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The interactions of the d electrons of transition metal aqua ions with the solvent are

usually divided in short range electronic interactions with ligand water molecules and

long range electrostatic interactions with molecules beyond the first coordination shell.

This is the rationale behind the cluster continuum and QM/MM methods developed

for the computation of the redox potentials. In the density functional theory based

molecular dynamics (DFTMD) method the electronic states of the complex are also

allowed to mix with the extended band states of the solvent. Returning to the Cu1+ and

Ag1+ oxidation reaction which has been the subject of DFTMD simulation before we

show that coupling to the valence band states of water is greatly enhanced by the band

gap error in the density functional approximation commonly used in DFTMD (the

generalized gradient approximation). This effect is analyzed by viewing the solvent

as a wide gap oxide and the redox active ions as electronic defects. The errors can

be reduced significantly by application of hybrid functionals containing a fraction of

Hartree-Fock exchange. These calculations make use of recent progress in DFTMD

technology enabling us to include sp core polarization and Hartree-Fock exchange in

condensed phase model systems.
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Introduction

Ionization energies of atoms strongly depend on the oxidation state. The more electrons

have been taken away the higher is the energy for removing the next electron. Solvation

drastically reduces this progressive increase in ionization energy and transition metal aqua

cations generally have more than one accessible oxidation state. The free energy for a

change of oxidation state is given by the standard reduction potential U◦. Measured relative

to vacuum U◦ values are in the range of 3 to 6 Volt. For cations, redox potentials differ

from the corresponding vacuum ionization potentials by one order of magnitude or more.

Accurate reproduction of experimental redox potentials is therefore a bench mark test for

the methods of condensed phase computational chemistry. To be useful for applications,

e.g. in catalysis, errors should not exceed 200 mV (3 pK units at ambient temperature).

Metal aqua ions are among the more challenging systems for computational electrochem-

istry.1 Modern implicit solvent methods have, on the whole, been successful in meeting the

200 mV accuracy requirement2–7 although there remain some difficult cases (for a critical

assessment and a comprehensive list of references see Ref. 1). These methods treat the metal

ion and a small number of coordinated water molecules at the level of an accurate electronic

structure calculation method while the bulk solvent is represented by a continuum reaction

field (implicit solvent model). Experience has shown that the full first coordination shell

as well as the second coordination shell of H2O should be included in the quantum calcula-

tion.2–5 In this form the implicit solvent scheme is often referred to as the cluster-continuum

method. The increased system size makes in practice Density Functional Theory (DFT) the

method of choice. On the next level of atomic detail the implicit solvent is replaced by an

explicit water model derived from a classical force field. This approach is generally known

as the QM/MM method. Both non-polarizable8 and polarizable water force fields have been

considered.1

In a truly uncompromising first principle approach all of the solvent is treated at the same

DFT level as the metal ion(all-atom method).9–14 Aqueous solvents are liquids and all-atom
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methods must be combined with molecular dynamics (MD) sampling. This approach will

be referred to as density functional theory based molecular dynamics (DFTMD).15,16 Finite

temperature fluctuations of coordination geometry and hydrogen bonding are now explicitly

accounted for as is the effect of interaction with the extended (band) states of the solvent.

DFTMD comes of course at the expense of a huge increase in computational costs.

Unfortunately, the increase in computational effort also tends to increase the errors in U◦.

The same DFT approximations (the generalized gradient approximation and hybrid func-

tionals) do better when implemented with the cluster-continuum or QM/MM approach. This

seems to be the at first somewhat counter intuitive conclusion of our DFTMD calculation

of the oxidation potential of a set of small aqua anions (Cl−,OH−, SH−,HO−
2 ,O

−
2 ,CO−

2 ).17

The experimental reduction potentials of this series, ordered here according to decreasing

oxidation power, vary from +2.41 V for Cl/Cl− to −1.8 V for CO2/CO−
2 .18 These aqueous

species are still small enough to be amenable to DFTMD treatment. Inaccuracies due to

finite system size and duration of the MD sampling can be kept below 0.2V. The DFT related

error is significantly larger. In particular, the BLYP functional,19,20 favoured in DFTMD

studies of aqueous systems, systematically underestimates the redox potential. The error is

linear in U◦ varying from almost 1.0 V at the positive end of the series (Cl/Cl−) to essentially

0.0 V at the negative end (CO2/CO−
2 ).

The explanation for the systematic underestimation of U◦ in the generalized gradient

approximation (GGA) becomes clear when the vertical ionization potential (IP) of the re-

duced state (the anion) is compared to experiment. Vertical IP’s are a more direct probe

of electronic structure. Thanks to progress in liquid microjet photo emission spectroscopy

(PES)21,22 this critical test of the performance of electronic structure calculation methods

has become possible also for valence electrons in molecular liquids. In particular the Winter

group in Berlin has determined the vertical IP of a series of model aqueous species, such as

inorganic anions, including the hydroxide,23 halide23 and phosphates anions,24 small organic

anions,25,26 and recently also of neutral molecules27 and transition metal cations.5,13,14 As
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an instructive example of how these measurements of vertical IP’s can be used to validate

computational methods we mention a recent study on how many explicit water molecules

must be included in the continuum cluster calculation of the ionization energy of aqueous

phosphate anions in various protonation states.24

The aqueous hydroxide anion

Among aqueous ions, the hydroxide anion plays a special role because it is an ionization

product of the solvent itself. This is why we have chosen the solvated OH− as the key test

system in the development of our all-atom computational methods.17,28–30 Starting with the

pioneering work by Delahay,31,32 the aqueous OH− has also been a popular model system

for application of electronic spectroscopy to aqueous solution.23,33 The PES measurements

of Ref. 23 give 9.2 eV for the vertical IP of OH−(aq). To compare to the reduction potential

of the OH•/OH− couple we convert the absolute IP to the Standard Hydrogen Electrode

(SHE) scale by subtracting the absolute SHE potential.34,35 This gives 9.2 − 4.44 = 4.8 V

which is significantly higher than the 1.90 V vs SHE for the reduction potential.18 The 2.9

V difference can be interpreted as reorganization energy of the aqueous environment.28,31,32

The corresponding BLYP/DFTMD estimates we computed in Ref. 17 are 2.1 V for the IP

and 1.3 V for U◦ again using the SHE as common energy reference.

What this quick comparison first of all shows is that the DFT error is strongly enhanced

in the vertical IP. The discrepancy between experimental and calculated vertical IP’s (2.7V)

is more than four times larger than the discrepancy between the reduction potentials (0.6

V). In Ref. 17 we attributed this effect to mixing with the valence band of water. Identifying

the photo emission threshold with the valence band maximum (VBM), the measurements of

the Berlin group place the VBM at 9.9 eV relative to vacuum23,36 corresponding to 5.5V vs

SHE. Using BLYP we found a significantly smaller value,37,38 namely 2.3V on the SHE scale.

Consistent with the IP of OH−(aq) the vertical IP of liquid water is badly underestimated at

the GGA level. The ionizable occupied one-electron energy levels end up well above where
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they should be. Moreover the gap between the IP of OH− and the VBM of water, which was

5.5−4.8 = 0.7eV in experiment has been reduced by BLYP to as little as 2.3−2.1 = 0.2 eV.

A similar effect has been observed for the chloride anion.39,40 The near degeneracy makes it

easy for the localized highest occupied molecular orbital (HOMO) of the solute to mix with

the extended states of the solvent (a more accurate picture is that the small gap is the result

of a resonance between the localized solute level and the valence band of the solvent17).

The vanishing gap between HOMO of the solvated OH− and the VBM of water could

be dismissed as a DFT artefact. However, also in experiment the electron detachment level

of OH− is sufficiently close to the VBM of water that some degree of hybridization cannot

be excluded. Following a parallel to charged defects in semiconductors41–49 we suggested

therefore in Ref. 17 that aqueous hydroxide can be viewed as a shallow defect (an hydrogen

vacancy) in a wide gap oxide (water). The implication is that hybridization with the valence

band of water itself cannot be the main cause of the underestimation of the IP of OH−.

Rather, it is the misalignment of the VBM that pushes up the HOMO of OH− and of any

other solute with a vertical IP close to the VBM of water, such as the Cl− ion.23,39,40 In fact

the underestimation of the IP of these anions is another case of the band gap error in DFT

identified by computational solid state physicists as the explanation of the error in charge

state transition levels of defects.41–44,46,47 The electron attachment levels (minus the vertical

electron affinity (EA) of the oxidized state) are further removed from the misaligned VBM.

The vertical EA is less affected and therefore also the reduction potentials which depend

on both the IP of the reduced and the EA of the oxidized state.17,38 It also explains the

observation we made in Ref. 17 that the errors in the reduction potentials less oxidative

species are less serious.

The error analysis above could not have been carried out without a molecular dynam-

ics hydrogen electrode (MDHE) enabling us to compare redox potentials of half reactions

and the corresponding vertical ionization potentials to experiment. Our implementation of

a MDHE was developed in two key technical papers.50,51 Electronic energies are directly
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referred to the solvation free energy of H+ computed from reversible insertion of a proton.

This technique, combining DFTMD and free energy perturbation, was originally developed

for the computation of acidity constants (pKa).52 No such computational tool was available

in our earlier studies of redox properties of transition metal aqua ions.9–11 All we could do

was comparing the free energies of a pair of redox half reactions, one reactant oxidizing the

other. As already indicated, the leading inaccuracy in DFTMD half reaction free energies

is related to removal/addition of electrons from/to condensed phase systems. These errors

are concealed (cancelled) to some extent in full electron transfer reactions. The hydrogen

electrode, however, removes a proton from the solution with the electron is added in vacuum.

Coupling of such a closed shell reaction to a redox half reaction lifts the cancellation of errors

in electron transfer reactions fully exposing these errors to scrutiny.

A further limitation of our earlier work is the density functional approximation which was

restricted to the generalized gradient approximation (GGA). Application of hybrid function-

als containing a fraction of exact exchange was not feasible. The increase in computational

costs due to the periodic boundary conditions in DFTMD was too high. Thanks to recent

technical advances the overhead of exact exchange in extended systems has been signifi-

cantly reduced.53 DFTMD simulation using hybrid functionals has become (almost) routine.

Finally, there is a third more technical feature of the current state of the art of DFTMD

reduction potential calculation not available in earlier work. These simulations were car-

ried out using the CPMD code.54 The molecular orbitals of valence electrons in CPMD

are expanded in a plane wave basis set in combination with soft pseudo potentials of the

Troullier-Martins type55 representing core electrons. In our more recent work we switched to

the CP2K code,56 which uses a localized Gaussian basis set and harder pseudopotentials of

the Goedecker-Teter-Hutter type.57,58 In practice this means that CP2K allows us to extend

the valence electrons of an ion with redox active d electrons to the full spd shell. This was

not feasible in CPMD. This may be relevant in particular for the study of redox properties

of 3d transition metal ions.
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The Cu and Ag aqua cations

These three innovations, molecular dynamics hydrogen electrode, hybrid functionals and

polarizable core electrons, all implemented in the CP2K code,56 motivated us to return to

the redox reactions we studied in our very first attempt at computing DFTMD reduction

potentials,9 namely the Cu2+/Cu1+ and Ag2+/Ag1+ reductions. In hindsight the one-electron

oxidation of the Cu1+ and Ag1+ aqua ions should be an almost ideal example to illustrate

the effect of the proximity the VBM of water. Similar to the OH− and Cl− anions, these

group IB cations are closed shell. The experimental value of U◦ for Ag2+/Ag1+ is 1.98 V vs

SHE.59 The Ag2+ is therefore a most aggressive oxidant with an oxidizing power similar to

OH• and should therefore be equally prone to interaction with the extended state of water.

The redox potential for Cu2+/Cu1+, rather surprisingly, is only 0.16 V vs SHE.59 The Cu2+

is redox neutral, and should, according to our theory, be less sensitive to the band gap error

in DFT. The calculations we will compare to are from Ref. 11 for Ag2+/Ag1+ and from Ref.

12 for Cu2+/Cu1+. The very first calculations in Ref. 9 were based on a completely different

scheme60,61 which we no longer use.

Anticipating our results, we find that the Cu2+/Cu1+ and Ag2+/Ag1+ reduction potentials

agree with experiment within the 200-300 mV accuracy we set as our target, provided the

full machinery described above is applied plus a further finite size correction. We have also

applied the MDHE scheme to the calculations of Refs. 11 and 12. Converted to the SHE scale

the half reaction free energies can again be separately compared to experiment. The U◦ for

Cu2+/Cu1+ is 1.3 V lower than the best value computed here. The U◦ for Ag2+/Ag1+ is 1.6 V

lower. As expected, the decrease in the strongly positive potential of the Ag2+/Ag1+ couple

is dominated by the change over from a GGA(BLYP19,20) to a hybrid functional(HSE0662).

The potential of the redox neutral Cu2+/Cu1+ couple is less sensitive to the introduction of

exact exchange. The other way around, freezing the core electrons has more of an effect on

Cu2+/Cu1+(3d) than on Ag2+/Ag1+(4d).

Also the solvent relaxation is note quite the same. In the old scheme the response to a
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change of charge of the ions appeared to be distinctly non-linear.11,12 Treated at the highest

level of approximation in the new scheme, the non-linearity is less pronounced. Blumberger

argued in Ref. 12 that non-linear solvent response is to be expected for Cu2+/Cu1+ because

of the rather drastic change of the number of water molecules in the first solvation shell. The

accuracy of our calculations still allows for such a non-linear effect. The reorganization of

the solvent in the Ag2+/Ag1+ reaction, on the other hand, is now effectively in accordance

with the linear response approximation of Marcus theory. The observations for Ag2+/Ag1+

are therefore consistent with our results for the hydroxide ion17 (recall the redox potentials

are virtually the same). Similar to the OH•/OH− couple, symmetry is essentially restored

when calculated using HSE06.

It should be clear by now that the presentation in this paper is rather technical focusing on

issues that were confusing to (at least) the authors. We start therefore with a brief summary

of the theory and method in its current formulation. Next, the results are presented and

analyzed. In the summary and outlook we return to the parallel with charged defects in

wide gap oxides and address the question under what conditions all-atom DFTMD methods

could be of use (or rather worth the effort) in the computational study of aqueous redox

chemistry.

Theory and method

Workfunctions and half reactions

The formal basis of our method is Trasatti’s theory of absolute electrode potentials.34 We

follow the presentation of Ref. 38 reformulated for the one-electron reduction of an aqua

cation Mq+1 of charge q + 1

Mq+1 + e− → Mq (1)
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The standard reduction potential vs SHE of this homogeneous half reaction is defined by the

standard free energy change of the reaction

Mq+1 +
1

2
H2(g)→ Mq + H+(aq) (2)

and can be expressed as the sum of an electronic and ionic work function

e0 U
◦
q (she) = AIPq(abs) + WH+(abs)− µg,◦H+ (3)

AIPq(abs) is the adiabatic ionization potential of Mq in aqueous solution and WH+(abs) the

workfunction of the aqueous proton (H+(aq)). The (abs) extension has been added as a

reminder that these quantities are absolute workfunctions referred to a point in vacuum just

outside the surface of the electrolyte.34,35 Note that we have have simplified the notation

for the reduction potential of the Mq+1/Mq couple suppressing the specification of the metal

species M. µg,◦H+ is the standard chemical potential of the gas-phase proton (H+(g)) obtained

form the free energy of the reaction 1
2
H2(g)→ H+(g) + e−(vac). e0 is the elementary charge

(microscopic energy units are used). The last two terms of Eq. 3 add up to the negative of

the absolute SHE potential:34

U◦
H+/H2

(abs) =
1

e0

(
µg,◦H+ −WH+

)
(4)

The value of U◦
H+/H2

(abs) recommended in Ref. 34 is 4.44 V. This estimate was the result

of a critical comparison of experimental data from various sources available at the time and

has now been accepted as accurate within a 10 or 20 mV margin.35

The adiabatic IP in Eq. 3 is a free energy difference between oxidation states which is not

directly accessible in electronic structure calculation. However free energy differences can be

related to total energy differences using coupling integral methods.63 A fictitious mapping

Hamiltonian Hη is constructed consisting of a linear combination Hη = ηHO + (1− η)HR of
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the atomic Hamiltonian HO of the oxidized state (Mq+1) and HR of the reduced state (Mq).

The coupling parameter connecting R and O takes the values 0 ≤ η ≤ 1. The thermodynamic

integration is carried out under full 3D periodic boundary conditions (pbc). The result is

the free energy for the reversible removal of an electron from the periodic model system

AIPq(pbc) =

∫ 1

0

dη 〈∆Eq(pbc)〉η (5)

Where ∆Eq(pbc) is the vertical IP of Mq computed from total energy differences. The

brackets denote a thermal average over the canonical ensemble defined by Hη.

Full 3D periodic boundary conditions leave no interfaces to vacuum. Without such an

interface the reference of the electrostatic potential is ill-defined leading to the infamous

band alignment problem of computational solid state physics. The uncertainty in the zero

of the electrostatic potential has no effect on total energies of neutral systems but shows up

in ionization (single particle) energies. The electronic work function AIPq(pbc) of Eq. 5 can

therefore not be identified with the absolute work function AIPq(abs) of Eq. 3 but differs

from it by a constant playing the role an effective bias V0 in the electrostatic reference

AIPq(abs) = AIPq(pbc) + e0V0 (6)

For electronic structure calculation methods as applied here, V0 in Eq. 6 is positive and

typically in the order of several eV. It depends on composition but is also sensitive to details

of the electronic structure calculation, including non-physical constructs such as pseudo

potentials.

The net cell reaction in an electrochemical device conserves charge and so does reaction

Eq. 2 defining the SHE potential of reaction Eq 1. Potentials referred to the SHE should

therefore be invariant under shifts in the zero of the electrostatic potential. Indeed, the

absolute workfunction WH+(abs) in Eq. 3 and the reversible work WH+(pbc) for removing a

proton from the periodic model system differ by an offset opposite to the one for electrons

11



(Eq. 6) because the proton has a positive elementary charge

WH+(abs) = WH+(pbc)− e0V0 (7)

WH+(pbc) is again estimated from a thermodynamic integral similar to Eq. 6

WH+(pbc) =

∫ 1

0

dη 〈∆EH3O+(pbc)〉η −∆Ezp (8)

∆EH3O+ is the energy for vertical deprotonation of a hydronium ion (H3O
+). ∆Ezp is a

zero point motion correction. The modelling of desolvation of H+ by deprotonation of H3O
+

is an approximation originally introduced for the calculation of acidity constants.52 The

implementation and justification of this scheme is outlined in detail in Refs. 50 and 51.

Substituting Eqs. 5 and 8 in Eq. 3 we find

U◦
q (she) =

1

e0
AIPq(pbc)− U◦

H+/H2
(pbc) (9)

where U◦
H+/H2

(pbc) is the MDHE potential

U◦
H+/H2

(pbc) =
1

e0

(
µg,◦H+ −WH+(pbc)

)
(10)

Eq. 9 suggests that the ionization of the solute and insertion/removal of a proton can be

carried out independently in separate periodic model systems. The advantage of such a half

reaction scheme is that the (expensive) computation of the proton work function needs to be

carried only once for a given system geometry. This is how the homogeneous redox potentials

and acidities have been computed in our previous publications since the introduction of the

MDHE.17,28,37,50–52 The condition for the validity of the half reaction scheme is, of course,

that V0 is the same in both half cells.

A further advantage of the half reaction scheme is that it can be equally employed to
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obtain estimates of vertical ionization potentials IPq of Mq and the vertical electron affinities

EAq+1 of Mq+1 directly referred to the SHE. These two states are connected by the coupling

parameter integral Eq. 5 and we can write

IPq(she) = 〈∆Eq(pbc)〉η=0 − e0U
◦
H+/H2

(pbc) (11)

and similarly

EAq+1(she) = 〈∆Eq(pbc)〉η=1 − e0U
◦
H+/H2

(pbc) (12)

The value given in Ref. 51 for the standard MDHE potential U◦
H+/H2

(pbc) = 0.81V. This

estimate was obtained by protonating a water molecule in the “standard” DFTMD water

model of 32 H2O molecules in a cubic MD cell of length 9.86 Å. The functional used in Ref.

51 is BLYP. We repeated the calculation using HSE06 in exactly the same system geometry

applying the same corrections for zero point motion51 and found U◦
H+/H2

(pbc) = 0.75V. The

difference between the BLYP and HSE06 estimate is well below the error margin (0.2 eV)

and we therefore decided to convert all our ionization potentials to the SHE scale using

U◦
H+/H2

(pbc) = 0.81V independent of the functional.

The 3.63 V difference between U◦
H+/H2

(pbc) and the experimental absolute SHE potential

U◦
H+/H2

(abs) = 4.44V can be interpreted as an estimate of V0 in Eqs. 6 and 7. V0 has been

calculated by other authors using pseudo potential/plane wave methods.64–67 While differing

in the detailed implementation, these four calculations should give comparable results. The

average is V0 = 3.6V with a variance of 0.3 V. However, it should be kept in mind that

V0 depends on the shape of the PP in the core region. Details in pseudization procedure

can easily give rise to discrepancies in the order of 0.3 V. In particular, even though the

valence of the PP is the same, the q11 PP used in CPMD calculations (Trouillier-Martins55)

is significantly softer compared to the dual space PP’s57,58 used in CP2K. Differences of a

few 100 mV between V0 and by implication U◦
H+/H2

(pbc) cannot be excluded. Indeed, the

estimate obtained for V0 in the CPMD calculation of Ref. 64 is 4.0 V compared to the 3.6 V
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for CP2K. We note however that V0 in Ref. 64 was obtained by extrapolation of the ionization

energy of vacuum cluster (maximum cluster size is 10 H2O molecules) to bulk solution and

is subject to large uncertainties (1 V or more). A fully consistent comparison between the

CPMD and CP2K q11 results, therefore, requires, in principle, repeating the computation

of the free energy for reversible insertion of a proton.51 This expensive calculation has not

been carried out. Failing a reliable estimate of U◦
H+/H2

(pbc) for CPMD, we have used he

same value (0.81 V) as for CP2K, even though, as explained above, U◦
H+/H2

(pbc) is not

strictly transferable. The corresponding uncertainty in the energy reference is smaller than

the discrepancies due to the approximations in the DFT (functional and PP).

As a conclusion of this method section we want to reiterate that the numerical value of

V0 is implicit in our approach. Adiabatic (Eq. 9) as well as vertical one-electron energies

(Eqs. 11 and 12) are computed directly as potentials vs SHE. Explicit specification of V0 is

not necessary. In particular, the question whether or not to correct for the water surface

potential68 is not relevant for us. Comparison to photo emission spectroscopy experiments

are made by subtracting 4.44 V from the experimental ionization energies which in fact

includes a contribution of the water surface potential.35,38

Electronic structure calculation

All simulations were carried out using the CP2K/QUICKSTEP package.56,69 The molecular

orbitals are expanded in a hybrid Gaussian plane wave (GPW) basis set70 using Goedecker-

Teter-Hutter pseudopotentials to represent core electrons.57,58 The valence configurations of

H and O are 1s1 and 2s22p4. For the Cu and Ag cations we applied two alternative sets

of pseudo potentials based on 11 and 19 valence electron configurations, i.e., 3d104s1 and

3s23p63d104s1 for Cu and 4d105s1 and 4s24p64d105s1 for Ag. The plane wave kinetic energy

cut off is set to be 280 Ry. The BLYP19,20 and HSE0662 functionals are used to model the

exchange-correlation. Exact exchange under periodic boundary conditions was implemented

using the auxiliary density matrix method of Ref. 53.
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Model system and MD

Figure 1: Structures of the [Cu(H2O)2]
+, [Cu(H2O)5]

2+, [Ag(H2O)4]
+ and [Ag(H2O)5]

2+ com-
plexes investigated in the gas-phase calculation.

Gas phase calculations are carried out in a cubic box of 20Å. The Martyna-Tuckerman

scheme is employed as the Poisson solver in order to eliminate interactions with periodic im-

ages71 For Cu1+ and Cu2+ we selected the two and five coordinated complexes [Cu(H2O)2]
+

and [Cu(H2O)5]
2+, for Ag1+ and Ag2+ the four and five coordinated complexes [Ag(H2O)4]

+

and [Ag(H2O)5]
2+ (see fig. 1). The geometry is optimized using the BFGS (Broyden-Fletcher-

Goldfarb-Shannon) method. Five coordinated complex can have more than one stable ge-

ometry as suggested by the MD trajectories in solution which show transformation between

pyramidal and trigonal bi-pyramidal structures. For the gas-phase cluster we only investi-

gated the pyramidal structure.

The solution MD cell is a cubic box of length 9.86Å. The system consists of one metal

cation surrounded by 32 water molecules, which approximately represents the density of liq-
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uid water at ambient conditions. The MD propagation uses the Born-Oppenheimer method

with a wave function optimization tolerance of 1.0E-06. The time step is 0.5 fs. The tem-

perature is controlled by a Nosé-Hoover chain thermostat targeted at 330 K. The elevated

temperature is to avoid the glassy behaviour of DFT liquid water. For all values of the

coupling parameter (η) the system was initiated from a configuration for the stable d10

monocation. Each system is equilibrated for at least 2.0 ps followed by a production run of

5.0 ps to 10.0 ps. The relatively short duration of DFTMD runs is always reason for some

concern. The primary result of the DFTMD calculation are vertical energy gaps at selected

values of the coupling parameter η from which the redox free energies are obtained by a

numerical quadrature estimate of the thermodynamic integral Eq. 5. Figure 2 shows rep-

resentative examples of the average of the vertical energy gap accumulating over run time.

Consistent with previous experience averages of a vertical energy gap seem to converge on a

pico second time scale. Averaging over 5 to 10 ps is sufficient to bring the statistical down

below 100 meV. A possible explanation for this rather rapid convergence is suggested by the

Debye theory of dielectric relaxation. According to this theory the relaxation in response

to a sudden change in the charge of a solute proceeds on the time scale of the longitudinal

dielectric relaxation time τL = τD/ε0. The Debye relaxation time is indeed in the order of

10ps. The longitudinal relaxation is more than a magnitude faster.

Results and analysis

Gas-phase

Table 1 lists the calculated M-O bond lengths in the four gas-phase complexes we have

investigated (see fig. 1). One can see that for the same number of valence electrons, HSE06

predicts a more compact hydration shell compared to BLYP. [Cu(H2O)2]
+ is a linear complex.

The two BLYP calculations give Cu-O bond lengths of 1.90Å. The HSE results are 0.01-0.02Å

shorter. [Ag(H2O)4]
+ is a distorted tetrahedron. The bond lengths according to q19-HSE06
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Figure 2: Convergence with time of the average of the vertical ionization energy. Shown
are the accumulating average along a typical DFTMD trajectory of the Cu2+/Cu1+ and
Ag2+/Ag1+ system for five values of the couple parameter, η = 0, 0, 25, 0.5, 0.75, 1.

Table 1: Metal oxygen bond lengths (in Å) in the geometry optimized gas-phase
complexes (see fig. 1.

q11 q19

BLYP HSE BLYP HSE

Cu1+(H2O)2 1.90 1.88 1.90 1.89

Cu2+(H2O)5 2.18 2.07 2.24 2.16

2.06/2.06/2.01/2.01 2.06/2.06/1.99/1.99 2.05/2.05/2.02/2.01 2.01/2.00/1.97/1.97

Ag1+(H2O)4 2.18 2.07 2.24 2.16

Ag2+(H2O)5 2.43 2.40 2.54 2.50

2.42/2.37/2.32/2.25 2.24/2.22/2.19/2.16 2.38/2.35/2.30/2.27 2.23/2.22/2.19/2.17

are 0.02-0.05Å shorter than computed with q19-BLYP. For the longest Ag-O bond, q11-

HSE06 finds 2.40Å, which is 0.14Å smaller than the maximum bond length in the q11-BLYP

geometry. In [Cu(H2O)5]
2+, application of HSE06 reduces the axial Cu-O bonds compared

to BLYP. The equatorial bond lengths are similar. For the [Ag(H2O)5]
2+ complex all HSE06
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Table 2: Vertical energy gaps (in eV) for the gas-phase complexes of table 1. The
numbers in parentheses following the q19-BLYP and q19-HSE06 results denote
the increase relative to the corresponding q11 values.

q11 q19

BLYP HSE BLYP HSE

Cu1+(H2O)2 15.22 14.75 15.52 (0.30) 15.37 (0.62)

Cu2+(H2O)5 10.42 9.59 10.74 (0.32) 10.48 (0.89)

Ag1+(H2O)4 13.51 13.96 13.63 (0.12) 14.72 (0.76)

Ag2+(H2O)5 12.06 11.55 12.25 (0.19) 12.44 (0.89)

Ag-O bonds are shorter. The contraction induced by HSE06 is more obvious for equatorial

than for axial bonds. The effect of core state relaxation on the geometry of [Cu(H2O)2]
+

is not significant. It is more pronounced for the other three complexes, e.g. the difference

in the axial Ag-O bond in [Ag(H2O)5]
2+ between q11-BLYP and q19-BLYP is as large as

0.11Å.

The corresponding vertical energy gaps are given in table 2. It is evident that inclusion

of core states increases the vertical energy gaps. While this applies to the GGA as well as

the hybrid functional calculation, the effect for HSE06 is considerably bigger than for BLYP.

Radial distribution functions

To characterize the hydration in solution we have computed, as usual, the RDF (radial

distribution function) and CN (coordination number) of the water O atoms averaging over

a MD trajectory with the central metal ion as reference (fig. 3). The CNs confirm the

sensitivity of the coordination of the Cu aqua cation to the oxidation state as observed in

earlier publications.9,12 The 5-coordinated [Cu(H2O)5]
2+ complex of Cu2+ transforms upon

reduction to the linear [Cu(H2O)2]
+ trimer expelling three H2O molecules from the first

coordination shell. For a discussion of this interesting effect we refer to Refs 9 and 12. The

focus of the present publication is on more technical issues. Thus comparing the results of the

CP2K and CPMD simulations we notice that the results for geometry basically agree. The
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Figure 3: the metal oxygen RDFs (radial distribution functions) and CNs (coordination
numbers).

first RDF peaks for Cu1+-O and Cu2+-O in the RDF’s of fig. 3 are positioned at 1.85 ∼ 1.90Å

and 1.95 ∼ 2.01Å, respectively, which is very close to the corresponding CPMD distances of

1.85Å and 1.99Å for the Cu mono and dication.

A key observation of our first DFTMD study of the redox chemistry of the Cu and Ag

aquacations of more than a decade ago9 was that, while the coordination of the dication is

similar (approximately five coordinated) the response to the addition of an electron is less

drastic for Ag than it is for Cu. In the case of reduction of Ag2+ only one water molecule

left the first hydration shell. This could again be confirmed in the present calculation. For

Ag1+, all four combinations of functional and pseudopotentials predict the first RDF peaks

to be located at 2.35Å. For Ag2+, the first peaks of the two HSE06 RDFs (2.15Å) have

moved in by 0.1Å compared to the two BLYP RDFs (2.25Å), consistent with the shorter

Ag-O bonds in the gas-phase [Ag(H2O)5]
2+ complexes (table 1). The main conclusion is
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again that where the geometry is concerned the BLYP results of Ag1+ and Ag2+ agree with

previous q11-BLYP based CPMD simulation.

Redox potentials

Contrary to the geometry, the redox potentials of the Cu and Ag aqua cations computed

using the latest CP2K technology show significant differences with previous CPMD estimates.

The results are compared in table 3. The CPMD estimates are taken from two papers

by Jochen Blumberger, namely Ref. 12 for Cu and Ref. 11 for Ag. The calculations in

Refs 11 and 12 were based on the same free energy perturbation scheme for reversible

insertion/removal of electrons as used here (Eq. 5). The resulting thermodynamic integrals,

indicated by AIP in the notation of the present paper, are repeated in table 3 and have been

converted to potentials on the SHE scale using the MDHE method developed later (Eqs. 9

and 10). This gives U◦ = −1.13V for the Cu1+/Cu2+ couple and U◦ = 0.35V for Ag1+/Ag2+

as also indicated in the table. While the relative value of U◦, i.e the free energy change

e0∆U
◦ = −1.48 eV of the redox reaction Cu1+ + Ag2+ → Cu2+ + Ag1+ is in good agreement

with experiment (e0∆U
◦ = −1.66eV) the absolute values of U◦ are underestimated by more

than 1V.

The obvious suspect to blame for the large discrepancy of the absolute redox potentials

is underestimation of IP’s by the GGA. A first priority for us was therefore to verify that

the CP2K calculations are consistent with the CPMD estimates. They are not. CP2K

improves on CPMD by a positive shift of 0.6 to 0.7 eV for both Cu an Ag as can be seen

from the data in table 3. Both calculations use the same GGA functional (BLYP) and a 11

electron valence electron pseudopotential (PP) referred to as q11-BLYP in the table. The

difference is that the PP used in CPMD (Trouiller-Martins55) is significantly softer than

the dual space PP’s57,58 used in CP2K. The details of PP’s evidently do matter for the

ionization of d10 ions. Indeed, including the ns2np6 core together with the nd11 electrons in

the valence leads to further improvements. In fact the q19-BLYP estimate for Cu1+/Cu2+
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Table 3: Ionization potentials (IP) in units of eV of the Cu1+ and Ag1+ aqua ions
in various approximations. η is the coupling parameter in the thermodynamic
integral (Eq. 5) for the estimation of the adiabatic ionization potential under
periodic boundary conditions (AIP(pbc)). The AIP(pbc) given in the table is
the estimate obtained from a finite set of vertical IP’s listed in columns labelled
by the η values for which they were computed. U◦ is the corresponding redox
potentials vs SHE obtained using the computational hydrogen electrode (Eqs. 9
and 10).

η = 0.0 η = 0.25 η = 0.5 η = 0.75 η = 1.0 AIP(pbc) U◦

Cu1+/Cu2+ (Exp.=0.16)

CP2K q11-BLYP 2.20 1.31 0.08 −0.56 −1.14 0.35 −0.46

q11-HSE 2.10 −0.59 −2.00 −0.29 −1.10

q19-BLYP 2.23 1.89 0.39 0.02 −0.79 0.82 0.01

q19-HSE 2.78 1.54 0.51 −0.37 −1.20 0.61 −0.20

CPMD12 q11-BLYP 2 0.57 −0.75 −1.25 −1.75 −0.32 −1.13

Ag1+/Ag2+ (Exp.=1.98)

CP2K q11-BLYP 2.45 2.06 0.45 1.91 1.10

q11-HSE 3.35 1.72 0.01 1.71 0.90

q19-BLYP 2.48 2.20 0.49 1.96 1.15

q19-HSE 3.83 3.20 2.65 1.49 0.76 2.53 1.72

CPMD11 q11-BLYP 2.03 1.87 1.17 0.61 −0.05 1.16 0.35

is in good agreement with experiment being about 0.2V too small. The q19-BLYP value for

Ag1+/Ag2+ is, however, still rather far off (0.8V too small). The 0.8V error in the CP2K-

q19-BLYP potential for Ag1+/Ag2+, while large, however still compares favourably with the

huge error of 1.6V in the CPMD-q11-BLYP calculation.

Including exact exchange, of course, does have an effect, but it is not necessarily positive.

The Cu1+/Cu2+ couple is a good example. Changing over from BLYP to HSE06 makes the

redox potential again too cathodic. The negative change in U◦ for the q11 PP is particu-

larly drastic, −0.64V. However also for q19 there still is a (minor) decrease of −0.2V. For

Ag1+/Ag2+, on the other hand, mixing in exact exchange helps. While the q11-HSE06 poten-

tial is still marginally lower compared to q11-BLYP, the q19-HSE06 combination increases

U◦ to 1.72V, less than 0.3V short of the experimental value of 1.98V.
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How can we understand the variation of the redox potential with computational method?

The improvement of q19 over q11 PP’s for computation of IP’s is perhaps not unexpected.

It confirms that ionization of a closed shell nd10 ion polarizes the ns2np6 shell below it. This

is also supported by the gas-phase IP calculations (table 2). The disappointing performance

of HSE06 for Cu is probably related to the observation made in quantum chemistry that the

fraction of exact exchange suitable for main group chemistry (∼ 25%) is too high for first

row transition metal complexes.72,73 However, can these effects, familiar from the literature

on gas-phase transition metal cluster calculations, also explain the pronounced difference in

behaviour between the Cu and Ag aqua cations? Why is HSE06 working so well for Ag

compared to the GGA while it does worse for Cu?

With a reduction potential vs SHE of 0.16V, Cu2+ can be considered a redox neutral

cation or a very mild oxidant. The reduction potential of Ag2+ is 1.98V, making it a most

aggressive oxidant. In fact, U◦ for Ag2+/Ag1+ is comparable to that of the OH•/OH− couple

(1.9V vs SHE). As discussed in the introduction, the oxidation of the hydroxide anion was

our model system of choice for the validation of the DFTMD methodology for redox potential

calculation.17,28 The vertical IP of OH− is close enough to the valence band of the solvent

to lead to hybridization of the HOMO of the solute and the water VBM. In Ref. 17 we

argued that this effect, which is not an artefact of the DFT but physical,23 can lead to

underestimation of the adiabatic ionization potential if the IP of the aqueous solvent is

underestimated by as much as it is in the GGA (more than 3eV, see below). We believe that

the same analysis applies to Ag2+ and that this can also explain the difference with Cu2+.

Energy level diagram

The argument in Ref. 17 is an application of Marcus theory to ionization half reactions

(see also Refs. 31,32). The essence of the theory can be summarized in a level diagram

combining the vertical detachment level (−IP) of the reduced form of a species and the

vertical attachment level (−EA) of the oxidized form with the redox level −e0U (“Marcus
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triplet”). Figure 4 shows such a diagram for the q19 data of table 3. The IP levels have been

obtained from the vertical ionization gaps at η = 0 in table 3 according to Eq. 11. Similarly

the EA levels are the vertical gaps at η = 1 relative to the SHE reference (see Eq. 12).
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Figure 4: Computed energy levels of the Cu1+/Cu2+ (green panel) and Ag1+/Ag2+ (yellow
panel) aqua-cations compared to the valence band maximum (VBM) and conduction band
minimum (CBM) of liquid water. Only the q19 energies of table 3 are represented. The
vertical ionization potential (IP) of a monocation is indicated in red, the vertical electron
affinity (EA) of a dication in blue, the redox potential (e0U

◦) in magenta with the corre-
sponding colour convention for the band edges of water. λ is the reorganization energy. All
levels have been aligned wrt to the SHE using the molecular dynamics hydrogen electrode.
The water energies are the same as in Ref. 17.

In DFTMD simulation the electronic states of the solute are allowed to interact with the

extended states of the solvent and the relative position of the solvent bandedges is therefore

important information quantifying the strength of this interaction. The energies of the

one-electron states of liquid water can be aligned with the SHE using the same molecular

dynamics hydrogen electrode method.17,38 On this electrochemical scale the experimental

VBM and CBM are at 5.5V and −3.2 V (not shown). A discussion of the experimental data
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and relevant references to the literature can be found in Ref. 38 which is also the source for

the computational estimates. BLYP badly misaligns the VBM at 2.31V vs SHE, placing the

VBM more than 3 eV above the experimental band edge. The CBM corresponds according

to BLYP to a negative potential of −2.60V vs SHE. While below the experimental CBM the

discrepancy of 0.6 V is not as serious as for the VBM. HSE06 gives better estimates with

the VBM at 3.65V and the CBM at −3.24V vs SHE. The CBM (minus the EA) is basically

in the right place but the IP of liquid water is still underestimated by 1.85 V in the HSE06

approximation.

Focusing first on the BLYP levels in fig. 4 we note that, in spite of the large difference in

redox potential between Ag1+ and Cu1+ (1.8 V according to experiment) the −IP levels are

virtually aligned (the difference in energy is only 0.25 eV). Another suspicious feature is the

pronounced asymmetry in the reorganization energies for the Ag1+/Ag2+ couple. The gap

between the −IP level and the redox level is a factor three smaller than the gap between

−EA and −e0U . The Cu1+/Cu2+ triplet is more symmetric which is the normal linear

response (Marcus) behaviour. However, the proximity of the −IP level to the VBM of

water in the BLYP approximation suggests that the Ag1+ and Cu1+ vertical IP levels are

effectively pinned by the water valence band. Indeed, switching to HSE06, the detachment

level of Ag1+ follows the VBM down. The Cu1+ level does too, but only by a relatively

small amount suggesting that the coupling to the H2O valence band states has weakened. In

comparison, the vertical attachment levels (−EA) of the dications are less sensitive to the

details of the functional, consistent with what was observed in Ref. 17 for the set of small

(neutral) radicals we studied there.

For Ag2+/Ag1+ HSE06 effectively restores the reorganization energy symmetry as re-

quired by linear response approximation of Marcus theory. The non-linearity in the GGA

for this couple is a spurious electronic effect due to hybrization with the extended states

of the solvent as we observed for OH•/OH−.17 This shows that the energy position of the

VBM of the solvent plays a crucial role in our interpretation of the effect of exact exchange
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on redox potentials. The GGA places the VBM way too high pushing up the detachment

levels of solutes. The more oxidative, the more sensitive are the solutes to interaction with

the misaligned VBM. This is the main explanation of the large increase in redox potential

as calculated for the Ag1+/Ag2+ reaction by HSE06 compared to BLYP.

Finite system size effects

The theory underlying the DFTMD calculation has been formulated for infinite dilution as

required by the definition of standard states in solution chemistry. These conditions are

approximated by periodic model systems containing a single ion and a homogeneous distri-

bution of counter charge. Provided the body of solvent is sufficiently large, the interaction

between periodic images of the ion and the neutralizing background can be ignored. The

bias in the electrostatic reference, V0, remains finite. However, for vanishing concentration

of solutes, V0 is determined by the solvent and therefore cancels in the reduction potential

vs SHE. This is the idea behind the half reaction implementation of the molecular dynamics

hydrogen electrode. The half reaction scheme has been validated in Ref. 51 by comparing

the acidity of a number of small acids to experiment. pKa calculations are preferred for this

purpose because acid dissociation is closed shell chemistry for which the DFT approximation

is less critical.

Our DFTMD model systems are rather small. The supercell has a length of ≈ 10Å(see

method section). The system has a net charge and finite size effects can be significant. How-

ever, because of the exceptionally high dielectric constant of water (ε ≈ 80) screening is very

effective. Finite system size errors, while not negligible, are in fact not the dominant source

of error in DFTMD redox potential calculations. Screening in polar liquids is traditionally

taken into account by the Born cavity model or extensions thereof. Hummer and colleagues

have extended this model to systems under periodic boundary conditions.74–78 The result is

an expression in powers of 1/L where L is the size of the cubic periodic cell.

The leading 1/L term in the finite size error is multiplied by 1/ε and effectively vanishes
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for aqueous ions. The next term is equal to 2πq2R2/(3e0L
3) where R is the cavity radius

and q the charge of the ion (see also earlier work by Felderhof79). This term is zero order

in 1/ε and determines in practice the finite size error in solvation free energy of classical

point charge models of aqueous ions.78 The correction to the U◦ of the OH•/OH− reaction is

less than 100mV, which is within the statistical uncertainty (100 to 200mV) of the DFTMD

calculations.

Finite size effects for aqua cations can be expected to be significantly larger. The error for

the oxidation of a Mq+ cation is proportional to (q+1)2−q2 and also scales with the square of

the Born radius R. Fitting R to the experimental solvation free energy gives for Cu1+/Cu2+

a correction of ∆U◦ = 0.6V. For Ag1+/Ag2+ we find ∆U◦ = 0.9V. These corrections must be

added to the potentials in table 3. Taking the q19-HSE06 results as our best estimate, this

would lead to an overestimate of 0.2V for the redox potential of Cu1+/Cu2+ and as much as

0.6V for Ag1+/Ag2+. However, these corrections based on a classical point charge model are

almost certainly an exaggeration. We are currently investigating this question in a detailed

DFTMD study of the Fe2+/Fe3+ aqua ion oxidation. Preliminary results indicate that the

finite size correction is at least half the size of the classical point charge prediction. If true,

this would bring the results of table 3 within 0.3V of the experimental value.

The parallel between redox active ions in solution and charged defects in a semiconduc-

tor played an important role in the interpretation of our results. We made this comparison

to support the claim that electronic interactions between the localized states of the impu-

rity and the extended states of the environment can be an issue in DFTMD simulation.

In this context, we should point out that corrections for finite size effects of periodic su-

percells containing charged point defects have a long tradition in computational solid state

physics.42,80–86 Some of the more recent treatments are rather sophisticated and seem to per-

form well.42,84–86 This raises the question whether these schemes could be applied to redox

potential calculations in aqueous systems. This is not as straightforward as it may seem

at first. The dielectric response in water is almost entirely ionic (inertial). Moreover, the
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ionic screening is so powerful that water behaves effectively as a metal (1/ε ≈ 0). This

may require some modification of the solid state correction schemes. This is another issue

currently under investigation.

Discussion and outlook

In this technical contribution we have revisited the problem of the computation of the stan-

dard potentials of the aqueous Cu1+/Cu2+ and Ag1+/Ag2+ redox couples using all-atom

DFTMD methods. Both reactions involve the removal of an electron from a filled d10 shell.

We encountered a number of technical problems, such as polarization of the sp shell with

the same principle quantum number as the d electrons and the sometimes ambivalent ef-

fect of exact exchange. These issues are familiar from quantum chemistry calculations of

coordination complexes in vacuum or embedded in an implicit solvent.

In addition, because of the large difference in redox potential (1.8V), the Cu1+/Cu2+ and

Ag1+/Ag2+ redox couples are also good models to investigate a typical electronic condensed

phase effect, namely the hybridization with the extended states of the valence band of the

solvent. The ionization of Ag1+ is much more sensitive to this effect than the ionization

of Cu1+.The reason is that the levels of Cu1+/Cu2+ are midgap states while the levels of

Ag1+/Ag2+ are closer the valence band maximum of the solvent. This also explains why

mixing in exact exchange has a significant effect on the DFT estimate of the redox potential

of Ag1+/Ag2+ while the effect is only minor for Cu1+/Cu2+. The effect is partly due to the

increase of the ionization potential of the solvent and is therefore indirect.

DFTMD calculation of redox potentials is orders of magnitude more expensive than im-

plicit solvent or QM/MM based calculations. This is because interaction with the extended

states of the solvent is ignored in these schemes. Allowing for such interactions not only

increases the computational costs but also exposes us to all the nasty effects of the delocal-

ization or band gap error familiar form the DFT study of charged defects in semiconductors.
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It takes additional effort to overcome these errors, which was the subject of this paper. The

experience of the computational solid state community has been of definite help in iden-

tifying and understanding the confusing errors in the DFTMD calculations. The work on

charged defects in solids has also shown that the results of standard hybrid functions can be

further improved by optimizing the fraction of exact exchange.44,87 Alternatively the appli-

cation of many body perturbation methods in the G0W0 approximation has been explored.

Particularly relevant in the present context are G0W0 calculations of charge transition levels

of defects in ionic solids with a bandgap similar to water such as SiO2, MgO and LiF.45,48,49

Galli and coworkers have developed an implementation of the G0W0 method suitable for the

application to aqueous systems.67 The first studies using this method confirm that adding a

G0W0 derived correction to DFT orbital energies leads to more accurate estimates of ion-

ization energies of solutes30,88 and the pure liquid.89 Finally we mention the development

of MP2, RPA methods for condensed phase systems90 which already have been applied to

liquid water91 but not yet to aqueous solutes.

We have identified hybridization of localized solute states with the extended of the solvent

as an major source of error in calculations of vertical and adiabatic ionization energies.

However, for shallow defects or resonant impurity states in semiconductors the interaction

with band states is a real effect. As recent PES experiments by the Winter group show, a

such situation may also occur in aqueous redox chemistry. An interesting example is the

PES signal of aqueous Fe3+ which is merged with the valence band of water.5 The ionization

product, the Fe4+ (ferryl) ion, is a potent redox catalyst. We conclude this paper, therefore,

with the still somewhat speculative statement, that extended states of the solvent have a role

to play in redox catalysis by strong oxidants such as Fe4+ or also OH• and Cl• and should

therefore be taken into account in computational studies.
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