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Abstract

Characterizing sub-mm observations of protoplanetary disks at super-resolution scales
Jeffrey Michael Jennings

Current advancements in telescope and instrumentation technology enable us to observe
planets as astrophysical objects across epochs that span Gyr of evolution, from their formation
in protoplanetary disks and continued growth in debris disks to their dynamical evolution in
exoplanetary systems and ultimate accretion onto white dwarfs. Measurements in each of
these eras can be used to inform study in the others. Interferometry affords the highest angular
resolution of any observing technique in astronomy, and the use of radio interferometry with
instruments such as the Atacama Large Millimeter Array (ALMA) and the Karl G. Jansky
Very Large Array (VLA) is markedly advancing the protoplanetary disk field. By further
improving our methods to reconstruct high fidelity (in terms of both resolution and sensitivity)
images from the interferometric observable, we can not only characterize these disks, but
detect the dynamical effects of planets within them. Over a large ensemble of sources, this
offers the potential to both progress disk science and connect inferences on the embedded
planet population to the study of these objects in later epochs.

This thesis centers on a new imaging framework for radio interferometric observations
and its specific application to detect and characterize substructures in protoplanetary disks.
Chapter 1 introduces the basics of protoplanetary disk theory and observations, with a focus
on the principles of radio interferometry and its application for disk science. Chapter 2
then presents Frankenstein (frank), the open source code we have developed and applied
to fit sub-mm observations of disks in order to search for substructure. Chapter 3 applies
frank to the high resolution (30 mas) DSHARP mm sample of 20 disks to identify new
substructure in these sources and more accurately constrain known disk features. Major
results include discovery of more structured inner disks (at separations within 30 au of the
host star). In Chapter 4 we apply frank to the moderate resolution (120 mas) Taurus mm
survey, finding that compact disks (those with radii <50 au) routinely exhibit substructure.
Chapter 5 concludes by summarizing the frank algorithm and our novel scientific results
with this tool, then places this evolving imaging approach in the context of future disk science.
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Chapter 1

Introduction: Protoplanetary disks and
radio interferometry

This thesis will focus on a new technical tool we have developed for aperture synthesis, i.e.,
interferometric imaging, in radio astronomy, with scientific application to protoplanetary disks.
Fig. 1.1 shows three realizations of an image for the DL Tau disk in the Taurus star-forming
region, observed at 1.33 mm with ALMA, the Atacama Large Millimeter/submillimeter
Array. These realizations demonstrate both the remarkable observational capability of the
instrument and the challenge of aperture synthesis. The left panel of Fig. 1.1 shows the
raw Fourier transform of the interferometric observable (native to the Fourier domain),
which contains artifacts due to convolution of the on-sky brightness with the instrument’s
point spread function. The middle panel shows an image realization with the standard
community modeling technique, CLEAN. And the right panel shows the resolving power of
‘super-resolution’ imaging using the tool presented in this work, frank.

In Sec. 1.1 of this chapter I begin with an overview of basic disk theory and what
observations across wavelength regimes have taught us about these objects thus far. Focusing
on the utility of radio interferometric observations, I then summarize the principles of radio
interferometry and the techniques to image interferometric observations in Sec. 1.2. Lastly in
Sec. 1.3 I describe how we can use interferometry at mm and cm wavelengths to learn about
disk structure and the disk-embedded planet population.

1.1 Theory and observation of protoplanetary disks

I will begin with a summary of how disks form and evolve (in both the gas and dust), as well
as how a planet interacts with the disk, and how the gas disk ultimately disperses.
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Fig. 1.1. Imaging a protoplanetary disk with ALMA
Left: The dirty image (Sec. 1.2.2) of the protoplanetary disk DL Tau, observed at 1.33 mm
with ALMA.
Middle: A realization of the on-sky brightness produced by applying the CLEAN nonlinear
deconvolution algorithm (Sec. 1.2.2.1) to the dirty image.
Right: A pseudo-2D realization of the on-sky brightness using the super-resolution tool
frank (Chapter 2).

1.1.1 Theory of disk structure and evolution

1.1.1.1 Disk formation

Following the onset of gravitational collapse in a molecular cloud core in hydrostatic
disequilibrium, the cold (≈10 K) and dense (molecule number density ∼ 106 cm−3) gas forms
a protostar. The residual surrounding gas, if it had zero net angular momentum, would then
fall radially onto the star, acted upon solely by the gravitational force 𝐹g. However a gas
parcel with nonzero angular momentum will additionally feel a centrifugal force 𝐹c, and the
net force directs it into the plane perpendicular to the cloud’s angular momentum vector at the
radial location where 𝐹g = 𝐹c. This is the centrifugal radius, 𝑟c = 𝐺𝑀∗/𝜔2

c . The aggregate
result of this non-radial infall over all gas parcels, as a consequence of angular momentum
conservation, is coalescence into a rotating protoplanetary disk around the central star (Bate,
2011) with Keplerian angular velocities 𝜔c = Ω = (𝐺𝑀∗/𝑟3

c )1/2. The disk also contains a dust
component with relative mass assumed to be the ISM average, 𝑀dust = 0.01𝑀gas, giving a
rough dust mass ∼ 1 MJup in ∼ `m grains (assuming a total disk mass ≈ 0.1𝑀∗). The gas/dust
mass ratio may be smaller by virtue of systematically underestimated dust disk masses, given
evidence that the inner disk is highly optically thick at observing wavelengths in objects such
as TW Hya at ≤ 3.1 mm (Macías et al., 2021).



1.1 Theory and observation of protoplanetary disks 3

1.1.1.2 Gas disk evolution

The gas disk secularly evolves due to angular momentum redistribution (Pringle, 1981), with
the evolution of an annulus in the disk Δ𝑟 at radius 𝑟 understood through mass and angular
momentum conservation. For a radial velocity 𝑣r, whose sign is negative radially inward (i.e.,
for accretion), mass transport through the inner edge of the annulus is (Armitage, 2007)

¤𝑀in = 2𝜋𝑟Σ(𝑟)𝑣r(𝑟). (1.1)

Mass transport through the annulus’ outer edge is

¤𝑀out = 2𝜋(𝑟 +Δ𝑟)Σ(𝑟 +Δ𝑟)𝑣r(𝑟 +Δ𝑟), (1.2)

and the mass flux through this ring is then

¤𝑀out − ¤𝑀in = 2𝜋𝑟Δ𝑟
𝜕Σ

𝜕𝑡
. (1.3)

In the Δ𝑟 → 0 limit, the equation of continuity for mass becomes

𝑟
𝜕Σ

𝜕𝑡
+ 𝜕

𝜕𝑟
(𝑟Σ𝑣r) = 0. (1.4)

Applying angular momentum conservation, in the case of a constant torque in the annulus,
there is no net angular momentum flux across it,

𝑟
𝜕

𝜕𝑡
𝑟2ΩΣ+ 𝜕

𝜕𝑟
𝑟2Ω𝑟Σ𝑣r = 0. (1.5)

Accounting for a varying torque 𝐺, the right-hand side of Equation 1.5 becomes 1/2𝜋 𝜕𝐺/𝜕𝑟 .
Treating the torque as resulting from a fluid viscosity, 𝐺 takes the form

𝐺 = 2𝜋𝑟 𝑟aΣ
𝑑Ω

𝑑𝑟
𝑟, (1.6)

where a is the kinematic viscosity. Equation 1.5 then becomes

𝜕

𝜕𝑡
(𝑟2ΣΩ) + 1

𝑟

𝜕

𝜕𝑟
(𝑟3Σ𝑣rΩ) =

1
𝑟

𝜕

𝜕𝑟

(
𝑟3aΣ

𝑑Ω

𝑑𝑟

)
. (1.7)
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Taking the mass and angular momentum continuity equations together and assuming Keplerian
rotation gives a diffusion equation for the viscous evolution of the disk,

𝜕Σ

𝜕𝑡
=

3
𝑟

𝜕

𝜕𝑟

[
𝑟1/2 𝜕

𝜕𝑟
(aΣ𝑟1/2)

]
. (1.8)

A solution to this equation can be expressed as (Lynden-Bell and Pringle, 1974)

Σ(𝑟, 𝑡) = 𝑀d(2−𝛾)
2𝜋𝑟2

0𝑟
𝛾

𝜏−(5/2−𝛾)/(2−𝛾)exp
(
− 𝑟2−𝛾

𝜏

)
, (1.9)

where 𝛾 is a dimensionless parameter of order unity to encapsulate the power law relation
between viscosity and radius, 𝑀d the disk mass, and 𝑅 = 𝑟/𝑟0, where 𝑟0 is a scaling radius of
order 10 au. 𝜏 = 𝑡/𝑡a +1 is a characteristic dimensionless time defined using the diffusion
timescale (‘viscous time’), 𝑡a ≈ 𝑟2/a. This is the time for viscous evolution to perturb the
local surface density by a factor of order unity, and in the absence of other processes, the disk
evolves on the viscous timescale of its outermost radius. The physical origin of viscosity
in accretion disks is an open question; most often turbulence is evoked, with the 𝛼-disk
prescription of Shakura and Sunyaev (1973) approximating the viscosity as a = 𝛼𝑐s𝐻, where
𝑐s is the local isothermal sound speed and 𝐻 the disk scale height. Here 𝛼 ≤ 1, with a range
of 𝛼 ∼ 10−4 −10−2 typically used in disk models.

Two central implications of these relations for the gas disk are: 1) Σ(𝑟) ∝ 𝑟−𝛾 and thus
the gas disk has an effective maximum radius beyond which the gas surface density is several
orders of magnitude below its value in the inner disk, and 2) the gas disk evolves by mass flow
inward (accretion at a rate ¤𝑀acc = 𝑀d(𝑟)/𝑡a (𝑟)) and therefore angular momentum transport
outward (carried by a trivial fraction of the disk mass), with Σ(𝑡) falling as a power law
Σ ∝ ¤𝑀𝑡−𝑥 (Hartmann et al., 1998).

1.1.1.3 Dust disk evolution

Analogous to the diffusion equation for the evolution of the gas disk, the governing equation
for the dust disk evolution must include terms for turbulent diffusion and the dust radial drift.
This drift is a consequence of a negative radial pressure gradient 𝑑𝑃/𝑑𝑟 in the gas that causes
it to orbit at a sub-Keplerian speed; dust particles massive enough to decouple from the gas
orbit at the local Keplerian speed, thus feeling a headwind – a drag force due to the gas that
extracts angular momentum, resulting in inward radial drift.

Here we will neglect the effects of collisions leading to grain growth and fragmentation
(and a discussion of the processes involved in dust coagulation, planetesimal and planet



1.1 Theory and observation of protoplanetary disks 5

formation generally) for brevity. The dust evolves as

𝜕Σdust

𝜕𝑡
=

1
𝑟

𝜕

𝜕𝑟

[
𝑅Σdust𝑣drift −𝐷𝑅Σg

𝜕

𝜕𝑟

(
Σdust

Σgas

)]
, (1.10)

where the first term describes radial drift of the dust, 𝑣drift being the radial drift velocity;
and the second term describes turbulent diffusion (Birnstiel et al., 2010; Clarke and Pringle,
1988), where 𝐷 is the dust diffusion coefficient (often equated to the gas kinematic viscosity
a).

𝑣drift can be calculated as (Takeuchi and Lin, 2002)

𝑣drift =
St−1𝑣gas −[𝑣k

St+St−1 , (1.11)

where 𝑣gas is the radial velocity of the gas induced by accretion and 𝑣k = (𝐺𝑀∗/𝑟)1/2 the
Keplerian velocity. St = 𝜋𝑎dust𝜌dust/(2Σgas) is the Stokes number of a dust grain of radius
𝑎dust and bulk density 𝜌dust. This quantifies the strength of coupling between the gas and dust
as the ratio St = 𝜏stop/𝜏eddy (Birnstiel et al., 2010). A grain’s stopping time 𝜏stop is the ratio
of its momentum to the drag force on it (𝐹drag = −𝑚Δ𝑢/𝜏stop, where 𝑚 is the grain’s mass
and Δ𝑢 its velocity relative to the gas). 𝜏eddy = 1/Ωk is the eddy turnover time that quantifies
the amount of turbulence in the medium (the equality belies some simplifying assumptions).
Thus St = 𝜏stopΩk; smaller dust grains have lower Stokes numbers and are well coupled to
the gas, while larger grains orbit nearer to the Keplerian velocity. Because the gas orbits at
sub-Keplerian speed, larger grains feel a stronger headwind and drift inward approaching
their radial terminal velocity. Finally [ measures the importance of the pressure gradient
with respect to gravity and is given by

[ = −
(
𝐻

𝑅

)2 (dlogΣg𝑎𝑠

dlog𝑅
+ (Z −3)

)
, (1.12)

where 𝐻/𝑅 is the disk aspect ratio and Z = 5/4 assuming a flared disk, i.e., the aspect ratio
increases with radius.

1.1.1.4 Dynamics of a disk-embedded planet

Observations find a stark absence of disks with inferred ages beyond ≈ few – 5 Myr (Haisch
et al., 2001), with disks older than ≈ 5 Myr showing upper limits of Σ ≤ 10−5 g cm−2 (Ingleby
et al., 2009), implying gas loss is almost total. Gas giant planets thus have a brief, few
Myr window to form their cores and accrete their envelopes, placing an upper bound on
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the timescale for (giant) planet formation processes. Key aspects of planet formation and
early orbital evolution are not yet well understood, from the mechanism that initiates planet
formation (for recent reviews see Armitage, 2018; Morbidelli and Raymond, 2016) to the rate
of planet migration as a function of planet mass (for a review see Nelson, 2018).

While planet formation is beyond the scope of this work, a brief overview of disk-planet
dynamics is useful for appreciating how a planet can perturb the disk structure. In the
presence of a giant planet that is migrating in a disk, Equation 1.8 for the evolution of the gas
disk becomes

𝜕Σ

𝜕𝑡
=

3
𝑟

𝜕

𝜕𝑟

[
𝑟1/2 𝜕

𝜕𝑟

(
aΣ𝑟1/2) − 2ΛΣ𝑟3/2

(𝐺𝑀∗)1/2

]
, (1.13)

where we recall the first term on the right-hand side describes the viscous evolution of the
disk, while the added second term describes the migration of the planet due to torques from
the disk Lin and Papaloizou (1986). Λ is the rate of specific angular momentum transfer from
the planet to the disk, which can be expressed – using the modification by Armitage et al.
(2002) to the form proposed by Lin and Papaloizou (1986) – as

Λ(𝑟, 𝑎) =


−𝑄2𝐺𝑀∗

2𝑟

(
𝑟
Δ𝑝

)4
𝑟 < 𝑎

𝑄2𝐺𝑀∗
2𝑟

(
𝑎
Δ𝑝

)4
𝑟 > 𝑎.

(1.14)

Here 𝑄 is the mass ratio between the planet and the star, 𝑎 is the semimajor axis of the
planet’s orbit (assumed to be circular), and Δ𝑝 = max(𝐻, |𝑅− 𝑎 |); 𝐻 is the disk scale height.

When the planet mass exceeds the local thermal mass in the disk (typically ≳1 MJ), the
body can dynamically clear the dust and gas in its orbit, carving a gap of width Δ, with
1 𝑟H ≲ Δ ≲ 4 𝑟H (e.g., Baruteau et al., 2014; Duffell and MacFadyen, 2013; Kley and Nelson,
2012; Takeuchi et al., 1996). Here 𝑟H is the planet’s Hill radius, 𝑟H = 𝑎[𝑚p/(3𝑀∗)]1/3, with
𝑎 and 𝑚p its semimajor axis and mass. The gap width depends not only on the planet mass
but also the Stokes number of the local dust grain population, with St ∝ Σ−1

gas. Perturbations
in the gas can induce local pressure maxima that trap and accumulate inwardly migrating
dust grains in the St ≳ 0.1 regime (smaller dust grains are well coupled to the gas and thus do
not ‘see’ the trap). This in turn causes a measured gap width that is narrower for St ≈ 0.1
particles and broader for those with St ≈ 1.0 (whose surface density distribution is more
sharply peaked in the trap).



1.1 Theory and observation of protoplanetary disks 7

1.1.1.5 Disk dispersal

One may expect that accretion of disk gas onto the central star drives much if not all of
the protoplanetary disk’s evolution; as noted in Armitage (2015), a disk with initial mass
𝑀d ≈ 5× 10−3 𝑀⊙ (the median disk mass in the Taurus cluster, Andrews and Williams,
2005) and accretion rate ¤𝑀 ≈ 10−8 𝑀⊙ yr−1 suggests a viscous evolution timescale of 0.5
Myr. While this simple result is subject to order-of-magnitude uncertainties, the larger
question in this context is the relative paucity of observed stars with weak (i.e., optically
thin) disk indicators; if the disk viscosity scales as a ∝ 𝑟𝛾 , the surface density should scale as
in Equation 1.9, namely Σ ∝ 𝜏−(5/2−𝛾)/(2−𝛾) , such that for 𝛾 = 1 (corresponding to Σ ∝ 𝑟−1),
Σ ∝ 𝜏−3/2. This gradual decline predicts a continuum of observations from young, massive,
optically thick disks to old, depleted, optically thin disks. Such a population is inconsistent
with the aforementioned observational absence of disks older than ≈few – 5 Myr. Physical
mechanisms are thus invoked to initiate rapid gas disk dispersal, typically one or both of
photoevaporative (e.g., Clarke et al., 2001) and magnetohydrodynamic winds (e.g., Bai et al.,
2016).

Planetestimals are decoupled from the gas and thus not entrained in a potential dispersive
wind, remaining in orbit around the central star. At this point the system transitions to the
debris disk regime, wherein planetesimal belts collisionally erode while also gravitationally
interacting with planets and dwarf planets formed during the gas disk phase (Wyatt, 2018).

1.1.2 Observational tracers of disk structure

While the gas comprises the bulk of the disk by mass, it is difficult to observe because it is
predominantly molecular hydrogen, which has no permanent dipole moment and thus shows
no bright emission lines (Williams and Cieza, 2011). Emission lines from more complex
molecules such as CO (Dutrey et al., 2014; Öberg et al., 2021, e.g,.) offer some information
on the gas. The rate of gas accretion onto the stellar surface gives the most readily available
insight, with observed accretion rates of 10−9 −10−7 M⊙ yr−1 that decrease over the ≈few
Myr of the gas disk lifetime (Manara et al., 2016).

The dust component of the disk is substantially easier to observe and strongly influences
the gas temperatures throughout the disk; the dust grain size distribution and number density,
both as a function of radius in the disk and scale height, are the primary determinants of
the disk opacity. Observable dust diagnostics span multiple wavelength regimes. While the
infrared (∼ 1 `m) can probe dust thermal emission in the optically thick, hot (few 102 K)
region of the disk within ≈1 au of the star (as well as scattered light out to much larger radii),
the sub-mm – mm (≈ 0.3−3 mm) traces dust thermal emission in the (generally) optically
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thin, cold (∼10 K) outer disk midplane. It is this continuum emission observed with radio
interferometry – namely the accurate modeling of these observations – that will be the focus
of the thesis.

1.2 Basics of radio interferometry

Because this thesis centers on modeling radio interferometric observations of disks, I will
give a technical overview here of the measurement technique in general, then examine in
more depth the step of producing an image of the field of view on the sky.

1.2.1 Measurement with an interferometer

A synthesis array of radio telescopes is effectively composed of several pairs of antennae,
each forming an interferometer. Each interferometer measures the spectral power flux density
[units: 1 Jy = 10−26 W m−2 Hz−1] of a source on the sky. The flux density emitted per unit
solid angle subtended by the astrophysical source [Jy sr−1] is the specific intensity 𝐼a, the
brightness, in two dimensions. This is the real space representation of the source, while the
interferometric measurement is native to the Fourier domain, with complex-valued visibilities
observed at discretized spatial frequencies (Clark, 1999; Thompson, 1999; Thompson et al.,
2017). The visibility function 𝑉a of a source as sampled by an interferometer is the 2D
Fourier transform of the source brightness (Cornwell et al., 1999),

𝑉a (𝑢, 𝑣) =
∫ ∫

𝑆

𝐼a (𝑙,𝑚) exp(−2𝜋𝑖(𝑢𝑙 + 𝑣𝑚)) d𝑙d𝑚. (1.15)

Here 𝑆 indicates the region of the sky over which the integral is taken (which is assumed to
be small, such that |𝑙2 +𝑚2 | ≪ 1); and 𝐼a (𝑙,𝑚) is the 2D sky brightness at real space antenna
coordinates (𝑙,𝑚) and corresponding Fourier domain coordinates (𝑢, 𝑣). (𝑙,𝑚) are measured
in radians, (𝑢, 𝑣) in the observing wavelength _. The (𝑢, 𝑣) plane is normal to the source
direction, with 𝑢 oriented east–west and 𝑣 north–south. The visibilities are measured in
Jy, with their amplitude giving the intensity and their phase the position of emission on a
given angular scale. The source’s intensity distribution in the image plane is reconstructed by
inverse Fourier transforming the visibilities.

The largest synthesis array for protoplanetary disk science is ALMA, the Atacama Large
Millimeter/submillimeter Array. This collection of two-element interferometers is capable
of angular resolution exceeding that of the largest single dishes in radio astronomy by a
significant factor. Observations at 1.3 mm with a 𝐷 = 100 m diameter antenna have an angular
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resolution 𝑅 ≈ 1.2_/𝐷 = 3.2′′, while ALMA’s angular resolution in the array’s most extended
configuration is 0.018′′, a factor of≈150 improvement. In the limit of a well-sampled visibility
plane, the instrument’s angular resolution is set by the longest ‘baseline,’ i.e., antenna pair
separation – the effective dish diameter

√
𝑢2 + 𝑣2, in a given configuration of the synthesis

array. The baseline is often given in units of _, obtained by normalizing the physical distances
between antennas by the observing wavelength. The largest antenna separation currently
obtainable, 16 km, corresponds to a baseline of 12.3 M_ at an observing wavelength of
1.3 mm.

1.2.2 Indirect imaging and image restoration

The challenge in using an interferometric measurement to reconstruct the observed 2D sky
brightness (or even 1D) is that the instrument response function resides in the Fourier domain,
where the observations are an incomplete (sparse) representation of the source, sampled only
at individual spatial frequencies. The reconstruction of a model image from an interferometric
measurement by inverse Fourier transforming the visibilities thus requires some methodology
to infer visibility amplitudes at the unsampled spatial frequencies. A direct inverse Fourier
transform of the weighted visibilities at sampled spatial frequencies (and thus an assumption
of zero power on unsampled scales) yields a ‘dirty image.’ This image is equivalent to the sky
brightness convolved with the instrument’s point spread function (PSF; ‘dirty beam’). The
dirty beam is generated from the inverse Fourier transform of the weighted (𝑢, 𝑣) distribution.
This convolution introduces artifacts into the dirty image due to the PSF’s significant sidelobe
structure. The standard approach in the protoplanetary disk field for reconstructing images
is the inverse modeling CLEAN nonlinear deconvolution algorithm (Clark, 1980; Cornwell,
2008; Högbom, 1974). Super-resolution methods, i.e., those that can yield an image with
resolution exceeding that in a CLEAN image, include forward modeling regularized maximum
likelihood techniques that operate in the image plane, such as the maximum entropy method
(e.g., Narayan and Nityananda, 1986); and forward modeling by fitting a model directly to the
visibilities.

1.2.2.1 The CLEAN algorithm

The CLEAN algorithm is a nonlinear, procedural approach to remove artifacts of the PSF in the
dirty image through ‘deconvolution,’ constructing an empirical model for the sky brightness
using the dirty image. To do this, CLEAN begins with a ‘residual image’ that is equal to the
dirty image, then iteratively: finds the brightest pixel in the residual image; adds a fraction of
this brightness amplitude, a CLEAN ‘component’ – typically a point source (Dirac 𝛿 function)
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or a Gaussian (Abrantes et al., 2009) – to the ‘CLEAN model’ (an image composed only of the
CLEAN components); and subtracts this component convolved with the dirty beam from the
residual image. The iteration proceeds until ideally the residual image contains only noise.
At the end of this iteration, the CLEAN model is convolved with the ‘CLEAN beam’ (typically
an elliptical Gaussian fit to the primary lobe of the dirty beam) in order to suppress the
extrapolation of the model to scales below the beam (Cornwell et al., 1999). The final state
of the residual image is then added to this to form the ‘CLEAN image’ commonly presented as
the astronomical observation.

While the CLEAN algorithm is the standard and highly successful technique used across
much of radio interferometry, the procedure imposes artificial resolution loss in image
reconstruction, primarily due to convolution of the CLEAN model with the CLEAN beam.
This causes all features in the CLEAN image, regardless of their scale, to be smeared in
resolution over the size of the beam (the effect is most severe for sub-beam structures, but still
alters even those resolved by the beam). Deprojecting and azimuthally averaging a CLEAN
2D model image is the most common technique used to obtain a 1D (radial) brightness
profile of a source, which is often useful to characterize substructure in a protoplanetary
disk. However, convolution with the CLEAN beam induces a reduction in amplitude of all
disk substructures, an overestimate of ‘ring’ (annular brightness excess) widths, and an
underestimate of ‘gap’ (annular brightness deficit) widths. CLEAN beam convolution thus
places an intrinsic resolution limit on brightness profile extraction from the disk image. And
as I will show in subsequent chapters, even the CLEAN model itself (the collection of CLEAN
components) is in practice often at sub-optimal resolution.

1.2.2.2 Super-resolution imaging

‘Super-resolution’ imaging techniques can overcome the resolution limits of the CLEAN
algorithm. By ‘super-resolution’ I mean an achieved fit resolution higher than the achieved
CLEAN resolution, which I will subsequently quantify as distinct from the CLEAN beam width.
These methods thus have the capacity to provide new insights into a source’s substructure
from existing datasets, better informing physical inference and follow-up observing strategies.

Super-resolution fitting techniques used in (and in some cases tailored to) the protoplanetary
disk field can be divided into image plane and Fourier domain approaches. Image plane
procedures include the maximum entropy method (Casassus et al., 2006, 2013; Chael et al.,
2016; Gull and Daniell, 1978; Narayan and Nityananda, 1986; Sutton and Wandelt, 2006) and
sparse modeling (Akiyama et al., 2017; Honma et al., 2014; Kuramochi et al., 2018; Nakazato
et al., 2019), with the broad class of regularized maximum likelihood techniques being
actively used in Very Long Baseline Interferometry (Event Horizon Telescope Collaboration
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et al., 2019, and references therein) and for application to protoplanetary disks (Czekala et al.,
2021). Fourier domain approaches include fitting the visibilities parametrically (Perkins
et al., 2015; Tazzari et al., 2018) and nonparametrically (Jennings et al., 2020).

An alternative approach to CLEAN is the forward modeling class of regularized maximum
likelihood methods (RML). RML techniques for image reconstruction in radio interferometry
have been used for decades (e.g., Ables, 1974; Cornwell and Evans, 1985; Gull and Daniell,
1978) and have recently evolved rapidly, driven largely by their application to Event Horizon
Telescope (EHT) observations and intent to apply them to Next Generation Very Large
Array (ngVLA) observations (e.g., Akiyama and Matthews, 2019; Chael et al., 2016;
Honma et al., 2014; Johnson et al., 2017; Lu et al., 2014). The broad approach is to
construct an image (among the infinite set of images consistent with the sparsely sampled
visibilities) that simultaneously maximizes the likelihood (minimizes 𝜒2) and minimizes an
additional constraint, such as the pixel brightness or image entropy (Event Horizon Telescope
Collaboration et al., 2019; Narayan and Nityananda, 1986). Importantly, RML methods have
demonstrated success in attaining sub-beam resolution, including in the EHT observations of
M87 (Event Horizon Telescope Collaboration et al., 2019).

A second alternative to CLEAN is to directly fit a forward model in the visibility domain.
This avoids the resolution loss from beam convolution in CLEAN by inferring the unconvolved
brightness distribution. Current forward models of this type (e.g., the galario code of
Tazzari et al., 2018) require the user to specify a parametric functional form for the brightness
profile (existing applications include the disks AS 209 and CI Tau; Clarke et al., 2018a;
Fedele et al., 2017; Guzmán et al., 2018). This approach advantageously allows predictions
from physical models that consider disk properties such as the optical depth and temperature
to be folded into the visibility fitting through the prescribed function form for the brightness
profile. However when the goal is simply to accurately fit the highest resolution information
in a dataset, a parametric approach can face practical limitations.

These limitations are most evident with high resolution (baselines ≳ 5 M_) data, which
almost all show fine structure in their visibilities at long baselines. The accuracy of the fit
to this structure can strongly influence the recovered profile’s identification and accurate
characterization of sub-beam features. While there is no intrinsic resolution limit to a
parametric fit of the visibilities, choosing a parametric model profile to closely match this
long baseline structure is challenging. The functional form is often motivated by the CLEAN
image, which for partially resolved, shallow or blended image features is not a trivial choice.
Moreover the problem’s dimensionality is typically high, making an exploration of multiple
model profiles expensive. A disk with a single gap and ring has 15 – 20 free parameters, and
more structured disks can require >50. Parameter inference with a Markov Chain Monte
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Carlo (MCMC) sampler in this high dimensional space can take hundreds of CPU hours to
converge. By comparison, a nonparametric approach can offer greater flexibility and speed to
accurately fit long baseline, highly structured visibility distributions.

1.3 Radio interferometry for disk observations

High resolution interferometric observations in the sub-mm – mm and cm regimes are
central to the current generation of disk observations. These observations, with telescopes
such as ALMA and the Karl G. Jansky Very Large Array (VLA), trace the disk’s cold,
midplane dust distribution through reprocessed starlight (continuum emission) as well as
molecular line tracers of the gas disk. Interferometric datasets provide the highest resolution
information available on the structure of protoplanetary disks, and in the sub-mm – mm and
cm are able to identify substructures in this continuum emission, both in the form of annular
and azimuthally asymmetric features. Characterizing these features allows us to examine
the planetary companions and/or disk processes responsible. Identifying and accurately
characterizing disk substructures is therefore critical to probing the physics of circumstellar
accretion disks, planet formation, and early planetary system evolution.

1.3.1 Observed dust disk substructures in the sub-mm

Observations at the highest spatial resolutions with ALMA (beam widths of ≈ 25−75 mas
corresponding to ≈1 – 10 au) increasingly show that annular features are common – perhaps
ubiquitous – at least in bright disks around single stars (e.g., ALMA Partnership et al., 2015;
Andrews et al., 2018; Andrews et al., 2016; Benisty et al., 2021; Casassus et al., 2021; Cieza
et al., 2021; Clarke et al., 2018a,b; Dong et al., 2017, 2018; Hashimoto et al., 2021; Huang
et al., 2020; Keppler et al., 2019; Kudo et al., 2018; Macías et al., 2021; Pérez et al., 2019a;
Pinte et al., 2019; Sheehan and Eisner, 2018; Tsukagoshi et al., 2019). These results suggest
the occurrence rate of symmetric gaps and rings is in the tens of percent. Unbiased disk
surveys at moderate resolution support this trend, with annular substructure present in at least
38% (12 / 32) of disks in the Taurus survey at ≈120 mas (≈15 au; Long et al., 2018) and
hinted at in ≈ 5% (3 / 53) Ophiuchus disks at ≈200 mas (≈28 au; Cieza et al., 2019). Several
individual disks exhibit multiple concentric gaps and rings (e.g., Guzmán et al., 2018; Pérez
et al., 2019b), with a broad distribution of feature widths from ≈1 au in TW Hydra (Andrews
et al., 2016) to several tens of au in high resolution (≈4 au) observations of CI Tau (Clarke
et al., 2018a).
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Intriguingly, even in the high resolution (35 mas corresponding to ≈ 5 au) DSHARP
survey of 20 bright disks, several disk features are only partially resolved (Huang et al., 2018a),
suggesting some may even split into multiple substructures. Disks such as AS 209 (Fedele
et al., 2018; Guzmán et al., 2018) and HD 169142 (Fedele et al., 2017; Pérez et al., 2019b),
which initially showed features at the beam width when observed at moderate resolution, were
re-observed at high resolution in DSHARP, with apparently single features in the moderate
resolution data in some cases resolving into multiple narrower substructures in the high
resolution observations.

Azimuthally asymmetric substructures also occur at a nontrivial rate, seen for example in
the DSHARP survey (Andrews et al., 2018; Huang et al., 2018a). This nonaxisymmetric dust
substructure takes the form of spirals arms (e.g., Huang et al., 2018b; Kurtovic et al., 2018),
azimuthally localized brightness arcs (e.g., Isella et al., 2018; Pérez et al., 2018), warps (e.g.,
Marino et al., 2015) and kinks (e.g., Flaherty et al., 2013).

1.3.2 Inferring the presence of embedded planets from substructures

Numerous physical mechanisms are capable of producing axisymmetric (and in many cases
also asymmetric) substructures in protoplanetary disks, with the list of candidates growing.
Categories include forming and newly formed planets (e.g., Goldreich and Tremaine, 1979;
Kley and Nelson, 2012; Lin and Papaloizou, 1986), with one system to-date, PDS 70,
presenting clear detection of embedded planets (Benisty et al., 2021; Haffert et al., 2019;
Keppler et al., 2018; Müller et al., 2018); opacity effects due to ice sublimation fronts (e.g.,
Hu et al., 2019; Okuzumi et al., 2016; Zhang et al., 2016); gas-dust coupling effects, including
preferential dust growth in localized regions (e.g., Dullemond et al., 2018; Pinilla et al., 2012;
Sierra et al., 2019), gravitational instability (e.g., Dipierro et al., 2015; Dong et al., 2018;
Hall et al., 2018), dynamical effects of a central binary (e.g., Longarini et al., 2021; Price
et al., 2018; Ragusa et al., 2017), and internal photoevaporation (e.g., Alexander et al., 2006;
Clarke et al., 2001; Ercolano et al., 2009); and magnetic field effects including dead-zone
boundaries (e.g., Flock et al., 2015; Pinilla et al., 2016; Varnière and Tagger, 2006), magnetic
flux concentration and zonal flows (e.g., Bai and Stone, 2014; Cui and Bai, 2021; Johansen
et al., 2009), and the vertical shear instability (e.g., Flock et al., 2017; Manger and Klahr,
2018; Pfeil and Klahr, 2020).

Determining which of these mechanisms dominate in observed systems requires both in-
depth studies of individual sources and a large ensemble of disks with accurately characterized
substructure. For example, highly accurate characterization of axisymmetric features can
place constraints on potential mechanisms for gap and ring creation such as the required dust
properties (see applications in, e.g., Clarke et al., 2018a; Dullemond et al., 2018; Fedele
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et al., 2018; Rosotti et al., 2016). Precise measurements of gap and ring morphologies –
including their widths, depths, and the structure within and on the edges of gaps – could be
compared to hydrodynamic simulations of a gap-opening planet (e.g., Meru et al. 2018) to
assess whether these features are due to planetary companions. These results could be further
paired with additional diagnostics to assess the planet hypothesis, such as the detection of a
circumplanetary disk or line emission from gas accretion.

Alternatively, gaps and rings could be produced by disk hydrodynamical processes in
the absence of any companion, such as zonal flows that can concentrate magnetic flux in
radial annuli to create depletions in the gas and thus yield gaps in the dust, as well as adjacent
particle traps that induce rings in the dust (e.g., Simon and Armitage, 2014). In this case
measuring the magnetic field strength in the vicinity of gaps/rings would be a discriminating
diagnostic. In yet another class of candidate mechanisms for annular features, icelines are
condensation fronts at which ice grains sublimate as they drift inward. Modeling of the disk
temperature through radiative transfer simulations can predict the radii at which icelines of
different species should occur and thus where in the disk rings and adjacent gaps should be
present (e.g., van der Marel et al., 2019). Icelines do not require pressure bumps in the gas
to trap dust, and thus measurement of the gas radial density profile in disks with annular
substructure could test this mechanism for gap/ring formation. Discriminating between
so many mechanisms as the origin of substructures will benefit from fully exploiting the
resolution and sensitivity information in interferometric datasets.

If as seems increasingly likely planets are responsible for at least some of the observed
substructures, accurate quantification of these features could be used jointly with hydrodynamic
simulations to infer key planetary properties. These include planet mass derived from either
gap width (Akiyama et al., 2016; Rosotti et al., 2016) or location of a detectable gas pressure
maximum using multiwavelength observations (de Juan Ovelar et al., 2013; Rosotti et al.,
2016), as well as planetary migration rate calculated from spectral indices of the dust emission
on either side of the circumplanetary gap in multiwavelength observations (Nazari et al., 2019).
From a theoretical perspective this would advance our understanding of planetary interaction
with the disk and inform models for planet formation and early dynamical evolution.

While there are promising avenues to characterize planetary properties from disk obser-
vations, inferring information from substructures is sensitive to observational and theoretical
uncertainties. If as seems plausible, disk processes produce at least some of the observed
substructures, misidentification of the origin of these features would contaminate a study
on planet properties inferred from gaps and rings. Under the assumption substructures are
due to planets, recent hydrodynamic simulations suggest a single planet can interact with
the disk to produce a network of multiple gaps and rings (e.g., Bae et al., 2017; Dong et al.,
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2017), complicating efforts to discern multiplicity, as well as individual planet masses and
orbital radii, in a disk observed with multiple substructures. Moreover Miranda and Rafikov
(2019) demonstrate that hydrodynamic models making the simplifying assumption of a
locally isothermal equation of state can overestimate the degree to which the planet induces
substructures in the disk.

On a methodological front, most studies that seek to match specific disk observations
tailor their hydrodynamic simulations to emulate the observed image, including choices for
the planet’s location and mass, but also the gas disk surface density as a function of radius,
the gas disk mass and initial dust-to-gas ratio, the dust size distribution and thus opacities, the
disk temperature profile, and the disk viscosity parameter 𝛼. While this approach explores a
physically reasonable range space in free parameters, choices can be motivated by how well
the simulation reproduces the observations, with one of multiple degenerate solutions chosen
potentially subjectively. A key way to reduce and mitigate uncertainties is a highly accurate
characterization of disk substructures recorded in interferometric datasets.

1.3.3 Connecting disk and exoplanet observations

The mechanisms and conditions in a disk present during planet formation and envelope
accretion set the initial physical properties of these bodies and the young, embedded planetary
system. At some non-trivial level it seems reasonable to expect that disk conditions imprint
on the observed demographics of evolved exoplanetary systems, allowing observed trends in
protoplanetary disks to be extrapolated to the evolved exoplanet population and vice versa.
However several processes subsequent to a planet’s formation do erase information encoded at
that time and location in the disk, precluding a simple mapping of disk substructure locations
and inferred planet masses to the evolved exoplanet population. Bulk composition and
atmospheric abundances can be perturbed by, e.g., planet migration in the disk (Booth and
Ilee, 2019), volatile delivery from planetesimal accretion (Schlichting et al., 2015), impacts
after the gas disk dissipates (Wyatt and Jackson, 2016), and atmospheric mass loss (Ginzburg
et al., 2018; Owen and Wu, 2017). Similarly a planetary system’s orbital architecture and
multiplicity can evolve after formation. In the disk, mechanisms such as eccentricity pumping
(Ragusa et al., 2018; Terquem and Ajmia, 2010) can drive orbital reshuffling. In the post-disk
phases, dynamic interactions over Gyr can reshape a system by, e.g., planet-planet scattering
(Chatterjee et al., 2008) and tidal circularization of ultra-short period companions (Ogilvie
and Lin, 2004).

In addition to the open question of how much of the disk’s conditions remain imprinted
on an evolved planetary system, challenges in linking disk and exoplanet observations are
also statistical. The number of disks with observed substructures (<80, of which ≈20 have
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structures resolved at ≲5 au) is and will continue for at least a decade to be more than an
order of magnitude less than the number of confirmed exoplanetary systems, currently ≈4000
in ≈700 systems. The next generation Very Large Array (ngVLA, Selina et al., 2018) that
could attain the spatial resolution to detect gaps induced by sub-giants in the inner dust
disk (Ricci et al., 2018) – the most abundant exoplanet mass and period regime – has first
science operations projected for 2028. Current and nearer term instruments in the near-IR
(SPHERE on the VLT and GPI on the Gemini Telescope, Macintosh et al., 2014; Vigan
et al., 2016) and mid-IR (the proposed METIS spectrograph on the E-ELT, Brandl et al.,
2008) will significantly increase planet detections in disks, though not with the rapidity of
exoplanet yields, predicted to grow by as much as a factor of 5 only in the next few years
with NASA’s TESS (Transiting Exoplanet Survey Satellite) mission (Barclay et al., 2018;
Ricker et al., 2015). As the first era of planet detections in disks evolves over the next decade,
comparisons can begin to be made with observed and extrapolated occurrence distributions
in the exoplanet population (for a recent review see Winn and Fabrycky, 2015; for updates
see Fernandes et al., 2019; Petigura et al., 2017).

With the current generation of radio interferometers, detection of the optically thin gaps
opened by giant planets and even of circumplanetary disks is achievable. This in principle
allows an occurrence rate calculation that is fairly complete at ≈ 5 au resolution for disk
substructures that may be due to gas giants, given a sufficiently large sample size (obtainable
in the next several ALMA cycles). To this end recent studies are beginning to establish
tenuous links between theoretical and observed processes in disks and the evolved exoplanet
population. Lodato et al. (2019) propose that if giant planets at > 10 au separations are invoked
to form observed gaps in disks, their subsequent inward migration in the disk could lead to
rough agreement with extrapolated observations for occurrence rates of giants at 1−10 au
separations in evolved exoplanetary systems. However there are important limitations that
at present preclude drawing robust, quantitative connections between disk and exoplanet
observations, a consequence of the compounded effect of many theoretical uncertainties, as
well as a currently small number of disks (≈20) with substructures observed at high resolution
(≲5 au).

Current progress in disk studies thus precludes robust extrapolation of observed disk
features to confidently motivate exoplanet trends. There is not yet enough known from disk
observations to select between multiple, viable hypotheses for disk substructure origins.
And statistical trends across disks are not yet sufficient to complement the rapidly growing
amount of information on evolved exoplanetary systems and discern the extent to which these
influence subsequent planetary system evolution (relative to the extent this information is
retained or erased by later processes). Motivated by the potential for inferences that could be
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drawn from a larger sample of accurately characterized disk substructures, this thesis will
focus on building and applying a tool to more highly resolve – and detect new – substructure
in protoplanetary disks. Application of such a tool is a next step toward a statistical ensemble
of well-characterized disk substructures. These can ultimately be paired with hydrodynamic
simulations to robustly extrapolate the trends we observe in disks to exoplanetary systems.





Chapter 2

Frankenstein: Protoplanetary disk
brightness profile reconstruction at
sub-beam resolution with a rapid
Gaussian process

Super-resolution imaging techniques have the capacity to improve the fidelity of radio inter-
ferometric images relative to the community standard imaging framework, CLEAN. This can
provide new insights into protoplanetary disk science through a more accurate characterization
of disk substructure. To these ends, this chapter presents a novel, super-resolution imaging
technique for radio interferometry, tailored to protoplanetary disk observations. Frankenstein
(frank) is a 1D, open source imaging code that recovers axisymmetric disk structures at
sub-beam resolution. frank is the core modeling framework used throughout the thesis
to analyze sub-mm observations of disks, and the model as presented in this chapter is a
successor to the parametric fitting approach galario (Tazzari et al., 2018).

Richard Booth, Marco Tazzari and I developed frank. Richard developed and coded the
fundamental model framework, which is set out in detail in Sec. 2.2 and further described in
Sec. 2.5, 2.6, and 2.7. I then conducted the suite of tests and analysis presented in Sec. 2.3
and Sec. 2.7. Marco provided a synthetic image pipeline that I used to produce the mock
observations shown in Sec. 2.3. I aided Richard in developing some of the ancillary code
components used in the analysis. The chapter, with some modifications to the introduction,
was published as Jennings et al. (2020). Richard, Marco and I co-wrote the paper, with
Richard’s primary contributions in what is Sec. 2.2 below, Marco’s in Sec. 2.4, and mine in
Sec. 2.3. There were additional refinements resulting from feedback provided by the other
coauthors.
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frank reconstructs a disk’s 1D radial brightness profile by fitting the observed visibilities
directly and nonparametrically, using a fast (≲1 min) Gaussian process. The code avoids
limitations of current methods that obtain the radial brightness profile by either extracting
it from the disk image via nonlinear deconvolution at the cost of reduced fit resolution,
or by assumptions placed on the functional forms of disk structures to fit the visibilities
parametrically. Here we use mock ALMA observations to quantify the method’s intrinsic
capability and its performance as a function of baseline-dependent signal-to-noise. Comparing
the technique to profile extraction from a CLEAN image, we motivate how our fits accurately
recover disk structures at a sub-beam resolution. Demonstrating the model’s utility in fitting
real high and moderate resolution observations, we conclude by proposing applications to
address open questions on protoplanetary disk structure and processes.

2.1 Background

As discussed in Sec. 1.3.1, many protoplanetary disks that appear smooth in fact harbor
unresolved gaps and rings. This is true for compact disks that are covered by a small number
of resolution elements in current datasets, as well as for high resolution observations of large
disks – the DSHARP survey at 35 mas (≈5 au; Andrews et al., 2018; Huang et al., 2018a)
shows evidence of disks with only partially resolved substructure. These findings motivate
the utility of a high resolution technique that can recover annular features on sub-beam
scales and thus inform both theory and follow-up observations. Even in the presence of
non-axisymmetric disk structure such as spirals, accurate recovery of the background radial
profile is often an important first step, allowing isolation of the asymmetric features (Meru
et al., 2017; Pérez et al., 2016). More accurate characterization of azimuthally averaged radial
brightness profiles can thus aid in distinguishing the origins of both symmetric and asymmetric
morphologies. While this could alternatively be achieved through higher resolution and/or
deeper observations, extracting this information from existing datasets is more practically
achievable.

To overcome the intrinsic resolution limit of CLEAN and the practical limitations of forward
modeling in the visibility domain, we have developed a technique that fits the visibilities
directly (avoiding beam convolution) and nonparametrically (affording the flexibility to fit
complicated structure in the visibility distribution) to yield a reconstructed brightness profile.
This empirical Bayes method, falling between a forward model with a fully explored posterior
and a RML approach, imposes no assumptions on the functional form of the disk or its
substructures, is autonomous (requiring no iterative, manual tuning of fit parameters), fast,
and consistently achieves sub-beam fit resolution. This chapter will present a robust and
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accurate method to reconstruct an azimuthally averaged radial brightness profile by directly
fitting the interferometric dataset. We will use several mock and real datasets to compare
brightness profile extraction from a CLEAN image to our model, as well as the DSHARP
observations of AS 209 (Andrews et al., 2018) to compare a parametric visibility fit to our
nonparametric approach.

This chapter presents frank, an open source code to reconstruct the 1D radial brightness
profile of an axisymmetric protoplanetary disk.1 Sec. 2.2 details the code’s methodology and
assesses its prior sensitivities. Sec. 2.3 characterizes the model’s performance, both intrinsic
and as a function of data quality, using mock and real datasets. This includes application to
low, moderate and high resolution datasets, and a detailed comparison to brightness profile
extraction from a CLEAN image. Sec. 2.4 concludes by summarizing frank’s properties and
outlining use cases for interferometric observations of protoplanetary disks.

2.2 Model

Our goal is to infer the true brightness 𝐼a (𝑟) of a source under the assumption of azimuthal
symmetry. To do this we will reconstruct 𝐼a (𝑟) at a set of radial locations 𝑟𝑘 by directly fitting
the observed visibilities in the Fourier domain. This is possible by exploiting the properties
of the discrete Hankel transform (DHT) detailed in Sec. 2.2.1 and 2.2.2. Via the DHT, we
can model the brightness profile as a sum of Bessel functions by nonparametrically fitting the
visibilities to determine the coefficients in a Fourier-Bessel series expression for 𝐼a (𝑟).

We will show, however, that the direct fit is prone to find solutions with strong oscillations
on small spatial scales. This is because the observed visibilities only sample the (𝑢, 𝑣) plane
out to a finite baseline. To solve this we introduce a Gaussian process in Sec. 2.2.3 to smooth
the reconstructed profile. The Gaussian process acts to regularize the Bessel series expression
for the brightness profile, assigning a length scale over which there is positive correlation
in brightness. We will assume that the covariance matrix of the Gaussian process can be
nonparametrically estimated from the data (visibilities) under the assumption that this matrix
is diagonal in Fourier space. The free parameters (diagonal elements) of the matrix can be
identified as the power spectrum of the reconstructed brightness profile. In visibility space,
the power spectrum at the observed baselines is to zeroth order the square of the observed
visibility amplitudes. A similar approach, but based on log-normal priors, has previously
been applied successfully to the more general problem of inferring 2D brightness distributions

1The code is available at https://github.com/discsim/frank (and the docs at https://disksim.github.io/frank)
under the open source GNU Lesser General Public License v3.

https://github.com/discsim/frank
https://disksim.github.io/frank
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from radio observations (Arras et al., 2019, 2018; Greiner et al., 2016; Junklewitz et al., 2015,
2016; Sutter et al., 2013).

The necessary first step in fitting the visibilities is deprojection, correcting for the disk’s
on-sky inclination, position angle (rotation) and phase offset (departure from centering on
the origin in the (𝑢, 𝑣) plane). For mock observations in this chapter we will always consider
face-on, phase-centered disks. For real observations we will use published geometry values
(which we confirm by fitting a 2D Gaussian to the visibilities) to deproject the data prior to
applying our model. Importantly, if a disk has an appreciable vertical thickness or if limb
darkening from the optically thick surface is important, many of the assumptions underlying
a deprojection approach such as fitting a 2D Gaussian to the visibilities would be invalidated.

Then for an azimuthally symmetric function (in our case a deprojected, assumed az-
imuthally symmetric disk) this 2D Fourier transform between the disk brightness and
visibilities reduces to 1D as a Hankel transform with Bessel function kernels (Bracewell,
2000; Thompson et al., 2017),

𝐼a (𝑟) =
∫

𝑉a (𝑞)𝐽0(2𝜋𝑞𝑟)2𝜋𝑞 d𝑞, (2.1)

𝑉a (𝑞) =
∫

𝐼a (𝑟)𝐽0(2𝜋𝑞𝑟)2𝜋𝑟 d𝑟. (2.2)

Here 𝑟 is the radial coordinate in the disk, 𝑞 =
√
𝑢2 + 𝑣2 the baseline distance in the (𝑢, 𝑣)

plane, and 𝐽0 the order 0 Bessel function of the first kind.

2.2.1 Representing the brightness profile as a Fourier-Bessel series

To evaluate Equations 2.1 – 2.2, we make use of their relation to Fourier-Bessel series via the
DHT. For more information about the DHT see Baddour and Chouinard (2015)2; here we
reproduce only the details necessary for our application in Sec. 2.2.2.

Imposing the assumption that the real space brightness profile 𝐼a (𝑟) = 0 beyond some
radial distance 𝑅out, or that the visibilities 𝑉a (𝑞) = 0 beyond some spatial frequency 𝑄max,

2N.B. The definition of the Hankel transform used here differs from that in Baddour and Chouinard (2015)
by factors of 2𝜋.
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enables the expansion of 𝐼a (𝑟) or 𝑉a (𝑞) in a Fourier-Bessel series. Respectively

𝐼a (𝑟) =
∞∑︁
𝑘=1

𝛼𝑘𝐽0

(
𝑗0𝑘𝑟

𝑅out

)
, (2.3)

𝑉a (𝑞) =
∞∑︁
𝑘=1

𝛽𝑘𝐽0

(
𝑗0𝑘𝑞

𝑄max

)
, (2.4)

where 𝑗0𝑘 is a scalar representing the 𝑘th root of 𝐽0(𝑟), i.e., 𝐽0( 𝑗0𝑘 ) = 0.
The coefficients 𝛼𝑘 in Equation 2.3 can be computed via the orthogonality relationship of

Bessel functions with subscripts 𝑘 and 𝑗 ,∫ 𝑅out

0
𝐽0

(
𝑗0𝑘𝑟

𝑅out

)
𝐽0

(
𝑗0 𝑗𝑟

𝑅out

)
2𝜋𝑟d𝑟 = 𝜋𝑅2

out𝐽
2
1 ( 𝑗0 𝑗 )𝛿 𝑗 𝑘 , (2.5)

where 𝛿𝑖 𝑗 is the Kronecker 𝛿 and 𝐽1 the first order Bessel function. Substituting Equation 2.3
into Equation 2.5, ∫ 𝑅out

0
𝐼a (𝑟)𝐽0

(
𝑗0𝑘𝑟

𝑅out

)
2𝜋𝑟d𝑟

=

∞∑︁
𝑗=1

𝛼 𝑗

∫ 𝑅out

0
𝐽0

(
𝑗0𝑘𝑟

𝑅out

)
𝐽0

(
𝑗0 𝑗𝑟

𝑅out

)
2𝜋𝑟d𝑟

= 𝛼𝑘𝜋𝑅
2
out𝐽

2
1 ( 𝑗0𝑘 ). (2.6)

Noting that the left-hand side of this is just the Hankel transform of 𝐼a, the brightness profile
can be written entirely in terms of its visibilities at a specific set of spatial frequencies
𝑞𝑘 = 𝑗0𝑘/(2𝜋𝑅max) and the Fourier-Bessel series coefficients 𝛼𝑘 . Analogously the visibility
at any 𝑞 can be computed in terms of the brightness at the set of radial locations (collocation
points) 𝑟𝑘 = 𝑗0𝑘/(2𝜋𝑄max) and the Fourier-Bessel series coefficients 𝛽𝑘 ,

𝛼𝑘 =
1

𝜋𝑅2
out𝐽

2
1 ( 𝑗0𝑘 )

𝑉a

(
𝑗0𝑘

2𝜋𝑅out

)
, (2.7)

𝛽𝑘 =
1

𝜋𝑄2
max𝐽

2
1 ( 𝑗0𝑘 )

𝐼a

(
𝑗0𝑘

2𝜋𝑄max

)
. (2.8)

In practice we must truncate the infinite sums in Equation 2.3 and Equation 2.4 to a finite
value 𝑁 . From Equation 2.3, the brightness profile then becomes entirely determined by
spatial frequencies below some 2𝜋𝑞 = 𝑗0𝑁+/𝑅out, where 𝑗0𝑁+ is 𝑗0𝑘 for 𝑘 = 𝑁 +1. Similarly
the visibilities are entirely determined by radii smaller than 2𝜋𝑟 = 𝑗0𝑁+/𝑄max. Choosing
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Fig. 2.1. Fourier-Bessel series representation of a brightness profile
a) An input mock brightness profile for a Gaussian disk, with samplings at an increasing
number of radial collocation points and 𝑅out = 1.2′′.
b) The discrete Hankel transform (DHT) of a Fourier-Bessel series representation of the input
profile at these sets of collocation points, showing that an approximation with a small number
of points can closely match the analytic Hankel transform (HT) of the input profile. The
second x-axis shows the spatial scale corresponding to a given baseline, 𝑟scale = 1/𝑞.

2𝜋𝑄max = 𝑗0𝑁+/𝑅out then produces the DHT (Baddour and Chouinard, 2015). The rules for
the backward (visibility space → real space) and forward (real space → visibility space)
transforms of the DHT are

𝐼𝑘 =
𝑗0𝑁+

2𝜋𝑅2
out

𝑁∑︁
𝑗=1

𝑌𝑘 𝑗𝑉 𝑗 , (2.9)

𝑉𝑘 =
2𝜋𝑅2

out
𝑗0𝑁+

𝑁∑︁
𝑗=1

𝑌𝑘 𝑗 𝐼 𝑗 , (2.10)

where

𝑌𝑘 𝑗 =
2

𝑗0𝑁+𝐽
2
1 ( 𝑗0 𝑗 )

𝐽0

(
𝑗0𝑘 𝑗0 𝑗

𝑗0𝑁+

)
. (2.11)

The intensities 𝐼𝑘 = 𝐼a (𝑟𝑘 ) and visibilities 𝑉𝑘 =𝑉a (𝑞𝑘 ) are evaluated at the collocation points
of the Fourier-Bessel series in real and visibility space respectively,

𝑟𝑘 = 𝑅out 𝑗0𝑘/ 𝑗0𝑁+ , (2.12)

𝑞𝑘 = 𝑗0𝑘/(2𝜋𝑅out). (2.13)

We illustrate the correspondence between the brightness profile and visibilities using the
example of a Gaussian brightness profile in Fig. 2.1. A small number of collocation points
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(≲ 10, corresponding to the same number of terms in the Bessel series) yields, via the DHT,
a visibility profile 𝑉a (𝑞) that is in good agreement with the analytic Hankel transform of the
input profile up to frequencies 𝑞 ∼𝑄max. In practice to account for more complicated profiles
we use 100−300 collocation points.

It is convenient to absorb the normalization coefficients from Equations 2.9 – 2.10 into
backward and forward transform matrices respectively3,

Yb =
𝑗0𝑁+

2𝜋𝑅2
out

Y, (2.14)

Yf =
2𝜋𝑅2

out
𝑗0𝑁+

Y, (2.15)

which obey
YbYf = YY ≈ I, (2.16)

where I is the identity matrix. The last approximation is exact only for 𝑁 →∞, though the
error is small at modest 𝑁; for 𝑁 > 30 the largest error is <10−7. In the code the impact is
even less significant because only the forward transform matrices are used explicitly.

These matrices can be used to specify the transformation rules for vectors,

f = Ybf̃ , (2.17)

f̃ = Yff , (2.18)

where we explicitly use a tilde (e.g., f̃ ) to distinguish Fourier domain quantities from a real
space vector (e.g., f ). For the visibilities V we will drop the tilde.

It will also be useful to define the transformation rules for a covariance matrix S and its
inverse. These can be derived from the equivalence of scalars in real and visibility space,
f𝑇S−1f = f̃𝑇 S̃−1f̃ , where S̃ is the visibility space representation of the covariance matrix.
From this relation we have

S̃−1 = Y𝑇
b S−1Yb, (2.19)

S̃ = Y𝑇
f SYf . (2.20)

2.2.2 Fitting the visibilities using the discrete Hankel transform

Using the Fourier-Bessel series and DHT from Sec. 2.2.1, we now develop a method to
reconstruct a disk’s brightness profile given a set of 𝑁vis visibilities. To keep the notation

3Notation: We use boldface for matrix quantities, e.g., Y = 𝑌𝑘 𝑗 .
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Fig. 2.2. Fit regularization
a) For a multi-Gaussian mock disk observed with the ALMA C43-6 configuration (beam
FWHM 0.13× 0.17′′, Briggs=0.5; see Table 2.2), a fit with regularization and using 200
collocation points. Fits derived from Equation 2.23 without regularization are shown for
comparison, demonstrating instability at only 30 collocation points.
b) Visibilities for the mock observation in (a) and fits corresponding to the brightness profiles
in (a). The unregularized fits place erroneously high (noise) power beyond the data’s longest
baseline, while the regularized fit yields a more reasonable prediction for power on these
unobserved scales.
c) 30×30 correlation matrix for the 30-point unregularized fit in (a), showing that the high
amplitude oscillations in (b) are a result of almost perfectly strong anticorrelation between
adjacent points.
d) 200×200 posterior correlation matrix for the regularized fit in (a), with the regularization
providing stability by damping correlations. This in turn prevents regions of erroneously
high power in (b) and thus spurious oscillations in (a).
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succinct we will denote the visibilities by the vector V , with associated baselines q and
corresponding weights w. For a radio interferometer it is reasonable to assume that the
noise on each visibility is drawn from an independent Gaussian distribution with variance
𝜎2
𝑗
= 1/𝑤 𝑗 , such that the covariance matrix of the noise is N = diag (1/w). That is, N has

1/𝑤 𝑗 along the diagonal and is 0 otherwise.
Fixing 𝑅out (to a distance beyond the edge of the disk) and choosing the number of

brightness points 𝑁 fixes the radial collocation points 𝑟𝑘 . We can then use the Fourier-Bessel
series representation (Equation 2.4) to link the observed visibilities V to 𝐼a (𝑟𝑘 ), which we
seek to infer. The likelihood for V is a Gaussian,

LG = 𝑃(V |Ia) = G (V −H(q)Ia,N) , (2.21)

where generically G(M,𝚺) refers to a multidimensional Gaussian with mean M and covariance
𝚺. The vector Ia is the brightness at the radial collocation points (i.e., it has the components
𝐼a (𝑟𝑘 )), and we have introduced the 𝑁vis ×𝑁 matrix H(q), defined by the components

𝐻𝑘 (𝑞 𝑗 ) =
4𝜋𝑅2

out

𝑗2
0𝑁+

𝐽2
1 ( 𝑗0𝑘 )

𝐽0

(
2𝜋𝑞 𝑗𝑅out

𝑗0𝑘

𝑗0𝑁+

)
, (2.22)

which comes from the Fourier-Bessel series expansion.
One way to derive 𝐼a (𝑟𝑘 ) would be to maximize LG. The solution would be

Ia = M−1j , (2.23)

where

M = H(q)𝑇N−1H(q), (2.24)

j = H(q)𝑇N−1V . (2.25)

The model’s dependence on the visibility data enters entirely through M and j. Note that
the construction of M scales as O(𝑁2𝑁vis), and the construction of j scales as O(𝑁𝑁vis),
while the solution of these equations and subsequent expressions in Sec. 2.2.3 scale as
O(𝑁3), where we recall 𝑁 is the number of collocation points. Because M and j are
constructed using all unbinned visibilities, the code does not regrid the visibilities onto the
spatial frequency collocation points; we are evaluating the full set of observed visibilities. A
value of 𝑁 ≈ 100−300 ≪ 𝑁vis is sufficient to fit data at the highest resolutions of current
interferometers.
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The problem with maximizing LG directly is that for sufficiently large 𝑁 , M will become
singular. This occurs because the relationship between nearby points in the brightness profile
is determined by high frequency components. For sufficiently large 𝑁 these components are
either not present in, or are poorly constrained by, the visibilities. Yet the requirement that
𝑁 is small enough that we are able to invert M will be too restrictive, limiting our ability
to accurately fit high signal-to-noise (SNR), short baseline data. We would need to fit a
large number of data points under the constraint that the profile is smooth on sufficiently
small scales. Fitting a brightness profile with a reasonable number of radial points therefore
requires regularizing the solution on small spatial scales.

Fig. 2.2 shows how attempting to fit a brightness profile without regularization yields
numerical instability in M at a modest number of collocation points, 𝑁 = 30. While at 𝑁 = 25
the fit is stable, the resulting brightness profile is undersampled, with variations between
adjacent radial collocation points. Adding more points to the unregularized fit causes these
oscillations to increase in amplitude and frequency, with the visibility domain fit in Fig. 2.2(b)
having erroneously high amplitude near and beyond the data’s longest baselines. In Sec. 2.2.3
we will describe how the fit can be regularized using a nonparametric Gaussian process model.
The regularized fit with frank shown in Fig. 2.2(a) is smooth and insensitive to the number
of collocation points (we show the case for 𝑁 = 200), yielding an accurate recovery of the
input profile. The visibility domain fit in Fig. 2.2(b) correspondingly decreases in amplitude
at the longest baselines and beyond (note the data are noise-dominated beyond ≈1.2 M_).

This difference in behavior between the unregularized and frank fits is a consequence of
the correlations between radial collocation points in each model. In the unregularized fit,
adjacent points are almost perfectly anticorrelated for 𝑁 = 30 in Fig. 2.2(c), inducing strong
brightness profile oscillations. By contrast the regularized frank fit introduces a positive
correlation between adjacent points in Fig. 2.2(d), damping oscillations in the recovered
brightness profile.

2.2.3 Regularizing the fit using a nonparametric Gaussian process

Regularization corresponds to an a priori assumption that the brightness should be highly
correlated at adjacent points and more weakly correlated at distant points. This assumption is
well suited to the framework of a Gaussian process, in which the prior on Ia is a Gaussian,

𝑃(Ia |p) = G (Ia,S(p)) , (2.26)

where S(p) is the prior covariance in the real space brightness profile at the radial collocation
points. We explicitly specify that the covariance structure S(p) has some dependence on a
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set of parameters p, which we will relate to an estimate of the power spectrum based on the
DHT of Ia, Ĩ2

a = (YfIa)2. Given p, the posterior probability for Ia can be used to reconstruct
the brightness,

𝑃(Ia |V ,p) = 𝑃(V |Ia,p)𝑃(Ia |p)
𝑃(V |p) (2.27)

=
G (V −H(q)Ia,N) G (Ia,S(p))

𝑃(V |p) . (2.28)

The numerator here is the product of two Gaussians, which is also a Gaussian, and has
covariance D and mean 𝝁,

D =

(
M+S(p)−1

)−1
,

𝝁 = Dj . (2.29)

Explicitly,
𝑃(Ia |V ,p) ∝ G(Ia − 𝝁,D), (2.30)

which we will use to infer Ia given p. The remaining challenge is how to specify S(p).
Typically in a Gaussian process the covariance structure is parameterized in terms of a
simple function, such as a Gaussian with some length scale (Rasmussen and Williams, 2006).
This length scale could then be optimized or better yet marginalized over. We follow an
alternative approach, the empirical Bayes method, in which we use a nonparametric form
for the covariance matrix that can be estimated from the visibilities simultaneously with the
brightness profile. This approach follows the work of Oppermann et al. (2013); see also
Enßlin and Frommert (2011).

We make the ansatz that the prior covariance matrix is diagonal in visibility space, i.e.,

S̃(p) = Y𝑇
f S(p)Yf = diag (p), (2.31)

thus
S(p) = Y𝑇

b diag (p)Yb, (2.32)

where we have now defined the parameters p as the diagonal elements of the visibility space
representation of the covariance matrix (with the off-diagonal elements set to zero). In the
code, we construct S(p)−1 directly from 1/p and Yf .

To understand the effect of this prior, we consider Ĩa – the Fourier space representation of
Ia – which is equivalent to the predicted visibility at the spatial frequency collocation points
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𝑞𝑘 . In visibility space the prior takes the form

log𝑃(Ia |S(p)) ≡ log𝑃(Ĩa |S̃(p))

= −1
2
I𝑇a S(p)−1Ia −

1
2

log |2𝜋S(p) |

= −1
2

∑︁
𝑘

(
𝐼2
˚,k

𝑝𝑘
+ log 𝑝𝑘

)
+ const, (2.33)

where 𝐼˚,k and 𝑝𝑘 refer to the 𝑘th element of Ĩa and p. The last line follows from the
definition of Ĩ˚ and the relation between the determinant of a matrix product and the product
of determinants,

|2𝜋S(p) | = |Y𝑇
b | · |2𝜋diag (p) | · |Yb | = |Yb |2

∏
𝑘

2𝜋𝑝𝑘 . (2.34)

From Equation 2.33 we see that if 𝐼2
˚,k (the power in the brightness profile on a scale 𝑘) is

large relative to 𝑝𝑘 , the prior probability will be small. Thus the prior acts to suppress power
on scales where 𝑝𝑘 is small. We examine the prior’s effect on the reconstructed brightness
profile in greater depth in Sec. 2.2.5.

2.2.4 Jointly inferring the brightness profile and power spectrum pa-
rameters

Because we do not know a priori the optimal choice for p, reconstructing the brightness profile
is now a problem of jointly inferring Ia and p. The joint posterior probability 𝑃(Ia,p|V , 𝜷) is
constructed using the posterior for Ia given p, 𝑃(Ia |V ,p), and a prior probability distribution
for p, 𝑃(p, 𝜷), via

𝑃(Ia,p|V , 𝜷) = 𝑃(Ia |V ,p)𝑃(p|𝜷). (2.35)

Here we have noted explicitly the dependence of 𝑃(p|𝜷) on a set of hyperparameters
𝜷 = {𝛼, 𝑝0,𝑤smooth}, which also introduces the dependence on 𝜷 into the posterior probability
𝑃(Ia,p|V , 𝜷). The set of parameters 𝜷 will be held fixed in any given inference of Ia and
p. We will refer to 𝑃(p|𝜷) as the hyperprior to distinguish it from 𝑃(Ia |p). We define the
components of 𝜷 below.

To estimate the parameters of the covariance matrix p using the data, our general approach
will be to produce small values for p on scales that are unconstrained by the data, in order to
suppress them, but otherwise allow p to be sufficiently large that the reconstructed brightness
profile is controlled by the data. To achieve this we specify 𝑃(p|𝜷) as the product of a
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spectral smoothness term and inverse Gamma functions,

𝑃(p|𝜷) = 𝑃smooth(p|𝑤smooth)
𝑁∏
𝑘=1

1
𝑝0Γ(𝛼−1)

(
𝑝𝑘

𝑝0

)−𝛼
exp

(
− 𝑝0

𝑝𝑘

)
. (2.36)

The exponential part of the inverse Γ function disfavors values of 𝑝𝑘 < 𝑝0, while the power
law disfavors 𝑝𝑘 ≫ 𝑝0 for 𝛼 > 1. Neglecting the spectral smoothness hyperprior, the limit
𝛼→ 1 and 𝑝0 → 0 yields a Jeffreys prior (flat in log space). We typically choose a small but
nonzero value of 𝑝0 (e.g., 10−15 Jy2) for practicality; low 𝑝0 allows frank to find a solution
with very low power on scales unconstrained by the data, strongly regularizing those scales.
Though we do not want 𝑝0 to be arbitrarily small, as this leads to numerical instability when
evaluating Equation 2.29.

The spectral smoothness hyperprior follows Oppermann et al. (2013) and is included for
two reasons. It first prevents regions of artificially low power arising from narrow gaps in
the visibilities and at unconstrained scales beyond the data’s longest baseline, ensuring the
brightness profile does not exhibit artificially high correlation at the corresponding spatial
scales. Secondly it introduces a coupling between adjacent points in the power spectrum.
This has the effect of ‘averaging’ the squared visibility amplitude over a range of scales,
suppressing the impact of noise on the power spectrum. Overall we have not found the
brightness reconstruction to be highly sensitive to the inclusion of the smoothing hyperprior,
which takes the form

𝑃smooth(p|𝑤smooth ≡ 1/𝜎2
s ) ∝

exp

(
− 1

2𝜎2
s

∫
dlog(𝑞)

(
𝜕2 log(𝑝)
𝜕 log(𝑞)2

)2)
. (2.37)

This hyperprior penalizes power spectra with large second derivatives in log space, i.e., those
that deviate from a power law (a straight line in log space). 𝜎s, which is parameterized in
terms of 𝑤smooth, controls the allowed amount of variation (departure from a power law) in
the power spectrum at a given 𝑞. We implement this hyperprior using a numerical estimate
of 𝜕2 log(𝑝)/𝜕 log(𝑞)2, which can be written in the form

𝑃smooth(p|𝑤smooth) ∝ exp
(
−1

2
log(p)𝑇 T

𝜎2
s

log (p)
)
, (2.38)

where T is a constant, pentadiagonal matrix that depends only on the spatial frequency
collocation points 𝑞𝑘 . For the exact form of T, see Sec. 2.5.
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With 𝑃smooth(p|𝑤smooth) specified, we now have a form for 𝑃(p|𝜷). Ideally we would
proceed to obtain the posterior for Ia by marginalizing over p, but the high dimensionality
of the parameter space makes this impractical. We instead maximize 𝑃(p|V , 𝜷) to obtain
and use the maximum a posteriori value pMAP as the prior on Ia. The marginal posterior
𝑃(p|V , 𝜷) is obtained from 𝑃(Ia,p|V , 𝜷) by integrating over all Ia, i.e.,

∫
𝑃(Ia,p|V , 𝜷) dIa.

Since 𝑃(Ia |V ,p) is a multivariate Gaussian, this can be done analytically (e.g., Appendix A
of Rasmussen and Williams, 2006) as in Oppermann et al. (2013),

log𝑃(p|V , 𝜷) =1
2
j𝑇Dj + 1

2
log |D| − 1

2
log |S(p) |

−
∑︁
𝑘

[
(𝛼−1) log 𝑝𝑘 +

𝑝0

𝑝𝑘

]
− 1

2
log(p)𝑇 T

𝜎2
s

log(p)

+ const. (2.39)

(see also Enßlin and Frommert, 2011). Finding the maximum entails finding the location
where the derivative of Equation 2.39 with respect to log 𝑝𝑘 ,

dlog𝑃(p|V , 𝜷)
dlog 𝑝𝑘

=
1

2𝑝𝑘

[(
Yf (𝝁𝝁𝑇 +D)Y𝑇

f

)
𝑘𝑘

]
− 1

2

−
[
(𝛼−1) − 𝑝0

𝑝𝑘

]
−

(
T
𝜎2

s
logp

)
𝑘

, (2.40)

is zero. We find the maximum using the fixed point iteration

(I+ T
𝜎2

s
) logpnew = logp

+ 1
𝑝𝑖

[
𝑝0 +

1
2

diag
(
Yf (𝝁𝝁𝑇 +D)Y𝑇

f

)]
−

[
(𝛼−1) + 1

2

]
(2.41)

(recall that I is the identity matrix). Here the application of the diag (M) operator to a matrix
should be understood as selecting the vector formed from the diagonal elements of that matrix.
At each iteration 𝝁 and D are computed using p from the previous iteration, and the linear
system is solved using a sparse linear solver. Each iteration requires O(𝑁3) operations. The
iterations are terminated when the relative change in p is < 10−3. We have confirmed with
tests that the final solution is not sensitive to the initial choice of p; we use as an initialization
a power law with slope of −2 to coarsely match the typical decline in visibility amplitude as a
function of baseline in high resolution ALMA observations.

For the final reconstructed brightness profile, we use our best-fitting (maximum a
posteriori) values for the power spectrum coefficients pMAP in Equation 2.29. This provides
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Fig. 2.3. Model framework
Diagram of the probabilistic model framework in frank. Squares represent variables, purple
indicates the quantity is either a hyperprior or a prior (note pMAP is an inferred variable that
is used as a prior). The set of hyperparameters 𝜷 determine the hyperpriors placed on the
power spectrum reconstruction from V , yielding pMAP. This is then used as a prior for the
reconstruction of 𝐼a from V .

our estimate for the profile’s mean 𝝁 and covariance D. In general diag (D) will underestimate
the uncertainty on the brightness at each collocation point, as discussed in Sec 2.2.7. We
summarize the overall model framework diagrammatically in Fig. 2.3.

2.2.5 pMAP and its use as a prior on Ia

The maximum a posteriori power spectrum pMAP tends to one of two limiting forms,
depending primarily on the visibility SNR at each spatial frequency. To understand this we
consider the converged maximum a posteriori values (i.e., log 𝑝new = log 𝑝), neglecting the
spectral smoothness hyperprior for now (𝑤smooth → 0).
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Fig. 2.4. Effect of the hyperparameter 𝑤smooth
a) Maximum a posteriori power spectra pMAP for a multi-Gaussian mock disk observed
separately with the ALMA C43-3 (synthesized beam FWHM 0.59×0.70′′, Briggs=0.5) and
C43-6 (beam FWHM 0.13×0.17′′, Briggs=0.5) configurations (see Table 2.2). These pMAP
are obtained for each dataset using 𝑃(p|V , 𝜷), the frank posterior marginalized over all
realizations of Ia, under the hyperparameters 𝜷 = {𝛼, 𝑝0,𝑤smooth} = {1.05,10−15 Jy2,10−4}.
For comparison the power spectrum estimate Ĩ2

a, C43−6 = (YfIa, C43−6)2 based on the frank
fitted brightness profile for the C43-6 dataset is shown.
b) Real space representation of the covariance matrix S(pMAP) for the C43-6 configuration
(that for the C43-3 looks qualitatively similar), showing covariance between not only adjacent
but also nonadjacent points. The overall covariance decreases from the lower left to upper
right because the disk brightness as represented in the visibilities decreases (on average) as a
function of disk radius.
c) Draws from the prior on the brightness distribution G(Ia,S(pMAP)) for both the C43-3
and C43-6 datasets. For reference the posterior mean (the frank fit for the brightness profile,
Equation 2.29) is shown for the C43-6 dataset, separately realized using pMAP estimated from
the C43-6 and C43-3 dataset.
d) – f) As in (a) – (c) but using 𝑤smooth = 10−1 to generate the power spectra, which are
comparatively smooth in response to this stronger hyperparameter value, resulting in reduced
covariance between nonadjacent points but higher covariance between adjacent points in
S(pMAP) as visualized in (e). The reduced covariance between nonadjacent points in (e)
relative to (b) results in draws from the prior in (f) that show fewer small amplitude amplitude
oscillations on corresponding spatial scales. However the effect on the posterior mean frank
fit is small, indicating the relative insensitivity of the recovered brightness profile to the value
of the hyperparameter 𝑤smooth.
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First, at spatial frequencies where the visibility SNR is sufficiently high, the term involving
the mean 𝝁 in Equation 2.41 dominates and thus

pMAP =
(Yf𝝁)2

1+2(𝛼−1) . (2.42)

In this case the power spectrum is set by an estimate using the DHT of the mean brightness
profile, which is approximately the square of the visibility amplitude (its power). This
demonstrates the aforementioned association between pMAP and the power spectrum and
provides the justification for calling pMAP the power spectrum.

Conversely, where the visibility SNR is sufficiently low, pMAP is small enough that the
S(p) term in D dominates. In this case

pMAP =
𝑝0 + 1

2diag(YfS(p)YT
f )

𝛼−1+1/2
∼ 𝑝0 +pMAP/2

𝛼−1+1/2
∼ 𝑝0

𝛼−1/2
. (2.43)

The SNR threshold that separates these behaviors depends on 𝛼 (Sec. 2.6); at 𝛼 = 1 the
threshold is at SNR = 1, and the threshold increases as 𝛼 increases (because for larger 𝛼, the
inverse Γ hyperprior decays faster with increasing 𝑝𝑘 ). Thus given the same data, a larger 𝛼
will cause 𝑝𝑘 to be pulled more strongly downward toward 𝑝0.

Secondary to the effect of the visibility SNR, the spectral smoothness hyperprior modifies
the power spectrum. Fig. 2.4(a) and (d) (presented below) demonstrate that increasing 𝑤smooth

reduces structure in the power spectrum, driving its shape toward a power law. A similar
effect is evident in Fig. 2.5 (presented in Sec. 2.2.6), where the oscillations in the power
spectrum under a Jeffrey’s prior (using 𝑤smooth = 0) are large compared with those generated
under 𝑤smooth = 10−4. This demonstrates that in regions of low SNR at long baseline, the
constraint of a smooth power spectrum can dominate the inverse Γ hyperprior’s preference for
low 𝑝𝑖. Though this is typically isolated to the case of 𝛼 = 1, because the inverse Γ hyperprior
does not damp the power spectrum coefficients under this choice.

Given a form for the maximum a posteriori power spectrum pMAP, we now consider its
effects as a prior on the reconstructed brightness profile 𝐼a. Fig. 2.4 shows multiple power
spectra generated using frank fits to the mock brightness profile in Fig. 2.2. Under different
ALMA configurations and values of 𝑤smooth, the power spectra in Fig. 2.4(a) and (d) are
truncated (drop off) at different maximum baselines (and thus minimum spatial scales) and
also show different degrees of smoothness. The covariance matrices S(p) in Fig. 2.4(b) and
(e), and the draws from the prior 𝑃(Ia |p) in Fig. 2.4(c) and (f), then motivate the two effects
that pMAP has as a prior on 𝐼a.
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First, because the power spectra have little power on long baselines, the prior draws are
correlated on small spatial scales. The shortest length scale over which a brightness profile is
correlated is controlled by the longest baseline at which the prior has significant power. In
contrast, because the amplitude of the power spectra is large on short baselines, the large
scale form of the brightness is free to vary, with the posterior brightness on these scales
being ultimately determined by the data rather than the prior. If instead adjacent points were
not correlated (if the prior were diagonal in real space), the prior draws would not appear
smooth. Fig. 2.4(c) and (f) additionally show the posterior means (Equation 2.29) – the fitted
brightness profiles for the C43-6 mock data using either the C43-3 or C43-6 prior – which
reflect constraints introduced by the priors. For each of the priors, the mean matches the true
(input) brightness on large scales, but only shows structure on the scales allowed by the prior.
For the priors generated under the C43-3 mock observations, the power on long baselines
is thus too strongly damped, and the reconstructed profiles are a poor recovery of the input
profile. By contrast the reconstructed profiles using the C43-6 priors recover the input profile
to high accuracy. This emphasizes the importance of correctly identifying the scale on which
to regularize the brightness profile so as not to damp the fit on scales where true variations
exist in the visibility distribution.

Second, substructure in the power spectrum causes differences in the real space repre-
sentation of the prior. The localized areas of lower power in the structured power spectra
of Fig. 2.4(a) introduce correlations between nonadjacent radial collocation points at the
corresponding spatial scales. This correlation manifests as the crosshatching in Fig. 2.4(b),
and consequently draws of Ia from the prior in Fig. 2.4(c) are more oscillatory than those
in (f), for which the power spectra are smooth. However because this increased correlation
corresponds to baselines at which the visibility amplitude is also small, the impact on the
posterior mean brightness profiles in Fig. 2.4(c) is small. This need not be the case generally,
but is typical of the power spectra generated by frank because these regions of low power have
been determined from the visibilities. The power spectrum estimate Ĩ2

a, C43−6 in Fig. 2.4(a)
and (d) further demonstrates this relative insensitivity. The comparatively large discrepancy
between it and pMAP in Fig. 2.4(d) relative to that in (a) is a result of the power spectrum
estimate using 𝑤smooth = 10−1 having higher amplitudes than that using 𝑤smooth = 10−4 and
thus providing a weaker constraint on the reconstructed brightness profile, yet this does not
correspond to a less accurate brightness profile reconstruction in (f) relative to that in (c).
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Fig. 2.5. Effect of the hyperparameter 𝛼; effect of a Jeffreys prior
a) Maximum a posteriori power spectra pMAP (under different values of the 𝛼 hyperparameter)
for frank fits to the mock disk in Fig. 2.4, here observed with the ALMA C43-6 + C43-9
configurations (beam FWHM 0.024×0.030′′, Briggs=0.5; see Table 2.2). Also shown is
pMAP under a Jeffreys prior.
b) The mock observation’s noisy visibilities in 1 and 50 k_ bins and the true, unbinned
visibility distribution (the Hankel transform of the input profile). Also shown are the frank
fits to the unbinned, noisy data and the fit under a Jeffreys prior (which forces the fit to the
longest baseline, noise-dominated visibilities, imprinting oscillations on the corresponding
brightness profile in (c)).
c) The fitted frank brightness profiles for the cases in (a) – (b). Varying 𝛼 has a negligible
effect on the fit, while the Jeffreys prior (flat in log space) allows oscillations on spatial scales
corresponding to the noise-dominated visibility region (beyond ≈1.5 M_).
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2.2.6 The reconstructed brightness profile’s sensitivity to the hyperpa-
rameters

Our model for the deprojected brightness profile has five free hyperparameters: two specifying
the radial points at which the profile is reconstructed, 𝑁 and 𝑅out; and three on the power
spectrum, denoted collectively as 𝜷 = {𝛼, 𝑝0,𝑤smooth}, where 𝑤smooth = 1/𝜎2

s (analogous to
the definition of the visibility weights). Definitions, default values and reasonable bounds to
optionally vary these hyperparameters are summarized in Table 2.1. Here we motivate the
default values and discuss the fit’s sensitivity to these choices.

We have found the reconstructed brightness profile to be insensitive to 𝑅out and 𝑁 so
long as they are sufficiently large, and also to 𝑝0 so long as it is small relative to the power
in the visibilities (≪ 1). The default 𝑅out = 2′′ is sufficiently large for a protoplanetary disk.
Alternatively if the disk radius is known, 𝑅out can be set to a value somewhat (e.g., 50%)
larger than this, the main constraint being that the model assumes the flux is 0 beyond 𝑅out.
By default 𝑁 is set to 300 points to ensure that 𝑄max exceeds the maximum baseline in a
dataset (which is important for fit stability).

The hyperparameters 𝛼 and 𝑤smooth do not appear directly in Equation 2.29; their effects
on the brightness profile reconstruction enter entirely through their effects on pMAP.

As motivated in Sec. 2.2.5, increasing 𝑤smooth reduces structure in the fit’s power spectrum,
reducing correlation in the brightness profile at scales for which the power spectrum has
low local amplitude, while increasing correlation between adjacent radial collocation points.
However we have demonstrated in Fig. 2.4 that varying 𝑤smooth within sensible bounds often
has a negligible effect on the frank reconstructed brightness profile. As also discussed in
Sec. 2.2.5, increasing 𝛼 beyond 1.0 increases the SNR threshold below which the power
spectrum falls toward 𝑝0, damping variations in the brightness profile on scales where the
visibility SNR is low (primarily at unconstrained scales beyond a dataset’s longest baseline).

Fig. 2.5 examines a fit’s typical sensitivity to the value of 𝛼. With 𝛼 = 1.00 (not
a recommended value, shown only for pedagogy), frank will fit noise-dominated data,
introducing noise into the reconstructed brightness, as in the Jeffreys prior fit in Fig. 2.5 that
is placing significantly more power in baselines beyond ≈2 M_ than exists in the noiseless
input visibilities. Increasing 𝛼 to 1.05 is a conservative choice, mildly damping the power on
scales where the SNR is low (causing the corresponding fit in Fig. 2.5 to walk off the data
at ≈1.5 M_). This value of 1.05 is our default choice for 𝛼 because many moderate to high
resolution (≳ 0.1 M_) datasets for protoplanetary disks exhibit noise-dominated visibilities at
their longest baselines (a consequence of sampling density decreasing strongly at the most
extended ALMA configurations for typical integration times). Further increasing 𝛼 will more
aggressively damp power on scales with low SNR, though in some cases this can lead to the
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fit attaining a lower effective resolution (if a significantly wider range of scales are damped).
That said, comparing the 𝛼 = 1.05, 1.10 and 1.30 fits in Fig. 2.5 shows that varying 𝛼 within
sensible bounds often has an insignificant effect on the brightness profile, especially if the
visibilities’ SNR is dropping rapidly at long baselines. For a scenario in which varying 𝛼 has
a more significant impact, we will consider a disk with sub-beam features sampled at low
SNR over a wide range of baselines in Fig. 2.9 (presented in Sec. 2.3.1.2).

In our tests the effect on the brightness profile of varying 𝛼 and/or 𝑤smooth is thus often
trivial. Nonetheless, as a precaution we recommend varying the hyperparameters used in a fit
within sensible bounds (see Table 2.1) to assess the brightness profile’s resulting sensitivity.
We have found that especially for lower resolution datasets, setting 𝛼 and/or 𝑤smooth too high
can average over real, underresolved features, causing them to appear broader and shallower.
Hence our default values for these hyperparameters are at the lower bound of our suggested
ranges in Table 2.1.

2.2.7 Model limitations

1. Our axisymmetric model is 1D, fitting for the azimuthal average of the visibility data
at each spatial scale. In the presence of deviations from axisymmetry the model is
thus biased. For mild asymmetries the effect is not severe, averaging over brightness
asymmetries azimuthally. However for major asymmetries (such as a prominent spiral)
and/or when (𝑢, 𝑣) coverage results in broad gaps over a given baseline range, the
model can break down. This also holds for observations in which there is more than
one source.

2. Since a centered axisymmetric model has only real visibilities, we do not fit Im(V).

3. The model makes the flat sky approximation (Equation 1.15), which assumes that the
observation’s region of the sky is sufficiently small.

4. Before fitting for the brightness profile, the visibilities must first be deprojected and
phase-centered. frank can optionally do this by fitting a 2D Gaussian to the visibilities,
though this deprojection operation may yield an erroneous result if a disk has an
appreciable vertical thickness or if limb darkening from the optically thick surface is
important.

5. The fitted brightness profile does not include primary beam correction. For sources that
were observed close to the center of the primary beam, the correction is typically small
and can be obtained by dividing the reconstructed brightness profile by the primary
beam profile A(\), where \ is the radial angular coordinate.
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6. Regions in the visibilities with sparse and/or sufficiently noisy sampling can cause
a lack of constraint on the local spatial frequency scale, inducing oscillations in the
brightness profile on the corresponding spatial scale. This can potentially mimic real
structure. The model typically prevents this by damping power on scales with low
SNR, but when it does occur the oscillations in the brightness profile can be diagnosed
by their frequency, which corresponds to the unconstrained spatial frequency scale.
Varying the hyperparameter values for a fit as noted in Sec. 2.2.6 is useful to assess
and potentially suppress this behavior.

7. The uncertainty on the fitted brightness profile is typically underestimated. For this
reason we do not show the uncertainty on frank brightness profiles in this chapter.
The model framework produces an estimate of the uncertainty on the brightness profile
(diag (D)), but this is not reliable because reconstructing the brightness from Fourier
data is an ill-posed problem. For example if the visibility amplitude were to spike at
any point beyond the data’s maximum baseline, this would imprint high amplitude
variations in the brightness profile on small spatial scales. Unless we know a priori
(which is not generally the case) that the visibilities are decreasing sufficiently rapidly
with increasing baseline, the uncertainty is therefore formally infinite. While it is
reasonable to assume that for real disk brightness profiles the visibilities do decrease
rapidly at long baseline, it is not straightforward to generically extrapolate the slope of
this decline beyond a dataset’s longest baseline; a robust error estimate is thus difficult
to obtain.

Fig. 2.6 shows the frank uncertainty estimate, diag (D) estimated at the maximum a
posteriori power spectrum, for the mock Gaussian ring presented in Sec. 2.3.1. This
confidence interval approximately represents the fit’s statistical uncertainty (that due to
the uncertainty on the observed baselines), which is correct if the visibility weights are
an accurate representation of the pointwise visibility uncertainty. But the confidence
interval does not capture the fit’s ill-defined systematic uncertainty (that due to sparse
sampling in the (𝑢, 𝑣) plane). A bootstrap on the visibilities in Fig. 2.6 also fails to
yield a reasonable estimate of the systematic uncertainty. Though this does confirm
that diag (D) is a reasonable estimate of the statistical uncertainty. We therefore urge
caution before using uncertainty estimates to interpret the significance of the result in
the recovered profile.

To test whether including the uncertainty on p has a significant effect on the final
uncertainty of the reconstructed brightness, we used the estimate for the uncertainty
on p given by Oppermann et al. (2013). We translated the effect of this on the
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Fig. 2.6. Underestimated model uncertainty
a) Input and reconstructed brightness profiles for a mock Gaussian ring (two joined sigmoids)
observed with the ALMA C43-3 configuration (synthesized beam FWHM 0.59× 0.70′′,
Briggs=0.5; see Table 2.2). The fit’s 1𝜎 uncertainty estimate, diag (D) estimated at the
maximum a posteriori power spectrum, is shown. Additionally shown are 500 realizations
of bootstrapping on this mock dataset, as well as the resulting distribution’s mean and
1𝜎 uncertainty. Both the frank fit’s uncertainty and the bootstrap uncertainty are clearly
underestimated as discussed in Sec. 2.2.7.
b) As in (a) on a logarithmic scale.
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brightness profile by Taylor expanding 𝑃(V ,p) about its maximum to make a Gaussian
approximation to 𝑃(V ,p). Using this approximation, we then drew samples and
compared the variance of the reconstructed brightness at each radial collocation point
to that estimated by diag (D). Except for an uninformative Jeffreys prior (𝛼 = 1.0 and
𝑤smooth = 0), the effect was negligible.

8. The fitted brightness profile can have negative regions corresponding to spatial scales
un- or underconstrained by the visibilities. There is an argument for choosing a fitting
strategy that enforces the solution be nonnegative (as in Junklewitz et al. 2016), and
we have investigated the effect of negative fit regions by finding the most probable
nonnegative intensity profile given p = pMAP. The effect on the recovered brightness
profile is localized to the regions of negative flux, with otherwise minor differences.
We explore a pedagogical nonnegative fit in Sec. 2.7.

2.2.8 Code performance

The code’s computation time is dominated by two components, constructing the matrix M
and iterating the fit. The construction of M is only done once at the start of the fit and has
computational cost O(𝑁2

collocation points𝑁visibilities), while solving the linear systems in each
iteration scales as O(𝑁3

collocation points) ∼ 1003.
To limit memory requirement, the matrix M is assembled in blocks, avoiding the need

to hold the 𝑁collocation points × 𝑁visibilities matrix H(q) in memory. Typical computational
requirements were estimated using real datasets: with 104 visibilities and 200 collocation
points the fit took 10 s and used ≈100 MB, while with 106 visibilities it took 40 s and used
≈200 MB. These tests were conducted on a 2017 MacBook Pro with a 7th generation Intel
Core i5 processor (7360U) running at 2.3 GHz with 8 GB RAM.

2.3 Demonstration & analysis

2.3.1 Demonstration on mock observations

2.3.1.1 Fits can attain sub-beam resolution

To demonstrate frank’s fitting approach and characterize its performance, we begin in
Fig. 2.7 with a series of mock observations for disks of archetypal smooth and sharp structure
at both well resolved and underresolved scales. We generate these mock datasets using the
default fit hyperparameters in Table 2.1 and the observational setups in Table 2.2.
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Fig. 2.7. Performance on different disk morphologies using mock observations
a) Input and reconstructed brightness profiles for a mock Gaussian disk with FWHM
0.2′′, observed separately with the ALMA C43-3 (synthesized beam FWHM 0.59×0.70′′,
Briggs=0.5) and C43-6 (beam FWHM 0.13×0.17′′, Briggs=0.5, factor of 5 longer integration
time than C43-3; see Table 2.2) configurations. The beams’ minor axes are shown for reference.
The frank fit to each of the 2 mock observations is shown, as are CLEAN image-extracted
profiles. The normalized RMS error of each profile is given.
b) Input profile swept over 2𝜋, noiseless and at infinite resolution.
c) Mock CLEAN image (C43-3 + noise), with brightness normalized to (b).
d) Image of the frank fit to the noisy C43-3 mock observation, 𝑛𝑜𝑡 convolved with the beam,
with brightness normalized to (b).
e) – h) As in (a) – (d) but for a Gaussian ring (two joined sigmoids) with width ≈ 0.4′′.
i) – l) As in (a) – (d) but for a more complicated, smooth-featured disk. The feature widths
vary from 0.10−0.15′′. The images correspond to the C43-6 observation.
m) – p) As in (i) – (l) but for a disk with step features, the narrowest of which is 0.1′′.
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Fig. 2.7(a) compares the brightness reconstructed by frank to the CLEAN image-extracted
profile for a Gaussian disk centered at 0. The Gaussian’s width is resolved by the CLEAN beam
for the C43-6 ALMA configuration, yet importantly the CLEAN profile is slightly too broad
and shallow as a result of beam convolution4. By comparison frank recovers the profile to
<1% RMS error (note this is the standard definition of RMS error, unrelated to the RMS noise
in a CLEAN image). For the same disk observed at the lower resolution C43-3 configuration,
the beam’s minor axis underresolves the Gaussian by a factor of 2.3, and the effect of beam
convolution on the CLEAN profile is exacerbated. The frank fit by comparison retains high
accuracy, comparable to the CLEAN profile from the C43-6 observation. Fig. 2.7(b) – (d)
show the 2D images for the C43-3 case, with the frank image recovering the input image
from the noisy, low resolution observation. This simple Gaussian case illustrates that because
the model does not at any stage require beam convolution, frank’s achievable resolution is
sub-beam.

Fig. 2.7(e) – (h) next consider a slightly more complex disk, a Gaussian ring. Here again
the frank fit to the C43-3 observation achieves a similar accuracy to the CLEAN profile
extracted from the higher resolution C43-6 dataset. This is despite the C43-3 beam’s minor
axis underresolving the Gaussian by a factor of ≈1.5. The frank profile reconstructed from
the C43-3 dataset does however misidentify the Gaussian’s centroid and also shows a region
of negative brightness allowed by the model as detailed in Sec. 2.2.7. We discuss a fit with
enforced brightness positivity for this disk in Sec. 2.7.

As well as reproducing simple profiles, frank adapts effectively to more complicated
disks such as that in Fig. 2.7(i) – (l). Here the C43-3 beam’s minor axis is a factor of >3
broader than the profile’s widest feature, and frank is unable to reconstruct the profile
accurately. However it does discern that there are two well-separated peaks, while the CLEAN
profile does not show any substructure. Increasing the resolution to C43-6, frank retains its
resolving power advantage, recovering the input brightness profile to high accuracy.

To strain the model, Fig. 2.7(m) – (p) introduces perfectly sharp-edged features (step
functions) to be recovered. frank fits this disk to reasonable fidelity in the C43-6 case but
does show some oscillations. These are a consequence of Gibbs phenomenon, which arises
when representing an infinitely sharp feature in Fourier space. By comparison the CLEAN
profiles at both resolutions do not show these oscillations, but do smear the disk features over
the beam. frank’s ability to recover arbitrarily sharp features with comparatively low error

4As a simple illustration of this effect, noiseless Gaussians with FWHM 25, 50, 75, and 100 mas would
respectively be broadened by convolution with a FWHM 50×50 mas Gaussian beam to FWHM 56, 71, 90, and
112 mas (a factor of 2.24, 1.42, 1.20, and 1.12 increase), and their amplitudes would be reduced to 45, 70, 83
and 89% their true values.
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demonstrates utility in more accurately recovering a disk’s often steep outer edge and its peak
flux.

Together these mock disks show frank’s ability to fit smooth and sharp, partially and
well-resolved, faint and bright features, at sub-beam resolution. In practice this can enable
similar fit resolution to a CLEAN profile obtained with a more extended array configuration
(e.g., the frank fit to the C43-3 data in Fig. 2.7(a) is comparable to the CLEAN profile for the
C43-6 data). The frank fits for all 8 mock datasets shown in Fig. 2.7 recover the disks’ total
flux to within a mean 0.8% (standard deviation 0.2%), compared to a mean 1.6% (standard
deviation 1.6%) for the CLEAN profiles. This error in total flux recovery increases as a disk’s
features become increasingly sub-beam, an effect that is more severe for CLEAN than frank.
All frank fits shown here are negligibly sensitive to the choice of hyperparameter values
within the suggested ranges listed in Table 2.1. As discussed in Sec. 2.2.8 these fits – and
all others shown in this chapter – are performed in ≲1 min, and the computation speed is
independent of the complexity of disk substructures; frank fits simple and complicated disk
profiles equally fast.

To illustrate how frank is attaining a sub-beam fit resolution, Fig. 2.8 characterizes its
performance using a mock profile based on observational data rather than a simple functional
form. We use the CLEAN image-extracted fit to the real DSHARP observations (C40-5/8/9 +
archival short and moderate baseline datasets) of AS 209 (Andrews et al., 2018) as the input
profile to be recovered from mock observations. This profile was obtained in that work with a
beam of FWHM 36×38 mas; we generate the mock data at a factor of ≈2.6 worse resolution
using the C43-7 configuration (beam FWHM 86×106 mas, see Table 2.2). Much of the
structure in the profile is thus sub-beam in the mock observation. The mock visibilities’ SNR
as a function of baseline is similar to the real dataset.
frank accurately recovers the input profile’s sub-beam features to within 1% RMS error

for the noiseless case in Fig. 2.8(a) – (b). It shows minor difference between the fit under the
default hyperparameter values and under values at the other extrema of our suggested range
(Table 2.1) as shown in Fig. 2.8(c), despite the difference in prior structure in Fig. 2.8(f).
The brightness profile recovery’s high fidelity is a result of the model fitting the visibility
distribution in Fig. 2.8(d) – (e) to high accuracy. As in previous cases the CLEAN profile
extracted from the C34-7 mock image underresolves these features. The frank fit recovers
the mock disk’s total flux to within 0.6%, while the analogous CLEAN error is 30.4%. The
nontrivial CLEAN error is primarily a result of the mock observations containing no baselines
shorter than those in the ALMA C43-7 configuration; i.e., the nominal maximum recoverable
scale for C43-7, Band 6 is 1.12′′ (Remijan et al., 2019), while the disk extends to 1.25′′. By
comparison, frank is able to extrapolate the fit accurately to short baselines despite this
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Fig. 2.8. Fit methodology using mock observations
a) Input and reconstructed brightness profiles under different hyperparameter values for a
mock disk that uses as input the CLEAN image-extracted fit to the real DSHARP AS 209
observations (ALMA configurations C40-5/8/9, synthesized beam FWHM 36× 38 mas;
Andrews et al. 2018). The mock observation uses only the C43-7 configuration (beam FWHM
86×106 mas, Briggs=0.5; see Table 2.2). This beam’s minor axis is shown for reference.
The CLEAN image-extracted profile for the mock C43-7 observation is also shown, with the
normalized RMS error of all fits given.
b) As in (a) on a logarithmic y-scale. The fit’s oscillations beyond the disk’s outer edge
indicate the model’s noise floor.
c) Normalized residual for the frank fits under different hyperparameter values.
d) Visibilities for the mock C43-7 observation in (a). The brightness profile fits in (a) are the
discrete Hankel transforms of these visibility domain fits.
e) As in (d) on a logarithmic y-scale.
f) The fit’s maximum a posteriori power spectrum pMAP for different hyperparameter values.
These power spectra are used as the priors on the brightness profile reconstructions in (a).
g) Input profile swept over 2𝜋, noiseless and at infinite resolution.
h) Mock CLEAN image (C43-7 + noise), with brightness normalized to (g).
i) Image of the frank fit to the noisy C43-7 mock observation, not convolved with the beam,
with brightness normalized to (g).
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lack of data (though this behavior may not always be robust). In Fig. 2.8(f) the maximum
a posteriori power spectrum pMAP has low power at the unconstrained spatial frequencies
beyond the data’s longest baseline, preventing large amplitude oscillations in the reconstructed
brightness profile at equivalent spatial scales (these oscillations, damped, are seen in the
residuals of Fig. 2.8(c)). In Fig. 2.8(g) – (i) the 2D images of the input model, mock CLEANed
observation and fit demonstrate the amount of structure frank is recovering that is smeared
out by the beam.

Beam convolution is the primary difference in achievable resolution between frank and
CLEAN. Convolving either frank fit in Fig. 2.8(a) – (b) with the 2D CLEAN beam yields a
profile that is similar to the CLEAN profile. The CLEAN beam size does depend on the visibility
weighting, with the choice affecting the resulting CLEAN profile. For the disk in Fig. 2.8,
setting the Briggs robust parameter to −2.0 (approximating uniform weighting), 0.5 and 2.0
(natural weighting) sets the beam FWHM as 0.08′′×0.10′′, 0.09′′×0.10′′ and 0.10′′×0.12′′.
However the resulting profiles vary only slightly, with the RMSE changing at most by 3%,
and each profile still underresolves the disk features relative to frank. This highlights that
frank can recover disk features underresolved even by uniform weighting, while retaining
high sensitivity.

2.3.1.2 Baseline-dependent signal-to-noise determines the achievable fit resolution

We next characterize the model’s SNR sensitivity by decrementing the integration time for
mock observations of the input profile from Fig. 2.8. This increasingly degrades the (𝑢, 𝑣)
coverage, in turn worsening the data’s effective SNR at a given baseline. Fig. 2.9(a) – (b) first
show the method’s intrinsic capability by fitting the noiseless data, with the (𝑢, 𝑣) coverage
determined by the mock observation’s C43-7 configuration and integration time. The fits
using both values for the 𝛼 hyperparameter accurately match the full visibility distribution,
the reconstructed brightness profiles showing <1% RMS error.

Then fitting the same baseline distribution but with the mock observation’s noise included
in Fig. 2.9(c) – (d), both fits remain able to recover the noiseless visibilities to high accuracy.
However as the data’s SNR worsens beyond ≈1.8 M_ the fits do show some error, including
tending toward 0 prior to the longest baselines. These errors manifest in the recovered
brightness profiles in Fig. 2.9(c) as a slightly less accurate recovery of the peak brightness
and of the innermost gap’s depth. The fit using the stronger 𝛼 = 1.30 is slightly less accurate
at the longest baselines because the mock observations do not have sufficiently high SNR
there for the model to fit them with 𝛼 = 1.30. However the differences in the reconstructed
profile are minor for this case.
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Fig. 2.9. Fit sensitivity to baseline-dependent SNR using mock observations
a) The input profile from Fig. 2.8 is used to generate noiseless mock observations, with frank
fits to these noiseless data shown and their normalized RMS errors given under two values of
the 𝛼 hyperparameter (both fits use 𝑤smooth = 10−4).
b) Noiseless visibilities corresponding to the input profile in (a). frank fits the unbinned
visibilities shown. Also shown are the data in 1 k_ bins. The data (and the fits’) negative
regions are denoted by the fit lines’ dashed sections. The 𝛼 = 1.30 fit is behind the 𝛼 = 1.05
fit.
c) – d) As in (a) – (b) but with noise added to the mock observation. The fits shown are to
the unbinned, noisy data. The CLEAN image-extracted profile is shown for comparison. The
apparently larger scatter in the observations in (d) (compared with (f)) is due to the larger
number of data points rather than higher intrinsic error.
e) – f) As in (c) – (d) but with a higher RMS noise due to shorter integration time. The
binned RMS noise (1 k_ bins) does not increase dramatically because the number of empty
bins has also increased.
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As the integration time is further decremented in Fig. 2.9(e) – (f), the fits’ fidelity is
degraded primarily beyond ≈1.2 M_ as the visibility distribution becomes more sparse. By
consequence the highest resolution structural information – the depths and centroids of the
narrowest features in the input brightness profile, including the peak brightness – are only
partially recovered. The effect is more severe for the 𝛼 = 1.30 case because the data beyond
1.2 M_ have low effective SNR, and as 𝛼 increases, the SNR threshold below which frank
does not fit the visibilities increases. Since these data clearly contain meaningful information,
𝛼 = 1.05 is the more sensible choice.

In contrast to frank’s SNR sensitivity, the CLEAN image-extracted profiles in Fig. 2.9(c)
and (e) vary marginally when the visibilities’ SNR is decreased. This is because convolution
with the C43-7 beam, rather than the data’s SNR, is primarily limiting the CLEAN image
resolution. While frank’s resolving power is sensitive to variations in the baseline dependence
of the data’s SNR, the CLEAN profile is largely determined by the pure baseline distribution.
This entails that improving an observation’s SNR via the on-source integration time can
significantly enhance the resolving capability of frank, while it may make little difference
for CLEAN.

2.3.2 Demonstration on real observations

Mock datasets are useful to test and characterize frank’s performance, though real data have
more complex noise properties to which the model must also be well suited.

2.3.2.1 Sub-beam fits: Characterizing fine structure in real, high resolution observa-
tions

To this end Fig. 2.10 demonstrates frank’s performance with real data, fitting the high
resolution DSHARP observations of AS 209 (synthesized beam FWHM 36×38 mas ≈ 5 au
at 121 pc)5.

Fig. 2.10(a) – (b) show the frank fit (using the default hyperparameter values) and
the CLEAN image-extracted profile from Andrews et al. (2018). frank recovers additional
substructure and higher amplitude features in the inner disk, a higher peak brightness, and
slightly narrower rings in the outer disk. These results are consistent with those using mock
observations in Sec. 2.3.1. That the frank fit finds a negative innermost gap indicates that

5We downloaded the AS 209 self-calibrated and multi-configuration combined continuum measure-
ment sets from https://bulk.cv.nrao.edu/almadata/lp/DSHARP. Before extracting the visibilities using the
export_uvtable function of the uvplot package (Tazzari, 2017), we applied channel averaging (to obtain
1 channel per spectral window) and time averaging (30 sec) to all spectral windows and multi-configuration
datasets in the original MS table.

https://bulk.cv.nrao.edu/almadata/lp/DSHARP
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Fig. 2.10. Fit to real, high resolution observations: AS 209
a) Reconstructed brightness profile for the real, high resolution (beam FWHM 36×38 mas)
DSHARP observations of AS 209 in Andrews et al. (2018). The CLEAN image-extracted
profile from that work and the beam’s minor axis are shown. frank achieves a higher fit
resolution (narrower, higher amplitude features) than the CLEAN technique. The presence of
additional structure in the inner disk relative to the CLEAN image-extracted profile is robust
to variations of the model. Also shown is the frank brightness profile convolved with the
observations’ 2D synthesized beam and the brightness profile for the parametric visibility
domain fit in Guzmán et al. (2018).
b) As in (a) on a logarithmic y-scale. The outermost radii show the fit’s noise floor.
c) Zoom on the region around 0 of the observed DSHARP visibilities in 1 and 50 k_ bins.
The frank fit, the discrete Hankel transform of the CLEAN profile in (a), and the parametric
fit from Guzmán et al. (2018) corresponding to the profile in (a) are shown. The strong
increase in scatter at ≳ 4.5 M_ sets the data’s effective resolution, beyond which frank does
not attempt to fit the noise-dominated visibilities.
d) As in (c) on a logarithmic y-scale. The data (and the frank fit’s) negative regions are
denoted by the frank fit line’s dashed sections.
e) Histogram of (binned) visibility counts, showing the strong decrease beyond ≈ 4.5 M_

responsible for the increased scatter in (c) – (d).
f) CLEANed observation.
g) Image of the unconvolved and deprojected frank reconstruction.
h) Image of the frank reconstruction reprojected and convolved with the observations’
synthesized beam.
i) Residual map of the frank reconstruction (the fit’s residual visibilities imaged with CLEAN),
showing evidence of non-axisymmetric structure (contour 𝜎 = 10 `Jy beam−1, peak residual
12𝜎).



2.3 Demonstration & analysis 53

the innermost disk’s features are not fully resolved; forcing the fit to be positive results in the
innermost gap having zero flux and alters the profile’s integral by 4%, but otherwise has a
negligible effect (see Sec. 2.7 for a discussion of nonnegative fits). The frank fit agrees with
the CLEAN profile in finding that the gaps centered at ≈0.5 and 0.8′′ are not empty6. However
the fine structure in these gaps remains uncertain because their brightness is near the fit’s
noise floor (which can be approximated by the amplitude of the oscillations beyond ≈1.3′′).

The frank fit convolved with the synthesized beam is also shown in Fig. 2.10(a) – (b),
its similarity to the CLEAN profile giving credence to frank correctly finding real higher
resolution structural information. The sub-beam resolution of the reconstructed brightness
profile is enabled by frank accurately fitting the visibilities in Fig. 2.10(c) – (d) out to ≈4.5
M_. This is equivalent to an angular scale ∼ 1/(4.5 M_) = 46 mas = 5.5 au, which is an
indication of the data’s effective resolution beyond which the visibilities are noise-dominated.
In Fig. 2.10(e) a histogram of the binned visibilities commensurately decreases sharply in
counts beyond ≈4.5 M_. Fitting longer baselines with our current modeling approach only
imprints noise on the brightness profile as discussed in Sec. 2.3.2.2.

Although the CLEAN beam has a FWHM 36×38 mas that is less than the 46 mas equivalent
of the frank visibility fit, these two values are not directly comparable. A more direct
comparison can be made in Fourier space; the DHT of the CLEAN profile in Fig. 2.10(c) –
(d) demonstrates how convolution with the CLEAN beam effectively acts as a lowpass filter,
downweighting the contribution to the CLEAN brightness profile from visibilities beyond ≈2.4
M_⇔ 86 mas = 10.4 au. This is the baseline at which the DHT of the CLEAN profile begins to
show discrepancies with the observed visibilities. Convolution with the beam thus suppresses
features in the profile on spatial scales smaller than 10.4 au, causing them to appear broader
and shallower than in the frank reconstruction, which fits the visibilities out to ≈4.5 M_ ⇔
46 mas = 5.5 au.

The DHT of the CLEAN profile more generally shows a less accurate agreement with
the visibilities than frank beyond ≈1.5 M_, motivating that the frank brightness profile
is correctly identifying high resolution structure. For comparison the parametric visibility
domain fit in Guzmán et al. (2018) uses the CLEAN image to motivate an 8 Gaussian functional
form for the brightness profile, shown in Fig. 2.10(a) – (b). The Fourier transform of this
parametric form in Fig. 2.10(c) – (d) accurately fits the visibilities out to ≈2.5 M_ but begins
to show discrepancies at longer baselines. The brightness profile has less structure in the
inner disk and lower amplitude features than the frank fit. Because the frank fit accurately
traces the data out to ≈4.5 M_, its higher achieved resolution finds the disk features to be

6Although the SNR in the gaps is low, this noise is dominated by the uncertainty on scales ≲ 0.05′′; it is the
lower uncertainty on scales of the approximate gap widths, 0.1′′ and 0.3′′, that suggests the average flux in the
gaps is nonzero.
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narrower and higher in amplitude (though the Guzmán et al. 2018 fit is positive everywhere).
This is an example of the comparative advantage of a nonparametric form to fit a complicated
visibility distribution.

Fig. 2.10(f) – (i) compare the CLEAN image with the image of the unconvolved and
deprojected frank fit, the fit convolved with the beam, and the convolved residual image of
the fit. The latter demonstrates an additional use case of the model, identifying and isolating
small deviations from axisymmetry (for large deviations from axisymmetry, our axisymmetric
fits may not be reliable). Here the 5−10% deviations in the brightness around each ring may
potentially be explained by the gaps and rings being produced by the combination of a planet
and a low viscosity as suggested in (Fedele et al., 2018). In such a case these asymmetries
may be expected as a result of the low viscosity (Hallam and Paardekooper, 2020).

Varying the fit hyperparameters 𝛼 and 𝑤smooth within sensible bounds has negligible
effect on the frank brightness profile. Fig. 2.11 compares the fit from Fig. 2.10 using the
default values (𝛼 = 1.05,𝑤smooth = 10−4) with a fit that more strongly damps low SNR data
(𝛼 = 1.30,𝑤smooth = 10−1). The latter smooths the power spectrum appreciably relative to
the default choice in Fig. 2.11(a), yet the effects on the visibility fit and the reconstructed
brightness in Fig. 2.11(b) – (c) are negligible; the fit is robust to how precisely the prior
weights the longest (i.e., noisiest) baselines. Note that although the priors (power spectra)
shown in Fig. 2.11(a) do not extend to the shortest baselines, this does not significantly impact
the fit. This is because the maximum recoverable scale of the observations is much larger
than the size of the disk, and frank recovers the brightness accurately so long as 𝑅out is
larger than the disk size.

Although convolving the frank profile with the CLEAN beam generally results in brightness
profiles that are similar to CLEAN-extracted profiles, the converse is not true. In Fig. 2.12 we
compare a profile extracted from the raw (unconvolved) CLEAN point source model (.model
image); a profile extracted from the point source model convolved with the CLEAN beam
(without the addition of the residual dirty map, the .residual image); and a profile extracted
from the final CLEAN.image image. One may expect that the fit resolution achieved in the
CLEAN point source model profile is similar to that in the frank profile. While the disk’s
innermost gap is narrower in the point source model profile relative to the final CLEAN image
profile, the point source model profile does not show as much structure in the inner disk as
the frank fit. Moreover the noise in the point source model profile (even when binning)
can make inference on disk feature widths and amplitudes nontrivial. We have applied this
same analysis to multiple real and mock datasets at various antenna configurations, finding
in general that while the resolution difference between profiles extracted from the .model
image and .image image is starker in lower resolution data (because the beam is larger and so
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Fig. 2.11. Fit sensitivity to hyperparameters: AS 209
a) Maximum a posteriori power spectra of the frank fit under the default hyperparameter
values (𝛼 = 1.05, 𝑤smooth = 10−4) and stronger values (𝛼 = 1.30, 𝑤smooth = 10−1). The
structural differences between these spectra show negligible effect on the visibility fits in (b)
and fitted profiles in (c). The power spectra are the priors placed on the respective brightness
profile reconstructions. The maximum a posteriori power spectrum under a Jeffreys prior
(𝛼 = 1.00, 𝑤smooth = 0) is also shown, which forces the model to fit the longest baseline,
noise-dominated visibilities in (b), imprinting oscillations on the corresponding brightness
profile in (c).
b) Observed visibilities in 1 and 50 k_ bins; the frank fit under the default hyperparameter
values and under a stronger choice, showing minor difference; the fit under a Jeffreys prior.
c) The fitted frank brightness profile in Fig. 2.10(a) – (b) under the default hyperparameter
values, as well as fits under the stronger choice and Jeffreys prior.
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convolution with it has a stronger effect), the point source model profile’s noise also worsens
for lower resolution data. We have confirmed this behavior with a CLEAN gain parameter as
low as 10−3.

2.3.2.2 A dataset’s effective resolution can be much less than the longest baseline

To further demonstrate that the longest baselines in datasets are often noise-dominated, we
find that both the frank and CLEAN brightness profiles change negligibly if the AS 209
dataset, which extends to 8 M_ ⇔ 26 mas = 3.1 au, is truncated at 5 M_ ⇔ 41 mas =
5.0 au prior to the visibilities being fit. This suggests that the data’s effective resolution
as seen by both CLEAN and frank is ≲ 5 M_, or at ≲63% of the baseline distribution. In
Fig. 2.10(c) the visibilities begin oscillating rapidly about 0 beyond ≈5 M_, indicative of
noise dominating the signal. Fitting longer baselines only imposes noise on the reconstructed
brightness profile as shown by the Jeffreys prior fit in Fig. 2.11 (this behavior is consistent
with that found using mock data in Fig. 2.5). The Jeffreys prior causes the model to fit the full
baseline distribution, including the noise-dominated region beyond ≈ 4.5 M_. This imposes
oscillations on the brightness profile, demonstrating that these baselines in the AS 209
dataset are noise-dominated. The fit with the default hyperparameter values is thus (at least
approximately) correctly identifying where the data become noise-dominated and accordingly
justified in not fitting beyond ≈4.5 M_. This is not to say that an alternative fitting approach
could not obtain useful information on disk structures from these noise-dominated data.

Importantly though it is common for an appreciable fraction of the long baselines in real
datasets to be noise-dominated. This occurs in high as well as low – moderate resolution
observations and suggests the integration time at the most extended baselines is often too short
to yield informative visibility measurements for CLEAN or frank. This ‘effective resolution’
is predominantly a result of sampling density dropping appreciably at the longest baselines
in many real datasets (while the longest baselines also typically exhibit higher phase noise,
self-calibration can often alleviate this).

2.3.2.3 Sub-beam fits: Identifying underresolved features in real, moderate resolution
observations

While frank has utility in more accurately characterizing disk substructure in high resolution
observations, it is also effective in identifying sub-beam structure in low – moderate resolution
observations. Fig. 2.13 compares the frank and CLEAN fits to the DSHARP AS 209 dataset
from Fig. 2.10 with fits to lower resolution (longest baseline 2 M_) observations of the same
disk (Fedele et al., 2018). Relative to CLEAN, the frank fit to the lower resolution dataset is
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Fig. 2.12. CLEAN model profile extraction: AS 209
a) Pixel flux as a function of disk radius, extracted from the CLEAN point source model (.model
image) for the DSHARP AS 209 dataset. A binned average (1 mas bins) of these data is also
shown to estimate the radial profile underlying the noisy pixel flux.
b) Binned average from (a), compared with a profile extracted (using the same binning) from
the point source model convolved with the CLEAN beam (.image - .residual), and a profile
extracted from the final CLEAN image (.image). The lack of prominent additional disk features
in the .model profile indicates a comparable resolution to the .image profile.
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more accurately identifying a number of features in the brightness distribution (the centroids
and widths of the outer disk’s rings, depths of the adjacent gaps, and the disk’s outer edge)
as confirmed by the higher resolution DSHARP observations. The frank fit to the lower
resolution data also shows reasonable agreement with the CLEAN fit to the high resolution
DSHARP data in the outer disk. This is due to both profiles fitting the visibilities out to a
similar maximum baseline (the frank fit to the lower resolution dataset extends to ≈2.1 M_,
and recall the DHT of the DSHARP CLEAN beam’s FWHM is ≈2.4 M_). frank’s sub-beam
resolving capability is thus not limited to high resolution observations, offering the potential
to identify and more accurately constrain substructure relative to CLEAN in low – moderate
resolution datasets.

To further show that frank can identify substructure in lower resolution observations,
Fig. 2.14 shows a snapshot from an animation in which the frank fit to the DSHARP AS 209
dataset evolves as a function of the data’s longest baseline. We first truncate the data at 1 M_

⇔≈0.2′′ prior to the visibilities being fit, then successively step the maximum baseline to 5
M_ and fit at each step. frank identifies with increasing accuracy the presence and detailed
morphology of substructure in the disk as the truncation baseline increases, and at each step,
including when 1 M_ is the longest baseline, the model is correctly identifying and partially
resolving more structure than a CLEAN profile obtained with the same truncated dataset. This
again demonstrates that frank can correctly identify structure in low – moderate resolution
data.
frank’s resolving capability for low – moderate resolution observations also shows utility

when applied to apparently smooth disks. For the FWHM 92×127 mas (≈ 15 au at 140 pc)
observations of the compact (≈0.3′′) disk DR Tau (Long et al., 2019), the CLEAN image (even
with uniform weighting) shows no clear signs of substructure, and the parametric visibility
domain fit with a smooth profile in Long et al. (2019) shows significant residual error7. The
frank fit using default hyperparameter values in Fig. 2.15(a) – (b) identifies substructure and
finds a factor of ≈2 higher peak brightness than the CLEAN profile. This is because the frank
fit matches the visibilities in Fig. 2.15(c) – (d) out to the longest baselines, 2.3 M_ ⇔ 88 mas
= 12 au. Conversely convolution with the FWHM 92×127 mas synthesized beam causes
the DHT of the CLEAN profile to depart the data beyond ≈0.8 M_. The DHT of the CLEAN
profile does track at lower accuracy the same features in the visibility distribution that frank
closely fits, and the frank fit when convolved with the synthesized beam in Fig. 2.15(a) –
(b) matches the CLEAN profile. Together these suggest the frank fit is correctly identifying
sub-beam structure.

7We used the self-calibrated measurement set in Long et al. (2019). Before extracting the visibilities using
the export_uvtable function of the uvplot package (Tazzari, 2017), we applied channel averaging (to obtain
1 channel per spectral window) and time averaging (30 sec) to all spectral windows in the original MS table.
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Fig. 2.13. Comparison of moderate and high resolution fits: AS 209
a) The fitted frank brightness profile in Fig. 2.10(a), as well as a fit to lower resolution
(longest baseline 2 M_) observations of the same disk (Fedele et al., 2018). Analogs for
the CLEAN image-extracted profile. The frank fit to the lower resolution dataset is correctly
identifying structure evident in both the frank and CLEAN fits to the higher resolution data.
b) As in (a) on a logarithmic y-scale.
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Fig. 2.14. Snapshot from an animation of AS 209 fit evolution with baseline
a) The fitted frank brightness profile in Fig. 2.10(a) and a snapshot of the fit’s evolution as
the data are truncated at successively longer maximum baseline, beginning at 1 M_.
b) As in (a) on a logarithmic y-scale.
c) Zoom on the region around 0 of the observed DSHARP visibilities in 1 and 50 k_ bins.
The frank fit to the dataset at a truncation baseline of 2 M_ is shown.
d) As in (c) on a logarithmic y-scale. The data (and fit’s) negative regions are denoted by the
fit line’s dashed sections.
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frank thus infers the presence of substructure (two or more gaps) in addition to the
centrally peaked component in this compact disk that appears featureless in the CLEAN image
and profile. Note that frank is still almost certainly underresolving the disk’s features,
identifying and localizing the presence of substructure rather than accurately characterizing
the features’ morphologies. These are governed by the longest baselines in the dataset, so
while it is clear from the current data that substructure is present, its form would likely change
with the addition of higher resolution data (as is the case for AS 209). We therefore caution
against overinterpreting the exact form of the fitted brightness profile.

Fig. 2.15(e) – (h) compare the CLEAN image with the image of the unconvolved and
deprojected frank fit, the fit convolved with the beam, and the convolved residual image of
the fit. The latter shows prominent asymmetric structure whose origin is not yet clear, but is
not as best we can discern an artifact of an erroneous fit.

Varying the fit hyperparameters 𝛼 and 𝑤smooth within sensible bounds has a fairly
weak effect on the frank brightness profile as shown in Fig. 2.16. While the stronger
hyperparameter choice (𝛼 = 1.30,𝑤smooth = 10−1) does fit the visibilities to shorter baseline
than the default hyperparameter values (𝛼 = 1.05,𝑤smooth = 10−4), the effect of using the
stronger values is fairly benign: slightly less prominent disk features and a peak brightness
≈10% lower.

2.4 Conclusions

In this chapter we have presented frank, an open source code that uses a fast Gaussian
process to recover the axisymmetric structure of sources observed with radio interferometers
by directly fitting the real component of the visibilities. While the code is tailored to
protoplanetary disk observations, it can be extended to applications in other physical contexts
where an azimuthally averaged brightness profile is useful.
frank’s main advantages for characterizing axisymmetric structure relative to the CLEAN

technique are:

• resolution: frank can resolve angular scales smaller than the uniform-weighted CLEAN
beam while retaining sensitivity typical of a natural-weighted CLEAN image;

• flexibility: frank yields a nonparametric reconstruction of a source’s radial brightness
profile, enabling it to fit the visibilities to high accuracy without additional input from
the user;

• speed: frank fits are performed in <1 min for datasets of ≲ few×106 visibilities;
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Fig. 2.15. Fit to real, moderate resolution observations: DR Tau
a) Reconstructed brightness profile for the real, moderate resolution observations of DR Tau
in Long et al. (2019). A CLEAN image-extracted profile and the beam’s minor axis are also
shown.
b) As in (a) on a logarithmic y-scale, emphasizing the fitted profile’s outer edge at ≈0.3′′
(oscillations in the frank profile beyond this indicate the fit’s noise floor).
c) Observed visibilities in 1 and 50 k_ bins. The frank fit and the discrete Hankel transform
of the CLEAN profile in (a) are shown.
d) As in (c) on a logarithmic y-scale. The frank fit’s negative regions are denoted by its
dashed sections.
e) CLEANed observation.
f) Image of the unconvolved and deprojected frank reconstruction.
g) Image of the frank reconstruction reprojected and convolved with the observations’
synthesized beam.
h) Residual map of the frank reconstruction (the fit’s residual visibilities imaged with
CLEAN), showing evidence of non-axisymmetric structure (contour 𝜎 = 60 `Jy beam−1, peak
residual 12𝜎).
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Fig. 2.16. Fit sensitivity to hyperparameters: DR Tau
a) Maximum a posteriori power spectra of the frank fit under the default hyperparameter
values (𝛼 = 1.05, 𝑤smooth = 10−4) and stronger values (𝛼 = 1.30, 𝑤smooth = 10−1). The
structural differences between these spectra show weak effect on the visibility fits in (b) and
fitted profiles in (c). The power spectra are the priors placed on the respective brightness
profile reconstructions.
b) Observed visibilities in 1 and 50 k_ bins; the frank fit under the default hyperparameter
values and under a stronger choice, showing fairly minor difference.
c) The fitted frank brightness profile in Fig. 2.15(a) – (b) under the default hyperparameter
values, and a fit under a stronger choice.
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• ease of use: frank is a Python package with a minimum number of dependencies that
is easy to install and integrate into existing codebases.

frank’s resolution, flexibility, speed, and ease of use make it a high performance tool suitable
for a wide range of applications on diverse interferometric datasets.

The major use case of frank in the protoplanetary disk context is fitting interferometric
observations to find and characterize disk substructures at higher resolution than the CLEAN
algorithm. Recent high resolution observations of sources previously observed at lower
angular resolution have begun to show the ubiquity of disk substructure, including in disks
that appeared featureless at low resolution. This motivates the utility of a technique such as
frank to resolve features and characterize disks at sub-beam scales. The model can resolve
additional structure in high resolution datasets, such as the DSHARP observations of AS 209
(Andrews et al., 2018); as well as in lower resolution datasets that show featureless CLEAN
images (even with uniform weighting), such as the compact disk DR Tau (Long et al., 2018).
Specific scientific applications of the code include more accurately discerning substructure
widths and amplitudes, better resolving the inner disk structure including the peak brightness,
and isolating disk asymmetries in a residual image.
frank uses all visibilities in a dataset to inform the reconstructed brightness profile.

Its resolving power is thus sensitive to variations in the baseline dependence of the data’s
SNR. In contrast a CLEAN image-extracted profile is largely determined by the pure baseline
distribution. Consequently for observations at any resolution, improving an observation’s
SNR via the on-source integration time can markedly enhance frank’s resolving capability
to constrain sub-beam features, whereas it makes little difference for CLEAN.
frank is actively developed at https://github.com/discsim/frank, where users are welcome

to contribute and to report issues.

2.5 Appendix A: Spectral smoothness hyperprior

The spectral smoothness hyperprior is designed to constrain the power spectrum to be close to
a power law in the absence of data. We implement this hyperprior using a numerical estimate
for the integral of the second logarithmic derivative of the power spectrum,

− 1
2𝜎2

s

∫
dlog(𝑞)

(
𝜕2 log(𝑝)
𝜕 log(𝑞)2

)2

≈ − 1
2𝜎2

s

𝑁−1∑︁
𝑛=2

𝛿𝑐,𝑛 (Δ log 𝑝𝑛)2, (2.44)

https://github.com/discsim/frank
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as in Oppermann et al. (2013). Here 𝛿𝑐,𝑛 = (log𝑞𝑛+1 − log𝑞𝑛−1)/2 and

Δ log 𝑝𝑛 =
1
𝛿𝑐,𝑛

(
log 𝑝𝑛+1 − log 𝑝𝑛

𝛿𝑒,𝑛
− log 𝑝𝑛− log 𝑝𝑛−1

𝛿𝑒,𝑛−1

)
(2.45)

is an approximation to the second logarithmic derivative of p, where 𝛿𝑒,𝑛 = log𝑞𝑛+1 − log𝑞𝑛.
Equation 2.44 can be simplified as

− 1
2𝜎2

s

𝑁−1∑︁
𝑛=2

𝛿𝑐,𝑛 (Δ log 𝑝𝑛)2 = − 1
2𝜎2

s
logp𝑇T logp, (2.46)

where the components of T are

𝑇𝑖 𝑗 =
∑︁
𝑘

𝛾𝑘𝑖𝛿𝑐,𝑘𝛾𝑘 𝑗 , (2.47)

with

𝛾𝑖 𝑗 =
1
𝛿𝑐,𝑖


−

(
1
𝛿𝑒,𝑖

+ 1
𝛿𝑒,𝑖−1

)
if 𝑗 = 𝑖

+ 1
𝛿𝑐,𝑖±1

if 𝑗 = 𝑖±1

0 otherwise.

(2.48)

The matrix T is constant and pentadiagonal, depending only on 𝑞𝑘 . For large 𝑘 , T has the
asymptotic form

𝑇𝑖 𝑗 =
1

(𝑞𝑖𝑅max)3 ×



+48 if 𝑗 = 𝑖

−32 if 𝑗 = 𝑖±1

+8 if 𝑗 = 𝑖±2

0 otherwise.

(2.49)

2.6 Appendix B: Signal-to-noise threshold

Here we show that it is the visibilities’ SNR that determines whether a frank fit ignores the
data at a given baseline. This is ultimately determined by whether the maximum a posteriori
value for the power spectrum parameters tends to: Equation 2.42, in which case the power
spectrum is determined by the visibility amplitude; or Equation 2.43, in which case the power
spectrum’s low amplitude suppresses the power on a given scale. The argument presented
here is similar to that in Enßlin and Frommert (2011), who derive this for a general class of
methods like frank.
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To make the derivation tractable, we make some simplifications: we assume 𝑝0 = 0,
neglect smoothing, and study the simplifying case where the visibilities are observed exactly
at the spatial frequency collocation points 𝑞𝑘 . While this is somewhat unrealistic, the
insights derived are useful more generally. Under our last assumption, the matrix H(q) in
Equation 2.23 is just Yf . Now,

𝝁 =

(
Y𝑇

f N−1Yf +Y𝑇
f diag (1/p)Yf

)−1
Y𝑇

f N−1V

= Yb

(
N−1 +diag (1/p)

)−1
N−1V . (2.50)

This means that
(Yf𝝁)𝑘 =

𝑉𝑘

1+𝜎2
𝑘
/𝑝𝑘

(2.51)

and

(Y𝑇
f DYf)𝑘𝑘 =

𝜎2
𝑘

1+𝜎2
𝑘
/𝑝𝑘

. (2.52)

Using these in Equation 2.41 with 𝑝0 = 0, 𝜎s =∞, and pnew = p (convergence to the maximum
likelihood) and rearranging produces the cubic equation in 𝑝𝑘 ,

𝑝𝑘
{
(𝑝𝑘 +𝜎2

𝑘 )
2 [1+2(𝛼−1)] − (𝑝𝑘 +𝜎2

𝑘 ) (𝑉
2
𝑘 +𝜎

2) −𝑉2
𝑘𝜎

2} = 0, (2.53)

which always has the solution 𝑝𝑘 = 0. Solutions for 𝑝𝑘 > 0 can be found by completing the
square of the term in brackets;

𝑝𝑘 =
1

1+2(𝛼−1) ×

1
2

{ [
𝑉2
𝑘 −𝜎2(1+4(𝛼−1))

]
+√︃

(𝑉2
𝑘
−𝜎2

𝑘
)2 −8𝑉2

𝑘
𝜎2
𝑘
(𝛼−1)

}
. (2.54)

For 𝑉𝑘 ≫ 𝜎𝑘 , this yields an equivalent expression to that given in Equation 2.42. However,
the term inside the square root in Equation 2.54 is only positive if

𝑉2
𝑘 > 𝜎2

{
1+4(𝛼−1) +2

√︁
2(𝛼−1) [1+2(𝛼−1)]

}
, (2.55)

otherwise 𝑝𝑘 = 0 is the only solution (note that in the special case 𝛼 = 1, the term in brackets
in Equation 2.54 is always positive; however the above expression still correctly denotes the
region for which solutions with 𝑝𝑘 > 0 exist). The implication of this is that for an SNR
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below a given threshold, 𝑉2
𝑘
≲ 𝜎2

𝑘
, the inverse Γ hyperprior will drive the power spectrum

toward zero. In practice, including a nonzero 𝑝0 means that 𝑝𝑘 → 𝑝0/(𝛼−1), as given in
Equation 2.43.

Equation 2.54 also shows why we use 𝛼 > 1. At long baselines – where the visibilities
are noise-dominated – we will have 𝑉2

𝑘
∼ 𝜎2

𝑘
, and there will be many statistical fluctuations

causing 𝑉𝑘 to be slightly greater than 𝜎𝑘 . Since for 𝛼 = 1 the threshold is exactly at 𝑉𝑘 = 𝜎𝑘 ,
the power spectrum will contain some fraction of this power, and the model will fit the
noise-dominated visibilities. Increasing 𝛼 to 1.05, 1.10, 1.30, or 1.90 increases the noise
threshold to 1.36, 1.54, 2.04, or 3.01 𝜎𝑘 respectively. Thus using 𝛼 > 1 markedly reduces the
chance that the model will attempt to fit noise-dominated data.

A similar argument can be made in the case where the visibilities are not observed directly
at the spatial frequency collocation points, so long as the (𝑢, 𝑣) plane is sampled well enough
that M can be approximated as a diagonal matrix in the visibility domain. In this case
𝑉𝑘 = 𝜎2

𝑘
(Y𝑇

bj)𝑘 , where 𝜎2
𝑘
≈ (Y𝑇

f MYf)−1
𝑘𝑘

is the effective variance at that scale.

2.7 Appendix C: Nonnegative fits

In some circumstances it may be beneficial to have brightness profiles that are nonnegative,
i.e., Ia ≥ 0, as is produced by maximum entropy methods or a log-normal model for the
brightness (Junklewitz et al., 2016). In frank we can generate nonnegative solutions by
finding the most probable brightness reconstruction Ia for a given set of power spectrum
parameters and the constraint Ia ≥ 0 (i.e., the maximum of 𝑃(Ia |p) subject to Ia ≥ 0) using
the nonnegative least squares solver in the scipy package (scipy.optimize.nnls).

In Fig. 2.17 we show the impact of the Ia ≥ 0 constraint on the reconstructed brightness
profile for the mock Gaussian ring under the C43-3 mock observation. Comparing the posterior
mean brightness profile and the most probable nonnegative solution under two values of
𝑤smooth, Fig. 2.17(a) shows the nonnegative solution is more accurate. Correspondingly the
constraint Ia ≥ 0 yields a visibility fit in Fig. 2.17(b) that initially falls slower than the standard
frank fit beyond the data’s longest baseline (0.4 M_), predicting the visibility amplitude at
unobserved baselines more accurately than the standard fit between 0.4 – 0.8 M_.

The improvement gained by enforcing Ia ≥ 0 does however depend on the hyperparameters,
with the nonnegative fit using 𝑤smooth = 10−4 fitting the visibilities less accurately than the
analogous standard frank fit. This hyperparameter dependency is a result of the need
to introduce additional power on small scales when enforcing a nonnegative brightness.
Large 𝛼 and small 𝑤smooth strongly damp power at long baseline (on small spatial scales),
introducing tension between the prior and the Ia ≥ 0 constraint. This can cause the nonnegative
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Fig. 2.17. Comparison of standard and nonnegative fits
a) Input and reconstructed brightness profiles for a mock Gaussian ring (two joined sigmoids)
observed with the ALMA C43-3 configuration (synthesized beam FWHM 0.59× 0.70′′,
Briggs=0.5; see Table 2.2 and Sec. 2.3.1.1), shown under two values of the 𝑤smooth hyper-
parameter, and with brightness profile positivity either unenforced or enforced. All fits use
𝛼 = 1.05.
b) Observed visibilities in 1 k_ bins, the DHT of the noiseless input profile, and the frank
fits corresponding to the profiles in (a).
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reconstruction to be a poor fit to the data on shorter baselines. Conversely with smaller 𝛼 and
larger 𝑤smooth, the maximum a posteriori power spectra fall off more slowly with increasing
𝑞, and the resulting nonnegative brightness reconstruction has more power on small spatial
scales.

Because this process involves extrapolating the visibilities beyond their maximum baseline
(or at least into a region where they are noise-dominated), we therefore urge caution when
interpreting any additional structures introduced by enforcing the profile be nonnegative.

2.8 Appendix D: Mock disk functional forms

Table 2.3 gives the functional forms of the brightness profiles for the mock disks shown in
Fig. 2.7 and listed in Table 2.2.
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Chapter 3

A super-resolution analysis of the
DSHARP survey: Substructure is
common in the inner 30 au

Having presented frank and demonstrated its efficacy for accurately characterizing proto-
planetary disk substructure in Chapter 2, this chapter details the application of (frank) to
the DSHARP survey, which observed 20 disks at high spatial resolution (35 mas). This
application provides new scientific insight on disk morphology and the physical processes
responsible. Richard Booth and I co-developed the novel component of frank tailored to
this analysis as detailed in Sec. 3.7, with the majority of the framework and code being
Richard’s. I conducted the analysis in Sec. 3.5. The chapter, with some modifications to the
introduction, was published as Jennings et al. (2021). I wrote the chapter text and the paper,
with refinements resulting from coauthor feedback.

The DSHARP survey evidenced the ubiquity of substructure in the mm dust distribution
of large, bright protoplanetary disks. Intriguingly, these datasets have yet higher resolution
information that is not recovered in a CLEAN image. We first show that the intrinsic
performance of the CLEAN algorithm is resolution-limited. Then analyzing all 20 DSHARP
sources using the 1D, super-resolution code Frankenstein (frank), we accurately fit the 1D
visibilities to a mean factor of 4.3 longer baseline than the Fourier transform of the CLEAN
images and a factor of 3.0 longer baseline than the transform of the CLEAN component models.
This yields a higher resolution brightness profile for each source, identifying new substructure
interior to 30 au in multiple disks; resolving known gaps to be deeper, wider, and more
structured; and known rings to be narrower and brighter. Across the survey, high contrast
gaps are an average 14% wider and 44% deeper in the frank profiles relative to CLEAN, and
high contrast rings are an average 26% narrower. Categorizing the frank brightness profiles
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into trends, we find that the relative scarcity of features interior to 30 au in the survey’s
CLEAN images is an artifact of resolving power, rather than an intrinsic rarity of inner disk
(or compact disk) substructure. Finally the rings in the frank profiles are narrower than the
previously inferred deconvolved widths, indicating smaller 𝛼/St ratios in the local gas disk.

3.1 Background

While super-resolution approaches have been applied to individual DSHARP disks, namely
parametric visibility fitting in Guzmán et al. 2018, Isella et al. 2018 and Pérez et al. 2018,
no study has yet examined the entire DSHARP sample. In this chapter we characterize
substructure at super-resolution scales in all 20 DSHARP disks using the 1D code frank
(Jennings et al., 2020), reconstructing the disks’ brightness profiles by nonparametrically
fitting their azimuthally averaged visibility distributions.

Sec. 3.2 summarizes the frank modeling approach as relevant to this analysis and
discusses its limitations. Sec. 3.3 then examines the resolution limitations of CLEAN images
and models in real and visibility space (Sec. 3.3.1), compares the accuracy of brightness
profiles extracted from the CLEAN images and models with the frank visibility fits for the
DSHARP sources (Sec. 3.3.2), and summarizes the principles of comparing frank to CLEAN
(Sec. 3.3.3). In Sec. 3.4 we present the super-resolution frank fits for each DSHARP source,
then group the frank brightness profiles by previously unidentified substructure trends in
Sec. 3.5. We further use the super-resolution fits to identify a geometric viewing effect that
can imprint on disk images. Sec. 3.6 summarizes our findings and briefly places them in
the context of super-resolution substructure that may be present in other protoplanetary disk
datasets, as well as the physical inference this can inform.

3.2 Model

A full description of the frank model framework and its limitations is in Jennings et al.
(2020). In short, frank reconstructs the 1D (axisymmetric) brightness profile of a source as
a function of disk radius by directly fitting the real component of the deprojected, unbinned
visibilities as a function of baseline. The brightness profile is determined nonparametrically
by fitting the visibilities with a Fourier-Bessel series, which is linked to the real space profile
by a discrete Hankel transform. A Gaussian process regularizes the fit, with the covariance
matrix nonparametrically learned from the visibilities under the assumption that this matrix is
diagonal in Fourier space. The free parameters (diagonal elements) of the matrix correspond
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to the power spectrum of the reconstructed brightness profile. The fitting procedures takes
≲ 1 min on a standard laptop for each dataset shown here.

For a full description of the model framework in frank, see Jennings et al. (2020). Here
we briefly and qualitatively summarize the approach. frank reconstructs the azimuthally
averaged brightness profile of a source as a function of disk radius by directly fitting the real
component of the deprojected, unbinned visibilities as a function of baseline.1 The brightness
profile is determined nonparametrically by fitting the visibilities with a Fourier-Bessel series,
which is linked to the real space profile by a discrete Hankel transform (Baddour and
Chouinard, 2015). The Fourier transform of a circle has a Bessel function kernel, making
the discrete Hankel transform (DHT) a natural basis for circular (at least to zeroth order)
protoplanetary disks. A Gaussian process regularizes the fit, with the covariance matrix
nonparametrically learned from the visibilities under the assumption that this matrix is
diagonal in Fourier space. The free parameters (diagonal elements) of the matrix correspond
to the power spectrum of the reconstructed brightness profile. The approach is largely built
on that in Oppermann et al. (2013).

The model has five free parameters; variation in reasonable choices for three of these (the
outer radius and number of points used in the fit, and the floor value for the power spectral
mode amplitudes) has a trivial effect on the recovered profile. Of the remaining two, 𝛼 sets
the signal-to-noise (SNR) threshold at which the model stops fitting the data, with a larger 𝛼
resulting in a higher SNR threshold. The choice of 𝛼 effectively corresponds to a maximum
baseline beyond which the model does not attempt to fit the visibilities. This is relevant
for the DSHARP datasets, as they all become noise-dominated typically at ≳ 5 M_, while
the maximum baseline is ≈ 10 M_. In practice we manually choose an 𝛼 value to fit out to
the baseline at which the binned visibility SNR begins to oscillate about SNR = 1 (due to
the uv sampling becoming highly sparse). The SNR is assessed with 20 k_ bins of the real
component of the visibilities, using SNR = `2/𝜎2, where ` is the mean visibility amplitude
in each bin and 𝜎 the standard deviation. Pushing the fit out to these long baselines always
comes at the cost of fitting some noise, which imprints on the brightness profile as rapid
oscillations, usually with very low amplitude (typically < 1% of the profile’s peak brightness;
as an example, see the fit residuals in Fig. 8 of Jennings et al. 2020). To suppress these
noisy oscillations, the remaining free parameter 𝑤smooth varies the spatial frequency scale
over which the visibility SNR is averaged when building the power spectrum. A nonzero

1We will use the disk geometries and phase centers in Huang et al. (2018a) to deproject the DSHARP
datasets. Those values were determined in the image plane by either fitting ellipses to individual annular rings
or fitting a 2D Gaussian to the image. Across all datasets, we have tested both fitting a 2D Gaussian to the
visibilities and fitting the visibilities nonparametrically to determine the geometry and phase center. In general
we have found close agreement with the published values and so default to those.
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𝑤smooth prevents regions of artificially steep gradient in the power spectrum that are due to
undersampled baselines.

For the DSHARP datasets, we use 𝛼 and 𝑤smooth values within the ranges 1.01 ≤ 𝛼 ≤ 1.50
and 10−4 ≤ 𝑤smooth ≤ 10−1, tailoring choices to the unique visibility distribution and noise
properties of each dataset. We favor the smaller values within these ranges in order to reduce
the constraint placed by the Gaussian process prior on the brightness profile reconstruction.

To fit each dataset, we download the self-calibrated and multi-configuration combined
continuum measurement sets from https://bulk.cv.nrao.edu/almadata/lp/DSHARP. Before
extracting the visibilities using the export_uvtable function of the uvplot package
(Tazzari, 2017), we apply channel averaging (to obtain 1 channel per spectral window) and
time averaging (30 sec) to all spectral windows in the original MS table. The frank fit takes
≲ 1 min for each resulting visibility distribution.

To generate images of the frank residual visibilities in this chapter, we produce mea-
surement sets from the frank residual UV tables, then use the tclean scripts from the
DSHARP website to image. These scripts yield CLEAN beams that are often larger than
those in the .fits files on the website, though only by 1−2 mas along either axis. The
only exception is HD 143006, where the CLEAN beam is 36×53 mas in the .fits file, while
the tclean script yields 47×48 mas (this may be due to slightly different versions of CASA
used). For consistency with the imaged frank residuals, we will therefore show CLEAN
images generated by applying the published tclean scripts to the published measurement
sets, rather than showing the published .fits images.

3.2.1 Point source-corrected fits

Eleven of the 20 DSHARP datasets do not clearly converge on zero visibility amplitude at
their longest baselines, exhibiting a mean value of 0 < Re(𝑉) < 1 mJy (relative to a peak
visibility amplitude of ≈ 100 mJy). This seems to indicate that the observations are detecting
a point-like source – namely the innermost disk, whose brightness increases sharply toward
𝑟 = 0. A frank visibility fit strongly drives to zero once its SNR threshold is reached (which
is a deliberate choice motivated by the high uncertainty in extrapolating the fit beyond the
longest well-sampled baselines). And a steep slope in the fit at any baseline is represented in
the brightness profile as structure on the corresponding spatial scale. Thus for a dataset that
does not converge on zero at long baselines, a steep slope in the frank fit prior to the baseline
at which the visibilities converge on zero can impose false oscillations on the brightness
profile. These oscillations manifest as a sinc-like function, at constant spatial period (the
inverse of the spatial frequency location of the slope in Fourier space) and at an amplitude
that diminishes away from 𝑟 = 0.

https://bulk.cv.nrao.edu/almadata/lp/DSHARP
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To prevent this artifacting, we have developed an extension to frank for a ‘point source-
corrected model’ to effectively subtract a point source from the visibilities and fit the resulting
‘residuals’, which are centered on Re(𝑉) = 0 at long baseline. By doing this we have implicitly
assumed that there is a strong point source at the center of the disk. This model is one of an
infinite number of choices to extrapolate the fitted visibility distribution to inaccessible scales
(a requirement of any imaging algorithm) while remaining consistent with the observed data.
The choice is however sensible, as it is both physically and practically motivated. Discs are
expected to rapidly increase in brightness towards the star, and applying no point-source
correction can lead to spurious, coherent oscillations in the recovered brightness profile.

A pure point source (Delta function) in real space transforms to a constant visibility
amplitude at all baselines. While the innermost disk is not physically a Delta function, we find
this approximation works well in an unresolved component fit. In the point source-corrected
model, we first subtract a constant amplitude from the visibilities, equal to the mean offset
from zero at the dataset’s longest baselines (specifically, those beyond the point at which
the binned visibility SNR begins to oscillate about 𝑆𝑁𝑅 = 1). Then we perform a standard
frank fit on the ‘residual’ visibilities, and finally add the constant amplitude offset back into
the frank visibility fit. Empirically, we have found this approach does a reasonable job of
preventing artifacting in the frank brightness profile for each of the 11 DSHARP datasets
whose visibilities do not clearly converge on zero (we will note these disks in Sec. 3.3).
However the technique does not fully suppress oscillations in the brightness profile in some
sources, particularly in the innermost disk. In these cases the amplitude and spatial period of
oscillations is sensitive to the point source amplitude; an example is shown in Sec. 3.7. We
therefore assess the associated uncertainty by comparing, for each source, the fit that uses the
point source amplitude as determined above with a fit that uses a 1.5× larger point source
amplitude (an example case is discussed in Sec. 3.7). This is motivated by a model with a
larger point source amplitude effectively fitting the data to shorter baseline, which yields a
more conservative estimate of small scale substructure in the brightness profile. In the main
text we show the difference between the profiles of these two point source fits as an informal
uncertainty band.

3.2.2 Model limitations

The model’s notable limitations in the context of this analysis are:

1. The 1D (axisymmetric) approach fits for the azimuthal average of the visibility data at
each baseline. The model is thus inaccurate for any annulus at which the brightness is
not perfectly symmetric, averaging an asymmetry over 2𝜋 in azimuth. Azimuthally
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localized features such as a bright arc then appear in the 1D brightness profile as a
plateau or ‘bump’ (depending on their relative brightness; we will identify specific
instances). Especially for super-resolution features not seen in a CLEAN image, it can be
difficult in some cases to distinguish the artifact of an asymmetry from an underresolved
annular feature using only the 1D frank brightness profile and observed visibilities.

To partially resolve this ambiguity, we image the frank fit residual visibilities to exploit
that the axisymmetric model fits for the average brightness at each annulus. This
effectively isolates azimuthal asymmetries in the imaged residuals2, allowing us to
identify radii at which asymmetries are coincident with features in the reconstructed
brightness profile. But for disks that have overlapping annular structures and azimuthal
asymmetries (in DSHARP, disks with prominent spirals), interpretation is more
ambiguous. We generate a frank residual image using the same imaging parameters
as the CLEAN image of the source; the residual image is thus convolved and at lower
resolution than the frank brightness profile. Assessment of these residual images is
therefore not a substitute for analysis with a 2D super-resolution model.

The axisymmetric approach in frank is also incorrect for fields of view with multiple
sources (AS 205 and HT Lup in the DSHARP sample), as these are asymmetric on
large scales. Structure on the scale of a secondary disk must at some level bias the
frank fit for the primary, and we have tested the severity of this effect by refitting the
HT Lup dataset after subtracting out the secondary disk seen in the CLEAN image. We
found this to only weakly alter the morphology of the frank brightness profile for
HT Lup. We verified this weak sensitivity with mock datasets containing brightness
asymmetries, in which we found a frank brightness profile to be trivially altered
by structure on a given scale at radii where that structure is not present. Regardless,
application of the model to a field of view with multiple sources is formally incorrect.

2. While frank produces an estimate of the uncertainty on the fitted brightness profile,
the estimate is not reliable because reconstructing the brightness from Fourier data is
an ill-posed problem (see the discussion of this in Jennings et al., 2020). In particular,
we do not have a robust approach for accurately extrapolating visibility amplitudes
in a given dataset beyond the longest baseline that frank fits. The uncertainty on
the brightness profile produced by the model is an underestimate, and we thus do not
show a formal uncertainty on any profile in this chapter (the uncertainty described in

2While azimuthal asymmetries are ‘isolated’ in the imaged frank residuals, their brightness in the image is
biased because the 1D fit cannot localize flux azimuthally. The fit recovers the total flux in any annulus correctly.
But a feature such as a bright arc that is localized in azimuth will have its imaged brightness biased low, because
the fit distributes it over the full 2𝜋 in azimuth.
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Fig. 3.1. Effect of CLEAN beam convolution (and other factors) on substructure recovery
in DSHARP
a) For the DSHARP observations of SR 4, radial brightness profiles extracted from the CLEAN
image and CLEAN model, as well as the frank brightness profile. The frank profile and
CLEAN model profile peak at 8 and 16×1010 Jy sr−1 respectively.
b) The discrete Hankel transform (DHT) of the CLEAN profiles in (a), and the frank visibility
fit. Data are shown in 20 and 100 k_ bins.

Sec. 3.2.1 is informal). The uncertainty on spatial scales well resolved by a frank fit
is very low as demonstrated with mock data in Jennings et al. (2020). We note that the
1𝜎 contour typically shown as an uncertainty on CLEAN brightness profiles is also often
an underestimate, as will be evident by comparing the CLEAN and frank profiles in
this chapter. A valuable test of systematics in the extrapolation of any model is perhaps
best achieved in practice by comparing observations of the same source at different
resolutions (see, e.g., Yamaguchi et al. 2020 for this comparison using sparse modeling,
or Jennings et al. 2020 for such a comparison with frank fits to moderate resolution
and DSHARP observations of AS 209).

3. The current frank model fits for the brightness in linear space and is not positive
definite (see Appendix C in Jennings et al. 2020). Consequently the frank brightness
profile for a disk with a deep gap or an inner cavity can exhibit negative brightness in
this region. We will enforce that such fits must have nonnegative brightness (which
trivially affects the visibility domain fit) and will note disks for which we impose this
constraint.
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3.3 Methodologies – Assessing effective CLEAN resolution
and fit accuracy

Here we motivate resolution limitations that affect CLEAN images and CLEAN models
(Sec. 3.3.1), then compare the accuracy of brightness profiles extracted from CLEAN images
and CLEAN models to the frank fits for all DSHARP datasets, quantifying the resolution
improvement in frank (Sec. 3.3.2). We summarize the principles of comparing frank fits
to CLEAN in Sec. 3.3.3.

3.3.1 CLEAN model and image resolution

As noted in Sec. 3.1, convolution of the CLEAN model image with the CLEAN beam induces
resolution loss in the final CLEAN image (and thus the 1D brightness profile). As an example,
convolution of a circular beam whose full-width-at-half-maximum (FWHM) is equal to
the FWHM of a Gaussian feature in a brightness profile in a broadening of the feature by
≈ 40% and a reduction in its amplitude by ≈ 30%. Convolution in real space corresponds to
multiplication in Fourier space, which induces a loss in resolution in the visibility domain via
an underestimate of the observed visibility amplitudes, an effect that worsens with baseline.
The FWHM of a Gaussian in real space as a function of radius 𝑟 corresponds to a FWHM
in Fourier space as a function of spatial frequency 𝑞 by FWHMq = 4ln(2)/(𝜋 FWHMr),
obtained by relating the standard deviations in real and Fourier space.

While CLEAN beam convolution is the primary source of resolution loss in the CLEAN
procedure, additional contributions can arise from, e.g., non-Gaussianity of the PSF (dirty
beam). To assess the inherent performance of the CLEAN algorithm – the resolution prior to
CLEAN beam convolution – it is thus useful to examine the CLEAN model image (the .model
output of tclean). A brightness profile extracted from this image directly measures the
algorithm’s achievable resolution and can itself be used to quantify a source’s emission
features. Some real astrophysical flux may be missed because the final residual image has
not been added to the model image, and the brightness profile is often noisy due to the
model image’s sparse composition. But the Fourier transform of a profile extracted from the
model image can quantify how well the modeling framework in the CLEAN procedure fits the
observed visibility distribution as a function of baseline.

To this end, Fig. 3.1 compares the brightness profiles extracted from the convolved
CLEAN image and the CLEAN model, as well as the Fourier transform of these profiles, for the
DSHARP observations of AS 209. The profiles identify the same features in Fig. 3.1(a), but
the CLEAN model profile shows higher amplitudes (though also more noise) and narrower
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widths for the two innermost disk features. This resolution advantage is not maintained across
all disk features, as the CLEAN model profile does not recover the rings in the CLEAN image
profile at ≈ 0.25′′ and 0.33′′. This is because not all of the real flux in the dirty image is
incorporated into the CLEANmodel. The CLEANmodel profile also shows effectively identical
widths and amplitudes as the CLEAN image profile for the two outer disk rings. Additionally
and importantly, the CLEAN model can have negative components.

The Fourier domain equivalents of these brightness profiles in panel (b) show how the
transform of the CLEAN image profile underestimates visibility amplitudes with increasing
severity as baseline increases, as expected from beam convolution. The transform of the CLEAN
model critically still underestimates the visibility amplitudes between ≈ 1.6−3.7 M_, and
overestimates amplitudes between ≈ 4.1−5.1 M_. This demonstrates that additional factors
beyond CLEAN beam convolution are nontrivially limiting recovery of the full information
content in the long baseline data, and thus that the inherent performance of the CLEAN
modeling framework is resolution-limited. We emphasize that all DSHARP datasets were
CLEANed by experts in the field (Andrews et al., 2018; Huang et al., 2018a); these results
trace practical resolution limits of CLEAN rather than the capability of a user.

For reference, if we compare the observed visibilities for a given survey dataset to the
Fourier transform of a brightness profile extracted from the CLEAN image, then convolve the
data with a beam that minimizes the difference with the Fourier transform of the brightness
profile, the average CLEAN beam width across the survey is increased by a factor of 1.16.
This simplistically treats all resolution-limiting factors in the CLEAN images as convolution
operators, but it gives a sense of the aggregate resolution limitations in the CLEAN images
beyond the effect of CLEAN beam convolution. PSF sidelobe structure and the compromise
between resolution and sensitivity in the choice of the Briggs robust parameter in tclean
are two notable resolution-limiting contributors.

For comparison to the CLEAN image and CLEAN model profiles, the frank fit to AS 209
is also shown in Fig. 3.1. The frank profile in panel (a) more highly resolves features seen
in the CLEAN image profile and suggests a small bump at ≈ 0.16′′ not present in either the
CLEAN image profile or the CLEAN model profile. In panel (b), the frank visibility fit is
correspondingly more accurate than the transforms of both the CLEAN profile and the CLEAN
model beyond ≈ 1 M_; factors problematic for CLEAN such as PSF sidelobe structure are
not limiting the frank fit resolution. frank is thus outperforming the inherent resolution
capability of the CLEAN algorithm. This relative performance holds across the DSHARP
survey, as we will now quantify.
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Fig. 3.2. CLEAN and frank fit accuracies in DSHARP
a) Baseline accuracy metric 𝐵80 for the convolved CLEAN image, CLEAN model, and frank
visibility fits across the 20 DSHARP sources. The accuracy metric is the shortest baseline
beyond which a fit shows ≥ 20% error in visibility amplitude for a consecutive ≥ 200 k_
(Sec. 3.3.2). Sources are sorted by the expected baseline resolution of each dataset (see
Equation 3.1).
b) Ratio of the frank to CLEAN baseline accuracy metric for both the convolved CLEAN image
and CLEAN model visibility fits.
c) An example of the baseline accuracy calculation. The visibility distribution for Sz 129
(20 k_ bins), the frank visibility fit, and the Fourier transform of the brightness profiles
extracted from the convolved CLEAN image and CLEAN model.
d) Fractional residuals [(data - model / data); 20 k_ bins] for the convolved CLEAN image
visibility fit, CLEAN model visibility fit and frank visibility fit.
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3.3.2 Using the visibilities to quantify the accuracy of CLEAN model,
CLEAN image, and frank brightness profiles

It is useful to consider a metric that directly quantifies the accuracy of a 1D brightness profile
extracted from a CLEAN image or CLEAN model by comparing the Fourier transform of the
profile to the observed visibilities. Such a metric can incorporate all sources of error in the
visibility domain representation of the profile, while being agnostic to the causes of these
errors. This metric also allows us to compare the fit accuracy in CLEAN and frank. We will
use as a metric a simple assessment of a profile’s visibility space residuals.

We have found the most robust definition of a visibility space accuracy metric to be
the shortest baseline 𝐵80 beyond which a fit shows ≥ 20% error in visibility amplitude for
a minimum consecutive 200 k_ (using 20 k_ binning). In practice these criteria robustly
identify, across all 20 DSHARP sources, the first baseline at which the Fourier transform
of a profile extracted from a CLEAN image or model, or the frank visibility fit, departs
appreciably from the observed visibility amplitudes and only becomes more inaccurate
with increasing baseline. Varying the 20% threshold has a weak effect on 𝐵80, frank, while
decreasing the threshold to 10% yields an average 𝐵90, CLEAN image = 0.64 𝐵80, CLEAN image,
and 𝐵90, CLEAN model = 0.87 𝐵80, CLEAN model across the 20 DSHARP datasets. Increas-
ing the threshold to 50% gives an average 𝐵50, CLEAN image = 1.97 𝐵80, CLEAN image and
𝐵50, CLEAN model = 2.26 𝐵80, CLEAN model. Varying the 200 k_ threshold has a weak effect
on 𝐵80, frank, 𝐵80, CLEAN image and 𝐵80, CLEAN model. The 𝐵80 metric approximately gives a
corresponding spatial scale down to which a CLEAN or frank brightness profile accurately
recovers substructure widths and amplitudes. A profile can of course partially recover
information on smaller spatial scales, but features on these scales will be underresolved
relative to the dataset’s available resolution information.

Fig. 3.2(c) – (d) show the application of the 𝐵80 accuracy metric to the Sz 129 DSHARP
dataset. In panel (c) the Fourier transform of a brightness profile extracted from the CLEAN
image begins to show error at baselines near 𝐵80, CLEAN image, with inaccuracies growing in
severity beyond 𝐵80, CLEAN image. The transform of a profile extracted from the CLEAN model
has a 𝐵80, CLEAN model that is highly similar to 𝐵80, CLEAN image, with clear inaccuracy beyond
𝐵80, CLEAN image. Applying the same metric to determine 𝐵80, frank, the frank visibility fit
in Fig. 3.2(c) accurately matches the observed visibility amplitudes out to ≈ 2.8 M_, the
baseline at which the binned data’s SNR begins to oscillate about SNR = 1. Finally, the
CLEAN (image and model) and frank residual visibilities in Fig. 3.2(d) demonstrate the
higher accuracy of the frank fit even at moderate baselines. The CLEAN model residuals
increase over a broad baseline range due to fundamental limitations in the CLEAN algorithm,
while the CLEAN image residuals similarly increase over a broad range due additionally to
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Table 3.1. Expected and achieved fit accuracy metrics shown in Fig. 3.2, as well as the baseline
equivalent of the data’s expected resolution given in Equation 3.1. Standard deviations assume
a Gaussian distribution. Conversions to au account for the unique distance to each source. _
is the observing wavelength; 𝐿80 is the eightieth percentile of the baseline distribution. The
last two rows give a mean and standard deviation taken across the 20 datasets (i.e., not simply
the ratio of preceding rows).

Baseline quantity, 𝐵 Mean and standard deviation
𝐵data, expected = 0.574_/𝐿80 4.75±1.39 M_

𝐵80, CLEAN image 1.10±0.48 M_

𝐵80, CLEAN model 1.72±0.97 M_

𝐵80, frank 4.12±1.05 M_

𝐵80, frank/𝐵80, CLEAN image 4.34±1.99
𝐵80, frank/𝐵80, CLEAN model 3.04±1.47

CLEAN beam convolution. The frank residuals remain ≈ 0 until the sharp rise at the baseline
where the fit’s SNR threshold is met and the fit drives toward zero.

The ordering of the baseline accuracy measurements for Sz 129 is indicative of results
across the survey: 𝐵80, CLEAN image ≲ 𝐵80, CLEAN model < 𝐵80, frank. Fig. 3.2(a) shows this fit
accuracy analysis for all DSHARP sources, ordered by increasing 𝐵data, expected, the baseline
equivalent of the expected angular resolution,

\data, expected = 0.574_/𝐿80. (3.1)

Here _ is the observing wavelength and 𝐿80 is the eightieth percentile of the baseline
distribution (Remijan et al., 2019). For reference, the observed visibility distributions for
the DSHARP datasets typically extend to ≈ 8− 10 M_, with a mean 𝐵data, expected = 4.72
M_. Fig. 3.2(b) shows that across the 20 DSHARP datasets, frank is accurately fitting
the visibilities to a mean factor of 4.3 longer baseline than brightness profiles extracted
from the CLEAN images, and a factor 3.0 longer baseline than profiles extracted from the
CLEAN models. This reaffirms that frank is outperforming the achieved resolution in both
the CLEAN images and CLEAN models. The resolution ratios and individual fit metrics are
summarized in Table 3.1. For reference, increasing the accuracy metric’s error threshold
from 20% to 50% decreases the mean 𝐵80, frank/𝐵80, CLEAN image from 4.3 to 3.0, and the
mean 𝐵80, frank/𝐵80, CLEAN model from 3.0 to 1.9.
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Fig. 3.3. Recovered brightness profiles
For each source in the DSHARP survey, the convolved CLEAN image, CLEANmodel and frank
brightness profiles. Some profiles zoom on the inner region of the disk. Discs are arranged
from left to right and then top to bottom in ascending order of frank fit resolution. Informal
uncertainties are shown on disks fit with the point source-corrected model (Sec. 3.2.1).
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Fig. 3.4. Visibility fits at long baseline
For each source in the DSHARP survey, a zoom on the data’s long baselines (> 0.25 M_,
corresponding to spatial scales < 0.83′′ mas) to show the accuracy of the CLEAN image,
CLEAN model and frank fits in matching detailed visibility structure. Data are shown in 20
and 100 k_ bins (gray ‘×’ and black ‘+’ respectively) and become heavily noise-dominated at
the longest baselines across all datasets, typically at ≳ 5 M_. frank does not fit these regions,
as doing so would imprint noisy oscillations on the recovered brightness profile. Discs are
arranged from left to right and then top to bottom in ascending order of frank fit resolution.
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3.3.3 A general note on comparing frank to CLEAN

The CLEAN algorithm is a model to deconvolve the 2D sky brightness from the instrument
PSF, which requires a functional form for the fundamental brightness unit (e.g., point
sources or Gaussians). By comparison, frank is a visibility fitter, with the express goal
of accurately recovering the 1D projection of the data. This is done nonparametrically,
but requires assumptions that the emission is axisymmetric and that the source geometry
can be perfectly determined. These two tools can be used for different goals; in the case
of accurately describing a source’s azimuthally averaged brightness, frank offers a clear
resolution advantage over a profile extracted from a CLEAN image. The tradeoff is the
potential imprint of reasonably high contrast azimuthal asymmetries on the morphology of
a frank brightness profile; this must be diagnosed by Fourier transforming (imaging) the
residual frank visibilities and/or examining the imaginary component of the observed data.
In summary, for the purpose of obtaining a 1D brightness profile of a source (under the
assumptions of axisymmetry and known source geometry), frank will yield a more accurate
(higher resolution) result, without a loss in sensitivity, compared to extracting an azimuthally
averaged profile from the CLEAN image.

3.4 Results

Fig. 3.3 shows the frank brightness profile for each DSHARP disk, as well as the CLEAN
image profile from Huang et al. (2018a) and the CLEAN model profile obtained using the
published tclean scripts. The frank fits exhibit more highly resolved, and in some cases
new, substructure relative to the CLEAN images. Consistent with expectations from CLEAN
beam convolution, the CLEAN image profiles also tend to underestimate the source’s peak
brightness (frank must as well, albeit to a lesser extent). The frank profiles further identify
fine substructure more clearly than the noisy CLEAN model profiles. As a general note,
feature morphologies primarily in the inner disk of the frank profiles can be expected to
evolve with higher resolution observations, which could for example find gaps to be deeper
and broader, resolve rings into multiple components, or reduce the amplitude of features
by placing stronger constraints on structure at the smallest scales recovered in these data.
Table 4.1 gives the values of the hyperparameters used in each frank fit.

Fig. 3.4 shows a zoom on the long baselines of the frank visibility fits and the Fourier
transform of the CLEAN image and model brightness profiles across the survey. The higher
resolving power evident in the frank brightness profiles for all 20 sources corresponds to the
frank visibility fits matching the data at high accuracy to longer baseline than the CLEAN
image profiles and (to a lesser extent) the CLEANmodel profiles. Table 4.1 notes which frank
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fits use the point source-corrected model (Sec. 3.2.1) and gives the point source visibility
amplitude applied. For some sources – DoAr 25, Elias 27, HD 163296, AS 205, GW Lup,
Elias 24, and IM Lup – frank is clearly fitting some noise on top of the signal at long
baseline. This manifests as short spatial period, low amplitude (< 1% of the peak brightness)
noise in the corresponding brightness profile. We accept this as a tradeoff for fitting out to
baselines at which the binned data SNR approaches unity. The effect is seen most clearly in
the logarithmic brightness plots for GW Lup, Elias 24 and HD 163296 in Fig. 3.10 (which
will be discussed in Sec. 3.5.6).

3.5 Analysis

Table 3.3 summarizes the major new and appreciably better resolved annular features in the
frank fits across the survey, as well as quantifies the gap/ring widths and gap depths. For the
purpose of comparison, this quantification follows the approach in Huang et al. 2018a (see
their §3.2). The metric measures a gap depth as the ratio of the brightness at center of the gap
𝐼d to the brightness at the center of the ring 𝐼b exterior to the gap, and determines a feature
width by defining the edges of an adjacent gap and ring using the average 𝐼mean = 0.5(𝐼d + 𝐼b).
This does not yield a perfect comparison for feature widths and depths between CLEAN and
frank profiles, because the frank profiles exhibit additional low amplitude substructure
(e.g., in some gaps and on the wings of some rings). But as a coarse comparison, among
the features in Table 3.3, 7 of the 12 gaps and each of the 8 rings were quantified in Huang
et al. (2018a). For this subset, the frank profiles find the gaps to be a mean 14% wider
and 44% deeper, and the rings to be a mean 26% narrower. This illustrates the utility of the
super-resolution fits for substructure characterization.

Grouping the frank brightness profiles in Fig. 3.3 by morphology, we can identify new
substructure trends. We will exclude the multiple systems HT Lup and AS 205 from the
following analysis because, as discussed in Sec. 3.2.2, while the 1D frank profiles are not
visibly biased by the presence of multiple sources in the field of view, application of the
model to such a case is still formally incorrect. We do note here that the frank fit for HT Lup
identifies the primary disk’s spiral structure as the bump in the profile at 15 au in Fig. 3.3.

Collectively, these trends as detailed below demonstrate two broad findings. First, the
DSHARP sources – already rife with gaps and rings as identified in Huang et al. (2018a) –
are even more structured, especially interior to 30 au. Second, the gaps and rings detected in
the CLEAN images, which in many cases have widths 2−3× that of the CLEAN beam, become
deeper and wider (gaps) or narrower and brighter (rings) when we fit the data with frank.
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3.5.1 The compact DSHARP disks all show substructure

The super-resolution frank fits find new substructure in each of the DSHARP survey’s three
compact (𝑅max < 50 au), single-disk systems – WSB 52, DoAr 33 and SR 4. As a prominent
example – shown in Fig. 3.5 – the frank profile for SR 4 resolves the broad depression in
the CLEAN profile into two distinct, deep gaps within 20 au (those listed in Table 3.3). The
innermost of these is centered at 4 au; the outer, centered at 11 au, is predicted by frank to
be at least as deep as the fit’s noise floor (≈ 109 Jy sr−1, or 4% of the fitted peak brightness).
Additionally, the frank profile for WSB 52 finds a new, shallow gap/ring pair at 13/17 au (in
addition to the previously identified gap/ring pair at 21/25 au), and the frank fit for DoAr 33
resolves the single gap/ring pair at 9/17 au in the CLEAN profile into two gap/ring pairs.

Typical of current observations of compact disks, the shallow features in the frank
profiles for these compact sources could be either intrinsically wide and shallow or narrow and
underresolved. Sensitive observations at higher angular resolution are needed to distinguish
between the two scenarios. We use a point source-corrected fit for WSB 52 and DoAr 33
(Sec. 3.2.1), with the profile’s sensitivity to the point source visibility amplitude shown as
the informal uncertainty band in Fig. 3.5.3 The substructure in both sources is robust to this
informal uncertainty.

The commonality of substructure frank finds across these three compact DSHARP
sources suggests that in general compact disks, just as more extended disks, may routinely
exhibit annular substructure. SR 4 is particularly notable in this context, with its effectively
empty gap at 11 au analogous to the empty gap frank finds at 10 au in the much larger disk
of AS 209 (outer radius ≈ 150 au). If compact disks are frequently structured, it may follow
that the same physical processes (including companions) responsible for structure in larger
disks are also efficacious in smaller disks. The improved identification of substructure in
the compact DSHARP disks is also of particular interest, as compact sources represent a
significant yet understudied component of the protoplanetary disk population.

3We recall from Sec. 3.2.1 that this uncertainty is calculated as the difference in brightness as a function
for radius between the standard point source fit and the 1.5× point source amplitude fit. In the standard point
source fit, the point source amplitude is set as the mean of the visibility amplitudes beyond the baseline at which
the 20 k_ binned visibility SNR begins to oscillate about unity. We note that this point can be at a baseline
slightly shorter than that beyond which the visibility scatter strongly increases, which can result in the fit not
perfectly bisecting the average value of the longest baseline points.
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Fig. 3.5. Substructure in compact disks
For each of the compact (𝑅max < 50 au) single-disk systems in DSHARP, a zoom on the data’s
long baselines (> 0.40 M_, corresponding to spatial scales < 0.52′′ mas; data shown in 20 and
100 k_ bins), the frank and CLEAN visibility domain fits, the frank and CLEAN brightness
profiles (in some cases zoomed into lower brightness), an image of the frank profile swept
over 2𝜋 and reprojected, and the CLEAN image. The frank and CLEAN images of each disk
use the same arcsinh stretch color scaling (𝐼stretch = arcsinh(𝐼/𝑎) / arcsinh(1/𝑎), 𝑎 = 0.02,
as shown by the colorbar), but different brightness normalization. The generic color bar
gives the normalized color scale, and the peak brightness is listed on each image. Discs are
arranged from top to bottom by increasing frank fit resolution. Informal uncertainties are
shown on disks fit with the point source-corrected model (Sec. 3.2.1).
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3.5.2 Extended disks show brighter rings, deeper gaps, and hints of
inner disk substructure

frank fits for several extended DSHARP sources better resolve the gaps and rings that appear
shallow in the CLEAN profiles, as shown in Fig. 3.6. This is especially apparent in the outer
gap and ring pair in GW Lup, where in the frank profile the brightness contrast between the
gap and ring is 0.01, compared to 0.31 in the CLEAN profile (see Table 3.3); and in RU Lup,
where the three consecutive gaps interior to 30 au are deeper in the frank profile (the contrast
of the gap at 29 au for example is 0.57 in the frank fit, compared to 0.78 in the CLEAN
profile). The frank fit to Elias 24 robustly finds a new gap at 13 au, and the model better
resolves the faint ring at 45 au in Sz 114.

For RU Lup, Sz 114, Elias 20, GW Lup, and Elias 24, the model suggests a steep
inner disk in the inner 5−7 au, followed by a shallower slope at slightly larger radii. This
may be an indication of underresolved substructure between ≈ 7−12 au. We use the point
source-corrected fit (Sec. 3.2.1) for 5 of the 6 sources in Fig. 3.6 and show the profile’s
sensitivity to the point source visibility amplitude as the informal uncertainty band. This
suggests we should be cautious about the fit’s exact structure in the innermost disk, while the
change in slope is robust to this uncertainty.

In addition to these sources, the frank brightness profile for a majority of the 20 DSHARP
disks exhibits either gap and ring substructure interior to 30 au, or clear change in slope
interior to ≈ 12 au. This suggests substructure is common not only at ≥ 30 au, but also at the
smaller separations that harbor the bulk of the observed exoplanet population. The Gaussian
kernel density estimate for gap and ring locations in Huang et al. (2018a) peaks at 30 au,
while by comparison the frank fits suggest that the occurrence rate continues to rise toward
𝑟 = 0. The (effectively) empty gaps at ≈ 10 au in the frank fits for AS 209 (gap contrast of
0.00 in the frank profile, compared to 0.45 in the CLEAN profile) and SR 4 (contrast of 0.02
in the frank profile, compared to 0.23 in the CLEAN profile) suggest that the lack of such
deep features identified thus far in high resolution disk observations is an artifact of resolving
power, rather than an intrinsic absence of cleared gaps in inner disks.

3.5.3 Two of the oldest DSHARP disks appear to have inner cavities

frank finds that 2 of the 20 DSHARP disks, HD 143006 and Sz 129, have a fully cleared
inner cavity. The CLEAN profiles for these sources show a decreasing brightness toward 𝑟 = 0,
but not a full cavity in Fig. 3.7, and the frank fits also find the disks to have an appreciably
brighter inner rim (noted in Table 3.3). Huang et al. (2018a) inferred the presence of a
cleared cavity in these sources from the CLEAN images, now confirmed by the frank fits.
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Fig. 3.6. Substructure in extended disks
As in Fig. 3.5, but for the extended (> 50 au) DSHARP disks in Sec. 3.5.2.



3.5 Analysis 93

106 107

−2

0

2

4

Re
(V

) [
mJ

y]

CLEAN
frank

0 50 100
0.0

0.5

1.0

1.5

2.0

2.5

I [
10

10
 Jy

 sr
−1

]

Sz 129

CLEAN
frank

Ipeak = 641 mJy arcsec−2
frank

−0.50.00.5 −0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

31 × 44 mas

Ipeak = 641 mJy arcsec−2
CLEAN

1 10 100 103

−3

−2

−1

Observed SED

106 107

Baseline [λ]

−4

−2

0

2

4

6

Re
(V

) [
mJ

y]

0 50 100
r [AU]

0.0

0.5

1.0

1.5

I [
10

10
 Jy

 sr
−1

]

HD 143006 Ipeak = 421 mJy arcsec−2

−0.50.00.5
RA offset ["]

−0.4
−0.2
0.0
0.2
0.4

De
c o

ffs
et 

["]

47 × 48 mas

Ipeak = 329 mJy arcsec−2

1 10 100 103

λ [μm]

−4

−2

0

log
10

(L
ν/L

⊙
)

0.0 0.2 1.0Norm. I

Fig. 3.7. Evidence for inner cavities
As in Fig. 3.5, but for the DSHARP disks showing indications of inner cavities. Additionally
shown are the observed spectral energy distributions (Andrews et al., 2018). The azimuthally
localized bright arc along the outer edge of the outer ring in the CLEAN image for HD 143006
is erroneously visualized as a symmetric feature in the frank image (because the model is
1D) and manifests in the frank brightness profiles as the ‘bump’ at 77 au.

The spectral energy distribution (SED) for HD 143006 (and potentially for Sz 129) shows a
dearth in the near-IR (≈ 10−20 `m) and excess in the far-IR (≈20−100 `m) as shown in
Fig. 3.7 (SEDs adapted from Andrews et al., 2018). These may be indications of transition
disks, with the depletion of near-IR emission suggesting a lack of hot midplane dust at small
radii relative to the cold, optically thin outer disk signature in the form of the far-IR excess. It
is also possible that either of these sources has a sharp rise in brightness in the innermost
disk that is not resolved by frank.

Intriguingly, HD 143006 and Sz 129 may be two of the oldest disks in the DSHARP
sample. Among the survey’s single-disk systems, 5 of 18 orbit a star whose inferred age
is > 2 Myr as reported in Andrews et al. 2018 (see specific references in their Table 1):
HD 143006 (4.0±2.0 Myr), Sz 129 (4.0±2.5 Myr), MY Lup (10.0+4.0

−2.0 Myr), HD 142666
(12.6±0.3 Myr), and HD 163296 (12.6±4.0 Myr). These estimates are in general subject
to systematic challenges such as interpreting robust ages at high effective temperature, and
Andrews et al. (2018) additionally note that the age for MY Lup may be overestimated due to
the inclined and flared disk extincting the stellar spectrum. Of the remaining four potentially
old sources, HD 143006 and Sz 129 show inner cavities in the frank fits, while HD 142666
and HD 163296 both show gaps interior to ≈ 5 au. No other frank brightness profile in
DSHARP shows a turnover in brightness interior to 5 au, which may tentatively suggest that
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these four objects are experiencing the later stages of disk dispersal, losing (or having already
lost) their inner disk at their potentially advanced ages. The expectation is in line with the
finding by Espaillat et al. (2014) that the fraction of transition disks in star forming regions
and young clusters increases from ≈ 1% to ≈ 10% for ages ≳ 2 Myr (these percentages do
carry large uncertainties).

More speculatively, HD 142666, HD 143006 and HD 163296 are 3 of the 4 most structured
disks in the survey, perhaps indicating that even if annular substructures do form early, disks
may become more structured over time (e.g., as additional planets form). AS 209 complicates
this interpretation though, being the other highly structured disk in the survey and having an
inferred age of only 1.0+2.5

−1.0 Myr.

3.5.3.1 Improved constraints on dust trapping

The narrower rings in the frank fits relative to CLEAN can offer improved constraints on dust
trapping. Dullemond et al. (2018) examine the outer disk rings in the CLEAN profiles for five
of the DSHARP sources – AS 209, Elias 24, GW Lup, HD 143006, and HD 163296 – and
infer deconvolved widths 𝑤dust to compare to the local pressure scale height ℎp. If this ratio
is < 1, the rings are inferred to be the result of dust traps. With this ratio a plausible range
of widths for gas pressure bumps 𝑤gas at the radial location of the dust rings can also be
determined, in turn yielding a range of values for the ratio of the viscosity parameter to the
local Stokes number (Dullemond et al. 2018, Equation 21),

𝛼turb

St
=

[( 𝑤gas

𝑤dust

)2
−1

]−1

. (3.2)

The lower this ratio, the lower the threshold to induce the streaming instability. Rosotti
et al. 2020 take a similar approach, using the dust ring widths together with deviations from
Keplerian velocity inferred from the 12CO observations in AS 209 and HD 163296 to measure
𝛼turb/St. According to their Equation 1,

𝛼turb

St
= −

2𝑤2
dust
𝑟0

𝑣2
k

𝑐2
s

d
dr

(𝛿𝑣𝜙
𝑣k

)
. (3.3)

Here 𝑟0 is the radial location of the dust ring, 𝑣k the local Keplerian velocity, 𝑐s the sound
speed, and 𝛿𝑣𝜙 = 𝑣𝜙 − 𝑣K is the deviation from Keplerian.

Following the procedure in Dullemond et al. (2018) to determine dust ring widths, we
find each of the 8 rings in the frank profiles are narrower than even the deconvolved widths
in Dullemond et al. (2018), by a mean 24%. The frank widths are also narrower than the
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4 of these rings examined in Rosotti et al. (2020) by a mean 13%. Table 3.4 compares the
frank widths to those in Dullemond et al. (2018) and Rosotti et al. (2020), as well as the
corresponding estimates of 𝑤dust/ℎp. The narrower frank dust rings yield a reduction in
estimates of 𝛼turb/St by a mean 47% relative to Dullemond et al. 2018 (for 𝑤min, the minimum
width of the gas pressure bump; see that work) and by a mean 25% relative to Rosotti et al.
(2020). These results suggest the dust ring widths in Dullemond et al. (2018) and Rosotti
et al. (2020) are overestimates, and that smaller values of 𝛼turb (or larger values of St) are
thus needed to agree with the true (unknown) ring widths. A smaller ratio of 𝛼turb/St would
in turn correspond to a lower threshold for inducing the streaming instability.

To emphasize the importance of an accurate visibility fit, we note that Dullemond et al.
(2018) find the deconvolved ring widths are in some cases wider, but in others narrower, than
the widths determined by parametrically fitting the visibilities for AS 209 (Guzmán et al.,
2018), HD 163296 (Isella et al., 2018) and HD 143006 (Pérez et al. 2018; see Appendix C in
Dullemond et al. 2018). The frank profiles instead yield narrower rings than the deconvolved
widths in Dullemond et al. 2018 in all cases, because frank is fitting structure in the observed
visibilities to longer baseline than the parametric visibility fits. Comparing the frank
visibility fit for HD 163296 to the parametric visibility fit in Isella et al. 2018 for example,
frank accurately traces the visibilities to ≈ 3.8 M_, while the parametric fit begins to show
clear error beyond ≈ 0.9 M_, and the frank ring widths are thus narrower.

3.5.4 Spiral arms appear to extend into the spiral disks’ cores

The frank fits to the three single-disk systems in the survey exhibiting prominent spirals
– WaOph 6, Elias 27 and IM Lup – show clear deviations from a smooth envelope in the
disks’ bright cores, which extend to ≈ 45,60 and 30 au respectively. The imaged frank
residual visibilities4 in Fig. 3.8 suggest these features may not be tracing symmetric gaps
and rings, but instead the (azimuthally averaged) innermost components of the spiral arms.
This interpretation is tentatively supported by examining polar projections of the deprojected
frank imaged residuals (not shown), which appear to faintly trace the arms to moderately
smaller radii than the polar plots in Huang et al. (2018b).

The model for each of these disks uses the point source-corrected fit (Sec. 3.2.1), with the
profile’s sensitivity to the point source visibility amplitude shown as the informal uncertainty
band in Fig,. 3.8. The exact structure in the disks’ cores should thus be taken with caution,

4As discussed in Sec. 3.2.2, an azimuthally averaged frank brightness profile is erroneous for any radius at
which the brightness is not symmetric. However because frank correctly fits for the averaged brightness in
each annulus, subtracting the fit from the observed visibilities effectively isolates asymmetric structure in a
residual image (analogous to the same procedure with CLEAN fits in Figure 1 of Huang et al., 2018b).
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Fig. 3.8. Tracing spiral arms into their disk’s cores
As in Fig. 3.5, but for the DSHARP disks exhibiting strong spiral structure. The visibility plots
here zoom on baselines > 0.30 M_ (corresponding to spatial scales < 0.69′′). Additionally
shown are the frank residual visibilities imaged (0 CLEAN iterations). Residual images use a
linear color scale (a normalized color bar is shown, and the 𝜎 value for each image is given).
Azimuthal asymmetries in CLEAN images are erroneously visualized as symmetric features in
the frank images because the frank model is 1D.

though the features in WaOph 6 beyond ≈ 20 au, in Elias 27 beyond ≈ 15 au, and throughout
the inner disk in IM Lup are robust to this informal uncertainty.

3.5.5 The most structured DSHARP sources have morphologically
similar inner disks

frank fits to the three most highly structured DSHARP disks – HD 163296, AS 209 and
HD 142666 – in Fig. 3.9 more fully resolve gaps and rings present in the CLEAN profiles,
especially the gap-ring pair in each source interior to 15 au (noted in Table 3.3). The
frank profiles also show new substructure in the inner disk of each source that is strikingly
similar: a gap-ring pair, immediately exterior to which is a gap that shows a brightness excess
(potentially a pressure bump) on both of its wings, and exterior to this a shallow depression
(this region is highlighted for each source in Fig. 3.9). Whether this morphological similarity,
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including the newly identified features, is due to the same physical process, e.g., an embedded
planet, would require detailed hydrodynamic simulations that are beyond the scope of this
chapter.

3.5.6 Deep gap morphologies in frank profiles potentially indicate
embedded planets

The frank brightness profiles for the six DSHARP disks shown in Fig. 3.10 – GW Lup,
Elias 24, HD 163296, AS 209, SR 4, and HD 143006 – show that deep gaps which were
already prominent in the CLEAN profiles become deeper and/or wider with sharper edges, as
well as more structured in some cases. The detailed structure within the gaps in the frank
profiles varies weakly as the fit’s SNR criterion is varied (recall that we have accepted some
low amplitude, short spatial period noise in the profiles as a tradeoff for fitting the visibilities
out to baselines at which the binned data SNR approaches unity). Insensitive to the exact fit
is the presence of local maxima exterior to the gaps, as well as less prominent maxima or
shallow slopes interior to the gaps. Some of the gap morphologies (both the structure within
the gap and on its edges) are qualitatively similar to the dust surface density distribution
surrounding a gap-opening planet in hydrodynamic simulations (particularly those for a
stationary or slowly migrating planet in Meru et al. 2018 and Nazari et al. 2019). However
detailed simulations would be required to confirm agreement in any individual case; we
leave this to a future work. The four gaps shaded in gray in Fig. 3.10 have a claimed planet
detection: in GW Lup (Pinte et al., 2020), Elias 24 (Jorquera et al., 2020) and both gaps in
HD 163296 (Pinte et al., 2018; Teague et al., 2018); the gaps shaded in pink do not have a
detection.

3.5.7 A geometric viewing effect traces disk vertical structure

Ten of the 20 DSHARP sources (noted in Table 4.1) have frank residual visibilities that
when imaged exhibit a clear two-fold brightness asymmetry in the inner disk, oriented about
the disk’s major axis. The imaged frank residuals for these sources are shown in Fig. 3.13.
Fig. 3.11 demonstrates the most prominent case, Elias 24, in which the asymmetry spans the
entirety of the inner disk. This brightness asymmetry across the inner disk can be explained
by a geometric viewing effect, provided the disk is optically thick, has finite thickness, and is
not viewed exactly face-on. In such a case the observer sees the disk photosphere like the
inclined interior of a bowl, where the angle between the local surface normal and the line of
sight to the observer varies with azimuth. Since the maximum brightness is seen on the side
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Fig. 3.9. Highly structured disks
As in Fig. 3.5, but for the DSHARP disks exhibiting the highest density of substructures.
The azimuthally localized bright arc along the inner edge of the intermediate ring in the
CLEAN image for HD 163296 is erroneously visualized as a symmetric feature in the frank
image (because the model is 1D) and manifests in the frank brightness profile as the ‘bump’
at 55 au. The shaded regions show morphological similarities across disks as discussed in
Sec. 3.5.5.
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Fig. 3.10. Morphologies for deep and structured gaps
frank and CLEAN brightness profiles in logarithmic brightness for DSHARP disks whose
frank profiles have gaps that are either appreciably deeper or contain more structure than
seen in the CLEAN profiles. Gap regions are shaded for identification; those shaded in gray
have a claimed planetary detection (either from gas kinematics or direct imaging), and those
in pink have no detection.
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of the disk surface that is more angled towards the observer (i.e., on the far side of the major
axis), the brightness asymmetry can be used to trace the inner disk vertical structure.

This interpretation is supported by considering that among the subsample of 10 disks in
which we see the asymmetry in the frank imaged residuals, a corresponding asymmetry was
identified in the CLEAN images or their residuals for six sources: in the inner 5−10 au of
HD 142666, HD 163296 and Sz 129 (Huang et al., 2018a); and in the core of the survey’s
three disks with spiral structure, Elias 27, IM Lup and WaOph 6 (Huang et al., 2018b). The
12CO 𝐽 = 2−1 emission indicates the brighter region is on the disk’s far side in all six cases
(Huang et al., 2018a; Isella et al., 2018), consistent with our geometric interpretation. Huang
et al. (2018a) posit the brightness asymmetry in HD 142666, HD 163296 and Sz 129 could be
attributed to viewing the interior surface of a finite thickness ring, while we additionally see
the asymmetry in sources such as Elias 24, where it spans the entirety of the (fairly smooth)
inner disk. Huang et al. (2018b) attribute the brightness asymmetries in the spiral disks
to an imperfect determination of the disk phase center, though they note that asymmetric
brightness may also be caused by vertical structure.

Additionally, the 10 disks in which we see the brightness asymmetry all have a 1.25
mm optical depth as calculated in Huang et al. (2018a) that is ≈ 1 in the inner disk (and if
the brightness asymmetry is tracing vertical structure, the true optical depth may be ≫ 1).
Placing quantitative constraints on vertical scale height and optical depth using the brightness
asymmetry will be addressed in a future work. Investigating potential alternative origins
of the observed brightness asymmetry in Sec. 3.8, we find that a simple warp (inclination
misalignment between an inner and outer disk) does not yield an asymmetric brightness
pattern oriented about the major axis, and an incorrect source phase center does not explain
the presence of this asymmetry across so many of the DSHARP sources.

3.6 Conclusions

Finding the effective resolution of CLEAN images in the DSHARP survey corresponds to an
increase in the CLEAN beam width by an average factor of 1.16, we used frank to accurately
fit the 1D visibility distribution for each of the 20 DSHARP sources to a mean factor of 4.3
longer baseline than brightness profiles extracted from the CLEAN images and a factor of 3.0
longer baseline than the CLEAN models. This yielded super-resolution brightness profiles
for each source that more highly resolved azimuthally symmetric (and asymmetric) disk
substructure seen in the CLEAN images. The frank fits additionally identified new features –
an extra gap in the inner 20 au of SR 4 and Elias 24, as well as new excesses and depressions
in the inner 30 au of HD 142666, HD 163296 and AS 209. Overall the analysis demonstrated
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Fig. 3.11. A geometric viewing effect tracing disk vertical structure
a) For Elias 24, an image of the frank profile swept over 2𝜋 and reprojected.
b) The CLEAN image. The frank and CLEAN images of each disk use the same arcsinh stretch
(𝐼stretch = arcsinh(𝐼/𝑎) / arcsinh(1/𝑎), 𝑎 = 0.02), but different brightness normalization. The
generic color bar gives the normalized color scale, and the peak brightness is listed on both
images.
c) The frank residual visibilities imaged (0 CLEAN iterations), with contours overplotted,
as well as additional lines tracing the outer edge of the inner disk and the disk outer edge
(from (a)), and a dashed line along the fitted position angle (as a proxy for the disk’s major
axis). The residual image is convolved with the published CLEAN beam and uses a linear
color scale. The shown 3𝜎 contours correspond to a residual brightness < 1% of the local
average brightness in the CLEAN image at the outer edge of the inner disk, 42 au. The residual
image uses a linear color scale (a normalized color bar is shown, and the 𝜎 value for each
image is given).
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two key points: the DSHARP sources – already found to ubiquitously contain gaps and rings
in Huang et al. (2018a) – are even more densely structured, especially interior to 30 au; and
the gaps and rings detected in the CLEAN images, despite in many cases having widths 2−3×
that of the CLEAN beam, become deeper and wider (gaps) or narrower and brighter (rings)
when we fit the data with a technique not subject to CLEAN beam convolution.

We further identified new trends in substructure across the survey:

• substructure in compact disks: frank profiles for all three compact (𝑅max < 50 au),
single-disk systems showed substructure, suggesting it may be frequent in compact
sources

• substructure in extended disks: frank profiles for six extended (𝑅max > 50 au), fairly
smooth DSHARP sources found indications of a change in slope in the innermost disk,
implying the interior regions of disks may commonly be structured

• potential transition disks: frank profiles for two of the oldest disks in the sample
suggested they have cleared inner cavities, which may indicate they are dispersing

• spiral arms in disk cores: frank profiles for the three single-disk systems with
prominent spirals suggested the spiral arms reach into the disks’ cores

• inner disk morphologies: frank profiles for the three most structured DSHARP disks
exhibited highly similar substructure morphology in their inner 40 au, indicating the
same physical processes, e.g., the presence of a companion, may be responsible

• gap morphologies: frank profiles for six survey disks that already had prominent gaps
in the CLEAN images showed these features to have greater depth and/or more structure
(both within the gap and on its wings)

We found that lower values of 𝛼turb/St than determined in Dullemond et al. (2018) and
Rosotti et al. (2020) are needed to explain the super-resolved ring widths in AS 209, Elias 24,
HD 163296, GW Lup, and HD 143006. Finally, the frank fits also found clear evidence of
a geometric viewing effect in 10 of the 20 DSHARP sources that traces inner disk vertical
structure.

The extent to which these substructure trends are present in surveys and individual
datasets with different biases (DSHARP consists primarily of bright, large disks; Andrews
et al., 2018) is a question we will address in subsequent work. Those trends that do hold
beyond DSHARP may offer the potential to broadly inform open questions on the physical
mechanisms underlying dust substructure in protoplanetary disks.
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On the technical side, the analysis in this chapter demonstrated that frank, and super-
resolution fitting techniques more generally, can consistently extract more 1D substructure
information from sub-mm disk observations than both CLEAN images and CLEAN models.
There is a clear limitation with frank in that it reconstructs the 1D brightness of a source,
rather than the 2D brightness as in a CLEAN image. However, for the purpose of obtaining a
1D brightness profile of a source (under the assumptions of axisymmetry and known source
geometry), frank will yield a more accurate (higher resolution) result, without a loss in
sensitivity, compared to extracting an azimuthally averaged profile from the CLEAN image.
Super-resolution techniques can provide new insights from existing datasets, better informing
physical inference without requiring deeper and/or longer baseline observations. In practice
these tools can also be approachable and efficient; performing a frank fit requires nontrivial
choices for only two hyperparameters (the parameter space for each being small), and the
frank fits shown in this chapter all took ≲ 1 min to run. All frank fits in this chapter are
available at https://zenodo.org/record/5587841.

3.7 Appendix A: Point source-corrected fits

To demonstrate the effect of a point source-corrected fit, Fig. 3.12(a) – (b) compares a
model generated with this approach to two standard frank fits for GW Lup. In panel (b),
the observed visibilities remain systematically positive at the longest baselines, i.e., do not
converge on zero. Their offset is 0.7 mJy; for reference, Re(V) plateaus at 88.9 mJy at short
baselines. First considering the two standard frank fits (which use different 𝛼 values), the
model with 𝛼 = 1.1 fits the visibilities out to ≈ 7 M_, at which point some of the 100 k_
binned values approach zero. However because the data are noise-dominated by this baseline,
the corresponding brightness profile in Fig. 3.12(a) has noisy oscillations, most apparent at
small radii. By comparison, increasing 𝛼 to 1.3 effectively fits the data to shorter baseline,
≈ 5 M_, beyond which the binned SNR start to dither about SNR = 1. The model drives
toward zero (by design) once its SNR threshold is reached, which is problematic if the fit’s
slope at this baseline is steeper than the average slope of the true, underlying signal in the
data. That appears to be the case here, as the fit’s slope still translates to strong oscillations in
the brightness profile in panel (a).

The point source-corrected model in Fig. 3.12(b) fits the data out to comparable baseline
to the 𝛼 = 1.3 case, but once its SNR threshold is reached, the fit takes on a constant visibility
amplitude (rather than driving toward zero). This amplitude is the mean of the data beyond the
baseline at which the 20 k_ binned SNR first drops below unity. The strong oscillations in the
innermost disk present in the standard fits are no longer apparent in the point source-corrected

https://zenodo.org/record/5587841
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Fig. 3.12. Effects of a point source-corrected fit
a) frank brightness profiles for two standard fits using different 𝛼, and the profile for the
point source-corrected fit shown in the main text.
b) A zoom on the data’s long baselines (> 1.0 M_, corresponding to spatial scales < 0.2′′; data
shown in 20 and 100 k_ bins), the two standard frank fits, and the point source-corrected fit.
c) frank brightness profiles for the point source-corrected fit in (a), and a point source-
corrected fit using a 1.5× larger point source amplitude.
d) As in (b), but for the two point source-corrected fits in (c).
e) Residuals (in 20 k_ bins) of the two point source-corrected fits in (d).
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fit, though we do still see some small amplitude oscillations across all radii in the brightness
profile, whose sensitivity we will examine below. The fit’s zero slope over the data’s longest
baselines yields a conservative representation of features on the corresponding spatial scales
in the brightness profile, which we prefer because of the ambiguity in where the true visibility
signal converges on zero.

While for practical purposes the point source-corrected model is the best approach we
have at present to fit a visibility distribution that does not clearly converge on zero, it has
limitations. First, because it involves fitting frank to a visibility distribution from which
we have subtracted a constant offset, the SNR of the resulting data are not identical to those
of the observed data. This is why the point source-corrected model in Fig. 3.12(b) fits the
visibilities beyond ≈ 4 M_ less closely than the shown standard fits, despite using a lower 𝛼.

Second, while we have determined the point source amplitude by taking the mean of the
longest baseline visibilities, they are in general dominated by noise and so not necessarily an
accurate indication of the true signal. We thus test how the applied point source offset affects
the frank visibility fit and in turn substructure in the brightness profile. Fig. 3.12(d) shows
the visibility fit for GW Lup when we increase the point source offset to 1.5× the mean of the
long baseline data. The factor of 1.5 was chosen empirically as a liberal upper bound for
the sensible range in point source visibility amplitude. This offset expectedly yields larger
amplitude (negative) residuals in panel (e), while also reducing structure in the brightness
profile interior to ≈ 0.1′′ in panel (c). The reduced prominence of structure seems less correct
than the fit with a lower point source offset based on the residuals in (e). However it is also
not clear that the structure interior to 0.1′′ in the smaller point source offset fit is real; this
ambiguity motivates our treatment of the difference between these two fits as an informal
uncertainty estimate in all disks where we use the point source-corrected model in the main
text. Note that a point source amplitude of 0 Jy would correspond to a standard frank fit,
and we do not consider this fit in the uncertainty estimate because we expect the standard fit
to be erroneous in cases where there is need for a point source model.

3.8 Appendix B: Residual image brightness asymmetries

Considering the residual brightness asymmetries in Sec. 3.5.7, Fig. 3.13 shows the frank
residuals imaged for each DSHARP source. Here we present tests to determine whether
the observed trend of a brightness asymmetry oriented about the major axis in 10 of the 20
sources could – instead of a geometric effect – be produced by either an incorrect source
phase center or a simple warp in the form of a misalignment between the inner and outer
disks (effectively an incorrect inclination). First considering a phase center error, shifting
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the phase center of a flat disk generates an asymmetry in the direction of the centroid error.
In order to explain the observed asymmetry pattern in 10 of the 20 DSHARP disks would
thus require that some aspect of fitting for the phase center (which was done by fitting a 2D
Gaussian to the image) biased the error toward alignment with the disk’s minor axis. We do
not see how such a bias could arise.

Nevertheless, as a precaution we considered the 1𝜎 uncertainties in fitted right ascension
and declination offsets as determined in Huang et al. (2018a), which are typically 1− 3
mas. To test whether shifting the phase center within this range could effectively erase the
brightness asymmetry in the residual maps, for each DSHARP source we applied a phase
center that differed from the published value by 1 or 3 mas, with the perturbation oriented
along the disk’s minor axis as well as at 𝜋/4 intervals over the full 2𝜋 in azimuth. For each of
these applied phase centers, we then fit for the frank profile, and compared the resulting
imaged frank residuals. Shifting the phase center in this way did change the amplitude of
the brightness asymmetry in the inner disk by a factor of ≲ 2, and in some cases it slightly
rotated the asymmetry’s orientation. But in almost all cases the asymmetry clearly persisted,
suggesting it is not an artifact of an incorrect phase center.

For the 10 DSHARP disks in which we initially did not identify a clear brightness
asymmetry, shifting the phase center along the disk’s minor axis could in some cases create
an asymmetry similar to that observed. The same was true for mock datasets in which we
intentionally assigned an incorrect phase center. And 2 of these 10 sources, SR 4 and Sz 114,
exhibited an asymmetry that was not aligned about the major axis; however shifting the phase
center within published uncertainty (< 3 mas) could reorient the asymmetry about the major
axis. Taking all of this together, again we do not see why fitting for the phase center as
described in Huang et al. (2018a) would introduce a bias along the disk’s minor axis.

Next considering disk misalignment, we forward modeled mock observations emulating
DSHARP datasets that have an inner disk separated from an outer ring by a deep gap. We
generated images in which the inner disk’s inclination was misaligned relative to the outer
ring by values between 0.1−3o (the published 1𝜎 uncertainties on inclination are ≤ 2o in
either direction). We then forced the geometry used to deproject the source to be that of the
outer ring (separately, we also ran trials in which we fit for the geometry using a 2D Gaussian
in visibility space), and fit the deprojected dataset with frank. We found that a misaligned
inner disk produces a four-fold symmetric pattern oriented equivalently about the major or
minor axis in the imaged frank residuals. In the real observations we instead see a two-fold
asymmetric pattern oriented about the major axis.



108
A super-resolution analysis of the DSHARP survey: Substructure is common in the inner 30

au

Fig. 3.13. frank imaged residuals
The frank residual visibilities imaged (0 CLEAN iterations), with ±3𝜎 contours overplotted
(𝜎 is given for each image), and a dashed line along the fitted position angle. The residual
image is convolved with the published CLEAN beam and uses a linear color scale. Discs are
ordered as in Fig. 3.3. The 10 sources that exhibit a clear two-fold brightness asymmetry
in the inner disk have their names shown in green. All images use a linear color scale (a
normalized color bar is shown, and the 𝜎 value for each image is given).



Chapter 4

Super-resolution trends in the ALMA
Taurus survey: Structured inner disks
and compact disks

This chapter presents the application of frank to ten disks in the Taurus survey, which
observed these sources at moderate spatial resolution (120 mas). This application provides
unique scientific insight on disk substructure, which is distinct from scientific findings in
Chapter 3 with the DSHARP survey in part because here the disks are typically smaller
and fainter than in that sample. I conducted the analysis in Sec. 4.3 and 4.4, while Marco
Tazzari ran the parametric visibility fit shown in Sec. 4.4.2 and 4.7. The chapter, with some
modifications to the introduction, has been published in MNRAS. I wrote the chapter text
and the paper, with refinements resulting from coauthor feedback.

The 1.33 mm survey of protoplanetary disks in the Taurus molecular cloud found annular
gaps and rings to be common in extended sources (≳ 55 au), when their 1D visibility
distributions were fit parametrically. We first demonstrate the advantages and limitations
of nonparametric visibility fits for data at the survey’s 0.12′′ resolution. Then we use
the nonparametric model in Frankenstein (frank) to identify new substructure in three
compact and seven extended sources. Among the new features we identify three trends: a
higher occurrence rate of substructure in the survey’s compact disks than previously seen,
underresolved (potentially azimuthally asymmetric) substructure in the innermost disk of
extended sources, and a ‘shoulder’ on the trailing edge of a ring in disks with strong depletion
at small radii. Noting the shoulder morphology is present in multiple disks observed at higher
resolution, we postulate it is tracing a common physical mechanism. We further demonstrate
how a super-resolution frank brightness profile is useful in motivating an accurate parametric
model, using the highly structured source DL Tau in which frank finds two new rings. Finally
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we show that sparse (𝑢, 𝑣) plane sampling may be masking the presence of substructure in
several additional compact survey sources.

4.1 Background

When applied to high resolution observations, super-resolution techniques that fit the observed
visibilities directly, such as galario (Tazzari et al., 2018) and frank (Jennings et al., 2020),
have found a yet greater occurrence rate of disk substructure than analysis with CLEAN images
alone. This includes identification of previously unseen features across the DSHARP survey
(Andrews et al., 2021; Jennings et al., 2021) and the ODISEA survey (Cieza et al., 2021); in
compact sources, including those that appear featureless in a CLEAN image (Kurtovic et al.,
2021; Pinilla et al., 2021); and for observations at the highest available ALMA resolutions,
such as in PDS 70 (Benisty et al., 2021).

The next question is whether super-resolution techniques are also able to identify more
substructure in moderate resolution observations. This would be particularly valuable for a
statistical approach to substructure characterization over a large sample of disks, enabling
a fuller investigation of demographic trends by exploiting the large archive of datasets at
≈ 100−300 mas. This archive includes many disks that are not particularly large or bright,
which current models predict should also contain substructure in order to counteract radial
drift and retain reasonable dust disk sizes on few Myr timescales (Toci et al., 2021). We can
ask for example whether compact disks that routinely appear smooth in CLEAN images are
intrinsically featureless, or if this tends to be an artifact of observational or model resolution.

Long et al. (2018) and Long et al. (2019) demonstrated at the survey level that parametric
visibility fits can identify more substructure in moderate resolution (120 mas, ≈ 16 au)
observations than the CLEAN images alone. Here we will push super-resolution visibility
fits to still higher resolution, using the nonparametric approach in frank to fit the observed
visibilities yet more accurately. This will allow us to investigate how much more substructure
in the Taurus survey data can be recovered from the observed visibilities – including in
compact sources – and whether the identified features suggest new trends.

In this chapter we characterize new substructure in 10 of the Taurus survey disks using the
1D code frank, which reconstructs a disk’s brightness profile at super-resolution scales by
nonparametrically fitting the azimuthally averaged visibility distribution. Sec. 4.2 summarizes
the frank modeling approach and its limitations. Sec. 4.3 more closely examines the major
advantages (Sec. 4.3.1) and limitations (Sec. 4.3.2 – 4.3.3) of nonparametric visibility fitting
for datasets at the Taurus survey resolution, exploring how they affect substructure inference
in frank fits to these observations. In Sec. 4.4 we present fits for the 10 sources, grouping
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substructure findings into trends in compact disks (Sec. 4.4.1) and extended disks (Sec. 4.4.2).
We further divide the extended sources into those with an inner and outer disk (Sec. 4.4.2.1)
and those with an inner cavity (Sec. 4.4.2.2). Sec. 4.5 summarizes our findings and briefly
places them in the context of super-resolution substructure found in datasets outside the
survey.

4.2 Model

A full description of the frank model framework and its limitations is in Jennings et al.
(2020). In short, frank reconstructs the 1D (axisymmetric) brightness profile of a source as
a function of disk radius by directly fitting the real component of the deprojected, unbinned
visibilities as a function of baseline. The brightness profile is determined nonparametrically
by fitting the visibilities with a Fourier-Bessel series, which is linked to the real space profile
by a discrete Hankel transform. A Gaussian process regularizes the fit, with the covariance
matrix nonparametrically learned from the visibilities under the assumption that this matrix is
diagonal in Fourier space. The free parameters (diagonal elements) of the matrix correspond
to the power spectrum of the reconstructed brightness profile. The fitting procedures takes
≲ 1 min on a standard laptop for each dataset shown here.

To obtain the results shown in this chapter, we vary three of the five frank model
hyperparameters across datasets: 𝑅max, 𝑁 and 𝛼. The hyperparameters 𝑅max and 𝑁 simply
set the maximum radius of the fit and number of brightness points in the fit, which we increase
for larger disks. 𝛼 controls the prior on the Gaussian process, effectively determining the
signal-to-noise (SNR) threshold at which the model no longer attempts to fit the data. By
varying 𝛼 we can thus account for the unique visibility distribution and noise properties of
each dataset, with higher 𝛼 values imposing a stronger constraint that in practice causes
the model to stop fitting the data at shorter maximum baseline. Most of the Taurus survey
datasets become noise-dominated at their longest baselines, as (𝑢, 𝑣) plane sampling becomes
increasingly sparse. We will thus choose 𝛼 such that we fit the datasets out to long baselines,
but stop before fitting clearly noise-dominated data (using 𝛼 ∈ [1.01,1.10]). Pushing a fit
out to long baselines to extract higher resolution information does nonetheless come at the
cost of fitting some noise. The noise imprints on the brightness profile as short period, low
amplitude oscillations; we will note nontrivial instances.

There are three major limitations in the current version of frank:

1. A frank fit drives to a visibility amplitude of zero once it stops fitting the data. This is
intentional given the difficulty of generically extrapolating a fit beyond the edge of the
observed visibilities, but we often expect the true visibility distribution would continue
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oscillating beyond the longest observed baselines if the disk is sufficiently structured.
We will motivate how this affects substructure inference in datasets characteristic of
the Taurus survey in Sec. 4.3.2. Ultimately this issue stems from the ill-posed nature of
reconstructing the sky brightness from Fourier data, and it is also why the uncertainty
on a frank brightness profile is easily underestimated, particularly for deep gaps
(CLEAN brightness profiles can similarly exhibit underestimated uncertainties for this
reason). We thus will not show uncertainties in the frank profiles in this chapter.

2. The 1D approach in frank fits for the azimuthal average of the visibility data at
each baseline. While this is an accurate representation of the azimuthally averaged
brightness profile, in the presence of azimuthal asymmetries the brightness profile
should be interpreted with caution, as (particularly super-resolution) asymmetries can
be misidentified as annular features. We will demonstrate this in Sec. 4.3.3.

3. The frank real space model is not positive definite and so can exhibit regions of small
amplitude, negative brightness. When this unphysical behavior occurs we can enforce
positivity by finding the most probable brightness profile for a given set of power
spectrum parameters and the constraint that the brightness be nonnegative, using a
nonnegative least squares solver. This sometimes alters features across the disk (i.e., not
just in regions of negative brightness) because the enforced positivity condition affects
the visibility fit at long baselines. We will remove this limitation in a forthcoming work
and version of the code by fitting in logarithmic brightness space, but for the current
analysis we will show nonnegative fits for those frank models that would otherwise
exhibit regions of negative brightness; we will note which fits include this correction.

4.2.1 Data reduction

In this chapter we reanalyze the ALMA Taurus survey published by Long et al. (2018) and
Long et al. (2019), to which we refer for details on the observational setup and calibration
procedure. To apply frank to the datasets, we first apply channel averaging (1 channel per
spectral window) and time averaging (60 s) to all spectral windows in the self-calibrated
measurement set, then extract the unflagged visibilities. We then use the disk geometries and
phase centers in Long et al. (2019) to deproject the visibilities in frank prior to fitting their
1D distribution. After deprojection, we re-estimate the weights by a constant factor of order
unity to approximate the relation 𝑤 = 1/𝜎2, where 𝑤 is the weight of a visibility point and
𝜎2 is the variance of its real and imaginary components.
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Fig. 4.1. Improved visibility fit accuracy better resolves disk structure
a) A zoom on the Taurus survey visibilities for DO Tau (20 and 100 k_ bins, with 1𝜎
uncertainties shown for the 100 k_ points); the parametric fit from Long et al. (2019); the
nonparametric frank fit; and the Fourier transform of brightness profiles extracted from the
CLEAN image and CLEAN model.
b) Residuals of the parametric and frank visibility fits and the CLEANmodel transform (20 k_
bins).
c) Brightness profiles for DO Tau corresponding to the visibility fits in (a).

4.3 Methodologies – Advantages and limitations of a 1D,
nonparametric visibility fit

Here we examine the benefits and drawbacks of 1D, nonparametric visibility fits (both
generally and specific to frank) for brightness profile reconstruction at resolutions typical of
the Taurus survey, ≈ 120 mas.

4.3.1 Advantages – A highly accurate fit to the observed data

Recovering super-resolution structure in a brightness profile with a 1D visibility model is a
matter of fit accuracy; even a modest improvement in accuracy can correspond to new or
more highly resolved profile features. To demonstrate how a nonparametric visibility fit’s
improved accuracy can better constrain super-resolution structure in Taurus survey data,
Fig. 4.1 compares the parametric visibility fit from Long et al. (2019) for the compact disk
DO Tau with the nonparametric frank fit.1 Long et al. (2019) inferred that structure in the
visibility distribution for this source indicates a sharp outer edge in the brightness profile,
and so they modeled the profile parametrically as an exponentially tapered power law. The
resulting visibility fit in Fig. 4.1(a) is more accurate than the Fourier transform of a brightness

1All visibility fits from Long et al. (2018) and Long et al. (2019) shown in this chapter are obtained by
taking the 1D Fourier transform of their best-fit galario brightness profiles.



114
Super-resolution trends in the ALMA Taurus survey: Structured inner disks and compact

disks

0.0 0.1 0.2 0.3
r ["]

0.0

2.5

5.0

7.5

10.0

Br
igh

tne
ss 

[10
10

 Jy
 sr

−1
] a)

80 mas ring
Envelope
Ring
Sum
Convolved
frank fit

0 1 2 3 4 5
Baseline [Mλ]

−10

0

10

Re
(V

) [
mJ

y]

b) Envelope
Ring
 
 
Sum
frank fit

0.0 0.1 0.2 0.3
r ["]

c)
60 mas ring

0 1 2 3 4 5
Baseline [Mλ]

d)

0.0 0.1 0.2 0.3
r ["]

e)
40 mas ring

0 1 2 3 4 5
Baseline [Mλ]

f)

−0.50.00.5
RA offset ["]

−0.5

0.0

0.5

De
c o

ffs
et 

["]

40 mas ring,
true model

g)

40 mas ring,
frank fit

h) 140 × 110 mas

40 mas ring,
true model convolved

i)
0.0

0.2
0.4
0.60.81.0

No
rm

ali
ze

d b
rig

htn
ess

Fig. 4.2. frank brightness profile accuracy decreases as a ring becomes increasingly
super-resolution
a) Mock brightness profile of a compact disk with a shallow Gaussian ring; the profile is the
sum of a Gaussian envelope and Gaussian ring, with each component shown. The ring’s
FWHM is given in the plot title. The frank recovery of the summed profile is also shown, as
is the summed profile convolved with a 140×110 mas beam.
b) The real component of the 1D Fourier transform of the Gaussian envelope, ring, and their
sum (the summed profile peaks at ≈ 150 mJy). Also shown are noisy mock observations of
the summed profile (20 and 100 k_ bins), and the frank fit to these mock data.
c) – d) and e) – f) As in (a) – (b), but with the Gaussian ring’s FWHM successively decreased
and amplitude correspondingly increased to conserve the disk’s total (2D) flux.
g) – i) The noiseless, true model image of the disk in (e), the 1D frank fitted profile swept
over 360o in azimuth, and the true model convolved with the 140× 110 mas beam. The
images use an arcsinh stretch (𝐼stretch = arcsinh(𝐼/𝑎) / arcsinh(1/𝑎), 𝑎 = 0.02) and the same
absolute brightness normalization.
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profile extracted from the CLEAN image.2 The parametric visibility fit’s improved accuracy in
turn corresponds to super-resolution structure recovery in the brightness profile; this structure
is also apparent in a profile extracted from the CLEAN model.3 While the parametric visibility
fit is accurate at short and intermediate baselines, its residuals in Fig. 4.1(b) show nontrivial
error at long baselines. By comparison, the frank visibility model in Fig. 4.1(a) and its
residuals in (b) demonstrate a yet higher accuracy across intermediate and long baselines.

We can quantify an improvement in fit accuracy with the 𝜒2 statistic,

𝜒2 =
𝑁∑
𝑘=1

𝑤𝑘 [𝑅𝑒(𝑉𝑘, obs) − 𝑅𝑒(𝑉𝑘, fit)]2, where we neglect the imaginary component of the

visibilities because frank only fits the real component. As given in the legend of Fig. 4.1(a),
both the parametric fit and the Fourier transform of a brightness profile extracted from the
CLEAN model exhibit a smaller 𝜒2 than the transform of a profile extracted from the CLEAN
image by a factor of 57.0 for this source, while the frank fit yields a further reduction of
the 𝜒2 value by a factor of 1.8. This comparatively small improvement in fit accuracy with
frank corresponds to a clear change in the disk morphology in the frank brightness profile
in panel (c), with the bump at 28 au in the frank profile not seen in the parametric profile
and only hinted at in the CLEAN model profile. (Note that while the CLEAN model profile
has lower integrated flux than the frank profile – because there is visibility information left
in the residuals during the CLEAN process – reducing the tclean threshold value also
results in fitting more noise.) Thus even in a dataset with a simple visibility distribution
and relatively featureless brightness profile, a fairly small improvement to the accuracy of a
visibility fit can nontrivially inform the scale and location of super-resolution structure in the
recovered profile. This is the main advantage of a nonparametric fit, and it motivates why, for
the sources in Sec. 4.4 which all exhibit more structured visibility distributions than DO Tau,
a more accurate visibility fit with frank yields new brightness profile features (as well as
more highly resolved known features) relative to the parametric fits and the CLEAN models.
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Fig. 4.3. Low contrast, asymmetric substructure emulates an underresolved annular
ring in a brightness profile
a) The brightness profile of a Gaussian envelope, as well as the azimuthally averaged profile
of the envelope summed with a 40 mas arc that spans 180o in azimuth. The summed
profile is shown for various amplitudes of the arc (0.5x, 1.0x and 1.5x an arbitrary value of
𝐼arc = 2.67×1010 Jy sr−1).
b) Brightness profiles obtained from the 2D images of the envelope + arc, when convolved
with a Gaussian beam whose 140×110 mas size is typical of the Taurus survey.
c) – f) For the 1.0x 𝐼arc case: the noiseless, true model image; the 1D brightness profile
extracted from this image [which is shown in (a)] swept over 360o; the residual between
these two images, convolved with the beam; and the true model image convolved with
the beam [corresponding to the brightness profile in (b)]. The disk images use an arcsinh
stretch (𝐼stretch = arcsinh(𝐼/𝑎) / arcsinh(1/𝑎), 𝑎 = 0.02) and the same absolute brightness
normalization; the residual image uses a linear stretch symmetric about zero.
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4.3.2 Limitations – Extrapolating the fit to unobserved baselines

A fair question to then ask is how much we trust the morphology of features in a super-
resolution profile. An important consideration is that even super-resolution fits can still
be expected to underresolve most disk features (even broad ones, albeit to a lesser extent),
as is evident when comparing fits to lower and higher resolution observations of the same
source (differing in resolution by a factor of say 3). True features in a disk that are highly
super-resolution (very roughly, a factor ≳ 3 narrower than the nominal spatial resolution)
tend to be inaccurately recovered in a frank fit, and in some cases they can induce erroneous
oscillations in the brightness profile, as we will now show.

Fig. 4.2 demonstrates the accuracy of a frank fit to a disk with super-resolution features
using mock data. In Fig. 4.2(a) – (b), we first consider a simple disk – the sum of a Gaussian
envelope and a shallow Gaussian ring whose 80 mas full width at half maximum (FWHM) is
super-resolution relative to the ≈ 120 mas FWHM beam of the mock observations by a factor
of ≈ 1.5.4 While the profile convolved with a 140×110 mas beam (typical of the Taurus
survey) in (a) shows no clear indication of the super-resolution ring, fitting the visibilities
in (b) with frank gives an accurate recovery of the true brightness profile. But if we then
narrow the ring to 60 mas (and increase its surface brightness to conserve total flux) in
Fig. 4.2(c) – (d), it is now super-resolution by a factor of ≈ 2, and the frank recovered profile
begins to show some clear inaccuracy. It exhibits a plateau around 0.16′′, underresolving the
true gap/ring pair. This is due to an inaccurate extrapolation of the frank visibility fit beyond
the mock observation’s longest baselines, where the true profile’s visibility distribution
continues to oscillate. A further consequence of the fit’s underestimated visibility amplitudes
at unsampled baselines is the underestimated peak brightness in the frank brightness profile.

Narrowing and brightening the ring even further so that it has a 40 mas FWHM (super-
resolution by a factor of ≈ 3) in Fig. 4.2(e) – (f), the convolved profile in panel (e) [and
the 2D image of this profile swept over 2𝜋 in panel (i)] still shows no hint of the ring. The
frank profile in (e) identifies the gap/ring pair, but underresolves the feature amplitudes and

2This difference is primarily due to the resolution loss induced by CLEAN beam convolution, which results in
the transform of the CLEAN image poorly representing the observed visibilities. While we should thus not expect
the transform of a CLEAN image profile to be accurate at long baselines, we will include this visibility profile
in comparisons throughout this chapter because the CLEAN .image is the most common imaging product on
which analysis is conducted in this field.

3All CLEAN brightness profiles for Taurus survey data in this chapter are extracted from CLEANmodel images
(the .model output of tclean) and convolved images (the .image output of tclean) generated using tclean
in CASA 5.6.1-8 with the multiscale deconvolver (pixel size of 30 mas and scales of 1, 2, 4, 6 pixels); a
threshold of 3𝜎, where 𝜎 is the RMS noise measured in a region of the image far from the source; and Briggs
weighting with a robust value of 0.5.

4The mock dataset is generated with a baseline distribution and noise properties that emulate the Taurus
survey observations of DR Tau.
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misidentifies their centroids. The frank profile also underestimates the peak brightness more
severely, showing an erroneous turnover near 𝑟 = 0. This turnover is a consequence of the
narrower ring in the true profile increasing the absolute visibility amplitudes at all baselines;
accurately fitting the higher amplitude features in the visibilities introduces higher contrast
structure into the brightness profile. Because the frank fit has a visibility amplitude of ≈ 0
beyond the edge of the data, while the true visibility distribution has nontrivial amplitude
there, these higher contrast structures are not well constrained. This effect also introduces the
erroneous, shallow bump into the frank brightness profile between 0.2−0.3′′, appearing
in the 2D image of the swept frank brightness profile in Fig. 4.2(h) as a faint but fake ring
[compare the true 2D image in panel (g)]. It is thus possible for highly super-resolution
features in a true brightness profile to introduce erroneous oscillations into a frank brightness
profile.

For some datasets in the Taurus survey such as DO Tau in Fig. 4.1(a), this is not much of
a concern, as the observed visibilities appear to plateau at zero at the longest baselines. But
for other datasets it is less clear whether higher resolution and/or deeper observations would
show the visibilities to continue oscillating beyond the baselines at which the current data
become noise-dominated. While any extrapolation of a fit beyond the data’s longest baselines
is highly uncertain, it can be useful to compare a frank brightness profile to that obtained
with a parametric visibility fit, where the parametric profile’s functional form is motivated for
example by the frank fit or by structure in the observed visibilities (as Long et al. 2018 and
Long et al. 2019 have done). We will perform an in-depth comparison in Sec. 4.4.2.1 for the
most structured disk in our results, DL Tau.

4.3.3 Limitations – Distinguishing azimuthally symmetric from asym-
metric substructure

If we have found a super-resolution feature in a disk, the next question is whether it is an
annular ring (gap) or an azimuthally asymmetric brightness excess (depletion). Because a 1D
brightness profile averages the flux in a given annulus over 2𝜋 in azimuth, a low – moderate
contrast asymmetric feature within that annulus can mimic an underresolved (or shallow)
ring in the profile. Fig. 4.3 demonstrates this with mock data, using a Gaussian disk with
an additional brightness ‘arc’ that is produced by sweeping a Gaussian ring only over 180o

in azimuth in panel (c). The arc emulates a brightness excess on top of the background
envelope, and a 1D profile in Fig. 4.3(a) extracted from the image in (c) shows a slight bump
at the arc’s radial location. From the brightness profile alone this could be misidentified
as an annular feature, and because the arc is super-resolution by a factor of ≈ 3, the true
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model image convolved with a 140×110 mas beam in (f) – and the corresponding convolved
brightness profile in (b) – show no clear indication of it. When we increase the asymmetry’s
brightness by 50%, it emulates a shallow gap/ring pair in (a), while the convolved profile in
(b) is effectively unchanged.

How then can we distinguish super-resolution asymmetries from annular features? We
do not have an unambiguous method for this, so jointly consider three metrics: contouring
the CLEAN image, identifying structure in the imaginary component of the visibilities, and
imaging a frank fit’s residual visibilities. The first of these, contouring the CLEAN image
at levels of the RMS noise, can be useful in identifying the convolved representation of
super-resolution asymmetries. A limitation is that low contrast or sufficiently narrow features
are often not identifiable. Second, while an asymmetric feature is represented in the real
component of the 1D visibilities exactly as an annular feature at the same location and that has
the same width and total surface brightness (as integrated over 360o in azimuth),5 structure
in the imaginary component of the visibilities indicates scales at which there is asymmetry
with respect to the phase center. A limitation here is that without a robust model to fit Im(𝑉),
interpretation of its structure can be complicated by the comparatively low amplitude (and
thus low binned SNR) relative to Re(𝑉), and by the typical uncertainty in the disk phase center
of ≲ 3 mas. Third, imaging the frank residual visibilities effectively isolates azimuthal
asymmetries in the image by subtracting out the (fitted) average brightness at each radius. A
limitation is that there is typically ambiguity in interpreting structure in imaged residuals,
due to potential artifacts of an incorrect disk geometry and/or phase center, imaging artifacts,
and loss in resolution by convolving the residuals with the CLEAN beam [as demonstrated in
Fig. 4.3(e)]. While each of these three approaches is thus imperfect, together they can aid in
distinguishing super-resolution asymmetries from annular features.

4.4 Results & Analysis

Of the 32 sources in the Taurus survey, our analysis focused only on the 24 single-disk
systems; among these, here we show the 10 for which we obtain a brightness profile with
prominent new substructure. The remaining 14 comprise four extended disks where the
frank visibility fit is highly similar to the parametric fit in Long et al. (2018) and 10 compact
disks whose fitted brightness profiles lack substructure. In Sec. 4.4.1 we will discuss the

5We can intuit this by recalling that the Fourier transform is a linear operation; the Fourier transform of a
feature is equal to the sum of its’ components’ Fourier transforms. Thus the transform of a ring is equal to the
sum of the transforms of its azimuthal segments.
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Fig. 4.4. Improved visibility model accuracy in frank fits to compact disks
For the compact disks in Sec. 4.4.1, a zoom on the visibilities (> 0.30 M_; 20 and 100 k_
bins, with 1𝜎 uncertainties shown for the 100 k_ points). The parametric visibility fit from
either Long et al. (2018) or Long et al. (2019), the frank fit, and the Fourier transforms
of the CLEAN image and model brightness profiles are shown. Also shown are residuals for
the parametric and frank fits and the CLEAN model transform (20 k_ bins; larger amplitude
residuals at the longest baselines are beyond the y-range in some panels), as well as the
imaginary component of the observed visibilities. Discs are arranged from top to bottom and
then left to right in increasing frank fit resolution. The bottom-right panel shows the 𝜒2

statistic for each fit.
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Fig. 4.5. Improved visibility model accuracy in frank fits to extended disks
As in Fig. 4.4, but for the extended disks in Sec. 4.4.2.
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Fig. 4.6. New substructure in frank fits to compact disks
Brightness profiles extracted from the CLEAN image and model, the parametric profile and
frank profile for three of the compact (𝑅eff, 90% ≤ 50 au) systems in the Taurus survey,
corresponding to the visibility fits in Fig. 4.4 (the parametric fits are from Long et al. 2018
and Long et al. 2019; 𝑏avg shows the mean of the CLEAN beam width along its major and
minor axes). Also shown are an image of the frank profile swept over 2𝜋 and reprojected,
the CLEAN image, and the imaged frank residual visibilities (zero CLEAN iterations; contours
at −5,−3,+3,+5𝜎). Vertical lines in the brightness profile plots denote features that are
shown as ellipses in the CLEAN image and imaged frank residuals for reference. The frank
and CLEAN images use an arcsinh stretch (𝐼stretch = arcsinh(𝐼/𝑎) / arcsinh(1/𝑎), 𝑎 = 0.02),
but different brightness normalization (indicated by the given peak brightness). The imaged
frank residuals use a linear stretch symmetric about zero. We use image brightness units of
[mJy arcsec−2] to facilitate comparison between datasets of different beam size.
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Fig. 4.7. Noisy visibility distributions for compact disks
Visibility distributions for four compact (𝑅eff, 90% ≤ 50 au) sources in the Taurus survey,
whose structure at long baselines is unclear due to (𝑢, 𝑣) plane sparsity.

general potential for substructure in these compact sources based on the observed visibility
distributions.

The frank fit hyperparameters for the 10 datasets where we find new substructure are
summarized in Table 4.1. We divide our analysis into compact and extended disks. The
compact disks – BP Tau, DR Tau and FT Tau – have an effective radius 𝑅eff, 90% ≤ 50 au, where
the integrated flux 𝑓 (𝑅eff, 90%) = 0.9 · 2𝜋

∫ 𝑟=∞
0 𝐼 (𝑟) 𝑟 𝑑𝑟. The extended disks – CIDA 9 A,

DL Tau, DS Tau, GO Tau, MWC 480, RY Tau, and UZ Tau E – have 𝑅eff, 90% > 60 au. Long
et al. (2019) fit BP Tau and DR Tau parametrically with galario, using an exponentially
tapered power law to model the brightness profile, motivated by structure in the observed
visibility distributions. Long et al. (2018) fit the remaining eight disks shown here with
a parametric form in galario comprised of a sum of Gaussians (for CIDA 9 A, DS Tau,
RY Tau, and UZ Tau) or an exponentially tapered power law summed with Gaussians (for
DL Tau, FT Tau, GO Tau, and MWC 480). Their choice of the number of Gaussians for each
source is motivated by a brightness profile extracted (along the disk’s major axis) from the
CLEAN image.

For each of these 10 sources, we compare the frank visibility fit to the parametric fit, as
well as the Fourier transform of the CLEAN brightness profile, in Fig. 4.4 for the compact disks
(the corresponding brightness profiles, discussed below, are in Fig. 4.6) and Fig. 4.5 for the
extended disks (brightness profiles in Figs. 4.8 and 4.11). In every case the parametric model
matches the data more accurately than the Fourier transform of the CLEAN image profile, the
transform of the CLEAN model profile is generally comparable to or in some cases slightly
more accurate than the parametric model, and the residuals and 𝜒2 values demonstrate that
the frank fit is more accurate than each of the CLEAN image, CLEAN model and parametric
model visibility profiles. The frank fits that have enforced brightness profile positivity
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Table 4.1. For each Taurus survey disk in Sec. 4.3 and 4.4, the distance to the source
(using Gaia DR2 measurements from Bailer-Jones et al. 2018), and the values for the five
frank hyperparameters: SNR criterion 𝛼, strength of smoothing 𝑤smooth applied to the
reconstructed power spectrum, outer radius of the fit 𝑅out, number of radial (and spatial
frequency) points 𝑁 , and floor value 𝑝0 for the reconstructed power spectral mode amplitudes.
Sec. 4.2 gives a fuller explanation of 𝛼. All frank fits in this chapter are available at
https://zenodo.org/record/5587840.

Disc 𝒅 [pc] 𝜶 log10 𝑹out [
′′] 𝑵 𝒑0

𝒘smooth [Jy2]

Compact disks
BP Tau† 129 1.01 -4 1.0 200 10−15

DO Tau 139 " " " " "
DR Tau 195 " " " " "
FT Tau 127 " " " " "

Extended disks
UZ Tau E 131 1.01 -4 1.0 200 10−15

CIDA 9 A† 171 1.05 " " " "
DS Tau† 159 1.05 " " " "
RY Tau 128 1.10 " " " "
DL Tau† 159 1.01 " 1.5 300 "
GO Tau 144 1.00 " 1.5 300 "
MWC 480† 161 1.01 " 1.5 300 "
† These fits have enforced brightness profile positivity (see Sec. 4.2).

https://zenodo.org/record/5587841
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(BP Tau, CIDA 9 A, DL Tau, DS Tau, MWC 480) underestimate data amplitudes at long
baselines. Nonetheless, we recall from Sec. 4.3.1 that even modest improvements in visibility
fit accuracy can yield appreciably more highly resolved brightness profile features, and in
some cases can identify new features.

In order to examine whether new features may be nonaxisymmetric, Fig. 4.4 and Fig. 4.5
also show the imaginary component of the observed visibility distributions (which frank
treats as zero at all baselines). We will discuss Im(𝑉) in relation to disk asymmetries in the
following subsections.

4.4.1 New substructure in compact disks

Across three compact sources in the survey – BP Tau, DR Tau and FT Tau – the frank
fits in Fig. 4.6 find new substructure. Additionally we note that for the highly compact
(𝑅eff, 90% < 25 au) disk T Tau N, in which Yamaguchi et al. (2021) recently found a gap/ring
pair with their 2D, super-resolution modeling framework PRIISM, the frank fit (not shown
here) demonstrates agreement in the gap/ring pair’s location and approximate amplitude.

BP Tau: The frank fit to BP Tau identifies a new turnover in the inner disk that is not seen
in the Long et al. (2019) parametric profile because the corresponding visibility fit does
not recover the negative peak in the data at 1.25 M_. The parametric model instead finds
an almost flat inner disk (power law index of 0.1), resulting in a quasi-linear region of the
brightness profile between ≈ 8−17 au; this can be understood as a result of underresolving
the turnover (which may itself be an underresolved ring). Representation of an underresolved
brightness excess as a quasi-linear region in a brightness profile is demonstrated with mock
data in Fig. 4.3(b). We can further motivate the turnover by the observed visibilities; their
amplitudes are preferentially negative between ≈ 0.5−1.5 M_, which is an indication of a
wide Gaussian in the brightness profile that is not centered at zero radius. Notice how the
visibility distributions in Fig. 4.5 for the three disks with an apparent inner cavity (and thus, a
Gaussian ring not centered at zero) – CIDA 9 A, RY Tau and UZ Tau E – also each exhibit
preferentially negative visibility amplitudes at intermediate baselines. The frank profile also
better localizes the structure beyond 20 au in the disk than the parametric profile, with the
CLEAN model profile showing rough agreement with frank here.

To further assess the frank profile features (using BP Tau as an example for the analysis
we will more succinctly cover in subsequent disks), we can consider how the model limitations
in Sec. 4.3.2 and 4.3.3 may affect the fit. Given the demonstration in Sec. 4.3.2 of the
difficulty in accurately extrapolating a fit to unobserved (and noise-dominated) baselines
– and how this can introduce fake oscillations into a profile when the underlying disk
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has highly super-resolution features – we emphasize that a more accurate visibility fit or
higher resolution/deeper observations can find the features in a frank brightness profile
to become either more or less prominent. This is particularly true in the innermost disk,
where substructure can routinely be highly underresolved. The turnover in the frank profile
for BP Tau for example may resolve into a ring or something more complicated, as may be
indicated by the inner 15 au of the CLEANmodel profile in Fig. 4.6. We do expect the turnover
to be indicating the presence of real substructure, given the dataset’s preferentially negative
visibility amplitudes at intermediate baselines as discussed above. In the outer disk, the broad,
shallow feature in the frank brightness profile between ≈ 52−65 au is at least partly due
to noise (influenced by the visibility fit’s extrapolation of zero amplitude beyond ≈ 1.5 M_,
analogous to Fig. 4.2(e)), but it may also have contributions from real, diffuse emission.

In light of the discussion in Sec. 4.3.3 on how nonaxisymmetric features can mimic the
appearance of a partially resolved ring, we can also use the CLEAN image, imaginary compo-
nent of the visibilities and imaged frank residuals to examine whether any super-resolution
features in the frank profile may be artifacts of azimuthally asymmetric emission. Contour-
ing the CLEAN image of the source shows no clear signs of an asymmetry; the imaginary
component of the visibility distribution in Fig. 4.4 does not exhibit prominent structure,
indicating that asymmetries in the image must be particularly faint and/or small-scale; and
the imaged frank residuals do not have clear features within the disk (the small, 5𝜎 blob
in the west of the imaged residuals that is also in the CLEAN image). We thus infer that the
profile’s features are likely annular.

FT Tau: The frank fit in Fig. 4.6 finds a new gap/ring pair around 11−17 au, underresolved
in the parametric brightness profile as the quasi-linear region (and hinted at in the CLEAN
model profile). The frank profile also determines the gap at 26 au identified in Long et al.
(2018) to be wider, with a brighter adjacent ring. While the difference between the parametric
and frank visibility fits for FT Tau in Fig. 4.4 may not look dramatic enough to correspond
to a new gap/ring pair, it is important first that frank exhibits an improved fit accuracy over
a large span in baseline (≈ 1.0−1.7 M_). Second, while the frank fit converges on zero
visibility amplitude at ≈ 2.0 M_, the parametric fit remains positive and continues to slowly
oscillate out to the longest baselines and beyond. The data instead appear by eye to indicate
that the true visibility distribution becomes negative beyond 2.0 M_ [denser (𝑢, 𝑣) plane
sampling at these baselines would be needed to confirm].

Considering disk asymmetries, the imaginary component of the visibilities for FT Tau
in Fig. 4.4 have clear structure on scales between ≈ 1.2− 1.7 M_, and this structure has
amplitude comparable to the difference between the frank and parametric fit residuals for
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Re(𝑉). The imaged frank residuals also have ≤ 5𝜎 features within and beyond the gap at
≈ 26 au. Together this suggests that there may be some faint asymmetric structure in the disk,
particularly in the gap centered at 26 au, where the residual amplitude is largest.

DR Tau: We find two new gaps relative to Long et al. 2019 (the frank fit to DR Tau
was previously shown in Jennings et al. 2020) in Fig. 4.6. This can be motivated by the
significant difference in visibility fit accuracy between the parametric and frank models in
Fig. 4.4; the CLEAN model visibility profile is also more accurate than the parametric model,
with the CLEAN model brightness profile having a hint of the outer ring found in the frank
brightness profile. The qualitative similarity in structure between the observed visibility
distributions for FT Tau and DR Tau also motivates why the frank fit shows two gaps in both
disks. The visibilities for DR Tau do not exhibit a zero-crossing, indicating the data contain
underresolved structure at small spatial scales; this seems most likely to be an indication of a
partially resolved inner disk.

Considering the inner disk, while the imaginary component of the visibilities for DR Tau
do not show clear structure, the imaged frank residuals in Fig. 4.6 do have strong features
in the innermost radii (≤ 15𝜎, or ≲ 5% of the background brightness in the CLEAN image).
This is likely affecting the morphology of the inner gap in the frank profile to some extent.
We find that the inner disk residuals in DR Tau and other disks discussed below are not
attributable solely to an incorrect determination of the disk phase center (assessed by varying
the applied phase center in Appendix 4.6).

4.4.1.1 Occurrence rate of substructure in compact disks

The frank fits to BP Tau and DR Tau raise the number of compact, single-disk systems with
substructure from two – FT Tau and the cavity disk IP Tau (shown in Long et al. 2018) – to
four, out of 14 total in the survey. Among the 14 compact disks, these four are neither the
largest nor brightest, which prompts the question of whether more of the survey’s compact
objects may be structured. To partially address this, we can consider whether the survey
data strongly exclude the presence of substructure in the remaining 10 compact sources. The
visibility distributions for four additional compacts disks in Fig. 4.7 each show tentative or
clear indications of structure at intermediate baselines and become highly noisy at longer
baselines due to sparse (𝑢, 𝑣) plane sampling. Whether this structure at intermediate baselines
corresponds in each case only to the brightness profile becoming steeper in the outer disk
(i.e., no gap/ring substructure), or instead to substructure, is not clear from these data. The
visibility distributions in Fig. 4.7(b) – (d) also do not exhibit a zero-crossing at short baseline,
characteristic of an underresolved inner disk and/or highly super-resolution substructure. It is
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thus possible that higher resolution and/or deeper observations would identify substructure in
a larger subset of the survey’s compact sources.

That the current data do show substructure in four of the survey’s compact disks – BP Tau,
DR Tau, FT Tau, and IP Tau – is in line with multiple features detected in the frank fits to
the DSHARP observations of the compact sources SR 4, DoAr 33 and WSB 52 (Jennings
et al., 2021), as well as substructure recovered in the parametric visibility fits to the compact
disks CIDA 1, MHO 6 and J0433 (Kurtovic et al., 2021; Pinilla et al., 2021). Collectively
these results demonstrate that many compact disks are not intrinsically featureless; their lack
of apparent substructure is instead in some cases an artifact of either the resolving power of
the model applied to the data or of the data itself. This may be a tentative indication that a
nontrivial fraction of compact dust disks follow the same evolutionary pathway as extended
disks, which tend to be structured.

4.4.2 New substructure in extended disks

For each of seven extended disks – CIDA 9 A, DL Tau, DS Tau, GO Tau, MWC 480, RY Tau,
and UZ Tau E – the frank brightness profiles identify new features and more highly resolve
those found in Long et al. (2018). We divide our analysis here into sources with a deep gap
separating the inner and outer disk (Sec. 4.4.2.1) and those with an apparent inner cavity
(Sec. 4.4.2.2).

4.4.2.1 Sources with an inner and outer disk

In four sources with an inner disk separated from one or more outer rings by a deep gap –
DS Tau, MWC 480, DL Tau, and GO Tau – we find new substructure as shown in Fig. 4.8.

DS Tau: The frank fit finds a new feature, a broad plateau, in the gap separating the inner
and outer disk (at 30 au). This arises from the small improvement in visibility fit accuracy in
Fig. 4.5, and it may be underresolving smaller scale substructure. The CLEAN model profile
also exhibits this plateau. The improved fit accuracy with frank additionally yields slightly
steeper gap walls. The feature in the gap may be informed to some extent by nonaxisymmetric
emission, given structure in the imaginary component of the visibilities and in the imaged
frank residuals of Fig. 4.8 in the inner disk.

GO Tau: The frank profile in Fig. 4.8 finds the quasi-linear region between ≈ 21−45 au in
the parametric profile to resolve into two rings. This may seem surprising when comparing
the fairly similar frank and parametric visibility fits for GO Tau in Fig. 4.5, but it can
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Fig. 4.8. New substructure in frank fits to extended disks with outer rings
As in Fig. 4.6, but for the four extended (𝑅eff, 90% > 50 au) systems in the Taurus survey
that exhibit an inner disk and one or more outer rings, discussed in Sec. 4.4.2.1. Parametric
profiles are from Long et al. 2018; the visibilities and fits for these disks are in Fig. 4.5. The
inset panels zoom on deep gaps in the brightness profiles. The frank fit to GO Tau peaks at
6.2×1010 Jy sr−1.
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Fig. 4.9. CLEAN image asymmetries
CLEAN images for three of the Taurus survey’s extended disks (see Sec. 4.4.2), with contours
chosen to highlight asymmetries. The images are identical to those in Fig. 4.8 and 4.11.

be understood by the frank visibility fit exhibiting regions of comparatively steeper slope
beyond ≈ 1.1 M_ as it more closely traces the data. The inner disk features in the frank
profile can nonetheless be expected to evolve with longer baseline data that more strongly
condition structure on small scales. In Fig. 4.8 we also again see a bimodal pattern in the
imaged frank residuals of the innermost disk, with ≥ 5𝜎 and ≤ −5𝜎 features interior to the
inner ring. We can expect that the inner disk features may evolve considerably with higher
resolution observations.

The deep gap separating inner from outer disk (at 55 au) in the frank fit exhibits a slight
bump (see the inset in Fig. 4.8), suggesting it may not be empty. This is reminiscent of
structure in the deep gap between inner and outer disk in the frank fits to the ≈ 35 mas
resolution DSHARP observations of AS 209, Elias 24, HD 163296, and SR 4 (see Fig. 12
in Jennings et al. 2021); it may be indicative of a common gap forming mechanism. The
fractional uncertainty in a frank profile is largest at faint brightness though, and the RMS
noise level in the CLEAN image of GO Tau, 0.01×1010 Jy sr−1, is of comparable amplitude
to the bump, so inference on structure within the deep gap is limited. In the outer disk, the
frank profile more strongly localizes the location of the outermost ring and better resolves
its faint amplitude. As a note, the two rings in the outer disk are clearly visible in the
CLEAN image due to the colorscale, but are relatively faint, and imaging artifacts are likely
introducing the apparent diffuse emission into the gap between the rings; these rings are
thus shallow and broad in the CLEAN image profile (though visible in the CLEANmodel profile).

MWC 480: The frank fit finds the inner disk for this source as well to be structured,
with a new plateau between ≈ 20−27 au. The profile’s broad, shallow, quasi-linear region
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Fig. 4.10. Ten Gaussian parametric fit to DL Tau
a) Posterior median, 1𝜎 and 2𝜎 confidence intervals of the 10 Gaussian fit to DL Tau, and
500 randomly drawn posterior samples. Also shown is the frank fit from Fig. 4.8.
b) Posterior median (black lines) for each of the 10 Gaussians in the fit, and the same 500
samples. The dashed horizontal line is at the CLEAN image RMS noise level.
c) A zoom on the observed visibilities (> 0.30 M_; 20 and 100 k_ bins, with 1𝜎 uncertainties
shown for the 100 k_ points), and the parametric median and frank visibility fits.
d) Residuals for the visibility fits (20 k_ bins).
e) As in (c), but with the 1𝜎 and 2𝜎 confidence intervals and the 500 posterior samples
included. Longer baselines are shown to demonstrate the difference in fit extrapolations at
unsampled scales.
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Fig. 4.11. New substructure in frank fits to extended disks with cavities
As in Fig. 4.6, but for three of the extended (𝑅eff, 90% > 50 au) systems in the Taurus survey
that exhibit an inner cavity, discussed in Sec. 4.4.2.2. Parametric profiles are from Long et al.
2018; the visibilities and fits for these disks are in Fig. 4.5. Vertical lines in the brightness
profile plots denote the radial location of a ring and its shoulder; ellipses in the CLEAN image
and imaged frank residuals correspond to these radii.
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Fig. 4.12. Shoulder morphology in high resolution observations
The brightness profile extracted from the CLEAN image and the frank brightness profile
for four disks in the ≈ 35 mas resolution DSHARP survey (Andrews et al., 2018; Huang
et al., 2018a) and the ≈ 40 mas resolution observations of CI Tau (Clarke et al. 2018b; the
y-scale zooms on lower brightness). Vertical lines in the brightness profile plots denote the
radial location of a ring and its shoulder (Sec. 4.4.2); ellipses in the CLEAN image and imaged
frank residuals correspond to these radii. Images zoom on the inner disk of each source.
The imaged frank residuals have contours at −5,+5𝜎. frank fits for the DSHARP disks are
from Jennings et al. (2021); the frank fit for CI Tau is previously unpublished (Appendix 4.8
shows the visibility fit).
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between ≈ 30−50 au may be a further indication of underresolved inner disk substructure.
Additionally, the imaged frank residuals show ≥ 3𝜎 asymmetries across the inner disk; from
all of this we may again expect the inner disk morphology to evolve with higher resolution
observations. As in GO Tau, the deep gap separating inner from outer disk (at 76 au) has a
bump in the inset in Fig. 4.8. Again, at low surface brightness the relative model uncertainty
is higher, although the CLEANmodel profile does also suggest there may be structure in this gap.

DL Tau: Like DS Tau, GO Tau and MWC 480, DL Tau has a deep gap that separates inner
from outer disk (at 66 au). Yet by comparison the gap in DL Tau is narrower and lacks the
flat bottom morphology. The outer disk in DL Tau is distinct as well; while in the other
three disks there is one prominent ring exterior to the gap, in DL Tau we find three (in
addition to broad bumps at 144 au and 165 au that either trace faint rings, diffuse emission, or
potentially artifacts of the visibility model’s extrapolation). The rings at 97 au and 116 au in
the frank profile are averaged over as a single, broad feature in the parametric profile from
Long et al. (2018). Unique also to DL Tau is prominent asymmetry in the outer disk. The
imaged frank residuals have ≥ 3𝜎 and ≤ −3𝜎 regions that lie roughly in the gap between the
outer two prominent rings. The asymmetries have an orientation consistent with a generally
brighter east side of the outer disk as identified by contouring the CLEAN image in Fig. 4.9(c).
Collectively, these differences in morphology for DL Tau could indicate that the gaps in this
disk are produced by a different physical process or a lower mass planet than in DS Tau,
GO Tau and MWC 480. The one strong similarity between DL Tau and these other sources
is a new plateau in DL Tau between ≈ 19−27 au that corresponds to an asymmetry in the
imaged fit residuals (note a plateau is also seen in the CLEAN model profile), suggesting the
underresolved inner disk substructure may not be purely annular.

The abundance of substructure in the frank brightness profile for DL Tau (2 new rings
in addition to the 3 rings identified in Long et al. 2018) makes this a good disk for comparing
the frank fit to a parametric model whose functional form is motivated by the frank profile.
Such a comparison gives a sense of how similar we can expect nonparametric and parametric
fits to be for a highly structured source. This is of particular interest in the inner disk, where
frank fits tend to find new substructure; that is, an independent parametric model can test
the recovery of the features in the frank profile. This comparison also demonstrates the
benefit of using a rapid, super-resolution frank brightness profile (as compared to the profile
extracted from a CLEAN image or even from a CLEAN model) to motivate a parametric model
which uses expensive Markov Chain Monte Carlo (MCMC).

Fig. 4.10 shows this comparison for DL Tau, between a 10 Gaussian parametric model
and the frank fit. The parametric modelling approach and results, including the corner plot
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and analysis of sampling convergence, are more fully presented in Appendix 4.7. The 10
Gaussian parametric form is composed of: 2 Gaussians based on the plateau and ring in the
inner disk of the frank fit, 3 Gaussians for the 3 prominent rings in the outer disk of the
frank fit, 1 Gaussian for the broad bump at 144 au in the frank fit, 2 additional Gaussians
to describe the disk interior to 25 au, and 2 more Gaussians to account for the brightness
profile’s small offset from zero brightness out to large radii. Fig. 4.10(b) shows the median of
the posterior samples for each of these 10 Gaussians, as well as the spread in randomly drawn
samples for each.

The median brightness profile for the parametric model is in general agreement with
the frank profile for DL Tau in Fig. 4.10(a), with the frank profile lying within the 2𝜎
confidence interval of the parametric model at almost all radii. Both models find the outer
disk between 65−130 au to resolve into 3 rings, and both prefer a (likely underresolved)
deviation from the smooth Gaussian envelope in the inner disk, between 15−30 au. Relative
to the frank profile, the parametric median profile exhibits narrower and brighter rings in
the outer disk (and thus more flat-bottomed gaps between these rings), as well as a slight
turnover near 𝑟 = 0. These differences arise from the different extrapolation of the parametric
median visibility fit and the frank fit beyond the end of the data in Fig. 4.10(e). The true
visibility distribution likely continues to oscillate beyond the longest baselines sampled,
but the observations of course provide no constraint on visibility amplitudes at unsampled
baselines (apart from flux conservation). Since the differences between the parametric and
frank profiles in visibility space are essentially limited to noisy or unsampled baselines, the
precise ring widths, flatness of the gap bottoms, and turnover near 𝑟 = 0 in the parametric
brightness profile should thus be considered uncertain. Overall though, the general agreement
between the parametric and frank profiles provides further evidence that DL Tau is densely
structured, and the comparison illustrates the benefit of using a frank profile to initialize a
parametric visibility fit, particularly for a disk with a large number of features.

4.4.2.2 Sources with an apparent inner cavity

For each of the three disks with an apparent inner cavity identified in the Taurus survey –
CIDA 9 A, RY Tau and UZ Tau E – the frank fit in Fig. 4.11 finds one or more new features.

RY Tau: The frank fit finds the cavity hinted at in the parametric fit to be almost fully
cleared, with a steep outer wall. The adjacent ring in the parametric profile resolves into a
narrower/brighter ring and an emission excess, a ‘shoulder’, in the frank profile (the shoulder
is also hinted at in the CLEANmodel profile). The contoured CLEAN image in Fig. 4.9(b) shows
asymmetry in the innermost disk, and the imaged frank residuals in Fig. 4.11 have a strong
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asymmetric pattern at small radii (roughly interior to the shoulder) that is ≤ 17𝜎, or ≈ 5% of
the peak brightness in the CLEAN image. This is a smaller contrast by a factor of a few than the
shoulder in the frank profile, suggesting that feature is not purely due to an asymmetry. The
residual structure could be dominated by an elevated/flared emission surface, as ≥ 5𝜎 and
≤ −5𝜎 residuals span most of the disk, and the source has a large fitted inclination of ≈ 65o.
A cleared inner cavity and inner disk asymmetry are seen in higher resolution observations
(20×40 mas beam) of this source (Francis and van der Marel, 2020). In the outer disk, the
plateau in the parametric profile between ≈ 40−50 au becomes a gap/ring pair in the frank
profile (and to a lesser extent in the CLEANmodel profile), as may be expected from a higher res-
olution fit; note how the parametric fit in Fig. 4.5 misses the trough in the visibilities centered
at 1.25 M_ that the frank fit recovers and the CLEANmodel visibility profile partially recovers.

UZ Tau E: As in RY Tau, the frank profile finds the cavity to be more devoid of material
than previously seen, with a steeper edge and brighter adjacent ring, and a shoulder on
the ring’s trailing edge. The broad region of quasi-linear slope in both the parametric and
frank brightness profiles (between ≈ 40−70 au in the latter) is potentially suggestive of
underresolved substructure at these radii. In the outer disk, the frank fit finds the ring at
82 au to be narrower and brighter. The imaginary component of the visibilities for UZ Tau
do show structure at the shortest baselines, but this is due to the disk-bearing binary system
UZ Tau Wa and Wb in the field of view.

CIDA 9 A: As in RY Tau and UZ Tau E, the frank profile finds the cavity wall to be steeper,
with a brighter adjacent ring and an accompanying shoulder that is also apparent in the
CLEAN model profile. The imaginary component of the visibilities in Fig. 4.5 show structure
across a wide range of baselines, and the contoured CLEAN image of the source in Fig 4.9(a)
correspondingly traces brightness excesses in the southeast and southwest of the disk. These
roughly coincide with the ring’s peak location in the frank profile and the strong structure in
the imaged frank residuals. The residual features have brightness up to 18% of the peak
brightness in the CLEAN image; such a high contrast entails they are affecting the frank
profile in the bright ring’s vicinity. The profile also indicates an additional, faint ring within
the cavity (at 9 au).

The shoulder morphology as a trend A shoulder is present on the trailing edge of the
bright ring in all three Taurus survey disks with an apparent inner cavity, suggesting a trend.
The shoulder morphology is also seen in several disks beyond the survey that have an inner
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cavity or deep gap. These shoulders have been identified using a variety of fitting techniques,
and over a range of observational resolutions and wavelengths. Like the Taurus disks, the
shoulder’s contrast varies across disks observed at similar resolution and wavelength. And
like the Taurus disks there are often brightness asymmetries in the vicinity of the ring and
shoulder, identified in either a CLEAN image or imaged fit residuals.

In some disks, a brightness arc in an otherwise empty annulus seen in the CLEAN image
manifests in the CLEAN brightness profile as a shoulder. Examples include the arc exterior to
a ring outside a deep gap in the 1.3 mm DSHARP observations of HD 143006 (Huang et al.,
2018a; Pérez et al., 2018), as well as the arc exterior to a ring that surrounds an inner cavity
in the 0.9 mm observations of V1247 Ori and HD 135344 B (van der Marel et al. 2019; the
shoulder in HD 135344 B is also seen in the frank profile in Norfolk et al. 2021). In other
cases, similar to the Taurus survey disks, the shoulder morphology is present not as the result
of a clearly isolated arc, but within an annulus that in the CLEAN image appears to contain
emission across all azimuthal angles. The 2.1 mm CLEAN brightness profile of GM Aur
shows such a shoulder on the trailing edge of a bright ring exterior to a cavity (Huang et al.,
2020), with the CLEAN image showing hints of a brightness asymmetry in the radial region of
the gap and shoulder; lower resolution observations of the same source at 0.93 mm and 7 mm
(Macías et al., 2018) also find a shoulder.
frank fits to four of the six DSHARP sources that have a bright ring in the inner disk –

AS 209, HD 142666, HD 163296, and Sz 129 – show a shoulder on the ring’s trailing edge
(Jennings et al., 2021). In Sz 129 the ring is exterior to an inner cavity, while in AS 209,
HD 142666 and HD 163296 it is exterior to a deep gap in the inner disk. These fits are
reproduced in Fig. 4.12, with brightness asymmetries consistently present in the imaged
frank residuals interior to and/or at the radial location of the ring. Asymmetries are also
identified at these radii in the CLEAN image for HD 142666, HD 163296 and Sz 129 (Huang
et al., 2018a). The shoulder’s contrast varies across the frank brightness profiles, from a
faint, wide bump in Sz 129 to an apparent ring in HD 142666. Fig. 4.12 also shows a frank
fit to the 40 mas observations of CI Tau from Clarke et al. (2018b), where the broad ring in
the parametric profile at 27 au resolves into an inner narrow ring and an outer, fainter ring
(the shoulder) in the frank fit. The frank profile also finds the deep gap interior to the rings
to be structured.

We suspect this shoulder morphology (regardless of whether a given shoulder is under-
resolving a ring) is tracing some common physical mechanism whose relative effect varies
between sources. Perhaps the most viable candidates are ones that can produce azimuthal
brightness asymmetries in a disk with a cavity or deep gap, such as those discussed in § 3.3
of Long et al. (2018): planet-induced dust traps (Ataiee et al., 2013; van der Marel et al.,
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2013) and eccentric cavities in a circumbinary disk (Ragusa et al., 2017); or migrating planets
(Meru et al., 2018; Nazari et al., 2019).

4.5 Conclusions

We used frank to identify new features and more highly resolve known features in 10 Taurus
survey disks observed at ≈ 120 mas resolution.6 Relative to the parametric visibility fits in
Long et al. (2018) and Long et al. (2019) and the CLEAN model brightness profiles, which
both yielded substantially more disk substructure than the CLEAN image brightness profiles,
we demonstrated how further improvements to visibility fit accuracy with the nonparametric
approach in frank could find yet more features. The most notable example was DL Tau, in
which the frank fit recovered two new rings in a disk with three previously identified rings.
We also used this source to show how a super-resolution frank profile is advantageous for
motivating a parametric form that can be modeled with tools such as galario, and how
this parametric fit provided further confidence in the frank profile features. Among the
substructures characterized across the 10 disks, we identified three main trends:

• increased substructure in compact disks: Of the survey’s 14 disks with radii ≲ 55 au,
we found two previously smooth disks (BP Tau, DR Tau) to exhibit substructure and
identified a new gap in the inner disk of another (FT Tau). These disks were not
systematically larger or brighter than the compact sources without detected substructure,
and we motivated how sparse (𝑢, 𝑣) plane sampling at long baselines in many of the
latter does not exclude the presence of substructure at the observed spatial scales.

• increased inner disk substructure: Across the compact and extended sources considered,
we found evidence of underresolved substructure at small (≲ 30 au) radii, in many
cases coinciding with azimuthally asymmetric fit residuals.

• a ring/shoulder morphology in inner disks: The three survey sources with an apparent
inner cavity (CIDA 9 A, RY Tau, UZ Tau E) showed a shoulder on the trailing edge of
the disk’s bright ring. We noted numerous instances of this same morphology exterior
to a cavity or deep gap in disks outside the survey, positing it may trace a common
physical mechanism.

Identification of new substructure in Taurus survey disks complements recent applications
of frank to the DSHARP survey (Jennings et al., 2021) and ODISEA survey (Cieza et al.,
2021). Along with super-resolution fits obtained using other methods such as galario in

6All frank fits in this chapter are available at https://zenodo.org/record/5587840.

https://zenodo.org/record/5587841
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Long et al. (2018) and Long et al. (2019), these results contribute to the growing evidence
that it is not only bright, large disks that exhibit substructure. Instead a lack of substructure
in a disk may often be an artifact of a dataset’s or model’s resolution. This underscores
the utility of super-resolution methods across a range of observational resolutions to better
constrain substructure occurrence rates and discern morphological trends. Ultimately a large
ensemble of sources characterized at super-resolution scales will help to discriminate between
candidate physical mechanisms producing disk features.

4.6 Appendix A: Effect of phase center uncertainty on
imaged frank residuals

To assess the robustness of features in the imaged frank residuals shown in the main text,
here we consider how the fitted phase center alters their morphology and brightness. We
focus on the phase center, rather than the fitted inclination or position angle, or out-of-plane
effects, because several of the imaged frank residuals in the main text show a bimodal
asymmetry in the inner disk that may reasonably be expected as an artifact of the applied
phase center (see Appendix A in Andrews et al. 2021 for a good demonstration). We seek to
determine whether they may instead be indications of real asymmetries (see also Appendix B
in Jennings et al. 2021).

Long et al. (2018) found the typical 1𝜎 uncertainties in fitted right ascension and
declination offsets for a source (relative to the center of the field of view) to be < 1 mas,
while we have found uncertainties with mock and real data to commonly be 1−3 mas. While
< 1 mas shifts in phase center typically have a trivial effect on residual visibility amplitudes,
shifts of 1−3 mas can induce visible differences in imaged frank residuals. To test whether
these shifts can remove high residual brightness in the inner disk, for each source in the main
text we have applied a phase center differing from the published value by 1, 2 or 3 mas –
with the shift at 𝜋/4 intervals over the full 2𝜋 in azimuth – then fit the shifted visibilities
and compared the fit to that with the published phase center (this is the same test described
in Appendix B of Jennings et al. 2021). The effects of a phase shift of 1− 3 mas on the
visibilities and thus the frank brightness profile are largely imperceptible, but differences
are evident in the imaged frank residuals.

As an example, the imaged frank residuals for DR Tau using the published phase center
contain > 5𝜎, bimodal features in the inner disk. Fig. 4.13 shows the results of the above test
for a 2 mas phase center shift at each of the 𝜋/4 azimuthal angles (the imaged residuals for
shifts of 1 and 3 mas are qualitatively similar). The phase shifts do result in a variation in the



140
Super-resolution trends in the ALMA Taurus survey: Structured inner disks and compact

disks

dRA +2, dDec +0 mas
Ipeak = 33 mJy arcsec−2

dRA -2, dDec +0 mas
Ipeak = 62 mJy arcsec−2

dRA +0, dDec +2 mas
Ipeak = 51 mJy arcsec−2

dRA +0, dDec -2 mas
Ipeak = 47 mJy arcsec−2

dRA +2, dDec +2 mas
Ipeak = 41 mJy arcsec−2

dRA +2, dDec -2 mas
Ipeak = 32 mJy arcsec−2

dRA -2, dDec +2 mas
Ipeak = 66 mJy arcsec−2

dRA -2, dDec -2 mas
Ipeak = 63 mJy arcsec−2

−0.50.00.5
dRA ["]

−0.5

0.0

0.5

dD
ec

 ["
]

106 × 134 mas

dRA +0, dDec +0 mas
Ipeak = 47 mJy arcsec−2

−50

0

50

I [
mJ

y a
rcs

ec
−2

]

dRA +0, dDec +0 mas
Ipeak = 1393 mJy arcsec−2

0

200
400
600800
1200

I [
mJ

y a
rcs

ec
−2

]

Fig. 4.13. Effect of fitted phase center on imaged residual visibilities
Bottom row: The imaged frank residual visibilities for the fit in the main text to DR Tau
(zero CLEAN iterations; contours at −5,−3,+3,+5𝜎, with 𝜎 = 3 mJy arcsec−2), and the CLEAN
image.
Top and center rows: The imaged frank residual visibilities when the fitted dRA and/or
dDec is varied by ±2 mas (as listed in each panel). The imaged frank residual panels all use
the same absolute linear stretch shown in the colorbar.
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Fig. 4.14. Varying the phase center to minimize the imaged residual visibilities
The imaged frank residual visibilities from the main text for each source in Sec. 4.4,
alongside the imaged visibilities obtained by varying the fitted dRA and/or dDec to minimize
the absolute image brightness. The images are produced with zero CLEAN iterations; contours
are at −5,+5𝜎. The peak brightness is given, as is the phase shift applied to minimize the
absolute brightness.
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peak residual brightness by a factor of ≤ 2, and in the orientation of the bimodal pattern. But
the pattern persists in all cases, and phase shifts that reduce the pattern’s brightness (which
we may at first interpret as the applied phase center being more accurate) also increase the
residual amplitude at larger disk radii. We could expect that this is due to a more complex
combination of an incorrect phase center, incorrect inclination and/or position angle, and
out-of-plane effects, however this disk is nearly face-on (fitted inclination of 5.4o). The
persistence of > 10𝜎 features in the residuals thus suggests there is real inner disk structure
that the frank fit to these data is not resolving.

To consider the full set of 10 sources in Sec. 4.4, Fig. 4.14 compares the imaged frank
residuals from the main text for each disk with the residuals produced when we shift the
phase center to minimize the absolute brightness in the image. In some cases a bimodal
asymmetry in the inner disk is weakened, while in others it persists. This suggests these inner
disk residual features are not (always) purely an artifact of an incorrect visibility deprojection.

4.7 Appendix B: Parametric fit to DL Tau

Sec. 4.4.2.1 shows a 10 Gaussian parametric fit to DL Tau using galario. Here we present the
fit in more detail. The model contains 34 free parameters: a centroid, amplitude and standard
deviation for each of the 10 Gaussians, as well as the disk geometry (inclination, position
angle, and the right ascension and declination offsets). We perform an initial maximum
likelihood estimate using the BFGS solver in scipy.optimize.minimize, then initialize
the MCMC walkers in a Gaussian ball around this estimate (by adding to each parameter
value a draw from the standard normal distribution multiplied by 10−4). We run the MCMC
with emcee (Foreman-Mackey et al., 2013), using 160 walkers (≈ 5 per parameter) and a
uniform prior on each parameter in the brightness profile Gaussians, as well as a Gaussian
prior on the disk geometry parameters (centered on the published geometry), as listed in
Table 4.2. We run the MCMC for 3×105 steps and then estimate the autocorrelation time 𝜏

for each chain at various points in the run. We do not reach convergence across all chains
during the run, with the estimate of the autocorrelation time averaged over all dimensions 𝜏
continually increasing as a power law in Fig. 4.15 rather than plateauing. This demonstrates
how the high dimensionality of the parameter space would require a significantly larger
number of steps to reach sampling convergence.

From the full set of samples we remove a burn-in of 2 ·max(𝜏) ≈ 6× 104 steps, with
𝜏 estimated at the last step in the chains. Using the resulting samples, Table 4.2 gives
the posterior 16th, 50th and 84th percentiles for each parameter; unsurprisingly the faintest
Gaussians (𝐺3,𝐺6,𝐺9,𝐺10) have the highest uncertainty on their width and amplitude.
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Table 4.2. Priors and posterior 16th, 50th and 84th percentiles for each parameter in the
10 Gaussian parametric fit to DL Tau. 𝐺 (𝑟,𝜎, 𝐼) denotes a Gaussian of radial position 𝑟,
standard deviation 𝜎 and logarithmic brightness 𝐼. The disk geometry parameters listed are
inclination (inc), position angle (PA), right ascension offset (dRA), and declination offset
(dDec).

Priors

Parameter [unit] Prior

𝑟𝑖 in 𝐺𝑖 (𝑟𝑖, 𝜎𝑖, 𝐼𝑖) [arcsec] uniform:



(0.00,0.08), 𝑖 = 1
(0.08,0.10), 𝑖 = 2
(0.10,0.20), 𝑖 = 3
(0.20,0.40), 𝑖 = 4
(0.40,0.55), 𝑖 = 5
(0.55,0.63), 𝑖 = 6
(0.63,0.65), 𝑖 = 7
(0.65,0.70), 𝑖 = 8
(0.70,0.80), 𝑖 = 9
(0.80,0.95), 𝑖 = 10

𝜎𝑖 in 𝐺𝑖 (𝑟𝑖, 𝜎𝑖, 𝐼𝑖) [arcsec] uniform: (0.00, 0.30) for 𝑖 ∈ [1...10]

𝐼𝑖 in 𝐺𝑖 (𝑟𝑖, 𝜎𝑖, 𝐼𝑖) [log10(Jy sr−1)] uniform: (8,12) for 𝑖 ∈ [1...10]

inc [deg] 𝐺 (𝑥0 = 44.95,𝜎𝑥 = 5.0)

PA [deg] 𝐺 (𝑥0 = 52.14,𝜎𝑥 = 5.0)

dRA [mas] 𝐺 (𝑥0 = 240,𝜎𝑥 = 5)

dDec [mas] 𝐺 (𝑥0 = −60,𝜎𝑥 = 5)

Posteriors

Brightness profile Gaussians Disc geometry

𝐺1(𝑟 = 0.01+0.01
−0.01, 𝜎 = 0.03+0.01

−0.01, 𝐼 = 10.76+0.08
−0.06) inc = 45.10+0.32

−0.30 [deg]

𝐺2(𝑟 = 0.10+0.02
−0.01, 𝜎 = 0.10+0.02

−0.02, 𝐼 = 10.21+0.06
−0.07) PA = 51.90+0.45

−0.46 [deg]

𝐺3(𝑟 = 0.14+0.04
−0.03, 𝜎 = 0.05+0.10

−0.04, 𝐼 = 8.90+0.86
−0.62) dRA = 236+1

−1 [mas]

𝐺4(𝑟 = 0.31+0.01
−0.01, 𝜎 = 0.03+0.01

−0.01, 𝐼 = 9.86+0.05
−0.06) dDec = −59+1

−1 [mas]

𝐺5(𝑟 = 0.49+0.00
−0.00, 𝜎 = 0.01+0.01

−0.00, 𝐼 = 9.80+0.24
−0.22)

𝐺6(𝑟 = 0.60+0.02
−0.02, 𝜎 = 0.03+0.05

−0.02, 𝐼 = 9.09+0.43
−0.45)

𝐺7(𝑟 = 0.67+0.02
−0.02, 𝜎 = 0.24+0.04

−0.09, 𝐼 = 9.05+0.13
−0.22)

𝐺8(𝑟 = 0.73+0.01
−0.01, 𝜎 = 0.02+0.01

−0.01, 𝐼 = 9.58+0.23
−0.15)

𝐺9(𝑟 = 0.79+0.04
−0.04, 𝜎 = 0.22+0.05

−0.12, 𝐼 = 8.65+0.24
−0.38)

𝐺10(𝑟 = 0.89+0.02
−0.03, 𝜎 = 0.03+0.04

−0.02, 𝐼 = 8.89+0.34
−0.32)
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Fig. 4.15. Corner plot for parametric fit to DL Tau
For the parametric fit to DL Tau, a corner plot showing the posterior for each fitted parameter
(along the diagonal) and the covariance between parameters (red 1𝜎 and green 2𝜎 confidence
intervals). The top-right panel shows the estimate for the autocorrelation time averaged over
all dimensions 𝜏 as a function of the number of samples 𝑁 .
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Fig. 4.15 shows the corner plot using corner.py (Foreman-Mackey, 2016), with few
instances of strong covariance in the 2𝐷 distributions, but also non-Gaussianity in the 1𝐷
distributions for the centroid and the standard deviation of some of the brightness profile
Gaussians.

4.8 Appendix C: frank fit to high resolution observations
of CI Tau

The frank fit to the ≈ 40 mas observations of CI Tau7 in Fig. 4.16 finds new features in the
disk’s brightness profile: a (very likely underresolved) gap/ring pair at 5 au, structure in the
deep gap at 15 au, and a separation of the single ring at 25 au into two rings. The parametric
galario profile from Clarke et al. (2018b), also shown in Fig. 4.16, exhibits a change in
slope at the location of the 5 au gap in the frank fit, giving further credence to this feature.
The fast oscillations in the frank brightness profile are artifacts of the visibility fit. The
frank fit shows a large improvement in accuracy in the visibility domain relative to the 1D
Fourier transform of a brightness profile extracted from the CLEAN image8, with a factor of
≈ 11 lower 𝜒2. The frank fit to the Taurus survey observations of CI Tau (not shown) does
not resolve any indication of the new features seen in the fit to the higher resolution data.

7The frank fit uses visibilities deprojected and phase centered by 𝑖 = 47.3o, 𝑃𝐴 = 14.1o, (𝑑RA, 𝑑Dec) =
(330,−93) mas. These were determined in frank by fitting a 2D Gaussian to the visibilities. The model
hyperparameters for the brightness profile fit are 𝛼 = 1.05, 𝑤smooth = 10−4, 𝑅out = 1.5′′, 𝑁 = 500, 𝑝0 = 10−15 Jy2.

8The CLEAN image was generated using tclean in CASA 5.6.1-8with the multiscale deconvolver (pixel
size of 10 mas and scales of 1, 2, 4, 6 pixels) and Briggs weighting with a robust value of 0.5.
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Fig. 4.16. frank fit to high resolution CI Tau observations
a) Brightness profile fits for ≈ 40 mas observations of CI Tau, with the parametric fit from
Clarke et al. (2018b), frank fit (which peaks at 16× 1010 Jy sr−1), and the CLEAN image
brightness profile. 𝑏avg shows the mean of the CLEAN beam width along its major and minor
axes.
b) Observed visibilities (20 and 100 k_ bins) and fits corresponding to the brightness profiles
in (a). The parametric fit used a different frequency normalization to convert the (𝑢, 𝑣)
distances to units of [_] and a different geometry to deproject the visibilities, so it is not
directly comparable to the data shown here, the frank fit or the CLEAN fit. Hence we do not
report a 𝜒2.
c) Residuals of the frank visibility fit (20 k_ bins).
d) – f) An image of the frank profile swept over 2𝜋 and reprojected; the CLEAN image; and the
imaged frank residual visibilities (zero CLEAN iterations; contours at −3,+3𝜎). The frank
and CLEAN images use an arcsinh stretch (𝐼stretch = arcsinh(𝐼/𝑎) / arcsinh(1/𝑎), 𝑎 = 0.02),
but different brightness normalization (indicated by the given peak brightness). The imaged
frank residuals use a linear stretch symmetric about zero.



Chapter 5

Conclusions

5.1 The frank modeling framework and scientific applica-
tions

This thesis presented frank, an open source, super-resolution imaging technique for radio
interferometric observations, and its application to an ensemble of protoplanetary disk
observations to identify and accurately characterize disk substructures. After providing the
necessary technical and scientific background and motivation for this tool in Chapter 1, we
presented the modeling framework for frank in Chapter 2. frank is a 1D, nonparametric
model that uses a fast Gaussian process to recover the brightness profile of a disk and
thus characterize its substructure by directly and accurately fitting the real component
of the observed visibilities. frank offers an advantage in 1D relative to the community
standard imaging approach, CLEAN, by consistently recovering higher angular resolution
information from a dataset without sacrificing sensitivity. This enables scientific applications
for protoplanetary disks including more accurately discerning substructure widths and
amplitudes, better resolving the inner disk structure, and isolating disk asymmetries in a
residual image.

Considering the ubiquity of disk substructure in bright sources, we next applied frank
to the high resolution DSHARP survey (Andrews et al., 2018) in Chapter 3. frank super-
resolved disk structure relative to CLEAN in this analysis by accurately fitting the 1D visibility
distribution for each of the 20 DSHARP sources to a mean factor of 4.3 longer baseline
than brightness profiles extracted from the CLEAN images and a factor of 3.0 longer baseline
than the CLEAN models. This demonstrated that super-resolution techniques such as frank
can provide new insights from existing datasets, better informing physical inference without
requiring deeper and/or longer baseline interferometric observations. A major scientific
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outcome of this analysis was the finding that the DSHARP disks are commonly structured
interior to 30 au, a finding not achievable with CLEAN images alone.

Finally in Chapter 4, we applied frank to the moderate resolution Taurus survey (Long
et al., 2018), finding that disks which appear featureless (or relatively featureless) in CLEAN
images are often structured when the data are super-resolved with frank. This showed that it
is not only bright, large disks that exhibit substructure; instead a lack of substructure in a disk
may often be an artifact of a dataset’s or model’s resolution – even a parametric visibility
model. This analysis notably found a higher occurrence rate of substructure in compact disks
than previously known, and a higher rate of inner disk substructure than previously discovered
in this survey, complementing our findings in Chapter 3 with the DSHARP survey.

5.2 The role of super-resolution imaging in future disk
science

The scientific findings in Chapters 3 and 4 show the capability of frank, and super-resolution
techniques generally, to advance our understanding of protoplanetary disk structure. With
a sufficiently large sample of disk datasets super-resolved, we will be able to use this
substructure characterization to investigate disk physics and the embedded planet population.
A subsequent step will be to connect a statistical sample of young planets to the occurrence
rates found in the evolved exoplanet population. To these ends, two future directions with
frank are useful: applying the current version to a larger ensemble of existing datasets and
expanding the model’s capabilities.

To immediately advance scientific results for disk science with frank, the current version
of the model framework could be applied to the large sample of archival ALMA datasets,
which constitutes a few tens of disks observed at high resolution (<75 mas) and many tens at
moderate resolution (75 - 200 mas). Several of these have been observed across multiple
spatial resolutions and wavelengths. Applying frank to this large suite of datasets covering
a broad range of disk morphologies would enable a statistical analysis of super-resolution
trends in disk substructure, with frank recovering more information from existing data than
previously obtained with CLEAN. Across this sample, leveraging discriminants such as stellar
mass, disk mass and age would allow us to address open questions of how substructures form
and evolve. This super-resolution characterization of a statistical ensemble of sources could
specifically address which substructure morphologies are generated by the dynamical effect
of newly-formed planets and which by hydrodynamic disk instabilities.
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In terms of expanding frank’s capabilities, because the modeling approach has been in
1D, the characterization of azimuthally asymmetric substructure in disks has been limited.
Such features are so far found to be less common than annular gaps and rings, although a
large diversity of asymmetries may be hidden by the limited resolution in 2D CLEAN images.
Examples of known and potential asymmetries include local brightness ‘arcs’ that simulations
find can be produced by eccentric cavities in circumbinary systems (Ragusa et al., 2017),
spiral arms whose pitch angles could be measured more accurately with super-resolution
imaging to infer the presence of a planet (e.g., Bae and Zhu, 2018); and small ‘shoulders’
seen on the wings of Gaussian rings in 1D fits (Sec. 4.4.2.2) that may be tracing asymmetries
due to planet-induced dust traps (e.g., van der Marel et al., 2013). A 2D version of the frank
model is thus needed to accurately super-resolve, and conduct physical inference on, a large
ensemble of disks observed by ALMA.

To develop this 2D expansion of frank will require generalizing the discrete Hankel
transform (DHT). The DHT is an analog to the discrete Fourier transform, used in frank
1D to translate between the data domain (visibilities) and the real space brightness profile
by expressing the profile as a sum of zero-order Bessel functions. The DHT can accurately
represent 2D distributions (thus azimuthal disk asymmetries) via a multipole expansion that
uses higher order Bessel functions to represent higher moments.

In addition to the continuum emission in the dust, there are a growing number of datasets
for the gas component of protoplanetary disks as traced by molecular spectral line emission.
The most recent of these data contain high resolution information that remains unleveraged
by CLEAN imaging. The MAPS survey measured >50 spectral lines over five disks (Öberg
et al., 2021), and in the near-term additional, high spatial resolution gas data in CO, CS
and N2H+ will come from the exoALMA, eDisk and AGE-PRO surveys. Super-resolution
characterization of molecular line data could probe the molecular inventory at Solar System
scales and place tighter constraints on such fundamental properties as the gas disk thermal
and kinematic structure, and even the disk chemistry. A 2D version of frank could be
applied to not only individual images but entire spectral cubes. This would enable a new
level of joint high spatial and high spectral resolution characterization.

Pairing super-resolution findings in the gas and dust data has the potential to markedly
advance our understanding of not only disk physics and chemistry, but also planet formation
and orbital evolution. Using a 2D version of frank to characterize both gas and dust disk
substructures could allow us to constrain the physics and timescales of planet formation,
disk-planet interactions, and disk hydrodynamic instabilities that prompt planetesimal growth.
Over a sufficiently large sample, this could allow us to holistically and self-consistently
assess substructure morphologies, occurrence rates, and origins across multiple tracers. The
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resulting trends could have the potential to identify embedded planets across a range of
complementary tracers.

Ultimately, these frontiers with frank and a statistical census of super-resolved datasets
could provide diagnostics that are a unique pathway to advance our understanding of planet
formation, the origins of exoplanetary system demographics and giant planet atmospheres.
This would further advance connections between our understanding of disks and the compo-
sitions of mature exoplanets through a joint analysis of super-resolved dust midplane and
spectral line data, bringing us a step closer to a coherent theoretical description of planet
formation, disk evolution, and early planetary system evolution.
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