor effect of
X-ray SED) to the total amount of X-rays that goes into heating

Figure 4. The effect of each astrophysical parameter on the emulated global signal. The black dashed line in each panel is the nominal model. Each panel shows the
global signal obtained by varying one parameter, while keeping all the others fixed at their nominal values. The color of each signal represents the value of the varied
parameter—on a logarithmic (base-10) scale in the cases of f*, Vc, and fX.
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of the IGM, and ( )f Vlog c
3

*
, which measures the efficiency of

the Wouthuysen–Field effect and is proportional to the total
mass of gas in dark matter halos converted into stars (see, e.g.,
Barkana 2016). The first factor in the above equation,

( )¯ ( )n

n

dT

dX

2

i
, is proportional to the Fisher information for

an instrument that has constant error bars for each pixel in the
given frequency band. The other factor, ΔXi, is the uncertainty
on the parameter, which we take to be the width of the
parameter range in the test set. Table 2 shows the impact of
each parameter in the frequency bands that we reported the
results for in Table 1. While this analysis considers derivatives
at the mean parameters in our test set, it could be repeated at
any point of interest in the parameter space.

The results in Table 2 indicate that the global signal at
redshifts z= 5–50 is most sensitive to changes in the
combinations f* · fX and f Vc

3

*
. The four parameters with the

greatest impact in this redshift range are fX, νmin, Vc, and f*,
and the three parameters with the smallest impact are Rmfp, τ,
and α. The four parameters with the largest quantitative impact
are the same as the parameters that visually appeared to have
the most impact on the global signals. Thus, the quantitative
impact analysis confirms the intuition provided in Figure 4: the
global signal is most sensitive to the strength and time of onset
of star formation and heating in the redshift range z= 5–50.

Table 2 also shows how the impact of the parameters
changes with the observed frequency band, and hence how it
changes with time. All the parameters except for τ have their
largest impact in the redshift range z= 10.9–22.6, which is
expected since the global signal used in this analysis both has
its absorption through and goes into emission in this redshift
range. The most important parameters in this range are

( · )f flog X*
and ( )f Vlog c

3

*
with impact values of 521.96

and 420.31 mK, respectively. These also have the greatest
impact in the range z= 6.2–14.7, but their impact decreases to
about 90% and 70%, respectively, of their values in the range
z= 10.9–22.6. The only parameter that increases in impact is τ,
which goes from 8.27 to 13.09 mK. This shows that τ becomes
comparatively more important at lower redshifts. On the other
hand, the other reionization parameter, Rmfp, has consistently
the smallest impact and does not appear to become more
important at later times.

5. Interpreting the Latent Space

Having seen how the global signals vary with the
astrophysical parameters, we analyze how the last hidden layer
changes with the parameters. We denote this representation the
latent representation or the latent space. It is 224-dimensional,
since the last hidden layer has 224 neurons (in comparison, the

frequency representation is 451-dimensional since the global
signals are sampled at 451 frequencies). The latent representa-
tion is related to the output global signals by only one linear
transformation and the additive bias of the neural network.
Investigating the structure of this representation can therefore
illustrate which of the seven astrophysical parameters have the
strongest effect on the global signals in the frequency range
ν= 28–237 MHz.
As an illustration, we plot (Figure 5) the value of each of the

224 neurons in the last hidden layer for each of the 1704
signals from the test set projected to a plane using the t-SNE
technique (t-Stochastic Neighbor Embedding; van der Maaten
& Hinton 2008). This technique preserves relative distances,
meaning that points close in the latent space are also close in
the 2D projection. We require that the 200 closest points, or
about 10%, are counted as neighbors (i.e., setting the perplexity
parameter for t-SNE to 200). For each of the seven
astrophysical parameters, we color a copy of this plot according
to the value of the parameters and show the results in Figure 5.
To gain further insight, we also show the combinations f* · fX
and f Vc

3

*
discussed in Section 4.

Since Figure 5 is an attempt at visualizing a 224-dimensional
space in 2D, the shapes and structures are not very meaningful.
However, as t-SNE preserves relative distances, the relative
placement of the points contains information. By visually
exploring Figure 5, we find, as anticipated, that the structure of
the latent space is most sensitive to changes in the astrophysical
parameters regulating star formation (namely, f* and Vc shown
in panels (a) and (b), respectively) and X-ray heating (via the
dependence on fX and, to a lesser degree, on nmin; panels (c) and
(f), respectively), as these parameters have the sharpest effect
on the global signal within the explored frequency range. We
can also see how the latent space is structured: the upper right
part of the space is a region with large f* (panel (a)) and small
Vc (panel (b)), indicating that this part of the latent space is
associated with early star formation. This behavior is even
more clearly seen in panel (i), which is color-coded with
respect to f Vc

3

*
. Similarly, the latent space separates fX (panel

(c)), with large values to the upper left and smaller values to the
lower right, and nmin (panel (f)), with smaller values to the
upper left and larger values to the lower right, effectively
corresponding to stronger and earlier heating, respectively
(Fialkov et al. 2014), and thus agreeing with the distribution of
fX. In other words, the amount of heating generally increases
upward and to the left in the t-SNE representation of the latent
space, which is highlighted in panel (h) corresponding to f* · fX.
We also find that the effects of the parameters regulating

reionization (in our case it is the CMB optical depth and the
mean free path of the ionizing photons; panels (d) and (g),
respectively), as well as the slope of X-ray SED (panel (e)), are

Table 2
The Impact in mK of Each Parameter on the Mean Global Signal across the Frequency Bands Considered in Table 1

ν (MHz) z I( flog
*
) I( Vlog c) I( flog X) I(τ) I(α) I(nmin) I(Rmfp) I( ( · )f flog X*

) I( ( )f Vlog c
3

*
)

28–237 5.0–50.0 64.56 91.64 121.46 6.42 13.88 114.28 0.49 269.28 218.68

50–100 13.3–27.4 104.76 156.36 189.19 6.71 21.57 177.64 0.79 420.62 365.40

60–120 10.9–22.6 124.60 175.36 236.13 8.27 26.99 222.06 0.85 521.96 420.31

90–200 6.2–14.7 98.47 107.93 224.83 13.09 25.77 211.76 0.47 486.01 293.91

50–200 6.2–27.4 93.88 133.26 176.63 9.27 20.19 166.18 0.69 391.53 318.00
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not reflected in the t-SNE plots and there is no apparent
structure across the corresponding panels. In order to minimize
the loss of the emulator, it was not necessary to organize the
hidden layer in a way that sorts these parameters in the t-SNE
projection, indicating that they have smaller effects on the
global signals when explored across the broad frequency range
ν≈ 28–237MHz.

In summary, we find—as expected—that processes of X-ray
heating and Wouthuysen–Field coupling have the strongest
impact on the global signal in the explored frequency range,
with the latent space separating the amount of star formation
along one diagonal in the t-SNE representation and the X-ray
heating along the other diagonal. In contrast, the parameters
regulating reionization and the slope of X-ray SED have a
subdominant effect on the apparent structure of the latent space
within the broad frequency range considered.

This is largely consistent with our findings in Section 4,
where we saw visually that the center, amplitude, and width of
the global signals are most sensitive to the amount of X-ray
heating and star formation and quantitatively that the
parameters regulating these effects have the greatest impacts.
Larger amplitudes are associated with less X-ray heating and,
to a lesser degree, more star formation. Since these are largely
separated along different diagonals, the t-SNE representation
does not separate amplitudes to the same extent as it separates
the amount of X-rays and star formation. However, we may
loosely identify the lower right region of the latent space with

global signals of large amplitude, since it is a region with low
fX and, in general, above-average values of f* and nmin. The
opposite side of the plot is a region of smaller amplitudes, with
large fX, more small values of f*, and small nmin. On the other
hand, the center and width of the global signals appear to be
separated with increasing width and the center shifted to high
frequencies in the bottom half of the latent space (following
generally the separation of f* · fX).
The parameters τ, α, and Rmfp both have the smallest effect

on the global signal and do not separate the latent space in the
t-SNE representation. This shows that the emulator, as
anticipated, does not prioritize separating parameters that do
not significantly change the shape of the global signal.

6. Conclusions

We have presented 21CMVAE, a new emulator of the 21 cm
global signal, which predicts signals based on a seven-
parameter input. The prediction pipeline is simple, with one
neural network, whose architecture is optimized with hyper-
parameter tuning. The code used to optimize the network is
publicly available, together with the final product. 21CMVAE
emulates global signals in approximately 0.04 s on average and
with a mean rms error of 0.34% of the signal amplitude, a
significant improvement in error from existing emulators. The
absolute error is on average smaller than the rms between two
signals with parameters changed by 1%.

Figure 5. A t-SNE visualization of the latent representation colored by the seven astrophysical input parameters (panels (a)–(g)) and the combinations f* · fX (panel
(h)) and f Vc

3

*
(panel (i)). The points shown are the values of the neurons in the last hidden layer of the emulator associated with each global signal. The first three

parameters and the two combinations are given on log scales (base-10); otherwise, the units are the same as used elsewhere in the text. In general, the parameters that
are most important for the global signal in the frequency band ν = 28–237 MHz are most separated in the t-SNE representation of the latent space.
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Compared to GLOBALEMU, which is the fastest and most
accurate existing emulator of the global 21 cm signal, as well as
the most similar in architecture, 21CMVAE has overall smaller
errors in prediction of the same global signals: both the mean
and maximum errors of 21CMVAE are more than a factor of 3
smaller than the mean and maximum errors of GLOBALEMU
over the redshift range z= 5–50. This is due to different
priorities: GLOBALEMU aims to be as simple and fast as
possible given a target accuracy of about 10% of the expected
noise of the REACH experiment, whereas 21CMVAE aims to be
as accurate as possible without compromises. GLOBALEMU is
indeed able to emulate the global signals in 1.3 ms, which is
even faster than 21CMVAE.

By exploring different representation of the global signal and
its derivatives, we were able to qualitatively and quantitatively
establish which of the model parameters create the most
significant changes in the global 21 cm signal across a broad
frequency range. As anticipated, we find that processes of X-ray
heating and Wouthuysen–Field coupling have the strongest
impact, while the parameters regulating reionization and the slope
of X-ray SED have no apparent effect on the latent representation
for the redshift range z= 5–50. As the analysis in Section 4
shows, the impact of each parameter depends on the frequency
band considered, and the latent representation will therefore
depend on the frequency sampling of the global signals in the
training set. The visual latent representation and the quantitative
derivative analysis are a potentially powerful diagnostic that can
point out dominant astrophysical processes and help optimize
theoretical modeling when targeting specific frequency bands of
different experiments.

In summary, 21CMVAE achieves unprecedentedly small
errors for a range of 21 cm models across a wide frequency
band. Combined with the short running time and the
implementation in Python, this makes 21CMVAE ideal for
parameter fitting such as MCMC.
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the Department of Astronomy at the University of Washington.
The DIRAC Institute is supported through generous gifts from
the Charles and Lisa Simonyi Fund for Arts and Sciences and
the Washington Research Foundation. A.F. was supported by
the Royal Society University Research Fellowship.

Appendix A
Autoencoder-based Emulator

In addition to 21CMVAE, we trained an autoencoder to
generate a low-dimensional—latent—representation of the
global signals and an emulator based on the autoencoder.
These two networks were trained the same way as 21CMVAE,
and the hyperparameters were optimized with the same
hyperparameter tuner. The emulator maps astrophysical para-
meters to the latent representation, which we set to nine
dimensions after hyperparameter tuning. The latent representa-
tion is then decoded by the autoencoder. By compressing the
data to the latent space, the autoencoder is forced to learn the
most robust features of the global signal. We believed that this
would aid the emulator in predicting the global signals and that
the nine latent parameters would be easier to interpret as
combinations of the input astrophysical parameters than the
hidden layers of 21CMVAE, which all have more than 200
dimensions. Despite this, 21CMVAE actually performs better
than the autoencoder-based emulator and can be interpreted
both qualitatively and quantitatively, as done in Sections 4 and
5. We still show the methods and results here for comparison.
The autoencoder attempts to reconstruct global signals but

has a nine-dimensional latent layer that forces it to reduce the
dimensionality of each global signal from 451 to 9. The
encoder has one hidden layer with 352 dimensions, whereas the
decoder has two hidden layers with 32 and 352 dimensions,
respectively. The emulator takes in the seven astrophysical
parameters and outputs the latent representation, using four
hidden layers of dimensions 352, 352, 352, and 224.
As with 21CMVAE, we trained the tuned autoencoder-based

emulator 20 times and computed the mean test error for each
trial. These are shown in Figure 6.
21CMVAE has a mean error across trials of 0.354%±

0.001% and a median error of 0.305%± 0.001%, whereas the
autoencoder-based emulator has a mean error of
0.44%± 0.01% and a median error of 0.39%± 0.01%. We
see that the distribution of mean errors of 21CMVAE is strictly
at smaller errors than the distribution of errors of the
autoencoder-based emulator. However, the errors due to the
autoencoder itself are in general smaller than the errors of
21CMVAE, as shown in Figure 6. The autoencoder has a mean
error of 0.332%± 0.003% and a median error of
0.292%± 0.002%. The errors of the autoencoder-based

Figure 6. Histogram of the mean errors of the 20 trials for the autoencoder (blue), 21CMVAE (orange), and the autoencoder-based emulator (gray).
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emulator would be identical to the autoencoder errors if it could
perfectly map the astrophysical parameters to the autoencoder
latent parameters; thus, the difference between these distribu-
tions is due to errors in the map from astrophysical parameters
to latent parameters. An improved autoencoder-based emulator
could reduce this difference, but the autoencoder errors are
likely the limit of how small the autoencoder-based emulator
errors can be. For the best trial, the mean error of the
autoencoder-based emulator on the test set is 0.39%, and the
median error is 0.35%. This is worse than 21CMVAE (mean:
0.34%; median: 0.29%) but a significant improvement over
21CMGEM (mean: 1.59%; median: 1.30%). The autoencoder
that is used by that emulator has a mean error of 0.33% and a
median error of 0.29%.

Appendix B
Data Set Size

The performance of the emulator is correlated with the size
of the training data set. To test this, we randomly sample
subsets of the training set and evaluate the performance of the
emulator trained on each of the subsets. The subsets range in
size from 5% to the full data set in increments of 5%. We
sample the subsets at each given size 10 times and average the
error across the samples. This ensures that the results depend
only on the size of the subsets and not on the composition of
the subsets. This relationship is displayed in Figure 7. We see
that the emulator error steadily decreases with increasingly
more signals until the data set size is ∼35% (about 8600
signals), after which it only slowly decreases. Therefore, the
marginal effect of increasing the size of the training set used to
train 21CMVAE would likely be small.
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