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Abstract

The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib is FDA approved for the treatment of BRCA-mutated breast,
ovarian and pancreatic cancers. Olaparib inhibits PARP1/2 enzymatic activity and traps PARP1 on DNA at single-strand
breaks, leading to replication-induced DNA damage that requires BRCA1/2-dependent homologous recombination repair.
Moreover, DNA damage response pathways mediated by the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia
mutated and Rad3-related (ATR) kinases are hypothesised to be important survival pathways in response to PARP-inhibitor
treatment. Here, we show that olaparib combines synergistically with the ATR-inhibitor AZD6738 (ceralasertib), in vitro,
leading to selective cell death in ATM-deficient cells. We observe that 24 h olaparib treatment causes cells to accumulate in
G2-M of the cell cycle, however, co-administration with AZD6738 releases the olaparib-treated cells from G2 arrest.
Selectively in ATM-knockout cells, we show that combined olaparib/AZD6738 treatment induces more chromosomal
aberrations and achieves this at lower concentrations and earlier treatment time-points than either monotherapy.
Furthermore, single-agent olaparib efficacy in vitro requires PARP inhibition throughout multiple rounds of replication.
Here, we demonstrate in several ATM-deficient cell lines that the olaparib and AZD6738 combination induces cell death
within 1-2 cell divisions, suggesting that combined treatment could circumvent the need for prolonged drug exposure.
Finally, we demonstrate in vivo combination activity of olaparib and AZD6738 in xenograft and PDX mouse models with
complete ATM loss. Collectively, these data provide a mechanistic understanding of combined PARP and ATR inhibition in
ATM-deficient models, and support the clinical development of AZD6738 in combination with olaparib.
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recombination repair (HRR) highly sensitive to olaparib
[4, 5]. Furthermore, clinical trials in patients with metastatic
castration-resistant prostate cancer harbouring other HRR
gene mutations have shown promising results [10, 11]. This
suggests that PARP inhibitors could be expanded to other
indications, including BRCA-mutated prostate cancer and
those harbouring mutations in DDR proteins such as ataxia-
telangiectasia mutated (ATM) [12-15]. ATM is also
important for HRR signalling [16], however, the mechan-
ism of olaparib-sensitivity in ATM-deficient cells differs
from canonical HRR-deficiency, with ATM counteracting
toxic end-joining of single-ended double-strand breaks
(seDSBs) [17].

Inhibitors of other DDR factors are also in development,
including those targeting ATM, ataxia-telangiectasia muta-
ted and Rad3-related (ATR), and DNA-dependent protein
kinase (DNA-PK). These are fundamental kinases involved
in the detection, signalling and DNA repair pathway choice,
alongside regulating DDR processes including DNA
damage checkpoint activation, senescence and apoptosis
[16]. Furthermore, control of DNA replication and the cell
cycle are inherently linked to preserving genome stability
and the DDR, leading to inhibitors targeting kinases such as
WEEI being developed. Despite ATR and ATM conver-
ging on many targets and functions [18-20], their activation
occurs by different lesions, consistent with ATR and ATM
inhibitors showing pre-clinical efficacy in different con-
texts. ATM and DNA-PK inhibitors are being explored as
chemo- and radiosensitisers due to their fundamental role in
DNA DSB repair [21, 22]. Conversely, ATR’s functions in
regulating G2-M checkpoint activation, replication fork
stability and late-origin firing [23] appear to dominate ATR-
inhibitor efficacy, with ATR and WEEI inhibitors showing
efficacy in tumours with high replication stress [24-26].
ATM-deficient cells are also hypersensitive to ATR inhi-
bition, at least partly due to a greater dependency on ATR
for DNA repair and checkpoint control [27-29]. This pre-
sents a clinical opportunity as ATM inactivation has been
reported in a high proportion of metastatic prostate, lung,
haematological, gastric and colorectal tumours [11, 30, 31].

Emerging evidence also suggests that combining DDR
inhibitors can enhance tumour Kkilling and overcome
acquired resistance. For example, combined ATR and
PARP inhibition selectively re-sensitises olaparib-resistant
BRCA1-deficient cells arisen through various mechanisms
[32, 33]. Furthermore, it has been suggested that with
optimised dose scheduling, combined PARP and WEEI or
ATR inhibition can enhance tumour killing with minimal
systemic toxicity, owing to higher basal levels of replication
stress in malignant versus normal tissue [34]. However, the
full spectrum of possible efficacious combinations, and
biomarkers that predict their tumour-selectivity, has not
been fully explored.
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In this study, we looked for drug-combination opportu-
nities with olaparib by screening for tumour background-
selective synergies with other DDR inhibitors. We show
that olaparib combines synergistically with the ATR-
inhibitor AZD6738 (ceralasertib) [35], leading to cell
death in ATM-deficient backgrounds. We demonstrate that
generation of mitosis-associated DNA damage and com-
mitment to apoptosis occur earlier and at lower concentra-
tions following combination treatment than with either
single-agent, providing mechanistic insight and rationale for
exploring combined PARP and ATR inhibition in the clinic.

Results

Olaparib synergises with ATR inhibition in ATM-
deficient cancer cells

BRCAI/2-mutated tumours exhibit pronounced sensitivity
to olaparib due to their inability to repair the DSBs that arise
upon treatment [36]. We hypothesised that further to
BRCA-dependent HRR, other DDR pathways could con-
tribute to olaparib sensitivity. Therefore, identifying other
genetic vulnerabilities to PARP inhibition, and/or inhibiting
functional DDR pathways, could enhance PARP-inhibitor
efficacy and expand their use to new patient populations.
Previous work identified olaparib/DNAPKi (AZD7648)
combination activity in ATM-deficient cells [22]. There-
fore, we assessed the cytotoxicity of olaparib in combina-
tion with inhibitors against ATM (AZDO0156), ATR
(AZD6738) and WEE1 (AZD1775), across a panel of cell
lines to identify synergistic combinations selective for
genetic backgrounds including those with HRR- and ATM
deficiencies (Fig. 1a and Supplementary Fig. 1A).
Olaparib was more cytotoxic in BRCA-mutated cells
(MDA-MB-436, HGC-27) and those deficient in ATM
signalling (FaDu; ATM-knockout (KO), NCI-H23; ATM
p-Q1919P [37]) (Supplementary Fig. 1B), consistent with
previous reports [4, 5, 13, 15]. Using the Loewe Synergy
Score [38, 39], we found a synergistic interaction between
olaparib and AZD6738 selectively in ATM-deficient cells,
with the strongest synergy score (7.09) observed in the
isogenic FaDu HNSCC ATM-KO cells and a modest score
(3.14) in the ATM-mutated NCI-H23 NSCLC cells
(Fig. lai-ii). No combination activity (synergy scores <0.63)
was observed in ATM wild-type (WT) HNSCC or NSCLC
cell lines (FaDu, A549, NCI-H460). Abrogated ATM sig-
nalling in response to ionising radiation (IR), assessed by
auto-phosphorylated ATM (pS1981) and phospho-KAP1
(pS824), was observed in both the FaDu ATM-KO and NCI-
H23 cells, compared with functional signalling in their WT
counterpart cells (Supplementary Fig. 2), suggesting that
olaparib/AZD6738 combination activity is associated with
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reduced ATM expression and function. Olaparib treatment Combined olaparib/AZD6738 was cytotoxic in FaDu

also increased phospho-ATM (pS1981) in WT cells  ATM-KO cells at various doses, whereas it was cytostatic in
(Fig. 1b) and synergised with the ATM inhibitor = NCI-H23 cells (Fig. 1c), consistent with the synergy scores
(AZDO0156) in all ATM-WT (but not ATM-deficient) cell ~ observed. Conversely, single-agent treatments induced only
lines (Fig. la), demonstrating the importance of ATM  weaker cytostatic effects. Combining olaparib and
function in repairing olaparib-induced DSBs. Notably, = AZD6738 caused a dose-dependent change in the Gljs,
AZD6738 did not inhibit ATM signalling at the highest  values of each agent (Fig. 1d), with olaparib doses as low as
doses used in this manuscript (Supplementary Fig. 3). 30 nM in combination with 1 pM AZD6738 causing cell kill
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<« Fig. 1 The ATR inhibitor (AZD6738) and olaparib are synergistic

in ATM-deficient cell lines. a (i) Loewe synergy scores for olaparib in
combination with the ATR (AZD6738) and ATM (AZD0156) kinase
inhibitors across different cell lines. Cell viability was measured by a
sytox green live-dead assay, and synergy scores calculated using the
Loewe additivity model. Higher positive scores indicate greater
synergistic activity. Error bars =Mean+SEM (n =2, excluding
MCF10A). (ii) Representative 6x 6 synergy matrix heatmaps for
olaparib and AZD6738 treatment in ATM-deficient and -proficient
FaDu and lung carcinoma cell lines. ‘Fitted results’ represent the
growth inhibitory (0-100) and cytotoxic activity (100-200) based on
curves fitted to the raw viability values. ‘Loewe excess’ represents the
calculated excess activity above that expected from an additive com-
bination, based on the Loewe additivity model. Loewe synergy scores
are shown below the heatmaps. b Immunoblot for ATM activation via
ATM pS1981 in FaDu ATM-WT cells following 24 h olaparib treat-
ment. ¢ Representative % growth inhibition curves for FaDu ATM-KO
and NCI-H23 cells following single-agent and combination treatment
with olaparib and AZD6738. Cytostatic effects are observed in the
0-100% range and cytotoxic effects between 100 and 200%. d Glj,
values for olaparib and AZD6738 single-agent and combination
treatments, determined by a sytox green live-dead assay (n = 2).

in FaDu ATM-KO cells. These data suggest that in combi-
nation it may be possible to optimise lower doses of each
inhibitor to achieve a greater therapeutic response in patient
tumours than can be achieved by using maximum tolerated
doses of either single-agent. Importantly, the highest doses
(3 uM olaparib + 1 uM AZD6738) only caused moderate
(39%) growth inhibition in WT cells (Fig. laii), suggesting
a therapeutic window in ATM-deficient cancers. This was
confirmed with a chemically diverse ATR inhibitor (VE-
822) and by siRNA-mediated depletion of ATR (Supple-
mentary Fig. 4A-D). The synergistic combination activity
of AZD6738 and olaparib specifically in ATM-deficient
cells indicated a biological interaction. We therefore
focused on this combination for further study.

AZD6738 abrogates the olaparib-induced DNA
damage G2-M checkpoint

We hypothesised that synergy between AZD6738 and ola-
parib could be due to ATR regulating S-phase progression
and G2-M checkpoint activation in response to replication-
associated olaparib-induced DNA damage. We therefore
investigated the response of isogenic ATM-WT/KO FaDu
cells following olaparib/AZD6738 combination and single-
agent treatment. Single-agents were tested at comparable
growth-inhibitory doses (Supplementary Fig. 5). Olaparib
treatment caused a dose-dependent increase in the G2-M
population at 24 h in both cell lines, whereas AZD6738 had
no pronounced effect (Fig. 2ai—ii). To assess the impact of
treatment in cells undergoing DNA replication, we pulse-
labelled S-phase cells with EAU prior to inhibitor treatment.
The G2-M population following 24 h olaparib treatment
comprised both an increased number of EdU-positive cells
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(top arrow) and EdU-negative cells (lower arrow) compared
with the DMSO-treated cells. Here, the EdU-negative cells
would have transitioned through S-phase for the first time in
the presence of olaparib (Fig. 2b). However, when olaparib
was co-dosed with AZD6738, cells did not accumulate in
G2-M and instead progressed into a second S-phase, as
indicated by the reformation of an EdU-positive S-phase
population at 24 h (Fig. 2a, b). Since this was observed in
both WT and ATM-KO cells, it suggests that G2-M
checkpoint engagement was primarily driven through
ATR/CHKI1 signalling. Correspondingly, we observed
increased phosphorylation of CHK1 at S345, a site targeted
by ATR, following 24 h olaparib treatment, which was
abrogated by AZD6738 (Fig. 2c¢).

Collectively, these data show that olaparib-induced DNA
damage activates the ATR-CHK1 pathway and G2-M
checkpoint to allow time for DNA repair. AZD6738 abro-
gates this checkpoint, presumably permitting cells to
undergo mitosis in the presence of DNA damage. Although
this was ATM-status independent, we hypothesised that
ATM deficiency increases the propensity for olaparib-
induced DNA damage, which may account for synergy
between olaparib and AZD6738 specifically in ATM-
KO cells.

Combined olaparib/AZD6738 enhances genome
instability in ATM-KO cells

To investigate the impact of treatment and ATM-status on
cells entering mitosis, we quantified phenotypes associated
with mitotic defects wusing high-content immuno-
fluorescence. This identified micronuclei number as the
strongest parameter of differential response between
AZD6738 and olaparib single-agent and combination
treatments, and also ATM status (Fig. 3a). Since both ATR
and ATM promote YH2AX formation it is not surprising
that YH2AX foci levels, which are often used as a DNA
damage biomarker [40], poorly correlated with selective
efficacy in ATM-KO cells treated with the olaparib/
AZD6738 combination (Supplementary Fig. 6Ai). This is
also highlighted by a reduction in olaparib-induced YH2AX
foci formation following AZD6738 co-treatment (Supple-
mentary Fig. 6Aii). We therefore monitored the impact of
olaparib and AZD6738 by assessing micronuclei formation,
and observed a significant increase in basal and drug-
induced micronuclei in the ATM-KO cells compared with
the WT, alongside enhanced magnitude and kinetics of
micronuclei formation following combination treatment
compared with either monotherapy (Fig. 3bi—ii). Combining
the lowest doses of AZD6738 (100nM) and olaparib
(30nM) in ATM-KO cells induced 0.28 micronuclei/cell
within 24 h, which was not achieved by either single-agent
until 48 or 72 h. Conversely, in WT cells 72 h combination
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Fig. 2 AZD6738 abrogates the olaparib-induced DNA damage G2-
M checkpoint. a Cell cycle distributions of FaDu ATM-WT and KO
cells following 24 h treatment with DMSO, olaparib, AZD6738 or
dual olaparib/AZD6738. (i) Cell cycle distributions were determined
using DAPI intensity to identify 2N (G1) and 4N (G2-M) populations
via flow cytometry. Error bars =Mean+SEM (n=4). (ii) Repre-
sentative cell cycle histogram profiles. b EQU FACS profiles aftera 1 h

treatment with the highest doses (300 nM AZD6738 and
1 uM olaparib) caused only a minor increase in micronuclei
that was comparable to basal levels in ATM-KO cells. This
cannot be explained by slower cell cycle progression as the
WT cells grow faster than the ATM-KO (Supplementary
Table 1). Furthermore, micronuclei were detected before a

pulse with 10 uM EdU, followed by a 6 or 24 h chase with DMSO,
olaparib, AZD6738 or olaparib/AZD6738. 2N DNA content = G1; 4N
DNA content = G2-M. Representative of two biological repeats.
¢ Immunoblot of ATR signalling following 24 h incubation of FaDu
ATM-WT and KO cell lines with olaparib + AZD6738. APH (aphi-
dicolin) and 10 Gy IR were used as positive controls.

decline in cell number, suggesting that micronuclei forma-
tion contributes to reduced cell viability in the drug-treated
ATM-KO cells (Supplementary Fig. 6B).

To investigate the nature of genome instability detected
as micronuclei, we assessed metaphase spreads 48 h after
drug treatment, and observed that the AZD6738/olaparib
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combination synergistically induced chromatid breaks,
chromosome breaks and chromosome fusions in ATM-KO
cells, with minimal impact on WT cells (Fig. 3c, Supple-
mentary Fig. 6C). The observed synergy is consistent with
olaparib or AZD6738 single-agent treatment promoting
replication-dependent chromosomal aberrations where
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0.1 UM AZD6738

0.1 uM AZD6738
+ 1 uM olaparib

chromatid breaks, and to some extent chromosome fusions,
are more pronounced. The olaparib/AZD6738 combination
significantly increased chromosomal aberrations in ATM-
KO cells (13.0 aberrations/cell) compared with ATM-
WT cells (1.5 aberrations/cell) and monotherapy treatment
in ATM-KO cells (4.3 and 3.0 aberrations/cell).
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<« Fig. 3 Combined PARP and ATR inhibition results in enhanced

and earlier genome instability, specifically in the absence of ATM.
a Biomarkers including mitotic index, cell cycle distribution, apop-
tosis, 53BP1 nuclear bodies, YH2AX and micronuclei formation were
quantified in a dose- and time-dependent manner in ATM-WT and -KO
FaDu cells. Six hundred and three nuclear features were quantified
using high-throughput confocal microscopy and multiparametric
image analysis (Columbus image analysis software), and correlated
with the number of nuclei using a feature selection analysis strategy
[62]. b (i) Mean number of micronuclei per cell following 2, 6, 24, 48
or 72 h single or dual olaparib and AZD6738 treatment. Micronuclei
were visualised using a hoescht DNA stain and quantified using
Columbus IA software (Perkin Elmer). Solid lines indicate basal levels
for each individual cell line and time point. Error bars = Mean + SD (n
=2). (ii) Representative images of FaDu ATM-WT and -KO cell lines
following 24 or 72 h DMSO, olaparib, and olaparib/AZD6738 com-
bination treatment. Images were taken at x20 magnification (1 pixel =
0.325 uM, scale bar =20 uM). ¢ Metaphase spreads showing chro-
mosomal aberrations in FaDu ATM-WT and KO cells treated with
olaparib, AZD6738 or the combination for 48 h, and then arrested in
metaphase of mitosis. Three types of aberrations were quantified:
physical breaks in one chromosome arm (chromatid breaks), both arms
(chromosome breaks), or chromosome fusions. Total number of
chromosomal aberrations are indicated above the dashed line for each
condition. Error bars =Mean+SD (n=3, 50 metaphase spreads/
sample). P values calculated using a paired -test *p <0.05, **p <0.01,
**%p < 0.001. Images represent DNA fragmentation observed in some
of the combination-treated FaDu ATM-KO cells. Representative ima-
ges for each condition are shown in Supplementary Fig. 6C.

PARP-inhibitor single-agent efficacy is linked to their
ability to trap PARP1 onto DNA [36]. This correlates with
the PARP trappers talazoparib and olaparib enhancing
YH2AX and micronuclei formation, while veliparib (a weak
trapper [41, 42]) did not despite equivalent near-complete
inhibition of PARP catalytic activity (Supplementary Fig.
7A-C). We observed a higher synergy score between
AZD6738 and talazoparib (a more potent PARP-DNA
trapper) than between AZD6738 and olaparib at the dose
ranges tested (Supplementary Fig. 7Di-ii). However, this
combination was less selective for the ATM-KO cells,
consistent with reports of enhanced systemic toxicity with
talazoparib treatment [43]. Notably, at doses with similar
single-agent efficacy, and therefore likely trapping ability,
the impacts of combining AZD6738 with talazoparib versus
olaparib on growth inhibition are equivalent in ATM-KO
cells (Supplementary Fig. 7Diii). The increased synergy
score therefore likely reflects the increased DNA-PARP
trapping potency of talazoparib at the doses used, more than
combination potential and overall cytotoxicity.

Overall, these data suggest that although the olaparib-
engaged G2-M checkpoint is overridden by AZD6738 irre-
spective of ATM status, higher levels of DNA damage enter
mitosis in the absence of functional ATM, as indicated by the
drug-combination-dependent chromosomal fragmentation
observed in various metaphase spreads (Fig. 3c). Furthermore,
although both olaparib and AZD6738 exhibit monotherapy
activity in ATM-KO cells, our data suggest that combining

these agents results in a greater and faster induction of gen-
ome instability and can be achieved using lower doses.

Combined olaparib/AZD6738 treatment causes
earlier, irreversible growth inhibition and cell death
in ATM-KO cells

We hypothesised that faster and greater micronuclei for-
mation may cause an earlier commitment to apoptosis and
cell death. We therefore measured whether growth inhibi-
tion correlated with apoptosis (active caspase 3/7) and cell
death (cytotox) markers (Fig. 4a, Supplementary Fig. 8A).
These experiments confirmed the selective olaparib/
AZD6738 combination activity in FaDu ATM-KO cells,
with total growth inhibition observed after 4 days compared
with intermediate growth inhibition with either single-agent,
and almost no impact in ATM-WT cells. Caspase 3/7
activity and cytotox staining were more readily detected and
at earlier time points (within 36 h) following combination
treatment, indicating that the reduced cell growth is pre-
dominantly due to apoptosis. The kinetics of cell death also
correlated with micronuclei formation, supporting the idea
that enhanced genome instability induced by co-treatment in
the first 48 h, and a single cell division, is sufficient to
induce apoptosis. Conversely, the later onset of caspase 3/7
activation during single-agent treatment reinforces the idea
that multiple cell divisions, and/or prolonged target inhibi-
tion, are required to achieve single-agent anti-tumour effi-
cacy. Importantly, almost no apoptotic activity was detected
in the WT cells at the concentrations used, confirming their
ability to tolerate the low level of micronuclei we had
previously observed.

The earlier induction of micronuclei and apoptosis upon
combination treatment suggests that, through synergistic
activity, shorter treatment periods with lower doses could
achieve similar or greater cancer-cell toxicity as long-term
treatment with high-dose single agents. Current clinical
monotherapy regimens for olaparib are based on continuous
exposure, which is in accordance with the mechanism of
cytotoxicity depending on PARP inhibition during multiple
rounds of replication [44]. However, AZD6738-induced
systemic toxicity may prevent continuous dosing in the
clinic [45]. The opportunity to use shorter treatment periods
to reduce adverse effects in patients, whilst maintaining
efficacy, would provide a clinical advantage for the com-
bination over single-agent treatment. To help guide clinical
dose schedules, we compared 3- and 5-day drug washouts
to continuous exposure over 2 weeks, for olaparib and
AZD6738 as monotherapies and in combination. For the
combination, olaparib maintenance treatment was also
assessed (Fig. 4b). In ATM-KO cells after only 3 days, three
out of four combination doses caused complete growth
inhibition (Fig. 4c, Supplementary Fig. 8Bi-ii), reflecting
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Fig. 4 Combined olaparib and AZD6738 treatment results in
earlier commitment to apoptosis in the absence of ATM. a Cell
growth (% confluency) of cells co-stained with activated caspase 3/7
(apoptosis) and Cytotox (cell death) in FaDu ATM-KO and WT cells
following olaparib and AZD6738 single-agent and combination
treatment. Apoptosis and cell death activity is represented by mean
fluorescence levels of caspase 3/7 or cytotox normalised to total cell
confluency. % confluency and fluorescence intensities were calculated
using incucyte ZOOM 2016A software. 0.1 uM staurosporine was

commitment to cell death as supported by caspase 3/7
activation (Fig. 4a). After 5 days, all combination doses
(including 30 nM olaparib + 100nM AZD6738) caused
irreversible growth inhibition and cell death, and olaparib
maintenance was not required for durable responses.
Conversely, cells treated with monotherapy regimens
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used as a positive control for apoptosis. An independent repeat is
shown in Supplementary Fig. 8A. b Schematic indicating in vitro
washout dose schedules used in Figs. 4c, 5b and 6b. ¢ Cell growth (%
confluency) over 14 days of single and dual olaparib/AZD6738
treatment using the dose schedules outlined in Fig. 4b. Inhibitors were
dosed at 0 h and the media replaced after either 3 or 5 days as indicated
by the grey dashed line. Error bars =mean+SEM (n=3). Two
independent biological repeats are shown in Supplementary Fig.
8Biii.

eventually resumed growth following inhibitor washout. In
WT cells, increased doses (1.5uM olaparib + 0.5 uM
AZD6738) caused only minor growth delay. Together,
these data demonstrate the potential therapeutic advantage
of combining olaparib and AZD6738 in ATM-deficient
tumours.
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Fig. 5 The olaparib/AZD6738 combination is still selective for
ATM deficiency in TP53-WT A549 cells. a Cell growth (% con-
fluency) of cells co-stained with activated caspase 3/7 and Cytotox in
A549 ATM-KO and WT cells following olaparib and AZD6738 single-
agent and combination treatment. 0.1 uM staurosporine was used as a
positive control for apoptosis. An independent repeat is shown in

ATM deficiency-dependent combination activity is
confirmed in TP53-WT and ATM-mutant cells

Mutations in 7P53 are associated with ATR-inhibitor sen-
sitivity in chronic lymphocytic leukaemia (CLL) [28] and in
combination with DNA damaging chemo- or radiotherapy
[46]. FaDu cells are TP53-mutant, therefore we assessed the
contribution of TP53-status on combination efficacy using
isogenic ATM-WT/KO TP53-WT A549 cells (Supplemen-
tary Fig. 2). Corroborating our findings in the FaDu cells,
combined olaparib/AZD6738 repressed growth and caused
apoptosis in the ATM-KO, but not -WT A549 cells, in a
dose-dependent manner beyond what was achieved with
single-agent treatments (Fig. 5a, Supplementary Fig. 9A).
Correspondingly, in the ATM-KO cells 0.3 uM AZD6738 in

— olaparib + AZD6738 continuous
— - olaparib + AZD6738_DMSO
— olaparib + AZD6738_olaparib

Supplementary Fig. 9A. b Cell growth (% confluency) over 14 days
single and dual olaparib/AZD6738 treatment using the dose schedules
outlined in Fig. 4b. Inhibitors were dosed at 0 h and the media replaced
after either 3 or 5 days as indicated by the dashed line. Error bars =
mean + SEM (n =3).

combination with all olaparib doses tested completely and
irreversibly inhibited cell growth within 3 days (Fig. 5b).
ATM-mutated tumours demonstrate varying reductions in
ATM expression and signalling, compared with total loss in
KO models. We therefore tested the olaparib/AZD6738
combination activity in ATM-mutant NCI-H23 cells (Sup-
plementary Fig. 2) and observed enhanced growth inhibi-
tion with earlier induction of apoptosis than with AZD6738,
while olaparib monotherapy had minimal effect (Fig. 6ai,
Supplementary Fig. 9B). Combining 0.3 uM AZD6738 with
any olaparib dose produced similar activity to 1uM
AZD6738 alone and was sufficient to surpass the threshold
for total growth inhibition caused by maximal doses of
AZD6738 tested (Fig. 6aii). Importantly, 0.3 uM AZD6738
in vitro is below the maximal dose that can be achieved
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Fig. 6 Combined olaparib/AZD6738 treatment causes cell death in
ATM-mutant NCI-H23 lung carcinoma cells. a (i) Cell growth (%
confluency) of cells co-stained with activated caspase 3/7 and Cytotox
in NCI-H23 cells following olaparib and AZD6738 single-agent and
combination treatment. 0.1 uM staurosporine was used as a positive
control for apoptosis. (ii) Area under the curve (AUC) for % cell
confluency over 300 h continuous treatment. The shaded area indicates

clinically [45], and olaparib showed minimal single-agent
activity, thereby supporting the optimisation of lower drug
doses in combination to achieve the same or greater end-
point. Furthermore, cells treated with 1uM olaparib +
0.1 uM AZD6378 were unable to recover following 3 days
treatment, compared with the monotherapies which induced
minimal, and temporary, growth inhibition (Fig. 6b).

Combined PARP/ATR inhibition promotes anti-
tumour efficacy in xenograft and PDX models with
ATM loss

Finally, we assessed the impact of combined olaparib/
AZD6738 treatment on ATM-deficient tumours in vivo.
FaDu ATM-KO cells were grafted into mice and inter-
mittently treated with AZD6738 and olaparib single-agents
or in combination for 3, 5 or 7 consecutive days (Fig. 7a,
Supplementary Fig. 10A, B). With all schedules, combined
treatment reduced tumour growth, whereas single-agent
treatments provided little benefit over the control. These
data highlight the importance of dose scheduling combi-
nation treatments to balance efficacy and tolerability, and
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cell killing greater than 1 uM AZD6738 single-agent treatment. An
independent repeat is shown in Supplementary Fig. 9B. b Cell growth
(% confluency) over 14 days single and dual olaparib/AZD6738
treatment using the dose schedules outlined in Fig. 4b. Inhibitors were
dosed at 0 h and the media replaced after either 3 or 5 days as indicated
by the dashed line. Error bars = mean + SEM (n = 3).

suggest tumour growth inhibition can be achieved with as
little as a 3 or 5-day treatment window [45, 47]. Note that
due to frequent ulcerations of the FaDu ATM-KO xenograft
model affecting animal well-being, only a short-term
(21 days) 5 days on 9 days off olaparib/AZD6738 combi-
nation regimen could be performed. Furthermore, we trea-
ted a panel of PDX models, tested for ATM expression by
IHC, with olaparib and AZD6738 alone or in combination
(Supplementary Fig. 10C, D). Combination activity caused
tumour regressions only in the ATM-deficient CTG-0828
model, with near-total loss of protein expression. Minimal
to no combination activity was observed in the ATM-WT
models (Fig. 7b, Supplementary Fig. 10E, F). In the CTG-
0828 model, 130 days daily dosing of AZD6738 caused
complete growth inhibition, whereas the combination
caused tumour regressions that were maintained for 64 days
after treatment was stopped, in 2 out of 3 animals (Sup-
plementary Fig. 10F). Despite observing combination
activity in both ATM-deficient in vivo models, tumour
regressions were only observed in the CTG-0828 PDX.
Assessing pharmacodynamic biomarkers for target inhibi-
tion (PARylation, RPA32 pS4/8 and yH2AX) did not
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Fig. 7 Combined PARP and ATR inhibition demonstrates anti-
tumour efficacy against cell line xenograft and PDX models with
ATM loss. a Anti-tumour effect of different schedules of AZD6738 in
combination with olaparib in FaDu ATM-KO xenografts. Olaparib was
dosed 1h after AZD6738. All graphs represent geometric mean *
SEM, SCID mice (3 days on 4 days off n =10, 5 days on 9 days off
n=9, 7 days on 7 days off n=15). Corresponding mouse body
weights and individual tumour spider plots can be found in Supple-
mentary Fig. 10A, B. *Group stopped early due to body weight loss.

explain these differences (Supplementary Fig. 11). These
are instead likely due to variations in dosing schedules and
the substantial differences in treatment times between the
models. Note that treatment using an intermittent ‘5 day on’
schedule in the FaDu ATM-KO model was stopped after
21 days due to tumour ulcerations, compared with 130-day
treatment in the CTG-0828 model, and that tumour
regressions of the CTG-0828 PDX were only detected after
20 days. We therefore speculate that continued intermittent
combination treatment of the FaDu ATM-KO xenograft may
also induce tumour regression beyond the synergistic
growth inhibition observed in the study-period tested.
Together the in vitro and in vivo data demonstrate pre-
clinical synergy between olaparib and AZD6738 in ATM-
deficient tumours and provide a mechanistic rationale for

*Group stopped early due to frequent tumour ulcerations impacting on
animal well-being. b AZD6738 in combination with olaparib induces
tumour regression in ATM-mutant CTG-0828, but not ATM-WT PDX
models (nude mice, vehicle n =5, treatment n = 3). Treatments were
given for 130 days, or until animals were taken off study. Images show
IHC staining for ATM expression (scale bar =50 uM). All graphs
represent geometric mean = SEM. Corresponding mouse body weights
and individual tumour spider plots can be found in Supplementary Fig.
10E, F.

clinically targeting tumours with ATM-inactivating muta-
tions across multiple tissue types.

Discussion

Olaparib (Lynparza) is a first-in-class PARP inhibitor
approved for patients with advanced ovarian, breast and
pancreatic cancer, particularly those with BRCA1/2 defi-
ciencies. This study assessed new clinical opportunities for
olaparib by combining treatment with other DDR inhibitors
across a cell line panel comprising aberrations in key
tumour suppressor, DDR and oncogenic genes. We
observed that combining olaparib with the ATR-inhibitor
AZD6738 was synergistic and cytotoxic in ATM-deficient
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cells, but not in ATM-proficient cells. Combined PARP-
and ATR-inhibitor treatment has previously been investi-
gated in BRCA-deficient backgrounds [32, 33, 48],
including olaparib-resistant models. Here, we demonstrate
that the combination therapy could be expanded to treat
ATM-deficient cancers with the complete loss of protein or
function.

Mechanistically, olaparib treatment activated the G2-M
checkpoint in a manner that was abrogated by AZD6738,
consistent with published data [33, 49]. This was ATM-
status independent and correlated with ATR-dependent
CHKI1 phosphorylation (pS345). These data support ATR
being the primary kinase that initiates the cell cycle
checkpoint in response to olaparib treatment, and is con-
sistent with ATR being important in the context of olaparib-
induced replication-dependent DNA damage through its
role in replication fork stabilisation and restart [23].
Although the olaparib-induced G2-M checkpoint was
abrogated by AZD6738 independently of ATM status, we
detected greater and earlier formation of micronuclei upon
olaparib/AZD6738 combination treatment, specifically in
ATM-KO cells. A synergistic increase in chromosomal
aberrations in ATM-KO cells, detected by metaphase spread
analysis, confirmed increased transmission of DNA breaks
into mitosis. These data suggest that ATM is critical for
maintaining genome stability in response to olaparib/
AZD6738 combination-induced DNA damage in S-phase.
The olaparib-induced genome instability in ATM-KO cells
can be largely explained by ATM counteracting toxic end-
joining to allow faithful repair of seDSBs [17]. Low doses
of AZD6738 also generated replication-associated chro-
mosomal aberrations in ATM-KO cells, although ATM’s
role here is less clear. Previous reports show that ATR and
ATM could share hundreds of targets [18, 20]. Redundant
functions between these kinases may therefore become
evident when both are inactivated [50-52]. Supporting
ATM’s role in response to PARP/ATR inhibition, olaparib
and AZD6738 reportedly promote RADS50 phosphorylation
in ATM-functional in vivo models, but not when ATM is
absent [53]. ATR is also suggested to directly promote HRR
through stimulating the BRCA1-PALB2 interaction and
PALB2 localisation after DNA damage [54]. Further
investigations are required to assess which of the above-
mentioned hypotheses contribute to the sensitivity of ATM-
deficient cells to AZD6738. Nevertheless, the synergistic
phenotypes observed upon combination treatment of ATM-
deficient cells supports the idea that olaparib and AZD6738
impact on similar biological processes to drive genome
instability and cell death. Based on known ATR functions,
AZDG6738 likely mechanistically synergises with olaparib
not only through G2-M checkpoint abrogation, but also by
preventing stabilisation and restart of stalled replication
forks, and by impacting HRR of collapsed replication forks.
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Combined AZD6738/olaparib could therefore generate
additional DNA breaks which would be erroneously
repaired in the absence of ATM, leading to further genome
instability and cell death.

Interestingly, ATM-KO cells exhibited higher basal
micronuclei levels, confirming that DNA damage associated
with ATM-deficiency can progress into mitosis. Conse-
quently, ATM-deficient cancers could be closer to mitotic
catastrophe and thus more vulnerable to exogenous DNA
damage. Endogenous micronuclei levels could therefore
represent a predictive biomarker of response to agents that
promote genome instability, such as ATR and PARP inhi-
bitors, and warrants further investigation.

Key to clinical drug development is the assessment of
efficacy, safety and tolerability. Maximum tolerated doses
for olaparib and AZD6738 single-agent treatments have
been established through clinical trials, wherein haemato-
logical toxicity was dose- and schedule-limiting [55, 56].
Given the mechanistic synergy that we observed between
olaparib and AZD6738, we reasoned that the combination
therapy in ATM-deficient patients may provide a better
therapeutic window. Our studies provide several lines of
pre-clinical evidence supporting this. Most notably, the
increased and earlier formation of micronuclei (within 24 h)
at sub-maximal doses of olaparib and AZD6738 in com-
bination correlates with enhanced growth inhibition and
earlier onset of apoptosis specifically in ATM-deficient
cells. Together with G2-M checkpoint abrogation by
AZD6738, these data imply that a single round of replica-
tion and aberrant mitosis is sufficient to induce cell death
in vitro, thus providing a mechanistic rationale for opti-
mising shorter combination treatment schedules for
improved clinical tolerability and efficacy. Conversely, 72 h
olaparib single-agent treatment generated low levels of
micronuclei, which is consistent with olaparib being dosed
continuously in the clinic to accumulate sufficient DNA
damage through multiple rounds of DNA replication and
cell division. Secondly, our results showed similar levels of
in vitro efficacy between short or continuous drug-
combination exposures. When combined, low concentra-
tions of olaparib and AZD6738 caused cell death within 3
or 5 days, leading to durable responses when the inhibitors
were removed. Conversely, single-agent treatments at the
same concentrations had either no effect on proliferation or
cells recovered from the growth-inhibitory effect after drug
removal, suggesting a requirement for high doses and/or
prolonged treatment. Together, these findings suggest the
potential to develop intermittent dosing schedules of com-
bination therapy, with or without single-agent maintenance
treatment, for improved clinical tolerability and efficacy.
Furthermore, we corroborated the in vitro efficacy of
AZDG6738/olaparib observed in ATM-KO FaDu cells using
ATM-deficient lung carcinoma cell lines, and in vivo
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xenograft and PDX ATM-deficient models. Conversely,
olaparib monotherapy demonstrated variable efficacy, with
little or no activity observed in either the ATM-mutant NCI-
H23 cells or in vivo ATM-null PDX model. Alongside a
previous report [49], these pre-clinical findings suggest that
combined olaparib/AZD6738 treatments may provide more
durable responses than single-agents in ATM-deficient
tumours across multiple tissues types with varying
degrees of ATM-deficiency.

ATM is among the most commonly aberrant genes in
sporadic cancer [11, 31]. However, the mutation spectrum is
broad [31] and the impact on ATM functionality, tumour
behaviour and response to therapy is not fully established.
For example, Phase II/III trials combining paclitaxel with
olaparib in patients with advanced gastric cancers, where
ATM-status was stratified by immunohistochemical
assessment, revealed conflicting results regarding overall
survival [57]. These findings highlight the need to define the
context of ATM-deficiency and establish robust patient-
selection biomarkers, to maximise the therapeutic benefit
for combined olaparib/AZD6738 treatment in patients.
Important insights into response rates in patients with DNA
repair deficiencies (such as mono and biallelic inactivation
of ATM or BRCA1/2) are anticipated from clinical studies
testing monotherapy or combination treatments with PARP
and ATR inhibitors (NCT02987543). Interestingly, clonal
evolution has been described for haematological cancers,
where ATM/11q deletions are among several mutations
identified as sub-clonal in CLL [58, 59]. Although the
impact of sub-clonality and ATM deficiency in solid
tumours is less well established, once ATM deficiency is
robustly clinically defined it will be important to study
primary samples across various tumour types to assess the
impact of clonal divergence on ATM deficiency and
response.

Despite olaparib and ATR inhibitors demonstrating
various degrees of monotherapy efficacy in ATM-defi-
cient cancers [13-15, 27-29, 60, 61], our work highlights
the importance of exploring their use in combination
through the potential to optimise lower doses and shorter
treatment periods due to synergistic activity. This could
have multiple clinical advantages. First, single-agent
systemic toxicity may prevent high-dose continuous
treatment that is commonly required in vitro to achieve
the same level of anti-tumour efficacy as lower-dose
combination therapy. The rapid killing achieved with low-
dose combination therapy should allow various dose
schedules to be investigated to balance clinical efficacy
with systemic toxicity. Second, our findings that combi-
nation treatment generates micronuclei within 24 h sug-
gests that sufficient DNA damage arises during the first
round of DNA replication and subsequent mitosis fol-
lowing drug exposure. In a heterogeneous tumour where

cells have variable growth rates, combination therapy
could have a major advantage over either single-agent by
achieving cytotoxicity with fewer rounds of replication
and without chronic target inhibition. Finally, the poten-
tial to induce equivalent or greater tumour toxicity in a
shorter time frame, and with lower doses, could limit
acquired resistance developing during prolonged high-
dose drug exposure. Achieving a deeper and durable
clinical response could also overcome innate resistance,
and merits further investigation. This work therefore
supports the clinical line-of-sight for the development of
AZD6738 in combination with olaparib and identifies
ATM deficiency as a potential patient stratification
strategy.

Materials and methods

Materials and methods can be found in the supplementary
file on Oncogene's website.
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