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I investigate what a direct measurement of the longitudinal structure function
FL(x, Q2) could teach us about the structure of the proton and the best way in
which to use perturbative QCD for structure functions. I assume HERA running
at a lowered beam energy for approximately 4-5 months and examine how well
the measurement could distinguish between different theoretical approaches. I
conclude that such a measurement would provide useful information on how to
calculate structure functions and parton distributions at small x.

1. Introduction

It would be vital to have a real accurate measurement of FL(x, Q2) at HERA

since this gives an independent test of the gluon distribution at low x to

accompany that determined from dF2(x, Q2)/d lnQ2 [1]–[5]. At present the

fits to F2(x, Q2) at low x are reasonably good, but the gluon is free to vary

in order to make them as successful as possible. It is essential to have a

cross-check. (It is important to note that FL(x, Q2) is a much better dis-

criminator of the gluon distribution, and/or of different theories, for given

F2(x, Q2) than the charm contribution. F c
2 (x, Q2) is constrained to evolve

in exactly the same way as F tot
2 (x, Q2) (with appropriate charge weighting)

for W 2 ≫ m2
c , so is hardly independent. At lower W 2 the supression is

determined mainly by kinematics.) Currently there is a consistency check

on the relationship between F2(x, Q2) and FL(x, Q2) at high y since both

contribute to the total cross-section measured at HERA. Hence, there are

effective “determinations” of FL(x, Q2) obtained by extrapolating to high y

using either NLO perturbative QCD or using (dσ/d ln y)Q2 whilst making

assumptions about (dF2(x, Q2)/d ln y)Q2 [6]. This is a good consistency
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test of a given theory, usually NLO QCD, and could show up major flaws.

However, it relies on small differences between two large quantities, so its

accuracy is limited. Also, for an extraction of FL(x, Q2) it has model-

dependent uncertainties which are difficult to quantify fully [7]. A real

measurement would be a much more direct test of the success of different

theories in QCD.
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Figure 1. The NLO consistency check of FL(x, Q2) for the H1 fit.

The consistency check of FL(x, Q2) extracted by H1 versus FL(x, Q2)

predicted from their QCD fit [5] is shown in Figure 9 in the second of [6].

However, due to the potentially large, strongly correlated, model-dependent

errors in the “measured” FL(x, Q2) it is far more revealing to see plots

like Figure 1 [6]. The turn-over in σ̃(x, Q2) = F2(x, Q2) − y2/(1 + (1 −

y)2)FL(x, Q2) is clearly matched by the FL(x, Q2) contribution. However,

the same consistency check for the fit of σ̃(x, Q2) for MRST partons at

NLO fails at the lower Q2 values, as seen on the left-hand side of Figure 2.

This is because of the different gluon obtained from a full global fit. Hence,

the consistency check is not universally successful at NLO.a

aAdditionally, Alekhin performed fits to DIS data, using the reduced cross-section for
HERA data, and allowed higher-twist corrections to be determined phenomenologically.
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Figure 2. The NLO consistency check of FL(x, Q2) for the H1 fit (left). The consistency
check of FL(x, Q2) for the NLO and NNLO MRST fits (right).

Hence, many current NLO global fits show problems regarding

FL(x, Q2) at high y. In general they provide a good fit to HERA data,

but there are some problems in dF2/d lnQ2, e.g. Figure 17 in [8]. However,

standard perturbation theory is not necessarily reliable in general because

of increasing logs at higher orders, e.g. at small x

P 1

qg ∼ αS(µ2) P 2

qg ∼
α2

s(µ
2)

x
Pn

qg ∼
αn

s (µ2) lnn−2(1/x)

x
(1)

and similarly

C1

Lg ∼ αS(µ2) C2

Lg ∼
αs(µ

2)

x
Cn

Lg ∼
αn

s (µ2) lnn−2(1/x)

x
, (2)

and hence enhancements at higher orders are possible.

However, we can already see precisely what happens at NNLO. The

splitting functions have been calculated at NNLO [9], and recently the

coefficient functions for FL(x, Q2) have been finished [10]. The gluon ex-

tracted from the MRST global fit at LO, NLO and NNLO is shown in

He found an unambiguous positive correction for FL(x, Q2), i.e. the consistency check
fails for the purely perturbative fit [3].
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Figure 3. Additional positive small-x contributions in Pqg at each order

lead to a smaller low-x gluon at each order.b
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Figure 3. The gluon extracted from the global fit at LO, NLO and NNLO (left).
FL(x, Q2) predicted from the global fit at LO, NLO and NNLO (right).

The NNLO O(α3
s) longitudinal coefficient function C3

Lg(x) given by

C3

Lg(x) = nf

(

αS

4π

)3(

409.5 ln(1/x)

x
−

2044.7

x
− · · ·

)

. (3)

There is clearly a significant positive contribution at small x, and this

counters the decrease in small-x gluon. FL(x, Q2) predicted from the global

fit at LO, NLO and NNLO is shown in Figure 3. The NNLO coefficient

function more than compensates for the decrease in the NNLO gluon.

Without considering the high-y HERA data, the NNLO fit is not much

better than NLO fit, though it is a slight improvement [2]. However, the

NNLO contribution to FL(x, Q2) largely solves the previous high-y problem

bThis conclusion relies on a correct application of flavour thresholds in a General Vari-

able Flavour Number Scheme at NNLO [11], not present in earlier approximate NNLO
MRST fits. The correct treatment of flavour is particularly important at NNLO because
discontinuities in unphysical quantities appear at this order.
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with σ̃(x, Q2), as seen on the right-hand side of Figure 2.c But these data

are not very precise, the effective error on FL(x, Q2) being ∼ 30 − 40%. It

is of real importance to have some accurate measurement of FL(x, Q2) at

small x.

HERA has proposed some running at lower beam energy before finishing

in order to make a direct measurement of FL(x, Q2). The expectation is to

measure data from Q2 = 5−40GeV2 and x = 0.0001−0.003 with a typical

error of at best 12−15% [12]. How important would this be in distinguishing

between different theoretical approaches to structure functions? There has

been a study by ZEUS [13] on the impact of such data on the accuracy

with which g(x, Q2) is determined if FL(x, Q2) is roughly as expected from

a NLO fit. There is a significant although not enormous improvement in the

gluon uncertainty. However, this is not, in my view, the most interesting

question. Rather, it is important to see if the potential measurement could

tell apart different theoretical treatments, e.g. whether we need go beyond

the standard fixed-order perturbation theory approach. There has also been

a study of this by ZEUS [14], with extreme theoretical predictions, and

the discriminating power is obvious. However, in this case the extremes

are based on unrealistic models (out-of-date partons and partons from one

order used with coefficient functions from another). Furthermore, all data

points are assumed to line up, i.e. the χ2 for the correct theory would be

0. A more sophisticated approach is needed.

2. Test of Theoretical Models

I consider a variety of more plausible theoretical variations. A fit that per-

forms a double resummation of leading ln(1/x) and β0 terms leads to a

better fit to small-x data than a conventional perturbative fit [15]. The

resummation also seems to stabilize FL(x, Q2) at small x and Q2. The

fit has some problems at higher x (particularly for Drell-Yan data), and

NLO contributions to resummation are needed for precision [16], hence the

prediction is somewhat approximate, but it has the correct trend.d Alter-

natively, a dipole-motivated fit [19]–[25] contains higher terms in ln(1/x)

and higher twists. It also guarantees reasonable behaviour for FL(x, Q2)

at low Q2 due to the form of wavefunction. In a quantitative comparison

cThe high-y fit would fail with gluons that are positive at small x and Q2 – FL(x, Q2)
would be too big and the turnover too great.
dSimilar results would be likely from the approaches in [17, 18] since the resummations,
though different in detail, have the same qualitative features.
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I use my own dipole-motivated fit [26] in order to avoid problems in the

heavy flavour treatment in some other approaches. The evolution of various

predictions for FL(x, Q2) at x = 0.0001 and x = 0.001, is seen in Figure 4.

The resummation and dipole predictions are behaving sensibly at low Q2.

The NLO prediction is becoming negative at the lowest values, while the

NNLO prediction is becoming flat at Q2 ∼ 2GeV2 for x = 0.0001. It has

a slight turn up at even smaller x, implying the necessity for even further

corrections. The results are shown for various values of Q2 on the left-hand

side of Figure 5. They suggest that a measurement of FL(x, Q2) over as

wide a range of x and Q2 as possible would be very useful.

Evolution of FL(x,Q2), x=0.0001
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Figure 4. Evolution of various predictions for FL(x, Q2) at x = 0.0001 (left) and x =
0.001 (right).

In particular, the dipole fit produces a rather different shape and size

prediction for FL(x, Q2) from that at NLO and NNLO. Hence I generate a

set of data based on the central dipole prediction but with a random scatter

(χ2 = 20/18 for the dipole prediction). The comparison of the pseudo-data

to other predictions is shown on the right-hand side of Figure 5, where I

also show points at Q2 = 2GeV2 that might have been measured at HERA

III and might be at eRHIC [27]. Points at 40GeV2 are not as useful, as the

errors are bigger and the theoretical curves are converging. From Figure 5

it is clear that there is some reasonable differentiating power, but this is
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Figure 5. FL(x, Q2) predicted from the global fit at LO, NLO and NNLO, from a fit
which performs a double resummation of leading ln(1/x) and β0 terms, and from a dipole
model type fit (left). Comparison of data to various predictions. Also show are points
at Q2 = 2GeV2 that might have been measured at HERA III and for the two highest x
values might be at eRHIC (right).

comparing the central predictions for a given theoretical framework only.

We must also consider the uncertainties.

This is shown in Figure 6, where the the left-hand side shows the com-

parison at NLO as the weight of the FL(x, Q2) data is increased in the fit.

The best fit results in χ2 = 27/18 for the FL(x, Q2) data but this is becom-

ing an unacceptable global fit. The next-best fit is an acceptable global fit,

and χ2 = 29/18 for the FL(x, Q2) data. The NLO fit to the FL(x, Q2) data

is never particularly good because the shape in Q2 is never quite correct.

The comparison at NNLO as the weight of the FL(x, Q2) data is increased

in the fit is similar. The best fit results in χ2 = 26/18 for the FL(x, Q2)

data but is becoming an unacceptable global fit. The next-best fit is an

acceptable global fit, and χ2 = 31/18 for the FL(x, Q2) data. Again the

NNLO fit to FL(x, Q2) data always gets the shape in Q2 slightly wrong.

As well as the resummation and dipole hypotheses we can also look at

explicit higher twist possibilities, in particular the renormalon correction

due to the nonsinglet quark sector. This is a different picture from the case
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Figure 6. Comparison at NLO (left) and at NNLO (right) as the weight of FL(x, Q2)
data is increased in the fit.

for F2(x, Q2), where the renormalon calculation of higher twist dies away

at small x due to satisfying the Adler sum rule. It is a completely different

picture for FL(x, Q2) – at small x FHT
L (x, Q2) ∝ F2(x, Q2). The explicit

renormalon calculation [28] gives

FHT
L (x, Q2) =

A

Q2
⊗ F2(x, Q2) (4)

where the estimate for A for the first moment of the structure function is

A =
8Cf exp(5/3)

3β0

Λ2

QCD ≈ 0.4 GeV2. (5)

This effect has nothing to do with the gluon distribution, and is not part of

the higher twist contribution in the dipole approach. The higher twist does

mix with higher orders though. I add it to the NLO prediction. The renor-

malon correction could be a rather significant effect, as seen in Figure 7,

where I generate a new set of data based on the central higher twist predic-

tion. (The data at Q2 = 40GeV2 are shown. All predictions give χ2 =∼ 6/6

for the six points at Q2 = 40GeV2 (except LO)). It is most similar to the

dipole prediction but the data give χ2 = 25/18 for the dipole prediction

curve – perhaps at the edge of distinguishability. The renormalon-based
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data are clearly able to rule out the central NLO and NNLO curves, but

one must repeat the study done for dipole data.
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Figure 7. Comparison of data to predictions with bin at Q2 = 40GeV2 shown.

Again I look at the NLO fit as the weight of the FL(x, Q2) data is

increased in the fit. The best fit results in χ2 = 22/18 for the FL(x, Q2)

data, but is an unacceptable global fit – ∆χ2 > 60. The next-best fit is

a marginally acceptable global fit and χ2 = 27/18 for the FL(x, Q2) data.

Hence, in this case the NLO fit to FL(x, Q2) data can get the shape in Q2

(for Q2 ≥ 5GeV2) more-or-less right, but the deterioration in the global

fit required to do so is worse than for the dipole data. The comparison at

NNLO as the weight of FL(x, Q2) data is increased in the fit is again similar

to that at NLO. The best fit results in χ2 = 23/18 for FL(x, Q2) data but is

a poor global fit – ∆χ2 > 50. The next-best fit is a moderately acceptable

global fit, and χ2 = 29/18 for FL(x, Q2) data.

3. Conclusions

The measurement of FL(x, Q2) seems to be the best way to determine

reliably the gluon distribution at low x, particularly at low Q2, and to
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determine whether fixed-order calculations are sufficient or whether resum-

mations, or other theoretical extensions may be needed. Currently we can

perform global fits to all up-to-date data over a wide range of parameter

space, and the fit quality is fairly good, but there are some minor problems.

We could require higher orders, higher twist and/or some type of resum-

mation, all of which might have a potentially large impact on the predicted

FL(x, Q2) and other quantities. Hence, FL(x, Q2) is a vital measurement

for our understanding of precisely how best to use perturbative QCD to

describe the structure of the proton and also for making really reliable

predictions and comparisons at the LHC. The lowest Q2 possible would

be useful. The proposed measurement at HERA would have a reasonable

ability to distinguish between different theoretical approaches, due to both

the inability to fit FL(x, Q2) because of the shape and the deterioration in

global fits needed in order to match the general features of FL(x, Q2) data,

and would play a central role in determining the best way to use QCD.
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