%Optimum Prismatic Shape Finding %Seeks the prismatic beam design with the minimum possible embodied carbon %Output figure shows the variation of embodied carbon with design depth %Minimum point of the curve shows the optimum depth and minimum possibel %embodied carbon %Check ASM in the memory for design details of each beam global dflange bf fc Ec fs Es; dflange=160; %mm fs=500; %N/mm2 Es=200000; %N/mm2 %epcp=(0.57*fc)/Ec; %finding the moments of the section and calling for curvature global L0 W d h bw As M; L0=8; %m %Concrete compressive strength and elastic modulus F=[12 20 30 40 50]; E=[27000 30000 33000 35000 37000]; G=3; fc=F(G); Ec=E(G)/3; row=1; %this is used in shear design %sin2(teta) sin2t=sind(2*acotd(2.5)); for h=300:10:900 %Minimum possible width d=h-40; %mm bw=200; bf=bw+2240; Wu=67.67; %kN/m ULS load %Flexural performance M=Wu*L0*L0/8; k=M*1000000/(bf*d*d*fc); z=d*(0.5+(0.25-(k/1.14))^0.5); if isreal(z) if z>0.95*d z=0.95*d; end Asf=M*1000000/(0.87*fs*z); else Asf=NaN; end x=(d-z)/0.4; Ans=['For h= ', num2str(h), 'and b= ', num2str(bw), ' Asflex= ', num2str(Asf)]; disp (Ans); %N2=2+(h-bw)/10; ASM{row,1}=h; %ASM{row,2}=bw; %ASM(N,i+1)=As; %Shear design Vt=Wu*L0*1000/2; bshear=(Vt)/(0.18*d*fc*(1-fc/250)*sin2t); % Minimum width required for shear performance bmin=200; %Minimum possible width due to fire criteron or spacing of rebar bw=max([bshear bmin]); ASM{row,2}=bw; %Maximum reinforcement ratio Asmax=0.04*h*bw; if Asf>Asmax Asf=NaN; end ASM{row,3}=Asf; for x=1:11 v(x)=abs(Wu*L0/2-x*L0*Wu/10); %Desin shear stress Ved=v(x)*1000; %Concrete Capacity Vrdc k1=1+(200/d)^0.5; k2=2; k=min(k1,k2); ro1=Asf/(bw*d); ro2=0.02; ro=min(ro1,ro2); Vrdc1=0.12*k*bw*d*(100*ro*fc)^(1/3); Vrdc2=0.035*bw*d*(fc^0.5)*(k^(3/2)); Vrdc=max(Vrdc1,Vrdc2); Vmin=0.15*d*bw*(fc)^0.5; %Minimum reinforcement decision if Ved=2.5 %disp ('Use cot(teta)=2.5'); AwS=Ved/(0.9*2.5*d*fs*0.87); shearcon='Use cot(teta)=2.5'; %Calculate concrete strut strength Vcon=0.13*d*bw*fc*(1-fc/250); if Vcon