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Supplementary Notes

Supplementary Note 1 - The observation that tumors are not found in 
the immediate vicinity of archetypes is an artifact of visualizing high-
dimensional data

In examining polyhedra of dimension three or higher (4 archetypes or more), 
we can observe that there are no tumors in the direct vicinity of the 
archetypes. This observation has a statistical explanation: measurement error 
tends to push archetypes away from the data. In addition, projecting higher 
dimensional polyhedra onto a plane – a step necessary for visualization – 
artificially increases the density of generalists compared to specialists: the 
more archetypes, the higher the dimension, and the smaller the density of 
projected data close to the archetypes.

To illustrate this, we simulate data points by sampling uniformly from 
polyhedra with 3, 4, 5 and 6 archetypes (Supplementary Fig. 2E). After adding 
measurement noise, determine the position of archetypes using ParTI and 
project the data onto the face of the polyhedron defined by the first 3 
archetypes. 

As the panel with 3 archetypes shows, adding noise pushes the inferred 
archetypes away from the data. Upon orthogonal projection of the data onto a
face of the polyhedron, archetypes that are not part of the face increase the 
projected density close to the middle of the face and thus decrease density in 
the vicinity of archetypes. 

This decreased projected density in the vicinity of archetypes is observed 
even though density in the high-dimensional polyhedron is uniform. The more 
archetypes, the smaller the density in the vicinity of archetypes after 
projecting the data.
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Supplementary Note 2 - Archetypes do not represent single cell types

We tested the possibility that the polyhedra described by tumors could be 
caused by mixing different cell types (cancer cells, fibroblasts, immune 
cells, ...) in varying proportions rather than evolutionary trade-offs. Two 
observations suggest that it is unlikely that archetypes correspond to cell 
types which are mixed in varying proportions in different tumors..

First, mixing cell types in different proportions should produce tumors that 
describe polyhedra in linear gene expression space 1, but not log gene 
expression space. We looked for polyhedra in linear gene expression space by 
exponentiating gene expression right before subtracting the mean gene 
expression from each gene (see “Fitting polyhedra to tumor gene expression 
data with ParTI” in Materials and Methods). No significant polyhedra were 
found in linear gene expression space in any of the 15 cancer types.

Second, if archetypes represent individual cell types mixed in different 
proportions in different tumors, one archetype should represent pure cancer 
cells while the other archetypes should represent other cell types present in 
the tumor (fibroblasts, immune cells, …). Thus, tumor purity should peak at 
one of the archetypes and monotonically decrease away from this archetype, 
as cancer cells are increasingly mixed with other cell types. We tested this 
prediction by analyzing tumor purity, defined as the fraction of cancer cells in 
a tumor. Purity can be inferred from bulk tumor gene expression profiles by 
algorithms such as ESTIMATE 2. We find that purity peaks at several 
archetypes (cell division, biomass&energy) and is lowest close to the invasion 
& tissue remodeling archetype (Supplementary Fig. 1C). This observation is 
not expected if tumors mix cancer cells with other cell types in varying 
proportions but is consistent with the increased proportion of stromal cells 
found in tumors close to the invasion & tissue remodeling archetype 
(Supplementary Data 3).

To determine how the inferred tasks are influenced by clonal heterogeneity, 
we stratified our analysis according to the Mutant-Allele Tumor Heterogeneity 
Score (MATH), an established measure of clonal heterogeneity3,4. The MATH 
score is defined as the median absolute deviation of the frequency of 
mutations found in a tumor. In homogeneous tumors, cancer cells share the 
same alleles so that the frequency of different mutations tends to be similar 
and the MATH score is low. The MATH score is high when different mutations 
occur at different frequencies, as happens in heterogeneous tumors in which 
multiple lineages of subpopulations of cancer cells coexist.

Analyzing the 25% tumors with highest MATH score in the Metabric cohort, we
find the same four archetypes as when analyzing all Metabric tumors 
together: 1. cell division, 2. tissue remodeling & invasion, 3. biomass & 
energy, 4. Her2 (Supplementary Fig. 1H). Analyzing Metabric tumors in the 
lowest MATH score quartile, we find three archetypes (Supplementary Fig. 1H).
Two archetypes are shared with heterogeneous tumors (1. Her2, 2. 
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biomass&energy). The third archetype corresponds to the task of immune 
interaction.

Thus, ParTI can be applied to both clonally homogeneous and heterogeneous 
tumors. Most tasks appear to be shared among tumors, while certain tasks are
seen when focusing on tumors with specific properties – here homogeneous 
tumors.
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Supplementary Note 3 - Alignment of passenger CNAs to the front and 
spatial dependencies

In the five cancer types where driver SNVs aligned with the cancer front better
than shuffled controls and with the exception of bladder, shuffled controls 
were as aligned to the cancer front as passenger mutations (Supplementary 
Fig. 3A). In contrast, passenger CNAs were more aligned with the cancer front 
than shuffled controls in all 6 cancer types (Supplementary Fig. 3B).

This result is likely explained by the fact that chromosomal amplifications or 
deletions typically involve a portion of a chromosome that contains many 
genes. Thus many neighboring genes are amplified or deleted along with the 
driver gene. One example of this phenomenon is shown on 
Supplementary Fig. 3C: the driver CNA ATM(-1) (i.e. ATM deletion) is best 
aligned with the cancer front, and pulls neighboring genes in its wake.

Because of the spatial dependencies of CNAs, the general pattern is that 
driver CNAS are most aligned with the front, followed by CNAs of other cancer 
genes, followed by passenger CNAs, followed by shuffled controls 
(Supplementary Fig. 3B).
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Supplementary Figures
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Supplementary Figure 1

A. Statistical significance of polyhedra with 3, 4 and 5 archetypes in primary 
tumors of 15 cancer types. P-values were computed using the t-ratio test 5,6. 
Polyhedra were inferred in log gene expression space. Polyhedra significant at 
FDR<10% appear in blue. B. Same as A., but for polyhedra in linear gene 
expression space. C. Purity score of tumors as computed by ESTIMATE 2 as 
function of their position relative to the three archetypes of glioma. Each blue dot 
represents a tumor, red dots represent archetypes. Archetype numbering 
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corresponds to panel I and Database S1-S3. D. To determine how tumor purity 
affects ParTI's ability to resolve archetypes, we stratify the analysis according to 
purity of low-grade glioma tumors. E. Applying ParTI to the 25% low-grade glioma
tumors of lowest purity reveals three archetypes. While a polyhedron is poor fit to
the to data, archetypes identified from low purity gliomas match archetypes 
identified from all glioma (see panel G). F. Applying ParTI to the 25% low-grade 
glioma tumors with highest purity reveals two archetypes. G. Principal component
analysis comparison of archetypes identified from all gliomas, pure gliomas and 
impure gliomas shows that the same archetypes are inferred from tumors of 
different purities. The two archetypes identified from pure tumors match glioma 
archetypes 2 and 3 whereas all three glioma archetypes are identified from low-
purity tumors. These results suggest that ParTI identifies archetypes relevant to a 
given tumor subset. H. Same as D-G, except that metabric breast tumors are 
stratified by clonal heterogeneity. A principal component projection of archetypes 
identified from all tumors, clonally heterogeneous tumors and clonally 
homogeneous tumors shows that tasks can be inferred from clonally 
homogeneous and heterogeneous tumors. Most tasks are shared among these 
tumors, while some tasks are only found when focusing on certain tumors. 
I. Expression of MSigDB pathways (rows) in archetypes from all cancer types 
(columns). Archetypes were clustered by Gaussian Mixture Model. Each cluster 
expresses specific MSigDB pathways. J. TCGA code for each cancer type.
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Supplementary Figure 2

A. Tumors from individual tissue types spread out between several universal 
cancer archetypes. Red dots represent tumors from the tissue-type indicated in 
each panel, projected on a face of the polyhedron. The polyhedron was fitted to 
3180 tumors from 6 tissue types. Grey dots represent other tumors. The 
remaining colored dots represent the projections of the 5 archetypes on the face. 
B. Density of tumors over the faces of the 5-archetype polyhedron of Fig. 2A. 
C. Tumors of individual tissue types are found close to multiple universal cancer 
archetypes. Each colored bar represents a cancer task. For example, 10.7% of 
thyroid tumors (THCA) are found in the 10% tumors from all cancer types closest 
to biomass&energy archetype. D. Tissue-specific archetypes can be assigned to 
specific universal cancer tasks with statistical significance. We compared the 
MSigDB pathways upregulated in each tissue-specific archetype (columns) to 
pathways upregulated in each universal cancer archetype (rows). The statistical 
similarity between pairs of archetypes was quantified using the hypergeometric 
test (p-values are color-coded). For each tissue-specific archetype, the most 
similar and statistically significant universal archetypes is signaled by a gray dot. 
Except in thyroid, each universal cancer task was only found once in each tissue 
type. For each tissue-specific archetype, there is a statistically similar universal 
cancer archetype, except for the 4th archetype of breast cancer (HER2). E. Tumors
are not found in the immediate vicinity of archetypes is an artifact of visualizing 
high-dimensional data. Data points were sampled uniformly from polyhedra with 
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3, 4, 5 and 6 archetypes, Gaussian noise was added, the archetypes determined 
using ParTI, and the data projected on a face of the polyhedron.. F. Expression of 
MSigDB pathways in tumors close to each universal cancer archetype in gene 
expression space. Upregulated pathways at each archetype match tissue-specific 
archetype clusters (Supplementary Fig. 1I) and suggest clear cancer tasks (Table 
2).
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Supplementary Figure 3

A. Driver SNVs are better aligned to the front of cancer than shuffled controls in 
glioma, thyroid, breast, bladder and colon. Shown are angle distributions of SNVs 
in driver genes, cancer genes (genes commonly mutated in cancer but not 
confidently known as drivers in this tissue), passenger genes and shuffled 
controls. Differences in distributions were tested using the Mann-Whitney test. 
B. Same as A, but for CNAs. Compared to SNVs, CNAs in cancer genes and other 
genes aligns better than shuffled controls, a trend that is likely due to 
chromosomal spatial dependencies (Supplementary Note 3). C. There are spatial 
dependencies in the alignment of CNAs to the Pareto front of cancer. For example,
CNA ATM(-1) (i.e. ATM deletion) is best aligned with the cancer front. Other genes 
located on the same chromosome are less aligned.. D. In glioma, PTEN deletions 
push tumors towards the immune interaction archetype. In breast cancer, MYC 
amplification pushes tumors towards to cell division archetype. In colon cancer, 
EGFR amplification pushes tumors towards the cell division archetype.
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Supplementary Figure 4

A. Variation of clonal heterogeneity over the tetrahedron of metabric breast 
tumors is inconsistent with tumors being made of different abundances of 
specialist single cancer cells. If tumor positioning relative to archetypes is set by 
the abundance of specialist single cells, clonal heterogeneity should be low close 
to archetypes and high in the center of the tetrahedron. Instead, we find that 
clonal heterogeneity – quantified by the MATH score 4 – can both be high or low 
close to archetypes. Clonal heterogeneity is not lowest close to archetypes. 
Instead, clonal heterogeneity is highest in tumors closest to the cell division 
archetype. B. Inter-tumor diversity explains a significant fraction of intra-tumor 
heterogeneity in gene expression. The fraction of the variance in single cancer 
cell gene expression explained by 1-20 principal components (PCs) is plotted for 
PCs computed on three different data sets: single cell gene expression, metabric 
tumor gene expression, and shuffled metabric gene expression data. For 
example, for 5 PCs, metabric PCs explain 25.4% of the variance explained by 
single cell gene expression PCs. C. The ratio of variance explained by metabric 
PCs over single cell PCs is robust to the number of PCs used. Data: metabric gene 
expression from Curtis et al., metabric MATH scores from Pereira et al.3, single 
cancer cell gene expression from 6 breast tumors from Karaayvaz et al.7.
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