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Abstract

Objectives: We aimed to 1) determine if subcortical volume deficits are common to mesial temporal lobe epilepsy (MTLE)
patients and their unaffected siblings 2) assess the suitability of subcortical volumetric traits as endophenotypes for MTLE.

Methods: MRI-based volume measurements of the hippocampus, amygdala, thalamus, caudate, putamen and pallidium
were generated using an automated brain reconstruction method (FreeSurfer) for 101 unrelated ‘sporadic’ MTLE patients
[70 with hippocampal sclerosis (MTLE+HS), 31 with MRI-negative TLE], 83 unaffected full siblings of patients and 86 healthy
control subjects. Changes in the volume of subcortical structures in patients and their unaffected siblings were determined
by comparison with healthy controls. Narrow sense heritability was estimated ipsilateral and contralateral to the side of
seizure activity.

Results: MTLE+HS patients displayed significant volume deficits across the hippocampus, amygdala and thalamus
ipsilaterally. In addition, volume loss was detected in the putamen bilaterally. These volume deficits were not present in the
unaffected siblings of MTLE+HS patients. Ipsilaterally, the heritability estimates were dramatically reduced for the volume of
the hippocampus, thalamus and putamen but remained in the expected range for the amygdala. MRI-negative TLE patients
and their unaffected siblings showed no significant volume changes across the same structures and heritability estimates
were comparable with calculations from a healthy population.

Conclusions: The findings indicate that volume deficits for many subcortical structures in ‘sporadic’ MTLE+HS are not
heritable and likely related to acquired factors. Therefore, they do not represent suitable endophenotypes for MTLE+HS. The
findings also support the view that, at a neuroanatomical level, MTLE+HS and MRI-negative TLE represent two distinct forms
of MTLE.
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Introduction

Temporal lobe epilepsy (TLE), the most prevalent form of

partial epilepsy in adults, has long been considered an acquired

condition. However, epidemiological evidence has indicated a

significant genetic predisposition [1], [2]. Several forms of familial

TLE have been recognized and often present with patterns of

autosomal dominant inheritance and incomplete penetrance [3].

In non-familial (sporadic) forms of TLE, the underlying genetic

architecture appears complex and a number of susceptibility genes

are believed to interact with several environmental factors to

produce the disease phenotype [4].

Based on seizure semiology, TLE can be classified into mesial

and lateral subtypes. The pathologic hallmark of the more

common mesial TLE (MTLE) is hippocampal sclerosis (HS),

which is identified in approximately 65–70% of patients [5]. HS is

characterized histologically by cellular loss and synaptic reorga-

nization in particular hippocampal sub-fields and often can be

detected using magnetic resonance imaging (MRI) through the

identification of hippocampal atrophy and MR signal abnormal-

ities [6]. In the remaining 25–30% of MTLE patients, despite

having similar seizure semiology to MTLE+HS, no evidence of

hippocampal abnormalities can be identified by MRI. This group

of patients is often referred to as MRI-negative TLE.
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Quantitative MRI (QMRI) studies of MTLE+HS patients have

detected a variety of extra-hippocampal neuroanatomical abnor-

malities, predominantly ipsilateral to the side of seizure focus,

including volume deficits in other subcortical structures (e.g., the

amygdala, thalamus, and basal ganglia) [7], [8], mesial temporal

regions [7], the cerebellum [9], and several neocortical regions

[10]. In contrast, more subtle structural changes have been

described in MRI-negative TLE [11–13]. Although tissue damage

and atrophy is at the root of volumetric deficits, the underlying

cause of these neuroanatomical changes remains poorly under-

stood. It remains unknown whether these regional volumetric

traits are present prior to the onset of epilepsy or they represent

sequelae of the illness. It has been proposed that extra-

hippocampal brain atrophy might be induced by recurrent seizure

activity spreading from the hippocampus and its adjacent brain

regions that participate in seizure generation (e.g. the amygdala)

[14]. Structural changes within the hippocampus and neighbour-

ing regions may, however, precede the onset of epilepsy and thus

represent a risk factor for MTLE. Kobayashi and colleagues (2002)

investigated hippocampal structure in first-degree relatives of

patients with familial MTLE+HS and found subtle hippocampal

abnormalities in up to 34% of the unaffected relatives of patients,

including hippocampal atrophy [15]. Such findings indicate that

structural abnormalities within the hippocampus may be present

prior to onset of familial MTLE+HS and are determined by a

strong genetic predisposition [15].

In sporadic forms of MTLE, if subcortical volume deficits

(including hippocampal atrophy) are under the direct control of

genetic variation, then volume changes can be expected in

unaffected first-degree relatives of patients and the heritability of

the impacted structures should be high. Accordingly, subcortical

volumetric traits may represent endophenotypes reflecting partic-

ular genetic risk factors highly relevant to the condition. In the

present study, we examined the changes and heritability of the

volume of subcortical structures in 101 unrelated patients with

‘sporadic’ MTLE and 83 unaffected full siblings of patients. We

aimed to:

(1) Determine if volumetric changes in subcortical structures are

common to both ‘sporadic’ MTLE cases and their unaffected

siblings.

(2) Assess the suitability of volume measures of subcortical

structures as endophenotypes for MTLE, the identification

of which could aid in the mapping of genetic factors

influencing the development of this condition.

Methods

Ethics
The following research ethics committees independently

approved this study:

1. Beaumont Hospital Ethics (Medical Research) Committee.

2. St. James’s Hospital/AMNCH Research Ethics Committee.

3. Clinical Research Ethics Committee of the Cork Teaching

Hospitals.

Written informed consent was provided by all study partici-

pants.

Table 1. Participants demographics.

Group 1 (1.5T GE Signa scanner) Group 2 (3.0T Philips Achieva scanner)

Healthy
Controls MTLE+HS

Unaffected
siblings
of MTLE+HS

Healthy
controls

MRI-negative
TLE patients

Unaffected siblings of
MRI-negative TLE

Number 58 70 50 28 31 33

Age: mean (SD) 31.5 (9.0) 36.6 (11.4) 36.8 (10.3) 34.7 (8.8) 37.2 (9.6) 37.1 (9.8)

Gender: number (%)

Male 27 (46.6%) 30 (42.9%) 20 (40%) 12 (42.9%) 12 (38.7%) 12 (36.4%)

Female 31 (53.4%) 40 (57.1%) 30 (60%) 16 (57.1%) 19 (61.3%) 21 (63.6%)

Side of seizure activity

Left – 35 27* – 12 12*

Right – 35 23* – 12 12*

Bilateral – 0 0 – 3 2*

Undetermined – 0 0 – 5 7*

Age at onset: mean (SD) – 14.2 (11.3) – – 17.8 (10.9) –

Epilepsy duration: mean (SD) – 22.4 (14.4) – – 19.2 (12.3) –

IPIs: number (%)

Febrile Seizures 0 33 (47.1%) 0 0 6 (19.4%) 0

Intracranial Infection(s) 0 4 (5.7%) 0 0 1 (3.2%) 0

Status epilepticus 0 9 (12.8%) 0 0 2 (6.4%) 0

Underwent
Surgery: number (%)

– 32 (45.7%) – – 1 (3.2%) –

SD: standard deviation; IPIs: initial precipitating insults;
*indicates the number of unaffected siblings based on the side of seizure activity in patients.
doi:10.1371/journal.pone.0061880.t001

Heritability of Subcortical Volume Deficits in TLE

PLOS ONE | www.plosone.org 2 April 2013 | Volume 8 | Issue 4 | e61880



Participants
Patients. One hundred and one unrelated patients with

mesial temporal lobe epilepsy (MTLE) were recruited from three

tertiary epilepsy centres in Ireland: Beaumont Hospital, St. James’s

Hospital, and Cork University Hospital. Patients underwent a

comprehensive evaluation that confirmed the clinical features of

MTLE and the side of seizure activity based on the International

League Against Epilepsy (ILAE) guidelines [16]. This evaluation

included a combination of detailed history of seizure semiology,

ictal/inter-ictal electroencephalography (EEG) and video-teleme-

try recordings. Based on standard qualitative examination of

routine MR images by a neuroradiologist, 70 patients (male/

female: 30/40) had evidence of hippocampal sclerosis

(MTLE+HS: left/right 35/35) and 31 patients (male/female:

12/19) had normal MRI (MRI-negative TLE). Patients with

evidence of any lesion other than hippocampal sclerosis were

excluded. The sample of MTLE+HS patients included in this

study overlapped (n = 67) with that used in previous reports [17],

[18]. Mean age (6 standard deviation, SD) was 36.6611.4 years

in the MTLE+HS patients and 37.2 years 69.6 in the MRI-

negative TLE patients. Patients with a family history of epilepsy or

febrile seizures in first-degree relatives were excluded. A detailed

description of the study participants is presented in Table 1.

Unaffected siblings. In total, 83 unrelated, asymptomatic

(for seizures), same-gender full siblings of MTLE patients were also

recruited. Of those, 50 were siblings of MTLE+HS patients (male/

female: 20/30) and 33 were siblings of MRI-negative TLE patients

(male/female: 12/21). The mean age difference between patients

and their unaffected siblings was 5.1 years (range: 1–13). Siblings

with known neurological or psychiatric illness were excluded.

Further, those with a positive history of childhood febrile seizures,

intracranial infection or significant head trauma were also

excluded. See Table 1 for additional details.

Controls. Our control population consisted of 86 healthy

individuals with no known neurological or psychiatric illness

(male/female: 40/46). Controls with a history of childhood febrile

seizures, intracranial infection or significant head trauma were

excluded. Control subjects with a family history of epilepsy or

febrile seizures were also excluded.

MR Image Acquisition
Participants were divided into two groups for the purpose of

MR image acquisition.

Group 1. MTLE+HS patients (n = 70), their unaffected

siblings (n = 50), and healthy control subjects (n = 58) were

scanned using a 1.5 T MRI scanner (Signa, GE, Milwaukee,

WI, USA) at Beaumont Hospital. A three-dimensional (3D) T1-

weighted spoiled gradient recalled sequence (TR/TE = 10.1/

4.2 ms, ms, TI = 450 ms, flip angle = 20u, field of

view = 24624 cm2, matrix = 2566256) with 124 sagittal slices

(slice thickness = 1.5 mm) was used to acquire the images.

Group 2. MRI-negative TLE patients (n = 31), their unaf-

fected siblings (n = 33), and healthy control subjects (n = 28) were

scanned using a 3.0 T MRI scanner (Achieva, Philips Medical

Systems, The Netherlands) at the Centre for Advanced Medical

Imaging, St. James’s Hospital. A three-dimensional (3D) T1-

weighted turbo field echo sequence (TR/TE = 8.5/3.9 ms, flip

angle = 8u turbo factor n = 240, field of view = 25.6625.6 cm2)

with 160 slices and an isotropic spatial resolution of 1.0 mm3 was

used to acquire the images.

MR Image Processing
MR images were processed using FreeSurfer, a fully automated

image analysis software (version 4.50). The FreeSurfer process has

been described in detail previously [19–22]. It has undergone

extensive investigations to assess its accuracy, validity and

applicability [23]. We applied FreeSurfer to segment and produce

volume measurements of the subcortical structures and total

intracranial volume (ICV) as described in Alhusaini et al [17].

Careful visual quality checks of all segmentation and cortical

reconstructions were performed as recommended by FreeSurfer

software guidelines.

Data Analysis and Statistics
Analysis of MRI-based subcortical volume

measurements. For each participant, MRI-based volume

measurements were generated for the following subcortical

structures in each hemisphere: the hippocampus, thalamus,

amygdala, putamen, pallidum, and caudate. Data from group 1

and 2 (that is, participants scanned using the 1.5T GE Signa and

the 3T Philips Achieva systems, respectively) were analysed

independently and accordingly no formal comparisons were made

across the two MRI-platforms. Multivariate ANCOVA’s (covar-

iates: estimated ICV, age, and gender) were employed to compare

volume measurements of the subcortical structures between

MTLE patients and their unaffected siblings to the healthy

controls. Unpaired t-tests were used to test for significant mean

differences.

MTLE+HS patients were divided into left (n = 35) and right

(n = 35) MTLE+HS based on the side of seizure activity/HS and

were compared separately to the healthy controls scanned on the

1.5T scanner (n = 58). Similarly, their unaffected siblings were

divided into siblings of left MTLE+HS patients (n = 27) and

siblings of right MTLE+HS patients (n = 23) and each group was

compared to the same healthy controls.

MRI-negative TLE patients with left (n = 12) and right (n = 12)

seizure activity focus were compared separately to the healthy

control group (n = 28) scanned on the 3T scanner. MRI-negative

TLE patients with bilateral (n = 2) or undetermined (n = 5) side of

seizure activity were excluded from the analysis. Siblings of left

and (n = 12) right (n = 12) MRI-negative TLE patients were also

treated as separate groups and were compared independently to

the same healthy controls (n = 28).

Correction for multiple comparisons were made using a false

discovery rate (FDR), setting the level of significance at p = 0.05

[24].

Heritability calculations. The heritability (i.e., the fraction

of phenotype variability that can be attributed to genetic variation)

of the volume of each subcortical structure was estimated in

MTLE patients and their unaffected siblings using the maximum-

likelihood variance components model implemented in the

Sequential Oligogenic Linkage Analysis Routines (SOLAR)

version 2.1.4 software package [25]. The software was applied to

set up a model that used the pedigree covariance matrix which

included information on MTLE patients and their unaffected

siblings. In this model, the phenotypic variance, sp
2, for a

quantitative trait was decomposed into a genetic component, sg
2,

and a residual component that includes all effects not accounted

for by the genetic component, se
2, while accounting for the

population and pedigree structure using the following equation

[25].

V~2Wsa
2zDsd

2zdse
2

where V is the covariance between two relatives, W is the

coefficient of relationship between the two relatives, sa
2 is the

additive genetic variance, D is the probability that the two relatives

share both alleles identical by decent, sd
2 is the dominant genetic
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variance, d is the identity matrix, and se
2 is the variance

accounted by non-genetic variation, including random environ-

mental effects and experimental errors. For any pair of relatives,

the value for W and D can be estimated. For example, for full

sibling pairs, the values are K and J respectively.

The term heritability is commonly associated with the narrow

sense heritability (h2) which is estimated as the ratio of sg
2to sp

2

where the genetic component (sg
2) of the phenotypic variance is

defined by an additive genetic component (sa
2).

In order to determine the influence of the disease, the narrow-

sense heritability (h2) of the volume of each subcortical structure

was estimated ipsilateral and contralateral to the side of seizure

activity. For this analysis, regional volumetric measurements for

the patients and their discordant siblings were re-assembled into

ipsilateral and contralateral measurements according to the side of

seizure focus in patients. A separate univariate model was set up to

calculate the heritability for each trait (i.e. the volume of each

subcortical structure) with ICV, gender, and age included as

covariates. Heritability estimates were compared to those reported

for healthy middle-aged male twins (n = 474) by Kremen et al

[26].

Results

Comparison of MTLE+HS Patients and their Unaffected
Siblings to the Healthy Controls

Comparing patients to controls, left and right MTLE+HS

patient groups displayed significant volume deficits in ipsilateral

hippocampus (left and right MTLE+HS: p,0.0001), amygdala

(left MTLE+HS: p = 0.02; right MTLE+HS: p = 0.007), and

thalamus (left and right MTLE+HS: p,0.0001) (see Figures 1,

2, 3). Additionally, significant bilateral volume deficits were

observed in the putamen in both left (ipsilateral: p = 0.003,

contralateral p = 0.011) and right MTLE+HS patient groups

Figure 1. The volume of left (top panel) and right (bottom panel) hippocampus in MTLE patients and their unaffected siblings
relative to the healthy controls. Volume measurements are reported in z-scores which were derived from the mean of the controls data. Error
bands represent 95% confidence intervals (CI). *** Mean is significantly different from the controls at p,0.001; *p,0.05 (corrected for multiple
comparisons).
doi:10.1371/journal.pone.0061880.g001
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(ipsilateral p = 0.007; contralaeral: p = 0.017). Patients with left

MTLE+HS also displayed volume reduction in contralateral

hippocampus (p = 0.012). No significant volume differences across

the same structures were detected between the unaffected siblings

of MTLE+HS patients and the healthy controls. However, a non-

significant trend of volume reduction in ipsilateral amygdala was

observed (siblings of left MTLE+HS patients: p = 0.09; siblings of

right MTLE+HS patients: p = 0.08); see Figures 1–3 and Figures

S1, S2, S3. All reported significant p-values survived correction for

multiple comparisons (FDR correction threshold p = 0.05).

Comparison of MRI-negative TLE Patients and their
Unaffected Siblings to the Healthy Controls

No significant volume change was observed in MRI-negative

TLE patients when compared to healthy controls. Similarly, their

unaffected siblings showed no significant volume changes when

compared to the healthy controls. Results are shown in Figures 1,

2, 3 and Figures S1, S2, S3.

Heritability of the Volume of Subcortical Structures
The results of the heritability estimates for the volume of

subcortical structures calculated in MTLE patients and their

unaffected siblings ipsilateral and contralateral to the side of

seizure focus are shown in Table 2. In MTLE+HS, the heritability

of the volumes of all subcortical structures ipsilateral to the side of

HS appeared reduced when compared to those on the contralat-

eral side, with the exception of the amygdala. The volume of

ipsilateral hippocampus showed no evidence of heritability (h2 = 0)

and that of ipsilateral thalamus showed very small evidence of

heritability (h2 = 0.04). Further, reduced heritability was observed

for the volume of ipsilateral caudate (h2 = 0.28), putamen

(h2 = 0.35) and pallidum (h2 = 0.40). In contrast, high heritability

was noted for the volume of ipsilateral amygdala (h2 = 0.81). The

Figure 2. The volume of left (top panel) and right (bottom panel) of amygdala in MTLE patients and their unaffected siblings
relative to the healthy controls. Volume measurements are reported in z-scores which were derived from the mean of the controls data. Error
bands represent 95% confidence intervals (CI). ** Mean is significantly different from the controls at p,0.01; *p,0.05 (corrected for multiple
comparisons).
doi:10.1371/journal.pone.0061880.g002
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Figure 3. The volume of left (top panel) and right (bottom panel) thalamus in MTLE patients and their unaffected siblings relative
to the healthy controls. Volume measurements are reported in z-scores which were derived from the mean of the controls data. Error bands
represent 95% confidence intervals (CI). *** Mean is significantly different from the controls at p,0.001; (corrected for multiple comparisons).
doi:10.1371/journal.pone.0061880.g003

Table 2. Heritability estimates for the volume of subcortical structures in MTLE+HS and MRI-negative TLE.

Group MTLE+HS MRI-negative TLE
Reported for healthy middle-aged male twins
(n = 474) [26]

Hemisphere Ipsilateral Contralateral Ipsilateral Contralateral Left Right

Subcortical
structure h2 SE h2 SE h2 SE h2 SE h2 95% CI h2 95% CI

Hippocampus 0 0.32 0.43 0.22 0.83 0.23 0.85 0.22 0.63 (0.36–2) 0.64 (0.47–0.74)

Amygdala 0.81 0.21 0.83 0.19 0.42 0.31 0.53 0.29 0.63 (0.28–0.72) 0.66 (0.33–0.74)

Thalamus 0.04 0.22 0.42 0.21 0.73 0.16 0.77 0.19 0.68 (0.35–0.77) 0.60 (0.30–0.81)

Caudate 0.28 0.23 0.61 0.17 0.74 0.27 0.79 0.20 0.79 (0.54–0.91) 0.70 (0.43–0.86)

Putamen 0.35 0.19 0.55 0.20 0.69 0.28 0.76 0.25 0.85 (0.56–0.90) 0.84 (0.63–0.88)

Pallidum 0.40 0.22 0.80 0.21 0.68 0.19 0.84 0.19 0.66 (0.33–0.78) 0.75 (0.44–0.81)

The heritability was calculated ipislateral and contralateral to side of seizure focus. Estimated ICV, gender, and age were included as covariates. h2: narrow-sense
heritability, SE: standard error, CI: confidence interval.
doi:10.1371/journal.pone.0061880.t002
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heritability estimates for the volume of contralateral subcortical

structures were higher than those estimated ipsilaterally (ranged

from 0.43–0.83) and were relatively comparable to those reported

in healthy individuals [26].

In MRI-negative TLE, the heritability estimates for the volume

of all ipsilateral and contralateral subcortical structures ranged

from 0.42–0.85 and were comparable to those reported by

Kremen et al [26].

Discussion

In the present study, the volume and heritability of brain

subcortical structures were examined in a large sample of

unrelated patients with ‘sporadic’ MTLE and their unaffected

siblings. The results indicate that subcortical volume deficits are

significant in MTLE+HS but apparently absent from MRI-

negative TLE patients. Subcortical volume deficits were not

present in the unaffected siblings of patients. These findings

suggest that, in sporadic MTLE+HS, most of the significant

volume deficits in subcortical structures are largely determined by

non-genetic factors.

Previous QMRI-based studies that investigated subcortical

structures in patients with MTLE+HS have consistently identified

volume loss in ipsilateral hippocampus, amygdala and thalamus

[7], [8], [10]. The significance of such subcortical atrophy remains

poorly understood as does whether these abnormalities represent

sequelae of the disease or are present prior to the onset of epilepsy.

QMRI-based neuroanatomical traits have been proposed as

potential endophenotypes for epilepsy [27], [28]. To qualify as

endophenotypes, these traits must (1) associate with the illness (2)

be independent of disease state and (3) be heritable. In a previous

report studying familial MTLE+HS patients, hippocampal atro-

phy was identified in 34% of the unaffected first-degree relatives,

suggesting that hippocampal abnormality in familial MTLE+HS is

heavily influenced by genetic factors [15]. In the present study,

with the exception of a non-significant trend in the amygdala,

MTLE+HS-related subcortical volume deficits were not observed

in the unaffected full siblings of ‘sporadic’ MTLE+HS patients.

These findings indicate that, for sporadic MTLE+HS, while

genetic factors may still play a role in determining volume

reduction in ipsilateral amygdala, volume deficits in ipsilateral

hippocampus, thalamus, and putamen are state dependent, not

heritable and likely related to non-genetic factor(s). Studying three

monozygotic twins discordant for MTLE+HS, Jackson and

colleagues found no evidence of hippocampal atrophy in the

unaffected twins [29]. Although the study sample was small, lack of

hippocampal abnormalities in the unaffected twins argues against

a strictly genetic basis for hippocampal atrophy [29].

Several studies have reported significant correlations between

duration of epilepsy and MTLE+HS-related volume deficits in

ipislateral hippocampus, amygdala and thalamus, indicating

progressive volume loss [17], [30], [31]. In addition, an association

between hippocampal sclerosis and initial precipitating insults

(IPIs), such as febrile seizures, head trauma and CNS infection has

long been considered [32]. Evidence of hippocampal damage

secondary to recurrent seizure activity has also been suggested by

some longitudinal MRI studies [33], [34]. Cumulative damage

caused by several environmental and disease-related factors,

including IPIs and epilepsy chronicity, may therefore explain the

underlying processes responsible for the progressive volume loss in

the hippocampus and the other subcortical structures in ‘sporadic’

MTLE+HS. Hence, these subcortical volumetric traits are unlikely

to be present prior to epilepsy onset and thus they do not represent

suitable endophenotypes for MTLE+HS. One possible exception

is the amygdala. Given the high heritability values observed for the

volume of the amygdala, this structure may qualify as a potential

MTLE+HS-related endophenotype, although further work is

required to confirm this. It should be noted that the amygdala is

generally a difficult structure to segment accurately using fully

automated methods. Although FreeSurfer segmentation of the

amygdala has previously been found to correlate highly with

manual tracing, amygdalar anterior and posterior surfaces are

usually inflated [35]. The increased variability in volume measures

is likely to influence heritability estimates and thus our heritability

scores are possibly conservative.

In the current study, MRI-negative TLE patients and their

unaffected siblings displayed no evidence of volume deficits across

any of the subcortical structures. The lateralization effect of the

seizure activity, which was very apparent in the MTLE+HS group,

was absent in the MRI-negative TLE patients group. This was

reflected by the heritability estimates where no difference was

noted between the ipsilateral and contralateral subcortical

structures. These observations may reflect the subtlety of

subcortical structural abnormalities in MRI-negative TLE or

indicate the involvement of distinct epileptic networks. Subtle

atrophy affecting particular hippocampal subfields was previously

reported in a small number of MRI-negative TLE patients in a

pattern that was different from that usually seen in MTLE+HS

patients [12]. In contrast to a unilateral CA1 subfield atrophy in

MTLE+HS, Mueller and colleagues found 17% of MRI-negative

TLE patients to display non-lateralizing hippocampal subfield

volume deficits sparing CA1 [12]. Clinically, MRI-negative TLE is

very heterogeneous and despite displaying similar seizure semiol-

ogy to MTLE+HS, the epileptiform discharges in patients are

often diffuse and difficult to lateralize [36], [37]. This was evident

in our sample. Seven out of 31 of MRI-negative patients (22.6%)

showed no lateralizing seizure semiology features or epileptiform

EEG abnormalities. Previous positron emission tomography (PET)

studies of MRI-negative TLE patients reported lateralizing

metabolic abnormalities involving lateral temporal lobe regions

[38]. These findings suggest the involvement of different epileptic

networks in MTLE+HS and MRI-negative TLE.

In the present study, we focused on volumetric measures of

subcortical structures. Future work is required to assess MTLE-

related cortical grey matter alterations, including neocortical

thinning [39], surface area changes [18], and folding alterations

[40], which may represent suitable endophenotypes, especially in

MRI-negative TLE.

Supporting Information

Figure S1 The volume of left (top panel) and right putamen

(bottom panel) in MTLE patients and their unaffected siblings

relative to the healthy controls. Volume measurements are

reported in z-scores which were derived from the mean of the

controls data. Error bands represent 95% confidence intervals

(CI). **Mean is significantly different from the controls at p,0.01;

*p,0.05 (corrected for multiple comparisons).

(TIF)

Figure S2 The volume of left (top panel) and right (bottom

panel) of caudate in MTLE patients and their unaffected siblings

relative to the healthy controls. Volume measurements are

reported in z-scores which were derived from the mean of the

controls data. Error bands represent 95% confidence intervals

(CI).

(TIF)
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Figure S3 The volume of left (top panel) and right (bottom

panel) pallidum in MTLE patients and their unaffected siblings

relative to the healthy controls. Volume measurements are

reported in z-scores which were derived from the mean of the

controls data. Error bands represent 95% confidence intervals

(CI).

(TIF)
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