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Abstract

Scanning ion conductance microscopy (SICM) is a technique for non-contact topographic

imaging. In this thesis, a biophysical investigation into Alzheimer’s Disease (AD) was carried,

with toxic oligomers dosed locally and quantitatively on to single astrocytes using SICM and

simultaneously monitoring the response of the target cell.

Examination of the effectiveness of antibodies that bind to Abeta or α-synuclein (Asyn)

peptides depends on the measurement of oligomer-induced abnormal calcium homeostasis

in single astrocytes. The method was shown to work at physiological concentrations of

oligomers. A series of experiments measuring the reduction in calcium influx in mixtures of

antibodies and cerebrospinal fluid (CSF) of AD patients suggested that the binding to co-

oligomers composed of Abeta and Asyn may be crucial in the treatment of AD. Furthermore,

it may be beneficial to test antibodies before the clinical trial using this assay.

The mechanism of this entry of calcium is hypothesised to be the result of the formation

of oligomer-induced transient pores in the cell membrane. To verify this hypothesis, a new

SICM instrument was built with two nanopipettes; one for dosing and one for detection of the

adenosine triphosphate (ATP) release from these pores. A variety of different ATP sensors

were made. The best had a sensitivity of 10µM and works as a hexokinase-cofunctioned

electrolyte-gated organic field-effect-transistor. However no statistically significant results

for ATP release have been obtained in the experiments performed to date.

Overall this thesis describes new biophysical methods to study the effect of protein ag-

gregates on live cells and the effectiveness of potential therapies, such as antibodies and

nanobodies, to reduce these aggregate induced effects. It can be applied to synthetic aggre-

gates of Abeta or the aggregates present in human CSF.





“An indispensable hypothesis, even though still far from being a guarantee of success, is

however the pursuit of a specific aim, whose lighted beacon, even by initial failures, is not

betrayed.”

Max K. E. L. Planck (1858-1947)
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Chapter 1

Introduction

The aim of the projects described in this thesis are to utilise the techniques of nanodosing

and single-cell detection provided by upgraded scanning ion conductance microscopy (SICM)

to address the basic biology in Alzheimer’s Disease (AD) induced by oligomeric misfolded

peptides of amyloid beta (Abeta). Therefore, in this chapter, basic theory and development

of SICM, and the corresponding applications in biological and other fields, including inves-

tigations using hybrid SICM techniques and a processed nanopipette without performing

scanning, will be introduced in details.

1.1 Single-molecule imaging

In a biological system, cellular functions operate on a hierarchical level, from a peptide to

an organ. To investigate their specific individual tasks, it is crucial to examine quantita-

tively and spatially the chemical and reaction pathways in heterogeneous subpopulations.

On a single-cell level, transmission of signals across the cell membrane is achieved by pro-

tein receptors in the cell membrane that bind ligands, resulting in ion channels opening or

conformational changes. For most cells it is not known how these receptors are organised

over the cell surface, and this is important since it is unlikely that the distribution is random

and will be related to how receptor signalling gives rise to the overall cellular response to

any stimulus. Far-field microscopy has significantly improved our understanding of life on

a microscale level, where waves, including light and electrons, are used as the illumination

1



2 Chapter 1

source for the sample, and then reflected or scattered signals are collected for imaging. How-

ever, the resolution of far-field microscopy is constrained by the diffraction limit decided by

the wavelength of the illumination source, which is ∼200 nm for light. Although transmis-

sion electron microscopy (TEM) and scanning electron microscopy (SEM) use electrons as

their illumination source to achieve a much better resolution than light (∼ Å), they usu-

ally present problems when it comes to biological samples; for example, dehydration and

additional staining or coating may damage the sample, the sample may be too thick for the

electrons to penetrate, and the contrast of a biological sample is usually low.

On the other hand, emerging biophysical methods circumventing the diffraction limit of

light are appealing. Fluorescence-based single-molecule methodologies can unambiguously

reveal microscopic details in a specimen which may have been averaged out in traditional

ensemble measurements [1, 2]. For example, they are able to image individual molecules

labelled by fluorescent dyes, acquiring static or dynamic distributions of their interactive

behaviours between other species. Nevertheless, topographic information on the cell related

to fluorescent measurements is not obtained at the same time.

1.2 Scanning probe microscopy

Scanning probe microscopy (SPM) is a technique complementary to single-molecule fluo-

rescence spectroscopy. The general principle of SPM is that the signal coming from the

surface interaction with the probe is used for feedback control of a vertically-aligned piezo-

electric actuator, and consequently the collected z-axis data is de-convoluted to map out

the distributed surface height of the sample in a predefined area. Of these techniques, scan-

ning tunnelling microscopy (STM) is the first instrument classified as SPM to give rise to

atomic-level lateral resolution, and it involves a quantum tunnelling current between a metal

probe and the conducting sample surface while a bias voltage is applied. This is used to

determine the probe-sample separation and for further reconstruction of the topography of

the sample [3]. The disadvantage of STM for biological samples is that, like SEM, an addi-
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tional procedure of coating is also necessary to make the surface conductive, which means

the biological sample is not in its natural state any more. Besides, the limitation for the

z-axis scanning range of ∼200 nm is relatively unsuitable for cells of a normal micron height.

Another technique in the SPM regime, atomic force microscopy (AFM), measures the force

between the sample surface and a soft cantilever with a tip as the probe, when they are in

atomic proximity to each other [4]. The deflection of the cantilever is recorded by the move-

ment of a laser spot illuminated on it. AFM can achieve even subatomic spatial resolution;

nevertheless, the raster scanning of ATM may interfere with the original cell conditions and

may result in damage to the soft samples. The force applied by AFM cannot be ignored

even it is measured in non-contact mode [5].

1.3 Scanning ion conductance microscopy

Therefore, new biophysical methods must be used on nonconductive biological samples for

research of medically relevant-problems to reveal fundamental biology that has not been

thoroughly understood. The critical feature of SICM, which was originally developed by

Hansma et al. [6] in 1989, is that it provides real non-perturbing detection to probe the

topography of live cells. In SICM, as shown in Figure 1.1, a nanopipette with a nanoscale

aperture and a dish containing the sample are both filled with the same appropriate elec-

trolyte, which is similar to a physiological rig for the conducting patch–clamp technique.

In addition, a pair of Ag/AgCl electrodes is individually immersed in the nanopipette and

the bath electrolyte. When the tip of the nanopipette is dipped in the bath solution, ions

in the electrolyte constantly flow through the nanopipette aperture and scanning settings,

which is driven by a suitable bias voltage applied between the electrodes. The ion current

will be hindered by an object appearing in proximity to the tip. Therefore, the variation of

ion current in the z-axis can be used as a feedback signal for control of the vertical distance

between the tip and the sample surface, realising a constant tip-substrate separation during

the scanning. The topography of the sample can be reconstructed using information on the

z-axis positions of the tip, which is similar to the working principle of other SPMs. The
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technique than noncontact AFM, for it is capable of providing reliable, truly non-

invasive, high resolution topographical images of both soft biological samples and

live cells.

1.3. Scanning ion conductance microscopy: A promising

bioimaging technique

1.3.1. Principle and composition

Scanning ion conductance microscopy (SICM) was first developed by Hansma et al.

in 1989.18 Unlike other SPM techniques, SICM was designed specifically to probe

biological systems by providing information about the topography of soft noncon-

ducting samples, such as cell membranes under physiological conditions. The mea-

surement principle of SICM is based on monitoring changes in ion conductance

between two electrodes. Figure 2 displays a schematic view of a SICM system.

Control 

System

Current 

Amp.

Z

Mod.

Nano Pipette

Live Cells in the buffer 

solution

Ag / AgCl electrode

Fig. 2. Schematic view of a SICM system, depicting the nanopipette, Ag/AgCl electrodes, current
amplifier, control system, and piezoelectric element (Z mod).

In general, SICM employs a glass nanopipette filled with electrolytic solution

as a probe, and the sample to be analyzed is placed in a reservoir of electrolytic

solution. There are two electrodes, one inside the nanopipette and another in the

reservoir solution. An applied bias is then introduced between the two-electrode

electrochemical cell. The nanopipette is then lowered towards the sample while the

ion conductance between an electrode inside the nanopipette and another electrode

located in the reservoir solution is observed. The position of the nanopipette tip

in relation to the surface strongly affects the observed ion conductance between
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Figure 1.1: Schematic illustration of a simplified setup for scanning ion conductance mi-
croscopy (SICM). A buffer solution-loaded nanopipette is immersed in a Petri dish contain-
ing live cells and the same buffer solution. One of a pair of Ag/AgCl electrodes is immersed
in this nanopipette and the other in the dish, with suitable bias voltage applied between the
two in order to generate the ion current that flows through the aperture of the nanopipette.
This ion current is amplified and utilised as a feedback signal for an automated control
system. Therefore, the z-axis piezoelectric actuator holding the nanopipette is able to main-
tain a constant height at the tip from the substrate underneath to avoid physical contact.
Excerpted from [10].

lateral resolution is basically determined by the nanopipette aperture and scanning settings,

defined by images of two adjacent objects that can be resolved. The best lateral resolution

reported was 3–6 nm using a tip inner diameter (ri) of 12.5 nm [7]. However, the lateral

resolution of SICM is debatable, since experimental and simulation results suggested 0.5 ri

and 2–3 ri [8, 9], respectively.

The ion current is modelled by an equivalent circuit of multiple resistors in series with

a bias voltage (V). Among them, the resistor related to the size of the nanopipette aper-

ture, and therefore defining lateral resolution, is determined in advance by the laser-pulling

process; whilst the resistor related to the tip–substrate distance (R(z)) is variable when

the nanopipette moves along the z-axis. An approach curve following the relationship

I=V/(Rc+R(z)) is exhibited, when the nanopipette immersed in the bath solution moves



1.3 Scanning ion conductance microscopy 5

vertically towards the substrate, where Rc is the constant resistance contributed by all other

factors other than the nanopipette height, e.g. nanopipette aperture and electrolyte. This

curve includes a steady-state component, in that the ion current stays almost constant when

the nanopipette is far away from the bottom of the dish, and a nanopipette height-dependent

component when in proximity to the substrate. Therefore, the distance-dependent resistor,

R(z), is critical, as a certain amount of normalised current decrease (usually ≤5%) in the

feedback signal is defined as a stop point in the constant-height scanning mode.

It is crucial to utilise a suitable scanning mode in order to gain a sufficiently high time

resolution for studying dynamics. Raster scanning on a constant z-axis is extremely fast

for topography, but only works for a fairly flat sample because the sensing distance of the

nanopipette is short. For a relatively convoluted sample, scanning modes modulating the

nanopipette height to stay at a constant tip–substrate distance are necessary to avoid col-

lisions. The piezoelectric actuator controlling the z-position of the nanopipette applied by

direct current (DC) as well as alternating current (AC) [11, 12] has a lower probability of

causing tip-sample interference than when modulated only by DC [6] in raster scanning. AC

mode (DC plus AC component (≤KHz)) generates oscillation at the tip, so a steeper signal

representing the AC response appears when the tip–substrate distance is comparable to ri,

making it significantly more sensitive to topographic changing than DC mode. Although

trying to maximise the distance between the tip and the sample might decrease the chance

of causing physical contact, SICM sensitivity at a hemispherical proximity around the tip, is

nevertheless reduced [13]. For a sample with complex features, the non-continuous hopping

mode [14] (also termed a standing approach (STA) [15] or backstep [16] by different research

groups) is often adopted, which withdraws the nanopipette to a safe distance and moves it

to the next scanning spot to avoid any tip-sample physical contact. It is the most secure

way to perform SICM, but this algorithm massively decreases the scanning speed. An alter-

native way to increase the scanning efficiency is to lower the spatial resolution, only adding

detection pixels at predefined subareas with high roughness. A trade-off between spatial and

time resolutions is usually inevitable, unless a brand new concept for scanning is developed.

Fast SICM (FSICM) combines the scanning methods described above [17]. Firstly, a rough
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Table 1.1: Comparison between various farfield and scannin-probe microscopies, in which
TEM, SEM, AFM, STM and SICM stand for transmission electron microscopy, scanning
electron microscopy, atomic force microscopy, scanning tunnelling microscopy and scanning
ion conductance microscopy, respectively.

Microscopy Vertical resolution Sample preparation Measurement environment

TEM Å Dehydration Dry
SEM 10 nm Coating to be conductive Dry
AFM Å Immobilisation only Dry/wet
STM 10 pm Coating to be conductive Dry
SICM 10 nm Immobilisation only Wet

prescan along a straight line is performed using hopping mode, and then iterative refinement

is incorporated into the fast scanning regime. Subsequently, the nanopipette is retracted and

the accurate first line is used as a reference for the next parallel scanning. This procedure

is repeated until the entire image is complete. The scanning rate is nearly 60 times that of

hopping mode. In addition, it is possible to modulate not only physical oscillation of the

tip position, but also bias voltage (in hundreds of kHz) to induce a change in amplitude

and phase in the ion current in order to generate a feedback signal, which is sensitive to the

tip-sample distance, for a phase-sensitive detector. This method, termed bias modulated

SICM (BM-SICM), eliminates net ion current flow so as to reduce the effects of polarisation

of electrodes and electroosmotic flow inside the nanopipette.

The most powerful feature of SICM is that it is not only capable of two-dimensional

topographical imaging, but it can also combine various functional mapping at the same

time, correlating cell structure with its cellular functions. In addition to its mapping abil-

ity, the nanopipette itself can also be modified for various applications. The summary of

the characteristics of various high-resolution microscopies are listed in Table 1.1. Among

these techniques, AFM and SICM are more appropriate for biological applications, because

both of them can conduct the topographic measurements in buffer solution; however, the

disadvantages of AFM will be discussed in the next section.
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1.4 Comparison between AFM and SICM for biologi-

cal samples

AFM has been widely applied to biological samples due to the fact that it is label-free and

has sub-atomic resolution. However, live cells are delicate and easily distorted by external

mechanical interference, leading to the disturbance of biochemical reactions and potentially

switching on mechanosensitive ion channels. This unignorable force might even cause irre-

versible damage to the cell. Rheinlaender and coworkers have made a direct comparison of

topographic mapping of fixed fibroblast cells with AFM and SICM using the contact, tapping

and non-contact modes [18]. Apparently, the contact mode induces mapping artefacts due

to its physical contact between the tip at the cantilever and the sample surface, as well as

lower height profiles. This phenomenon is improved under tapping mode, as demonstrated

in Figure 1.2, which shows loosely-attached branches of the cell. The topography imaging

using SICM in AC mode demonstrated that the morphology of cellular extensions was not

deformed by repeated scanning and by the direction of scannings; on the other hand AFM

in tapping mode induced an observable difference in imaging in the same area compared

with SICM, in which many components of the cell structure were damaged, and some of the

features were not reproducible in repeated scanning. Due to the high aspect ratio of the

SICM tip, the complete morphology of the cell was maintained in scanning using hopping

mode. However, even though AFM was operated in non-contact mode, the imaging was

made convoluted by the pedestal of the tip, i.e. the cell border was physically pressed by

the tip and therefore exhibited artificial features. Therefore, SICM was proved to be more

appropriate for live cell imaging than AFM in terms of generating the least disturbance with

soft biological samples.
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force regime.35 This is limited to flat samples, small scan sizes, and
low imaging speeds and is therefore not applicable for whole
cell imaging.

Results

Imaging ofWholeCells.The topographyof a fixed fibroblast
cell was imaged with SICM first (Figure 1a) and with AFM
afterward (Figure 1b) using an identical scan speed (20 μm/s) and
pixel resolution (160 nm/pixel). The cell body (elongated in
y-direction) and cell extensions can clearly be seen in both images.
However, there are a number of significant differences between
the two images, which we identify in the following.

1. Cell Height. The cell body appears significantly lower in the
AFM image than in the SICM image.While the cell appears with
a maximum height of 1.9 μm in the SICM height profile
(Figure 1c), the corresponding height in the AFM height profile
(Figure 1d) is only 1.4 μm (25% lower). There is also a decrease of
the apparent width of the cell body: its full width at half-
maximum height (FWHM) is 18 μm in the SICM profile and
15 μm (15% lower) in the AFM profile. The measured cell
volumes are 2760 μm3 in the SICM image and 1660 μm3 (40%
lower) in the AFM image. These differences are due to the
different tip-sample interaction mechanisms: while SICM uses
the ion current through the pipette for a noncontactmeasurement
of pipette-sample distance, AFM establishes mechanical contact
between tip and sample and applies a nonzero imaging force.15,36

This force locally indents the sample and elastic sample properties
therefore couple into the topography image.2

2. Lateral Deformation. The AFM tip laterally deforms the cell
in the direction of the scanning motion while the SICM pipette
does not. This is revealed by again considering the topography
profiles: while there is no significant lateral shift between trace and
retrace (<100 nm) in the SICM profile (Figure 1c), a lateral shift
of 1-2 μm is visible in the AFM profile (horizontal arrows in
Figure 1d). The origin of this effect lies in lateral forces between
the AFM tip and the sample3,36 and in the finite speed of the
z-feedback loop, which results in an increased or decreased con-
tact force when scanning over an ascending or descending part of
the cell, respectively. The consequence is lateral deformation
of the cell in the direction of the scanning motion. In the case of
SICM, the small lateral shift is only due to the finite speed of the
z-feedback loop and not due to lateral deformation of the cell.

3. Protruding Features. The SICM image exhibits more details
from protruding features on the cell surface. For example,
micrometer-sized objects that presumably are loosely bound
contamination particles can be seen in the SICM image (arrows
in Figure 1a), while in the AFM image these particles are not
visible or smeared out (arrows in Figure 1b) because the force-
loaded AFM tip pushes them away.

4.Cytoskeleton. TheAFMimage exhibitsmoredetails fromthe
underlying cytoskeleton. To make this point, Figure 1e,f shows
off-line zoom-ins of the boxed regions indicated in Figure 1a,b,

Figure 2. Imaging of small cellular extensions. (a) Optical phase contrast overview image of fixed fibroblast cells. (b) SICMoverview image
of the boxed region in (a). The following SICM-AFM-SICM image sequence was acquired in the boxed region, where the SICM scan area
(solid box) was slightly larger than theAFMscan area (dotted box). (c, d)Fibroblast extensionswere imagedbyusing SICMfirst. Both the (c)
“trace” image (where the probe moved from left to right) and the simultaneously recorded (d) “retrace” image (where the probe moved from
right to left) are shown. (e)Respective height profiles along the horizontal lines in (c) and (d). (f, g) In the subsequentAFM images the features
appear significantly lower and narrower (diagonal arrows). Weakly attached sections are shifted laterally by the AFM tip (thick arrows).
These observations are also apparent in the respective height profiles (h). (i, j) SICM images and (k) height profiles recorded after the AFM
images. The weakly attached sections appear stable again (thick arrows). However, one extension (horizontal thin arrow) is missing,
suggesting that itwas removed duringAFM imaging.Furthermore, another extension (dashed circle)might have beenpermanently damaged
by AFM imaging. Scale bars: 40 μm (a), 10 μm (b), and 2 μm (c, d, f, g, i, j).

Figure 1.2: (a) An image of the target cell under optical illumination. (b) An image of
local topographic scanning using SICM of the cell demonstrated in (a). (c)–(k) Comparison
of subcellular features using repeated raster scanning in reverse directions with SICM and
atomic force microscopy (AFM). Note that arrows in the images indicate structural features
of the sample. Excerpted from [18].

1.5 SICM scanning mode and resolution

The intrinsic properties of SICM, including non-contact detection and the fact that it is

performed in a buffer solution, make it an appropriate biophysical tool for the investigation

of live cells. The ability to generate reproducible imaging of a fixed object at the bottom of

a dish immersed in the electrolyte is one of the most important prerequisites for time-course

comparison of cell morphology. Happel and coworkers evaluated the reproducibility of peri-

odic scans of a single cell fixed at the bottom of some glass using line-scan mode. Although

the biggest error of standard deviation (700 nm) always occurred at the cell boundary, the

standard deviation was 50 nm at the centre of the cell, demonstrating it was highly suitable

for a relatively flat sample region [19]. On the other hand, Korchev and coworkers examined

the reproducibility of volumetric cell measurement, defined as Σ z(x,y)×dx×dy, using raster

scans with a resolution of 2.5×10−20 litres and a margin of error of less than 0.2% [20]. After



1.5 SICM scanning mode and resolution 9

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

smaller the amplitude of withdrawal, the faster is the imaging
speed. We acquired an image of a hippocampal pyramidal
neuron (Fig. 1d) by the adaptive scanning algorithm in 15 min,
whereas imaging of the same sample without adaptive scanning
would take 45 min. In contrast to raster scan techniques, adaptive
HPICM also allows one to obtain a rapid low-resolution image of
the sample to identify features of interest that will be subsequently
imaged at high resolution.

To determine the robustness of our technique, we imaged the
mechanosensitive stereocilia of the auditory hair cells in the cultured
organ of Corti explants. Several attempts have been made previously
to image stereocilia with AFM8,9 or raster scan SICM (unpublished
data; G.I.F., A.I.S., J.G. and Y.E.K.), but these
studies had never resolved even a gross
structure of the stereocilia bundle. We used
fixed specimens to compare images obtained

with HPICM and using a scanning electron microscope (SEM)
(Fig. 2a–c and Supplementary Fig. 1 online). HPICM resolved
stereocilia very well, including the shortest ones with a diameter
of B100 nm or less (Fig. 2b,c and Supplementary Fig 1b,c). We
also visualized a kinocilium (true cilium), present in these young
postnatal auditory hair cells (Fig. 2c). To explore the resolution limits
of HPICM, we imaged fine extracellular filaments (links) that
interconnect stereocilia and are crucial for their mechanosensory
function. These links could be as small as B8–10 nm in diameter10.
In wild-type hair cells, most of the links were inaccessible to the
HPICM probe because the probe approaches vertically to the
bundle. Therefore, we used abnormally short but still mechano-
sensitive stereocilia of Shaker 2 mice11 (Fig. 2d–f). Using our
HPICM probe with an inner diameter of B30 nm we resolved
these links that appeared as features of 16 ± 5 nm (n ¼ 37) in
diameter (Fig. 2f). A resolution better than the inner diameter of
the probe is not surprising because previously we had achieved a
lateral resolution of 3–6 nm with a 12.5 nm diameter SICM probe5.
HPICM uses the same sensor as SICM and, therefore, shares
the same physical principles that determine lateral and vertical
resolution (see Supplementary Methods online for discussion on
the resolution limitations). The apparent diameter of the same
stereocilia links on SEM images was 22 ± 5 nm (n ¼ 41). After
subtracting the platinum coat thickness (5 nm on both sides),
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Figure 1 | Principles of adaptive HPICM. (a) Illustration of a scanning

nanopipette probe operating in continuous scan mode colliding with a

spherical object possessing a steep vertical slope. (b) Illustration of the

hopping mode used in HPICM showing how the pipette is withdrawn to

a position well above the sample before approaching the surface.

(c,d) Topographical images of the same fixed hippocampal neuron obtained

first with hopping mode (d) and then with continuous left-to-right raster

scan mode (c), using the same nanopipette. Both images took 30 min to

acquire. An arrow in d points to the fine processes that were damaged during

raster scanning. Scale bars, 10 mm. (e) For adaptive HPCIM, the field of view

was divided into equally sized squares (bottom left). Before imaging each

square, the roughness of the sample in this square was estimated at the

corners (middle left). Very rough squares were imaged at high resolution

and smoother squares were imaged at low resolution (top left). A three-

dimensional topographical rendered image of a hippocampal pyramidal neuron

was acquired by the adaptive scanning algorithm (right). The inset (top right)

shows the resolution that was used for imaging this neuron (high resolution

in dark green, low resolution in light green).

Figure 2 | Visualization of vertically protruding

mechanosensitive stereocilia of auditory hair cells.

(a–c) Stereocilia of wild-type inner hair cells.

Arrow indicates a kinocilium (a true cilium).

(d–f) Stereocilia of outer hair cells in young

postnatal Shaker 2 mice with the extracellular

filaments interconnecting stereocilia (arrows). All

hair cells were approximately at the middle of the

cochlea. Images of the cultured organs of Corti

from the same mouse were obtained with SEM

(a,d) and HPICM (b,c,e,f). Three-dimensional

topographical rendered images are presented in

colorscale (b,e) or grayscale (c,f). Scale bars,

500 nm (a,d,e), 1 mm (c) and 200 nm (f).

280 | VOL.6 NO.4 | APRIL 2009 | NATURE METHODS

BRIEF COMMUNICATIONS

Figure 1.3: Topographic imaging of convoluted structures of stereocilia of inner and outer
auditory hair cells. (a,d) Images obtained using scanning electron microscopy (SEM) with
scale bars of 500 nm. (b, c, e, f) Images obtained using hopping–mode SICM, with arrows
indicating (c) a kinocilium and (f) filaments interlinking stereocilia. Scale bars are 1µm in
(c), 500 nm in (e) and 200 nm in (f). Excerpted from [14].

the development of hopping mode in SICM, topographic imaging of a fairly complex mor-

phology of cells became even more reliable than using DC and AC modes, as shown in Figure

1.3, although a certain amount of time resolution is sacrificed [14, 15]. Recently, Shevchuk

and coworkers have managed to make the SICM setup angular-aligned, which can allow a

simpler integration of SICM with a physiological patch–clamp system without further modi-

fication of the microscope, meaning that optical instruments with a better illumination, e.g.

phase contrast, than a traditional SICM rig is possible [21]. The photo of their rig is shown

in Figure 1.4.



10 Chapter 1

1% (w/v) tannic acid in water and subsequently washed in distilled water

twice for 10 min.

Samples were then dehydrated in a series of graded ethanol (10%, 30%,

50%, 70%, 90%, 2 � 100%, v/v). Samples were treated with hexamethyl-

disilazane (Sigma-Aldrich, Gillingham, UK) for 5 min and allowed to air

dry. Samples were then mounted on stubs and sputter coated with 10 nm

of chromium to improve conductivity, and analyzed using a LEO 1525 field

emission-scanning electron microscope (SEM) gun.

RESULTS

We have built a HPICM with an adjustable nanopipette
approach angle that can be integrated into any patch-clamp
setup, including the setups with an upright optical micro-
scope (Fig. 1). High-resolution HPICM scanning was
performed by a three-dimensional (3D) piezo actuator as-
sembly mounted on a PatchStar micromanipulator (Scien-
tifica, Uckfield, UK). The micromanipulator provided a
coarse approach and positioning for the HPICM nanopipette
over a 20 mm range in X, Y, and Z directions that covered
most of the 35 mm diameter petri dish sample area and
also allowed the complete withdrawal of the nanopipette,
which is necessary for sample change.

The approach angle of the micromanipulator can be
adjusted between 0� and 90� to the horizontal plane, which
allows imaging under high magnification objectives that
have a short working distance. The approach angle of 33�

to the surface was experimentally selected as the optimal
angle for scanning under the Olympus water immersion
objective LUMPlanFL N 40�, 0.8 numerical aperture,
3.3 mm working distance. The PatchStar micromanipulator

and the sample holder were mounted on the Motorized
Movable Top Plate (Scientifica, UK) that provided the
coarse positioning required for the selection of the area of
interest. In our HPICM for upright optical microscopes we
implemented a pipette-scanning design where the entire
XYZ scanning was performed by the nanopipette while
the sample remained in a fixed position. Such design makes
the integration of HPICM with standard patch clamp rigs
found in thousands of laboratories around the world straight-
forward. It also enables one or more extra pipettes to be
installed for either whole-cell recordings or localized
delivery as previously demonstrated for inverted optical
microscopes (20). The XYZ piezo assembly consisted of
an S-316.10 tip-tilt piezo scanner (Physik Instrumente,
Karlsruhe, Germany) that provided scanning in the XY-plane
and was mounted on the end face of a P-753.3CD piezo
actuator (Physik Instrumente) that delivered 38 mm travels
in the Z axis. At a full 1200 mrad tilt angle of S-316.10
and a pipette assembly of 50 mm length (when measured
from the piezo platform plane to the scanning pipette tip),
a 40 � 40 mm size scan in the XY-plane was achieved.
Both, P-753.3CD Z axis and S-316.10 XY axes piezos
were tuned to a 10 milliseconds time response to ensure
rapid, resonance-free imaging. An adaptor coupler was
designed to mount a standard EPS series microelectrode
holder (Warner Instruments, Hamden, CT) onto the
S-316.10 piezo moving platform. A microelectrode holder
model ESP-F10P with the side pressure port (Harvard
Apparatus, Cambridge, UK) was used to enable patch-
clamp recordings.

FIGURE 1 Photographs and schematic diagram

of experimental setup. (A) A photograph of the

HPICM rig mounted on an upright microscope.

(B) Close up view of Z and XY piezo assembly

and scanning nanopipette targeting cell sample.

(C) Schematic diagram showing the HPICM key

components and the movements in X, Y, and

Z directions that could be achieved by tilting the

nanopipette and moving it along the Z axis. To

see this figure in color, go online.

Angle SICM

Biophysical Journal 110, 2252–2265, May 24, 2016 2255

Figure 1.4: (A,B) Photographs of angular-aligned SICM installed on a microscope and (C) its
schematic illustration, with an additional freedom of angular movement in the nanopipette,
Ψ, compared with conventional SICM. Excerpted from [21].

1.6 Topographic investigations using SICM

1.6.1 Steady-state SICM in physiological conditions

Biochemical properties of live cells or the functions of an organ can usually be determined

by topographic parameters, e.g. volume, and can be linked with morphological features in

physiological conditions. Thus, SICM is a powerful and reliable tool for characterising the

topography of samples without generating physical interference with their intrinsic biological

behaviours, which is beneficial for solving different biological questions that have not yet been

answered. Usually imaging at a high resolution, of below 100 nm takes roughly 30 minutes.

In the early development of SICM, some studies focused on technical upgrading of the

technique itself, and provided evidence that it was capable of being applied to various model

cells. With the maturation of the technique, and more research groups being able to create an

SICM setup, various techniques, such as fluorescent imaging of stained cells and physiological
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patch–clamp techniques, have sometimes been applied separately to the sample in order to

address different aspects of biological phenomena in a complementary way.

Novak and coworkers have successfully visualised the extremely complex topography of

protruding stereocilia of auditory hair cells at a high aspect ratio [14], which is shown in

Figure 1.3, as well as cell lines of MCF-7 (breast cancer), HeLa (cervical cancer), CHO

(epithelial cell), myotubes in mouse myoblast cells (C2C12) and axons of a neuroblastic

cell (PC12) [15] using a hopping-mode SICM. Differentiation and transdifferentiation in

cancer cells usually decreases the effectiveness of therapies that are designed only to target

a single specific subpopulation; therefore, Liu and coworkers have also used hopping-mode

SICM to conduct pathology studies of all of three phenotypes in a live neuroblastoma SK-

N-SH cell line. In their results, cell volume, cell height and surface roughness determined

by microvilli morphology could be used to distinguish the difference between N-type, S-

type and I-type subgroups [22]. A mature ventricular cardiomyocyte, i.e. a cardiac muscle

cell, has grooved structures (Z-grooves) on its surface, and T-tubular invaginations under the

sarcolemma, which couples the functioning of L-type calcium channels to the calcium release

at sarcoplasmic reticulum. Gorelik and coworkers used SICM to obtain surface morphology

to define a novel Z-groove index to characterise detubulation quantitatively, i.e. by flattening

the Z-groove structures at the surface [23]. Lyon et al. further examine the healthy and

failing hearts of humans and rats using SICM to confirm the profound alterations of T-tubule

organisation, as shown in Figure 1.5. The loss of T-tubule openings and Z-grooves, which

interfered with calcium signalling, represented one of the phenotypic changes in the failing

human cardiomyocyte [24]. Topographic study could include both the biological samples

and the surrounding environment if necessary. Behaviours of live cells are influenced by an

extracellular matrix; topographic structures of underlying scaffolds comparable to the cell

size could therefore interact with cell biochemical characteristics. Sun and coworkers took

advantage of SICM results to investigate the morphological features of fibroblasts and cortical

astrocytes on artificial poly-dimethylsiloxane (PDMS) membranes with periodic pores (100–

350 µm in diameter) [25].
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profile, pr2) per cell length [44]. The second uses a ‘coul-
ter cell counter’ associated with software based on a
predetermined cell shape factor [45].

SICM, to our knowledge, is the most appropriate
technique for studying cell hypertrophy directly in
vitro, without damaging the sample [46,47]. Hopping
probe SICM is a fairly simple modification and an
accurate method to measure cardiac hypertrophy
(figure 5). Although the large surface area (approx.
100 � 100 mm) of a typical hypertrophic cardiomyocyte
limits the resolution of the image when recorded
with the current implementation of HPICM to just
400–200 nm, it still allows an accurate cell volume
calculation. One-day old neonatal rat ventricular cardio-
myocytes, originating from 12 rats, were grown on
22 mm coverslips. After 24 h, six coverslips were kept
as ‘control’ and the other six exposed to 10 mmol l21

phenylephrine (PE). The volume of randomly selected
15 cells in both groups was analysed using the topogra-
phy data recorded by HPICM. As expected, neonatal
rat ventricular cardiomyocytes treated with PE
showed a significant increase in volume. Figure 5a pre-
sents a control cardiomyocyte cultured for 48 h without
PE. The average volume in the control group was
1388+ 384 mm3. Culturing for 48 h in PE medium
increased the total cellular volume to 3389+ 599 mm3

(figure 5b,c). The volume of cardiomyocytes cultured
in the PE medium was underestimated in few cases

(three cells out of 15) owing to cell processes exceeding
the scan area (figure 5b). Based on the volume of other
processes included in the area, the resulting error was
estimated to be no more than 4 per cent, five times
less then the standard deviation of the mean volume
in control (approx. 3.5% of the mean, figure 5c). The
132 per cent volume increase in cardiomyocytes cul-
tured in the PE medium remained highly significant
( p , 0.01) with as well as without the three cells
affected by the volume underestimation.

4.3. Cardiac contractility

Cardiac contraction has been classically studied at the
organ level, with parameters such as ejection fraction,
pressure–volume loops and the Frank–Starling curve
being of the most importance. At the cellular level, it
translates to the study of sarcomere length and force–
velocity relationship. Moreover, cardiac contractility is
intimately regulated by multiple humoural activities
(e.g. circulating catecholamines), which work in concert
and modulate the normal function of the organ. In HF,
the parameters of cardiac contractility are extremely
important as clinical indexes, for example, reduction
of inotropy may lead to a fall in stroke volume, thereby
decreasing ejection fraction.

For investigating contractility ex vivo, a classical
approach which is still in use today calls for the direct
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Figure 4. (a) Typical surface topography image of a healthy adult cardiomyocyte. Well-organized striation and Z-grooves can be
observed. Effective pixel width 125 nm, scan duration 4 min. (b) Surface topography image of an adult cardiomyocyte from
HOCM patients shows an absence of T-tubules in this 9 � 9 mm area of the cell. (c) Z-grooves ratio index quantification demon-
strates a significant difference in HOCM compared with control cells (n ¼ 5+ s.e. in both control and HOCM patients, p , 0.05
Student’s t-test). Scanning pipette had a resistance of 100 MV and an estimated tip diameter of 100 nm. Modified from Lyon
et al. [37] with permission. (Online version in colour.)
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Figure 1.5: Topographic SICM scanning of cardiomyocytes in (a) healthy and (b) failing
heart of humans. Arrows indicate subcellular features of Z-grooves and T-tubule openings
on the healthy cell. Excerpted from [26].

1.6.2 Dynamic investigation of the whole or regions of cells

In addition to steady-state investigation, the methodology of SICM imaging has also been

widely adopted for recording time-course behaviours of samples in recent studies. Dynamics

of the whole cell or subcellular structure can be therefore resolved. Generally, degradation

of the scanning resolution to an acceptable degree may be allowed if necessary to gain suffi-

ciently high scanning speed for performing time-lapse imaging. By using SICM imaging over

time, it was first observed by Korchev and coworkers that the microvillus structure (actin

bundles) in the cell line (A6) of renal tubular cells protruded through its apical membrane

during differentiation; ventricular myocytes showed the regulation of their volumes under ex-

ternal osmotic stress, which is a phenomenon that involved, like reperfusion and ischemia in

the functioning of the heart; the T47D cell line of neoplastic breast cancer also demonstrated

FGF2-induced protruding of microvillus structures, increasing membrane roughness signif-

icantly [20]. Similar regulation of volume according to changes in extracellular osmolarity

to that discussed in [20] was also seen in hippocampal cells using a fast scan (30µ×30µ in

2 min) [19, 27]. In addition, an A6 monolayer was observed to keep its permeability integrity

by forming protective balloon-like structures at cell junctions when treated with hypertonic

stress [28]. Live cells loosely fixed at the bottom of the glass dish tend to move or develop

their growth cone with slightly limited freedom. Happel et al. observed natural movements
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of oligodendrocytes from pig white matter loosely fixed on poly-L-lysine substrate as time

passed [19, 29], and mature and immature oligodendrocytes had a migration velocity of

4.29µm/h and 0.86µm/h, respectively [27].

Evidence of the correlation between biological functions and cell morphology was shown in

work by Gorelik and coworkers, who found morphological changes in microvilli on live epithe-

lial cells (A6) in different life cycles in physiological conditions, in which a height-dependent

formation that was stable but shorter with height-irrelevant retraction of microvilli took

roughly 12 min in total to occur [30]. As shown in Figure 1.6, long time-scale (hrs) ob-

servation revealed the stretching and shrinking of A6 cells accompanied by the formation

and deformation of the microvillus structure, respectively [30]. Other detailed subcellular

structures of individual protein complexes on an acrosome-reacted boar spermatozoon were

resolved and this made it possible to observe of the very fast diffusion of complexes that were

not anchored to the cytoskeleton [31]. The inner diameter of this SICM nanopipette was

approximately 12.5 nm and achieved a resolution of 3–6 nm with the help of two-dimensional

fast Fourier transform (FFT), which is the highest SICM resolution at present [31].

1.6.3 Time-course imaging with extracellular stimulation

In addition to physiological conditions, it would be interesting to investigate the cell morphol-

ogy in a steady or dynamic state when there exists physical (e.g. mechanical and electrical)

or pharmaceutical stimulation. SICM was utilised for characterising volumetric parameters

of soma and extensions of oligodendrocyte progenitor cells treated by inflammatory cytokine,

which affected cell survival and differentiation, but corticosteroid was capable of reversing

those morphological effects applied by cytokine [32]. Similarly when they were treated with

a chemical stimulation, PC12 cells develope morphologically after three, six, or nine days

during neuronal differentiation to be more nerve-like after being treated with nerve growth

factor [33]. More studies using SICM with simultaneous chemical dosing in a bath solution

or with a local application are introduced below. A pair of temporary exocytosis-induced

surface dips on an adrenal chromaffin cell formed after stimulation of a high concentration
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fixed at room temperature (23°C) in 1% glutaraldehyde for 40
min and postfixed in 1% OsO4 for 20 min. Dehydration was
carried out with an ethanol series. The specimens were critical-
point dried from liquid CO2, sputter-coated with platinum, and
observed with a field-emission scanning electron microscope.

Results and Discussion
Xenopus kidney epithelial A6 cells form a monolayer with well
established tight junctions (Fig. 2A) and numerous microvillar
structures (Fig. 1). These microvilli are supported by the bundles
of actin filaments extending from the cortical cytoskeleton (Fig.

Fig. 1. SICM (A) and SEM (B) images of microvillar structures in Xenopus kidney epithelial A6 cells. (A) A SICM probe scanning the cell surface of an A6 cell.
(B) A SEM image of a similar A6 cell. To reveal the cortical cytoskeleton, the plasma membrane was removed by a mild detergent. (Bar � 1 �m.)

Fig. 2. Dynamics of individual microvilli in a living epithelial cell (A6 cell line). (A) Topographical SICM image of cells with well formed microvilli. (B)
High-resolution time-lapse imaging of microvilli. Microvilli that are forming, retracting, or relatively ‘‘stable’’ are highlighted orange, green, and white,
respectively. (Upper) Prevailing retraction of microvilli. (Lower) The same area at a later period, when the formation of microvilli prevails. Each image took 50 s
to acquire. The complete sequence of images acquired in the experiment is presented as Movie 1, which is published as supporting information on the PNAS web
site, www.pnas.org. (C) Heights of individual microvilli increase nonlinearly during their formation (Left); height-dependent rate of microvilli formation (n �
66) (Right). (D) Schematic diagram of the life cycle of microvilli: formation, steady state, and retraction. (E) Individual microvilli undergo linear decrease of height
during retraction (Left). Height-independent rate of microvilli retraction (n � 59) (Right). The experiment was performed at 27°C

5820 � www.pnas.org�cgi�doi�10.1073�pnas.1030502100 Gorelik et al.

Figure 1.6: (A) Topographic imaging of microvilli in an A6 epithelial cell. (B) Time-course
movements of individual microvilli in an observation window for 10 minutes. (C) Dynamics
of the microvilli formation, with growth rates dependent on their heights. (D) Schematic
diagram of the three-stage lifecycle of microvilli, including formation, steady state and re-
traction, over approximately 12 minutes in total. (E) Dynamics of the microvilli retraction,
with retraction rates independent of their heights. Excerpted from [30].

of K+ solution was imaged using SICM over a time-scale of minutes, and an increase of

surface area (roughly 67%) after dips appeared was also estimated [34]. Time-course record-

ings using SICM revealed membrane damage of living human alveolar epithelial cells (A549)

after they were exposed to 100µg/mL of toxic zinc oxide nanoparticles [35] and 50–100 nm

of amine-modified polystyrene latex nanoparticles [35] [36]. SICM also made it possible

to study the morphological changes due to stimulated P2X4-like receptors mediating Na+

channel activity caused by the addition of 2-methylthio-ATP to the basolateral side of A6

cells [37].

Cells that respond not only to pharmaceutical stimuli, but also to their biological func-

tions are also significantly influenced by extracellular mechanical force. Ibrahim and cowork-
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ers found that appropriate mechanical uploading could recover surface structures of Z-groove

and T-tubule openings and improve Ca2+-induced Ca2+ release (CICR), which is involved in

the mechanism of contraction and relaxation of a cardiomyocyte [38]. In contrast, prolonged

mechanical unloading, prolonged culture or osmotic shock with formamide in a healthy rat

heart was likely to cause malfunctioning of the CICR interaction between the t-tubule and

sarcoplasmic reticulum, which is also attributed to the disruption of surface morphology

[23, 39]. Potter and coworkers have reported that porcine aortic endothelial cells (PAEC)

isolated from descending thoracic aortas were aligned with the direction of artificially-applied

pulsatile shear stress [40]. With the help of SICM, it was also found that at the edge of

the dish wall (with directional and higher shear stress), cells showed phenotypic elongated

morphology as endothelium at atheroprotected regions; whilst cells at the centre (with non-

directional and low shear stress) exhibited morphology such as is exhibited by those at

atheroprone regions, where aterosclerosis is inclined to happen [40, 41].

1.7 Hybrid system with SICM and other techniques

Topographic investigations of live cells using SICM are currently of great interest; however,

information on morphology only is sometimes not enough to resolve complex biological mech-

anisms. Thus, researchers have put effort into combining other mature techniques that have

been broadly used in biological experiments with SICM, e.g. the physiological patch–clamp

technique, fluorescent imaging and electrochemical analysis, in order to obtain spatially func-

tional mapping. In the following subsections, various important hybrid systems with SICM

will be introduced.

1.7.1 SICM–patch-clamp hybrid technique

The Patch–clamp technique is an important electrophysiological tool that takes advantage

of the glass pipette, which can resolve single-channel conductance with a high temporal res-

olution by the opening of one or more sets of ionic channels distributed on an individual cell
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membrane. It was developed by Sakmann and Neher in the late 1970s [42], and is mainly

used for the investigation on the networks of excitable cells, for example, neurons and car-

diomyocyte cells. Before measurement, a tight contact (patch) between the pipette tip and

the cell membrane should be formed (a gigaohm seal) by the application of suction from the

back of the pipette, so only intracellular ions can flow through the aperture. The ion current

responding to the applied stimulation through the electrically-isolated patch is at the level

of tens to hundreds of picoamperes and can be recorded by a specialised electronic amplifier.

This recording configuration is termed cell-attached recording. If another means of strong

suction is applied to rupture the membrane patch, leading to a continuous connection be-

tween the pipette’s inner surface and the cell cytoplasm, it is called whole-cell recording.

This is frequently used to study electrical signals from the entire cell. The other two op-

eration modes are inside-out and outside-out recordings, which are utilised to examine the

characteristics of single-channel currents in different intracellular and extracellular chemical

environments, respectively.

However, the disadvantage of the patch–clamp technique is that it lacks the ability to

determine where the patch really is located in subcellular structures, if the probing region is

smaller than the optical resolution of the microscopic objectives. Therefore, the combination

of SICM and patch–clamp analysis provides precise positioning of the recorded channels.

Korchev and coworkers were the first to adopt a pair of nanopipettes, with one applying

whole-cell voltage clamping to a single cell to monitor its response to whole activated ion

channels, and the other conducting simultaneous localised nanodosing at each component of

the cell using SICM, as shown in Figure 1.7. When appropriate solution compositions in the

bath solution and in the nanopipette were chosen, their results exhibited successful mapping

of ATP-regulated K+ channels in cardiomyocytes, which were located in the Z-grooves of

the sarcolemma and tended to cluster together in several small groups [43].

Alternatively, in the technique using a single nanopipette, the same nanopipette is first

utilised for SICM to obtain high-resolution imaging of cell topography, with digital infor-

mation from the image saved during the scan and providing the later-stage nanopipette
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Figure 1.7: (a) Microscopic observation of a patched cardiac myocyte with an SICM
nanopipette situated right above it. (b) Schematic illustration of (a) explains how this
two-pipette patchclamp technique determines the surface distribution of a specific kind of
ion channel. (c) Topographic features of sarcolemma and (d) corresponding integrated cur-
rent recording of KATP channels. Arrows indicate subcellular locations of individual KATP

channels on sarcolemma of cardiac myocytes. Excerpted from [43].

positioning for cell patching (cell-attached mode) with nanoscale precision. Gu and cowork-

ers first used this technique to study precisely the single-channel response on Z-grooves,

T-tubule openings and scallop crests on cardiomyocyte sarcolemma, revealing the spatial

distribution of three different Cl− channels in either Z-grooves or T-tubule openings, whilst

a voltage-gated L-type Ca2+ channel in the T-tubule region controlled action potential prop-

agation through sarcomeres [44]. Gorelik et al. have further demonstrated that this method

is capable of conducting ion channel recordings in a small cell and subcellular structure, such

as in sea urchin spermatozoa and neurite junctions on superior cervical ganglion neurons [45].

Based on the technique termed the scanning patch–clamp or smart patch–clamp method per-

formed in the cell-attached mode, the functional distribution of voltage-dependent sodium

channels and tetrodotoxin-sensitive channels [46], maxi-anion channels [47] and protein ki-

nase A-dependent Cl− channels [48] were determined on ventricular cardiomyocytes. How-

ever, a nanopipette with a small aperture diameter of roughly 100 MΩ used to obtain high-

resolution imaging is merely suitable for single-channel recordings using the patch–clamp

method. To overcome this limitation, Novak and coworkers developed a method to widen

the nanopipette tip reliably to less than 50 MΩ. As shown in Figure 1.8, the experimental
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Figure 4. Whole-Cell Patch-Clamp Recordings in Small Synaptic Boutons

(A) Principle of the procedure. Left: a high-resolution topographic image was first obtained using a sharp nanopipette containing the green fluorescent

morphological tracer Alexa Fluor 488 (200 mM); middle: after identification of a suitable synaptic bouton, the pipette tip was widened (see Figure 3); and right: the

modified pipette was used to obtain a whole-bouton recording, allowing diffusion of the Alexa dye into the bouton and nearby axon.

(B) Representative passive current responses to a 10 mV square voltage command (top trace) recorded in the bouton-attached configuration (middle trace) and

after breaking into the whole-bouton configuration (bottom trace). Insert: double-exponential fit (red) of the capacitive transient.

(C) Example showing an overlay of FM-stained synaptic terminals (in red) with bright-field image of neuronal culture prior to whole-cell recording. White arrow

marks the bouton where the whole-cell recording was subsequently obtained.

(legend continued on next page)

Neuron

Ion Channel Recordings in Small Central Synapses

1072 Neuron 79, 1067–1077, September 18, 2013 ª2013 Elsevier Inc.

Figure 1.8: (A) Schematic illustration describes procedures of smart-clamp technique to
perform a subcellular whole-cell recording. (B) Characteristic voltage-clamp traces before
and after the realisation of the whole-cell stage. (C) Overlay of the fluorescent image of FM1-
43-labelled boutons and the corresponding bright-filled image, with a scale bar of 10µm,
and (D) the same overlaid images after the rupture of the cell membrane using a widened
nanopipette loaded with Alexa Fluor 488. Excerpted from [49].

protocol is as follows: (1) surface topography with a nanoscale resolution is first obtained by

SICM with a sharp nanopipette tip; (2) the nanopipette is widened using an automated sys-

tem with the same setup; (3) the predefined three-dimensional coordinates used in SICM are

used for the whole-cell analysis. K+, Na+, Cl− and Ca2+ channels at presynaptic terminals

in cultured hippocampal neurons were determined, and four operation modes of traditional

patch–clamp method were successfully demonstrated [49].
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1.7.2 SICM–fluorescence hybrid technique

Fluorescence microscopy is a mature method to observe time-resolved behaviours of dye-

labelled whole cells or subcellular structures, which are laser-excited and can be simply

acquired on a conventional microscopy without further modification. Various forms of high-

resolution imaging overcoming the differential limit have been developed, including scanning

near-field optical microscopy (SNOM) [50], laser scanning confocal microscopy (LSCM) [51]

and super-resolution image reconstruction [52]. Some of these most advanced optical meth-

ods are also combined with SICM to obtain a complementary functional image.

SICM–FRET method

The sensor, Epac2-camps, is designed to detect the optical signal of cyclic adenosine monophos-

phate (cAMP)-induced Förster resonance energy transfer (FRET). Epac2-camps is composed

of a pair of a yellow fluorescent protein (YFP) and a cyan fluorescent protein (CFP), and its

conformation, i.e. the distance between YFP and CFP, will change when a cAMP molecule

is combined with it. Viacheslav and coworkers have used this FRET microscopy coupled

with SICM to determine the distribution of β1- and β2-adrenergic receptors (βARs) on car-

diomyocytes, which are correlated with heterotrimeric guanine nucleotide-binding proteins

to produce cytosolic second messenger cAMP. They found that in failing hearts of rats,

(β2ARs) were relocated from T-tubules to crests in sarcomeres and caused diffusive cAMP

distribution [53].

SICM–SSCM method

Scanning surface confocal microscopy (SSCM) is the combination of LSCM and SICM [54,

55]. LSCM is an imaging technique which can effectively increase spatial resolution using

a monochromatic laser light source, with small apertures arranged carefully to filter out

unfocused reflecting light. SSCM inherits the merits of LSCM—high optical resolution and

high signal-to-noise ratio. As shown in Figure 1.9, the confocal volume is always set just



20 Chapter 1

below the tip of the nanopipette by a computer-controlled platform to obtain a topography-

correlated distribution of fluorescently-labelled species. In addition, the laser is designed

to be only turned on right after information on ion current and nanopipette positions has

been collected at a probing point using hopping mode, so the photobleaching of fluorophores

can be minimised. Using this technique with a resolution capable of imaging individual

fluorescent particles on the cell surface, interactions between the cell plasma membrane and

extracellular molecules can be visualised. Gorelik and coworkers utilised SSCM to recorded

the initial stages of endocytic pathways of fluorescently-labelled virus-like particles (VLPs)

being absorbed into live monkey COS 7 cells through a plasma membrane [56, 57], and an

alternative closure mechanism of clathrin-coated endocytic pits that had not previously been

reported [58]. Clarke and coworkers also used SSCM images to accertain the ratio of VLPs

among all of the virus preparation particles used in the Poisson model so that neutralization

curves of the Herpes simplex virus could be successfully fitted [59]. Shevchuk and coworkers

also used LSCM (with performing scanning) so that the cell height of contracting cardiac

myocyte and the local calcium concentration just below the plasma membrane could be

simultaneously recorded [11].

SICM–SNOM method

SNOM is another alternative method to realise high-resolution optical imaging. It involves

evanescent electromagnetic waves being focused through an aperture and interacting with a

nanoscale region, termed near-field optics; therefore, it circumvents the diffraction limit of

light to achieve high-resolution imaging. SICM provides an appropriate platform to incor-

porate SNOM, as long as the light source can be guided stably through the aperture of the

nanopipette tip. Korchev and coworkers were the first to introduce SNOM into an SICM

setup, using a 532 nm laser guided from the back of a nanopipette coated with 100–150 nm

of aluminium via a multimode optical fibre, and transmission light was finally collected by

a photomultiplier tube. They demonstrated near-field imaging of cardiomyocyte sarcomeres

to have alternating bright and dark stripes due to the periodic structures of Z-lines and
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rectly image nanoparticles on the cell surface. As a step to-

ward this ultimate goal, we have exploited the improvement in

the lateral resolution of SSCM to directly visualize single

polyoma VLPs on the apical membrane of cells using the

simultaneously recorded fluorescence image to distinguish

VLPs on the cell surface from other structures of similar

dimensions.

MATERIALS AND METHODS

SSCM

SSCM is based on a combination of SCM and SICM. SICM is a scanning

probe microscopy technique (6,9) in which the ion current flowing into a

nanopipette is used to control the vertical (z axis) position of the cell relative

to the pipette tip. As shown diagrammatically in Fig. 1 A (not to scale), in

SSCM the cell is moved up and down in the z direction while scanning is

done in the x and y directions, so its surface is always the same distance from

the nanopipette. A laser is passed up a high numerical aperture objective so

that it is focused just at the tip of the nanopipette, and a pinhole is positioned

at the image plane so that the confocal volume is just below the pipette, as

described (9). Thus, a fluorescence image of the cell surface is obtained in a

single scan, as is a simultaneously captured image of the cell topography.

The SCIM scanning head was developed in collaboration with Ionscope

Limited, UK, and mounted on a Nikon TE2000-U Inverted Microscope

(Nikon, Tokyo, Japan). The sample holder was attached to a 100-mm HERA

XY Nanopositioning System (Physik Instrumente, Karlsruhe, Germany)

used for lateral scanning. Vertical measurement and modulation were pro-

vided by 12-mm LISA XY Nanopositioning System (Physik Instrumente).

Both piezo stages were mounted on 25-mm translation stage DC motors

(Physik Instrumente) to provide coarse lateral and vertical approach. The

setups were controlled via a computer with a SBC6711 DSP board equipped

with A4D4 ADC/DAC modules (Innovative Integration, Simi Valley, CA)

using SICM software v. 1.2.00 (Ionscope Limited, London, UK). The time to

acquire a 512 3 512 pixel image was ;10 min.

Two types of nanopipettes were used for the experiments. For low-res-

olution images, nanopipettes with internal diameters ;150 nm were pulled

from borosilicate glass capillaries. High-resolution imaging was made using

quartz nanopipettes with internal diameters;70 nm. The nanopipettes were

made from 1.00-mm outer diameter, 0.5-mm inner diameter capillaries with

inner filament (Sutter Instrument, San Rafael, CA) using a laser-based

Brown-Flaming puller (model P-2000, Sutter Instrument).

The nanopipettes, backfilled with phosphate-buffered saline (PBS) and

lowered into PBS produced a resistance of;300MV for quartz and 100MV

for borosilicate pipettes. The maximum ion current measured using an

Axopatch 200B (Axon Instruments, Sunnyvale, CA), was;0.7 nA for quartz

and ;1.5 nA for borosilicate pipettes. The set point for imaging was 1% of

the maximum of modulated ion current.

The excitation light source was provided by a GPNT-02 laser diode (532-

nm wavelength, IQ1A 635 nm laser (Power Technology, Little Rock, AR).

The optical recording system consisted of a Nikon TE2000-U Inverted Mi-

croscope equipped with a 1003 1.3 N.A. oil-immersion objective. The ex-

citation light was fed through an epifluorescent filter block, and emitted light

collected by a photomultiplier with a pinhole (model D-104-814; Photon

Technology International, West Sussex, UK).

Image processing and data analysis

Matching VLP topographical structure to its corresponding fluorescent sig-

nal was done as follows. Fluorescent confocal images were used as threshold

to subtract the background, and positions of individual fluorescent spots were

marked by arrowheads and multiple spots (where individual signals could

not be resolved) circled. All positional markers were then grouped into one

template and placed over the simultaneously recorded topographical image.

As a result of this procedure, those topographical features having corre-

sponding fluorescent signal were indicated.

Image contrast enhancement included slope correction and high-pass

filtration performed similarly to previously described procedures (10,11).

The slope was calculated and subtracted from images by least-squares al-

gorithm (12), resulting in image flattening. A high-pass filter is a filter that

passes high frequencies well but reduces frequencies lower than a certain

FIGURE 1 SSCM of VLPs on the surface of a cell

membrane. (A) Schematic diagram of the SSCM (not to

scale). A conical glass nanopipette is placed over the

surface of the cells and aligned with the laser beam and

photomultiplier detector for simultaneous topographical

and fluorescence measurements while the sample stage

scans in XYZ directions. (B) A low-resolution topographical

image of a COS7 cell formaldehyde fixed after addition of

fluorescently labeled VLPs. (C) Corresponding fluores-

cence surface confocal image of VLPs obtained simulta-

neously with topography shown in B. (D) Fluorescent on
topography overlay image showing the distribution of

VLPs on the surface of the cell detected by fluorescence.

4090 Shevchuk et al.

Biophysical Journal 94(10) 4089–4094Figure 1.9: (A) Schematic illustration of scanning surface confocal microscopy (SSCM), in
which the confocal volume of a laser focused underneath via an objective is located under the
tip of a nanopipette in order to record simultaneously a topographic profile of the sample and
its surface distribution of intracellularly-labelled fluorescent dyes. (B) Topographic imaging
of a COS7 cell. (C) Corresponding surface distribution of Cy5-labelled virus-like particles
(VLPs) obtained at the same time as (B). (D) An overlay image of (B) and (C). Excerpted
from [57].

Z-grooves [11, 60]. Rothery and coworkers established a novel light source using the fluores-

cent interaction of an activated calcium indicator (fluo-3) on an uncoated nanopipette tip,

which improved the transmission efficiency of light and could therefore increase the scanning

resolution [61].
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SICM–TERS method

It is also worth noting that tip-enhanced Raman scattering (TERS) is an alternative method

for near-field optics that does not use complex nanostructures as the substrate, like nanoparticle-

on-mirror (NPoM). It would be interesting to conduct scanning TERS via an aluminium-

coated nanopipette in biological applications, which ought to have the same configuration

as SICM/SNOM. Its resolution could potentially be as high as tens of nm. To the best of

my knowledge, there have been no papers about SICM/TERS reported.

1.7.3 SICM–SECM hybrid technique

SECM method

Scanning electrochemical microscopy (SECM) is a technique to detect electrochemical pro-

cesses based on a similar concept to SICM. A ultramicroelectrode (UME), a counterpart to

the nanopipette in SICM, is used in SECM to approach to a specimen in order to detect the

electrochemical response on the substrate surface with the cofunctioning of redox mediative

species, where Faradaic current through the UME is formed via a redox mediator between

the tip and the substrate. Therefore, the kinetics of electron and mass transfers at various

kinds of interfaces in an electrochemical cell can be quantitatively recorded. A typical UME

utilises platinum or carbon as the material for a conductive wire, which is sealed by an insu-

lating sheath and is then polished to expose its disc-shaped cross section. If the size of the

tip cross section is on a nanoscale, the relationship between the UME current and potential

will demonstrate a diffusion-controlled sigmoidal curve.

The UME approach response curve when an inert insulating or a conductive substrate

electrode is involved exhibits different feedback modes, because redox species are depleted

near an insulator (negative mode) and can be regenerated close to the conductor (positive

mode). Therefore, information about rate constant of a specific redox reaction at a local area

on the substrate electrode and height of UME is obtained, where potentiostat, i.e. voltage

clamping, and cyclic voltammograms (CV) are usually conducted. Note that the height of
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the tip should be maintained at less than 10 times of the diameter of UME for perform-

ing feedback-mode electrochemistry [62]. For applications in biological samples, which are

intrinsically insulating, the substrate generation/tip collection mode is often utilised. Con-

centration and flux of targeted redox chemical species generated from a biological sample

fixed on a glass dish bottom may be mapped using SECM. In contrast, the mechanism of

tip generation/substrate collection mode is exactly reversed, with redox species generated

at the tip and collected by an insulating or conductive substrate electrode with a distance

of approximately the diffusion layer from the tip [62]. In addition, surface interrogation

mode can quantitatively analyse adsorbed species generated at a biased substrate electrode

by recording their transient Faradaic current in an electrochemical cell [63]. On a biological

sample fixed on an insulating substrate, the Faradaic current formed by the mediator flux at

the tip will be hindered with the approach to the substrate, so it can be used as a feedback

signal for the SECM imaging system, where the control of the vertical scanning direction

by a piezoelectric actuator is designed following the same concept as in SICM. The spatial

resolution and sensitivity of SECM are decided by the tip diameter and the distance between

the tip and substrate.

SICM–SECM single-barrel method

The integration of SICM and SECM has also been developed to collect simultaneously the

topography and redox activity of the target surface. SICM can provide a convenient and ro-

bust way to keep the tip at a constant height from a convoluted substrate. In addition, it may

more easily be introduced together with SECM than other methods for height-regulation,

e.g. shear-force mode [64] and AFM [65]. In principle two types of processed nanopipettes

have been adopted in conduction SICM–SECM imaging. One of these replaces the tradi-

tional UME with a modified single-barrel nanopipette with concentric coating layers of a

nanoring electrode and an insulating film at the tip [66–69]. Demonstrations of functional

mapping correlated with topographic information were carried out on fixed enzyme spots

(horse radish peroxidase (HRP) and glucose oxidase (GOD)) and single live A6 cells, superior
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cervical ganglion (SCG) cells and cardiomyocytes [66]. Sequential degradation of artificial

membrane Nafion 212 by Fenton’s reaction was also studied with this single-barrel type of

SICM/SECM probe [69]. Morris and coworkers established a similar SICM/SECM probe

but with only one half of the nanopipette coated with gold layers to detect redox reactions.

It is worth noting that this method has the advantage that a maximum forty probes can

be fabricated at one time [70]. They also managed to deposit a polyaniline (PANI) film on

the gold layer using cyclic voltammetry to turn the original probe into a pH sensor for pH

2.5–12 [71]. However, its fabrication process is rather complex, including atomic layer depo-

sition [67], sputtering followed by electrophoretic deposition [66], thermal deposition [70, 71]

or vacuum evaporation followed by electrophoretic deposition [68]. Before measurement,

this modified tip may experience focused ion beam milling in order to ensure appropriate

exposure of the detection parts.

On the other hand, Takahashi and coworkers used a carbon-deposited single-barrel nanopipette

to trace topography biased at –500 mV, as shown in Figure 1.10(a), when the redox mediator

flux is hindered at the insulating substrate (negative feedback mode), and then to measure

Faradaic current at each setpoint of the hopping mode by switching the bias voltage to be

positive. This method was verified by imaging epidermal growth factor receptors on A431

cells and by time-course monitoring of neurotransmitters released from rat hippocampal

neurons after whole cell stimulation of K+ [72].

SICM–SECM double-barrel method

Alternatively, a simple method of depositing pyrolytic graphite as a conductive electrode

in one of the channels in a double-barrel nanopipette was established by Takahashi and

coworkers, as shown in Figure 1.10(b) [73]. To simplify the fabrication method, an easier

way to combine SICM and SECM is to use a double-barrel nanopipette allowing carbon to

be deposited in one of the barrels by the pyrolytic decomposition of butane. Thus, SICM

and SECM imaging are carried out in the separate barrels. A successful high-resolution to-

pographic imaging was obtained using this double-barrel SICM/SECM probe, and K+ was
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Figure 1.10: (a) A nanopipette with concentric coating layers on the tip to create a nanoring-
shaped electrode (yellow) and an external insulating envelope (blue) in order to conduct elec-
trochemical mapping of the sample correlated with its topographic information at the same
time. (b) Schematic illustration of a relatively simple method to produce a pyrolytically-
coated graphite channel in a double-barrel nanopipette. (c) An alternative method to per-
form simultaneous topographic and electrochemical mapping of the substrate. (d) A photo-
graph demonstrates this double-barrel SICM–SECM probe. Excerpted from [66, 73].

locally delivered via the SICM channel onto a PC12 cell; at the same time the neurotransmit-

ter released from the cell was detected by the SECM electrode at the other channel [73]. The

sensitivity of the carbon-filled channel in a SICM/SECM probe can be greatly improved by

additional platinum modification [74–76]. O’Connell and coworkers used the same double-

barrel SICM/SECM probe with and without the addition of a platinised SECM carbon

probe to mapping electrochemically the catalytic activity on Pt and gold nanostructures,

respectively [75]. Thus, oxygen consumption on Pt nanoparticles [75] and hydrogen perox-

ide generated on Au nanoparticles were separately observed on a single nanoparticle level

[76]. Nadappuram and coworkers used a similar strategy to electrodeposit hydrous iridium

oxide on the carbon electrode of an SICM/SECM probe to gain pH sensitivity (pH 2–10).

The pH mapping experiment was demonstrated on a calcite microcrystal, whose dissolution

in water increases the surrounding pH [77]. With the same configuration of double-barrel

nanopipette, the SICM channel can be used to deliver a redox mediator in order to map the

concentration and flux of this molecule and the uptake rate of the live cell underneath the
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probe [78].

Some other modifications of the double-barrel SICM/SECM probe for novel applications

are listed below. McKelvey and coworkers pyrolytically deposit carbon in both channels

of a double-barrel nanopipette to generate a probe conducting generation/collection mode

between two carbon-filled openings separated by the septum [79]. Zhou and coworkers used

a double-barrel nanopipette termed a potentiometric SICM (P–SICM), with one channel

responsible for SICM topographic scanning and a second one for potential measurement,

to characterise the potential difference across an artificial membrane with poles [80] and

measure paracellular transport conductance on canine epithelial kidney cells [81, 82].

SECCM method

Single- or double-barrel SICM/SECM probes provide useful information correlating to to-

pography and electrocatalytic reactions simultaneously. Although a miniaturised probe tip

may significantly increase the spatial resolution of SECM, this is intrinsically limited by the

large volume of liquid bath solution around the sample and the probe, because the diffusion

mechanism of reacted redox mediators detected by the probe tip may not be influenced by

surrounding areas outside the detection site underneath the probe tip.

Scanning electrochemical cell microscopy (SECCM), was developed by the research group

of Professor Patrick R. Unwin [83–85], and it allows SECM to be deployed on a substrate

in a dry environment, i.e. without the need for a bath solution containing redox mediators.

Instead, as shown in Figure 1.11, the filling electrolyte in both of the channels in a double-

barrel nanopipette already contains the desired redox mediator, and at the tip of the double-

barrel nanopipette, a liquid meniscus with a precise size is established naturally due to surface

tension, with the ion current formed under the voltage application across the Ag/AgCl

electrodes in two barrels. The magnitude of the ion current is affected by the shape of the

meniscus when in contact with the substrate, which can be used as a feedback signal to

maintain the probe tip at constant height (∼150 nm) in order to realise functional mapping;

this system containing a pair of electrodes (one of them as the quasi-reference electrode) and
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a confined volume of electrolyte touching the conductive or semiconductive sample surface

(as the working electrode) is treated as a tiny electrochemical cell. The advantage of this

technique is that the interfacial electrochemistry of a dry sample surface may be investigated,

which minimises any negative influences from the electrolyte on the sample surface.

SECCM has recently been developed that can be performed with a single- [86, 87] or

a quad-barrel probe, in addition to double-barrel methods, and these have been adopted

for characterising (semi)conductive nanomaterials [88]. In a quad-barrel probe, a pair of

opposing channels is filled with pyrolytic carbon, and the other two with suitable electrolyte.

This probe can be used on insulating, semiconductive and conductive substrates with ∼100%

collection rate for reactive redox species [88]. The position of SECCM probes is modulated

with an AC signal to generate an AC component in the ion current, which is highly sensitive

to any variation in the meniscus shape; therefore, the meniscus can maintain an equal volume

during the scanning, when fluctuation of the AC component is taken as the feedback signal

for controlling the probe height. In addition to raster scanning mode, a spiral scanning

pattern was applied to achieve an ultrafast frame rate: 1000 pixels µm−2 every 4 s, as shown

in Figure 1.11 [89, 90].

1.8 Other applications for a nanopipette

1.8.1 Mechanical stimulation via a nanopipette

An SICM nanopipette can be used to apply local mechanical stress on a targeted cell via a

solution jet. It is a tool that can investigate how live cells respond to mechanical stimulus

from their environment and how they convert the stress into intracellular signals. Thus,

compliance of endothelial cells from different parts of the aorta after the treatment of var-

ious patterns of shear stress was characterised with a nanopipette applying 30–40 kPa [41].

Sánchez and coworkers also used a nanopipette to apply non-contact mechanical stimulation

onto roughly 0.385µm2 of a dendrite of human and rat dorsal root ganglia sensory neurons.
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abrupt jumps, drifts and deviations from a smooth
positioning profile, resulting in higher noise level, loss
of resolution or even a tip crash. In addition to attempts
to improve the intrinsic mechanical performance of
piezoelectric positioners,35,36 a less complicated solu-
tion stems from the use of nonraster scan patterns,
which are based on a harmonic movement simulta-
neously applied to both coordinate axes. In general,
this concept arises from the fact that tracking smooth
harmonic trajectories is usually much more reliable
than triangular signals at a given frequency. Cycloid,37

spiral38,39 and Lissajous40,41 patterns have been em-
ployed to improve AFM imaging dynamics.

In this work, we use sinusoidal probe tracking using
an Archimedes spiral pattern (see Figure 1b) that
allows continuous probe movement from the spiral
center outward (forward scan) and then back inward
toward the spiral origin (reverse scan), defined as a
parametric curve:

forward scan, s0eseπ, x ¼ R
ffiffi
s
p

sin(β
ffiffi
s
p

)
y ¼ R

ffiffi
s
p

cos(β
ffiffi
s
p

)

�

reverse scan,

π < se2π � s0,
x ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π � s
p

sin(β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π � s
p

)
y ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π � s
p

cos(β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π � s
p

)

�

(1)

The scan pattern is built up based on the value of the
angular coordinate, s, with the parameters R, β, and s0,
which determine the xy position of the probe on the
spiral trajectory. The number of loops, n, on the spiral
and the interloop distance, di, along the coordinate axis
define the values of the constants

R ¼ ndiffiffiffi
π
p (2)

β ¼ 2n
ffiffiffi
π
p

(3)

For better control of the probe and smoother transla-
tion, 2�5 loops in the spiral center are usually removed
from the pattern through the control of the offset
parameter s0.

Figure 1b,c compare the trajectory of the probe on
the x coordinate axis for the forward and reverse scans
for spiral and raster scanning routines. In raster scan-
ning, the probe trajectory consists of a number of
discrete scan lines (e.g., along the x coordinate, called
the fast scan axis), which is implemented though very
different positioning profiles on the coordinate axes,
whereas the probe movement on a spiral is applied
as two similar harmonics (with a 90� phase shift
with respect to each other). For spiral scanning, probe

Figure 1. Schematic representation of the fast scanning SECCM routine. (a) An illustration of the SECCM operation principle.
The probe is equippedwith two Ag/AgCl QRCEs with a constant bias V2 between the pipette barrels, and a variable V1, giving
rise to a substrate working electrode (WE) potential of �(V1 þ 0.5V2) vs Ag/AgCl QRCE. Harmonic vertical probe oscillations
(indicated by Δz) induce an AC ionic current used as a positionable feedback signal in a topographical trace scan, while the
recordedworking electrode current, due to an electrochemical transformation, e.g., Oxþ e�fRed, is utilized tomap the local
electrochemical reactivity (see the inset in the figure). The scanning strategy involves the acquisition of substrate topography
in an initial trace image at slow probe translation rate (few μm s�1), followed by a series of quick retrace scans using the set
of recorded spatial coordinates (x, y, and z) with a sequence of substrate potentials, applied by changing V1. (b) The
implemented spiral scan pattern for high-speed imaging (red solid and dashed lines denoting forward and reverse spirals)
compared to typical raster routine (gray lines). The arrows indicate the direction of the probe translation. (c) Corresponding
probe trajectory on the x-axis during spiral (red solid and dashed lines) and raster (gray lines) scanning.

A
RTIC

LE

Figure 1.11: (a) Schematic illustration of scanning electrochemical cell microscopy (SECCM),
which is capable of conducting dry scanning, i.e. without a liquid bath solution, on a
conductive substrate referred to as a working electrode. This technique is able to obtain
information on topography and redox reactivity on the substrate simultaneously. (b) The
fast scanning method with a spiral pattern. Solid and dashed lines indicate trace and retrace
trajectories, respectively. (c) X-axis positions of the tip during spiral-mode fast scanning.
Excerpted from [89].

At the same time whole-cell recording using the physiological patch–clamp technique or Ca2+

imaging was conducted on the sample to monitor how these activated mechanosensitive ion

channels influenced biochemical signalling in the whole cell; therefore the topographic dis-

tribution of mechanosensitive ion channels was investigated [91]. In addition, hydrostatic

mechanical pressure (0.1–150 kPa) applied through the nanopipette tip can be adjusted to be

positive or negative via tubing and a syringe, and it was quantitatively calibrated by apply-

ing force from an AFM cantilever that caused it to be bent [92, 93]. Recently, Miragoli and

coworkers applied mechanical stimulation via a nanopipette on a sarcolemma to investigate

calcium propagation in healthy and arrhythmogenic hearts [94]. Such a method was ex-

tended to perform stiffness mapping at a sub-100 nm resolution using pure colloidal pressure

[95] between the nanopipette tip and substrate, revealing structures underlying the plasma
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membrane that cannot be seen, e.g. the cytoskeleton, using conventional topographic imag-

ing [96]. Pellegrino and coworkers also utilised this weak mechanical interaction between the

current at the tip of the nanopipette at decrease criterion ≥5% to perturb the development

direction of growth cones on neurons, although this guiding mechanism, which is probably

related to the hydrostatic force has not been fully understood [97, 98].

1.8.2 Localised trapping, dosing and deposition of molecules

Localised trapping and dosing of molecules

Due to the tapered shape of a nanopipette, a high electric field (106 Vm−1) can be generated

and localised at the tip [99]. Thus, local nanodosing can be achieved by suitable pressure

and/or voltage application to the electrode inserted in the nanopipette and to that in the bath

in order to adjust the non-equilibrium forces on charged species induced by electroosmotic,

electrophoretic and dielectrophoresis flows [100]. Depending on the different amounts of

charges carried on various particles, they can be trapped at the interior of the tip or delivered

through its opening.

For instance, the delivery of DNA and antibodies can be finely controlled by each voltage

pulse via a nanopipette, and still keep their original functionality [101, 102] and trapped

during the negative half cycle of an AC signal with frequency lower than 1 Hz [103]. The

amount of DNA being delivered, which can be controlled by surface modification, the tapered

angle and the value of bias voltage, was estimated by single-molecule detection. This delivery

technique was extended for local dosing of water-soluble reagents, e.g. sodium and hydroxide

ions [104], TRPV1 agonist capsaicin at a single sensory neuron [105] or fluorescent dye, Atto

647-WGA, onto a spermatozoa to study the dynamics of Atto 647-WGA molecules deposited

at various acrosomal regions [106]. Also, roughly 100 attolitres of enzyme can be trapped

at the tip without surface modification to act on targeted substrate molecules; therefore, it

becomes a nanoreactor as long as its enzymatic production can be quantitatively analysed.

For example, alkaline phosphatase was constrained at the pipette tip and catalyse fluorescein
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diphosphate in the pipette, whilst the fluorescence of its product, fluorescein, was collected

and detected by an avalanche photodiode [107]. The number of dosed molecules being driven

out of the nanopipette by the application of voltage and pressure can be approximated by

hydrodynamic modelling and physical simulation [108]. This method was utilised by Drews

and coworkers to evaluate the toxicity of oligomers of amyloid beta, which is probably the

cause of Alzheimer’s Disease, to neuronal cells and test the effectiveness of antibodies to block

abnormal calcium homeostasis induced by oligomers of amyloid beta right at the initial stage

[109].

A novel method enables delivery even at attolitre level, which is a precision that could

not be achieved using previous systems in which voltage and/or pressure are applied to drive

molecules out of the nanopipette. Laforge and coworkers introduced an interface between the

tip aperture and the bath electrolyte, i.e. organic phase was loaded in the nanopipette. Fine

adjustment of applied voltage in the nanopipette modified the surface tension, and therefore

the liquid/liquid interface can be shifted to eject the loaded molecules or collect molecules

in the bath solution [110]. Actis et al used this electrowetting concept to penetrate the tip

of the nanopipette filled with organic phase into the cell membranes of human fibroblasts

and collect mitochondrial DNA for next-stage DNA sequencing [111]. As the SICM–patch–

clamp hybrid technique uses the same nanopipette for topographic mapping and detection,

Nashimoto and coworkers first used a similar approach to obtain a high resolution surface

scanning of a breast cancer cell (cell line MCF-7) using the SICM channel, and then a small

amount of cytosol (500–1000 fL) was collected after puncturing into the cell at a specific

position using the other organic-phase channel for quantitative analysis of mRNA at a later-

stage [112].

Molecular deposition

By using programmed nanopipette movement for localised dosing, a reagent loaded in a

single- or double-barrel nanopipette can be deposited to produce complex patterns on the

substrate, taking advantage of the mechanism of electrowetting to drive molecules out of the
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nanopipette in a precise way. In a double-barrel nanopipette system, one or two kinds of

molecules, and therefore, potentially, a combination of two colours, can be delivered to form

designed point patterning [113, 114] or even to draw complicated paintings composed of mul-

tiple points[115]. Furthermore, line pattering is possible under refined electro-oxidative con-

trol using various materials, for instance, PANI on a gold surface [116], dopamine on a highly

orientated pyrolytic graphite (HOPG) [117], and N-hydroxyethyl acrylamide (poly(HEAA))

films on a gold surface functionalised with bis-[2-(2-bromoisobutyryloxy)ethyl] disulfide [118].

Ultimately, using a similar strategy with additional monitoring of the z-axis deposition, suc-

cessful 3-dimensional printing was also reported, with copper deposited on a gold or platinum

substrate electrode, which is a breakthrough for bottom-up nanotechnology [119, 120].

1.8.3 Local detection using a tip-modified biosensor

Artificial ion-channel biosensor

The tip of a nanopipette can be modified by attaching a layer of artificially-made membrane

with embedded receptors for detecting specific ions. Bright and coworkers were the first to

study the properties of a suspended lipid membrane, or black lipid membranes, BLMs, formed

across the opening aperture at a silanised nanopipette by dimethylchlorosilane (PFDCS)

[121], and then single or multiple protein channel α-hemolysin (α-HL), which is remarkably

stable and has an inner diameter allowing a single-stranded nucleic acid to pass through,

were incorporated at the BLMs [122]. Based on a similar concept, Macazo and coworkers

also utilised (α-HL)-incorporated BLMs at a nanopipette tip that was not chemically-treated

beforehand to detect β-cyclodextrin (βCD) diffused from a glass micropore substrate below

the tip [123]. Note that α-HL is not a ligand-gated protein channel, so it would be useful if

a channel responding only to a specific ligand were used for nanopore biosensing.
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Figure 1.12: Schematic illustration of the surface-modified tip of a nanopipette performing
glucose sensing, with PLL, glutaraldehyde and glucose oxidase fixed on the interior of the
tip in stages. Excerpted from [130].

Chemically-functionalised biosensor

The inner wall surface of the nanopipette tip can be modified to respond either electrostat-

ically or ligand-receptor-interactively to targeted species in the bath solution, so the flux of

ions is influenced by this local treatment to exhibit rectified characteristics of ion current.

For a proof of concept, demonstrations of electrostatic rectification were made by coating

poly-L-lysine (PLL) [124, 125] or polyacrylic acid (PAA) at the interior of the tip; and

rectified current behaviour was also observed by Biotin–Streptavidin and antigen–antibody

recognitions at the internal part of the tip [125]. The same research group has extended

the investigation of such current rectification, termed signal transduction by ion nanogating

(STING) via the inner side of a nanopipette coated with CaM1 or silanised CaM2 for sensing

Ca2+ [126], aptamer for Thrombin [127], Chitosan and PAA multilayers for Cu2+ [128], IgG

linked to Sulfo-SMCC for HT-2 mycotoxin [129], and glucose oxidase for glucose in live cells

[130] (Figure 1.12). Note that some of the functional units were established on layers of PLL

and/or PAA on the inner wall of the tip.
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Ion-current rectification

Current rectification is also observed when an untreated nanopipette tip is at a submicron

distance from a locally-charged (positive or negative) substrate; therefore, ion transport is

significantly influenced, which is termed ion current rectification (ICR) [131, 132]. Cations

and anions in the surrounding subenvironment are, respectively, repelled and attracted when

the tip is in close proximity to a negatively-charged substrate. Perry and coworkers success-

fully utilised the same concept to realise a mapping of surface charge by characterising the

double layer on live cells [133]. This implies conventional topographic imaging actually

convolute with the distribution of surface charge. Thus, bias-modulated (BM) SICM that

applies zero net bias can solve this issue, and the surface charge can be analysed by shifting

the phase of the applied voltage signal in the nanopipette [134].

1.9 Thesis outline

This thesis focus on applications based on SICM that are relevant to the investigation of

Alzheimer’s Disease (AD), in which neuronal cells exhibit abnormal behaviours in the pres-

ence of toxic oligomeric beta-amyloid. The technique in SICM is used in order to perform

localised dosing of synthetic or naturally-secreted oligomers at a fixed height above single

cells; the real-time response of the target cell is analysed by recording either the time-

resolved fluorescence emitted from a laser-excited ion indicator that is pre-loaded in cells,

or the transduced electronic signal of a novel biosensing system over time. The structure of

the thesis is organised as follows:

Chapter 2 will introduce fundamental knowledge on the conventional setup for SICM, in

terms of its electronic characteristics and mechanical designs. SICM relies on the feedback

of the ion current; therefore, the reduction of vibrational and electrical noise that will result

in the instability of the system is critical. The parameters for fabricating a nanopipette

with a suitable aperture using a laser puller, which is referred to as the probe in SICM,

are discussed. In addition, various components, including the electrodes, the nanopipette
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holder, the piezoelectric actuator and the nanopositioner are also introduced individually.

Finally, a schematic diagram demonstrates how all the electrical components are connected,

and communicated with, to establish an automated system, making hopping mode possible,

which adopts a sample roughness-dependent algorithm.

Various modelling methods for describing the ion current and the inner electric field

are reviewed in Chapter 3, including analytical modelling that is based on an equivalent

circuit, and numerical modelling using the finite element analysis. On the other hand,

the hydrostatic and hydrodynamic mechanisms in a nanopipette are complicated due to its

tapered-shape near the tip under the application of a bias voltage between the electrodes,

with electrophoresis, electroosmosis and dielectrophoresis all simultaneously involved in the

transportation of charged carriers. For a locally quantitative dosing of molecules of interest

on single cells, it is helpful to approximate the spatial distribution of the concentration of

the dosed molecules when they leave the tip of the nanopipette. Furthermore, in order to

describe a hydrodynamic flow, Laplace, Navier–Stokes and Nernst–Planck equations need to

be coupled together in a computer simulation; the boundary conditions for these equations

are introduced. If a carbon electrode replaces the nanopipette, SECM can be conducted. In

this case, an analytical model for the Faradaic current on this electrode, which can estimate

its radius, is described.

The original experimental results and corresponding discussions are contained in three

chapters in this thesis. The examination of the effectiveness of antibodies/nanobodies, which

are designed specifically against AD or Parkinson’s Disease (PD), using the SICM platform

combined with fluorescence detection of individual cells over time is in Chapter 4. Imbal-

anced calcium homeostasis, i.e. an increase in calcium influx in astrocytes, is observed in

the presence of synthetic Abeta42 oligomers of physiological concentrations (∼pM), which

is presumably a subtle pathological sign of the early stage of AD. Subsequently, the effec-

tiveness of various antibodies/nanobodies to cerebrospinal fluid (CSF) from AD patients

are determined by whether the reduction of calcium influx with a statistical significance is

observed.
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Mechanism of entry for calcium induced by oligomers in the bath solution has not been

fully understood. One of the hypotheses of this phenomenon is that temporary membrane

interference is formed, when oligomers attempt to pass through the cell membrane. If tran-

sient pores exist, the release of cytosolic ATP is likely to be detected by an ATP sensor

located next to the dosing spot of oligomers on an astrocyte. Therefore, the establishment

of the new SICM setup, which can accommodate an angular-aligned micromanipulator for

holding an ATP sensor, in order to prove this hypothesis is introduced in Chapter 5. The

mechanical modular frame and every component used in the setup are explained, as well as

the optical table that can provide active vibration isolation, the LED light source and the

camera.

In Chapter 6, the manufacturing process for a novel ATP sensing system based on a

double-barrel nanopipette and the corresponding measurements of live cells are discussed.

At first, the two vacant channels of a double-barrel nanopipette must be filled with pyrolytic

graphite to become a pair of adjoined carbon nanoelectrodes. The size of these nanoelec-

trodes is characterised using cyclic voltammetry in a solution containing the redox mediator

FcMeOH. After this, polypyrrole (Ppy) is deposited electrochemically to bridge these two

nanoelectrodes, forming an electrolyte-gated organic field-effect transistor (EGOFET), in

order to amplify the drain-to-source current that is significantly influenced by the amount

of protons, i.e. the pH, in the surrounding environment. In the next stage, hexokinases are

maintained near the Ppy layer in order to convert an EGOFET to an ATP sensor, in which

protons are generated locally when phosphorylation of the substrate catalysed by hexoki-

nase with the involvement of ATP is carried out. Three approaches to constrain hexokinases

around the Ppy layer are examined and following corresponding measurements of the ATP

leakage from astrocytes for the first time are discussed.

Finally, Chapter 7 provides a summary of the work in this thesis, together with the

outlook for future experiments that are based on the methodology of localised dosing and

fluorescence detection, this newly-developed setup, and the novel concept of the ATP sensor

presented here.
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Chapter 2

Experimental Methods

2.1 Fundamentals of SICM

SICM is a form of scanning probe microscopy that can perform real non-contact probing

of a target substrate. A nanopipette fabricated from a cylindrical glass capillary using a

nanopipette-pulling machine is utilised as the probe, which can have a submicron tapered

tip opening. The nanopipette has to be filled with buffer solution containing the necessary

salts with its tip immersed in the same solution or a modified buffer bath reservoir, where

the targeted object is situated, to perform the measurement, as shown in Figure 2.1. Two

Ag/AgCl coated wires playing the role of quasi-reference counter electrodes (QRCEs) are

placed separately in the nanopipette and in the bath. On one of the QRCEs an appropriate

voltage bias is applied, while the other is electronically grounded. Thus, the charge carriers

in the buffer solution drift from one QRCE to the other in the direction of the electric field

generated between the two QRCEs through the aperture of the nanopipette. The supporting

electrolyte usually contains chloride ions, for example potassium chloride (KCl), so that the

applied potential of the QRCEs can be characterised by the concentration of chloride ions

in the bath solution, according to the half reactions of Ag and AgCl described in the Nernst

equation. The principle of SICM is based on the measurement of overall resistance including

an intrinsic component in the nanopipette, Rp, and a resistance as a function of the distance

37
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Figure 2.1: The cross-section of a nanopipette used in SICM is illustrated, where bias ap-
plication between a pair of Ag/AgCl electrodes immersed in the electrolyte solution in the
nanopipette and the Petri dish leads the ions to drift through the nanopipette aperture.
This ion flow will be partially hindered if an object appears within a spherical volume of
roughly the radius of the inner tip opening, resulting in ion current reduction. This corre-
lation between ion current and distance from the subject is used for SICM scanning, which
is conducted by a vertically-aligned piezoelectric actuator to hold the nanopipette and a
horizontal nanopositioner on which the Petri dish may move.

between the nanopipette and the sample surface, Rh. When the nanopipette is in proximity

to a substrate within a spherical detection region of its diameter, the ion current will be

hindered partially. This height-dependence of the ion current is amplified and sent back as a

feedback signal to the automated control system built using a vertically-aligned piezoelectric

actuator to avoid contact between the nanopipette tip and the object. It is the ionic property

around the object environment being monitored without interfering with the object itself that

is especially beneficial for the probing of a soft or even a floating biological sample to realise

a contactless scanning measurement. Furthermore, the size of the tip opening decides not
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Figure 2.2: The homemade SICM setup is installed on an inverted microscope, in which
coarse movements of the stage and the nanopipette can be carried out manually, followed
by fine adjustments by piezo actuators, in order to achieve the alignment between the
nanopipette and the target cell.

only the scanning resolution of the topographic image but also the aperture resistance for

the ion current to flow through. In general, if the tip of the nanopipette is at an inner-radius

from the sample surface, the ion current is reduced to around 99 % of its original value.

Notably the inverse of the resistance is mathematically defined as the conductance, and for

this reason this probing concept is referred to as scanning ion conductance microscopy. Our

homemade SICM is shown in Figure 2.2. More details about this setup will be discussed in

the following sections.
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2.2 Reduction of vibrational and electrical noises

Our laboratory is located in the basement of the Department of Chemistry, which may elim-

inate a certain level of ground vibration from street traffic, but foot traffic from the upper

floor, air flow from an air conditioner, and equipment coupled directly to the experiment

setup could lead to serious interference with the measurements. After identifying the source

and type of the vibrations, it is necessary to introduce a suitable vibration isolation system

on which the SICM may be arranged. Thus, this homemade SICM instrument based on an

inverted microscope (Eclipse T1, Nikon) equipped with a microscopic objective (Plan Apo

VC Water immersion 60×, MRD07601, Nikon) is placed on a passive vibration isolation

workstation (Minus K Technology, MK26, with BM-1 bench top vibration isolation plat-

form). It is designed with stiff springs and high internal structural frequencies to achieve an

ultra-low natural frequency (1/2 Hz or less vertical and horizontal), in order to reduce greatly

both periodic and random unwanted noises, usually ranging from 4-100 Hz [135]. Therefore,

this passive vibration isolation workstation acts as a low pass filter. In addition, the x-

and y-axis piezo actuators on the SICM setup for the horizontal stage motion are physically

separated from the motor and z-axis piezo actuator for vertical pipette movement, in order

to decouple the acoustic vibrations resulting from topographic scanning.

On the other hand, electrical noise and electromagnetic interference (EMI) introduced

from neighbouring electrical devices, which can lead to a false reading of the ion current

or further nanopipette damage, can be effectively reduced by shielding the setup with a

homemade uncoated aluminium Faraday cage. Electrons on the surface of the neutral Fara-

day cage will be redistributed in the presence of an external electric field, and the whole

conductor will then reach a new polarised state of equilibrium. According to Gauss’s Law,

no electric field lines will remain in the Faraday cage. Thus, in theory the stability of the

SICM setup should be improved. However, the front side of the Faraday cage is usually

left open for the user’s convenience, so the noise coming from the front cannot usually be

screened out completely; furthermore, this noise and interference do not only appear outside

the Faraday cage but can also exist in the setup itself. For these reasons, additional careful
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grounding, i.e. avoiding creating ground loops for each metal component in the setup, is

essential. Furthermore, coaxial metal sheaths encasing wires provide isolation of electrical

crosstalk between cables.

2.3 Fabrication of nanopipette

A reproducible size and shape for the tip opening of a nanopipette is critical for SICM and

its extensive applications. Here, a cylindrical glass capillary of various lengths (e.g. 7.5 or

10 cm) is adopted to produce a nanopipette using a laser-based patch–clamp pipette puller

(P–2000, Sutter Instrument), shown in Figure 2.3. Note that the patch–clamp technique is

an established physiological method for using a micropipette to investigate single or multiple

ion channels on the membrane of individual cells, and the idea of SICM originates from it.

A glass capillary of either aluminosilicate, borosilicate or quartz is used as the material

for nanopipette processing, according to the requirements of the aperture size. Usually

aluminosilicate and quartz glass have the lowest and highest melting points; whilst the

properties of borosilicate glass fall between the two. At first, when a pair of puller bars is

moved manually to the middle of the puller, the capillary must be symmetrically fixed by

clamping knobs onto the V-shaped grooves of the puller bars, which are connected to cables

delivering the pulling force of linear actuator solenoids. As depicted in Figure 2.4, a 20 W

Class IV CO2 laser beam is shone onto a reflective scanning mirror and then guided to the

middle of the capillary [136]. The divergent laser will be collected by a concave reflective

retro mirror to illuminate the other side of the capillary, with the aim of generating uniform

heat on the tubing. When the middle of the glass capillary reaches the melting point, the

centre part of the tubing will become soft and begin to be extended by the pulling force at the

two ends. At a certain point the capillary will be separated and create a pair of two identical

nanopipettes with an opening tip of the required size and tapered length. Finally, the

clamping knobs are untightened and the successfully-made pair of nanopipettes is carefully

transferred into a suitable container, which is often a Petri dish of 90 mm diameter with a

long piece of Blu-Tack attached to the middle of its underside.
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Figure 9.  Cabinet components 

 

BBBBASE ASE ASE ASE PPPPLATELATELATELATE    The metal plate on which the mechanical assemblies are mounted. 

LLLLASER ASER ASER ASER 

HHHHOUSINGOUSINGOUSINGOUSING    

The LASER HOUSING is that portion of the blue cabinet which is 

mounted on top of the BASE PLATE that encloses the laser, the scanning 

mirror and serves to protect the user from the laser beam.  There are no 

user serviceable parts in this housing. 

BBBBASEASEASEASE    The BASE includes the lower, blue cabinet to which the BASEPLATE is 

mounted as well as the transformers and the circuit board contained 

within.  There are no user serviceable parts in this cabinet. 

 

1.4.61.4.61.4.61.4.6    ElectronicsElectronicsElectronicsElectronics    

The P-2000 micropipette puller is controlled by a Z-80 microprocessor.  Three digital to 

analog converters control the HEAT, PULL and VELOCITY values.  The pull supply is a 

constant current DC power supply.  The velocity trip point is set by a D-A converter. The 

output of the velocity transducer is compared to the output of the velocity D-A to determine 

when the trip velocity is reached. 

 

 

Figure 2.3: The schematic appearance of a P-2000 laser puller purchased from Sutter Instru-
ment. A 20W Class IV CO2 laser is located in the laser housing, and the pulling assembly,
which can be covered by a lid is fixed on the base plate. The pulling operation is finely
controlled by integrated circuits and electronic components in the base via a touch-tone user
panel on the front of the base. Figure excerpted from [136].

The laser puller itself is a programmable device for outputting nanopipettes with con-

trollable parameters, including the size of the aperture, the length of the taper tip and other

features for various applications. A cycle consisting of five parameters in the manufacturing

process allows users to make adjustments using the keypad on the front panel. These are

explained as follows:

(1) Heat: the output power of the laser, which will be projected onto the middle part of

the tubing in order to melt a certain type of glass capillary;

(2) Filament: limits of the tilt angles of the scanning mirror operated on a stepper motor,

which defines the area illuminated by the laser beam during the process;

(3) Velocity: the moving speed of the pulling bars when the middle of the tubing is

melted to become viscid before the final hard pull is conducted;

(4) Delay: the period of time before the initialisation of the hard pull after the laser is

turned off;

(5) Pull: the force of the hard pull from the solenoid actuators.

The pulling program performing laser treatment can be made more complicated, i.e. mul-

tiple sets of these five parameters are permitted. For example, two lines (sets) of pulling com-
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Figure 7. Optical Pathway (top view without laser housing) 

 

LASERLASERLASERLASER    

((((FigureFigureFigureFigure    7777))))    

A C02 laser provides the heat source for melting the glass.  Laser output 

power is regulated by feedback control electronics.  The laser output 

power is specified by the program value entered for HEAT. 

SSSSCANNING CANNING CANNING CANNING 

MMMMIRROR IRROR IRROR IRROR 

((((FigureFigureFigureFigure    7777 &  &  &  & 

FigureFigureFigureFigure    8888))))    

The laser beam is projected onto the back face of the glass by a reflective 

SCANNING MIRROR.  This mirror is mounted on a rotating base driven 

by a stepper motor.  Heat application to the glass is achieved by 

repeatedly scanning the mirror between the limits of a defined 

longitudinal area that are set by the FILAMENT parameter.1    

 

                                                      
1 NOTE: Although there are 16 different FILAMENT values, the latest version of the P-2000 firmware supports only six (0 through 5) different 
(unique) scanning patterns. The range of values 6 through 10 overlaps (duplicates) the last five of the first range (1 through 5), as does the last 
range (11 through 15). E.g., Using a FILAMENT value of 6 or 11 is identical to 1, 7 or 12 is identical to 2, and so on. 

Figure 2.4: Top view of the P-2000 laser puller. When pulling is performed, the laser firstly
illuminates the scanning mirror and is then reflected by the retro mirror in order to heat
up the centre of the capillary fixed between the puller bars homogeneously in the pulling
assembly. Consequently the capillary is first pulled apart when its centre is softened due to
melting, and it then generates a pair of identical nanopipettes with targeted tip opening.
Figure excerpted from [136].

mands enable the middle of the tubing to be narrowed firstly and then to be pulled apart, gen-

erating a pair of nanopipettes with a small aperture, which is probably achieved more easily

than with a single line of command. Despite its multifunctionality, in real experiments it has

never been intuitive to obtain the desired characteristics for a nanopipette. Disadvantages of

this model P–2000 laser puller include that (1) no corresponding physical values are related to

the parameters, (2) no embedded sensors are installed to monitor how the fabrication is going

and (3) the parameters in the pulling command are not mutually independent. Thus, these

parameters are usually acquired empirically after a trial and error process (the time needed

depends on the user’s knowledge and experience) and they vary machine by machine. The

glass capillaries of an outer diameter of 1 mm and an inner diameter of 0.58 mm, 0.68 mm and

0.50 mm for borosilicate, aluminosilicate and quartz, respectively, are suggested to produce

optimised nanopipette opening tips using the parameters shown in Table 2.1 [137, 138]. As

described above, in these two-line pulling programs, the parameters of the first line allow the
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Table 2.1: List of capillary materials and corresponding optimised diameters when converted
into nanopipette tips, and the pulling programs containing five parameters: Heat, Filament,
Velocity, Delay and Pull used for P-2000 laser puller [138]. Note that in the 2-line programs,
the first row carries out the preliminary thinning of the capillary wall and the second row
the next-stage separation.

Capillary Material/ Sutter P–2000 Laser Puller
Tip Diameter (ri) Optimal Pulling Program

Borosilicate/ Heat:350, Filament:3, Velocity:30, Delay:220, Pull:none
ri ≈ 75 nm Heat:390, Filament:2, Velocity:40, Delay:180, Pull:255

Aluminosilicate/ Heat:380, Filament:5, Velocity:30, Delay:200, Pull:none
ri ≈ 50 nm Heat:420, Filament:3, Velocity:27, Delay:145, Pull:250

Quartz/ri ≈ 25 nm Heat:700, Filament:4, Velocity:60, Delay:145, Pull:175

laser to conduct the preliminary modification of the capillary thickness, followed by subse-

quent finer control. However, these parameters may need to be adjusted with time. Thus, in

our case of using borosilicate capillaries, modified 2-line parameters for generating sub 100 nm

nanopipette opening were utilised: Heat:400, Filament:3, Velocity:30, Delay:220, Pull:none

and Heat:450, Filament:2, Velocity:20, Delay:180, Pull:255. The size of the opening nanopipette

tip can be estimated indirectly by the readout of the amplified ion current, which avoids

spending time on complicated imaging procedures before each measurement.

2.4 Nanopipette holder and quasi–reference counter

electrodes

The nanopipette needs to be fixed vertically on the piezoelectric actuator using a holder

with a straight body (ESW-F10P, Warner Instruments), as shown in Figure 2.5, which is

designed for a glass tubing of 1.0 mm outer diameter. The barrel of the holder is made of

polycarbonate to reduce mechanical noise, and the nanopipette can be assembled inside the

pipette seat through a silicone washer, which is compressed by a screwed Teflon cap [139].

A silver chloride coated silver wire (Ag/AgCl) going through the barrel is able to reach the

taper of the nanopipette, and its other end is coiled and compressed onto a silicon seal by

a metal part, which allows the wire to be connected to the headstage of a current amplifier.
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microelectrode holdersE Series
E Series Straight Body Holders (continued)

4Harvard Apparatus • phone 508.893.8999 • toll free U.S. 800.272.2775 • fax 508.429.5732 • www.harvardapparatus.com

E SERIES-Straight Body Holders (Continued)
Glass

Order # Wire/Pellet Connector Port OD (mm) Model Price $
EC1 64-0999 Wire 2 mm Jack No 1.0 ESW-F10N 44.00
EC1 64-1000 1.2 ESW-F12N 44.00
EC1 64-1001 1.5 ESW-F15N 44.00
EC1 64-1002 2.0 ESW-F20N 44.00
EC1 64-1003 Yes 1.0 ESW-F10P 46.00
EC1 64-1004 1.2 ESW-F12P 46.00
EC1 64-1005 1.5 ESW-F15P 46.00
EC1 64-1006 2.0 ESW-F20P 46.00
EC1 64-1007 Vent* 1.0 ESW-F10V 46.00
EC1 64-1008 1.2 ESW-F12V 46.00
EC1 64-1009 1.5 ESW-F15V 46.00
EC1 99-0146 1.7 ESW-F17V xx.00
EC1 64-1010 2.0 ESW-F20V 46.00

port

*Vented models are standard with the Warner OC-725 Oocyte Clamp.

How to Decode E Series Model Numbers

Connector
F - 2 mm jack
M - 2 mm pin

E 45 H

Port/Vent
N - no port or vent
P - with port
V - with vent

Coupling
P - Ag-Ag CI pellet
W - AgWire

Glass Size
10 - 1.0 mm
12 - 1.2 mm
15 - 1.5 mm
17 - 1.7 mm
20 - 2.0 mm

Figure 2.5: Schematic illustration of a nanopipette holder used in SICM. The nanopipette is
inserted into the pipette seat with the Ag/AgCl electrode going through to its tip from the
left of the figure. Positive or negative air pressure can be applied through the port. Figure
excerpted from [139].

Note that a port is jointed at the barrel to apply pressure to the electrolyte loaded in the

nanopipette by a plastic syringe with a hose.

The silver wire is coated with a silver chloride layer using electrolysis (9 V) in 3 M NaCl

for 10 minutes. It may be observed that the metal wire will turn grey when the process

is completed. An Ag/AgCl wire inserted straight through the nanopipette and the other

immersed in the bath electrolyte are used as QRCEs; i.e. the Ag/AgCl wires are capable of

playing the roles of both counter and reference electrodes when the current density flowing

through them is small enough. Ag/AgCl QRCE is an ideally non-polarisable electrode,

which means Faradaic current is allowed to flow freely between the electrode surface and

the neighbouring electrolyte, so the thickness of the electrical double layer is minimised and

there is almost zero overpotential across the electrode. The potential difference between the

two identical electrode/electrolyte interfaces is therefore kept constant in the open circuit.

The half-cell redox reaction is shown as follows:

AgCl(s) + e− ⇔ Ag(s) + Cl− (2.1)

Thus, the potential E for the QRCE can be characterised by the Nernst equation:

E = E0 +
RT

nF
ln

1

aCl−
, (2.2)
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where E0 is the standard potential (0.222 V versus standard hydrogen electrode (SHE) at

25 ◦C [140]), R is the universal gas constant (8.314 JK−1mol−1), T is the temperature in

degrees Kelvins, n is the number of moles of electrons transferred in the reaction, F is

the Faraday constant (9.649×104Cmol−1), and aCl− is the chemical activity for chloride

ions. KCl is usually chosen as the inert supporting electrolyte, which fulfils the conditions

of the ionic strength in the solution being so high that the effect of the electric field on

charged carriers can be neglected. Therefore, the mass transport near the electrodes, which is

supposed to include charge migration and diffusion, can be simplified to only the contribution

of ion diffusion. Note that a saturated KCl electrolyte will make E of Ag/AgCl 0.197 V at

25 ◦C [141]. To emphasise, current is conducted by the movement of electrons and ions in a

metal electrode and in the electrolyte, respectively.

2.5 Piezoelectric actuator and nanopositioning stage

The movement of the nanopipette along the z-axis is performed using a coarse control by

a translation stage (M-111.2DG, PI), on which further fine adjustment is carried out with

a piezoelectric linear actuator (P-753.2CD, PI), as shown in Figure 2.6. The holder of

the nanopipette is immobilised on this piezoelectric actuator. The horizontal piezoelec-

tric nanopositioning stage (P-733.3CL, PI), which involves controlling the x- and y-axes, as

shown in Figure 2.7, is isolated from the z-axis stage, which avoids coupling of vibrational

noise generated from the movement of the horizontal stage being delivered to the vertical

actuator during topographic scanning. The technology for precise positioning on a nanoscale

takes advantage of the physical properties of piezoelectric ceramic materials, e.g. lead zir-

conate titanate (PZT), and the fact that asymmetric ferroelectric expansion of a polar axis

takes place under the Curie temperature, when a strong electric field (∼ 105 KV/mm) is ap-

plied [142]. This phenomenon is also referred to as the inverse piezoelectric effect, in which

electrical energy is transformed into mechanical energy.
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3 Product Description  

 10 Version: 1.0.0 PZ254E  P-753 Positioning Systems 

   

3.2 Product View 
The figure serves as an example and can differ from your stage model. 

 
Figure 1: Example of product view 

1 Moving platform 
2 Protective earth connection 
3 Cable exit 
4 Base body 
X Positive direction of motion of the stage 

 
 

3.3 Product Labeling 

 
Figure 2: P-753: Position of the product labeling (example of a view from above) 

Figure 2.6: The piezoelectric actuator used in SICM: 1 is the moving platform; 2 is the
protective earth connection; 3 is the cable outlet; 4 is the base metal bulk; X denotes
the moving axis of the platform with a maximum closed-loop travel of 25 microns. The
nanopipette holder is firmly fixed on the top of the platform via a linker, and the nanopipette
tip therefore also points in direction X. The actuator is placed vertically on the SICM setup.
Figure excerpted from [143].

2.6 Other electronic devices in SICM

The instrument configuration and data processing for SICM scanning is explained in Figure

2.8. An SICM control system must be established using a combination of a processing unit,

analogue-to-digital converters (ADCs) and digital-to-analogue converters (DACs). In the

real world, any kind of signal exists in a continuous form, which means its physical values

(e.g. temperature) change with time continuously. However, a computer can only manage

digitised data, so all of the analogue signals acquired by input devices have to go through

ADCs to be sampled, quantised and encoded to become time-discrete and then stored in a

computer memory. On the other hand, output devices may need these digital data to be

converted back to analogue signals via DACs and processed by reconstruction filtering and

amplification. In our setup, a USB/PCI board (SBC6711, Innovative Integration) contain-

ing digital signal processing (DSP) (TMS320, Texas Instruments) and a field-programmable

gate array (FPGA) (Spartan-3, Xilinx) is adopted. FPGA has an array of logic blocks

which allows the user to program and design freely to execute simple to complex functions

(e.g. from a logic gate even to a microprocessor). In our case, the FPGA is a platform

interconnecting the DACs, ADCs and DSP. Therefore, our SICM control system is able to

digitise the amplified signal of the raw ion current flowing through a pair of QRCEs, with
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 3 Product Description 

P-73x Nanopositioners   PZ103E Version: 1.0.0 11 

   

3.2.3 Precision Z Stage 
Model Description 

P-733.ZCD Compact Precision Nanopositioning Vertical Stage, 100 µm, 
Capacitive Sensor, Sub-D Connector 

P-733.ZCL Compact Precision Nanopositioning Vertical Stage, 100 µm, 
Capacitive Sensor, LEMO Connector 

 
 

3.3 Product View 
The illustration serves as an example and can differ from your stage model. 

 
Figure 1: Example of product view 

1 Moving platform 
2 Base body 
3 Cable outlet 
4 Protective earth connection 

 
 

Figure 2.7: The nanopositioner used in SICM: 1 denotes the moving platform with a rect-
angular cavity; 2 the base bulk; 3 the cable outlet; 4 the protective earth connection. The
stage is arranged horizontally with a maximum closed-loop travel of 30µm × 30µm, and
with the Petri dish placed in the cavity via an adaptor. Figure excerpted from [144].

parameters being adjusted via a graphical user interface written using Delphi integrated de-

velopment environment (IDE), and analogical feedback positioning of piezoactuators is then

performed. It is worth mentioning that the SBC6711 board we used (DSP+ADCs+DACs)

has been discontinued by the company; however, any similar arrangement with input/output

(I/O) plus CPU may fulfil the task of automated controlling. For example, a combination

of FPGA (RC-240, Mentor Graphics)+ADCs+DACs, digitizer (digidata 1550B, Molecular

Devices)+any kind of CPU, IO INTERFACES (OpenIOLabs), or LabVIEW FPGA Module

(PXI-7854, National Instruments) could all accomplish the scanning task.

A modular piezo controller (E-500.00, PI), which contains power amplifiers (LVPZT-

AMPLIFIER) and sensor/servo controllers, is adopted to control and monitor the motion of

the piezoelectric actuator and stage. The position of the stage is monitored without contact

with individual pairs of capacitive sensors installed in the actuator and the stage [145].

Between the surface plates (one referred to as the ”probe” and the other as the ”target”)

on those pairs of capacitive sensors, a homogeneous electric field is applied [144]. There is

a change in capacitance according to the distance between the two plates to be measured.

These signals regarding the stage position are inputted to the sensor/servo controller for the

next stage of processing by the DSP and the computer. Note that a sensor monitor on the

controller can optionally provide the output of instantaneous signals acquired by the sensors.
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Piezoelectric Actuator
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Simpli�ed Patch-Clamp
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Converters (ADCs)
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Figure 2.8: The configuration of the SICM setup, which is composed of a piezoelectric
actuator controlling the vertical movement of the nanopipette, a horizontal dish-holding
nanopositioner, a modular piezo controller, a patch-clamp current amplifier, an FGPA-based
SICM controller and a computer installed with a programmable user interface.

The parameters are set by the same computer interface for piezo positioning, and the signal

subsequently arrives back at the servo. Finally, offset-adjustable command signals amplified

by the amplifier module, ranging from –30 to 130 V, for the movement of actuator and stage

are delivered to drive the actuator and stage.

In fluorescence-imaging experiments, a dye-labelled specimen is excited by a laser of

wavelength 480 nm or 550 nm, and its fluorescence is guided through a beam splitter (DV2,

MAG Biosystems) and collected by a high-sensitivity electron-multiplying charge-coupled

device (EMCCD) (Ixon+, Andor). EMCCD made on a silicon wafer has the advantages of

high sensitivity (<1e− with EM Gain) and faster speed operation (>10 MHz) compared to

a conventional CCD [146]. The electron-hole pairs generated by the illumination of pho-

tons are multiplied by high-voltage-induced impact ionisation before output amplification;
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therefore, readout noise is no longer a constraint for achieving low light imaging and single-

molecule detection. Furthermore, the EMCCD detector is loaded in a cryostat to reach a

low temperature of –95 ◦C for the reduction of dark current noise [146].

2.7 Operating modes of SICM

Topographical scanning in a conventional scanning probe microscopy (SPM) is often operated

in a raster fashion, which is the same for SICM. In Figure 2.9 (a1), when direct current

(DC) mode is used, the nanopipette tip moves continuously in a single direction and the

ion current is measured until it reaches the preset scanning boundary, and the tip will be

moved each time to another parallel but reversed probing direction. Under the tip there is an

effective spherical volume where a constrained ion current flows through the tip. The total

amount of ion current piercing this volume will be reduced when it approaches the substrate.

Thus, it can be used as the vertical distance feedback, and a preset current reduction (a so-

called setpoint) should be maintained in order to keep a constant distance between the

tip and the substrate. All the displacements of piezoelectric actuators are recorded and

converted into the height at all probing points. Although DC mode is fast and sensitive to

the substrate, as it can sense a slope, it is still not appropriate for soft biological samples

with high surface roughness, because the nanopipette may not be able to respond in time to

a steeply topographical change before it has made contact with the edge of the object. As

shown in Figure 2.9 (a2), the ion current decreases abruptly when the tip approaches the

sample surface in DC mode. If any unexpected current drift occurs, the nanopipette is likely

to go out of control or even crash.

The alternating current (AC) mode shown in Figure 2.9 (b1) has achieved a better perfor-

mance with relatively convoluted samples than DC mode, by means of applying a modulating

electrical component to the original DC current, leading to a modulating amplitude in the

nanopipette. This vertical vibration of the nanopipette tip improves feedback sensitivity,

especially when the nanopipette is in close proximity to the sample surface, which makes it
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less likely to crash. In Figure 2.9 (b2), the AC component of the ion current is increased dra-

matically when the tip almost touches the substrate, so its vertical sensitivity is much higher

than in DC mode. Therefore, in our system, AC mode is utilised for the nanopipette tip to

find the surface of the Petri dish bottom before any measurement is performed. However, AC

mode scanning does not provide any particular improvement in lateral sensitivity because

part of the detection volume may be blocked by a steep slope, so the measured current may

not change accordingly, leading to physical contact with the object. As a result, AC mode

still fails to scan highly undulated samples.

To solve this problem in scanning, in hopping mode, as shown in Figure 2.9 (c1), the

nanopipette is designed to be lifted to a sufficient height above the sample to recalibrate

the current value, which is a considerably away from the substrate, before starting each

new independent lateral scanning point [147]. This circumvents the possibility of collision,

which exists in pure DC and AC modes, and instead provides highly-contoured samples.

Although this method of segmented approaches successfully reveals complex features of a

sample without crashes, the scanning efficiency is compromised, so more time is spent than

in DC and AC modes. It is possible to speed up the acquisition process by automatically

adjusting suitable resolutions in sub-scanning-squares according to the surface roughness,

which is illustrated in Figure 2.9 (c2). First, a lower resolution is adopted, so the ion

current at the four edges of a predefined square is detected, and then an adaptive number

of scanning points is chosen based on the current difference at these corners. The quality of

the topographic image can usually be improved significantly when SICM is operated using

this hopping mode. AC and DC hopping modes can both accomplish the task.
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Figure 2.9: Schematic illustration of (a1) DC mode, (b1) AC mode and (c1) DC hopping
mode in SICM. The dotted line represents the scanning route of the nanopipette in DC
mode, while the solid curves represent the modified trajectories in AC and hopping modes.
Approaching curves shown in DC mode (a2) and AC mode (b2) describe the corresponding
ion current through the spherical detection volume to the distance between the nanopipette
and the substrate, where d/ri is the nanopipette height normalised to the nanopipette inner
radius. The AC part shown in the red curve in (b2) is significant due to modulating actuator
movement, as shown in the inset. Iac becomes dramatically larger when the nanopipette
height approaches zero. (c2) Adaptive scanning protocols according to the surface roughness
in hopping mode. Adjustable scanning resolution correlates to the difference of the measured
ion current at four corners of the preliminary scanned square. Figures excerpted from [148].
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Physical models of nanopipette

applications

3.1 Physical models of the ion current through a nano-

pipette

In SICM, the electrical behaviour, i.e. the ion current flowing through the nanoscale aperture

of a conical nanopipette driven by the application of the voltage difference between a pair

of QRCEs, can be modelled as an effective circuit, as shown in Figure 3.1. It is composed

of a series-parallel connection of resistors, capacitors and a voltage source, including the

resistance for the bulk of the nanopipette, Rp; the resistance related to the size of the

nanopipette tip opening, Rr; the resistance influenced by the height of the nanopipette tip

to the substrate underneath, Rh; the resistance for the electrolyte outside the nanopipette,

Re; the capacitance due to the surface charges on the glass wall, Cp; and the unavoidable

stray capacitance, Cs, which usually exists between electronic components of instruments in

proximity to one another.

53
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Figure 3.1: The effective circuit for a nanopipette immersed in the electrolyte. Rp, Rr, Rh

and Re represent series-connected resistances related to the bulk of the nanopipette, the
tip opening, tip-sample separation and the surrounding electrolyte, respectively. Cp is the
capacitance established due to surface charges, and Cs is the stray capacitance, the so-called
parasitic capacitance, that is usually formed in electronic circuits. In addition, a connected
voltage source, which, in practice is usually a patch–clamp amplifier, provides a fixed voltage
difference for this effective circuit.

3.1.1 Analytical modelling of the ion current

The modelling geometry of the nanopipette is depicted in Figure 3.2. In the fully analytical

expression developed by Nitz et al [149], only the most significant resistances, Rptotal, which

comprises Rp and Rr in series, and Rh are considered. Note that Re is negligible in the
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H ri 

ro 

θ 

rpb 

L 

Figure 3.2: The cross-section of a nanopipette, which shows the parameters used in the
physical models in this section. ri, ro and rpb are the radii measured from the centre at the
aperture to the inner glass wall, to the outer glass wall, and to the inner wall of the tip base,
respectively. L is the length of the tip, whilst H is the distance between the tip opening and
the substrate. θ is the half-cone angle of the nanopipette.

electrolyte. Rptotal can be written as:

Rptotal =
1

σπ

∫ L

0

dz

(ri + ztanθ)2

=
1

σπtanθ

(
1

ri
− 1

rpb

)
, (3.1)

where σ is the electrolyte conductivity, L is the length of the nanopipette tip, ri is the inner

radius of the nanopipette tip opening, and rpb is the internal radius of the tip base. If ri is

much smaller than rpb, then

Rptotal =
L

σπrirpb
, (3.2)

where tanθ is rpb/L. On the other hand, the height-dependent resistance, Rh, is given by
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[150]:

Rh =

3

2
ln

(
ro
ri

)
σπH

, (3.3)

where ro is the outer radius of the nanopipette tip opening and H is the distance between

the nanopipette tip and the substrate. Rh increases with reduced distance between the

nanopipette tip and the sample. Therefore, the overall ion current in the direction of the

nanopipette movement (the z–axis), operated at DC mode, IDC(H) can be approximated

as:

IDC(H) =
V

Rptotal +Rh

≈ Isat

1 +

3

2
ln

(
ro
ri

)
rpbri

Hd


−1

, (3.4)

where V is the applied bias voltage and Isat is the saturated ion current when the nanopipette

is still far away from the substrate. Isat is the maximum DC ion current that can be obtained

in the measurement and is given by:

Isat =
V

Rptotal

, (3.5)

In AC mode, a modulating part of the current is introduced into the DC component.

Thus, the AC component, IAC , is given as [151]:

IAC(H) =

∫ T

0

IDC(H + Asin(ωt))sin(ωt)dt, (3.6)

where T is the AC period, A is the voltage amplitude of the AC signal, and ω is the angular

AC frequency. With the addition of the AC part, the change of IDC(H) to the nanopipette-

to-surface separation becomes very sensitive compared to a typical DC approach curve and

therefore more suitable for a contoured sample in the SICM scanning.
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3.1.2 Numerical modelling of the ion current

A 2-D comprehensive model for the ion current using the finite element method (FEM) is

reported by Edwards and the co-authors. FEM is a form of numerical analysis, in which

multiple partial differential equations (PDEs) are coupled for describing the physics in the

discretised geographic domain (called meshes or elements). Consequently, calculus of vari-

ations is adopted to calculate solutions that have the minimum error functions. Here, a

2-D cylindrically symmetric geometry of the nanopipette, QRCEs and the bath solution is

established and resulting approximations are made. Firstly the distributed electric potential

is calculated by Poisson’s equation, which is given by:

∇2V =
−ρ
ε0

, (3.7)

where ρ is the charge density in the domain, and ε0 is the vacuum permittivity. Assuming

there is no space charge inside the nanopipette walls, the right-hand side of Equation 3.7 is

zero, resulting in Laplace’s equation (in a cylindrical coordinate system):

∇2V =
∂2V

∂r2
+

1

r

∂V

∂r
+
∂2V

∂z2
= 0, (3.8)

The solved potential, V , can be then fed into the expression for ion current, which is the

integration of the current density along the electrode boundary, Ω, written as [150];

I = 2πσ

∫
Ω

r∇V · n̂, (3.9)

where n̂ is the unit vector perpendicular to the surface. Equation 3.9 can be simplified using

further approximations, e.g. σ and V may be set to be unity, so that the solutions have free

parameters, which can be made to fit numerically with experimental results. This simplified
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ion current in a spherical coordinate system is then written as [151]:

I =

∫ 2π

0

∫ χ

0

(
− β
r2
o

)
σr2

osinϕdϕdθ, (3.10)

where β=rori/(ri − ro), and χ is the semiangle of the inner nanopipette. Defining appro-

priate zero-charge boundary conditions (∇V · n̂=0), the physical expressions for the electric

potential and ion current are coupled, and therefore the associated values are calculated

repeatedly during iteration in order to find the final solutions. For a more complicated ge-

ography, sometimes a 3-D simulation is necessary. In principle this is feasible if the same

zero-charge boundary conditions are defined, and the 3-D Laplace’s equation and an analogue

expression for the ion current are adopted.

3.1.3 Analytical modelling of the electric field

Ying et al propose that under the assumptions of zero surface charge and constant ion

current throughout the nanopipette, a small variation in the applied bias voltage at the

z–axis, dV (z), may be written as [100]:

dV (z) = −IdRtotal = − Idz

πσ(ri + ztanθ)2
, (3.11)

where z is the distance from the tip opening of the nanopipette. Integration of dV (z), if ri

is much smaller than the length of the nanopipette, L, shows that:

V (z) =
ri

ri + ztanθ

I

πσritanθ

=
ri∆V

ri + ztanθ
, (3.12)

where ∆V=1/(πσritanθ), and ∆V refers to as the whole difference of the applied voltage

across the nanopipette. Therefore, the electric field along the z-axis can be simply derived
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by:

E(z) = −∇V (z) =
∆V ritanθ

(ri + ztanθ)2
. (3.13)

3.2 The Physics of fluid mechanics in a nanopipette

3.2.1 Effects of electrophoresis, electroosmosis and dielectrophore-

sis

The nanopipette has the advantage of delivering molecules and ionic particles in a reagent

onto the target locally and precisely. However, interactions between the particles and the

electric field at the tip of the nanopipette is complex, because multiple mechanisms that are

not in thermal equilibrium are involved, which include (1) electrophoresis, (2) electroosmosis

and (3) dielectrophoresis.

Electrophoretic flow is widely observed and used as the basic principle in the technique

for molecule separation. A uniform external electric field in a solution containing randomly-

suspended particles possessing surface charges results in the electrostatic force on these

particles generating directional movement along the electric field lines. The motion of a

particle with a surface charge is simultaneously impeded by the reverse movement of its own

electrical double layer (EDL), in which ions carry an opposite charge of the same amount as

the particle itself in order to maintain the electrical neutrality. The electrophoretic velocity,

~vep, is simply written as [108]:

~vep = µep ~E, (3.14)

where ~vep is the electrophotetic mobility. This can be obtained by a special form of the
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Einstein relation [108]:

µep =
qD

kBT
, (3.15)

where D is the diffusivity of the particles, kB is the Boltzmann factor and T is the temper-

ature in Kelvin.

The electroosmotic flow is the influence of the electric field on the EDL at the interface

between the liquid solution and the inner wall of the nanopipette. The nanopipette is made

of glass, whose SiOH group carries intrinsic negative charges and therefore naturally forms

positive charges in the other half of the EDL in the electrolyte. When the diffuse layer in the

EDL on the nanopipette wall is pushed forwards or backwards by the Coulomb force, the

electrolyte solution will be dragged with it in the same direction, forming a plug-like flow.

The moving velocity of this electroosmotic flow is given by [108]:

~veo = µeo ~E, (3.16)

where µeo is the electroosmotic mobility. This can be calculated by [108]:

µeo = −ε0εrζ

η
, (3.17)

where εr is the relative permittivity of the electrolyte solution, ζ is the zeta potential due to

the EDL on the nanopipette wall, and η is the solution viscosity.

The third mechanism is dielectrophoresis, which occurs in every dielectric particle in the

presence of a non-uniformly-distributed electric field. The dielectric particle is polarised in

the non-uniform electric field, generating an induced dipole moment. In the tapered tip of

the nanopipette, the electric field nonlinearly achieves its maximum value at the opening, and

therefore dielectrophoretic flow certainly exists, although it is not necessarily a dominating

mechanism in the fluid. The magnitude and direction of the dielectrophoretic force, ~Fdep is
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determined by the intrinsic electric properties of the particle itself. Assuming the particle is

spherical with low Reynolds numbers, it is written as [100]:

~Fdep = 2πR3εmRe(CM)∇|Erms|2, (3.18)

where R is the particle radius, Erms is the root mean square of the applied electric field,

εm is the permittivity of the bulk medium and Re(CM) is the real part of the complex

Clausius-Mossotti factor. The direction of ~Fdep can be either along the electric field lines or

against them, and this is decided by the polarisability relation between the particle and the

medium surrounding it, and indicated by the Clausius-Mossotti factor. When the particle has

polarisability higher than the medium, ~Fdep exerted on the particle makes it move towards the

region with lower electric potential, and it is termed positive DEP; when the converse is the

case, it is called negative DEP. Dielectrophoresis has been widely applied in cell separation

in microfluidics. The velocity of the particle due to ~Fdep is given by [100]:

~vdep =
~Fdep
f

= µdep∇|Erms|2, (3.19)

where f is the frictional parameter of the particle, and µdep is 2πR3εmRe(CM)/f .

3.2.2 Approximation of the concentration of localised nanodosing

Approximation of the current density, ~J , can be made to estimate the amount of molecules

being dosed locally on the substrate. The flux of ions driven by the electric field, applied

pressure and molecular concentration gradient is written as:

~J = −D∇c+ (~vp + ~vep + ~veo)c, (3.20)

where c is the chemical concentration, and ~vp is the velocity of molecules induced by applied
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pressure. Note that the impact of dielectrophoresis is negligible because the molecular polar-

izability is small, and the motion of the fluid itself is also ignored here. On the assumption

that c is only a function of the radius of a sphere, R, centred at the nanopipette tip, and

c(R) can be approximated as [108]:

c(R) = c0

[
1− exp(

−Qtotal

4πDR
)

]
, (3.21)

where c0 is the molecule concentration inside the nanopipette further away from the tip,

Qtotal is the total volumetric flow rate of molecules. If the nanopipette is at a distance of H

above to a substrate, the distribution of dosing molecules will be different from that shown

in Equation 3.21. Therefore, the mathematical treatment of c(R) needs to be changed to

[108]:

c(r) = c0

(
1− exp

−Q
4πD

√
r2 + (H − z)2

)
+ c0

(
1− exp

−Q
4πD

√
r2 + (H + z)2

)

= c0

(
2− exp

(
−Q

4πD
√
r2 + (H − z)2

)
− exp

(
−Q

4πD
√
r2 + (H + z)2

))
(3.22)

where r is the radial position in the geometric domain shown in Figure 3.3. c(r = 0, z = 0)

indicates the dosing concentration vertically below the nanopipette on the surface, which

usually has a value much lower than c0. It is given by:

c(0) = 2c0

(
1− exp

−Q
4πDH

)
, (3.23)

According to the Hagen–Poiseuille law, the flow rate in the nanopipette due only to the

pressure drop across the nanopipette is given by [92]:

Q∆P =
3πr3

i tanθ

8η
∆P. (3.24)

Therefore, when ∆V and applied pressure difference, ∆P , are considered simultaneously in
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Figure 3.3: The schematic explanation of boundary conditions, numbered from (1) to (7),
used in the 2-D geometry of various physical models for a nanopipette. ri and ro are the
inner and outer radius of the tip opening, respectively. H is tip–sample separation; θ is
the half-cone angle of the nanopipette; R0 is located at the top-left corner of the geometry.
r and z axes are situated on the surface of the substrate and the conical centreline of the
nanopipette.

the system, and combined with 3.13 and 3.24, Qtotal can be rewritten as:

Qtotal = Q∆V +Q∆P

= (µep + µeo)π(ri + ztanθ)2 ritanθ∆V

(ri + ztanθ)2
+

3πr3
i tanθ

8η
∆P

= (µep + µeo)πritanθ∆V +
3πr3

i tanθ

8η
∆P

=

(
qD

kBT
+
−ε0εrζ

η

)
πritanθ∆V +

3πr3
i tanθ

8η
∆P. (3.25)

where Q∆V and Q∆P are the flow rates contributed only by the application of the bias voltage

and pressure via a syringe, respectively.
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3.2.3 Physical models for the hydrodynamic flow

In this section, Navier–Stokes equations governing the flow of a viscous fluid in the presence

of an external electric field and/or with the application of pressure are introduced, which are

coupling nonlinear PDEs assuming the conservations of mass, momentum and energy. For

the purpose of simplification, firstly, approximations are made: the fluid in the nanopipette

is assumed to be an incompressible Newtonian fluid with a low Reynolds number (Re≈

ρ~vri/η �1), which means that it is a viscous laminar flow (there is no turbulence in the

nanopipette) of constant density throughout and its shear stress, τ , follows the formula given

by [152, 153]:

τ = η
d~v

dz

∣∣∣∣
z=0

, (3.26)

where d~v/dz is the strain rate. In incompressible Navier-Stokes equations, the equation for

the conservation of momentum, which can be considered as derived from Newton’s Second

Law of Motion, is written as [108, 152, 154]:

∂~v

∂t
+ (~v · ∇)~v = −∇P

ρ
+
η∇2~v

ρ
+ F, (3.27)

where F is the applied external force per unit mass. The continuity equation, which is the

result of the conservation of mass, is given as [108, 152, 154]:

∂ρ

∂t
+ ρ∇ · ~v = 0

⇒∇ · ~v = 0 (3.28)

where ∂ρ/∂t = 0 for incompressible fluids. Finally, the equation representing the conser-

vation of energy is actually decoupled from the incompressible Navier-Stokes equations, as

there are no energy-related terms entering into the continuity (Equation 3.28) and momen-

tum equations (Equation 3.27). The nanopipette geometry can be depicted as shown in
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Table 3.1: A table listing the physical equations for modelling the electrostatic, charge-
transport and hydrodynamic behaviours and their corresponding boundary conditions.
These numbered boundaries are noted in Figure 3.3.

Physical Models and Corresponding Boundary Conditions

Laplace Equation
Boundary Physical Description

(1) Axial symmetry

(2) ~Ez(R0) = (∆V − VR0)
tanθ

R0

(3) V=0
(4) n·∇V=0, zero charge
(5) n·∇V=0, zero charge
(6) n·∇V=0, zero charge
(7) n·∇V=0, zero charge

Navier–Stokes Equations
Boundary Physical Description

(1) Axial symmetry

(2) ~v = −
(

2(R2
0 − r2)Q∆P

πR4
0

+ µeo(∆V − VR0)
tanθ

R0

)
ẑ

(3) P=0; no viscous stress
(4) no-slip
(5) ~v = −µeo∆V
(6) ~v = −µeo∆V
(7) no-slip

Nernst–Planck Equation
Boundary Physical Description

(1) Axial symmetry
(2) c = c0

(3) c = c0

(
2− exp

(
−Q

4πD
√
r2 + (H − z)2

)
− exp

(
−Q

4πD
√
r2 + (H + z)2

))
(4) no flux
(5) no flux
(6) no flux
(7) no flux

Figure 3.3, and the corresponding boundary conditions for various physical models are listed

in Table 3.1 [108].
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3.3 Analytical modelling of the Faradaic current on a

nanoelectrode

The internal space of the nanopipette can be filled with a conducting material, e.g. carbon

or platinum, to form a nanoelectrode, as illustrated in Figure 3.4. This electrode is wired to

a voltage source, and electrochemical measurement can be performed in the bulk solution

with a conjugate redox pair. The Faradaic current in the electrolyte solution underneath

the disc-shaped conducting surface at the opening of the tip is diffusion-limited, if the redox

reaction at the surface achieves saturation. Cyclic voltammetry of this kind of nanoelec-

trode demonstrates a sigmoid-shaped curve, and the saturated Faradaic current, Is, can be

approximated as [155]:

Is =
nFCtot
Rt

, (3.29)

where n is the number of electrons involved in the electron transfer, F is Faraday’s constant,

Ctot is the total concentration of redox species in the electrolyte, and Rt is the resistance

of mass transfer. For the ideal disc-like tip opening of a nanoelectrode, Rt is written as

1/4D′rne, where D′ is the diffusion coefficient of the redox mediator, and rne is the radius of

the nanoelectrode. Thus, Is is written as [72]:

Is = 4.64nFCtotD
′rne. (3.30)

By Equation 3.30, the radius of a disc-shaped nanoelectrode can be estimated.



3.3 Analytical modelling of the Faradaic current on a nanoelectrode 67

Ag/AgCl wire Glass 

Carbon 

Electrolyte 

V 

Ag wire 

Ox Red 

Figure 3.4: A schematic representation of a carbon-filled nanopipette, which is termed a
nanoelectrode, performing electrochemical measurement in the electrolyte containing an ap-
propriate redox pair. The oxidised species diffusing to the surface of the nanoelectrode is
reduced in the presence of a bias voltage provided via a connected voltage source.
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Chapter 4

Nanodosing and detection to probe

Alzheimer’s disease

4.1 Introduction to Alzheimer’s Disease

Dementia is a collective name for a group of diseases that are more common in ageing popula-

tions, involving symptoms affecting the daily lives of patients, especially problems concerned

with memory, language and perception. Among these, Alzheimer’s Disease (AD) is respon-

sible for 60–80% of dementia cases, symptoms of which include short- to long-term memory

loss, difficulty acquiring new knowledge, motor coordination problems, disorientation, and

even death due to infection [156]. AD is a neurodegenerative disease, which means the loss

of neuronal cells develops progressively in the human brain, particularly in the hippocampus

and the cerebral neocortex [157]. Thus, certain brain functions are permanently influenced

or even completely lost. The cause of AD is still poorly understood, due to the fact that the

brain itself is very complex, and currently there is a lack of proper tools to investigate the

initial stages of the development of the disease, but extracellular plaques and intracellular

tangles are hallmarks of the disease [156].

The role of transmembrane amyloid precursor protein (APP) in the human brain is still

unclear. APP is assumed to be proteolytically cleaved by α-secretase and γ-secretase in order

69
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to recycle the used molecules. However, if this cleavage function is activated mistakenly by

β-secretase and γ-secretase, a soluble amyloid beta (Abeta) monomer is generated outside

the neuron [158]. Multiple monomers self-assemble to form oligomers, fibrils, and then

ultimately develop into insoluble Abeta plaques. Various hypotheses concerning the stage

at which Abeta aggregates are actually toxic to the neurons have been proposed, but the

latest evidence demonstrates it is the small soluble oligomers that cause damage to individual

neurons rather than the insoluble form of fibrils or plagues [159].

AD can be classified into two groups, of which the sporadic group accounts for an over-

whelming majority and the familial one accounts for the rest. The onset of sporadic AD

usually occurs later and is presumably caused by a combination of genetic and environ-

mental factors; however, the real reason is still not confirmed [160]. The risk of onset rises

significantly with age, but it is worth noting that AD is not a normal form of ageing. In

terms of genetics, it has been discovered that e4 allele of apolopoprotein E gene (APOE-e4)

is probably linked to the onset of AD. Its ability to remove Abeta aggregates is weaker than

that of its normal form, APOE-e2 allele [161]. The other familial group is closely related to

gene mutations, and these crucial gene mutations cause the early onset of AD, e.g. PSEN-1

and PSEN-2 on chromosomes 14 and 1, respectively [162].

It is currently very difficult to identify AD, since brain biopsy is now the only definitive

way, although various non-invasive tests, like memory tests and brain-imaging methods are

utilised to evaluate a patient’s symptoms [163]. Due to the difficulty in diagnosis, the patient

is probably unable to notice early symptoms. It is often too late when those symptoms have

become significant and are identified in a hospital, because AD gradually progresses over time

and the loss of neurons is irreversible. Unfortunately, AD has no current cure, and progression

cannot be stopped, since the actual cause of the onset has not been revealed; however,

treatments for alleviating or delaying the worsening of symptoms are available. For example,

there is medication (acetylcholinesterase inhibitors) to increase the neurotransmitter flow for

the remaining neurons [164].

Therefore, the most crucial problem in AD research is to reveal the mechanism by which
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a small number of these toxic Abeta oligomers adapt to damage neuronal cells, which is

possibly the result of Abeta oligomers binding to specific receptors and/or causing disrup-

tions and forming pores in the cell membrane [165, 166]. Due to the lack of suitable tools to

address this nanoscale biological problem, there have not been discoveries showing decisive

evidence of how AD initiates its earliest stage, despite decades of research being performed on

Abeta. In addition, previous studies focusing on the interactions between Abeta oligomers

and neuronal cells have used a concentration of toxic oligomers much higher than in physi-

ological condition; e.g. only roughly 0.5 pM is present in AD-diagnosed cerebrospinal fluid

(CSF) [167, 168]. CSF, of which there is approximately 125-150 mL in the whole body, is a

transparent body fluid produced in the brain and it is isolated from blood, which circulates

in the ventricular system in the brain and spinal cord and efficiently refreshed 4-5 times a

day [169]. CSF contains very few (0.3%) proteins and is similar to blood plasma, providing

mechanical protection for the brain and buffering abrupt pH changes in the cerebral blood

flow [170–172]. Previous studies have shown that Abeta oligomers in CSF induce long-term

potentiation (LTP), but this can be prevented by the application of Abeta antibodies in vivo

[173]. The toxicity of naturally-secreted Abeta oligomers is preserved in CSF [174], so CSF

from AD-diagnosed patients without additional preparation will be appropriate for direct

use with experimental samples.

The nanodosing biophysical method based on the SICM technique is a powerful way

to investigate the response of individual cells under localised dosing. Therefore, in this

chapter, how calcium homeostasis is influenced by extracellular artificially-synthesised and

naturally-secreted Abeta42 peptides was investigated. In addition, effects of the application

of antibodies and/or nanobodies, which are specifically designed in order to bind various

termini or epitope segments of toxic oligomers to reduce or eliminate their toxicity, are also

discussed in detail in the following sections. It should be noted that the work present in this

chapter was performed and analysed in collaboration with Dr Anna Drews.
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4.2 Materials and Method

4.2.1 Protocol for the localised nanodosing of neuronal cells

The technique of localised dosing of reagents loaded in a nanopipette, which is one of the

applications of SICM, can be adopted for the investigation of the initial mechanism by

which toxic aggregates act on neuronal cells. SICM is capable of contactless topographic

scanning, and during the process, the dynamic separation between the nanoipette tip and the

substrate is precisely controlled by the system monitoring the ion current flowing through

the nanopipette aperture to the bath electrode [11]. Therefore, by taking advantage of

this property of SICM, the automated nanopipette can be utilised to estimate the distance

between the nanopipette tip and the glass substrate or the cell surface, and simultaneously

deliver the studied oligomers via the application of biased voltage and/or pressure onto the

target [109]. The nanodosing protocol for maintaining the nanopipette at a certain height is

shown in Figure 4.1, and explained as follows:

(1) Firstly the nanopipette is made to approach any location on the glass substrate in

proximity to the target cell by the vertically-aligned stepper motor, while the piezoelectric

actuator, which is installed upside-down as described in Chapter 2, is also turned on with

a suitable setpoint to avoid a tip crash. The piezoelectric actuator is adjusted to move

roughly 1µm above the glass, by the piezoelectric actuator, in order to guarantee it will

fall an observable and maximised working distance. Note that the working distance of the

piezoelectric actuator is 25µm, and the full range of applied voltage is 10 V. Therefore, the

voltage shown by the PC oscilloscope will fall from 10 V to 9.6 V, to demonstrate a movement

of 0.4× 2.5 = 1µm.

(2) Subsequently, the nanopipette is lifted an additional 24 µm up (the working distance of

the piezoelectric actuator is 25µm; thus, 24µm is left after it has been raised 1µm).

(3) The nanopipette is moved directly above the targeted cell by a manual adjustment of

the bidirectional micromanipulators on the homemade microscope stage.

(4) The nanopipette then comes down to the surface of the target cell at a piezo-controlled
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Figure 4.1: Schematic explanation of the protocol of the nanodosing method. Red arrows and
lines noted with numbers describe the trajectories of the tip of the nanopipette. Firstly the
nanopipette tip approaches via the stepper motor the glass dish bottom to sit at a working
distance on the z-axis piezoelectric actuator, where 1µm out of 25µm is approximately
spent. Afterwards, the nanopipette is lifted 24µm up and then moved above the targeted
cell. Subsequently, the computer-controlled z-piezo actuator is used to approach the surface
of the cell automatically within the predefined setpoint. For example, if the cell has a height
of 9µm, the nanopipette tip would fall by 15µm, and the relative difference in the applied
bias voltage would be 6 V. Consequently, the nanopipette tip is further raised by 300 nm and
stays there for the next stage of reagent dosing conducted by the additional application of
appropriate bias voltage and pressure on the nanopipette.

distance defined by the setpoint. For example, if the cell height is 9µm, the PC oscilloscope

will show that the actuator is now applied at 6 V, which means the tip has moved 6 × 2.5

= 15µm from 24µm above the cell.

(5) Consequently, the height of the cell relative to the glass bottom has become a known

quantity, and an extra 300 nm is added to the separation between the tip and the cell top,

so that the molecules in the studied reagent are able to reach the cell surface by diffusion,

reducing the opportunity for any mechanical ion channels to be triggered due to hydrostatic

force/pressure applied from the nanopipette. It is worth mentioning that this nanopipette
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dosing method is superior to the bath application, because the much higher local flux of

molecules from the nanopipette results in an application of a very low concentration of the

reagent onto an individual cell.

The benefit of this nanodosing method is that one can perform quantitative delivery

of oligomers via the nanopipette onto the targeted cell. An estimation of the number of

oligomers being dosed per unit of time, Ntotal, can be calculated using the mathematical

model of the flow rate, Qtotal, introduced in Chapter 3:

Ntotal = c0Qtotal = (µep + µeo)c0πritanθ∆V +
3πc0r

3
i tanθ

8η
∆P,

(4.1)

where c0 is the concentration of the reagent in the nanopipette, which is Abeta42 oligomer

plus Abeta42 monomer in the experiment. Assuming a borosilicate glass nanopipette is used

and immersed in the buffer solution containing 150 mM sodium ions, µeo is estimated to be

1.4×10−8 m2V −1s−1. The µep is strongly influenced by the ingredients of the buffer solution

and differs depending on whether it is fluorescently-labelled or not. For unlabelled Abeta42

oligomer plus monomer dissolved in 10 mM tris(hydroxymethyl)aminomethane (Tris) solu-

tion, µep is roughly -2×10−8 m2V −1s−1 for oligomers. Therefore, Ntotal is estimated as follows

for a nanopipette with ri of 100 nm, θ of 3◦, ∆P of 15 KPa, η of 1 mPa·s and ∆V of –200 mV:

Ntotal = c0(−2×10−8 + 1.4×10−8)100π × 10−9tan(3◦) + c0
3π(100× 10−9)3tan(3◦)15× 103

8× 10−3

= 9.38× 10−16c0. (4.2)

This also provides a good approximation of the number of oligomers dosed on the cell during

the experiment. For example, around 280 per second for a nanopipette with ri of 100 nm

and 500 pM oligomers and 2 per second with ri of 50 nm and 30 pM oligomers. Thus, care-

ful control of the aperture size of the nanopipette allows individual Abeta42 oligomers to

be delivered onto the target each second, realising a true single-molecule experiment. Ow-
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Disc for the 
Estimation of Dosing 

Concentration

Dosing Oligomers
in the Reagent300 nm

500 nm

c0

0.33c0 0.17c0

Figure 4.2: Schematic of the distribution of dosed oligomers. C0 is the concentration of
reagent loaded in a nanopipette. After leaving the nanopipette tip, C0 quickly drops to 0.33
C0 within 300 nm. presumably it is possible to imagine a dosing disc with a radius of 500 nm,
and the diffused oligomers at the rim of this disk would be decreased to a concentration 0.17
C0. Theoretical models for estimating these concentrations at various locations are discussed
in Chapter 2.

ing to the fact that those oligomers are diffused away when leaving the nanopipette tip,

their concentration quickly drops. Assuming the diffusivity of Abeta42 is approximately

1.7× 10−6 cm2s−1, and Qtotal is –1.16×10−16 m3s−1, in the case of a nanopipette tip placed

300 nm above the target, according to Equation 3.23, the oligomer concentration on the

cell surface right under the tip is calculated to be 0.33c0. Similarly, on the periphery of

an imaginary disc 500 nm away from this point, the concentration is 0.18c0 according to

Equation 3.22, which is roughly half of the concentration at its centre point right under the

tip, as shown in Figure 4.2. If the aperture radius of the nanopipette and the concentration

of reagent are carefully controlled, e.g. 50 nm and 30 pM, a rate of two individual units of

Abeta42 encountering the dosed cell per second can be realised.
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4.2.2 Cell preparation

Astrocytes used in the experiment were selected by the nanopipette from a mixed glial

preparation from P3–P4 rat, which was cultured for 2 weeks in 75 cm2 cell culture flasks

(Corning) with Dulbecco’s Modified Eagle’s medium (DMEM, Invitrogen) supplemented

with 10% fetal bovine serum (FBS), 1% Penicillin and Streptomycin and 1% L-Glutamine

(Life Technologies) in an incubator kept at 37◦C, where 5%CO2 was maintained through a

delivery tube in a humidified atmosphere.

Once 90% confluence of glial cells was achieved, cells were split and kept in a suitable

environment for a long-term culture. According to the schedule of performing experiments,

neuronal cells were transported in order to reach a 40–70% confluence, in 35 mm dishes with

No. 1 coverslip of 14 mm glass dismeter at the bottom (P35G-1.0-14-C, MatTek). Plated

dishes were used for experiments within 1–5 days, and it was possible for their confluence to

increase to a level not feasible for single cell measurements afterwards.

Before the measurements, glial in the cultured dishes were immersed in L-15 containing

1.26 mM of calcium ions and 300µM 2-Methyl-6-(phenylethynyl)pyridine (MPEP) (Sigma

Aldrich), which is a highly selective metabotropic glutamate receptor 5 (mGluR5) antagonist

and is capable of reducing calcium oscillations owing to communication between astrocytes.

The nanopipette was filled with the required concentrations of Abeta42 oligomers or CSF in

the presence of antibodies and/or nanobodies in L-15 with a total volume of 1.5 mL. 2µM

ionomycin (Sigma Aldrich) was added to L-15 as a positive control group.

4.2.3 Fluorescent Calcium Indicator: Fluo-4 AM

Once the stimulation of the targeted cell, i.e. toxic oligomers delivered from the nanopipette,

can be reproducibly generated, the response of the dosed cell can be measured via a biosensor

or monitored by recording the behaviour of a pre-loaded fluorescent dye. In the study in this

chapter, a green fluorescent indicator for calcium influx into the cell was used, as shown in

Figure 4.3, and its fluorescent intensity was examined via an inverted Plan Apo VC water
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immersion 60× objective lens (MRD07601, Nikon).

Piezoelectric 
Actuator

Ag/AgCl Electrode

Bu�er Solution Containing 
Calcium Ions

Targeted Cell 
Loaded with 

Fluo-4 AM

Dosing Oligomers
in the Reagent300 nm

Figure 4.3: Illustration of the simplified setup for performing nanodosing, with a piezoelectric
actuator-controlled nanopipette responsible for the delivery of toxic oligomers (e,g, Abeta42
oligomers) onto a targeted cell 300 nm above the cell, which has been loaded with Fluo-4 AM
for monitoring the intracellular transient calcium behaviour collected by a suitable objective
lens. It should be noted that calcium ions are present in the buffer solution to observe
whether calcium influx occurs.

Fluo-4 (λex 494 nm; λem 506 nm, Life Technologies) is a calcium indicator, which is utilised

for live-cell labelling and demonstrates roughly more than a 100-fold increase of fluorescence

intensity in response to the binding of calcium ions, with a negligible spectral shift, upon

excitation by a 488 nm blue diode laser. Fluo-4 is an upgraded version of Fluo-3 with

intrinsically higher fluorescence intensity, and it therefore shows a better signal-to-noise ratio.

It is usually used for observation of the spatial and temporal distribution of calcium ions

in micro-environments, especially flow cytometry, fluorescence live-cell imaging and confocal

microscopy. Its acetoxymethyl (AM) ester derivative turns Fluo-4 AM into an uncharged

and cell-permeate molecule, so it is capable of passing through the cell membrane easily. As
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soon as Fluo-4 AM is inside the cell, it is cleaved by esterases in the cell to become charged.

In addition, hydrolysis is required for the esterified groups to bind calcium ions, and its Kd

in buffer is approximately 335 nM, providing a useful affinity.

In terms of preparation, Fluo-4 AM is reconstituted in dimethylsulfoxide (DMSO) as

suggested by the instructions. 10µL of solution is added into a vial of Fluo-4 AM and then

aliquoted, stored in a -20◦ freezer. Immediately before the experiment, 1µL of the aliquot is

mixed with 1.5 mL of cell-culture medium (L-15, Life Technologies) to make 2.3µM Fluo-4

AM solution and added to an L-15-washed cell-loaded glass-bottom dish for labelling. After

10–15 minutes, it is washed twice again with L-15 and then the dish should be ready for

measurements.

4.2.4 Abeta42 preparation

Abeta monomer, Hilyte Fluor 647 ABeta42 (Cambridge Bioscience LDT), was kept on ice

and subsequently purified using a BioSep gel filtration (SEC-s2000, Phenomenex) in buffer

solution, SSPE (0.01 M Na2HPO4, 0.15 M NaCl, 1 mM EDTA, pH 7.4). Afterwards, the

filtered product was flash frozen and stored in a –80◦C freezer. Peptides were always prepared

fresh right before the cell-dosing measurements. The purified Abeta42 was diluted to 500 nM

in PBS and left shaking at 37◦C, at 200 rpm for 5 hours in an incubator. Consequently, it

was centrifuged at 1450 ×g for 10 minutes and then diluted to the required concentrations in

L-15 cell culture medium. The concentration of oligomers have been confirmed by a single-

molecule counting method using confocal two-color coincidence detection (cTCCD). This

protocol gave approximately of 3 nM Abeta42 oligomers developed from 500 nM of Abeta42

monomers [175]. Human cerebrospinal fluid (CSF) was used as received without further

preparation steps.
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4.2.5 Antibodies and nanobodies

The preparation of the bivalent Abeta42 antibody against the N-terminus, Bapineuzumab

(Bapi), is described in US patent US 7179892 B2 by Medimmune. It is stored in 25 mM of

Histidine, 7% Sucrose, 0.02% Polysorbate 80, pH 6.0 at 48 mg/mL with endotoxin levels lower

than 0.005. On the other hand, the Asyn antibodies by Medimmune, asyn0004, aslo0071

and aslo0252, bind to NAC domain, N terminus and C terminus of Asyn with KD of 70.0,

49.7 and 25.4 nM, respectively.

Nb3 is an Abeta nanobody targeting both Abeta40 and Abeta42 at epitopes 17–28 with

KD of 150 nM, whilst Asyn nanobody Nbsyn87 binds to Asyn residues 118–130 with KD of

42 nM. They were isolated from a llama (Lama glama) using the immunisation of Abeta40

and human Asyn, respectively, followed by the selection of a phage display and processes

of amplification, recloning, expression in the Escherichia coli (E. coli) and purification,

according to protocols that have been published [109].

4.3 Experimental results and discussion

4.3.1 Nanodosing of Abeta42 incubated with antibodies on astro-

cytes

It is important to investigate physiological concentrations of oligomeric Abeta42 initially

inducing toxic effects in astrocytes, which may ultimately trigger the onset of AD. The

experiments began with the local nanodosing of oligomeric Abeta42 with a relatively high

concentration using a nanopipette onto single astrocytes, whilst their calcium homeostasis

was monitored by Fluo-4 AM fluorescence. In the cell preparation, MPEP, an mGluR5

blocker, was added to the cell dish in order to prevent calcium oscillations resulting from in-

teractions between astrocytes, so the experimental cell model was simplified and constrained

in a single astrocyte. As shown in Figure 4.4, fluorescence inside a single astrocyte was

integrated to demonstrate the total fluorescence at each time point of recording. Firstly,
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0 min 
Start of the 
recording 

5 min 10 min 
End of the 
recording 

Figure 4.4: Three frames taken at the start, during the middle and at the end of the record-
ing of fluorescence in a single astrocyte being locally nanodosed by 500 pM Abeta oligomers
from a nanopipette located 300 nm above. The intensity of the fluorescence increased con-
tinuously owing to more and more calcium-sensitive dyes preloaded in the astrocyte being
activated over time. The black peripheral around the astrocyte was drawn for the integral
of fluorescence inside the area at a specific time point of recording. Note that each pixel in
the CCD camera did not reach saturation during the recording.

the nanopipette filled with L-15 only was used to perform a negative control (NC), whilst

2µM of ionomycin in L-15 was used as a positive control (PC). Ionomycin is an ionophore of

calcium ions, i.e. a lipid-soluble calcium importer located across the cell membrane, used to

raise the intracellular calcium levels significantly, which is presumably much more efficient

than Abeta42 oligomers [176]. However, the amount of Fluo-4 AM taken into each astrocyte,

and the calcium flow, is also highly variable in each case. So, it is only meaningful when

comparisons are based upon the fluorescence transient (If (t)) being normalised in each as-

trocyte by the calcium influx or efflux measured relative to t=0 (If0) during the 10 minutes

of fluorescence acquisition, i.e. (If (t)-If0)/If0 . Even so, the distribution of the normalised

fluorescence curves in individual astrocytes was still variable, as shown in Figure 4.5(a), Fig-

ure 4.5(b) and Figure 4.5(c). Thus, those curves were further averaged, i.e. only averaged

behaviours of astrocytes were adopted for the investigation, in various experimental condi-

tions, and they were arranged together in Figure 4.5(d). Here 500 pM of Abeta42 oligomers

were loaded in a nanopipette, as shown in Figure 4.5 (c), and its values fell between L-15

NC and ionomycin PC, which suggests Abeta42 oligomers could induce calcium influx into

astrocytes but the efficiency was not as good as that in ionomycin. It is easier for compari-
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Figure 4.5: Normalised fluorescent transients of individual astrocytes loaded with Fluo-4
AM recorded within 10 min of (a) cell culture medium L-15 as a negative control (NC); (b)
2µM ionomycin as a positive control (PC); (c) 500 pM Abeta42 loaded into a nanopipette
to perform the nanodosing experiment maintained at 300 nm above the targeted astrocyte
incubated with MPEP. (d) Averaged fluorescent behaviour in timecourse of L-15, 2µM
ionomycin and 500 pM Abeta42. Error bars are standard error of mean (SEM), shown every
50 seconds.

son between different results to integrate the normalised fluorescent transients within the 10

min measurement, as shown in Figure 4.6, which clearly demonstrates the behaviours of the

calcium net flow in different conditions. Note that in the case of NC, where there was only

L-15 in a nanopipette, a curve was generated with a negative slope. This was not because

calcium ions flowed out of astrocytes; but possibly due to photobleaching of the dye and/or

the loss of dye from inside an astrocyte. Therefore, in the following figures, all histograms

had been corrected using this L-15 NC.

In Figure 4.5 and Figure 4.6, the nanodosing methodology had proven to be working,
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Figure 4.6: Histogram of averaged total integrated calcium flowing into astrocytes versus
L-15 as NC, 2µM ionomycin as PC and 500 pM Abeta42 oligomers. Abeta in the figure
denotes Abeta42. Error bars are SEM, and n is the measured number of cells.

so Abeta42 oligomers locally dosed onto astrocytes would induce calcium influx. PC and

NC set the upper and lower boundaries of fluorescence transients caused by calcium flow,

respectively. Therefore, the next stage would be an investigation of how this abnormal

calcium influx can be reduced or blocked by specific antibodies and nanobodies binding to

various parts of those toxic Abeta42 oligomers. Therefore, various antibodies and nanobodies

which are capable of binding different termini or epitopes of Abeta42 and Asyn were selected.

A humanised monoclonal antibody, Bapineuzumab (BAPI), which bivalently binds to the N-

terminus of Abeta42, and Nb3, which has a monovalent nanobody designed to be able to bind

to epitopes 17-28 of Abeta42, with Kd of 13 nM for Abeta42 monomers both specific binding

to Abeta42, were chosen in the blocking experiments [109, 177]. Note that a nanobody is

even smaller than a heavy-chain only antibody but without decreasing binding capacity, so

this antibody fragment naturally has a volume of approximately ≤1/4 of a typical antibody

[178]. On the other hand, alpha-synuclein (Asyn), whose aggregates are responsible for

Parkinson’s Disease (PD), is plentiful in the human brain, especially in the presynapse of

neurons and it is believed to function as a supportive agent relevant to neurotransmitters

[179, 180]. In the past, Asyn was not considered an intracellular protein, but researchers

have found that a small portion of Asyn monomers made by the SNCA gene can be secreted

out of the cell via exocytosis [181]. There is also evidence showing that Abeta and Asyn
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Figure 4.7: Average of normalised fluorescent transients of astrocytes loaded with Fluo-
4 AM recorded within 10 min with various experimental conditions. Reagents filled in a
nanopipette to perform nanodosing experiments maintained at 300 nm above the targeted
astrocytes incubated with MPEP are 500 pM of pure Abeta42 and its mixture with 2µg/mL
clusterin, 150 nM Nb3, 150 nM Nbsyn87, 150 nM Nb+ plus Nbsyn87 and 150 nM Abeta42-
specific antibody Bapineuzumab (Bapi). Abeta in the figure denotes Abeta42. Error bars
(SEM) are shown every 50 sec.

could co-interact in vitro [182, 183] and form co-oligomers using the molecular simulation

[184, 185], which might also play a role in the cell toxicity, in addition to Abeta and Asyn

oligomers. Therefore, it is also worth trying antibodies and nanobodies against Asyn. An

Asyn nanobody, Nbsyn87, binding to Asyn epitope residues 118–130 with KD of 42 nM, was

adopted for testing. Moreover, here, clusterin was also examined, as it is an extracellular

molecular chaperone in humans, which binds misfolded protein oligomers and aggregates at

a physiological concentration [174].

After a homogeneous mixture of 150 nM of various antibodies and nanobodies, or 2µg/mL

clusterin in L-15 containing 500 pM Abeta42 was incubated within 10-15 min at room tem-

perature, those reagents were added to a nanopipette separately, so that the nanodosing

experiments could be performed. As shown in Figure 4.7, obviously, two groups, one with

increasing fluorescence intensity and the other with decreasing fluorescence intensity over

the course of time, were observed in these 6 samples, where the red line denoted there was

only 500 pM of Abeta in L-15 so was represented as a PC here.

The fluorescence transient within 10 minutes of video recording was integrated and shown
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Figure 4.8: Histogram of averaged total integrated calcium influx of astrocytes loaded with
Fluo-4 AM recorded within 10 min with various experimental conditions. Reagents filled in
a nanopipette to perform nanodosing experiments maintained at 300 nm above the targeted
astrocyte incubated with MPEP are 500 pM of pure Abeta42 and its mixture with 2µg/mL
clusterin, 150 nM Nb3, 150 nM Nbsyn87, 150 nM Nb3 plus Nbsyn87 and 150 nM Abeta42-
specific antibody Bapineuzumab (Bapi). Abeta denotes Abeta42, whilst n is the sample size.
Error bars are SEM, and n is the measured number of cells.

in the histogram in Figure 4.8. The addition of 2µg/mL of clusterin and 150 nM of Nb3 and

150 nM of Bapi demonstrated statistically different results compared to the Abeta42-only

control group. 500 pM of Abeta42 oligomers is more than approximately 1000 times higher

than the physiological condition, but 2µg/mL of clusterin was still able to bind effectively

to them, as a previous study showed that clusterin has a high affinity for synthetic Abeta42

oligomers [109]. This confirmed that the removal of those toxic oligomers of Abeta42 could

reduce or prevent the abnormal calcium influx into astrocytes, which is responsible for al-

tered calcium homeostasis. Nb3 and Bapi also exhibited statistically-significant outcomes for

effective blocking of Abeta42 oligomers from entering astrocytes. This is reasonable because

these two antibodies and nanobodies were designed to bind specifically to Abeta42, and this

result has therefore made them both candidates for alleviating the toxicity of oligomers in

CSF. It is also not surprising that Nbsyn87, which was specifically designed against Asyn,

was not observed to be working on binding Abeta42 oligomers. However, it is very surprising

that the mixture of Nbsyn87 and Nb3 in the reagent containing Abeta42 oligomers greatly

degraded the blocking efficiency of Nb3.
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From the results above, the nanodosing methodology has been successfully utilised as a

platform for examining the effectiveness of antibodies and nanobodies in reagents containing

Abeta42 oligomers with a relatively high concentration (500 pM). It is more critical in solving

biological problems if a subtle change of calcium influx caused by Abeta42 oligomers at a

physiological concentration (∼pM) is detectable in the nanodosing system. Much lower

concentrations of Abeta42 oligomers, from 2.5 nM down to the physiological 500 fM, were

tested using the same protocol here by A. Drews et al. [109]. This result clearly showed that

even at as low as 500 fM, the nanodosing system was still sensitive enough to reveal this tiny

amount of excess calcium influx induced by Abeta42 oligomers, demonstrating a statistical

significance in the calcium influx compared to the NC.

4.3.2 Nanodosing of CSF incubated with antibodies and nanobod-

ies on astrocytes

It is clinically essential to apply this nanodosing methodology on CSF of AD-diagnosed

patients, in order to understand if antibodies and nanobodies function effectively in vitro.

Although successful blocking of oligomers by specific antibodies and nanobodies examined

using the nanodosing method does not guarantee they will work in precisely the same way

in the brain, there is certainly a higher chance to treat AD patients successfully if antibodies

and nanobodies are able to act against those complex toxic oligomers in CSF. In other words,

this should constitute the stage before expensive clinical trials are conducted.

The CSF samples were obtained from both male and female AD patients between the

ages of 62 and 82, and there were also control samples taken from healthy individuals,

both males and females between the ages 45 and 71. The details for AD CSF are listed in

Table 4.1. The integrated calcium influxes of AD patients and healthy subjects measured

for astrocytes using the nanodosing method are shown in Figure 4.9(a) and Figure 4.9(b),

respectively. The calcium influx for each person was variable, no matter whether the subject

was an AD patient or not, but the statistics, which give averages for all individuals, show

that CSF in AD patients and healthy controls had indistinguishable outcomes for CSF
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Table 4.1: List of AD CSF used in the experiments and its corresponding characteristics
including volume (Vol), gender (M for male and F for female) and age.

AD CSF 734c 720c 554b 784c 390d 757c 708c 872c 722c 725c 557b 715c
Vol (mL) 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.3 0.5 0.5 0.9 0.2
Gender M F F F M F F F M F F M
Age 75 75 80 62 77 63 71 85 77 69 82 72

influx. This result suggests there may exist a comparable amount of toxic oligomers in each

person’s CSF, no matter whether one is healthy or diagnosed with AD, which is consistent

with the enzyme-linked immunosorbent assay (ELISA) measurements, showing no statistical

difference between AD patients and healthy controls [167, 168].

Reducing calcium influx induced by Abeta42 oligomers is a potential method for treating

AD or delaying the onset of AD. Therefore, 2µg/mL of clusterin was first tested on AD CSF

to find out whether the altered calcium influx was induced by misfolded protein aggregates

or by other toxic species in CSF. Due to the fact that each AD CSF gave a wide distribution

of the averaged value of the total integrated calcium as shown in Figure 4.10(a), it is easier to

discuss the relative calcium reduction, which means the percentage of reduced calcium influx

caused by antibodies or nanobodies, which is normalised to the original calcium amount in-

duced by oligomers in the same AD CSF sample, as shown in Figure 4.10(b). Two of the four

AD CSF samples (734c and 784c) worked very well with clusterin, whilst the others (720c

and 554b) showed no significant difference. The overall outcome is shown in Figure 4.10(c)

and suggests 2µg/mL of clusterin could remove a certain level of oligomeric aggregates in AD

CSF, which is similar to the effect of clusterin on synthetic Abeta42 oligomers shown in the

previous section. This therefore indicates that at least one kind of misfolded protein aggre-

gate is responsible for the calcium influx observed in astrocytes. Two objectives, finding out

which toxic oligomers were responsible for the altered homeostasis and which antibodies and

nanobodies could effectively block this abnormal early-stage calcium influx into astrocytes,

were set and it is hoped that they were achieved in the following experiments.

Recombinantly produced nanobodies, Nb3 and Nbsyn87, which were designed specifically

for Abeta42 and Asyn, respectively, were used in the CSF nanodosing experiments. In
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Figure 4.9: Histogram of the total integrated calcium in averaged fluorescent transients of
single astrocytes locally dosed by a nanopipette filled with (a) individual clinically-diagnosed
AD CSF, 734c, 720c, 554b, 784c, 390d, 757c, 708c, 872c and 722c, (b) individual healthy
control (HC), HC15, HC24, 39, HC17, HC16 and HC19, and (c) their corresponding integral
behaviour for AD CSF and HC. Error bars are SEM, and n is the measured cell number.
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Figure 4.10: Histogram of the total integrated calcium in averaged fluorescent transients
recorded within 10 min of single astrocytes being locally dosed by a nanopipette filled with
(a) individual AD CSF, 734c, 720c, 554b, and 784c and the homogeneous mixture incubated
with 2µg/mL clusterin. (b) Relative calcium reduction in percentage after the addition
of 2µg/mL clusterin in individual AD CSF described in (a). (c) Overall behaviour of the
integrated calcium of AD CSF listed in (a) and this AD CSF plus 2µg/mL clusterin, which
displays a statistical significance between these two conditions. Error bars are SEM, and n
is the measured number of cells.
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the results for the blocking of Abeta42-induced calcium influx in astrocytes in the previous

section, it was demonstrated that Nb3 could bind Abeta42 oligomers effectively, and Nbsyn87

could not. The outcomes for AD CSF incubated with Nb3 and Nbsyn87 are shown in Figure

4.11 and Figure 4.12, respectively. Values for those abnormal calcium influxes in different AD

CSF samples and with the addition of Nb3 (Figure 4.11(a)) and Nbsyn87 (Figure 4.11(b))

were still highly variable, but their relative calcium reductions (Figure 4.11(b) and Figure

4.12(b)) both clearly displayed successful calcium blocking of respective AD CSF samples,

with Nb3 showing a superior blocking effect for oligomers. This suggests that AD CSF

contains more than one kind of toxic oligomer leading to an abnormal calcium influx, with

co-oligomers formed by Abeta42 and Asyn or Asyn oligomers alone being able to play a role in

producing this calcium influx. Notably Nb3 worked in both AD CSF and HC samples, which

suggests AD CSF and HC samples both contain oligomers composed, at the very minimum, of

Abeta42 oligomers and this confirmed once again that healthy and AD-diagnosed individuals

may both have oligomers in CSF that are toxic to cells. Overall behaviours of Nb3 (Figure

4.11(c)) and Nbsyn87 (Figure 4.12(c)) could both be statistically significant in reducing

excess calcium influx when they were pre-incubated for 10–15 min with CSF. On the other

hand, the outcome of the combination of these two nanobodies, Nb3 and Nbsyn87, which

worked separately in AD CSF, was intriguing, because it resulted in a noneffective blocking

effect in AD CSF 390d, so very little reduction of toxic oligomer-induced extra calcium influx

was observed. This result is consistent with the experiment, in which a mixture of Nb3 and

Nbsyn87 was incubated together with synthetic Abeta42 oligomers, although in this case

the only possible source of Asyn is the cell itself.

Next, the Abeta42 antibody, Bapi, which was the most effective in blocking abnormal

calcium influx induced by synthetic Abeta42 in the previous section, was tested on the

CSF of different AD patients. The results were shown in Figure 4.13(a). Surprisingly, even

though it largely deceased the amount of excess calcium flowing into astrocytes by blocking

a large portion of the 500 pM synthetic Abeta42 oligomers, the 150 nM of Bapi with AD

CSF demonstrated much less reduction or even no effect at all, which is clearly shown in

the relative calcium reduction in Figure 4.13(b). Overall the behaviour of Bapi in different
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Figure 4.11: Histogram of the total integrated calcium of averaged fluorescent transients
recorded within 10 min of single astrocytes being locally dosed by a nanopipette filled with
(a) individual AD CSF, 757c, 554b, 390d and 720c, and HC, HC15 and HC24, with their
corresponding mixture with 150 nM Nb3. (b) Relative calcium reduction in percentage after
the addition of 150 nM Nb3 in individual AD CSF described in (a). (c) Integral behaviour
of the integrated calcium of AD CSF and HC listed in (a) and these samples plus 150 nM
Nb3, where there is a statistical significance between AD CSF and AD CSF plus Nb3; this
is also the case HC and HC plus Nb3. Error bars are SEM, and n is the measured number
of cells.
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Figure 4.12: Histogram of the total integrated calcium of averaged fluorescent transients
recorded within 10 min of single astrocytes being locally dosed by a nanopipette filled with
(a) individual AD CSF, 390d, 720c, 784c and 554b, with their corresponding mixture with
150 nM Nbsyn87. There is a bar showing a special case of 390d incubated with 150 nM
Nb3 and 150 nM Nbsyn87. (b) Relative calcium reduction in percentage after the addition
of 150 nM Nbsyn87 in individual AD CSF described in (a), in which the second bar is the
result of 390d incubated with 150 nM Nb3 and 150 nM Nbsyn87. (c) Integral behaviour of
the integrated calcium of AD CSF listed in (a) and these samples plus 150 nM Nbsyn87, and
a special condition, AD CSF (390d only) plus 150 nM Nb3 and 150 nM Nbsyn87. Results
demonstrated that there is a statistical significance between AD CSF and AD CSF plus
Nbsyn87. Error bars are SEM, and n is the measured number of cells.
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Figure 4.13: Histogram of the total integrated calcium of averaged fluorescent transients
recorded within 10 min of single astrocytes being locally dosed by a nanopipette filled with (a)
500 pM Abeta42 oligomers, individual AD CSF, 554b, 390d, 708c and 784c, with the results
of corresponding mixtures with 150 nM of Abeta42 antibody Bapi. A special condition, with
554b being incubated with 150 nM of Bapi for 6 hours is also shown here. (b) Relative
calcium reduction in percentage after the addition of 150 nM of Bapi in 500 pM of Abeta42
oligomers and individual AD CSF described in (a). (c) Integral behaviour of the integrated
calcium of AD CSF listed in (a) and these samples plus 150 nM of Bapi. AD CSF and AD
CSF plus 150 nM of Bapi exhibited no statistical difference. Error bars are SEM; n is the
measured number of cells.
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samples of CSF shown in Figure 4.13(c) further confirmed 150 nM of Bapi was not capable

of binding toxic oligomers in AD CSF effectively as it was with only synthetic Abeta42

oligomers. In addition, assuming that CSF circulates 4 times in a day, the incubation time

with 150 nM Bapi was increased by up to 6 hours in order to observe if the blocking effect

between 150 nM Bapi and AD CSF oligomers was improved or altered accordingly. As shown

in Figure 4.13(a), still no improvement was observed by this long time incubation in the CSF

of an individual with AD (patient 554b).

Another hypothesis to explain why 150 nM of Bapi does not work properly in AD CSF

was that its concentration may not be high enough to bind a major portion of the toxic

oligomers in AD CSF. Thus, a higher concentration of Bapi (1µM) was incubated with five

different AD CSF samples (390d, 784c, 725c, 557b and 715c), in an attempt to diminish the

abnormal calcium influx in astrocytes, as shown in Figure 4.14(a). However, even though

the concentration of Bapi was higher, it demonstrates neither a relative calcium reduction

in individual samples of AD CSF nor a statistical significance in the integral behaviour, as

shown in Figure 4.14(b) and Figure 4.14(c), respectively.

Although the Abeta antibody, Bapi, did not work effectively enough to stop the ex-

cess calcium from flowing into astrocytes, it is also worth examining antibodies designed

specifically against Asyn, because Nbsyn87 could decrease calcium influx by binding Asyn

oligomers or co-oligomers containing Asyn in AD CSF. Asyn antibodies provided by Med-

immune included NJP228, asyn0004, aslo0071, aslo0252 and aslo0071, in which NJP228 is

an isotype control IgG antibody presumably having no affinity to Asyn. In Figure 4.15(a1)

and Figure 4.15(a2), the mixture of AD CSF 390d and NJP228 clearly showed that NJP228

worked ineffectively, as a negative control, whilst NJP228 plus Nb3 demonstrated a very

impressive calcium reduction in abnormal calcium influx, showing a similar result in that

for Abeta42 oligomers plus Nb3 and AD CSF plus Nb3. Due to the limited volume of CSF

samples (≤1 mL per person), unfortunately not all the antibodies and various corresponding

experimental conditions, e.g. various kinds of mixtures and incubation times, could be con-

ducted on a single AD CSF. Therefore, AD CSF samples causing higher abnormal calcium
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Figure 4.14: Histogram of the total integrated calcium of averaged fluorescent transients
recorded within 10 min of single astrocytes being locally dosed by a nanopipette filled with
(a) individual AD CSF, 390d, 784c, 725c, 557b and 715c, with their corresponding mixture
with 1µM Abeta42 antibody Bapi. (b) Relative calcium reduction in percentage after the
addition of 1µM Bapi in individual AD CSF described in (a). (c) Integral behaviour of the
integrated calcium of AD CSF listed in (a) and these samples plus 1µM Bapi. AD CSF and
AD CSF plus 1µM Bapi exhibited no statistical difference between each other. Error bars
are SEM, and n is the measured number of cells.
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influx were firstly used in the blocking experiments.

In a series of experiments using AD CSF 390d, asyn0004 and aslo0071 were also tested.

aslo0071 caused a statistically significant reduction in calcium influx into astrocytes, as shown

in Figure 4.15(a1) and Figure 4.15(a2). Another set of experiments was performed using

AD CSF 708c, with aslo0252 examined in various conditions, i.e. aslo0252 only, aslo0252

incubated for 6 hours and aslo0252 plus Nb3. As shown in Figure 4.15(b1) and Figure

4.15(b2), of these, aslo0252 and aslo0252 plus Nb3 effectively decreased the abnormal calcium

influx (with a statistically significant difference), suggesting successful binding with the toxic

oligomers in AD CSF . When AD CSF 720c was utilised, control antibody NJP228 and a

longer period of incubation (6 hours) were mainly tested. Neither control NJP228 nor

asyn0004 6h and aslo0071 6h reduce the calcium influx, as shown in Figure 4.15(c1) and

Figure 4.15(c2). These results were consistent with aslo0252 6h and Bapi 6h incubated

with AD CSF, as shown in Figure 4.15(b1) and Figure 4.13(a), respectively, indicating that

an additional 6 hours of incubation for the mixture of antibody and CSF may not lead to

a better binding. Of course, it would be necessary to increase the statistical sample size

by repeating those experiments, especially with asyn0071 and aslo0252, when a new AD

CSF, which causes a relatively large amount of abnormal calcium influx into astrocytes, is

available.
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Figure 4.15: Histogram of the total integrated calcium of averaged fluorescent transients
recorded within 10 min of single astrocytes being locally dosed by a nanopipette filled with
AD CSF and AD CSF plus 150 nM antibody and/or 150 nM nanobody. (a1) AD CSF 390d
and its mixture with control antibody NJP228, NJP228 plus Nb3, Asyn antibody asyn0004
and Asyn antibody aslo0071; (b1) AD CSF 708c and its mixture with various conditions of
Asyn antibody asyn0252, i.e. aslo0252 only, aslo0252 incubated for 6 hours and aslo0252 plus
Nb3; (c1) AD CSF 720c and its mixture with NJP228, Asyn antibody asyn0004 incubated for
6 hours and Asyn antibody aslo0071 incubated for 6 hours. (a2), (b2) and (c2) Corresponding
relative calcium reductions in percentages for (a1), (b1) and (c1), respectively. Statistical
differences only appear in (a1) between: 1. 390d and 390d plus NJP228 and Nb3; 2. 390d
plus aslo0071, and in (b1) between: 1. 708c and 708c plus aslo0252; 2. 390d plus aslo0252
and Nb3. Error bars are SEM, and n is the measured number of cells.
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4.4 Discussion

4.4.1 Nanodosing methodology for examining the effectiveness of

antibodies and nanobodies in physiological conditions

The intracellular concentration of calcium ions is critical for cells. The adjustment of the

calcium concentration by conducting calcium influx and efflux via the activation of specific

ion channels is able to regulate enzyme and protein functions and enable signal transduction

further. Imbalanced calcium homeostasis in neuronal cells could result in cell damage as

a result of activated apoptosis, and consequently trigger the onset of neurodegenerative

diseases [186]. Investigation of the interaction between toxic oligomers in AD patients finds

abnormal calcium influx in neuronal cells probably via the pore-forming process in the cell

membrane [165, 166, 187]. Abnormal calcium influx in neuronal cells induced by oligomers

naturally formed in the brain is likely to be an important feature in the early stage of

neurodegenerative diseases.

The local nanodosing method using an oligomer-filled nanopipette onto a fluorescent

calcium indicator (Fluo-4 AM)-loaded single neuronal cell immersed in calcium-rich buffer

solution is based on SICM technique. The resulting calcium flow into the cell is monitored

over time by observing its fluorescent transients. This has created an appropriate platform for

testing the effectiveness of antibodies and nanobodies targeting toxic oligomers in vitro. The

dosing number of oligomers can be precisely controlled by setting specific system parameters,

i.e. values of applied bias voltage and pressure, so quantitative analysis is possible. For

example, two oligomers per second are delivered onto the targeted cell 300 nm beneath the

nanopipette with a 50 nm inner radius and filled with 30 pM of reagent, which is applied by

200 mV and 15 KPa. Antibodies and nanobodies are expected to bind the toxic oligomers

effectively and therefore reduce the abnormal calcium influx into cells in this nanodosing

system, which is probably the result of temporary pores in the cell membrane formed by

those oligomers. However, absolute values of the fluorescent transients are less meaningful

than the extracted amount of calcium influx normalised at t=0, because the response of each
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measured cell is actually highly variable. This indicates that the sample size is important if

the distribution of fluorescent transients is broad.

The work carried out by Narayan et al. showed that synthetic oligomers, with a main

population smaller than 10mers, of Abeta40 and Abeta42, triggered calcium oscillations of

astrocytes when they were added in the bath solution [188]. The concentrations in this paper

were reduced to 200 pM, although in the physiological microenvironment in CSF, there are

oligomers of roughly 0.5 pM, which is 100 times lower than in the experimental conditions.

The calcium oscillations caused by abnormal calcium influx induced by Abeta oligomers could

result in reactive oxidative species (ROS) production, which is thought to be one of the factors

leading to the death of neurons and could then be followed by cascade reactions causing cell

damage and subequently activation of caspase 3. Notably, this phenomenon was mainly

observed in astrocytes, suggesting that astrocytes may be the cell type that is damaged in

the early stages by the toxicity of Abeta oligomers, which is consistent with previous studies.

Thus, astrocytes were adopted as model cells in the nanodosing experiments. It is estimated

there is approximately 0.5 pM of soluble oligomers in human CSF of diagnosed AD patients.

With the extremely low concentration of oligomers in the bath application, it is difficult to

generate an observable cell response due to the depletion of oligomers on the cell surface.

This issue is overcome using two strategies: 1. MPEP, which prevents calcium oscillation

between astrocytes, was adopted in order to eliminate the unwanted background fluorescence

resulting from the influence from neighbouring astrocytes; 2. a much higher dosing flux of

oligomers encountering the cell is achieved by the forced delivery via a nanopipette located

closely (300 nm) above the cell. These two important factors make possible the detection

of the very subtle oligomer-induced calcium influx changes at the initial stage (within 10

minutes) of cell damage. This increased encounter rate of dosed oligomers also mimics the

fact that neuronal cells are densely packed with roughly 10–20 nm gaps in the brain [189].

Although the phenomenon of calcium oscillation between astrocytes was eliminated in the

experiments, it naturally exists as a second messenger in the brain and may affect neigh-

bouring astrocytes or even distant ones, because any altered homeostasis due to Abeta42
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oligomers could be spread from where a single Abeta42-damaged astrocyte is located by com-

munication between neighbouring cells. Approximately 0.2% of the population of Abeta42

oligomers are able to cause these abnormal calcium oscillations, because large oligomers may

cause larger calcium influx initiating oscillations [188].

Although the nanodosing method used to test the effectiveness of antibodies and nanobod-

ies has been verified by utilising the synthetic Abeta42 oligomers, this methodology is not

able to reveal the physical mechanisms by which Abeta42 oligomers enter astrocytes. Those

Abeta42 oligomers presumably temporarily penetrate across the lipid bilayer in the cell mem-

brane without the need for Abeta42 oligomers to bind to any receptors [109, 165, 166, 187].

These pores, which are not permanent, could disappear once oligomers pass through and

calcium influx is then reduced. In addition, the dosing concentration is low, and dosing area

is small (∼1µm2), so the involvement of any receptor interactions is not specific.

4.4.2 The antibody and nanobody against Abeta42 oligomers and

the possible existence of co-oligomers

In experiments into the effectiveness of antibodies and nanobodies, it must be kept in mind

that only a statistical difference between the two sets of data is able to prove the effectiveness

of an antibody. A difference in value between any two pieces of data in terms of total

integrated calcium that does not have statistical significance is not entirely meaningless, if

the sample size (the measured number of cells in the Abeta42 nanodosing experiments) can

be increased. In this chapter, the statistical model of one-way analysis of variance (ANOVA)

was adopted to determine whether there exists a statistically significant difference between

the means of two or more groups of data sets, which are independent of one another.

In the Abeta42 nanodosing experiments, shown in Figure 4.8, it is clearly demonstrated

that 2µg/mL of clusterin, 150 nM of Nb3 and 150 nM of Abeta42-specific antibody Bapi

are capable of effectively reducing the calcium influx into targeted astrocytes. The entry

of extracellular calcium is suppressed by the antibodies and/or nanobodies tested due to
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the binding to Abeta42 oligomers, so the probability of interaction being made with the cell

membrane to generate transient pores or, less likely, trigger any calcium-regulating receptors

is greatly lowered. The failure of Nbsyn87 to prevent calcium influx is predictable, since

Nbsyn87 is designed to bind to Asyn epitope residues. However, in the experiments dosing

a mixture of 150 nM Nb3 plus 150 nM Nbsyn87, which was expected to work as well as

the experiments dosing 150 Nb3 only, surprisingly showed an interference between Nb3 and

Nbsyn87. This may be Nb3 losing its capacity to bind Abeta42 or there may be other pore-

forming species preserved, i.e. co-oligomers, which are formed and dosed onto the astrocyte.

The assumption that the interaction between Nb3 and Nbsyn87 interferes with Nb3 binding

was proven to be false by the same application of 150 nM Nb3 plus 150 nM Nbsyn87 on

a vesicle assay (its concept is shown in Figure 4.16), in which similar blocking effect was

observed, for 150 nM of Nb3 only or 150 nM of Nb3 plus 150 nM of Nbsyn87 (results not

shown). However, transient interactions between Nb3 and Nbsyn87 might occur, which

might generate a hybrid complex that is able to influence the pore-forming properties of

Abeta42 oligomers that had already bound with Nb3, leading to triggered calcium influx,

whilst in the vesicle assay this calcium influx was not observed probably because its artificial

membrane composition was different from that of an astrocyte. In addition, there might

be other species like co-oligomers that lead to the entry of calcium ions through the cell

membrane, even though a large proportion of Abeta42 oligomers in the nanopipette should

have been bound by Nb3. In fact, a small proportion of Asyn produced by the SNCA gene is

present intracellularlly, and Asyn monomers are secreted from astrocytes via exocytosis [181].

In addition, there has been evidence for a co-interaction between Abeta and Asyn in vitro

[182, 183, 190], and simulations have also shown the formation of co-oligomers of Abeta and

Asyn is indeed feasible [184, 185]. Therefore, it is assumed that Nbsyn87 in the nanopipette

and Asyn secreted above the cell surface from the targeted astrocyte may interact together

with Abeta42 during the experiment, which takes about 15 minutes, to generate pore-forming

oligomers, which might not be completely blocked by Nb3 and Nbsyn87. These co-oligomers

might be composed of Abeta42, Asyn and bond Nb3 and/or Nbsyn87. Nbsyn87 bound onto

Asyn demonstrated an influence on the structure of Asyn aggregates, so presumably co-
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reported to maintain ion permeability,[22] spherical morphol-
ogy,[23] and membrane diffusivity[22] . The conditions were
chosen to generate a low coverage of vesicles on the surface
(ca. 1%), enabling single vesicles to be monitored individu-
ally and analyzed.

We incubated these immobilized vesicles in LeibovitzQs L-
15 medium containing Ca2+ at a concentration of 1.26 mm and
imaged them using TIRFM (Figure 1 (i) and (iv), Fblank).
Typically, we imaged 16 fields of view (on a 4 X 4 grid) for
each coverslide using a computer-controlled automatic micro-
scope stage, allowing the measurement of identical areas of
the coverslide (Figure S4). We then added a solution con-
taining the species of interest (e.g. protein aggregates) and re-
imaged the identical fields of view. If Ca2+ entered any given
vesicle, an increase in the localized fluorescence intensity
could be detected (Figure 1b (ii) and (v), Faggregate). The
fluorescence signals, before and after the addition of aliquots
of the solution, were stable with time (Figures S5–S7) and
hence the changes in the localized fluorescence can be
attributed to species that disrupt the vesicles. To quantify the
Ca2+ influx into individual vesicles, we added the cation
transporting ionophore, ionomycin (Figures S6,S8), which
allows Ca2+ to enter the vesicles to saturation. The maximum
fluorescence intensity of each vesicle was then measured
(Figure 1b (iii) and (vi), Fionomycin) and the percentage of Ca2+

influx was calculated. This approach corrected for the fact
that the number of Cal-520 dye molecules in a vesicle is not
constant, owing to variations in the efficiency of dye
encapsulation[25] and in vesicle size. The fluorescence intensity
change was quantitatively converted into a percentage of Ca2+

influx for individual vesicles and then averaged over all the
vesicles imaged (Figure 1, see Supporting Information for
details).

We first carried out a series of experiments with solutions
of the recombinant Ab42 peptide (Figure 2a), under con-
ditions where the aggregation reaction has been found to be
highly reproducible.[26] Monomeric Ab42 was purified (t1),
and its addition to the vesicles resulted in no detectable
increase in fluorescence, indicating that the monomeric
protein does not induce Ca2+ influx (Figure 2b).

We then incubated 2 mm monomeric Ab42 at 37 88C and
took aliquots from the aggregation reaction corresponding to
the end of the lag-phase (t2). We detected an increase in the
localized fluorescence due to the influx of Ca2+ resulting from
the interaction of protein aggregates with the lipid bilayer.
The aliquots taken from the aggregation reaction mixture had
to be diluted 200 times to avoid saturation of individual
vesicles with Ca2+, highlighting the sensitivity of our method.
Note that oligomers of the Ab peptide have been reported to
be stable upon dilution[27] and we observed their ability to
induce Ca2+ influx into individual vesicles to remain constant
for up to 2 h after dilution (Figure S9). We also tested aliquots
corresponding to time points of an aggregation reaction at the
plateau phase (t3), by which time most of the monomeric
protein had been converted into fibrils.[14] In this case, we
detected a much lower fluorescence increase compared to
that of aliquots of the sample taken at t2, although greater
than that of aliquots at t1.

Figure 1. Quantitative high-throughput fluorescence imaging of Ca2+

ion influx into individual surface-tethered vesicles imaged using TIRF
microscopy. a) Individual vesicles filled with the fluorescent dye Cal-
520 are immobilized on a polymer-passivated (PLL-g-PEG/PLL-g-PEG-
biotin) glass cover slide through biotin-neutravidin tethering. Addition
of membrane-disrupting species (e.g. protein aggregates) leads to
Ca2+ influx into vesicles resulting in an increase in the localized
fluorescence intensity. b) Identical positions of the coverslides are
imaged under three different conditions, shown schematically (i)–(iii)
and as TIRF images (iv)–(vi). Images are acquired in the presence of
only Ca2+ buffer [(i) and (iv)], followed by the addition of protein
aggregates [(ii) and (v)], and then the addition of the ionophore
ionomycin [(iii) and (vi)]. The TIRF images were averaged over
50 frames with an exposure time of 50 ms each without further image
processing. Individual vesicles containing Cal-520 dye molecules
appear as localized bright spots under 488-nm illumination. In the
presence of Ca2+ buffer alone, the intensity of a vesicle is comparable
to that of the background due to no or minimal Ca2+ influx into the
vesicles. Addition and incubation with protein aggregates causes
a significant increase in the fluorescence of some of the vesicles and
subsequent addition of ionomycin results in saturation of all vesicles
by Ca2+, causing detection of a maximum value of the fluorescence
signal. All the images are shown with equal contrast. The scale bar:
3 mm. c) Ca2+ influx into 13 individual vesicles as shown in (b) (iv)–
(vi). The percentage of Ca2+ influx in each vesicle was calculated using:
(Faggregate@Fblank)*100/ (Fionomycin@F aggregate), where Fblank, Faggregate, Fionomycin

represent the fluorescence in the presence of Ca2+ containing buffer,
a solution containing protein samples (e.g. aggregates), and ionomy-
cin, respectively. d) Histogram showing the distribution of the percent-
age of Ca2+ influx into 744 individual vesicles after the addition of
aliquots taken from an aggregation reaction of Ab42 with an average
Ca2+ influx of 19.44%.
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Figure 4.16: Schematic diagram of a Cal-520 filled 1-palmitoyl-2-oleoylsn-glycero-3-
phosphocholine (POPC) vesicle assay, with biotinylated lipids fixed with neutravidins on
the PLL–PEG surface. Figure excerpted from [192]

oligomers containing nanobodies may have a different structure from co-oligomers in which

nanobodies are absent, and they may still remain toxic [182, 183, 191] and form co-oligomers

using molecular simulation [184, 185].

4.4.3 Tests on antibodies and nanobodies targeting Abeta and

Asyn oligomers and their likely co-oligomers in AD CSF

The nanodosing experiments to test the effectiveness of antibodies and nanobodies on AD

CSF will be valuable for pharmaceutical companies, as those results will provide critical

information about antibodies and nanobodies in real physiological conditions before the

commencement of the next stage, involving very expensive clinical trials. The CSF samples,

including AD CSF and HC, gave highly variant results with abnormal calcium influxes. This

may be attributed to the fact that the progression of AD cannot be quantitatively charac-

terised currently, so the differences in the progression of the disease between patients and

therefore each patient’s pathology may be different, implying the amount of toxic oligomers

in the brain may also vary. Hence, AD CSF samples that gave rise to a higher abnormal

calcium influx were used for the antibody and nanobody blocking experiments. In addition,

to confirm if an antibody or nanobody works in reducing abnormal calcium influx, usually

at least 4 to 5 AD CSF samples are needed to give statistically convincing outcomes, which
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is time-consuming.

Surprisingly, the overall behaviours of AD CSF and HC samples used in this chapter

showed similar total amounts of integrated calcium, which is consistent with the enzyme-

linked immunosorbent assay (ELISA) measurements, which also showed no statistical dif-

ference between AD patients and healthy controls [167, 168]. This suggests there might

exist an equally comparable amount of toxic oligomers in each person, no matter whether

healthy or AD diagnosed, and relative conditions triggering the onset of AD may occur on a

case-by-case basis in each person, rather than simply being dependent the absolute amount

of those toxic oligomers in the brain. Alternatively, the number of toxic oligomers might be

raised regionally in the brain according to the progression of AD, before being released into

CSF for circulation.

The results demonstrated that Nb3 and Nbsyn87 can both reduce the oligomer-induced

calcium influx, which suggests the toxic oligomers in AD CSF samples contain at least Abeta

oligomers, Asyn oligomers and most likely, co-oligomers composed of Abeta and Asyn. Note

that the co-oligomers in CSF are not necessarily in the same form as those appearing in

the Abeta42 nanodosing experiments, because co-oligomers in CSF, if they exist, may be

complex and contain isoforms of different proteins.

In the case of the antibody Bapi, the results indicate that it does not effectively bind a

large portion of oligomers in AD CSF to reduce the abnormal calcium influx. This result

is sensible if there are other toxic species like Asyn oligomers and co-oligomers, to which

Bapi might not be able to bind, in the AD CSF. In fact, the usage of Bapi in clinical trials

unfortunately failed in 2012, and the concentration was 106 times lower than the 1µM used

here. This failure might have been avoided if the Bapi nanodosing experiments that showed

Bapi cannot effectively prevent AD CSF oligomers from entering astrocytes were conducted

before the clinical trials [193, 193, 194].

On the other hand, Asyn antibodies, aslo0252 and aslo0071, which were designed specif-

ically to bind C- and N-termini of Asyn, respectively, were capable of decreasing the excess

calcium flow into astrocytes. All the results of working nanobodies and antibodies, i.e. Nb3,
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Nbsyn87, aslo0071 and aslo0252, suggest that toxic oligomers in AD CSF may include Abeta

oligomers, Asyn oligomers and co-oligomers containing Abeta and Asyn. In addition, this

co-oligomer might involve more exposed N- and C-termini of Asyn with Abeta components

more hidden inside the oligomeric structure, and the steric effect might play a role in the

fact that Bapi was less effective at binding, whilst aslo0071 and aslo0252 worked properly,

although 2 or 3 more AD CSF samples are needed to confirm that aslo0071 and aslo0252 have

a prevalent blocking effect for abnormal calcium influx among different AD CSF samples.

4.5 Conclusions

It has been proved that the localised nanodosing technique based on SICM, in which a

nanopipette is loaded with reagents, may be successfully applied in an investigation observing

the instantaneous response of an individual targeted cell upon regional stimulation under

physiological conditions. This methodology provides an appropriate platform for determining

the effectiveness of antibodies and nanobodies against AD, which is specifically designed to

bind Abeta42 oligomers in order to reduce or eliminate their toxicity to astrocytes, by means

of blocking those oligomers from crossing the cell membrane. This physical phenomenon of

oligomers entering astrosytes is monitored via the change of fluorescent transient in calcium

indicator (Fluo-4 AM)-loaded astrosytes within 10 minutes of video recording, with the

fluorescent indicator being reactive to calcium ions coming from the extracellular buffer

solution into the cell cytosol. In fact, antibodies and nanobodies specifically-designed for

Asyn were also examined in the experiments, because Asyn is abundant in the brain, and

its misfolded soluble form is probably the cause of Parkinson’s Disease (PD). It is also likely

to form co-oligomers with Abeta.

The results have demonstrated that the Abeta42 nanobody, Nb3, works well in the

reduction of the excess calcium influx induced by both artificially-synthesised and naturally-

secreted Abeta42 oligomers in astrocytes; however, Bapi only effectively decreases the ab-

normal calcium influx due to synthesised Abeta42 oligomers, even though a concentration
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approximately seven times higher of Bapi has also been tested. This may be atributed to the

fact that some other species in AD-diagnosed CSF also competitively bind to Bapi, which

weakens the ability of Bapi to block Abeta42 from entry; or co-oligomers that have formed

between Abeta42 and Asyn may have changed their conformations, so that Bapi could not

bind to their N-terminus as well as with synthetic Abeta42. Intriguingly, Nb3 and Nbsyn87

binding to Abeta residues 17–28 and Asyn residues 118–130, respectively, both largely di-

minished the calcium influx when incubated in AD CSF. This suggests that the intrinsically

smaller volume of nanobodies is able to reach and bind to the correct epitopes more effec-

tively in co-oligomers formed by Abeta42 and Asyn, when free access to this binding domain

may be hindered for other large antibodies owing to a steric effect. On the other hand,

among Asyn antibodies, only aslo0071 and aslo0252 showed statistical significance in AD

CSF, suggesting that N- and C-termini may be exposed more to the environmental solution

in the co-oligomers formed in AD CSF, although a larger sample size is recommended to

confirm this result further. Therefore, according to the convincing nanodosing methodology,

altered homeostasis in astrocytes induced by co-oligomers formed by at least Abeta42 and

Asyn in AD CSF can be alleviated or eliminated by Nb3 and Nbsyn87, which suggests those

small-size nanobodies may provide higher binding efficiency compared with typical antibod-

ies, and they should be considered candidates to be utilised in future clinical trials for the

treatment of AD.
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Establishment of the SICM with an

Angularly-aligned Micromanipulated

Sensor Holder

In Chapter 4, it has been proved that Abeta42 oligomers delivered via a nanopipette onto as-

trocytes can induce a transient calcium ion influx, which suggests that temporary disruption

in the cell membrane may occur, and calcium ions may enter at the same time, as Abeta42

oligomers attempt to pass through. However, although this methodology provides a suitable

platform for examining the effectiveness of antibodies and nanobodies designed specifically

againt Alzheimer’s Disease, it can neither determine the physical mechanism of Abeta42

oligomers interferencing neuronal cells, mainly astrocytes, nor exclude the possibility of the

involvement of certain receptors in regulating the inward flow of calcium ions. If transient

oligomer-induced pores in the cell membrane exist as hypothesised, there may be leakage of

intracellular molecules at the same time, and these might be detectable using a nanoscale

sensor located on the target cell.

SICM can be utilised for localised delivery of molecules onto a simple cell, by taking

advantage of its precise control of nanopipette–sample separation. This has been successfully

verified in Chapter 4, in which stimulation was applied to the targeted cell by a nanopipette

105
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Figure 5.1: Graphical representation of the function of the new setup based on SICM, with
one nanopipette responsible for localised dosing of reagents onto an individual cell, and
the other nanopipette-modified sensor enabling the detection of a specific response, e.g.
electrochemical reactions, in the same cell.

sending Abeta42 oligomers, and the transient response of the cell was fluorescently recorded

by a camera. By the same token, considering a nanopipette as the source of the stimulation

sent to the object, the detection can be carried out by a nanoscale sensor, which converts the

reaction to electronic signals. It is feasible to transform a nanopipette chemically into a sensor

to perform specific measurements, so that its holder can be designed in the same manner as

the nanopipette itself. This concept is depicted in Figure 5.1, in which a typical nanopipette

and a carbon-filled nanopipette for performing electrochemical sensing, for example, is used

for localised dosing and detection, respectively. Therefore, a modified SICM setup must be

adopted for this new measurement method; i.e. an extra holder is needed for the sensor,

which is micromanipulated and angled, so that both tips may approach each other on the

target cell. This new SICM is shown in Figure 5.2. In the following sections all the important

parts for building it will be introduced in detail.



5.1 Active vibration isolation system 107

Figure 5.2: The modified new SICM setup installed on an inverted microscope, with a
micromanipulated and angled extra holder for the nanoscale transister-based sensor. Both
the sensor and SICM tips may approach each other on the same target cell.

5.1 Active vibration isolation system

The sources of static and dynamic acoustic noise (4–100 Hz) in a building come from the

environment and motorised instruments placed near the experimental setup [195]. To avoid

the influence from ambient vibration on measurements, which is usually transferred through

the supportive columns of the optical table placed on the floor, a specially designed vibration

isolation system must be used as the platform for the new system to sit on. This optical

table has a well-damped structure with a hexagonal honeycomb made of clay in between a

pair of metal plates. It has the properties of high stiffness, low mass and great thickness

in order to shift the resonant frequency of the optical table further up, much higher than

100 Hz, to decrease the influence on the compliance characteristics brought in from ambiance

via the supportive legs [195]. Thus, it can be decoupled from its supports that are in contact

with the ground.
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L

L/2

Figure 5.3: Illustration of an optical table with four active vibration isolation columns. The
centre of gravity of the whole system (including the optical table itself) should be located in
the pyramidal space with side length L and height L/2, where L is the separation between
centres of two columns at the short side.

A well-designed optical table may not be enough to guarantee the table-top is free from

vibration. Unlike the supports for the other SICM setup, in which a passive isolation system

including an air reservoir is adopted for damping; here, an active vibration control is chosen

for the optical table supports. This is a combination of vertical and horizontal dampers.

The table is seismically mounted on these supports, and has a very low resonant frequency

(with transmissibility of 0.3 to be at less than 2 Hz), so that the surface of the table can be

mostly decoupled from the ambient noise [195]. The active support contains a horizontal

vibration absorbing damper, a pair of air chambers for vertical damping mechanism and for

the self-levelling system as well, which needs pressurised nitrogen.

However, compromise between isolation and stability must be made. Any effect on the

table-top that causes the centre of gravity of the whole system, including the table itself, to

move away from its original central location may form a torque and the table will incline.

Any active method that works against this unwanted disturbance might instead lead to the

oscillation of the table from side to side. This is a general method to improve the stability

of the system empirically by making the centre of gravity sit in the pyramid, which is shown

in Figure 5.3. The length of the side of the pyramid is defined as the distance between

the centre of two closer supports, L, whilst its height is roughly L/2 [195]. In addition,

the nitrogen flow must not be large to induce dynamic oscillation in the table due to an

excessively quick response from the self-levelling device.
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5.2 Reduction of electrical disturbance and noise

When establishing a new setup to conduct single-cell–level measurements, reduction of the

electrical noise from various kinds of sources is critical. Such disturbances could lead to a

misreading of the ion current and ultimately to the breaking of the nanopipette tip, leading to

the sensitivity of the system being degraded. In addition, if the new setup is used to perform

the patch–clamp technique, noise reduction is even more crucial, because the nanopipette

will need to be in firm contact with the targeted cell and any movement of the automated

system component induced by the noise could result in failure in the experiment, e.g. damage

to the cell or complete loss of the patch (robust contact between the cell membrane and the

nanopipette tip opening).

The sources of electrical interference are diverse but can be roughly categorised into

radiated pickup and conducted pickup. Radiated pickup may come through the air from

radio frequency (RF) interference, but it comes mainly from the power supply (mains hum),

forming line-frequency noise at 50 Hz and its harmonics in the UK. The AC electromagnetic

induction may cause unwanted current in the circuitry if the setup is placed near power

supplies or transformers. On the other hand, conducted noise may come directly from power

cables, ground loops created unintentionally or even metal components picking up radiated

noise at a distance.

The process of reducing electrical noise is almost empirical, because it must be dealt

with on a case by case basis in different laboratories. However, there still exist principles to

follow: ensuring the grounding is carefully applied at necessary parts of the setup. There are

various kinds of grounds: (1) signal ground; (2) shield ground; (3) earth ground. A single

ground point is first chosen on the optical table, on which microscope, homemade SICM

metal stage, manipulators, the chassis of the computer and controllers and piezo actuators

are carefully connected separately to form a star-like network and avoid ground loops, and

ultimately an individual wire is linked to the plug, referred to as ”signal ground” at the rear

panel of the two patch–clamp amplifiers. It should be noted that the earth ground, which is

installed in power supplies and literally connected to the ”earth”, is only for preventing the
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occurrence of electric shock, whilst the signal ground presents the common reference zero

point for the circuitry and does not necessarily need to be connected to the earth ground

(and is usually not). In addition, a Faraday cage is usually used to cover the microscope and

the stage carrying the sample, which will ideally eliminate most of the radiated noise in the

air, and this is also connected to the ground point which finally enters the amplifier. In our

case, due to limitations in space and in order to preserve the area for the movement of the

micromanipulator, a large Faraday cage without doors plus smaller handmade metal shields

sitting on the SICM stage are used.

Although a metal shield might block the transmitted noise from the component behind

the shield, there is also a probability that it will nevertheless pick up random noise. Thus,

it is necessary to be careful when introducing a metal shield and it must always be linked

to the point for the signal ground. The conducted noise can usually be largely reduced by

putting a ferrite bead, which converts RF noise into unnoticeable heat, onto power supply

cables. Most of the length of the two headstage cables of the amplifiers is kept inside the

Faraday cage and gently twisted when they return to the rear panels of the amplifiers to

neutralise electromagnetic interference. However, the headstages themselves should stay

separated. Signally-grounded shielding is introduced to each of their heads. In general,

it is recommended that a coaxial Bayonet Neill-Concelman (BNC) connector, which has

a built-in shield, be used; however, one must be aware that the metal layers potentially

result in ground loops, as each BNC cable returns to a separate signal ground from each

instrument, rather than to that from the amplifier. This issue might be solved by breaking

off the metal shield. Finally, electrical isolation is sometimes the answer to the problem,

i.e. it would be best to keep the main sources of noise (e.g. monitors and computers) away

from the amplifiers if possible. It is also a good idea to adopt an independent power line for

computers and monitors.
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5.3 Homemade modular frame and angled microma-

nipulator

The new SICM frame is designed to be modular, with threads created at a regular distance

in between, as shown in Figure 5.4. Therefore, extensibility for future improvements or new

applications is preserved, and it can be built on the same frame. The rack is stabilised with

screws on a phase-contrast inverted microscope (Eclipse TE200, Nikon), and an upside-down

aluminium XY-axis stage (LD–5047–S1, Chuo Precision Industrial Co. LTD, as depicted in

Figure 5.5), a piezoelectric actuator (P-753.2CD, PI, the same as that used in Figure 2.5)

and a stepper motor (M–111.1DG, PI, as represented in Figure 5.6) with travel range of

15 mm are fixed via adaptors at the top of the crossbeam, as shown in the middle of the

bottom row of Figure 5.4. In addition, a heavy brass stabiliser for a horizontal piezoelectric

nanopositioning stage of travel distance 100µm (P–517.2CL, PI, as demonstrated in Figure

5.7), with a homemade dish holder installed at its centre is settled on the original microscope

stage in order to reduce the inevitable vibration caused by SICM scanning.

A nanopipette holder is then fixed to the piezoactuator with its tip pointing perpen-

dicularly to the dish bottom and loaded with the sample. During measurement, firstly the

coarse approach is conducted by operating the stepper motor progressively downwards, and

simultaneously the XY-axis stage is adjusted carefully to move the tip into the field of view,

so that the nanopipette tip can be observed via the ocular lens on the microscope. Note that

a likely cause of a broken tip is excessive speed of movement in the stepper motor, which

provides no distance feedback and which can only be monitored visually. Secondly, a fine

approach to the sample surface or the dish bottom is carried out with a distance-feedback

system by the piezoelectric actuator, and consequently hopping mode topographical scanning

can be performed with proper physical settings, as described in Chapter 2.

A second nanopipette/electrode is connected to the micromanipulator (PatchStar, Sci-

entifica) via a homemade holder, a piezoelectric actuator and its adaptor. PatchStar is a

motorised micromanipulator with high accuracy (20 mm of travel distance in each axis with
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SICM rack on an inverted microscope

Scanning stabiliser on the microscope stage
Adapters for the 
stepper motor and 
piezo actuator

Adapters for the  
piezo actuator and
nanopipette holder

Figure 5.4: Illustrations of a homemade modular SICM frame, a brass stabiliser for the
nanopositioner, and adapters for piezoelectric actuators and the stepper motor. (upper)
The rack for immobilising components used in the new SICM setup. This is composed
of aluminium bricks with modular thread designs for future functional expansion. Two
extrusive racks fixed separately on the columns provide support for the headstages of the
amplifiers. (lower left) Adapters are designed for the stage that performs horizontal (X- and
Y-axes) movement of the nanopipette, for the vertically-aligned stepper motor for coarse
approaching of the nanopipette, and for the piezoactuator in order to perform fine adjustment
of the height of the nanopipette tip. (lower right) A heavy brass block with threads fixed to
the microscope stage along with the XY nanopositioner is designed to reduce the acoustic
noise generated during the scanning.

20 nm resolution) and stability, which can be treated as X-, Y-, and Z-axis low-noise stepper

motors integrated in one system [199]. In addition, the optional movement mode along the
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■ 適正なねじの長さを使用してください
 ステージ上面に部品を固定する場合は、適正な長さのねじを使用してください。
特に、長すぎるねじで固定するとステージが破損します。ステージ上面のねじ
の深さは、当社カタログまたは当社ホームページの図面を参照してください。

■ 異常が発生したら
 ステージ使用中に異常が発生した場合は、お買い上げの販売店または、当社
営業部までご連絡ください。

 1 ご使用前にご確認ください
■ 製品を確認してください
ご注文の製品に間違いないか、ステージ本体の製品番号および「5 製品番号
表」を参考にご確認ください。

■ 付属品を確認してください
・六角穴付きボルト（取付ねじ）本体固定用 .............4 
・L型六角レンチ（六角穴付き止めねじ固定用） ........1 ※
・六角スパナ ..............................................................1 ※
（※ファインピッチマイクロ仕様にのみ付属）

■ クランプビスを緩めてください
輸送時の精度保持のため、クランプビスを締めています。必ずご使用を開始
する前に、クランプビスを矢印の方向に回し緩めてください。
クランプビスを締めたまま、マ
イクロメータヘッドなどを動か
すとクランプ板などを破損して
しまい、保証の適用ができなく
なります。

 3 ステージの設置方法
ステージの設置面には、あらかじめねじ加工を施してください。
下軸ステージのマイクロメータヘッドを縮めた状態にして、クランプビスを緩
め、上軸ステージを矢印の方向に移動して、取付ねじで固定してください。

ファインピッチマイクロ仕様の設置
ファインピッチマイクロ仕様の製品は、下軸のマイクロメーターヘッドが取り付
けられていない状態で工場出荷されます。（サイズ30mmx30mmを除く）
下軸のマイクロメーターヘッドの取り付けは、ステージ本体を設置した後に行っ
てください。
マイクロメーターヘッドの取り
付けについては、「4 ファイン
ピッチマイクロの取付」を参照
してください。

製品の仕様については、当社ホームページでご確認ください。
URL:www.chuo.co.jp

標準マイクロ     

タイプ 30mm × 30mm 40mm × 40mm 50mm × 50mm 60mm × 60mm 70mm × 70mm

センター
標準型 LD-3047-C1 LD-4047-C1 LD-5047-C1 LD-6047-C1 LD-7047-C1

対称型 LD-3047-CR1 LD-4047-CR1 LD-5047-CR1 LD-6047-CR1 LD-7047-CR1

サイド
標準型 LD-3047-S1 LD-4047-S1 LD-5047-S1 LD-6047-S1 LD-7047-S1

対称型 LD-3047-SR1 LD-4047-SR1 LD-5047-SR1 LD-6047-SR1 LD-7047-SR1

［営業部］〒 101-0063 東京都千代田区神田淡路町 1-5 及川ビル3F
TEL.03（3257）1911　FAX.03（3257）1915

 4 ファインピッチマイクロの取付
下軸のマイクロメーターヘッドをマイクロ台に差し込み、六角ナットで固定し
てください。
六角穴付き止めねじは、必要に応じてマイクロメーターヘッドの仮止めに使用
します。ステージの設置方法によっては、このねじの締め付けが不可能なこと
があります。そのような場合は、このねじは取り除いてください。
● 六角穴付き止めねじの位置は、製品によって側面と底面の2種類があります。
● 下軸のマイクロメーターヘッドを取り付けた後では、ステージの移動量が小
さくなるためステージ本体の設置ができなくなります。マイクロメーター
ヘッドを取り付ける前に「3 ステージの設置方法」を参照して、ステージ本
体の設置を行ってください。

 5 製品番号表

送りねじ P=0.5mm     

タイプ 30mm × 30mm 40mm × 40mm 50mm × 50mm 60mm × 60mm 70mm × 70mm

センター
標準型 ー LD-4047-C6 LD-5047-C6 LD-6047-C6 LD-7047-C6

対称型 ー LD-4047-CR6 LD-5047-CR6 LD-6047-CR6 LD-7047-CR6

サイド
標準型 ー LD-4047-S6 LD-5047-S6 LD-6047-S6 LD-7047-S6

対称型 ー LD-4047-SR6 LD-5047-SR6 LD-6047-SR6 LD-7047-SR6

ファインピッチマイクロ     

タイプ 30mm × 30mm 40mm × 40mm 50mm × 50mm 60mm × 60mm 70mm × 70mm

センター
標準型 LD-3047-C8 LD-4047-C8 LD-5047-C8 LD-6047-C8 LD-7047-C8

対称型 LD-3047-CR8 LD-4047-CR8 LD-5047-CR8 LD-6047-CR8 LD-7047-CR8

サイド
標準型 LD-3047-S8 LD-4047-S8 LD-5047-S8 LD-6047-S8 LD-7047-S8

対称型 LD-3047-SR8 LD-4047-SR8 LD-5047-SR8 LD-6047-SR8 LD-7047-SR8

※サイズ 30mmx30mm
　を除く

Figure 5.5: Schematic diagram of the XY stage installed on the homemade SICM frame,
on which a vertically-aligned stepper motor and an electric piezoactuator are connected via
adapters. The horizontal motion of the nanopipette is controlled precisely by a pair of
micromanipulators for X and Y directions separately (0.5 mm per turn). Figure excerpted
from [196].

 3 Product Description

3.3 Product View 
 

 
Figure 1: Product view (example: M-111.1DG) 

1 Base body 
2 Moving platform 
3 Cable for the connection to the motor controller 
4 Motor 

 
 

3.4 Scope of Delivery 
  

Order 
Number 

Item(s) 

M-11x Stage according to order (see p. 8) 

C-815.38 Motor cable, 3 m, 15-pin D-sub connector 

000018146 Screw set: 

 4 hex-head cap screws M3x6 DIN 7984 

 1 Allen wrench 2.0 for hex-head cap screws 

 1 Allen wrench 1.5 for manual shifting of moving platform during 
remedial actions. 

MP41 User manual (this document) in printed form 

 M-11x Micro-translation stage  MP41E Version: 4.0.0 9 

   

Figure 5.6: Photograph of a micro-translation stage designed using a stepper motor. 1
denotes the metal base; 2 the moving stage with a travel range of 15 mm with threaded
holes; 3 the servo motor cable; 4 the stepper motor. Note that the motor is covered by a
piece of copper foil to reduce electromagnetic interference generated during its operation.
Figure excerpted from [197].

nanopipette/electrode axis makes this very convenient, and it is possible to perform an an-

gled approach to the side of the sample. It is designed to be modular so that the nanopipette

can be loaded and approached from various angles and directions. Additionally, the switch-

controlled extensible arm holds the nanopipette, and the magnetically-stabilised rotary base

simplifies the procedure of nanopipette replacement. In our setup, the PatchStar is held on

a column in order to align it with the SICM stage and is set to lie at a low profile by an

L-shaped bracket (PS-7800), as shown in Figure 5.8, so that the movable holder together

with the nanopipette can approach the sample without hitting any other parts installed on
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 3 Product Description 

P-5x7/P-5x8 Stage   PZ82E Version: 3.0.0 11 

   

3.2 Product View 
The illustration serves as an example and can differ from your stage model. 

 
Figure 1: Example of product view 

1 Moving platform 
2 Cable exit 
3 Protective earth connection 
4 Base body 

 
 

3.3 Scope of Delivery 
Order Number Items 

P-5x7/P-5x8 Stage according to order (p. 9) 

- Transport lock, consisting of: 

 Support frame 

 4 plastic screws 

000036450 M4 screw set for protective earth, consisting of: 

 1 M4x8 flat-head screw with cross recess, ISO 7045 

 2 safety washers 

 2 flat washers 

P500T0002 Technical Note with instructions on unpacking and 
packing P-5xx stages 

PZ240EK Short instructions for piezo positioning systems 

 

Figure 5.7: The nanopositionor used in SICM is illustrated, where 1 is the moving platform
with a Petri dish holder fixed in its rectangular cavity; 2 is the cable outlet; 3 is the protective
earth connection; 4 is the metal base. This positioner is positioned on the brass stabiliser
on the microscope stage with maximum closed-loop travel of 100µm × 100µm. Figure
excerpted from [198].

Figure 5.8: Schematic diagram of the low profile PatchStar micromanipulator with an L-
shaped bracket. Three modules responsible for the movement individually of X-, Y- and
Z-axis are shown, and the travel distance is 20 mm on each axis and the step size is 100 nm.
The movement of the modules can be controlled by a wheeled control cube or by a Windows-
based program termed LinLab, which allows four optional approach speeds to be set along
various axes, with a virtual approach axis along the nanopipette. In addition, the design of
a carriage sitting on a slide rail attached to a rotary with magnetic locks makes it convenient
for nanopipette/sensor replacement. Figure excerpted from [199]
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the stage and the microscope. Precise control of the motor movement at various axes and the

speed of approach can be fulfilled by either a wheeled control cube or by computer software

termed “LinLab,” in which current positions are recorded and shown.

5.4 Perfusion system

An optional perfusion system is built for a consistant supply of fresh buffer medium for the

cells. The buffer medium is kept at 37◦ in a water bath (SUB Aqua 2 Plus, Grant), with

fluid being delivered by a peristaltic pump (Peristaltic Pump P-1, Pharmacia) into the target

Petri dish containing live cells; at the same time, excessive medium above the desired liquid

level is removed by a fixed needle tip that is connected to a suction pump (Medical Suction,

SAM 12) via tubing. The medium can first be pumped into a syringe without a plunger

at a higher place than the dish, if this direct delivery of medium into the dish using the

peristaltic pump induces physical interference to the measurement, e.g. resulting in noisy

topographic imaging, so that the fluid is then drew into the dish more smoothly by gravity.

Alternatively, if the volume of the buffer medium used for the experiment is not as much as

one litre, a syringe pump (PHD 2000, Havard Apparatus) can also accomplish the task.

5.5 Light sources for the setup and camera

When the vertical nanopipette holder is used, the usual upright light source (without a

condenser) from the 12 V, 100 W illumination pillar powered by TE–PS100 will inevitably

be nullified, because the light path is partially blocked by the holder itself. In this case, one

or multiple portable clip-on LED lamps (PSX501, Thorlabs) are used merely to illuminate

the sample.

The light source for performing the fluorescence experiments is provided by a molecu-

lar LED system (OptoLED, Cairn Research). A triple coupling, carrying three LED heads

(each with a two-by-two LED array) of wavelengths 365, 470 and 530 nm, connected to the
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microscope by arranging its tube through the space under the illumination pillar enables

direct band-pass filtered (470, 505 and 540 nm) LED illumination of the sample area. LED

technology has been developed to cover wavelengths ranging from infrared to near ultravio-

let, and the intensity of LEDs has increased progressively. Thus, these properties have made

LEDs one of various options for light sources, as well as e.g. laser, arc lamps and incan-

descent lamps. Although laser has been widely adopted in single–molecule experiments due

to its high intensity, monochromaticity and collimation, the LED system has the particular

advantage of being much less costly and its comparable properties can fulfil experiments

with lower requirements.

The OptoLED is a constant-current power supply (0–10 V), which is able to drive two

LED heads, with a current ranging from 0 to 5 amps. The output of the LED is approx-

imately proportional to the applied voltage; however, it is in fact influenced especially by

temperature, i.e. heat dissipation along with illumination decreases the light intensity by

more than 10 % [200]. The solution provided by OptoLED is to overdrive the LEDs according

to the feedback signal from a photodiode in order to maintain a constant optical efficiency.

The advantage of driving the LEDs according to the detection results from a photodiode is

that the optical output can be more linear, but its disadvantage is a longer response time for

the application, with a requirement to be switched on and off periodically or for pulse waves

to reduce possible phototoxicity. Note that the original switching times for OptoLEDs can

be less than 100 ns.

A digital 14-bit CCD camera (pco.pixelfly usb, PCO) is installed in the side port of the

microscope. When acquiring experimental data, adjusting the changeover lever of the optical

path allows 20 % of light to be directed to the camera, whilst the remaining 80 % goes to the

eyepiece tube port. The camera has relatively low noise, a resolution of 1.4 megapixels, and

a high pick quantum efficiency of 62 % [201].
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5.6 Examples of topographic imaging using SICM

In order to perform quantitative localised dosing of a reagent via the vertically-aligned

nanopipette, it is crucial that the tip of the nanopipette can be maintained at a constant

height from the substrate that is preset via a user interface. The most effective way to exam-

ine this feedback-controlled movement of the nanopipette is to conduct topographic imaging

of samples, although the function of topographic scanning possessed by the new SICM setup

is not utilised in this thesis. In figure 5.9, three 3-D topographic images of primary rat glial

cultures using SICM in the setup are exhibited. The scannings were completed in hopping

mode with a setpoint at 1% and a falling rate of 500 nm/ms. The maximum scanning area

is 30×30 µm2, which is defined by the nanopositioner holding the cell dish, but only around

10×10 µm2 was scanned in the examples shown in Figure 5.9 to save time. Figure 5.9(a), (b)

and (c) have resolutions of 469, 166 and 59 nm, and they took approximately 5, 20 and 60

minutes, respectively. In fact, it was possible for the coarse scanning shown in Figure 5.9(a)

to reveal the intercellular network between astrocytes, so the user can choose a suitable

scanning resolution according to the specific experimental conditions.

5.7 Function of patch–clamp recording

Patch–clamp technique is an important electrophysiological tool, which can resolve conduc-

tance under the tip of a nanopipette with a high temporal resolution. The opening of a

small set or a group of ionic channels distributed on an individual cell owing to external

stimulation influences significantly the amount of ion flow through the nanopipette aper-

ture. It was developed by Sakmann and Neher in the late 1970s [42], and is mainly used for

the investigation of networks of excitable cells, for example neurons and cardiomyocyte cells.

The ion current of the cell responding to the applied stimulation through the electrically-

isolated patch is at the level of tens to hundreds of picoamperes and can be recorded using

a specialised electronic amplifier. The configuration of a tight contact, so-called patch, be-

tween the nanopipette tip and the cell membrane (a giga-ohm seal should be now observed)
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Figure 5.9: Topographic images of astrocytes using SICM in a resolution of (a) 469, (b) 166
and (c) 59 nm. They were performed in the hopping mode, with a setpoint of 1% and the
tip falling rate of 500 nm/ms. Note that the X-. Y- and Z-axis are in a unit of µm.
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is termed cell-attached recording, as shown in Figure 5.10(a), so only intracellular ions can

flow through the nanopipette aperture. If strong suction is applied once again to rupture

the membrane patch, leading to a continuous connection between the pipette’s inner surface

and the cell cytoplasm, it is called whole-cell recording (Figure 5.10(c)) and is frequently

used for studying electrical signals from the entire cell. The other two operation modes are

inside-out (Figure 5.10(b)) and outside-out recordings (Figure 5.10(d)), which are utilised

to examine the characteristics of single-channel currents in different intracellular and extra-

cellular chemical environments, respectively.

This patch–clamping function can be realised on the same setup. The borosilicate glass

capillary (O.D. 1.0 mm, I.D. 0.58 mm) is used and the pulling program for a microscale pipette

is: Heat:465, Filament:3, Velocity:45, Delay:130, Pull:105. The schematics of a whole–cell

patch–clamp technique are depicted in Figure 5.10. When a nanopipette which is loaded

with intracellular solution approaches the cell surface, positive pressure is firstly applied us-

ing a 1 mL syringe to prevent the adsoprtion of any unwanted objects near the nanopipette

aperture. The pipette is controlled carefully by the angled micromanipulator as shown in

Figure 5.8. Subsequently when the tapered part of the nanopipette touches the target cell

(when a slight distortion of the cell membrane should be observed), the pressure is released

and an Ω-shaped protrusion in the cell membrane with angstrom level glass–membrane sep-

aration is formed with the application of negative pressure (which traditionally was usually

applied by the mouth via the syringe connected to the pipette holder) [42]. A giga-ohm seal

between the nanopipette and the cell patch area is achieved immediately or within several

seconds. This tight seal dramatically increases the signal-to-noise ratio of the measurements,

because it electrically isolates the cell membrane and minimises the current leakage from the

rim of the patch into the nanopipette. Under this condition, the potential of the membrane

patch may be controlled via external voltage application. Therefore, charged ions flowing

through a small set of single channels at the membrane patch are collected by the electrode

immersed in the nanopipette, and then this current is amplified. For recording the ion current

of the entire cell due to voltage clamping, as shown in Figure 5.10, zero-current cell-resting

potential (it is usually –70 mV for neurons) is applied and subsequently additional suction
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(or small voltage jumps) needs to be undertaken to rupture the membrane patch without

impairing the giga-seal. The pipette interior and the cell cytoplasm are now contiguous, and

therefore the ion current in the whole cell is successfully recorded. Under these conditions,

the resistance of the nanopipette drops to less than 20 MΩ [202]. The whole-cell recording

mode offers reproducible measurements of physiological ion events under voltage clamping,

especially on excitable cells and voltage-controlled receptors.
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Electrode 

Lipid bilayer 

Nanopipette 

Receptor Cytosol 

Electrode 

Lipid bilayer 

Nanopipette 

Mild suction 
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Cytosol 
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Lipid bilayer 

Nanopipette 

Receptor Cytosol 

Electrode 

Lipid bilayer 

Nanopipette 

Receptor 

Cytosol 

(a) (b) 

(c) (d) 

Cell-attached recording Inside-out recording 

Whole-cell recording Outside-out recording 

Air exposure 

Strong suction 
Nanopipette retraction 

Anneal of the ends  

of the membrane 

Figure 5.10: Schematic diagrams of four basic recording modes of the patch–clamp technique.
(a) The nanopipette firstly has positive pressure applied to drive away unwanted particles in
the buffer solution when it approaches the target cell, and subsequently pressure is changed
to be negative by mild suction after the nanopipette tip is firmly attached (with a giga-seal)
on the cell membrane. A single ion channel or a small number of ion channels is now captured
in the inner space of the nanopipette tip and cell attachment may feasibly be conducted. In
the inlet, a nanopipette patching a cell viewed using a 40× objective (Nikon, CFI Plain Flour
oil immersion ×40) is demonstrated. (b) When the giga-seal is established, the nanopipette
is retracted upwards so that exposure to the air can remove the cell patch, enabling inside-
out recording. (c) Alternatively, when the giga-seal is formed, a pulse of stronger suction
can be applied to rupture the cell membrane, where the intracellular cytoplasm is contiguous
with the nanopipette interior. Therefore, the ion current flowing through every ion channel
is collected simultaneously via the patched pipette under appropriate voltage bias, which
constitute whole-cell recording. (d) Retraction of the nanopipette after the membrane is
ruptured, i.e. in the mode of whole-cell recording, further breaking of the cytoplasmic
bridge and annealing of the end of the membrane realise the outside-out recording. Notably
(a), (b) and (d) are so-called single-channel recordings.
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Three physical parameters obtained from whole-cell recording: 
 

1. Direct current (DC) 

2. Series resistance (Rs) 

3. Membrane resistance (Rm) 

Figure 5.11: (right) A simplified equivalent circuit for modelling electronic characteristics
in patch–clamp recording in the whole-cell mode, in which Ip is the nanopipette current;
Rs, Rm and Rf are series resistance, membrane resistance and resistance in the amplifier,
respectively; Cp, Cm are nanopipette and membrane capacitances, respectively; Vp, Vm, Vc

and Vout are nanopipette, membrane, input and output voltages, respectively. Note that Vp

is equal to Vc. (left) A capacitive current through the cell membrane under the stimulation
of a periodic square wave of 10 mV. Three parameters, including DC offset, Rs and Rm, can
be read and calculated simply from this current curve, where Iss is the steady-state current.

5.7.1 Angled whole-cell patch–clamp

After a cell is firmly attached by a nanopipette with a suitable size of opening, its cell

membrane can then be ruptured by the careful application of negative pressure so that

its cytosol becomes contiguous with the intracellular solution pre-loaded in the nanopipette.

Electronic properties of this whole system, including the cell, the nanopipette and the current

amplifier, can be modelled as a simplified equivalent circuit, as shown in Figure 5.11 [202].

This model is composed of several resistances representing various objects in series, two

capacitances indicating the nature of accumulation of charges on opposite sides of a dielectric

material, and an operational amplifier. In general, a stimulation of a periodic square wave is

applied via the nanopipette, so that a featured capacitive current through the cell membrane

can be utilised to extract important parameters, especially series resistance (Rs), which is
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sometimes referred to as input resistance, and membrane resistance (Rm). The diagram in

Figure 5.11 illustrates these electronic characteristics.

An example of the procedure for performing whole-cell recording is shown in Figure

5.12(a) and (b). The tip of the nanopipette was tightly pressed onto a target neuron, with

Rs, achieving 32 Gohm under a periodic square wave of 10 mV. A circle around the tip of

the nanopipette due to its pressing the cell was observed. Subsequently, a light suction

was applied, so that the cell was recorded in whole-cell mode. It is difficult to determine a

status change from optical observation, but an effective membrane rupture is confirmed if a

capacitive current appears. On the other hand, from diffusion into the cell of a fluorescent

dye that was pre-loaded in the patching nanopipette, it is evident that whole-cell mode was

successful, as shown in the inset of Figure 5.12(b). At the same time, electronic parameters,

including the DC offset, Rs and Rm, can be monitored over time. Another example of these

parameters is demonstrated in Figure 5.13, in which they are shown stabilised at roughly

400 seconds, although an initial sudden jump of Rs, probably due to a subtle movement

of the tip was observed. Therefore, it was shown that whole-cell patch–clamp mode was

successfully achieved and the system was ready for the experiments in the next stage, e.g.

the application of electrical stimulation or reagent dosing in order to record the collective

behaviour of one or more specific ion channels.

5.7.2 Smart patch–clamp

The disadvantage of the patch–clamp technique is that it lacks the ability to determine

where the patch is located in subcellular structures, if the probing region is smaller than the

optical resolution of microscopic objectives. Therefore, the combination of SICM and patch–

clamp analysis provides precise positioning of the recorded channels, which is termed the

scanning patch–clamp or smart patch–clamp method. The experimental protocol developed

by Novak et al is as follows: (1) a nanoscale resolution of surface topography is first obtained

by SICM with a small opening nanopipette; (2) the nanopipette is widened carefully on the

same setup for the cell-attached analysis, which utilises the predefined three-dimensional
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(a) Gigaohm seal formation 

(b) Whole-cell mode 

Figure 5.12: The featured capacitive current and an optical image of the nanopipette and
target neuron during (a) gigaohm seal formation and (b) whole-cell recording. Note that
the real-time electronic properties were acquired by WinLTP. The inset in (b) indicates a
successful rupture of the cell membrane for whole-cell mode, with a pre-loaded fluorescent
dye, 2.9 µM of Alexa AF488, diffusing into the neuron, and this dye was excited by an LED
of 470 nm powered at 500 mW.
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Figure 5.13: Real-time monitoring of (a) DC offset, (b) Rs and (c) Rm. Red line in (c)
indicates an averaged value of Rm within the observation window of 450 seconds.
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coordinates used in SICM [49]. The new setup introduced in this chapter should be able to

carry out this smart patch–clamp technique, as the widening of the tip using the suggested

method in their paper has been tested successfully, although further optimisation to obtain

a tip opening with a desired size, and more practice of vertically-aligned whole-cell recording

are needed.

5.8 Conclusions

In this Chapter, a new setup that is capable of conducting localised reagent dosing via a

nanopipette and nanodetection using a sensor fixed to an angularly-aligned micromanipula-

tor, in which application of stimulation on a single cell and the time-course monitoring of its

response can be used to model a biological system of interest at a single-cell level. There-

fore, using this rig to reveal the mechanism of the onset of a disease that has not been fully

understood may shed light on possible treatments. This multifunctional setup is equipped

with an LED lightsource and a CCD camera, and it has been optimised electronically; thus,

it has the potential to allow experiments to be carried out that are not even covered in this

thesis; e.g. smart patch–clamp and intracellular ROS recording over time via a fluorescent

indicator. Examples of topographic imaging using SICM, and whole-cell recording have been

demonstrated here, which proves this new rig based on SICM is very useful for experiments

at the single-cell level.
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Chapter 6

Single-cell ATP probing by nanoscale

theta-nanopipette-based EGOFET

6.1 Introduction to nanoscale biosensors

If transient pores in the cell membrane are formed simultaneously when Abeta42 oligomers

enter, there should be other kinds of intracellular molecules leaking out of the cell, e.g. free

cytosolic adenosine triphosphate (ATP), and these might be detectable using a nanoscale

sensor with a sufficient sensitivity situated right above the dosed cell. ATP is a critical

molecule in the human body, because one of its derivatives, cyclic adenosine monophosphate

(cAMP), is a second messenger in the intracellular system that triggers important physiologi-

cal functions, e.g. proliferation, differentiation and apoptosis, and ATP itself can be released

to regulate intercellular signalling [203]. The release pathways of ATP through cell mem-

branes are usually via exocytosis of secretory vesicles, or ATP transporters or the physical

rupturing of cell membranes [204, 205]. In healthy neuronal cells, released ATP can be used

to mediate the propagation of calcium waves in astrocytes [206, 207]. Previous studies have

also found that aggregates of Abeta42 peptides can induce the production of reactive oxygen

species (ROS) in microglial cells [208] and enhance the intensity, velocity and distance of

calcium signalling in astrocytes [209]. All of this evidence indicates Abeta42 does indeed
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play a role in modifying homeostasis. In addition, intracellular ATP is of approximately

millimolar, which is a relatively high concentration [210–212], and there has been evidence

demonstrating oligomer-induced ATP leakage [213]. Therefore, it is likely that ATP leak-

age induced by Abeta42 oligomer of a physiological concentration will be detected above a

resting neuronal cell by an ATP biosensor with a millimolar sensitivity.

Modified nanopipettes in SICM have been recently adopted for the development of sen-

sors. Scanning electrochemical microscopy (SECM) is realised by replacing the nanopipette

in SICM with a nanoelectrode, which is capable of revealing the specific chemical properties of

a scanned area [214, 215]. The tip of the nanoelectrode can be designed as a highly-sensitive

detector for specific molecules, with a diffusion-limited Faradaic current characterised by

charges, redox species and a concentration of electrolyte [216]. A benefit of having nanoelec-

trodes with a tip diameter of several nanometers is that they can minimise the invasion and

damage of a targeted object, which is especially critical when measurements are performed

in live cells.

Various biological applications have been conducted using nanoelectrodes. Wang et al.

were the first to measure intracellular oxidative bursts in murine macrophages using a nano-

electrode with a diameter of about 150 nm functionalised with platinum black [217]. Actis et

al. have produced platinum-coated nanoelectrodes, whose tip opening of approximately 5–

200 nm can be precisely altered to detect intracellular and extracellular oxygen consumption

in a brain slice [218]. It is notable that this kind of nanoelectrode with a disc-shaped opening

was manufactured using a simple and fast method by filling pyrolytically deposited carbon

into a nanopipette. However, this platinum-coated nanoelectrode must be operated at a

high applied bias voltage of 800 mV versus Ag/AgCl reference electrode may measure not

only targeted species but also unwanted ones in live cells. In this case all kinds of activated

species will contribute to the Faradaic current. Clausmeyer et al. deposited Prussian Blue

into a nanocavity etched on the tip surface of a nanoelectrode, which is a redox mediator

for hydrogen peroxide [219]. As a result, the operated DC voltage was applied at –50 mV,

which is reasonably low, and this sensor had a detection limit of 10µM hydrogen perox-
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ide. Intracellular ROS and reactive nitrogen species (RNS) can potentially be detected by

a nanoelectrode inserted in cells under constant-voltage recording mode, which means that

signal distortion can be avoided by proper electrical isolation from the cell membrane.

For intracellular measurements, a sensor is usually designed so that its detection limit will

be able to reach as low as submicromolar concentrations; however, it is not easy to achieve

this with nanoelectrodes, because a compromise between two contradictory conditions, i.e.

a sufficiently low impedance and minimal rupture of cell membranes, must be achieved. In

other words, the dimension of the nanoelectrode opening cannot be made to be too small;

otherwise, the signal-to-noise ratio will be too low for proper data collection to be carried

out. Therefore, many nanoscale sensors with a high surface-area-to-volume ratio have been

designed in order to achieve high sensitivity at a single-molecule level. Among these, a sensor

built on a nanoscale field-effect transistor (nanoFET) is one of the most promising candidates

for intracellular applications [220]. This kind of sensor is able to circumvent the problem

related to impedance, because there is no direct current flowing into the tip of a nanoFET

sensor. The transconductance of a nanoFET sensor is defined by ∆Iout/∆Vin, which is

usually inversely proportional to its own size of the active area [221]. Therefore, in general,

nanoFET sensors have higher sensitivity and higher spatial resolution than nanoelectrodes.

For a nanoFET sensor, either organic or inorganic semiconductors can be used as the

active material. Although an inorganic semiconductor manufacturing process has been fully

developed, and inorganic semiconductors with a higher carrier mobility are suitable for high-

speed applications, organic conducting polymers have the advantages of low-cost processing,

high sensitivity and high tunability, especially in the fields of chemical and biological sensing

[222]. Among the various kinds of conducting polymers that are fabricated for electronic

devices, polypyrrole (Ppy) has the characteristics of low redox potential and good biological

compatibility [223, 224]. The conductivity of Ppy can be effectively increased by electro-

chemical doping, in which Ppy under the application of a voltage will be swollen and dopant

ions in a solution are allowed to diffuse to fill in available vacancies to achieve electric neutral-

ity. Previous studies had shown that nanoFET sensors made of Ppy are capable of detecting



130 Chapter 6

Laser pulling Polypyrrole
deposition

Carbon 
pyrolysis

Hexokinase
attachment

Carbon Polypyrrole HexokinaseAperture

Theta 
nanopipette

Nanoelectrodes EGOFET ATP sensor

Figure 6.1: Schematic cross-section of different stages of a theta nanopipette during the
manufacturing process for producing an ATP sensor. First, the nanopipette experienced
pyrolytic carbon filling in the pair of vacant barrels (nanoelectrodes). Subsequently, a Ppy
layer was deposited to connect individual semilunar carbon fillings (EGOFET). Finally,
hexokinase was attached to the Ppy layer to establish ATP sensitivity (ATP sensor).

changes in pH in a solution, in which protonation and deprotonation may increase and de-

crease the conductivity of the Ppy layer, respectively [225]. In addition, different chemical

species could be detected by modifying a Ppy-nanoFET-based sensor with specific reactors

[226, 227].

In this chapter, a low-cost manufacturing process without the need for a conventional

cleanroom, with a newly developed theta-nanopipette-based ATP sensor is introduced. This

process was operated using an angular-aligned micromanipulated holder in the new SICM

setup described in the previous chapter, and the sensor produced could continue to carry out

ATP measurements (without being withdrawn from the holder) directly at room temperature

if needed. As shown in Figure 6.1, the fabrication process has four main steps: (1) producing

a theta nanopipette with two suitable sizes of semilunar openings; (2) pyrolytical filling of

carbon into these two channels; (3) individual Ppy deposition on both of the carbon-filled

channels until a Ppy connecting bridge is established; and (4) successful constraining of
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appropriate units of hexokinases, which enable catalysis of phosphorylation of the substrate

(ATP acts as the phosphate donor), near the active channel of an electrolyte-gated organic

FETs (EGOFET). Finally, electronic characteristics of EGOFETs and EGOFET-converted

ATP sensors in a solution were discussed in detail, and experimental results on cells were

reported, too.

6.2 Materials and methods

6.2.1 Cell preparation

Astrocytes used in the experiment were selected by the nanopipette from a mixed glial

preparation from P3–P4 rat, which was cultured for 2 weeks in 75 cm2 cell culture flasks

(Corning) with Dulbecco’s Modified Eagle’s medium (DMEM, Invitrogen) supplemented

with 10% fetal bovine serum (FBS), 1% Penicillin and Streptomycin and 1% L-Glutamine

(Life Technologies) in an incubator kept at 37◦C, where 5% CO2 was maintained through a

delivery tube in a humidified atmosphere.

Once 90% confluence of glial cells was achieved, cells were split and kept in a suitable

environment for a long-term culture. According to the schedule of performing experiments,

neuronal cells were transported in order to reach a 40–70% confluence, in 35 mm dishes with

No. 1 coverslip of 14 mm glass diameter at the bottom (P35G-1.0-14-C, MatTek). Plated

dishes were used for experiments within 1–5 days, and it was possible for their confluence to

increase to a level not feasible for single–cell measurements afterwards.

6.2.2 Abeta42 preparation

Abeta monomer, Hilyte Fluor 647 ABeta42 (Cambridge Bioscience LDT), was kept on ice

and subsequently purified using a BioSep gel filtration (SEC-s2000, Phenomenex) in buffer

solution, SSPE (0.01 M Na2HPO4, 0.15 M NaCl, 1 mM EDTA, pH 7.4). Afterwards, the

filtered product was flash frozen and stored in a –80◦C freezer. Peptides were always prepared
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Figure 6.2: Schematic illustration of the setup for fabricating theta-nanopipette-transformed
nanoelectrodes. A butane-filled theta nanopipette is fixed to one end of the nanopipette
aligner, whilst pressure-regulated argon is transferred via tygon tubing connected to a glass
capillary, which is fixed to a slidable metal block set, in order to allow controllable flow
onto the sheathed nanopipette tip. Combustion via a jet flame torch is applied to provide
pyrolytic carbon deposition inside two vacant channels at the nanopipette tip.

fresh right before the cell-dosing measurements. The purified Abeta42 was diluted to 500 nM

in PBS and left shaking at 37◦C, at 200 rpm for 5 hours in an incubator. Consequently, it

was centrifuged at 1450 ×g for 10 minutes and then diluted to the required concentrations

in L-15 cell culture medium. The concentration of oligomers have confirmed by a single-

molecule counting method using confocal two-color coincidence detection (cTCCD). This

protocol gave approximately of 3 nM Abeta42 oligomers plus 500 nM of Abeta42 monomers

[175].
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6.2.3 Fabrication of theta-nanopipette-based ATP sensors

Each length of quartz theta tubing with septum thickness of 0.15 mm (QT120-90-7.5, Sutter

Instrument) was fixed and processed using a CO2 laser puller (P-2000, Sutter Instrument)

with parameters: HEAT:670, FIL:3, VEL:45, DEL:130, PUL=95 to generate a pair of theta

nanopipettes, with an inner radius of roughly 100 nm and a septum thickness smaller than

50 nm separating two vacant channels with a similar semilunar shape and size. Afterwards, as

shown in Figure 6.2, a theta nanopipette was fixed on a screw-tightened metal square at one

end of a homemade nanopipette aligner, on which a tygon tubing connected glass capillary

(Q120-90-10, Sutter Instrument) was fixed on a set of slidable metal blocks on the other end.

This tygon tubing was used to transfer Argon from a pressure-regulated cylinder out of this

glass capillary; the end of the nanopipette was also connected to a butane gas cartridge via

tygon tubing of the same size. Therefore, the butane-filled tip of the nanopipette was covered

by the argon-flowing glass capillary, which produced a locally oxygen-deficient environment

at the tip, and then it was heated up by a butane-filled jet flame torch for around 10 seconds

in order to deposit enough carbon pyrolytically into the two vacant channels extended to

the tip.

After electrochemical characterisation in a solution with 1 mM FcMeOH (335061, Sigma

Aldrich) and 100 mM KCl, suitable carbon-filled theta nanopipettes were selected to be

immersed in a solution containing 0.5 M pyrrole (131709, Sigma Aldrich), 0.2 M LiClO4 and

0.1 M HClO4, in order to form Ppy deposition bridging carbon-fillings at both channels

via oxidative polymerisation with consecutive dimerisation of two radical cation pyrrole

monomers.

As shown in Figure 6.3, carbon nanoelectrodes termed drain and source in an EGOFET

were connected to the application of bias voltages (VG and VDS), whilst the gate electrode

was immersed in the pyrrole solution. The growth of Ppy separately on the two carbon

electrodes via cyclic voltammetry of VG=–0.3 to 0.65 V and simultaneously (VDS=0.5 V)

was monitored by an increase of Faradaic current at two electrodes during repeated scan

cycles. This Ppy-growing process would be stopped when separate Ppy layers made contact
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Figure 6.3: Illustrations of the fabrication process of Ppy deposition on two semilunar sur-
faces of carbon nanoelectrodes. (Upper) A pair of carbon-deposited nanoelectrodes is im-
mersed in a solution containing 0.5 M filtered pyrrole monomers, 0.2 M LiClO4 and 0.1 M
HClO4. Ppy starts to grow, cycle by cycle, during the application of cyclic voltammetry of
VG=–300 to 650 mV, whilst VDS is maintained at 5 mV, as depicted in the (lower left). Ppy
grown separately on nanoelectrodes will consequently make contact after a few scan cycles.
(Lower right) Ppy growth at one side of the carbon nanoelectrode demonstrated by a cyclical
increase of Faradaic current during cyclic voltammetry from 0 to 0.7 V.

with each other, which could be acknowledged by observing a pair of symmetrical waveforms

at the two channels. In this way, a nanoscale EGOFET with a thin Ppy layer used as the

active material was fabricated.

Owing to the fact that an EGOFET-converted ATP sensor reacts with protons gener-

ated from phosphorylation involving ATP, an unbuffered solution, which contains 120 mM

NaCl, 5 mM KCl, 5 mM MgCl2 and 20 mM D-glucose, and is adjusted to pH 7.5 to 8, is

necessary for the experiments. Ppy-based EGOFET was consequently processed and con-
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verted into an ATP sensor by linking enough units of hexokinase onto the Ppy layer via

glutaraldehyde molecules. An EGOFET was immersed firstly in lightly-mixed (with a 5µL

pipette tip) 25% glutaraldehyde in water (G5882, Sigma Aldrich) and then 500 U/mL Hex-

okinase and Glucose-6-phosphate Dehydrogenase from baker’s yeast (S. cerevisiae, H8629,

Sigma Aldrich), each for at least 30 minutes, whilst cyclic voltammetry was still conducted.

Finally a successful ATP sensor was rinsed carefully three times using unbuffered solution

to wash away hexokinase that was not firmly attached. A new ATP sensor was fabricated

and kept in the unbuffered solution with adjusted pH before any measurements were taken.

ATP disodium salt hydrate (A2383, Sigma Aldrich) was used for ATP sensor calibration.

6.3 Experimental results

6.3.1 Characterisation of carbon nanoelectrodes and the EGOFET

Characterisation of how carbon were deposited in the pair of semilunar channels in a theta-

nanopipette was done by performing cyclic voltammetry (0 to 0.5 V) with the nanoelectrode

tip being immersed in solution containing 1 mM of FcMeOH. The Faradaic current at each

surface of the carbon fillings was monitored over time during repeated scan cycles in order

to estimate the surface shape created by combustion. An example of the characterisation

of paired carbon fillings is shown in Figure 6.4(a), with a saturated Faradaic current of

50±10 pA and VG at 0.5 V demonstrating that its surface was likely to be relatively flat, so

that its charge flow is not limited by a planar diffusive influx of redox mediators, FcMeOH.

It is important for the pair of carbon fillings to have similar surface areas in order to provide

a better platform for the next-stage of the sensor fabrication. Ppy itself is pH-sensitive due

to protonation or deprotonation occurring when the surrounding pH has changed. Thus,

when the tip of a nanoFET, i.e. EGOFET in this case, was soaked in various reagents,

the magnitude of IDS would change according to the solution pH under cyclic voltammetry

of VG=–0.6 to 0.2 V and simultaneously VDS biased at 10 mV, as shown in Figure 6.4(b),

where pH of calibration solutions is widely distributed from 0.8 to 10. Here the off-state
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Figure 6.4: Diagrams of (a) Faradaic current of two carbon nanoelectrodes and (b) equili-
brated IDS in different pH solutions (0.8, 2.7, 5.3,7 and 10) during the application of cyclic
voltammetry of VG=–0.6 to 0.3 V. The inset in (b) demonstrates IDS averaged in a complete
scan cycle according to tests on solutions of varying pH. The black line is a guide for the
eye.

of the EGOFET was observed when VG was lower than –0.5 V. The inset in Figure 6.4

is an example showing a relationship between IDS, which was extracted by averaging an

equilibrated waveform during a complete scan cycle, and pH ranging from 1 to 10 for this

specific Ppy EGOFET.

In the previous example, EGOFET was biased at VDS=10 mV. As shown in Figure

6.5, the inset demonstrated a linear relationship between averaged IDS and VDS, when an

EGOFET was conducted, with cyclic voltammetry of VG=–0.6 to 0.2 V in PBS of pH 7.0.

Therefore, in theory, IDS can be greatly amplified by increasing VDS to reach a satisfactory

signal-to-noise ratio, if the stability of an EGOFET can be maintained. Note that the new

EGOFET was designed for any kind of experimental measurement.

In the case demonstrated in Figure 6.4(b), the EGOFET was turned off when VG was
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lower than an estimated –0.5 V. However, when the current axis was plotted on a logarithmic

scale, as shown in Figure 6.6, a massive leakage current of more than 0.1 nA was observed at

VG=–600ṁV in various pH conditions. It is apparent this EGOFET could not be considered

a good electronic switch, and presumably the leakage current could not be reduced any

further even if a VG was applied at less than –1 V, because IDS had reached a plateau

at –600 mV, as shown in Figure 6.6. Note that in a well-fabricated traditional FET, IDS

versus VG would have a relatively steep slope with VG applied in the negative region. The

same situation occurred for other EGOFETs but they are not displayed here, and a highly

negative VG is also not recommended, because it may damage the device itself. Nevertheless,

this drawback did not matter, since the ultimate target of producing a nanopipette-based

EGOFET is to amplify IDS greatly, in order to obtain a high signal-to-noise ratio, and at the

same time to keep its physical size as small as possible to minimise invasion of cells during

intracellular measurements.
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Figure 6.6: A graph of logarithmic scale of IDS versus VG in solutions of varying pH.

6.3.2 Measurements using an EGOFET

The scan range of cyclic voltammetry was subsequently modified without approaching rad-

ical voltages during pH measurements, and a theta nanopipette with smaller openings was
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Figure 6.7: Individual waveforms over time measured at two channels in a theta nanopipette
with respect to defined voltage scans during (a) characterisation of carbon-deposited nano-
electrodes, (b) Ppy growth on the pair of carbon fillings and (c) equilibrated Ppy EGOFET
in 100 mM HCl solution.
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selected to make a smaller FET. The manufacturing process was therefore updated and

shown in Figure 6.7. For the purpose of obtaining small openings in carbon electrodes,

Faradaic current smaller than 50 pA at VG during 0 to 0.5 V was adopted. An example is

shown in Figure 6.7(a). Note that an obvious capacitive effect at VG=0.5 V suggested the

double layer charging current made a comparable contribution to that of the mass trans-

port due to the relatively small and flat carbon surfaces of nanoelectrodes. Figure 6.7(b)

demonstrates gradual Ppy growth on the flat carbon surfaces of a nanoelectrode when each

scan cycle reached nearly 0.65 V, which was similar to the lower right graph in Figure 6.3.

Furthermore, the contact with individual Ppy growth was successfully made in the third

cycle, since an abrupt increase in IDS in the opposite direction at each nanoelectrode was ob-

served, which indicated that they now represented IDS and ISD. These symmetric waveforms

were clear in Figure 6.7(c), when a successfully-made EGOFET was operated in 100 mM

HCl. Empirical evidence suggests a freshly-fabricated EGOFET should be immersed in this

100 mM HCl for an hour with cyclic voltammetry of VG=–0.3 to 0.3 V before the next stage

should be conducted. Note that the waveform of IDS in Figure 6.7(c) appeared upside down,

with left and right reversed when compared to Figure 6.5, owing to an exchange of anode and

cathode in voltage sources in the system. This did not actually matter because the cyclic

voltammetry was always symmetrically swept, i.e. VG=–0.3 to 0.3 V, during measurements

of pH or ATP concentration.

The pH-sensing results using cyclic voltammetry of VG=–0.3 to 0.3 V are displayed in

Figure 6.8(a), with IDS equilibrated after the protonation and deprotonation of the Ppy layer

at the tip of EGOFET. In this case no off-state current was observed due to the scan voltage

not covering a very negative range, but this had no influence on the pH-sensing results of

EGOFETs. Averaged IDS at each complete cycle in time-course is shown in Figure 6.8(b),

which demonstrates how IDS varies accordingly in different pH solutions. It took roughly

100 seconds to achieve physical equilibrium for an EGOFET that had begun to be dipped in

a new reagent with a relatively small pH difference (≤ 2). In order to remove any nonlinear

effects on IDS, normalisation of saturated and averaged IDS, was taken, as shown in the

inset of Figure 6.8(b). In figure 6.9(a), pH calibrations of 17 different EGOFETs were put
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Figure 6.8: Diagrams of (a) equilibrated IDS and (b) averaged IDS in time-course at different
pH (1, 5.3, 6.0, 6.7 and 7.5) under the application of cyclic voltammetry of VG=–0.3 to
0.3 V. The inset in (b) demonstrates IDS, which showed a linear response versus pH ranging
from 5.3 to 7.5.

together. These curves were highly divergent due to that fact that the surface area of the

Ppy layer of each EGOFET could not be finely tuned, and this is accompanied by other

nonlinear effects probably also caused also by each nonideal EGOFET structure. Hence, it

was more reasonable to plot an averaged current normalised at pH 7.2, and this gave rise to

a predictable relationship between pH 4.5 to 8, which is suitable for biological applications,

since physiological pH approximately falls between approximately pH 6 to 8.

6.3.3 Three approaches to EGOFET-converted ATP sensors

The next stage in gaining sensitivity to ATP would be to take advantage of an enzyme

that is capable of performing phosphorylation involving ATP of a substrate molecule, and

simultaneously a proton is produced for detection. The phosphorylation involving ATP by

hexokinase is written as: D-glucose + ATP = D-glucose 6-phosphate + ADP + proton, where

D-glucose is the substrate for hexokinase [203]. One of the products, protons, should be

detectable with the pH-sensing EGOFET described in the previous sections, before it is

dissipated in the bath solution. Therefore, three approaches were adopted for the purpose
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Figure 6.9: Diagrams of (a) raw data of averaged IDS versus pH in 17 different Ppy EGOFETs
and (b) IDS normalised at pH=7, exhibiting a roughly linear response at pH ranging from
4.5 to 8.

of detecting Abeta42 oligomer-induced ATP leakage: (1) hexokinase and Abeta42 oligomers

were both applied in the bath solution, in which protons generated by phosphorylation

involving Abeta42 oligomer-induced ATP leakage would be detected by an EGOFET situated

above a targeted astrocyte; (2) hexokinase was loaded in a nanopipette with its tip arranged

next to an EGOFET above a targeted astrocyte, so that local pH change due to Abeta42

oligomer-induced ATP leakage in this microenvironment could be sensed; (3) hexokinase was

attached onto the Ppy active layer on an EGOFET via a linker molecule, glutaraldehyde,

and Abeta42 oligomer-induced ATP leakage at the cell membrane could be transduced to

an electronic signal at the EGOFET. Schematic illustrations of these three approaches are

depicted in Figure 6.10.

The application of 12.2 U/mL hexokinase into the bath solution containing 100µM of

ATP indicated that a pH change in the solution due to phosphorylation involving ATP

leads to an obvious and immediate increase of IDS from 106.7 to 327.7 pA, as shown in

Figure 6.11(b), whilst the addition of the same volume of pure water as a negative control

into 100µM of ATP solution produced no response at all, and so no observable proton

production in the solution. The pH in different solutions after experiments were performed

was also determined by a commercial pH meter, which showed pH 7.61 and 6.21 for the
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Figure 6.10: Schematic illustrations of three approaches using an EGOFET-based ATP sen-
sor in cell experiments. (a) approach (1): Abeta42 oligomer-induced ATP release from the
cell membrane would be involved in phosphorylation by hexokinase in the bath solution,
and protons may be detected by an EGOFET above the targeted astrocyte. (b) approach
(2): Abeta42 oligomer-induced ATP release from the cell membrane would be involved in
phosphorylation by hexokinase delivered via a nanopipette, and protons can be detected us-
ing an EGOFET above the targeted astrocyte. (c) approach (3): Abeta42 oligomer-induced
ATP release from the cell membrane would be involved in phosphorylation by hexokinase
attached to the Ppy layer via glutaraldehyde on an EGOFET, with protons generated at the
tip that could be detected directly above the targeted astrocyte.

100µM of ATP solution and the same solution with 12.2 U/mL hexokinase, respectively

(Figure 6.11(c)). A pH that was lower by 1.4 indicated that a substantial amount of protons

was generated owing to phosphorylation involving ATP in the bath solution.

6.3.4 Experimental results under approach (1)

Experiments on astrocytes using approach (1), which is guaranteed to be able to sense at

least 100µM of ATP or higher, were carried out. In Figure 6.12(a) and figure 6.12(b),

100 U/mL hexokinase were applied in the bath solution, before Abeta42 oligomers were

added. However, the results did not demonstrate that the pH sensors were able to detect any

change in pH, if there was ATP leaking out of the targeted astrocyte due to Abeta42 oligomer

invasion. In figure 6.12(b), around 500 seconds after the measurement, 10µM of ATP was

pipetted into the bath solution, and it was proved that this EGOFET was sensitive to proton
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Figure 6.11: Control experiments under approach (1). (a) 5µL of MilliQ pure water was
added into a 200µL bath solution containing 100µM of ATP as a negative control. (b)
12.2 U/mL of hexokinase was added into the bath solution containing 100µM of ATP as
a positive control. The inset showed the equilibrated IDS before and after the addition of
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was measured with a commercial pH meter.
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generation due to the 10µM of ATP involved in phosphorylation. Considering that the

timing of the addition of hexokinase and Abeta42 oligomers might be one of the parameters

influencing proton generation, although reagents had in all cases been mixed well in the

cell dish, 40.8 U/mL hexokinase and 1µM of Abeta42 oligomers were mixed homogeneously

beforehand in a 2 mL Eppendorf Tube and carefully added to the bath solution after the

readout of IDS had achieved equilibrium. This was comparable to the previous results that

showed only a decline in IDS; i.e. there was no detectable pH change recorded, as shown in

Figure 6.12(c) and Figure 6.12(d). Similarly, one of the EGOFETs was responsive to the

addition of 1 mM of ATP to the solution, as expected. The next experiment was designed

to have hexokinase added into the bath solution after the Abeta42 oligomers. Thus, firstly

1.1µM of Abeta42 oligomers were injected into the cell dish, and then 40.8 U/mL hexokinase

was pipetted in and mixed. As shown in Figure 6.12(e), IDS stayed at the same level, and

this EGOFET was shown to be able to sense the addition of 1µM of ATP in the solution,

although IDS dramatically dropped instead, with the subsequent addition of 50µM of ATP.

Approach (1) might not be capable of providing enough sensitivity to Abeta42 oligomer-

induced ATP release in an astrocyte.

6.3.5 Experimental results under approach (2)

Experiments under approach (2) were subsequently tried. 500 U/mL hexokinase, which was

much higher than the concentrations that could be achieved in previous experiments, was

loaded into a nanopipette with inner radius of roughly 100 nm, which was held vertically on

the newly-built SICM, whilst an EGOFET was held on an angularly-aligned micromanipu-

lator. In Figure 6.13(a), it seemed that the EGOFET was highly responsive to 1µM of ATP

in the bath solution involved in phosphorylation by hexokinase. IDS was increased and then

declined when the EGOFET approached and was then withdrawn from the nanopipette tip

delivering hexokinase. However, this change could merely be due to the slight difference

in pH between the bath solution and hexokinase-carrying solutions in the nanopipette, al-

though the unbuffered solution for the nanopipette and the cell dish were from the same
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Figure 6.12: Five representative experiments on astrocytes under approach (1), in which
hexokinase and Abeta42 oligomers were added to the bath solution. Tests of ATP sensitivity
of the EGOFET may be performed by directly adding ATP solution into the cell dish after
the cell measurements.

preparation with adjusted pH right before the measurements. A minute deviation in pH in

the two solutions may have developed because a similar response, as seen in Figure 6.13(a),

was still observed, even when the same unbuffered solution was loaded in the nanopipette
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and in the bath separately, as shown in Figure 6.13(b). As expected, when buffer solution,

Tris of pH 5.31, was filled in both the nanopipette and the dish, no variation of IDS could

be observed, no matter how an EGOFET was moved around the nanopipette tip, as shown

in Figure 6.13(c). Of course, using the buffer solution in these conditions was not beneficial

to the theta-nanopipette-based ATP sensing, because protons generated may react with the

conjugate acid-base pairs, before an EGOFET can detect it.

6.3.6 Experimental results under approach (3)

Finally the approach (3) was conducted, i.e. attaching hexokinase onto the ppy layer of an

EGOFET via glutaraldehyde. It should be noted that the pure unbuffered solution and the

unbuffered solution containing 1 mM of ATP were always prepared fresh immediately before

the experiments, and their pH was adjusted in order to produce as much unbuffered solu-

tion containing 1 mM of ATP as pure unbuffered solution itself, so that any detected current

increase would have removed the contribution of an intrinsically lower solution pH and there-

fore could be attributed to phosphorylation involving ATP at the sensor tip. EGOFET was

immersed in 25% glutaraldehyde solution for more than 30 minutes and then in 500 U/mL

of hexokinase solution, once again for more than 30 minutes. ATP sensors were firstly sta-

bilised in the unbuffered solution, and were then taken out so that measurements could

be performed in separate homemade containers (200µL) with, respectively 1µM, 10µM,

100µM and 1 mM of premade ATP solution for calibration.
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Figure 6.13: Control experiments under approach (2) conducted by repeatedly allowing an
EGOFET to approach a nanopipette and then withdrawing it. (a) 1µM of ATP in the bath
solution and 500 U/mL hexokinase in the nanopipette. (b) the same unbuffered solution of
pH 8.0 in both the bath solution and the nanopipette. (c) the same buffer solution (Tris,
pH 5.31) in both of the bath solution and the nanopipette.
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Figure 6.14: Examples of ATP calibrations of different ATP sensors under approach (3),
where ATP sensors were dipped in separated dishes holding various concentrations of ATP
solutions. The lower right one is a representative negative control.

Examples of ATP calibrations between working ATP sensors and a corresponding nega-

tive control are shown in Figure 6.14. It has been observed that IDS showed a massive jump

(and sometimes even a drop), every time an ATP sensor was lifted up into the air from the

solution and then immersed in another solution with a different ATP concentration. This
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Figure 6.15: Normalisation and averaging of equilibrated IDS calibrations of ATP sensors
under approach (3) using separate dishes holding various concentrations of ATP solutions.
Error bars are standard deviation.

might also suggest a longer time may be taken to achieve a new equilibrium state, which

could be different from that in the previous solution. These current jumps also occurred in

negative control groups, in which only pH sensing EGOFETs were used. The saturated IDS

at various ATP concentrations was extracted, averaged and normalised at 1µM of ATP, as

shown in Figure 6.15. This suggests that the sensitivity of the ATP sensors was roughly

10µM ATP and higher, although the sensors basically suffered from a decline in IDS during

the measurement. Even so, two distinct trends in averaged IDS in the successful ATP sensors

and the control group indicated clearly that approach (3) would enable ATP detection higher

than 10µM.

In fact, conducting the calibrations by dipping an ATP sensor into reagents of different

ATP concentrations might cause damage to the sensor itself, with a nanoscale active Ppy

layer possibly being dried in the air and moistened in the solution repeatedly. Therefore,

a new method of performing calibrations was to immerse an ATP sensor in the 200µL

unbuffered solution until the IDS had reached equilibrium, and a varying number of 1 mM

doses of ATP solution were subsequently added in order to achieve various intended ATP

concentrations. Some examples of working ATP sensors and a negative control are shown in

Figure 6.16, and these displayed a much less abrupt current jump compared with the former



6.3 Experimental results 151

N e g a t i v e  c o n t r o l

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

I D
S (

nA
)

T i m e  ( S e c )

A T P  1  µM

A T P  2  µM

A T P  3  µM
A T P  1 0  µM

A T P  2 0  µM
A T P  3 0  µM

A T P  1 0 0  µM

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
4 5 0 0

5 0 0 0

5 5 0 0

6 0 0 0

6 5 0 0

7 0 0 0

7 5 0 0

I D
S (

pA
)

T i m e  ( S e c )

A T P  1 0 0  µM

A T P  1 0  µM

A T P  1  µM

A T P  2 0  µM

A T P  3 0  µM

A T P  5 0 0  µM

A T P  4 0  µM
A T P  5 0  µM

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0
8

1 0

1 2

1 4

1 6

1 8

2 0

2 2

I D
S (

nA
)

T i m e  ( S e c )

A T P  1 0 0  µM

A T P  1 0  µM

A T P  1  µM

A T P  5 0 0  µM

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0
1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

A T P  1  m M

I D
S (

nA
)

T i m e  ( S e c )

A T P  1 0 0  µM

A T P  1 0  µM
A T P  1  µM

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0
8

1 0

1 2

1 4

1 6

1 8

2 0

2 2

2 4

I D
S (

nA
)

T i m e  ( S e c )

A T P  1 0 0  µM

A T P  1 0  µM

A T P  1  µM A T P  5 0 0  µM

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0
1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

I D
S (

pA
)

T i m e  ( S e c )

A T P  5 0  µM

A T P  1 0  µM

A T P  1  µM

A T P  0 . 1  µM

Figure 6.16: Examples of ATP calibrations with different ATP sensors under approach (3),
with ATP sensors kept in a dish containing only the unbuffered solution at first, and then
ATP solution was added in fixed concentrations until the target concentration was reached.
The lower right calibration is a representative negative control.

calibration method shown in Figure
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Figure 6.17: (a) Normalisation and averaging of equilibrated IDS calibrations of ATP sensors
under approach (3) using a single dish in the presence of various concentrations of ATP
solution one by one. Error bars are standard deviations. (b) Comparison of the net increase
in IDS between ATP-sensing and negative control groups using two calibration methods,
i.e. dipping the ATP sensor in different dishes containing the ATP solution or keeping
the sensor in one dish, initially with unbuffered solution, and subsequently raising its ATP
concentration by the addition of ATP reagents.

Again, equilibrated IDS in ATP-responsive curves and negative controls was taken, aver-

aged and normalised at 1µM of ATP for the calibration analysis, as shown in Figure 6.17(a).

Data points of the ATP calibrations and control groups demonstrated two clear individual

trends, as shown in Figure 6.15. The comparison of calibrations between ATP sensors kept

immersed in the same bath solution and dipped into separate ATP solutions are shown in

Figure 6.17(b), and this actually suggests no detectable improvement using this updated

calibration method.

Successful ATP sensors under approach (3) were carried on for the cell measurements,

where Abeta42 oligomers were added directly into the bath solution, and possible Abeta42

oligomer-induced ATP leakage from the cell membrane could be transduced into electronic

signals at the sensor tip. A positive control was tried in the first set of experiments, in

which no Abeta42 oligomers were applied; instead, the other nanopipette held vertically

was used to squeeze and break the targeted astrocyte under an ATP sensor. As shown in

Figure 6.18(a), no ATP release due to the cell being squeezed was seen, even if there is
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presumably sub-millimolar level of ATP in a cell. In addition, not surprisingly, IDS dropped

dramatically when the sensor came into contact with the astrocyte until IDS reached zero. In

Figure 6.18(b), 1.1µM Abeta42 oligomers was added to the bath solution, but no response

was detected within 2 minutes. Interestingly, this time IDS increased greatly when the ATP

sensor itself squeezed an astrocyte, and this phenomenon was reproducible twice. IDS then

decreased to zero when the sensor was totally destroyed by being crushed on the glass bottom

through the astrocyte. In Figure 6.18(c) and Figure 6.18(d), encouragingly, IDS showed a

clear increase for approximately 500 seconds, and then declined back to the baseline or even

lower. Unfortunately, the current did not recover even though the bath solution was remixed

and the sensor was moved around to search for possible regions of higher ATP concentration,

or was made to approach the cell surface. Again, in Figure 6.18(c), IDS was temporarily raised

when the ATP sensor was moved closer to the astrocyte surface and likely to squeeze it; of

course, the sensor lost its function after this.
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Figure 6.18: Representative experiments on astrocytes under approach (3). Note that (a)
was supposed to be a positive control. Tests of ATP sensitivity of the ATP sensors and
cell squeezing may be performed by directly adding ATP solution into the cell dish and by
approaching the sensor onto a cell, respectively, after the cell measurements.
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6.4 Discussion

A nanoscale transistor was fabricated electrochemically on a theta nanopipette with surface

modification to facilitate the detection of local ATP distribution above a single cell. A

transistor is an active device; one of its basic functions is as an electronic switch, and it plays a

critical role in forming logic gates and has been comprehensively utilised to establish complex

digital and analogue circuits in chips in the modern electronic industries. In addition, another

important function is that it can be used to amplify electrical input signals by modulating

its output impedance, which nonlinearly depends on the applied bias voltages [228]. It is

fabricated using either inorganic or organic semiconductors as its active material, depending

on specific applications, in which techniques for producing transistors based on inorganic

semiconductors, especially silicon, are now highly developed, whilst organic semiconductors

can be more suitable for biologically-relevant applications [229, 230]. Transistors can be

classified into bipolar transistors (BJTs) and field-effect transistors (FETs). Although the

transconductance of BJTs is higher than that of FETs, the development in FETs has been

dramatically advanced over that of BJTs due to its lower power consumption and significant

progress in current manufacturing processes [228].

6.4.1 Comparison of nanopipette-based EGOFETs to conventional

inversed FETs

The structure of an EGOFET fabricated on a theta nanopipette tip is comparable to a

traditional inverted FET [231]. An FET is usually composed of a semiconducting active

layer, on which drain and source electrodes are symmetrically located at the two ends, and a

gate electrode is situated separately with dielectric material. The region of the semiconductor

directly opposite the gate is where it is capable of forming a more conductive channel between

drain and source electrodes under the electric field generated from the gate. Thus, an FET

is defined as turned on if appropriate bias voltages are applied from gate and drain versus

source, which allows electrical carriers to move relatively freely in the channel temporarily
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Figure 6.19: Schematic comparison of the configuration of drain, source and gate electrodes,
dielectric material and semiconductor in (a) a Ppy EGOFET and (b) a conventional inverted
FET.

formed.

The comparison of drain, source, gate, dielectric material and semiconductor in a nanopipette-

based EGOFET with the same components in an inverted FET is depicted in Figure 6.19.

The structure of a conventional FET is shaped by the design of a photo–mask followed by

chemical etching and deposition in the manufacturing process; however, in the case of a

nanopipette-based nanoFET, its physical geometry is controlled predominantly by the laser-

pulling process. The septum thickness of a theta nanopipette was altered by a laser puller so

that there was approximately 50 nm separating each semilunar-shaped channel. Therefore,

this septum roughly defines the channel length between drain and source electrodes. After

these two semilunar vacant channels are filled with conductive carbon particles, and a layer

of Ppy is made to bridge these two separated carbon domains, it will function like an FET

when the gate and its tip are immersed in the bath solution under proper application of bias

voltages. It should be noted that this nanopipette-based nanoscale FET is electrolyte-gated,

so its electrical characteristics may vary, when the location of the gate placed in the solution

has been changed and/or the electrolyte composition has been modified.
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Figure 6.20: Illustration of the butane-filled nanopipette influenced by (a) suitable (b) zero
and (c) excessive flow rates of argon delivered via a glass capillary sheathing the tip.

6.4.2 Nanoelectrodes made of a carbon filled theta-nanopipette

The method to convert two vacant glass channels into conductive drain and source electrodes

involved pyrolytically depositing carbon onto the interior wall of the two channels and com-

pletely filling the tip openings. When there is sufficient oxygen in the air, flame-heated

butane will form carbon dioxide and water (2C4H10+13O2→8CO2+10H2O); when oxygen is

limited, incomplete combustion of butane produces by-products of CO and very fine carbon

particles (soot) [232]. Therefore, in order to fulfil this chemical condition with the required

geometry, on one hand, butane provided from a commercial camping gas cartridge was trans-

ferred into the theta nanopipette via tygon tubing connected at its end. The valve installed

on the cartridge was closed right after opening by a half–turn in order to limit the amount

of butane injected, which unfortunately did not allow a precise control. On the other hand,

low-rate argon flow was supplied to the nanopipette tip sheathed by a glass capillary via

another length of tygon tubing in order to create an appropriate interface between abundant

butane (limited oxygen) and ambient air at the tip. Therefore, a balance between the pres-

sure of butane and ambient air/argon coming from opposite directions can be empirically

made by adjusting the volumetric flow rate of the argon, so that a plane carbon surface is
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produced during combustion by a jet flame torch, as shown in Figure 6.20(a). When there

is no argon being delivered to the nanopipette tip, a cavity in the carbon deposition may be

created, because the ambient air with a higher pressure (1 atm) than the butane naturally

flows into the tip as shown in Figure 6.20(b); whilst strong argon flows along the tapered tip

caused carbon depositions which was supposed to be separated at two sides to make contact,

because butane may leak out of the tip and be entrained in the argon flow due to a lower

pressure zone built up outside the tip, as shown in Figure 6.20(c).

6.4.3 Characterisation of carbon nanoelectrodes

Pyrolytic carbon deposited in the two channels of a theta nanopipette is highly dependent

on the gas flow in the system. Electrochemical characterisation of a pair of carbon electrodes

was carried out with redox reactions of FcMeOH and FcMeOH+ in the solution occurring

at the carbon surface. A positive interval of 0 to 0.5 V in the cyclic voltammetry allows

the monitoring of the redox pair to migrate towards the carbon surface, and FcMeOH and

FcMeOH+ were oxidised and reduced, respectively, generating Faradaic current. Faradaic

current over time is usually diffusion-limited and highly influenced by the electrode shape

under cyclic voltammetry [233, 234]. When the carbon plane is of nanoscale and flat, con-

vergent diffusion of the redox mediators from the solution to its edge is significant, and

this provides a sufficient amount of species for the redox reactions, so a sigmoidal profile

is observed, as shown in Figure 6.21(a). On the other hand, when there is an open and

narrow cavity formed inside the carbon fillings, the influx of redox mediators will be lim-

ited by the planar diffusion into the cavity, so peaks will be observed in the voltammetric

profile, as shown in Figure 6.21(b). In addition, the magnitude of the Faradaic current also

provides a good estimation of the opening size of the carbon nanoelectrodes, which replaces

complicated procedures using scanning electron microscopy (SEM). Faradaic current around

10 pA indicates an approximated semilunar aperture with a radius of about 48.65 nm, which

is calculated using Equation 3.30. Examples of Ppy deposited FET are shown in Figures

6.22(a), 6.22(b) and 6.22(c), which had Faradaic current around 20 pA and 50 pA and larger
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Figure 6.21: Schematic illustrations of voltammetric patterns influenced by the shape of
carbon deposition formed in two of the nanopipette channels, where the mass transport of
the redox mediators, FcMeOH and FcMeOH+, to the carbon surfaces is generally limited by
diffusion.

(a) (c)(b)

Figure 6.22: Images of the tip of a Ppy EGOFET by SEM, when the characteristic Faradaic
currents at two carbon barrels were each around (a) 20 pA, (b) 50 pA and (c) higher than
50 pA.

than 50 pA, respectively. Although a very thin Ppy layer could provide probably the best

platform for producing an ATP sensor, the size of semilunar openings was almost impossi-

ble to fine–tune, as the same set of parameters in a laser puller with a manual combustion

process gave Faradaic current ranging from 2 to 100 pA.
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6.4.4 Fabrication of an EGOFET using Ppy as the active semi-

conductive layer

After carbon nanoelectrodes with an appropriate exposed surface were obtained, electrodepo-

sition of Ppy was carried out in 0.5 M of pyrrole, 0.2 M of LiCO4 and 0.1 M of HClO4 dissolved

in distilled water with cyclic voltammetry of VG=–300 to 650 mV on both carbon electrodes

for the purpose of forming a thin Ppy layer across each side. Ppy was selected to make

an EGOFET due to its biocompatibility and high conductivity under doping (≥500 S/cm)

[235]. Firstly, pyrrole monomers in the solution were oxidised to form dimers, and this

mechanism was performed consecutively and polymerised to develop Ppy, with ClO−4 ions

diffused into vacant spaces in the oxidised Ppy to maintain the charge neutrality [236, 237].

Therefore, Ppy began to grow on each carbon surface of the nanoelectrodes when each scan

cycle approached 0.65 V, which was monitored by the increase of Faradaic current cycle by

cycle. In fact, the optimal voltage for Ppy polymerisation is usually at 0.8 V or above, but it

was intentionally lowered to 0.65 V in order to reduce of thickness of the crossed Ppy layer.

It is easy to form a contact between two-flank Ppy growth layers with a high polymerisation

voltage, e.g. higher than 0.8 V [238], but an over-thickened Ppy bridge may not beneficial

for the properties of the next-stage ATP sensor, as the location of hexokinases was designed

so that it would, ideally stay as close to the active Ppy domain as possible, so that generated

protons, could be detected by the EGOFET itself. Hence, as shown in Figure 6.7(b), the

Ppy contact was designed to occur within 2 to 3 scan cycles to form an effective Ppy layer

as thin as possible. However, precisely when the Ppy bridge is formed, and its thickness,

cannot be controlled, which may be attributed to the unpredictable distribution of the elec-

tric field resulting from a random topography of carbon nanoelectrode surfaces established

during combustion.

The theory that Ppy is semiconductive is the same as for other conjugated polymers,

with valence electrons on the backbone with alternating single and double carbon–carbon

bonds delocalised on the extended π–system [236, 237]. Removing a small portion of these

electrons in an insulated Ppy forms radical cations on the Ppy chain, i.e. holes. Holes
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together with quantised lattice vibration are termed (bi)polaron, and they can move along

the chain, making a contribution to increase its conductivity. When Ppy is electrochemically

grown, it is also simultaneously oxidatively p-type doped, and counterions in the solution will

diffuse into the vacancy in its interlaced polymerised structure to reach electrical neutrality,

which increases its volume. With the doping, a pair of additional impurity energy states

(polarons) will appear in between the valence and conduction bands of Ppy, and these may

approach each other as the doping level increases (bipolarons), or even be extended to form

impurity bands with a much higher doping (bipolaron bands).

As discussed above, during the polymerisation and oxidative doping of Ppy, counterions

ClO−4 are diffused to fill the vacancies in the Ppy chain; however, when the Ppy EGOFET

was immersed and voltage scanned in 0.1 M of HCl for around one hour, it was likely that

the counterions would achieve a rebalanced state, so the ClO−4 that was temporarily trapped

might be released and replaced by Cl−. It is because Cl− and ClO−4 are smaller anions and

so easier to exchange with species similar in size in a solution, that it may also take longer to

achieve equilibrium in contrast to other larger anions that have already been firmly trapped

[239, 240]. The sensitivity of the Ppy EGOFET to the solution pH was high. The Ppy

layer experienced deprotonation with pH≤ 7, which may repel Cl− and revert Ppy into an

undoped insulator. At the same time, due to the cyclic voltammetry of VG=–0.3 to 0.3 V,

the Ppy layer attempted to swell and shrink according to the scan voltage, which may help

this process involving counterion diffusion to speed up the attainment of equilibrium. In a

lower pH solution, protonation may play a role to improve the conductivity of the Ppy layer,

although it may not be increased dramatically [241].

6.4.5 Experiments under approach (1)

The advantage of using approach (1) for ATP detection is that it is the simplest of any

of the three approaches. In approach (1), in order to transduce the ATP concentration

to electronic signals at an EGOFET, hexokinase was directly added to the bath solution

without additional tip processing. Although the increase of glucose phosphorylation-induced
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IDS proved its sensitivity to ATP, it only reached as low as 100µM, which may be attributed

to the hexokinase being highly diluted in the large volume of bath solution, and generated

protons not appearing directly under the ATP sensor so they could not be collected efficiently.

6.4.6 Experiments under approach (2)

Approach (2) is an updated version of approach (1), which delivers the hexokinase just

next to an EGOFET via another nanopipette, in an attempt to solve the problem of low

hexokinase concentration, when it is applied in the bath solution. The calibration results

exhibited a very good sensitivity to local pH change; however, convoluted pH variations,

caused by inhomogeneous proton distribution at the hexokinase delivery interface and pro-

tons generated by hexokinase catalysis are not distinguishable. The evidence is that even

though the same preparation of unbuffered solution was loaded in the nanopipette and bath

solution, the sensor can still reveal minute pH differences, which might have been established

after the unbuffered solution was dispensed and exposed to the air. Unfortunately, using a

buffer solution cannot solve this issue, because it is necessary for the EGOFET to work in

an unbuffered solution, in which generated protons would not be removed by pre-existing

conjugate acid-base pairs, which are present in the buffered solution.

In addition, there has been another issue, of making appropriate adjustments to allow

a suitable efflux rate of hexokinase through the nanopipette, which could potentially be

achieved by applying pressure on the nanopipette or with an electric field induced from an

electrode immersed inside the nanopipette. The optimal condition has not been found, since

the size of the nanopipette aperture and the volumetric flow rate set by the syringe pump

were both critical parameters. An excessive efflux would apparently induce unwanted flow

or even generate a vortex around the targeted astrocyte. It is worth noting that IDS on

an EGOFET, no matter whether or not hexokinase has been fixed on its Ppy layer, will

be greatly increased when the Ppy layer is physically squeezed by a cell, or when a strong

flow is applied near the Ppy layer. This might be attributed to the pressure the Ppy layer

experienced [242, 243].
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6.4.7 Experiments under approach (3)

Alternatively, approach (3) provides local fixation of hexokinase onto the Ppy layer of an

EGOFET. Here, glutaraldehyde was used as an irrevocable crosslinker with identical reactive

groups, which realise intermolecular linkages. It has therefore been adopted widely for high

quality ultrastructural preservation for electron microscopy. Glutaraldehyde has a tendency

to polymerise to form cyclic or long-chain compounds at a more alkaline pH, so it was

used at around pH 3.5 to stay as monomeric as possible during experiments with a high

concentration of 25% wt. in H2O at room temperature. As the tip of an EGOFET was

dipped in glutaraldehyde solution for more than 30 minutes, complex reactions involving the

formation of Schiff bases will be processed between the aldehyde groups in glutaraldehyde

and the amine groups of Ppy via nucleophilic attack, and therefore methylene bridges will

connect amine groups at Ppy, and a portion of single and oligomeric glutaraldehyde molecules

with only one side fixed on the Ppy and the other side left unbound will also exist [244, 245].

Subsequently, this modified EGOFET was transferred immediately and its tip immersed

in 500 U/mL of hexokinase solution for more than 30 minutes in order to link the ε-amino

groups of lysine residues in hexokinase using the unbound ends of the methylene bridges.

After a couple of careful rinses of the tip, the ATP sensor was ready for experiments to be

carried out. The solution adopted for calibration and measurement should always contain

D-glucose, which is the substrate for hexokinase to conduct glycolysis, and magnesium ions

are also necessary to serve as the reaction activators for hexokinase.

Discouragingly, the success rate for producing a functional ATP sensor was lower than

10%, although the protocol for hexokinase attachment onto the Ppy layer of an EGOFET is

simple. This may be attributable to inefficient crosslinkages between Ppy and hexokinase,

because this process was conducted in two separated steps, i.e. firstly in a dish containing

glutaraldehyde solution and then in another one with hexokinase solution, although this

protocol was suggested in the work present by Zhang et al. [246]. A conventional way to

perform crosslinkages is to mix an appropriate weight of a desired enzyme into buffer solution

containing glutaraldehyde, usually of 1–5 wt.%, and to pour this well-mixed solution onto



164 Chapter 6

a target material until the solvent naturally evaporates [247]. However, these functional

molecules in a tiny volume of mixed solution, as small as a droplet, will only be able to stay

on a relatively large flat surface; whilst a needle-like sensor cannot hold a droplet. Although

various concentrations of glutaraldehyde and hexokinase in a mixture had been tested, it

was very difficult to find an optimised recipe, because these theta-nanopipette-based ATP

sensors were not yet highly sensitive and did not respond effectively to altered conditions.

Alternatively, a portion of hexokinase might lose its function during the crosslinkages; for

example, the dimeric units in a hexokinase might acquire an altered morphology due to

strain resulting from glutaraldehyde stretching.

On the other hand, the morphology and thickness of the Ppy layer in an EGOFET may

also have influence on the sensitivity of the ATP sensors under approach (3). Of the SEM

images, Figure 6.22(a) probably demonstrates the more ideal Ppy deposition, in that it has

a thinner Ppy layer, on which hexokinases may have an opportunity to be attached more

closely to the active region for (bi)polaron transport, and therefore protons generated by

hexokinases may be more likely to diffuse inwards and were therefore able to increase the

conductivity of the Ppy active channel. In contrast, EGOFETs in Figure 6.22(b) and Figure

6.22(c) may possess a higher IDS and more hexokinases could be fixed to the overgrown Ppy

layer, but there may be a much greater distance between hexokinases and the active Ppy

region, and many of the generated protons may directly dissipate into the bath solution

without being collected. Unfortunately, in general, the Ppy deposition is expected to be

more like that in Figure 6.22(b), because how Ppy grows and when it forms a Ppy bridge are

not finely controllable. This high variance of Ppy growth also greatly increases the difficulty

of ascertaining optimised conditions for the protocol. The advantages and disadvantages of

these three approaches are compiled in Table 6.1.

For the experiment on single astrocytes, which was designed to reveal the mechanism of

Abeta42 oligomers interferencing with the cell membrane, unfortunately approach (1) did

not seem to have enough ATP sensitivity; whilst approach (3) provided a very low success

rate (≤10%) in producing a working ATP sensor. A couple of experiments on astrocytes
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Table 6.1: Advantage and disadvantage of three approaches for ATP detection.
Advantage Disadvantage

Approach (1) Simplest method Sensitivity is relatively low (100 µM)
(a) unbuffered carrier solution for
hexokinase also contributes to the

Approach (2) High sensitivity to local pH convoluted detection ATP signal
change (b) conditions of delivery of hexo-

kinase via the nanopipette have
not been optimised

Approach (3) Local fixation of hexokinase at Very low yield (lower than 10%) in
the Ppy layer of an EGOFET producing a functional ATP sensor
provides sensitivity of 10 µM

were encouraging in that they demonstrated an initial increase in IDS right after Abeta42

oligomers were added to the bath solution, and this then dropped down to base level or lower.

However, the number of samples was not enough to verify or contradict this hypothesised

invasion mechanism. The fact that the yield of theta nanopipette-based ATP sensors was

very low has made it very difficult to obtain statistically significant results. It is suggested

that the design of a theta nanopipette-based ATP sensor be radically updated, which will

be discussed in the chapter on future work.

6.5 Conclusions

pH sensing EGOFETs have been successfully fabricated on theta-nanopipettes, which are

processed firstly with channels filled with pyrolytically-deposited graphite and then with a

Ppy layer, grown electrochemically, across these two electrode openings. Three approaches,

taking advantage of hexokinases in order to generate protons during the catalysis of ATP,

have been examined to turn the pH sensor into an ATP sensor. In approach (3), crosslinking

of hexokinases and the Ppy layer is realised via glutaraldehyde, and the sensitivity of ATP

reaches 10µM. This has the highest ATP sensitivity of any of the three approaches; however,

the success rate for producing this type of ATP sensor is less than 10%. Therefore, it is very

difficult to ascertain optimal conditions for this ATP sensor, and it is not possible to reach

a higher sensitivity.
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Unfortunately, no statistically significant results for Abeta42 oligomer-induced ATP leak-

age were observed above the cell membrane. This may be attributed to: (1) the number of

samples not being sufficient due to an extremely low yield from the sensors; (2) the sensitiv-

ity of the ATP sensor not being high enough to detect released ATP that is greatly diluted

once it goes into the bath solution; (3) the possibility that the hypothesised mechanism for

Abeta42 oligomers forming temporary pores in the cell membrane is not correct, although

this is less likely as the evidence in the previous chapter supported this hypothesis; the

experimental results in this chapter, however, were not able to verify or contradict it. In

fact, an updated version of the ATP sensor using the concept in approach (2) may be able

to achieve a much better sensitivity to ATP than 10µM, as long as it has been optimised

to minimise significantly the influence of the unbuffered carrier solution for the delivery of

hexokinases. Thus, a better ATP sensor still has the potential to verify the hypothesised

pore-forming mechanism induced by Abeta42 oligomers.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

SICM is a technique that is capable of realising topographic imaging in a bath solution with-

out physical contact between the probe and the substrate. Although hydrostatic pressure

and hydrodynamic force still exist during the scanning and may be applied on a soft sam-

ple, such external stimulation can be significantly reduced by careful adjustment, or even

become negligible if a modified scanning method is used. Compared with AFM, which has

an atomic-level resolution but may unavoidably touch the sample, SICM can produce repro-

ducible topographic images after repeated scanning is performed in the same area. The best

resolution that SICM can achieve at present is approximately 5 nm, using a nanopipette as

its probe with a diameter of 12.5 nm, which should be sufficient to characterise many com-

plex biological systems. The fabrication of a nanopipette is relatively easy–a glass capillary

processed by a laser puller with suitable parameters will produce a pair of nanopipettes with

the desired size of opening. The application of a bias voltage between an Ag/AgCl electrode

inserted into the nanopipette pre-loaded with a buffer solution, and the other Ag/AgCl

electrode immersed in a dish containing a bath solution results in an ion current flowing

through the aperture of the nanopipette. Any object appearing in the spherical detection

volume under the tip will hinder this current flow and therefore cause a reduced current

167
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value. In order to maintain the nanopipette at a constant height on the substrate during

the scanning, this current is fed back in real-time to an automated piezoelectric actuator

in the z-axis, which will move the nanopipette upwards when the current is decreased to

a pre-defined level to avoid any possible contact with the tip. Subsequently, non-contact

topographic imaging is achieved using the appropriate scanning mode, corresponding to the

roughness of the sample. The rig for performing SICM has been developed over two decades,

so the technique has matured and there are commercialised products available; however, in

order to gain hybrid functions via combination with other optical or electrical techniques, a

homemade setup based on SICM is usually adopted in a laboratory.

Basic applications of SICM can be performed on static topographic comparison between

the same samples developed in different environments and conditions, or on dynamic obser-

vation of changes in a subcellular structure over time. It should be noted that due to the

limitation in its scanning speed, the mechanism intended for observation needs to fall inside

a window of tens of seconds, since the fastest hopping-mode imaging available currently is 18

seconds with a resolution of 64×64 pixels for an area of 10×10µm2 [248]. Nevertheless, the

most attractive characteristics of SICM are that it can be used to deliver a reagent locally

at the same time as the scanning, and it can be integrated into other powerful techniques.

The possibility of a subcellular resolution for topographic imaging allows subsequent patch–

clamp recording, also at a subcellular level, in which the same nanopipette can be processed

to conduct both experiments. Simultaneous recording of fluorescent behaviour in pre-loaded

dyes in cells during the application of external stimulations via a nanopipette further in-

crease the variety of the cutting-edge investigation topics. On the other hand, the tip of the

single-barrel nanopipette can be simply modified to become sensitive to specific molecules;

usage of a double- or quadruple-barrel nanopipette not only links SECM to SICM but has

also inspired numerous new applications.

In this thesis, the application based on SICM is utilised to investigate Alzheimer’s Disease,

which is a neurodegenerative disease involving brain-shrinkage in patients and extracellular

Abeta plaques in the brain. Evidence has shown that it is likely that Abeta oligomers are
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involved in the onset of the disease. Thus, in the experiment, a nanopipette loaded with

synthetic Abeta42 oligomers or CSF in AD patients is used to dose these toxic oligomers on

astrocytes locally and quantitatively, and these are hypothesised to be one of the primary

targets of these oligomers. In the experimental system, cells were pre-incubated with an

mGluR5 blocker and a calcium indicator, so that oligomer-induced calcium influx in single

cells could be monitored in real time using a CCD camera, and abnormal calcium homeosta-

sis indicated malfunctioning cells. It was first proved that synthetic Abeta42 oligomers of

100 pM can be effectively deactivated using 150 nM of clusterin, as well as Nb3 (a nanobody

against Abeta) and Bapi (an antibody against Abeta), and such a calcium influx can still

have statistical significance in a physiological concentration as low as 500 fM of Abeta42

oligomers, which is a critical prerequisite for the following experiments using CSF in AD

patients. As with results using synthetic Abeta42 oligomers, the mixture of AD CSF and

clusterin or Nb3 worked effectively to reduce calcium influx; however, interestingly, Nbsyn87

(a nanobody against Asyn), aslo0071 (an antibody against Asyn), aslo0252 (an antibody

against Asyn), or Bapi with a high concentration of 1µM successfully decreased the amount

of calcium influx. Asyn is also a misfolded oligomer like Abeta, and it is presumed to be

the cause of the onset of Parkinson’s Disease. Therefore, the ineffectiveness of low concen-

trations of Bapi and the effectiveness of Nbsyn87, aslo0071 and aslo0252 may suggest that

these toxic species that result in abnormal calcium influx may actually be in the form of

co-oligomers composed of both Abeta and Asyn. In addition, in the case of Nb3 and Nb-

syn87, the successful blocking of partial calcium influx may also suggest that nanobodies

that have an intrinsically smaller volume than conventional antibodies are able to reach the

target epitopes easier, whilst movement of large antibodies towards target termini may be

hindered by the complex structure of co-oligomers. More experiments are needed for further

determination of the structure of these co-oligomers; e.g. they might tend to expose their

N- and C-termini of Asyn to the surroundings. The hypothesis that co-oligomers are likely

to be the cause of the onset of AD might provide a new direction to treatments for AD or

even possibly for PD.

The formation of transient pores due to the interference in the cell membrane by physical
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contact with misfolded oligomers is hypothesised as a cause of abnormal calcium influx. In or-

der to confirm this hypothesis, a new setup based on SICM with a second nanopipette/sensor

holder fixed on an angularly-aligned micromanipulator was established. In this setup, the

vertically-aligned nanopipette is responsible for the delivery of oligomers at a constant height

above the target cell, as described previously, whilst a sensor is placed close to the deliv-

ery spot for the detection of the immediate response of the cell. Producing a sensor with

a sensitivity to ATP is the aim of the experiment, because ATP is not only involved in

multiple pathways in cellular communication, but it is also expected to have a high intra-

cellular concentration of several millimolars. Thus, it is likely to to possible to probe an

ATP release if there are oligomer-induced transient pores formed in the cell membrane. The

ATP sensor is fabricated on the tip of a double-barrel nanopipette, with a relatively sim-

ple manufacturing process, involving firstly filling pyrolytical graphite in the pair of vacant

channels, followed by electrochemical deposition of Ppy to link these two carbon-filled elec-

trodes, and then the placement of hexokinase near the Ppy layer. This ATP sensor operates

as a hexokinase-cofunctioned electrolyte-gated organic field-effect-transistor to transduce the

amount of catalysed ATP to an electronic signal, using pH-sensitive Ppy as its biocompatible

active material, with protonation and deprotonation increasing and decreasing the conduc-

tivity of Ppy, respectively. Three different approaches that attempt to maintain hexokinases

near the Ppy layer were adopted. An approach using the addition of hexokinase in the bath

solution had the lowest sensitivity to ATP (∼100µM), whilst attaching hexokinase on the

Ppy layer via crosslinking molecules had a higher sensitivity to ATP (∼10µM). The latter

approach has the possibility of achieving a higher sensitivity down to nanomolar level, ac-

cording to a previous study [246]; however, it was difficult to optimise the sensor further

using this approach due to the low success rate (≤10%) in fabricating it. It should be noted

that an approach involving using a second nanopipette for the delivery of hexokinase to the

Ppy layer was actually very sensitive to changes in pH that most likely came not only from

the hexokinase carrier solution but also from catalysed ATP. Therefore, as long as these two

sources of protons can be deconvoluted, it may be possible to achieve the highest sensitivity

to ATP of these three approaches. So far, no oligomer-induced ATP release has been detected
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using either of these three sensing approaches, which may be attributed to the possibility

that the extracellular ATP concentration is greatly diluted, so an ATP sensor with a much

higher sensitivity is probably required; it is also possible, although much less likely, that the

hypothesis that oligomer-induced transient pores are formed might be incorrect, although

this hypothesis is supported indirectly by previous studies [165, 166, 187].

7.2 Future work

7.2.1 Determination of the effectiveness of antibodies and/or nano-

bodies on PD CSF samples

The methodology based on SICM utilised to examine the effectiveness of antibodies and/or

nanobodies designed specifically against AD/PD has been proved successful. By taking

advantage of the same concept, it is likely that antibodies and/or nanobodies that bind Abeta

are also able to reduce significantly the cellular calcium influx induced by toxic co-oligomers

composed of Abeta and Asyn in CSF from PD patients. If this hypothesis is true, it would

suggest that the oligomers that cause PD may not just be a single type of Asyn peptide;

instead, co-oligomers formed by Abeta and Asyn may play a role in PD. Therefore, a new

strategy for the treatments of both AD and PD, or even for other neurodegenerative diseases,

might need to be considered. Firstly, it is suggested that a higher concentration, of 1µM

of various antibodies and nanobodies against AD and PD, be tested on PD CSF samples.

Subsequently, the concentration of those antibodies and/or nanobodies that work over a

physiological range should be decreased, and the number of samples should be increased to

obtain statistically significant results between the tested antibodies and/or nanobodies and

control groups.
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7.2.2 High-throughput antibody and/or nanobody screening on a

microfluidic droplet platform

This method is time-consuming due to the fact that only the fluorescent response of a

single cell is recorded each time, when a nanopipette is located on the target cell. A high-

throughput screening of antibodies and/or nanobodies can be carried out on a microfluidic

droplet platform. As shown in Figure 7.1, separate trypsinised cells that were pre-incubated

with Fluo-4 AM in L15 (containing calcium) are loaded into the device from one inlet;

whilst AD/PD CSF with antibodies and/or nanobodies is loaded from another. CSF, anti-

bodies and/or nanobodies, and L15 containing floating single cells are well-mixed and are

then encapsulated in hydrophilic droplets that are naturally formed by injecting hydropho-

bic solution. A large number of droplets is collected, so the calcium influx in individual

cells is monitored simultaneously by recording the fluorescence behaviours over time under

illumination from a 488 nm laser. Note that the concentration of CSF is reduced only by

approximately half due to mixing with L15, and the normalisation of calcium influx is the

same as in the SICM-based method.

7.2.3 A new quadruple-barrel based ATP sensor

The yield from an ATP sensor with hexokinases interconnected with a Ppy layer by glu-

taraldehyde is low, which might be attributed to the inefficiency of the fixation of hexoki-

nases. In fact, the sensing method that uses one nanopipette for delivering hexokinase near

an EGOFET pH sensor, i.e. approach (2), has the potential to work in single-cell experi-

ments, because it is very sensitive to pH changes in the microenvironment, although protons

produced by the catalysis of ATP, and those introduced by the hexokinase carrier solution

are highly convoluted. A quadruple-barrel may solve this issue and give the high sensitivity

to ATP. As shown in Figure 7.2, pyrolytic carbon is deposited to fill a pair of neighbour-

ing channels or opposite channels, on which a Ppy layer is deposited electrochemically to

interlink these carbon electrodes, functioning as an EGOFET. Abeta42 oligomers and hex-
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Figure 7.1: Schematic illustration of a microfluidic device, in which single live cells and
toxic oligomers and/or antibodies are encapsulated in single droplets. Fluo-4 AM preloaded
separated cells in L15 and CSF from patients, with or without antibodies or nanobodies, are
loaded from two inlets that converge to one channel. Subsequently, the mixed solutions with
cells and molecules of interest are encapsulated in single droplets that are phase separated
due to the injection of oil from two sides. These droplets are gathered in a pool and then
illuminated by a laser of 488 nm, with their fluorescence over time being recorded using a
camera with high a sensitivity.

okinases can then be delivered individually via the other vacant channels. The advantages

of using this quadruple-barrel nanopipette are that: (1) the EGOFET and the reagent de-

liveries are all located in the same place; (2) the influence of pH changes introduced by the

hexokinase carrier solution would be deconvoluted, because it should already have led to a

new equilibrium value in the drain-to-source current before measurements are carried out

on single cells. Therefore, it may become a highly-sensitive ATP sensor, as long as a set

of pulling parameters that give rise to suitable openings has been found, and the delivery

rate of reagents can be optimised. It is worth noting that it may become a glucose sensor if

hexokinase is replaced by glucose oxidase.
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Figure 7.2: A design illustrating an ATP sensor based on a quadruple-barrel nanopipette.
Neighbouring or opposite channels, on which a Ppy layer that bridges the two is electrochem-
ically deposited, are filled with pyrolytic carbon. Abeta42 oligomer (or other toxic species
to be tested) and hexokinases are delivered via the other two vacant channels.

7.2.4 Observation of the time-resolved pore-forming process using

whole-cell recording

There may be alternative ways to investigate the pore-forming mechanism induced by Abeta42

oligomers. When a cell is recorded in whole-cell mode using the patch–clamp technique, its

Rs, Rm and the DC offset can be monitored over time. When one or multiple Abeta42

oligomers pass through the cell membrane, it is likely that temporary pores are formed.

This may be reflected in changes in Rm, i.e. a decrease in Rm with more or larger pores

formed.

7.2.5 Potassium ion sensor

In addition, this pore-forming mechanism may be confirmed using a potassium ion sensor

fabricated on a double-barrel nanopipette, as shown in Figure 7.4. As in the previous cases,

one channel is used for the delivery of Abeta42 oligomers, whilst the tip of the other channel is

filled with an organic ion exchanger resin, which, it is suggested by Happel et al [249] should

use 3 mg of potassium tetrakis(4 chlorophenyl)borate in 100µL 2-Nitrophenyl octyl ether.

This resin can work as a liquid membrane that can selectively allow potassium ions to pass
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Figure 7.3: Schematic illustration of a cell under whole-cell recording, with Abeta42
oligomers being delivered locally via another nanopipette that is located above the same
cell. The inset indicates that the membrane resistance (Rm) of the patched cell is monitored
over time.

Abeta 
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Figure 7.4: Schematic diagram of a double-barrel nanopipette, with one channel for delivery
of Abeta42 oligimers and the other acting as a potassium sensor. In the potassium sensing
channel, the tip is filled with organic ion exchanger resin in order to allow potassium ions
under the tip to pass selectively through to the electrode side.

through. There are about 140 mM of potassium ions in neurons, so temporary pores induced

by Abeta42 oligomers may result in a high potassium efflux, and they can be collected on

the other side of the resin. The amount of potassium that passes may be quantified by

recording the fluorescence emitted by a potassium indicator on the other side of the resin,

such as APG-1, APG-2 or PBFI, if a well-aligned laser is focused in the nanopipette near the

edge of the resin. Otherwise, changes in the potential induced by potassium ions, which is

linear to the potassium concentration, can be adopted as a potassium concentration-relevant

parameter.
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[29] P. Happel, K. Möller, R. Kunz, and I. D. Dietzel, “A boundary delimitation

algorithm to approximate cell soma volumes of bipolar cells from topographical data

obtained by scanning probe microscopy,” BMC bioinformatics, vol. 11, no. 1, p. 323,

2010.

[30] J. Gorelik, Y. Zhang, A. I. Shevchuk, G. I. Frolenkov, D. Sánchez, M. J. Lab,

I. Vodyanoy, C. R. Edwards, D. Klenerman, and Y. E. Korchev, “The use of

scanning ion conductance microscopy to image a6 cells,” Molecular and cellular

endocrinology, vol. 217, no. 1, pp. 101–108, 2004.

[31] A. I. Shevchuk, G. I. Frolenkov, D. Sánchez, P. S. James, N. Freedman, M. J. Lab,

R. Jones, D. Klenerman, and Y. E. Korchev, “Imaging proteins in membranes of

living cells by high-resolution scanning ion conductance microscopy,” Angewandte

Chemie, vol. 118, no. 14, pp. 2270–2274, 2006.



180 Bibliography

[32] S. A. Mann, B. Versmold, R. Marx, S. Stahlhofen, I. D. Dietzel, R. Heumann, and

R. Berger, “Corticosteroids reverse cytokine-induced block of survival and

differentiation of oligodendrocyte progenitor cells from rats,” Journal of

neuroinflammation, vol. 5, no. 1, p. 39, 2008.

[33] X. Yang, X. Liu, X. Zhang, H. Lu, J. Zhang, and Y. Zhang, “Investigation of

morphological and functional changes during neuronal differentiation of pc12 cells by

combined hopping probe ion conductance microscopy and patch-clamp technique,”

Ultramicroscopy, vol. 111, no. 8, pp. 1417–1422, 2011.

[34] W. Shin and K. D. Gillis, “Measurement of changes in membrane surface morphology

associated with exocytosis using scanning ion conductance microscopy,” Biophysical

journal, vol. 91, no. 6, pp. L63–L65, 2006.

[35] X. Yang, X. Liu, H. Lu, X. Zhang, L. Ma, R. Gao, and Y. Zhang, “Real-time

investigation of acute toxicity of zno nanoparticles on human lung epithelia with

hopping probe ion conductance microscopy,” Chemical research in toxicology, vol. 25,

no. 2, pp. 297–304, 2012.

[36] P. Ruenraroengsak, P. Novak, D. Berhanu, A. J. Thorley, E. Valsami-Jones,

J. Gorelik, Y. E. Korchev, and T. D. Tetley, “Respiratory epithelial cytotoxicity and

membrane damage (holes) caused by amine-modified nanoparticles,” Nanotoxicology,

vol. 6, no. 1, pp. 94–108, 2012.

[37] Y. Zhang, D. Sanchez, J. Gorelik, D. Klenerman, C. Edwards, Y. Korchev, et al.,

“Basolateral p2x 4-like receptors regulate the extracellular atp-stimulated epithelial

na+ channel activity in renal epithelia,” American Journal of Physiology-Renal

Physiology, vol. 292, no. 6, pp. F1734–F1740, 2007.

[38] M. Ibrahim, M. Navaratnarajah, U. Siedlecka, C. Rao, P. Dias, A. V. Moshkov,

J. Gorelik, M. H. Yacoub, and C. M. Terracciano, “Mechanical unloading reverses

transverse tubule remodelling and normalizes local ca2+-induced ca2+ release in a

rodent model of heart failure,” European journal of heart failure, vol. 14, no. 6,

pp. 571–580, 2012.

[39] M. Ibrahim, A. Al Masri, M. Navaratnarajah, U. Siedlecka, G. K. Soppa,

A. Moshkov, S. A. Al-Saud, J. Gorelik, M. H. Yacoub, and C. M. Terracciano,

“Prolonged mechanical unloading affects cardiomyocyte excitation-contraction

coupling, transverse-tubule structure, and the cell surface,” The FASEB Journal,

vol. 24, no. 9, pp. 3321–3329, 2010.

[40] C. M. Potter, M. H. Lundberg, L. S. Harrington, C. M. Warboys, T. D. Warner,

R. E. Berson, A. V. Moshkov, J. Gorelik, P. D. Weinberg, and J. A. Mitchell, “Role

of shear stress in endothelial cell morphology and expression of cyclooxygenase

isoforms,” Arteriosclerosis, thrombosis, and vascular biology, vol. 31, no. 2,

pp. 384–391, 2011.



Bibliography 181

[41] C. M. Potter, S. Schobesberger, M. H. Lundberg, P. D. Weinberg, J. A. Mitchell, and

J. Gorelik, “Shape and compliance of endothelial cells after shear stress in vitro or

from different aortic regions: scanning ion conductance microscopy study,” PloS one,

vol. 7, no. 2, p. e31228, 2012.

[42] O. Hamill, A. Marty, E. Neher, B. Sakmann, and F. Sigworth, “Improved

patch-clamp techniques for high-resolution current recording from cells and cell-free

membrane patches,” Pflgers Archiv, vol. 391, no. 2, pp. 85–100, 1981.

[43] Y. E. Korchev, Y. A. Negulyaev, C. R. Edwards, I. Vodyanoy, et al., “Functional

localization of single active ion channels on the surface of a living cell,” Nature cell

biology, vol. 2, no. 9, p. 616, 2000.

[44] Y. Gu, J. Gorelik, H. A. Spohr, A. Shevchuk, S. E. Harding, I. Vodyanoy,

D. Klenerman, Y. E. Korchev, et al., “High-resolution scanning patch-clamp: new

insights into cell function,” The FASEB Journal, vol. 16, no. 7, pp. 748–750, 2002.

[45] J. Gorelik, Y. Gu, H. A. Spohr, A. I. Shevchuk, M. J. Lab, S. E. Harding, C. R.

Edwards, M. Whitaker, G. W. Moss, D. C. Benton, et al., “Ion channels in small cells

and subcellular structures can be studied with a smart patch-clamp system,”

Biophysical Journal, vol. 83, no. 6, pp. 3296–3303, 2002.

[46] H. Duclohier, “Neuronal sodium channels in ventricular heart cells are localized near

t-tubules openings,” Biochemical and biophysical research communications, vol. 334,

no. 4, pp. 1135–1140, 2005.

[47] A. K. Dutta, Y. E. Korchev, A. I. Shevchuk, S. Hayashi, Y. Okada, and R. Z.

Sabirov, “Spatial distribution of maxi-anion channel on cardiomyocytes detected by

smart-patch technique,” Biophysical journal, vol. 94, no. 5, pp. 1646–1655, 2008.

[48] A. F. James, R. Z. Sabirov, and Y. Okada, “Clustering of protein kinase a-dependent

cftr chloride channels in the sarcolemma of guinea-pig ventricular myocytes,”

Biochemical and biophysical research communications, vol. 391, no. 1, pp. 841–845,

2010.

[49] P. Novak, J. Gorelik, U. Vivekananda, A. I. Shevchuk, Y. S. Ermolyuk, R. J. Bailey,

A. J. Bushby, G. W. Moss, D. A. Rusakov, D. Klenerman, et al., “Nanoscale-targeted

patch-clamp recordings of functional presynaptic ion channels,” Neuron, vol. 79,

no. 6, pp. 1067–1077, 2013.

[50] E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning

optical microscopy,” Science, vol. 262, pp. 1422–1422, 1993.

[51] M. Snyder, D. Vlachos, and V. Nikolakis, “Quantitative analysis of membrane

morphology, microstructure, and polycrystallinity via laser scanning confocal

microscopy: application to nax zeolite membranes,” Journal of membrane science,

vol. 290, no. 1, pp. 1–18, 2007.



182 Bibliography

[52] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S.

Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging

intracellular fluorescent proteins at nanometer resolution,” Science, vol. 313,

no. 5793, pp. 1642–1645, 2006.

[53] V. O. Nikolaev, A. Moshkov, A. R. Lyon, M. Miragoli, P. Novak, H. Paur, M. J.

Lohse, Y. E. Korchev, S. E. Harding, and J. Gorelik, “β2-adrenergic receptor

redistribution in heart failure changes camp compartmentation,” Science, vol. 327,

no. 5973, pp. 1653–1657, 2010.

[54] A. Bruckbauer, P. James, D. Zhou, J. W. Yoon, D. Excell, Y. Korchev, R. Jones, and

D. Klenerman, “Nanopipette delivery of individual molecules to cellular

compartments for single-molecule fluorescence tracking,” Biophysical journal, vol. 93,

no. 9, pp. 3120–3131, 2007.

[55] A. Shevchuk, P. Novak, M. Velazquez, T. Fleming, and Y. Korchev, “Combined ion

conductance and fluorescence confocal microscopy for biological cell membrane

transport studies,” Journal of Optics, vol. 15, no. 9, p. 094005, 2013.

[56] J. Gorelik, A. Shevchuk, M. Ramalho, M. Elliott, C. Lei, C. Higgins, D. Klenerman,

N. Krauzewicz, Y. Korchev, et al., “Scanning surface confocal microscopy for

simultaneous topographical and fluorescence imaging: application to single virus-like

particle entry into a cell,” Proceedings of the National Academy of Sciences, vol. 99,

no. 25, pp. 16018–16023, 2002.

[57] A. I. Shevchuk, P. Hobson, M. J. Lab, D. Klenerman, N. Krauzewicz, and Y. E.

Korchev, “Imaging single virus particles on the surface of cell membranes by

high-resolution scanning surface confocal microscopy,” Biophysical journal, vol. 94,

no. 10, pp. 4089–4094, 2008.

[58] A. I. Shevchuk, P. Novak, M. Taylor, I. A. Diakonov, A. Ziyadeh-Isleem, M. Bitoun,

P. Guicheney, J. Gorelik, C. J. Merrifield, D. Klenerman, et al., “An alternative

mechanism of clathrin-coated pit closure revealed by ion conductance microscopy,” J

Cell Biol, vol. 197, no. 4, pp. 499–508, 2012.

[59] R. W. Clarke, A. Drews, H. Browne, and D. Klenerman, “A single gd glycoprotein

can mediate infection by herpes simplex virus,” Journal of the American Chemical

Society, vol. 135, no. 30, pp. 11175–11180, 2013.

[60] Y. E. Korchev, M. Raval, M. J. Lab, J. Gorelik, C. R. Edwards, T. Rayment, and

D. Klenerman, “Hybrid scanning ion conductance and scanning near-field optical

microscopy for the study of living cells,” Biophysical journal, vol. 78, no. 5,

pp. 2675–2679, 2000.

[61] A. Rothery, J. Gorelik, A. Bruckbauer, W. Yu, Y. Korchev, and D. Klenerman, “A

novel light source for sicm–snom of living cells,” Journal of microscopy, vol. 209,

no. 2, pp. 94–101, 2003.



Bibliography 183

[62] Y. Takahashi, A. Kumatani, H. Shiku, and T. Matsue, “Scanning probe microscopy

for nanoscale electrochemical imaging,” Analytical chemistry, vol. 89, no. 1,

pp. 342–357, 2016.

[63] J. Rodriguez-Lopez, M. A. Alpuche-Avilés, and A. J. Bard, “Interrogation of surfaces

for the quantification of adsorbed species on electrodes: oxygen on gold and platinum

in neutral media,” Journal of the American Chemical Society, vol. 130, no. 50,

pp. 16985–16995, 2008.

[64] M. S. Li, F. P. Filice, J. D. Henderson, and Z. Ding, “Probing cd2+-stressed live cell

membrane permeability with various redox mediators in scanning electrochemical

microscopy,” The Journal of Physical Chemistry C, vol. 120, no. 11, pp. 6094–6103,

2016.

[65] E. Lee, J. Sung, T. An, H. Shin, H. G. Nam, and G. Lim, “Simultaneous imaging of

the topography and electrochemical activity of a 2d carbon nanotube network using a

dual functional l-shaped nanoprobe,” Analyst, vol. 140, no. 9, pp. 3150–3156, 2015.

[66] Y. Takahashi, A. I. Shevchuk, P. Novak, Y. Murakami, H. Shiku, Y. E. Korchev, and

T. Matsue, “Simultaneous noncontact topography and electrochemical imaging by

secm/sicm featuring ion current feedback regulation,” Journal of the American

Chemical Society, vol. 132, no. 29, pp. 10118–10126, 2010.

[67] D. J. Comstock, J. W. Elam, M. J. Pellin, and M. C. Hersam, “Integrated

ultramicroelectrode- nanopipet probe for concurrent scanning electrochemical

microscopy and scanning ion conductance microscopy,” Analytical chemistry, vol. 82,

no. 4, pp. 1270–1276, 2010.

[68] D. A. Walsh, J. L. Fernandez, J. Mauzeroll, and A. J. Bard, “Scanning

electrochemical microscopy. 55. fabrication and characterization of micropipet

probes,” Analytical chemistry, vol. 77, no. 16, pp. 5182–5188, 2005.

[69] W. Shi and L. A. Baker, “Imaging heterogeneity and transport of degraded nafion

membranes,” Rsc Advances, vol. 5, no. 120, pp. 99284–99290, 2015.

[70] C. A. Morris, C.-C. Chen, and L. A. Baker, “Transport of redox probes through

single pores measured by scanning electrochemical-scanning ion conductance

microscopy (secm-sicm),” Analyst, vol. 137, no. 13, pp. 2933–2938, 2012.

[71] C. A. Morris, C.-C. Chen, T. Ito, and L. A. Baker, “Local ph measurement with

scanning ion conductance microscopy,” Journal of The Electrochemical Society,

vol. 160, no. 8, pp. H430–H435, 2013.

[72] Y. Takahashi, A. I. Shevchuk, P. Novak, B. Babakinejad, J. Macpherson, P. R.

Unwin, H. Shiku, J. Gorelik, D. Klenerman, Y. E. Korchev, et al., “Topographical

and electrochemical nanoscale imaging of living cells using voltage-switching mode

scanning electrochemical microscopy,” Proceedings of the National Academy of

Sciences, vol. 109, no. 29, pp. 11540–11545, 2012.



184 Bibliography

[73] Y. Takahashi, A. I. Shevchuk, P. Novak, Y. Zhang, N. Ebejer, J. V. Macpherson,

P. R. Unwin, A. J. Pollard, D. Roy, C. A. Clifford, et al., “Multifunctional

nanoprobes for nanoscale chemical imaging and localized chemical delivery at

surfaces and interfaces,” Angewandte Chemie International Edition, vol. 50, no. 41,

pp. 9638–9642, 2011.

[74] M. Sen, Y. Takahashi, Y. Matsumae, Y. Horiguchi, A. Kumatani, K. Ino, H. Shiku,

and T. Matsue, “Improving the electrochemical imaging sensitivity of scanning

electrochemical microscopy-scanning ion conductance microscopy by using

electrochemical pt deposition,” Analytical chemistry, vol. 87, no. 6, pp. 3484–3489,

2015.

[75] M. A. OConnell and A. J. Wain, “Mapping electroactivity at individual catalytic

nanostructures using high-resolution scanning electrochemical–scanning ion

conductance microcopy,” Analytical chemistry, vol. 86, no. 24, pp. 12100–12107, 2014.

[76] M. A. O’Connell, J. R. Lewis, and A. J. Wain, “Electrochemical imaging of hydrogen

peroxide generation at individual gold nanoparticles,” Chemical Communications,

vol. 51, no. 51, pp. 10314–10317, 2015.

[77] B. P. Nadappuram, K. McKelvey, R. Al Botros, A. W. Colburn, and P. R. Unwin,

“Fabrication and characterization of dual function nanoscale ph-scanning ion

conductance microscopy (sicm) probes for high resolution ph mapping,” Analytical

chemistry, vol. 85, no. 17, pp. 8070–8074, 2013.

[78] A. Page, M. Kang, A. Armitstead, D. Perry, and P. R. Unwin, “Quantitative

visualization of molecular delivery and uptake at living cells with self-referencing

scanning ion conductance microscopy-scanning electrochemical microscopy,”

Analytical Chemistry, vol. 89, no. 5, pp. 3021–3028, 2017.

[79] K. McKelvey, B. P. Nadappuram, P. Actis, Y. Takahashi, Y. E. Korchev, T. Matsue,

C. Robinson, and P. R. Unwin, “Fabrication, characterization, and functionalization

of dual carbon electrodes as probes for scanning electrochemical microscopy (secm),”

Analytical chemistry, vol. 85, no. 15, pp. 7519–7526, 2013.

[80] Y. Zhou, C.-C. Chen, A. E. Weber, L. Zhou, and L. A. Baker,

“Potentiometric-scanning ion conductance microscopy,” Langmuir, vol. 30, no. 19,

pp. 5669–5675, 2014.

[81] C.-C. Chen, Y. Zhou, C. A. Morris, J. Hou, and L. A. Baker, “Scanning ion

conductance microscopy measurement of paracellular channel conductance in tight

junctions,” Analytical chemistry, vol. 85, no. 7, pp. 3621–3628, 2013.

[82] Y. Zhou, C.-C. Chen, A. E. Weber, L. Zhou, L. A. Baker, and J. Hou,

“Potentiometric-scanning ion conductance microscopy for measurement at tight

junctions,” Tissue barriers, vol. 1, no. 4, p. e25585, 2013.

[83] N. Ebejer, M. Schnippering, A. W. Colburn, M. A. Edwards, and P. R. Unwin,

“Localized high resolution electrochemistry and multifunctional imaging: Scanning



Bibliography 185

electrochemical cell microscopy,” Analytical chemistry, vol. 82, no. 22, pp. 9141–9145,

2010.
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[189] E. Syková and C. Nicholson, “Diffusion in brain extracellular space,” Physiological

reviews, vol. 88, no. 4, pp. 1277–1340, 2008.

[190] M. NIljina, Aggregation of Alpha-synuclein Using Single-molecule Spectroscopy. PhD

thesis, University of Cambridge.

[191] M. Iljina, L. Hong, M. H. Horrocks, M. H. Ludtmann, M. L. Choi, C. D. Hughes,

F. S. Ruggeri, T. Guilliams, A. K. Buell, J.-E. Lee, et al., “Nanobodies raised against

monomeric -synuclein inhibit fibril formation and destabilize toxic oligomeric

species,” BMC biology, vol. 15, no. 1, p. 57, 2017.

[192] P. Flagmeier, S. De, D. C. Wirthensohn, S. F. Lee, C. Vincke, S. Muyldermans, T. P.

Knowles, S. Gandhi, C. M. Dobson, and D. Klenerman, “Ultrasensitive measurement

of ca2+ influx into lipid vesicles induced by protein aggregates,” Angewandte

Chemie, 2017.

[193] S. Salloway, R. Sperling, N. C. Fox, K. Blennow, W. Klunk, M. Raskind,

M. Sabbagh, L. S. Honig, A. P. Porsteinsson, S. Ferris, et al., “Two phase 3 trials of



194 Bibliography

bapineuzumab in mild-to-moderate alzheimer’s disease,” New England Journal of

Medicine, vol. 370, no. 4, pp. 322–333, 2014.

[194] R. Vandenberghe, J. O. Rinne, M. Boada, S. Katayama, P. Scheltens, B. Vellas,

M. Tuchman, A. Gass, J. B. Fiebach, D. Hill, et al., “Bapineuzumab for mild to

moderate alzheimers disease in two global, randomized, phase 3 trials,” Alzheimer’s

research & therapy, vol. 8, no. 1, p. 18, 2016.

[195] Thor Labs, “Optical tables tutorial, product description.”

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8275.

[196] Chuo Precision Industrial Co., LTD, “High-grade aluminum xy-axis stage, product

description.” http:

//www.chuo.co.jp/english/contents/hp0045/list.php?CNo=45&ProCon=434.

[197] Physik Instrumente, M-11x Micro-translation stage, MP41EE, User Manual.

[198] Physik Instrumente, P-5x7/P-5x8 Stage, User Manual.

[199] Scientifica, “Patchstar micromanipulator, product description.” http://www.

scientifica.uk.com/products/scientifica-patchstar-micromanipulator.

[200] Cairn Research, Dual OptoLED, Instruction Manual.

[201] PCO., pco.pixelfly usb, product data sheet.

[202] B. Sakmann, Single-channel recording. Springer Science & Business Media, 2013.

[203] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, et al.,

Molecular cell biology, vol. 3. Scientific American Books New York, 1995.

[204] S. Coco, F. Calegari, E. Pravettoni, D. Pozzi, E. Taverna, P. Rosa, M. Matteoli, and

C. Verderio, “Storage and release of atp from astrocytes in culture,” Journal of

Biological Chemistry, vol. 278, no. 2, pp. 1354–1362, 2003.

[205] K. Tanaka, S. Gilroy, A. M. Jones, and G. Stacey, “Extracellular atp signaling in

plants,” Trends in cell biology, vol. 20, no. 10, pp. 601–608, 2010.

[206] C. E. Stout, J. L. Costantin, C. C. Naus, and A. C. Charles, “Intercellular calcium

signaling in astrocytes via atp release through connexin hemichannels,” Journal of

Biological Chemistry, vol. 277, no. 12, pp. 10482–10488, 2002.

[207] P. B. Guthrie, J. Knappenberger, M. Segal, M. V. Bennett, A. C. Charles, and S. B.

Kater, “Atp released from astrocytes mediates glial calcium waves,” Journal of

Neuroscience, vol. 19, no. 2, pp. 520–528, 1999.

[208] S. Y. Kim, J. H. Moon, H. G. Lee, S. U. Kim, and Y. B. Lee, “Atp released from

[beta]-amyloid-stimulated microglia induces reactive oxygen species production in an

autocrine fashion,” Experimental & molecular medicine, vol. 39, no. 6, p. 820, 2007.

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8275
http://www.chuo.co.jp/english/contents/hp0045/list.php?CNo=45&ProCon=434
http://www.chuo.co.jp/english/contents/hp0045/list.php?CNo=45&ProCon=434
http://www.scientifica.uk.com/products/scientifica-patchstar-micromanipulator
http://www.scientifica.uk.com/products/scientifica-patchstar-micromanipulator


Bibliography 195

[209] N. J. Haughey and M. P. Mattson, “Alzheimers amyloid β-peptide enhances atp/gap

junction-mediated calcium-wave propagation in astrocytes,” Neuromolecular

medicine, vol. 3, no. 3, pp. 173–180, 2003.

[210] H. Imamura, K. P. H. Nhat, H. Togawa, K. Saito, R. Iino, Y. Kato-Yamada,

T. Nagai, and H. Noji, “Visualization of atp levels inside single living cells with

fluorescence resonance energy transfer-based genetically encoded indicators,”

Proceedings of the National Academy of Sciences, vol. 106, no. 37, pp. 15651–15656,

2009.
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[213] F. Sáez-Orellana, P. Godoy, C. Bastidas, T. Silva-Grecchi, L. Guzmán, L. Aguayo,

and J. Fuentealba, “Atp leakage induces p2xr activation and contributes to acute

synaptic excitotoxicity induced by soluble oligomers of β-amyloid peptide in

hippocampal neurons,” Neuropharmacology, vol. 100, pp. 116–123, 2016.

[214] A. J. Bard, F. R. F. Fan, J. Kwak, and O. Lev, “Scanning electrochemical

microscopy. introduction and principles,” Analytical Chemistry, vol. 61, no. 2,

pp. 132–138, 1989.

[215] S. Amemiya, A. J. Bard, F.-R. F. Fan, M. V. Mirkin, and P. R. Unwin, “Scanning

electrochemical microscopy,” Annual Review of Analytical Chemistry, vol. 1, no. 1,

pp. 95–131, 2008.

[216] J. T. Cox and B. Zhang, “Nanoelectrodes: Recent advances and new directions,”

Annual Review of Analytical Chemistry, vol. 5, no. 1, pp. 253–272, 2012.

[217] Y. Wang, J.-M. Nol, J. Velmurugan, W. Nogala, M. V. Mirkin, C. Lu,

M. Guille Collignon, F. Lematre, and C. Amatore, “Nanoelectrodes for determination

of reactive oxygen and nitrogen species inside murine macrophages,” Proceedings of

the National Academy of Sciences, vol. 109, no. 29, pp. 11534–11539, 2012.

[218] P. Actis, S. Tokar, J. Clausmeyer, B. Babakinejad, S. Mikhaleva, R. Cornut,

Y. Takahashi, A. Lpez Crdoba, P. Novak, A. I. Shevchuck, J. A. Dougan, S. G.

Kazarian, P. V. Gorelkin, A. S. Erofeev, I. V. Yaminsky, P. R. Unwin,

W. Schuhmann, D. Klenerman, D. A. Rusakov, E. V. Sviderskaya, and Y. E.

Korchev, “Electrochemical nanoprobes for single-cell analysis,” ACS Nano, vol. 8,

no. 1, pp. 875–884, 2014.

[219] J. Clausmeyer, P. Actis, A. L. Crdoba, Y. Korchev, and W. Schuhmann,

“Nanosensors for the detection of hydrogen peroxide,” Electrochemistry

Communications, vol. 40, no. 0, pp. 28 – 30, 2014.



196 Bibliography

[220] B. Tian and C. M. Lieber, “Synthetic nanoelectronic probes for biological cells and

tissues,” Annual Review of Analytical Chemistry, vol. 6, no. 1, pp. 31–51, 2013.

[221] W. Lu, P. Xie, and C. M. Lieber, “Nanowire transistor performance limits and

applications,” Electron Devices, IEEE Transactions on, vol. 55, pp. 2859–2876, Nov

2008.

[222] H. Yoon, “Current trends in sensors based on conducting polymer nanomaterials,”

Nanomaterials, vol. 3, no. 3, pp. 524–549, 2013.

[223] D. J. Shirale, M. A. Bangar, W. Chen, N. V. Myung, and A. Mulchandani, “Effect of

aspect ratio (length:diameter) on a single polypyrrole nanowire fet device,” The

Journal of Physical Chemistry C, vol. 114, no. 31, pp. 13375–13380, 2010.

[224] M. M. Alam, J. Wang, Y. Guo, S. P. Lee, and H.-R. Tseng, “Electrolyte-gated

transistors based on conducting polymer nanowire junction arrays,” The Journal of

Physical Chemistry B, vol. 109, no. 26, pp. 12777–12784, 2005.

[225] R. M, S. V. Subramanyam, and S. Chatterjee, “Contribution of polarons and

bipolarons to low-temperature conductivity in doped polypyrrole,” Phys. Rev. B,

vol. 43, pp. 4236–4243, Feb 1991.

[226] H. Yoon, S. Ko, and J. Jang, “Field-effect-transistor sensor based on

enzyme-functionalized polypyrrole nanotubes for glucose detection,” The Journal of

Physical Chemistry B, vol. 112, no. 32, pp. 9992–9997, 2008.

[227] Q. Chi and S. Dong, “Amperometric biosensors based on the immobilization of

oxidases in a prussian blue film by electrochemical codeposition,” Analytica Chimica

Acta, vol. 310, no. 3, pp. 429 – 436, 1995.

[228] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles. McGraw-Hill

Education, 2012.

[229] K. M. Ziadan, “Conducting polymers application,” in New Polymers for Special

Applications, InTech, 2012.

[230] P. Lin, F. Yan, J. Yu, H. L. Chan, and M. Yang, “The application of organic

electrochemical transistors in cell-based biosensors,” Advanced Materials, vol. 22,

no. 33, pp. 3655–3660, 2010.

[231] L. Kergoat, B. Piro, M. Berggren, G. Horowitz, and M.-C. Pham, “Advances in

organic transistor-based biosensors: from organic electrochemical transistors to

electrolyte-gated organic field-effect transistors,” Analytical and bioanalytical

chemistry, vol. 402, no. 5, pp. 1813–1826, 2012.

[232] D. Hucknall, Chemistry of hydrocarbon combustion. Springer Science & Business

Media, 2012.

[233] J. Wang, Analytical electrochemistry. John Wiley & Sons, 2006.



Bibliography 197

[234] A. W. Bott, “Mass transport,” simulation, vol. 47906, p. 1382, 1996.

[235] R. Ansari, “Polypyrrole conducting electroactive polymers: synthesis and stability

studies,” Journal of Chemistry, vol. 3, no. 4, pp. 186–201, 2006.

[236] D. Ateh, H. Navsaria, and P. Vadgama, “Polypyrrole-based conducting polymers and

interactions with biological tissues,” Journal of the royal society interface, vol. 3,

no. 11, pp. 741–752, 2006.

[237] P. Camurlu, “Polypyrrole derivatives for electrochromic applications,” RSC

Advances, vol. 4, no. 99, pp. 55832–55845, 2014.

[238] G. D. Sulka, K. Hnida, and A. Brzózka, “ph sensors based on polypyrrole nanowire

arrays,” Electrochimica Acta, vol. 104, pp. 536–541, 2013.

[239] A. Michalska and K. Maksymiuk, “Counter-ion influence on polypyrrole

potentiometric ph sensitivity,” Microchimica Acta, vol. 143, no. 2-3, pp. 163–175,

2003.

[240] A. Gelmi, M. K. Ljunggren, M. Rafat, and E. Jager, “Influence of conductive

polymer doping on the viability of cardiac progenitor cells,” Journal of Materials

Chemistry B, vol. 2, no. 24, pp. 3860–3867, 2014.

[241] Q. Pei and R. Qian, “Protonation and deprotonation of polypyrrole chain in aqueous

solutions,” Synthetic metals, vol. 45, no. 1, pp. 35–48, 1991.

[242] D. Maddison, J. Unsworth, and J. Lusk, “Pressure dependence of electrical

conductivity in polypyrrole,” Synthetic metals, vol. 22, no. 3, pp. 257–264, 1988.

[243] B. Lundberg, B. Sundqvist, O. Inganäs, I. Lundström, and W. R. Salaneck,

“Pressure dependent electrical conductivity of polypyrrole,” Molecular Crystals and

Liquid Crystals, vol. 118, no. 1, pp. 155–158, 1985.

[244] I. Migneault, C. Dartiguenave, M. J. Bertrand, and K. C. Waldron, “Glutaraldehyde:

behavior in aqueous solution, reaction with proteins, and application to enzyme

crosslinking,” Biotechniques, vol. 37, no. 5, pp. 790–806, 2004.

[245] Y. Wine, N. Cohen-Hadar, A. Freeman, and F. Frolow, “Elucidation of the

mechanism and end products of glutaraldehyde crosslinking reaction by x-ray

structure analysis,” Biotechnology and bioengineering, vol. 98, no. 3, pp. 711–718,

2007.

[246] Y. Zhang, J. Clausmeyer, B. Babakinejad, A. Lopez Cordoba, T. Ali, A. Shevchuk,

Y. Takahashi, P. Novak, C. Edwards, M. Lab, et al., “Spearhead nanometric

field-effect transistor sensors for single-cell analysis,” ACS nano, vol. 10, no. 3,

pp. 3214–3221, 2016.
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