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ABSTRACT

Visibility metrics and their applications in visually lossless image compression

Nanyang Ye

Visibility metrics are image metrics that predict the probability that a human observer
can detect differences between a pair of images. These metrics can provide localized
information in the form of visibility maps, in which each value represents a probability
of detection. An important application of the visibility metric is visually lossless image
compression that aims at compressing a given image to the lowest fraction of bit per pixel
while keeping the compression artifacts invisible at the same time.

In previous works, most visibility metrics were modeled based on largely simplified
assumptions and mathematical models of human visual systems. This approach generally
fits well into experimental data measured with simple stimuli, such as Gabor patches.
However, it cannot predict complex non-linear effects, such as contrast masking in natural
images, particularly well. To predict visibility of image differences accurately, we collected
the largest visibility dataset under fixed viewing conditions for calibrating existing visibility
metrics and proposed a deep neural network-based visibility metric. We demonstrated
in our experiments that the deep neural network-based visibility metric significantly
outperformed existing visibility metrics.

However, the deep neural network-based visibility metric cannot predict visibility under
varying viewing conditions, such as display brightness and viewing distances that have great
impacts on the visibility of distortions. To extend the deep neural network-based visibility
metric to varying viewing conditions, we collected the largest visibility dataset under
varying display brightness and viewing distances. We proposed incorporating white-box
modules, in other words, luminance masking and viewing distance adaptation, into the
black-box deep neural network, and we found that the combination of white-box modules
and black-box deep neural networks could generalize our proposed visibility metric to
varying viewing conditions.

To demonstrate the application of our proposed deep neural network-based visibility
metric to visually lossless image compression, we collected the visually lossless image com-

pression dataset under fixed viewing conditions and significantly improved the deep neural



network-based visibility metric’s accuracy of predicting visually lossless image compression
threshold by pre-training the visibility metric with a synthetic dataset generated by the
state-of-the-art white-box visibility metric—HDR-VDP [1]. In a large-scale study of 1000
images, we found that with our improved visibility metric, we can save around 60% to 70%
bits for visually lossless image compression encoding as compared to the default visually
lossless quality level of 90.

Because predicting image visibility and predicting image quality are closely related
research topics, we also proposed a trained perceptually uniform transform for high dynamic
range images and videos quality assessments by training a perceptual encoding function on
a set of subjective quality assessment datasets. We have shown that when combining the
trained perceptual encoding function with standard dynamic range image quality metrics,
such as peak-signal-noise-ratio (PSNR), better performance was achieved compared to the

untrained version.
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CHAPTER 1

INTRODUCTION

The visibility metric is an image metric measuring whether introduced changes in images
are visible or not. It plays a key role in visually lossless image compression because it

predicts whether compression distortions in images are visible or not.

1.1 Motivation

Measuring visible image differences accurately is essential for many image processing
applications, such as image compression, 3D rendering in computer games, and invisible
watermarking. For example, in image compression, inventing more efficient lossless image
encoders would require a tremendous amount of effort. However, with a visibility metric
measuring whether compression artifacts are visible or not, we can easily achieve a much
lower bit rate without the need for changing the current image communication standards
by setting a suitable parameter for the compression encoder to produce visually lossless
distortions. In this thesis, we will first introduce our preparation work (dataset collection),
and then propose a visibility metric based on machine learning, and finally suggest how to
improve the visibility metric for visually lossless image compression. The findings indicate

a new direction to compress images much more efficiently.

1.2 Publication and presentation list

This section includes publications, presentations, and demonstrations.

Publications:

1. Langevin Dynamics with Continuous Tempering for Training Deep Neu-
ral Networks Nanyang Ye, Zhanxing Zhu, Rafal K. Mantiuk. Published at Con-

ference on Neural Information Processing Systems 2017 (NIPS).
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Paper contribution: To tackle the challenge of minimizing non-convex and high-
dimensional objective functions, I proposed a learning process that uses Bayesian
sampling for better generalization performance. In the Bayesian sampling phase, I
proposed a novel method in which temperature was adjusted automatically with
continuously tempered Langevin dynamics (CTLD). In the optimization phase, I
employed stochastic gradient optimization for fine-tuning of the neural network.
The CTLD has been proven to converge to the true posterior distribution and has

bounded estimation bias that vanishes with the increasing of the number of steps.

. Dataset and Metrics for Predicting Local Visible Differences Krzysztof
Wolski*, Daniele Giunchi*, Nanyang Ye*, Piotr Didyk, Karol Myszkowski, Radosaw
Mantiuk, Hans-Peter Seidel, Anthony Steed, and Rafal K. Mantiuk. Published at
ACM Transaction on Graphics (TOG). (* indicates equal contribution)

Paper contribution: Proposed a deep learning-based visibility metric that achieved
state-of-the-art performance on our visibility dataset. Tested the deep learning-based
visibility metric on a visually lossless compression dataset and achieved state-of-the-
art results. The deconvolutional neural network architecture was proposed instead
of the fully-connected network architecture to avoid over-fitting, an approach which

made the visibility metric generalized more effectively.

. Predicting visible image differences under varying display brightness and
viewing distance. Nanyang Ye, Kysztof Wolski and Rafal K.Mantiuk. Published
at IEEE/CVF Conference on Computer Vision and Pattern Recognition
2019 (CVPR).

Paper contribution: I extended the work of Wolski et al. so that the proposed
visibility metric could take account of a range of display brightness levels and angular
resolutions. I achieved this by combining white-box models of luminance masking
and spatial resampling with a black-box CNN-based model, based on the architecture
from Wolski et al. .

. Trained Perceptual Transform for Quality Assessment of High Dynamic
Range Images and Video Nanyang Ye, Maria Pérez-Ortiz and Rafal K.Mantiuk.
Published at IEEE International Conference on Image Processing 2018
(ICIP).

Paper contribution: Proposed a trained perceptually transform for quality assessment
of high dynamic range (HDR) images and video. The transform was used to convert
absolute luminance values found in HDR images into perceptually uniform units,
which could be used with any standard-dynamic-range metric. The new transform

was derived by fitting the parameters of a previously proposed perceptual encoding
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function to 4 different HDR subjective quality assessment datasets using Bayesian
optimization. The new transform combined with a simple peak signal-to-noise
ratio measure achieved better quality prediction performance in the cross-dataset

validation than existing transforms.

. Visibility Metric for Visually Lossless Image Compression. Nanyang Ye,

Maria Pérez-Ortiz and Rafal K.Mantiuk. Published at Picture Coding Sympo-
sium 2019 (PCS).

Paper contribution: I collected a visually lossless compression dataset consisting
of 50 JPEG- or WebP- compressed images. I analyzed the training process of the
deep learning-based visibility metric and improved the generalization performance
significantly. I proposed a visually lossless compression method based on improved
visibility metrics. The improved visibility metrics have achieved state-of-the-art

results by a large margin on our dataset.

Presentations:

1.

Langevin Dynamics with Continuous Tempering for Training Deep Neu-
ral Networks Nanyang Ye presented at Long Beach, California, USA 2017.

. Trained Perceptual Transform for Quality Assessment of High Dynamic

Range Images and Video Nanyang Ye presented at Athens, Greece 2018.

Visibility Metrics and Their Application in Visually Lossless Compres-
sion Second-year research presentation in the Department of Computer Science and

Technology.

. Reading Group: Deep Learning of Human Visual Sensitivity in Image

Quality Assessment Nanyang Ye presented at the machine learning and imaging

reading group, Cambridge, UK 2018.

Seminar: Visually Lossless Compression Nanyang Ye presented at Cambridge-

Oxford Seminar on Image Processing, Cambridge, UK 2018.

. Predicting visible image differences under varying display brightness and

viewing distance Nanyang Ye presented at IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Long Beach, California, USA 2019.

Invited talk: Visibility metric and visually lossless image compression

Nanyang Ye presented at Hamlyn Symposium, Imperial College, London, UK 2019.

Demonstrations:

1.

Visually lossless image compression demonstration for ARM, Cambridge, UK, 2018
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2. Visually lossless image compression demonstration for Display Link, Cambridge,
UK, 2018

3. Visually lossless image compression demonstration for HUAWEI, Cambridge, UK,
2018
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CHAPTER 2

BACKGROUND

In this chapter, we will introduce relevant concepts in visibility metrics, visually lossless

image compression, and machine learning.

2.1 Image quality metrics vs. Image visibility metrics

Image metrics evaluate the effects of distortions in image processing and can be divided
into image quality metrics (IQMs) and image visibility metrics (IVMs), both addressing
different applications. As shown in Figure 2.1, IQMs predict a single global quality score
for the entire image. IQMs are usually trained and evaluated on mean opinion scores
(MOSs) that are obtained in user experiments for each distorted image. In contrast, IVMs
predict the probability that a human observer will detect differences between a pair of
images. They provide localized information in the form of a visibility map or a probability
of detection map, in which each pixel represents the probability of detecting the difference

between a pair of images at the pixel’s location. IVMs tend to be more accurate for

Test Test

Visibility map

MOS:
Reference Quality Metric — 4 Reference Visibility Metric

Figure 2.1: Comparison between image quality metrics and image visibility metrics. Images
with high MOS scores may still have visible distortions.
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Metrics | Superathreshold | Near-threshold | Interpretability Output
IQMs v X X MOS
IVMs X 4 v Visibility map

Table 2.1: Comparison between IQMs and IVMs.

measuring small and barely noticeable distortions but are unable to assess the severity of
distortion. IVMs are often more relevant for graphics applications. The goal of IVMs is to
maximize performance without introducing any visible artifacts. Besides, different from
IVMs, IQMs rarely consider display brightness and viewing distance, both of which can
significantly impact the visibility of barely noticeable distortions, which will be discussed
in Section 3.2.

The most related type of IQM to this thesis is the full-reference IQM (FR-IQM)
that takes a pair of images as the input. Simple statistics-based FR-IQMs include the
Peak Signal-to-Noise Ratio (PSNR). For more complex quality metrics, the Structural
Similarity Index Metric (SSIM, [3]) considers the spatial variation information. The Visual
Saliency-Induced Index (VSI, [4]) and the Feature Similarity Index (FSIM, [5]) have a
similar framework as the SSIM but employ other information, such as saliency maps.
However, these IQMs do not take account of different absolute luminance levels or viewing
distance. High Dynamic Range Video Quality Measure (HDR-VQM, [6]) addresses the
change of physical luminance in the images and videos. HDR-VQM employs the perceptual
uniform transformation [7] to convert the physical luminance to the perceptual uniform
values and use log-Gabor filters [8] to compute the subband differences in a pair of images.
Because FR-IQMs uses the magnitude of image distortion as a single mean opinion score
value, FR-IQMs are often more accurate in terms of strong distortions than IVMs. On the
other hand, IVMs are trained for near-threshold distortions to predict the probability of
detecting the difference. This property makes IVMs more suitable for applications where
the accurate detection of near-threshold distortions is important, such as visually lossless
image compression. We will show this with experiments in Section 6.2. We recommend
that readers refer to more complete surveys on quality metrics [9, 10] further.

Another difference between IQMs and IVMs is that IVMs are generally easier to
interpret than IQMs. These MOS scores measure subjective opinions. The MOS scores are
sometimes related to the aesthetics of images that are difficult to interpret, whereas the
visibility of image differences are more related to the perception ability of human beings
that can be interpreted as the human ability to perceive differences directly. A summary
of differences between IQMs and IVMs can be found in Table 2.1. In the following sections,

we will focus on IVMs.
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2.2 The fundamentals of visibility metrics

In this section, we will introduce the fundamentals of IVMs research. These metrics are
aimed at modeling human visual systems. We will focus on the computational modeling
of IVMs in the following section. For clarity, we summarize the main parts of the human
visual system involved in detecting image differences in Figure 2.2 [11]. Whereas this figure
provides a comprehensive description of the detection process, most IVMs only use parts
of it. However, actual models may cover only part of the elements. It is also worth noting
that the computational modeling of the human visual system does not necessarily reflect
the anatomic structure of the human visual system but instead focuses on approximately
predicting visibility maps. We will introduce the main elements in the following sections.
In this thesis, only the display model and the luminance masking module are used in
our proposed IVMs, and the optics of the eye element are particularly considered in the
state-of-the-art IVM [1] and are explained in Section 2.3.2 later.

Images  Display Luminance Optics of Luminance
model” the eye masking*

The display model The imperfection of  The response of

converts images the optics of the eye photoreceptors to
stored in RGB integer attenuates high spatial luminance is non-linear,
values into luminance. frequencies. which can be
modeled with a log
function.

Response of the human visual system

. Spatial contrast Multiresolution
Contrast masking «— o — o [
sensitivity decomposition

Reduced detection for Human sensitivity =~ Image signals is transmitted
patterns in the presense changes according to via several frequency and
of patterns with similar spatial frequencies. ~orientation channels in the
spatial frequency. primary visual cortex.

Figure 2.2: Computational model of the human visual system. Components with * are used in
this thesis.

2.2.1 Display model

Compared to high dynamic range images, standard dynamic range images are still sig-
nificantly more popular. Different from high dynamic range images’ formats that can

represent the physical luminance of images, standard dynamic range images are usually
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represented in the standard RGB (sRGB) color space where each pixel is represented
with an RGB triplet integer ranging from [0-255]. However, the visibility of differences
between a pair of images is dependent on the display brightness. Thus, it is necessary to
convert the RGB triplet integers to physical luminance values for IVMs (Figure 2.3). The
display models enable IVMs to consider the effects of different display brightness, such
as a desktop display put in an office or a cell phone display at night. This procedure is
highly different from IQMs that take RGB values directly as the input.

L]0

RGB values | . Luminance
—— | Display model

\4

Visibility metric

RGB values

\/

Quality metric
Figure 2.3: Role of display models in IVMs.

Cathode-ray tube (CRT) displays were widely used before the 2000s, and CRT displays
have a non-linear relationship between the driving voltage and intensity. The transformation
from RGB triplets to output light intensities is termed as the “gamma correction”. Due
to this historical reason, modern liquid crystal displays (LCDs) also adopt this procedure.
We use the sSRGB transfer function to transform the RGB triplets to physical luminance:

[ = (lpeak - lblack)(v/255)2.2 + lblack (21)

where [ is the emitted luminance of the image, [peax is the peak luminance of the display,

lplack is the luminance of the black color, and v is the RGB triplet value.

2.2.2 Angular resolution

The viewing distance can have a large impact on the visibility of image differences. However,
different displays have varying resolutions, thus viewing distance alone is not sufficient.
We typically use the angular resolution instead of the viewing distance to measure the
effect of viewing distance and display resolution. The angular resolution used in visibility
research is defined as the number of pixels per degree of visual angle (Figure 2.4).

The angular resolution of an image on the display can be computed as:

N
p= ¥

= Toes [ppd] (2.2)
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Figure 2.4: Angular resolution of images on a display.

where N, is the vertical display resolution expressed in pixels, and hgeg is the display

height in degrees of visual angle. hge, is given by:

h
haeg = 2 arctan (ﬁ) ) (2.3)

where h is the display height, and d is the viewing distance. The display height can be

found from:

where sqiag is the display diagonal length. The unit of the angular resolution is pixels per
degree (ppd). The angular resolution is also limited by the Nyquist frequency which is two
times the maximum spatial frequency the display can show to the observer. For example,
for an image viewed at 60 ppd, the maximum spatial frequency the image can reach is 30
cycles per degree. The angular resolution provides a principled way to consider the effects

of viewing distance and the display resolution on the visibility of image differences.

2.2.3 Luminance masking

Luminance is a photometric measurement of the luminous intensity per unit area. The
relationship between the perceived intensity of light and the intensity of light is non-linear.
The eye is more sensitive to the relative luminance (the ratio of stimulus luminance and the
background luminance) than the absolute luminance [11, 12], and the sensitivity decreases
under high luminance conditions. This effect is referred to as “luminance masking”. A

simple luminance masking model is based on the Weber-Fechner law in psychophysics [13]:

1
dP = —dL 2.
; (25)
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where P is the perceived luminance, and L is the luminance. Integrating Equation 2.5

results in a log luminance masking function:

P(L) = log(L) (2.6)

Note that this is only a simple approximation that is inaccurate under low-luminance
conditions. Particularly, the luminance masking can also be modeled as an S-shaped

function, which is used in the visual difference predictor [14]:

L

P(L) = —L+cl 7

(2.7)
where ¢; is 12.6 and b = 0.63. We will compare different models of luminance masking
in Section 5.2.3 and attempt to combine luminance masking models with deep neural
networks to predict visibility maps under different peak display brightnesses. We will also
train a data-driven perceptual luminance masking transform for high dynamic range image
quality assessment in Chapter 7. The luminance masking model describes the sensitivity
of the human eye to different luminance levels. However, luminance alone provides an
incomplete description of visibility because the spatial frequency also has a large impact

on visibility.

2.2.4 Contrast sensitivity function

Whereas visual acuity measures the ability to identify objects, such as letters from a certain
distance, contrast sensitivity is defined as the inverse of the quantity of minimum contrast
required for people to detect a target image against a homogeneous background [15] .
The function that models contrast sensitivity is the contrast sensitivity function (CSF).
There are many different types of CSF's, each one modeling a different aspect of the human
visual system. CSF can be further divided into the spatial CSF and the temporal CSF.
We focus on the spatial CSF, which characterizes the contrast sensitivity in the spatial
domain because it is more relevant to images. CSF is often measured with sinusoidal test
patterns because such patterns can be analyzed easily with Fourier transforms. We plot
an example of spatial CSF and sine-wave grating patterns in Figure 2.5. The red line
is a CSF that characterizes the threshold of detecting the sine-wave gratings against a
uniform background. From Figure 2.5, we can see that humans are less sensitive to higher
and lower spatial frequencies. The anatomical reason behind this phenomenon is that the
middle spatial frequency stimuli correspond better to the size of a neuron 2. For clarity,
we will not attempt to explain each CSF in detail but instead focus on one of the most
popular CSFs—Barten’s CSF.

LContrast for sine-wave gratings is defined as the Michelson contrast ranging from 0-1.
2Details can be found in [12] pp 136.
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Figure 2.5: An approximate plot of contrast sensitivity function on the Campbell-Robson
contrast sensitivity pattern [2].
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Figure 2.6: Barten’s CSF at different luminances.

Barten’s CSF is perhaps the most popular CSF in visibility research. In Barten’s CSF,
contrast sensitivity is defined as the inverse of the modulation threshold of a sinusoidal

luminance pattern where parameters are fitted with human experimental data [16]:

5200 exp (—0.0016p2(1 + 100,/ L)"-%8)
\/ (1+ 55 +0.640°) (5% + T—opro0277)

S(p, L) = (2.8)

where p is the spatial frequency of pattern, L is the luminance, X2 is the area of the
stimulus. We plot the Barten’s CSF in Figure 2.6. Barten’s CSF shows that contrast
sensitivity is lower at lower luminance levels.

There are many different formulas and measurements for CSFs [2, 15, 17-24]. Each
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CSF is measured under different experimental conditions, such as the number of observers,
with or without limitation on the viewing time. For a more complete review of CSFs,
readers are recommended to read Barten’s review on CSFs [15]. The CSF can consider
the effects of luminance and spatial frequency. However, the interactions between patterns
with different spatial frequencies are not considered in the CSF but could influence the

visibility of patterns to a significant degree.

2.2.5 Contrast masking

Contrast masking refers to the change in contrast sensitivity for test patterns presented
on a non-uniform background. Contrast masking typically leads to reduced sensitivity, as
illustrated in Figure 2.7. Contrast masking has been studied with relatively simple stimuli,
such as static sine-wave gratings. Legge analyzed contrast masking in human vision by
measuring the contrast threshold for sine-wave gratings in the presence of other masking
sine-wave gratings [25]. Foley et al. found that the contrast masking model in [25] did not
fit experimental data well, and non-linear functions had to be used [26]. Sometimes, the
interaction of different spatial frequencies can enhance contrast sensitivity, an issue which
is referred to as facilitation. Georgeson et al. found that facilitation of detection would
diminish if the masking signal occurs asynchronously, and the phenomenon indicated
that there were links between contrast masking and luminance masking, making it more
difficult to model contrast masking correctly [27]. For natural images, facilitation rarely
exists and popular IVMs do not model this effect [11]. Although contrast masking has
been measured relatively well on simple static stimulus such as sine-wave gratings, the
contrast masking in natural images is particularly problematic in terms of being modeled
and predicted accurately [1]. The phenomenon of contrast masking clearly indicates that
using a CSF alone cannot model the visibility of distortions correctly. Next, we will explain
the multiresolution decomposition that enables the contrast masking to be included in the
IVM.

2.2.6 Multiresolution decomposition

According to the multiresolution theory of vision [12], the human visual system transmits
image information through multiple channels, where each channel represents different
frequency and orientation information. Thus, it is natural to decompose the image into
multiple channels and use the CSF to compute the contrast sensitivity of each channel
separately. In addition, decomposing the image into multiple channels also allows us
to model the contrast masking by selectively suppressing activity from channels with
different spatial frequencies. Image pyramids representations are commonly used in IVMs

for multiresolution decomposition and are computed as follows. We vectorize the input
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Figure 2.7: An example of contrast masking. The right image is the distorted version of the
left original image. The distortion noise is visible against the sky but more difficult to see against
the high frequency parts of the image, such as grass and trees. From [11].

signal as a column vector ;. Then, the convolution operation in image pyramids as a
matrix C', where the rows of C' contain the convolution kernels, the subsampling operation
as a matrix S with only zero or one entries. Then, the basic pyramid operation can be

written as P = S C. The generation of image pyramids can be formally written as:

where N is the maximum number of image pyramids. Each pyramid can represent
the image’s information at a particular resolution or spatial frequency. If there are
multiple convolution filters C' with different orientations at each step, the multiresolution
decomposition can also consider orientation information, which is used in steerable pyramids.
There are different kinds of pyramids, such as Gaussian, Laplacian, and steerable ones. The
main differences between different pyramids are the type and the number of convolution
kernels used in each step [12]. Among these methods, steerable pyramids that can consider
orientation information are used in the state-of-the-art white-box IVM [1]. It is also worth
noting that the multiresolution decomposition was previously popular in computer vision
research before the invention of more flexible models, such as deep neural networks. The

multiresolution decomposition allows us to model visibility in multiple channels.

2.2.7 Probability summation

To summarize the overall information from multiple channels, the probability summation
is used and therefore is an important step in IVMs [1, 28]. This summation assumes that
the detection of visible differences is caused by several independent channels at the same
time. For example, assuming that the probability of detecting differences at the spatial

frequency f is Py, the overall probability of detecting the difference Py can be written as:
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Pi =1-]J(1 =Py (2.10)

i=1
where N is the total number of spatial frequency channels. This probability summation
assumes that the interactions of different factors in human visual systems for detecting

the differences are independent, which may not hold in natural color images.

2.3 Image visibility metrics

Studies on [VMs are relatively sparse and mainly focus on the white-box modeling of
data due to the extremely limited size of training datasets available. Existing IVMs can
be generally divided into statistical IVM and human visual system model-based IVM
(HVS-IVM), which we will explain in the following sections:

2.3.1 Statistical image visibility metrics

Statistical IVMs are simple metrics that use image statistics. The simplest statistical
IVM might be the absolute difference metric, which computes the absolute pixel-by-pixel
difference of reference and distorted image. Another statistical IVM is Spatial CIELAB
(sCIELab) [29]. The sCIELab metric attempts to model the effects of spatial frequency
by simply pre-filtering pixels in CIELab colorspace with a spatial-chromatic contrast
sensitivity function prior to computing the visibility map. This simple approach has

limited success in predicting visibility in natural color images, as shown in Section 4.6.

2.3.2 Human visual system model-based visibility metrics

To consider more complex visual phenomena, some human visual system model-based
IVMs have been proposed, such as the Visual Discrimination Model (VDM) [30], the
Visible Differences Predictor (VDP) [14], and the High Dynamic Range Visible Differences
Predictor 2 (HDR-VDP-2) [1]. Those metrics consider luminance masking, contrast
sensitivity, contrast masking, and frequency-selective channels [10]. Among these metrics,
HDR-VDP-2 is the state-of-the-art IVM and is used in this thesis. We will first briefly
introduce the high level ideas of HDR-VDP-2 based on the fundamentals of IVMs described
in Section 2.2. Then, we will introduce HDR-VDP-2 in more detail. Because HDR-VDP-2
has several slightly different implementations on-line 2, in the rest of this thesis, we will
refer to the up-to-date version of HDR-VDP-2 as HDR-VDP for simplicity.

3http://hdrvdp.sourceforge.net /wiki/
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Figure 2.8: Architecture of HDR-VDP.

High dynamic range visual difference predictor (HDR-VDP [1]): The architec-
ture of HDR-VDP is shown in Figure 2.8. Inspired by the physiology of the human visual
system, HDR-VDP models the optics of the eyes attenuating the high spatial frequency
information. Then, HDR-VDP models luminance masking with photoreceptor sensitivity
data. Then, HDR-VDP uses the steerable pyramid transform for multi-resolution decom-
position and uses a modified version of the Barten CSF to compute the contrast sensitivity
at different channels. Finally, HDR-VDP uses probability summation to obtain the final
prediction of the visibility map. Next, we will explain each step of HDR-VDP in detail *.

Optical and retinal pathway:

(1) Intra-ocular light scatter. A small portion of the light traveling through the
eye will scatter on its way to the retina [31]. This phenomenon attenuates high spatial
frequencies and causes light pollution that reduces contrast. HDR-VDP models the

intra-ocular light scattering as a modulation transfer function (MTF):
F(L,) [c] = F(L)[c] MTF (2.11)

where L, is the output image radiance map, F is the Fourier transform operator, [.] is the
index of image channel, and L is the input image radiance map. The MTF function used

in HDR-VDP is a generic model proposed by Ijspeert [32]:

MTF(p) = 3 a exp (~byp) (2.12)

where a; and b, are the MTF’s coefficients.

(2) Photoreceptor spectral sensitivity. The photoreceptor spectral sensitivity

4Readers without related backgrounds can jump the details of HDR-VDP that are irrelevant to the
main content of this thesis. The details are described here only for understanding the state-of-the-art
IVM.
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curves describe the probability of sensing a photon at different wavelengths. As shown
in Figure 2.9, L-, M-, S-cones, and rods exhibit different spectral sensitivities [33]. The
probability of detecting a photon can be computed by multiplying photoreceptor spectral

sensitivity and integrating out the wavelength term:

vopnsiald = / oo Fld (V)N (2.13)

where o is the spectral sensitivity of L-, M-, S-cones, or rods, c¢ is the index of input
radiance map ranging from 1-3 for RGB color images, and f|[c] is the input light spectrum
that is related to the display. Then, the total amount of light sensed by each photoreceptor
type is:

c
Rimisir = Z Lolc] vriansirlc] (2.14)
c=1
where C'is the total number of input spectral maps (for color images, C' = 3). This step is

equal to color space transformation in the real implementation, making HDR-VDP more

accurate with different types of displays.
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Figure 2.9: Photoreceptor spectral sensitivity curve. The curve in the upper part shows the
measured emission spectra for a CRT display. From [1].

(3) Luminance masking. HDR-VDP models luminance masking with non-linear

transducer functions £z |g:
Privir = topmr(Rijmr) (2.15)

where Pp g is the photoreceptor response for L-, M-cones, and rods, Rpa g is the

corresponding photoreceptor input. HDR-VDP omits the modeling of S-cones as they
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have almost no effect on the luminance perception. The transducer function is:

"5
tL|M|R = Spcak/ %R(N)dﬂ (216)

where r is the photoreceptor absorbed light (Rrjumr), Tmin is the minimum detectable
luminance (107% cd/m?), and spa g is the adjustment for the peak sensitivity of visual
system. To derive sp g, we first considered the combined sensitivity of all types of
photoreceptors are:

sa(l) = sp(r) + sm(ra) + sr(rg) (2.17)

where [ is the photoreceptor luminance, 7, 77, and rg are absorbed luminance by L-cones,
M-cones, and rods respectively. Although the combined sensitivity of luminance s4(l) is
captured in [34], measuring isolated photoreceptor luminance sensitivity for each type is
difficult because cones and rods are hard to separate in human experiments. However,
data exist for measurements of a person without cone vision. Given photopic luminance
Il =rr +ry, HDR-VDP assumes that r;, = r); = 0.5/, which means that L-cones and
M-cones have the same sensitivity function. Then, The L-cone’s and M-cone’s sensitivity

function can be obtained by subtracting the overall sensitivity with the rod’s sensitivity:
spm(l) = 0.5(s4(21) — sgr(l)) (2.18)

The resulting transducer function is shown in Figure 2.10.
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Figure 2.10: Luminance transducer function for cones and rods. From [1].

In this step, HDR-VDP omits the modeling of S-cones here because S-cones contribute
a relatively small amount in the total response. However, S-cones are found to play

important roles in sensing color contrast at low brightness [35]. This simplification makes
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HDR-VDP less accurate. The achromatic response is then computed as:
P =P, + Py + Pg (2.19)

Neural noise: This step models effects, such as contrast masking. HDR-VDP uses the
steerable pyramid transform [36] to decompose input achromatic response into orientation
and spatial frequency bands. There are four orientation bands, and the number of spatial
frequency bands is limited by the image angular resolution. HDR-VDP assumes that the
differences in the contrast detection of different frequencies and orientations are due to
the sum of several sources of noise. This process is modeled as the sum of the signal-
independent noise (neural CSF) and signal-dependent noise (contrast masking) °. At the
f-th spatial frequency band and the o-th orientation, the steerable pyramids Brg[f, o]
are computed for the test and the reference image, which is referred to as “Multi-scale

decomposition” in Figure 2.8. Then, the noise-normalized channel difference is:

’BT[fa 0] - BR[f, OHP
VNl 0] + N2, [f. 0]

D[f, 0] = (2.20)

where p is the hyper-parameter set as 3.5 in HDR-VDP.
The signal-independent noise NV,,csr in the neural system is constructed by dividing
the CSF function by the MTF function and the joint photoreceptor luminance sensitivity

SA-

1 MTF(p)sa()
nCSF[f,0]  CSF(p,1)
where p is the spatial frequency, [ is the photopic luminance after intra-occular scatter
l = Ry + Ry, CSF is the CSF for HDR-VDP, and it is fitted with experimental data
based on a simplified version of Barten’s CSF model, p is the spatial frequency at the f-th

NnCSF[f; O] = (221)

spatial frequency band, which can be computed as:

Nppd
p = % (2.22)

where n,pq is the input image’s angular resolution in pixel per degree. The signal-dependent

part of the neural noise models the masking effect (described in Section 2.2.5). The contrast

5The term “signal-independent” and “signal-dependent” are used in the original paper but may better
be described as “without channel interactions” and “with channel interactions”. We will use the original
terms for consistency.
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masking in HDR-VDP consists of three parts:

kself kxo

Nunaske = —= (s Bu[f, o))" + ny > Bulf,i] (2.23)
f iy i=0/o
+ %(anrlBM[f +1,0] +npBulf —1,0])7)

where the first term models self-masking, the second models masking across orientations,
and the third is the masking due to two signals of neighboring frequency bands 6. kg, ko,
and k,, are the weights controlling the influence of masking. O is the set of all orientations.
ny is the normalization factor ny = 2-U=1 . By[f, 0] is the activity in the band f and
orientation o. B); is implemented as a Gaussian blurred version of Br. We recommend
that readers refer to the original paper of HDR-VDP [1] for the exact mathematical formula
of By and CSF.

Probability summation: To summarize the overall information from multiple channels,
after obtaining the noise-normalized difference signal D[f, o] from the above steps, we can
compute the probability of detecting a difference at frequency f and orientation o with

the psychometric function, which can be written as:

Y[f,0] =1—exp (10g(0.5)D6[f, 0]) (2.24)

where [ is the slope of the psychometric function. Then, the overall probability of a

detection map considering all orientations and frequencies can be written as:
Pap = 1 =110 (1 = 9[f, 0]) (2.25)

=1—exp | log(0.5) Z DP[f, 0]
(f70)

This probability map is in the steerable pyramid representation. To obtain the probability
map in the pixel domain, HDR-VDP uses the inverse steerable pyramid prior to modeling

the psychometric function and adds spatial summation:
Py = 1 — exp (log(0.5)SI (P~(D"))) (2.26)

where P! is the steerable pyramid reconstruction operator, and SI is the added spatial
integration. The spatial integration function describes the phenomenon that larger distor-

tion patterns are easier to detect. HDR-VDP applies the ratio of the summation of pixel

6The self-masking term can adjust the strength of effects of mutual masking
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values over the entire image and the maximum of the pixel value for spatial integration:

D7 Sij
SI(S) = —L — 2.27
( ) max; ; S, ( )
where S is the input image matrix. HDR-VDP has achieved tremendous success for
visibility predictions. However, there are several limitations that prevent HDR-VDP from

being more accurate in predicting visibility maps:

Limitations of HDR-VDP

1. Complex non-linear interactions exist between components. For white-box models
to be accurate, there are many components to consider. With the increasing number
of components, improving one component may have advert effects on another. Thus,

it becomes harder to improve the components.

2. Assumptions of the human visual system. For computational purposes, HDR-
VDP has to make many assumptions. For example, HDR-VDP assumes that
contrast masking only happens between neighboring frequency bands. However, this

assumption does not necessarily hold.

3. Stimuli used in psychophysical experiments may be too simple to apply to natural
color images. HDR-VDP uses data from psychophysical experiments. However, these
psychophysical experiments are usually conducted using simple stimuli such as log

Gabor patches. The result might not be the same for complex natural color images.

The limitations of HDR-VDP suggest that improving IVM predictions by modeling the
human visual system may be rather difficult. Later, we will discuss how to use black-box
deep neural networks based on machine learning to improve the accuracy of visibility

prediction in Chapter 4 and Chapter 5.

2.4 Image compression

A large amount of image and video data on the Internet poses a significant challenge for
data transmission and storage. Image compression techniques typically rely on the fact that
the human visual system is less sensitive to high-frequency distortions and color differences
than low-frequency distortions and luminance differences. Image compression methods
can be divided into lossy image compression methods and lossless image compression
methods. Lossless image compression is a reversible image compression method that
can recover all of the original image information from the compressed data. However,

lossless image compression methods generally produce much larger image files than lossy
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Figure 2.11: Flow of JPEG image compression

image compression methods. This issue has restricted their applications for compressing
large-scale images on the Internet. This thesis will focus on lossy image compression
methods. In the following section, we will explain the JPEG compression in detail, and
then we will briefly discuss WebP, which is another image compression method used in
this thesis.

2.4.1 Standard JPEG image compression

Joint Photographic Experts Group (JPEG) image compression is the most popular image
compression format on the Internet [37]. In this thesis, we use the JPEG file interchange
format (JFIF) format of JPEG and the widely-used open source implementation of the
format—Iibjpeg’ from the independent JPEG group (IJG). The flow of JPEG image
compression is shown in Figure 2.11. JPEG first transforms the input images in the RGB
color space to the Y/CbCr color space. In the Y/CbCr color space, images are represented
with the luma component (Y’), blue-yellow chroma component (Cb), and red-green chroma
component (Cr). The reason behind the color space transformation is that red, green,
and blue coordinates of color are correlated with each other, and the principle component
analysis shows that the three main components in natural images are luminance, red-green,
and blue-yellow color channels [11]. Then, the chroma components of the original images
are spatially subsampled to reduce the data. The subsampling exploits the fact that the

human eyes’ spatial resolution for color is lower than for luminance. Next, JPEG uses

"https://github.com/LuaDist /libjpeg
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the discrete cosine transform (DCT) [38] to transform images to the frequency domain
and quantifies the coefficients controlled by a parameter-quality. The higher the quality,
the more precise the coefficients are quantified. Finally, the entropy encoder stores the
coefficients in zig-zag order. The reconstruction of images from the compressed image data
follows the same steps as in compression, but in the reverse order.

The following paragraphs will introduce each JPEG compression step in more detail

because many image compression algorithms follow similar design principles as JPEG.

Color space transformation To compress images with fewer distortions, JPEG first
transforms the images from the linear color space to the Y'CbCr color space. The Y’
channel represents the luma that is related to image brightness. The other channels
represent chromaticity [39]. The following steps of JPEG compression occur independently
in each channel of Y/CbCr. The conversion from RGB color space to Y'CbCr color space

is linear:

R
Y’ 0.299 0.587 0.114 0 o
Cb| = [—-0.168736 —0.331264 0.5 128 B (2.28)
Cr 0.5 —0.418688 —0.081312 128 .

Original Y’ component Cb component Cr component

Figure 2.12: RGB color space to Y/CbCr color space transformation.

Downsampling This step attempts to utilize the fact that the human spatial resolution
for color is lower than for luminance. Instead of using all of the pixels in chromatic
channels, JPEG provides different subsampling rates for chromaticity channels, such as
4:4:4 or 4:2:0. The first number denotes the number of samples for the luma channel that
is usually 4, the second number denotes the number of chroma samples following the luma
samples, and the last number denotes the number of changes of the chroma samples in the

subsequent row. 8.

84:4:4 means no subsampling in chromaticity channels.
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DCT Transform In this step, JPEG splits images into 8x8 patches and runs the
DCT on each patch to obtain image representations in the frequency domain. The DCT
transform approximates continuous signals with the weighted sums of cosine functions at
different frequencies [39]. For example, to decompose a one-dimensional discrete real-valued
function f(z):

N-1

f(z) = %CQ + % Z Ck, COS (%k(x + %)) (2.29)
k=1

The coefficient ¢, is the weight for the k-th frequency:

o — NZOI F(z) cos (%k(m + %)) (2.30)

The one-dimensional DCT can be extended to a two-dimensional DCT to decompose a

two-dimensional discrete function f(x,y):

= ;127:27:0 CyCyyp €OS (W) cos (W) f(u,v) (2.31)

u=0 v=

where C, or C, is \/Lﬁ when u or v is 0, otherwise C,, = C, = 1. ¢y, = Cyisp [39]. From

this formula, there are 8x8 base cosine functions for decomposing image patches.

Quantization The quantization step is where JPEG achieves most of its compression.
In this step, the DCT coefficients obtained from the DCT transform are quantized by
elementwisely dividing a quantization matrix. Remainders are rounded to the nearest
integers. The amount of compression is determined by a single parameter—compression
quality ranging from [0-100] in the libjpeg. The default quantization matrix for luma

channel is:

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
Ot = 14 17 22 29 51 87 80 62 (2.32)
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99
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The quantization matrix for chroma channel is different, which is:

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
Qchroma = (233)
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

Many entries in the chroma channel quantization matrix are larger than the luma channel
quantization matrix to take the advantage of fact that the human visual system is more
tolerable to the difference of color than luminance [40]. These two quantization tables are
used as examples in the Annex K.1 of the ISO/IEC JPEG standard [37]. It is also worth
noting that some commercial software, such as Adobe Photoshop, has its own quantization
tables that are usually more conservative than the ones shown here ?. According to the
IJG’s formula '°, the quantization scaling factor S at the compression quality ¢ can be

computed as:

5000 =50
g — { /4, q < (2.34)

200 —2x%q,q > 50

Then, the quantization matrix is scaled according to the scaling factor S to provide different
precision of quantization. Details can be found in the libjpeg implementation'®. It is also
worth noting that some software, such as Photoshop CS 6, employs a different quality
range in the user interface, but actually stores the quality ranging from 0-100. The JPEG
compression implemented in Photoshop CS 6 is more conservative than common settings
of libjpeg because of the quantization matrices used and the high default quality (85-99).
Due to this reason, the percentage of savings reported in the later chapters compared with
the Photoshop setting is a lot more conservative. However, for simplicity, we will use the

libjpeg implementation of JPEG and the recommended quantization matrices.

Entropy encoding Entropy encoding is a lossless step that combines the run-length
encoding (RLE) and Huffman encoding to help encode zero coefficients more efficiently.

From the JPEG compression algorithm, we can see that by adjusting the quality

Different quantization tables can be found in https://www.impulseadventure.com/photo/jpeg-
quantization-lookup.html?src1=255

0Request for Comments 2435 and the code in line 130-145 in
https://github.com/LuaDist/libjpeg/blob/6c0fcb8ddee365e7abcdd332662b06900612¢923/jcparam.c

"Line 49-56 in https://github.com/LuaDist/libjpeg/blob/6cOfcb8ddee365eT7abcdd332662b06900612e923 /jcparam.c
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Figure 2.13: Flow of WebP image compression.

parameter, users can easily control the trade-off between the visual quality of JPEG

compressed images and the storage space required.

2.4.2 WebP image compression

Created by Google in 2012, WebP is becoming increasingly popular in web image com-
pression [41]. WebP is based on the VP8 video codec, in which predictive coding is
an important feature. The flow of WebP image compression is shown in Figure 2.13.
The main difference between WebP and JPEG is that WebP encodes the differences
between neighboring image blocks rather than image blocks themselves and uses arithmetic
encoding instead of the entropy encoding to compress quantized DCT coefficients. By
encoding image block differences, WebP can represent images with local similarities more
efficiently. The Huffman encoding used in JPEG represents each unique DCT coefficient
with a different symbol (a sequence of binary numbers). This process could waste some
space if some bit symbols are unused. WebP uses arithmetic encoding to represent DCT
coefficient sequences with a fraction ranging from 0 to 1. For further details, see [42].
Designed for compressing images on the web, WebP is better at compressing images at

lower bit rates, as we will demonstrate later in Section 6.4.
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2.4.3 Other lossy image compression methods

Despite the wide use of JPEG, a significant amount of research has been conducted on
proposing new lossy image compression encoding for different applications. For example,
JPEG 2000 is a relatively new standard that is widely used in some fields such as digital
cinema.

Recently, the neural network!2-based image compression has become a popular topic.
Toderici et al. proposed a recurrent neural network[43]-based encoder and decoder [44],
which is the first neural network architecture that is able to outperform JPEG at image
compression. Rippel et al. proposed an autoencoder neural network[45] image compression
[46]. The autoencoder neural network is more efficient than the recurrent neural network
at image compression as it utilizes the similarities of all neighboring pixels. Other
methods have been proposed [47-54] mainly by either improving the neural network
architecture or the form of the loss for training the neural network. To illustrate how these
methods work, we take the widely cited Rippel’s compression algorithm as an example.
Rippel’s compression algorithm compresses 128 x 128 blocks from images independently,
making it able to compress images with arbitrary large resolutions. The general flow of
this compression algorithm is shown in Figure 2.14. The main difference between this
algorithm and the classic image compression algorithms such as JPEG is that deep neural
networks are used for feature extraction. The original image is transformed into the feature
space and transformed back to the reconstructed image. The differences between the
original image and the reconstructed image are used as the loss function for training neural

networks.

L Feature . Arithmetic
Original image = . =» Quantization —» :
extraction coding l

L.oss Bitstream

Feature Dequantization Arithmetic
Reconstruction synthesis q decoding

Figure 2.14: Flow of image compression based on deep neural networks.

The neural network-based image compression methods have demonstrated better
compression performance than classic image compression algorithms, such as JPEG and
WebP. However, these methods have to use the graphic processing unit (GPU) to achieve
similar speeds as JPEG, and therefore it is difficult to use these methods for mobile

devices that have limited power storage. In addition, although the deep neural network’s

12WWe refer readers to Section 2.6 for background knowledge on neural networks.
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weights do not take too much storage space (probably less than 60 MB) '3 installing
the necessary software takes a large amount of storage space 4. While all these methods
indicate a possible new direction and demonstrate better performance than the JPEG
standard, JPEG will possibly remain the most popular lossy image compression format on

the Internet in the near future.

2.4.4 Problem with distortion measurements

While significant effort has been invested in better image and video coding methods,
aligning these methods with visual performance has received much less attention. Besides,
it is difficult to compare these methods because conducting large-scale user experiments is
too expensive and time consuming. However, widely used simple image quality metrics,
such as the PSNR or SSIM, do not correlate well with human perceptions of image quality.
For visually lossless image compression, we need highly accurate metrics to determine
whether compression artifacts are visible or not. Although limited in number, there are
still some previous works on visually lossless image encoding that are relevant to the IVMs
study. Next, we will introduce the previous research on visually lossless image compression

below:

2.5 Visually lossless image compression

Image compression methods are traditionally categorized as lossy or lossless. Whereas
lossless methods retain the original information up to the bit-precision of the digital
representation, they are many times less efficient than lossy methods. The Shannon source
encoding theorem states that how much we can compress information in a lossless way
depends on the variance in information sources [55]. Given the high variance of contents
of natural color images, improving existing lossless image compression methods to a large
extent can be relatively difficult. However, humans are not sensitive to small changes in
images. Thus, it may not be necessary to retain all the information in images to make
the differences between compressed images and reference images invisible. A natural
question is: Can we control parameters of lossy image compression methods to make the
difference between the compressed image and the original image invisible to observers (i.e.,
visually lossless image compression)? To conceptually demonstrate this possibility, we
show an example of an image compressed in a visually-lossless manner in Figure 2.15. By
controlling the JPEG compression quality setting, we can use the lossy image compression

method to achieve visually lossless image compression. Such visually lossless compression

13The exact parameters of Rippel’s architecture is not available in the paper. The number is based on
this implementation— https://github.com/rgerd /adaptive-image-compression.
14Deep learning frameworks, such as Tensorflow-GPU, typically take more than 1 Gigabytes.
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Reference JPEG Quality 90 JPEG Quality 52

Figure 2.15: Image named “artificial” is compressed at the compression quality of 90 or 52
using JPEG encoder. The default visually lossless JPEG compression quality for Photoshop
is around 90 5. We measured the visually lossless JPEG compression quality for an average
observer to be 52 under the viewing condition of 110 cd/m? display peak brightness and 60 ppd.
The measurements come from the VLIC dataset in Section 3.3.

methods are positioned in-between lossy and lossless image compression: they introduce
compression distortions but ensure that those distortions are unlikely to be visible. Another
line of research worth noting here is perceptual lossless image compression based on just
noticeable distortion (JND) models [56, 57]. Perceptual lossless image compression belongs
to the category of supra-threshold image compression methods that aims at compressing
images to the same quality, which is different as the same MOS score does not mean
no visible differences as in visually lossless image compression. (This will be shown in
Section 6.2 with experiments.)

Visually lossless image compression was first introduced to compress medical images
to handle the increasing amount of data in clinics’ picture archiving and communication
systems [58]. By selecting a fixed compression parameter or modifying the compression
encoders, visually lossless compression has been shown to be effective in compressing
medical images in the gray-scale domain. However, previous research on visually lossless
compression is largely content- and encoder-dependent [59-63], which means that we
cannot apply the same algorithm for medical images as for everyday pictures. Previous
research in this area can be divided into three categories: (1) constant visually lossless
compression threshold (VLT) compression, (2) visual optimization for image coding, and
(3) metric-based visually lossless compression. Predicting the visibility of distortions is
the key in many visually lossless image compression methods, and one of the methods is
HDR-VDP as we discussed in Section 2.3.2. Among these methods, visual optimization
for image coding requires that the existing standards for image communication change,

making it less applicable in practice.

2.5.1 Constant VLT compression

Constant VLT methods use a single number to determine compression quality. Kocsis et

al. [59] found that VLT of JPEG2000 compression for micro-calcification in mammography
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corresponds to a compression ratio (CR) of 40:1. Lee et al. estimated VLT CR as 5:1 for
abdominal computed tomography (CT) images by alternatively displaying compressed
and original images on the same screen and asking observers whether they could see the
difference [60]. Constant VLT methods work well for specific types of gray-scale medical
images, but these findings do not translate to other types of content. Note that the
constant VLT compression has already been widely applied in commercial software. For

example, Amazon.co.uk uses a default visually lossless JPEG compression quality of 75.

2.5.2 Visual optimization for image coding

Another line of research is focused on improving the visual performance of image coders
for specific types of images to make the compression visually lossless. Zeng et al. [62]
introduced several additional stages in JPEG 2000 coding that took account of frequency-
dependent contrast sensitivity and visual masking. Wu et al. proposed a visually lossless
medical image coder with an additional stage of visual pruning, controlled by a visual
system model[63]. The encoder, however, required manual calibration of the visual model

parameters for each type of encoded medical image.

2.5.3 Metric-based visually lossless image compression

There are many metric-based visually lossless image compression methods [56, 64-66].
Watson et al. proposed to measure the visibility of quantization noise in wavelet image
compression methods. However, Watson et al. measured with simple Gabor patches, and
their results do not generalize well to natural color images. Eckert et al. summarized the
observations when using IQMs for visually lossless image compression [67]: Simple metrics,
such as MSE, can have problems dealing with images with different textures. In addition,
the lack of contrast masking modeling might be a significant reason for the failure of many
quality metrics across a range of image contents. In addition, Eckert et al. noted that
there was no general consensus about how contrast masking models should be designed.
Chandler et al. proposed a visually lossless compression method for CT scans images,
which predicts the maximum contrast that wavelet subband quantization distortions can
achieve in the compressed image in order to be remain visually undetectable [61]. Kim
et al. proposed a method for predicting visible artifacts in JPEG 2000 using PSNR and
HDR-VDP [66].

Recently, Alakuijala et al. proposed an IVM named “Butteraugli” to find the VLT for
JPEG images [68]. Butteraugli transforms an input image pair into a set of feature maps,
such as an edge detection map, which are then combined to predict differences between a
compressed image and a reference image. The maximum value in the difference map is

taken as the indicator of compression artifact visibility.
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The performance of metric-based visually lossless image compression relies on the
accuracy of the IVM.

2.6 Machine learning

Machine learning is generally defined as a set of methods for automatically learning
functions from data to complete tasks without explicit human instructions [69, 70]. Machine
learning has been developing rather rapidly in the past decade. It has achieved superior
performance in tasks that were previously impossible, such as large-scale image classification.
For example, Alex et al. proposed a deep neural network-based image classification
method, which might be the first important task for deep learning methods to demonstrate
significantly improved performances [71]. In recent years, deep learning has also been
successful in image generative modeling [72-74] and image quality assessment [75, 76, 76—
78]. However, very few machine learning related studies can be found for IVMs and
visually lossless image compression. Machine learning methods can be divided into three
types; (1) supervised learning, (2) unsupervised learning, and (3) semi-supervised learning,
depending on whether true labels are provided. In supervised learning, all data have labels.
In unsupervised learning, no labels are available. In semi-supervised learning, only a part
of the data has labels. Next, we will give a brief introduction to the machine learning

methods used in this thesis.

2.6.1 Supervised learning

In the setting of supervised learning, the goal is to automatically infer a system capable of
mapping inputs x to predict labels y based on a labeled training dataset D = (x;, Yi)i]\;r
Supervised learning methods can be further divided into classification and regression
methods depending on the type of the label. When y is categorical data, this type of
supervised learning is termed classification. When y is continuous data, this type of
supervised learning is termed regression. In the context of this thesis, x; is the distorted
image and the reference image. y; is the visibility map, the values of which are continuous.

Thus, our problem can be categorized as a regression problem.

2.6.2 Feedforward neural network

The feedforward neural network (multi-layer perceptron) was initially proposed in the
1950s [79, 80]. Although the neural network has become quite a hot topic in recent years,
it was not regarded as a promising method for machine learning in the beginning [81]. The
feedforward neural network is often referred to as the fully connected neural network to

distinguish it from the convolutional neural network. The architecture of a fully connected
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Input Layer1

Figure 2.16: Architecture of a 3-layer fully connected neural network.

neural network is shown in Figure 2.16. In this form of a neural network, each node
(neuron) accepts the inputs from all nodes in the previous layer and generates output to
each neuron in the next layer based on a non-linear function that is generally referred to
as the activation function.

We denote the connection weights from the ¢-th neuron to the j-th neuron at the [-th
layer as w; ;;, the connection bias from the ¢-th neuron to the j-th neuron at the I[-th layer

as bj;, the activation from the i-th neuron to the j-th neuron is given by:

yj =@ (Z Wi 41 Yig—1 + bj,l) (2.35)

where ® is the activation function that can provide flexibility for fitting complex non-linear
functions. Popular choices of activation functions include the sigmoid function, the rectified
linear units function (ReLU) [82], the exponential linear units (ELU) [83], and the scaled
exponential linear units (SeLU) [84]. Recently, automatic searching for optimal non-linear
activation function method has been proposed [85]. However, due to its complexity, this
thesis will only focus on fixed non-linear activation functions. ReLLU function is the most

popular choice in practice due to its simplicity and efficiency:
¢ (x) = max(0, x) (2.36)

To train the fully connected neural network, the backpropagation algorithm is used
[86]. For simplicity of notations, we denote the weights of the [-th layer as a matrix wy,
the bias of the [-th layer as a vector by, y; as the output activation vector of [-th layer, ®
as the Hadmard product operator. Then, the backpropagation algorithm is similar to the
chain rule in calculus and can be explicitly written in Algorithm 1.

By running Algorithm 1 until convergence, a fully connected neural network can be
trained to learn any continuous function. This property is referred to as the universal

approximation theorem [87]. From Algorithm 1, we can also observe that as long as we
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Algorithm 1 One step of backpropagation algorithm

1: Input: x: the input data; y: the input label; L: the number of layers; 7: the learning
rate; w;: the weights matrix at [-th layer, b;: the bias vector at [-th layer, ®;: the

activation function at [-th layer, Cost is the loss function.
2: Feedforward computation:

3: for(=1...L do
compute outputs of [-th layer:

yi =@ (wiyi—1 + by)
5. end for

6: Compute backpropagated error of prediction of the last layer:

~ 0Cost(yz,y)

% oYL

o,

7: Backpropagate the error:
& forl=L—-1...1do
9:  compute the backpropagated error at [-th layer:

& = ((wip1) 6i1) © P
10: end for
11: forl=L...1do

12:  Compute the backward gradient:

o _
ow, = 01Yi-1
00r,

b,

13:  Compute the updated parameters:

00y,
W= N
00y,
b =b —n—=
l l n@bl

14: end for

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

can compute the gradients of the activation functions, the backpropagation algorithm can

be used to train our neural networks. In practice, we can even estimate the gradients when

the real gradients are not available [88]. Although the fully connected neural network is

theoretically guaranteed to approximate any continuous functions, it generally requires a

large number of parameters in training, an issue which may cause over-fitting. It was not

until the invention of the convolutional neural network that deep neural networks became

widely used for image processing.
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2.6.3 Convolutional neural network

Inspired by the fact that in the visual cortex, certain neurons only respond to a small
visual field and the receptive fields overlap with each other [89-91], the convolutional
neural network (CNN) was proposed [92]. Compared with the fully connected neural
network, CNN reduces the number of parameters to train because only the activations of
nearby neurons’ are summed together. This operation is usually referred to as convolution
[93]. To understand the convolution operation, we start with a simple one-dimensional
example. Given two functions z(¢) and f(¢), the convolution operation can be written as

follows:
s(t) = / 2(w) f(t — w)dw (2.44)

Since we deal with discrete data (pixels), the index ¢ is an integer in convolution operations:

s(t) = (zxw)(t) =Y z(w)f(t —w) (2.45)

w
Extending the convolution operation to two-dimensional space is straightforward. We
illustrate a convolution operation process for image data in Figure 2.17.

Similar to the feedforward neural network, a bias vector and a non-linear activation
function are applied after the convolution operation to form the convolution layer. We

can write this formally by rewriting Equation 2.37 as:
yi =@ (W *xyi1 + by (2.46)

where * is the convolution operation. From this equation, we can observe that the
convolution layer is similar to the adaptive filtering in signal processing where the weights
of the convolution filters are learned by the backpropagation algorithm and the number of
convolution filters are usually much larger.

Another common operation in CNN is pooling, which usually occurs after the con-
volution layer. The pooling operation replaces the original signal with a downsampled
version. For example, the max-pooling operation extracts the maximum output within a
rectangular neighborhood [94]. The intuition behind pooling is to subsample the signal
for reducing the complexity of the system while maintaining the main information of the
signal. By stacking convolutional layers and pooling operations, we can obtain different
CNN architectures.
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Figure 2.17: Convolution operation.

2.6.4 Batch normalization

Batch normalization is a method for normalizing inputs to layers to accelerate neural
network training [95]. It has become almost a default choice for implementing deep neural
networks. Recently, theoretical and empirical studies have shown that batch normalization
can avoid the problem of diverging loss for particularly deep neural networks by constantly
correcting layer inputs to be zero-mean and of unit standard deviation [96].

Although batch normalization enables larger gradient steps resulting in faster conver-
gence rate, it is not suitable to train datasets that contain images with diverse luminance
ranges. We will use batch normalization in Chapter 4 for training IVMs with the fixed
display brightness. However, it will not be used in Chapter 5 when training [IVMs with
varying viewing conditions because batch normalization may shift the peak luminance
of images and prevent the neural network from predicting visibility maps correctly at

different display brightnesses.
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Algorithm 2 Batch normalization algorithm

1: Input: x: a mini-batch of input data; : scale parameter to be learned; : shift
parameter to be learned; e: a small number to avoid dividing by zero.
2: Compute the minibatch mean and variance:

= % i 2, (2.47)
o? = %Z(xz —pn)? (2.48)

3: Normalize data:

X—u
Vo2+te ( )
4: Scale and shift:
y=7x+p (2.50)

2.7 Summary

In contrast to previous works on I[VMs and visually lossless image compression, we will

conduct research in the following directions:

1. Existing IVMs are based on a simplified version of human visual system models and
are calibrated with small datasets. Different from using this white-box modeling
approach, we plan to explore using machine learning methods in a black-box or
hybrid way to improve the prediction performances of IVMs because machine learning
has become the driving force for image quality assessment. Details will be discussed
in Chapter 4 and Chapter 5.

2. The majority of previous research on visually lossless image compression is content
and encoder dependent. Different from this content and encoder dependent approach,
we plan to improve machine learning-based IVMs to automatically determine the
compression setting to achieve visually lossless image compression, making our pro-
posed visually lossless image compression method content and encoder independent.

Details will be discussed in Chapter 6.
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CHAPTER 3

DATA COLLECTION

To study visibility and visually lossless image compression, we first need to collect datasets
for training and evaluating our methods. There are two kinds of datasets related to our
research: (1) visibility datasets that measure the visibility map and, (2) a visually lossless
image compression dataset that measures the visually lossless compression threshold.
Collection of visibility datasets (LocVis and LocVisVC) was done at the Max Planck
Institute and the University of Cambridge. We also generated a large visibility dataset,
marked by the traditional visibility metric HDR-VDP, to increase the number of training
samples in the University of Cambridge (details will be explained later). Collection of
the visually lossless compression dataset (VLIC dataset) was done at the University of
Cambridge. We will introduce the collection of the visibility datasets and the visually
lossless image compression dataset respectively. The LocVis dataset is available at https:
//doi.org/10.17863/CAM.21484. The LocVisVC dataset is available at https://doi.
org/10.17863/CAM.37996.

3.1 Visibility dataset with fixed viewing conditions
(LocVis dataset)

In this section, I will describe the visibility dataset that we used for training and evaluating
visibility metrics. The previously largest visibility metric collected contains only 30 images
with 216x216 pixels each [97]. Besides, the experimental procedure in [97] is not very
efficient and takes several hours. We refine the procedure of collecting data from [98] to
obtain the largest dataset of locally visible distortions. To have more images for training,

we also include the TID2013 quality dataset [99] with automatically generated markings.
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3.1.1 Stimuli

The dataset consists of 557 images with 170 unique scenes (261 images are marked by
humans and 296 images are automatically generated). Many of them are generated for up
to 3 distortion levels, for example, different quality settings of image compression. The
scenes are selected to cover many common and specialized computer graphic artifacts such
as noise, image compression, shadow acne, peterpanning, warping artifacts from image-
based rendering methods, and deghosting due to HDR merging. This variety makes our
data challenging for existing visibility metrics. The images used in our dataset come from
many previous studies. We organize them into the following subsets. MIXED (59 images)
is an extended version of the localized computer graphics artifacts dataset (LOCCG) from
[98] where we generate images at several distortion levels by blending or extrapolating the
difference between the distorted and the reference images. The distortions include high-
frequency and structured noise, virtual point light (VPL) clamping, light leaking artifacts,
local changes of brightness, aliasing and tone mapping artifacts. PERCEPTION (34 images)
from [100] is artificial patterns designed to expose well known perceptual phenomena, such
as luminance masking, contrast masking, and contrast sensitivity. Datasets ALIASING
(22 images), PETERPANNING (10 images), SHADOWACNE (9 images), DOWNSAMPLING (27
images) and ZFIGHTING (10 images) are derived from [101] and contain real-time rendering
artifacts. Those images were created using popular game engines (i.e. Unreal Engine 4,
Unity) and they contain both near-threshold (e.g. aliasing) and supra-threshold distortions
(e.g. z-fighting, peter-panning). COMPRESSION (71 images) contains distortions due to
experimental low-complexity image compression, operating at several bit-rates. This set
is an important source of near-threshold distortions. DEGHOSTING (12 images) contains
artifacts due to HDR merging, which exposes the shortcomings of popular deghosting
methods [102]. 1BR (36 images), and CGIBR (6 images) contain artifacts produced by
view-interpolation and image-based rendering methods, which come from [68]. TID2013
(261 images) contains a subset of images from TID2013 image quality dataset [99] in which
images were selected so that the distortions are visible in the entire image (the entire

marking map set to 1), or are invisible (the entire marking map set to 0).

3.1.2 Generating TID2013 visibility dataset

In addition to 296 newly marked images, we added 261 images from the TID2013 image
quality dataset [99], for which we could automatically generate marking. We selected from
that dataset a subset of images that did not contain noticeable differences and assigned
them marking maps set to 0Os (no user markings). Then we selected another subset
with well-noticeable distortions and set corresponding marking maps to 1s (distortions

visible in the entire image). To ensure that both subsets were correctly selected, we
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compared the four least severe distortion levels with the reference images in an additional
pairwise comparison experiment (comparisons missing in the original dataset) and scaled
the original (per-observer) pairwise data together with additional measurements using
methods described in [103] and assuming Thurstone Case V observer model. Then, we
selected for the first subset the images with the score of less than 0.2 just-objectionable-
difference (JOD) to the reference, and for the second subset the images with the difference
larger than 3 JODs. We also excluded the distortion types that affected only small image
regions, such as JPEG transmission errors, and left the distortions that affected all pixels.

The aim of the experiment is to collect data on distortion visibility in each image
location. This serves to distinguish between distortions that are below the visibility
threshold and cannot be detected and those that are well visible. Such visibility thresholds
are typically collected in threshold experiments, using constant stimuli, adjustment or
adaptive methods, which can measure a single image location at a time, making such
procedures highly inefficient. For example, the largest dataset collected using such methods
[97] contains just 30 images, 216x216 pixels each, and it required tens of experiment hours
to collect it. Instead, we refined the procedure from [98] to obtain the largest dataset of
local visible distortions. In addition, we also included images from the TID2013 quality
datasets with automatically generated markings, as described in the supplemental material.
The summary of the dataset is shown in Table 3.1 and examples of selected images are
shown in Figure 3.1.

More details about all dataset categories can be found in the supplemental material of
our paper published in ACM Transaction on Graphics [104]. Next, we will introduce the

experiment procedure and apparatus.

Subset name Scenes | Images | Distortion levels | Level generation method Peak luminance | ppd
MIXED 20 59 2-3 blending 110 cd/m? 40
PERCEPTIONPATTERNS | 12 34 1,3 blending 110 cd/m? 40
ALIASING 14 22 1-3 varying sample number 110 cd/m? 40
PETERPANNING 10 10 1 n/a 110 cd/m? 40
SHADOWACNE 9 9 1 n/a 110 cd/m? 40
DOWNSAMPLING 9 27 3 varying shadow map resolution | 110 cd/m? 40
ZFIGHTING 10 10 1 n/a 110 cd/m? 40
COMPRESSION 25 71 2-3 varying bit-rates 110 cd/m? 60
DEGHOSTING 12 12 1 n/a 100 cd/m? 60
IBR 18 36 1,3 varying key frame distances 110 cd/m? 40
CGIBR 6 6 1 n/a 110 cd/m? 40
TID2013 25 261 n/a n/a 100 cd/m? 40

Table 3.1: The subsets of LocVis dataset used for training.

3.1.3 Experimental procedure and apparatus

In this section, I will present our experimental procedure for marking visible distortions.
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Figure 3.1: The figure presents examples of stimuli from our dataset. The insets show the
closeup of the artifacts. For the full preview of the image collection please refer to the supplemental
materials.

Comparison method Visibility of image differences can be measured using different
presentation methods, such as flickering between distorted and reference images, the
same with a short blank screen in between, a side-by-side presentation, or no-reference
presentation [98]. Different presentation methods will result in different levels of sensitivity
to distortions. Observers are extremely sensitive to differences in flicker presentation,
resulting in overly conservative estimates of visible differences for most applications, in
which a reference image is rarely presented or available. For that reason, we opted
for side-by-side presentation, which is also more relevant to many graphics applications
such as visually lossless image compression as achieving the visually lossless difference in

side-by-side comparison is already enough for most scenarios in real practice.

Experiment software For the purpose of collecting training data, we designed a web
application for marking visible distortions. To increase the comfort and accuracy of
marking, we provided the ability to change brush size, erase, clear all marking. Figure 3.2
depicts the application layout.

Figure 3.3 shows a sample scene with three distortion levels and the corresponding

observer markings.

Viewing conditions The experimental room had dimmed lights, and the monitor
was positioned to minimize screen reflections. The observers sat 60cm from a 23",
1920x 1200 resolution Acer GD235HZ display, resulting in the angular resolution of 40 ppd.

2

The measured peak luminance of the display was 110cd/m* and the black level was

0.35cd/m?. For COMPRESSION and DEGHOSTING sets, the distance was changed to the
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You can also change brush size with the mouse wheel or key shortcuts: -/+.

T

Figure 3.2: Layout of the custom application for marking visible distortions: A) distorted
and B) reference images, C) brush cursor, D) progress bar, E) setting buttons, and F) proceed
button.

Level 1 Level 2 Level 3

Figure 3.3: An example scene with three levels of distortion magnitude (top row), and the
corresponding distortion markings (bottom row). The distortion level increases from left to right,
which results in adding newly marked regions.

one corresponding to 60 ppd to reduce the visibility of distortions.

Observers Different groups of observers were asked to complete each subset of the

dataset. At least 15 and at most 20 observers completed each subset. In total, 46 observers
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(age 23 to 29) were recruited from computer science students and researchers. The observers
were paid for their participation. All observers had normal or corrected-to-normal vision
and were also naive to the purpose of the experiment. To reduce the effect of fatigue, the
experiment was split into several sessions, where each session lasted less than one hour.
The post-experiment interviews indicated that the session length was acceptable and did

not cause excessive fatigue.

3.2 Visibility dataset with varying viewing conditions
(LocVisVC dataset)

Visibility changes greatly with varying viewing conditions. Figure 3.4 illustrates the trends
of the visibility change under different luminance and distance conditions. With the
increase of luminance and the decrease of ppd (decreasing ppd is equivalent to decreasing
distance), distortions become more visible, which agrees with empirical observations and
previous research [1]. This confirms the need for a visibility dataset that takes account of
both absolute luminance and a viewing distance. To collect LocVisVC dataset, we used
the same experiment software and protocol as for collecting LocVis dataset but under

different viewing conditions:

3.2.1 Stimuli

We selected parts of LocVis dataset’s stimuli and measured their visibility under varying
viewing conditions. As the manually labeled datasets were insufficient for training, we also
prepared a dataset with synthetic labels, generated with the HDR-VDP visibility metric.
We used 200 high-quality photographs obtained directly from camera RAW files. All
photographs were resized to the maximum resolution of 1920x1080. The images were then
distorted by encoding and decoding using JPEG! and WebP? image compression at the
quality settings of 20, 50 and 90. We then randomly selected 50 images as the base scenes
for our dataset. Each of these images was converted into linear colorimetric units using
the display model assuming the peak luminance of 10 cd/m?, 110 cd/m?, and 220 cd/m?.
The visibility map for these images was then predicted for the angular resolutions of 30,
40, 50 and 60 ppd, producing in total 600 labeled images. A summary of the dataset can
be found in Table 3.2.

Thttps://github.com/LuaDist/libjpeg
Zhttps://developers.google.com /speed /webp

60



Subset name Scenes | Images | Distortion levels | Level generation method Peak luminance | ppd
MIXED 20 59 2-3 blending 110 cd/m? 40
PERCEPTIONPATTERNS | 12 34 1,3 blending 110 cd/m? 40
ALIASING 14 22 1-3 varying sample number 110 cd/m? 40
PETERPANNING 10 10 1 n/a 110 cd/m? 40
SHADOWACNE 9 9 1 n/a 110 cd/m? 40
DOWNSAMPLING 9 27 3 varying shadow map resolution | 110 cd/m? 40
ZFIGHTING 10 10 1 n/a 110 cd/m? 40
COMPRESSION 25 71 2-3 varying bit-rates 110 cd/m? 60
DEGHOSTING 12 12 1 n/a 100 cd/m? 60
IBR 18 36 1,3 varying key frame distances 110 cd/m? 40
CGIBR 6 6 1 n/a 110 cd/m? 40
TID2013 25 261 n/a n/a 100 cd/m? 40
VIEWCOND 26 264 1-3 n/a 10, 200 cd/m? 30, 60
PRETRAIN 200 600 3 JPEG and WebP compression | 10, 110, 200 cd/m? | 30,40,50,60

Table 3.2: The subsets of LocVisVC dataset used for training. VIEWCOND is the newly measured
LocVisVC dataset. PRETRAIN is the HDR-VDP generated synthetic dataset for pre-training.
The other sets are from the original LocVis dataset.

3.2.2 Experimental procedure and apparatus

For collecting this dataset, we used the side-by-side presentation as in the process of
collecting LocVis dataset. Observers were asked to paint freely all the visible distortions
using a custom painting interface. To speed up the process and to increase the coherency
of collected data, multiple levels of distortion magnitude proposed in [104] were used.

Display and viewing conditions The experiment took place in a room with dimmed
lights. The display was positioned to minimize screen reflections. The images were shown
on a 23", 1920 x 1200 pixels resolution Acer GD235HZ display set the SRGB color profile.
The screen was calibrated using a Minolta LS100 luminance meter to two different peak
luminance conditions: 10 cd/m? and 220 c¢d/m?. To achieve the luminance of 10 cd/m?,
the display was dimmed and a 0.6 Neutral Density (ND) filter, reducing the light by a
factor of 4, was put on the screen. These two setups cover the luminance range found
in most of the displays ®. The observers viewed the display at two distances, 40 cm and

86 cm, which correspond to angular resolutions of 30 and 60 ppd.

Observers In total, 46 observers, aged between 23 and 29 years old, were recruited
among computer science and other field students. All observers were paid for their
participation and had normal or corrected-to-normal vision. They were naive about the
purpose of the experiment. To reduce the effect of fatigue, the experiment was split into

several sessions, where each session lasted less than one hour.

3https://www.laptopmag.com /benchmarks/display-brightness
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Distorted Image 10 cd/m?, 30 ppd 10 cd/m?, 60 ppd 200 cd/m?, 30 ppd 200 cd/m?, 60 ppd

Tools-02-12 Szene-02-12

roofs-01-11-12

Probability of detection

0% 25% 50% 75% 100%

Figure 3.4: Examples of images and subjective data from LocVisVC dataset. Decreasing ppd
(decreasing distance between the observer and the display) for the same luminance condition
increases the visibility of artifacts. When luminance is increased keeping the same ppd condition
the visibility of artifacts also increases.

3.3 Visually lossless image compression dataset with

fixed viewing conditions (VLIC dataset)

To evaluate the visibility metric’s performance on visually lossless image compression, we
collected a visually lossless image compression (VLIC) dataset, containing images encoded
with JPEG and WebP* codecs.

3.3.1 Stimuli

The VLIC dataset consists of 50 reference scenes obtained from previous studies of image
compression and image quality. The stimuli were taken from the Rawzor’s free dataset
(14 images)®, CSIQ dataset (30 images) [105], and the subjective quality dataset in [106]
(where we randomly selected 6 images from the 10 images in the dataset). For Razor’s
dataset, images were cropped to 960x600 pixels to fit within our screen. These images

provided a variety of contents, including portraits, landscapes, and images of daylight and

“https://developers.google.com/speed/webp/
Shttp://imagecompression.info/test_images/
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night scenes. ‘For JPEG compression, we used the standard JPEG codec (libjpeg®). For
WebP compression, we used the WebP codec (libwebp”). Half of the reference scenes were
compressed using JPEG and the other half using WebP, each into 50 different compression

levels.

3.3.2 Experiment Procedure and apparatus

The experimental task was to find the compression level at which observers could not

distinguish between the reference images and the compressed images.

Experiment stages The experiment consisted of two stages as shown in Figure 3.5. In
the first stage, observers were presented with reference and compressed images side-by-side
and asked to adjust the compression level of the compressed image until they cannot see
the difference (method-of-adjustment). A 0.5 second long blank with the middle-gray
background was displayed when changing compression levels so that observers could not
use temporal changes to guide their choice. The compression level found in the first stage
was used as the initial guess for the more rigorous 4-alternative-forced-choice procedure
(4AFC), used in the second stage. In the second stage, observers were shown 3 reference
images and 1 distorted image and asked to select the distorted one (see Figure 3.5). The
adaptive Bayesian method—QUEST was used for sampling of compression levels and to
find the VLT [107]. We collected between 20 and 30 4AFC trials per participant for each

image.

Viewing Condition The experiments were conducted in a dark room. The screen was
positioned to minimize screen reflections. The experiment set is shown in Figure 3.6.
Observers sat 90 cm from a 24 inch, 1920x1200 resolution NEC MultiSync PA241W
display, which corresponded to the angular resolution of 60 ppd. The viewing distance was

controlled with a chinrest.

Observers Observers were recruited from the University of Cambridge with normal or
corrected to normal vision. All observers were paid for their participation and had normal
or corrected-to-normal vision. They were naive about the purpose of the experiment. We

collected data from 19 people aged between 20 and 30 years old. z

Distribution of visually lossless threshold To analyze observers’ differences in VLT

for image compression, we plot the distribution of VLT of all 50 images in the VLIC

Shttps://github.com/LuaDist/libjpeg
"https://github.com/webmproject/libwebp
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First stage: Method-of-Adjustment

i

Reference Distorted

Second stage: QUEST Adaptive Procedure

Figure 3.6: Visually lossless compression experiment apparatus (Taken in an environment with
adequate lighting for clarity).

dataset in Figure 3.7 and Figure 3.8. From Figure 3.7 and Figure 3.8, we have three

observations:

1. We find that VLT varies substantially among different images. This phenomenon
indicates that simply setting a fixed compression quality for all images is not ideal.

However, this method is widely used in practice. For example, Amazon.co.uk
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compresses all images displayed with JPEG with a quality setting of 75. This setting
will result in visible compression artifacts. However, compressing all images at quality
90 will be too conservative and consumes much more transmission bandwidth and

storage space than needed.

. We also observe that for a single image, the VLT for different people ranges greatly,
this indicates that different people have distinctive perception thresholds for com-
pression artifacts in images. In this research, we use the mean of VLT as we find out
in practice that it gives enough quality for general-purpose visually lossless image

compression.

. The VLT for WebP compression can be much lower than JPEG. This is because
WebP uses a predictive encoding technique that is more efficient for compressing
more uniform images. However, this phenomenon does not necessarily indicate WebP

can save more space than JPEG. We will further compare the performance between
JPEG and WebP in Chapter 6.
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CHAPTER 4

PREDICTING VISIBILITY UNDER FIXED
VIEWING CONDITIONS

4.1 Introduction

In this chapter, we will introduce how to derive the visibility metric under fixed viewing
conditions using the LocVis dataset. The visibility metric is key in many applications,
such as visually lossless image compression, determining the maximum subsampling level
for a single image super-resolution and adjusting content-dependent watermarks so that
their intensity can be maximized while remain imperceptible. The code of our proposed

visibility metric is available at https://github.com/Chuudy/CNN_visibility_metric.

My contribution in this chapter This chapter is the result of cooperation between

the University of Cambridge and the Max Planck Institute. My contribution is as follows:

1. Proposed using the probability density function of binomial distribution as the loss

function which was later improved to the statistical loss function.

2. Substituted the original fully-connected neural network architecture with the de-
convolutional neural network, an approach that significantly reduced the number
of parameters and made the proposed neural network achieve the state-of-the-art
performance for applications. The new architecture was later improved by a coauthor
by combining the downsampling layer and the convolutional layer to further improve

the performance.

3. Determined the key parameters for training, such as the batch-size, which improved

generalization performance.
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4. Proposed a framework for using the CNN visibility metric for visually lossless image

compression, a framework that would be extended and explained later in Chapter 6.

5. Improved HDR-VDP’s performance by introducing a Gaussian filter for the final
output.

For clarity, I will provide a full description of the work in the following sections.

4.2 Probability loss

Before deriving new visibility metrics, we need to have a loss function to correctly reflect
how well a visibility metric can perform on predicting visibility maps. This is important
both in training visibility metrics and evaluating of visibility metrics.

Firstly, to have a reasonable loss function, we first consider the process of how human
mark the distorted areas of images in our experiment. As the experimental data is the result
of a stochastic process that is affected by noise, it is not ideal to use the experimental data
as the ground truth directly without probability modeling. Besides, during the experiment,
observers are also likely to make some mistakes and they sometimes do not pay attention
to areas where distortions are clearly visible. Thus, we model the stochastic process of
human marking in Figure 4.1. We assume the probability of mistakenly marking an area
iS Pmis, the probability of attending an image location is pys, the probability of detecting
a difference is pger. Paer is our ground truth that we want to predict accurately. Thus, we

have the statistic model for a single observer marking an image location.

Observer can detect
the difference \

Marked
Observer attends Pdet
the difference
patt\ 1'pdet
Not marked
Not marked

Observer yd

makes a mistake Random marking

Figure 4.1: The statistical process modeling observed data, given the probability of observer

marking a mistake (ppms), the probability of attending (pgs) and detecting (pget) differences in
images.

As in our experiment, we typically have 10-14 observers for a single image, we need to

extend the stochastic modeling to multiple observers. When we have multiple observers
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Figure 4.2: The probability that the probability of attending a difference is equal to p, plotted
separately for two subsets of LocVis.

marking an image location, we assume that stochastic process of each individual observer
is independent and has the same distribution. Then, we can model multiple persons (in
which & out of N mark a location) marking based on Bernoulli process with an adjustment

for the mistakes:

N

= Pmis + (1 - pmls) anomzal(k7 N7 patt'pdet) .

) (patt 'pdet)k (1 — Patt 'pdet)n (4.1)

From the above equations, to infer py.;, we need to know p.;. However, py is different
across different observers, distortion types, and images. Therefore, p. is a random variable
rather than a constant. Thus, we need to estimate the distribution of py; to get pge;. We
found puy is mostly dependent on the type of distortion. We estimate the distribution of
Pate Tor each subset of LocVis dataset. In every subset of LocVis dataset, there are some
largely distorted areas that are not marked by observers. We assume that if the difference is
large enough (20/255 in our experiment), the difference is definitely observable if observers

attend to the difference. Since this corresponds to pge; = 1, the pyy is distributed as:

P(patt = p) = pare(p) = 1 Z Binomial(k(z,y), N, p) , (4.2)

€]
(z,y)eQ

where € is a set of all pixels (x,y) with large pixel value differences and |2| is the cardinality
of that set. For simplicity, we ignore p,,;s in the above estimate. An example distribution
of puu for two datasets is plotted in Figure 4.2.

Next, we can insert the distribution of puy(p) into our statistical model and aggregate

the probability of each location to get the log-likelihood for the whole image (note that
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this step is similar to the probability summation for HDR-VDP in Section 2.3.2):

L= Z log(pmis + (1 — Dimis)
(z,y)€©

. (4.3)
'/0 Part(p)-Binomial (k(z,y), N, pat(p) -Paet (2, y)) dp),

where O is the set of all pixels with coordinates x, y. The second line of the equation is
the expected value of observing the outcome given the distribution of py;. Equation 4.3
gives a probabilistic loss function, which we use when fitting the visibility models.

To understand the importance of probability of attending modeling (p,), we computed
the distribution of p,s; for IBR dataset and compression dataset and simulated the expected
likelihood (integral in Equation 4.3) for a single-pixel location instead of the whole image
for simplicity. We assume the total number of observers is 20 and the expected likelihood
with regard the number of observers marking are shown in Figure 4.3. From the upper
plot in Figure 4.3, we can see that for IBR dataset, if only k£ = 10 out of 20 observers
mark the pixel, the probability of detection can range from around 0.5 to 1 and it is very
likely that the probability of detection is above 0.8. This means that for this dataset,
the differences are highly likely to be detectable if observers attended to the difference.
On the other hand, for compression dataset (lower plot), the probability for & = 10 is
concentrated around pg.; = 0.55, which means that the differences are well attended by
observers but still hard to detect.

The probability likelihood function from Equation 4.3 provides a principle way for us
to model the experimental data and training and evaluation visibility metrics on large
datasets. With the probability likelihood function, we can also take account of uncertainty
in the data given a limited number of observers. Next, we will describe the architecture of

the proposed deep neural network visibility metric.

4.3 Metric architecture

CNNs have achieved tremendous success in many applications, such as image classification,
object detection, and instance segmentation. Inspired by this, we used the basic block of
CNNs—convolutional layer (described in section 2.6.3) to construct our visibility metric.
As previously mentioned in Section 2.1, full-reference image quality metrics are mostly
related to visibility metrics. We found that the Siamese CNN performed well for image
quality metrics. For example, Bosse et al. . [108] use a Siamese CNN to transform the
reference patch and distorted patch into latent space and then using the difference of latent
space with the fully-connected layers to predict per-patch quality. Siamese CNN consists

of two identical branches that share weights during training. However, in the experiment,
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Figure 4.3: The probability of detecting the difference for two datasets.

we find that computing the difference between distorted and reference patch in image
space rather than feature space is better for generalization performance. The reason is that
different from image quality assessment, the distortions in the visibility dataset are much
smaller and closer to thresholds. Computing the difference in feature space will cause
information loss and make it harder to predict visibility. Thus, we adopt a non-Siamese
architecture for the visibility metric. Besides, we find that the fully-connected layer is not
suitable for visibility map prediction. Different from image quality metrics that predict
a single score, visibility metrics predict a probability map that has high dimensions. To
reduce the number of neural network parameters to train, we use convolutional layers
instead of fully-connected layers.

Our metric’s architecture is shown in Figure 4.4. Different from Siamese architecture,
each branch’s weights are not shared with each other. In the upper branch, the difference
of distorted patch and reference patch is taken as the input. In the lower branch, the
reference patch is taken as the input. After going through convolutional layers’ operations,
the extracted features of both branches are concatenated together to preserve all features’

information. Then, we construct the visibility map from the latent-space representations
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Figure 4.4: Two-branch fully convolutional CNN architecture with the difference branch. The
difference branch takes a difference between the distorted and reference images as the input,
while the other branch accepts the reference image. The output is a visibility map, achieved by
regression, with the same size as the input patch. Each branch contains two convolution layers
with 11x11 kernel and stride 4 followed by another layer with 5x5 kernel and stride 1. The
deconvolution section uses convolution layers with 3x3 kernel and stride 1.

using 3 deconvolutional layers. For each deconvolutional layer, we use an upsampling
operation plus a convolutional layer. Using deconvolutional layer rather than a fully-
connected layer improved the ability of the metric to be generalized to different datasets.

To describe this architecture formally, we denote R as the reference patch, D as the

distorted patch. The prediction of our metric M, (D, R) is formulated as:
My (D, R) = Fy,, (Concatenate(Fa (D — R), Fyr,  (R))) (4.4)

where F,a , F,» and F,, are mapping functions of two convolutional branches
Weonw? c dec

d w"
convyr “conv’

onv

and deconvolutional layers, w and wge. are the parameters for these branches.
In the following, we will give a more detailed description of convolutional layers and

deconvolutional layers:

Convolutional layers Our convolutional layers’ architecture is modified from AlexNet
implementation [71]. AlexNet has been proven to be an effective architecture for complex
tasks, such as ImageNet classification. As the size of our training dataset is limited, we
initialize our neural network with AlexNet’s weights and then finetune our neural network
on the LocVis dataset. In the experiment, we find that the original 5 layer implementation
of AlexNet achieved similar results as the first 2 convolutional layers. We then remove
the last 3 convolutional layers to reduce the number of parameters to train. In our
implementation, the two convolution layers alternate with pooling layers. Rectified linear
unit (ReLU) is used as the activation function. Besides, for accelerating the training, we
use batch-normalization (described in Section 2.6.4) at the end of pooling layers. To avoid

overfitting, we set the dropout value to be 0.5.
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Deconvolutional layers We reconstruct the visibility map from the concatenation of
features by the deconvolution layers. This can prevent checker-board patterns that appear
when we use the transposed operation of convolution. We further improve the performance
of our neural network by adding highway connections between the convolutional layers and
deconvolutional layers. Such highway connections are known to improve the performance

as they can mitigate the problem of vanishing gradient in deeper neural network [109, 110].

4.4 'Training

For training the metric, the negative log-likelihood from Equation 4.3 is taken as the loss
function. We split images into patches of 48x48 pixels without overlapping. The patch
size is determined to preserve high-frequency details but also to be kept small to avoid the
curse of dimensions in later layers.

To increase the size of the dataset and prevent overfitting, we do data augmentation by
horizontal and vertical flipping the rotations of 90, 180, 270 degrees. We also ignore all the
patches for which there is no difference between their distorted and reference versions. The
total number of patches is approximately 400,000. To speed up the training process, we
use a mini-batch technique with the batch size of 48. We find in the experiment that the
batch size matters for better generalization performance, we will explain this phenomenon
with a MNIST example in Section 4.5. We use the Adaptive Momentum Estimation
(Adam) method for training the neural network. We set the total number of iterations to
be 50,000, learning rate to be 0.00001 and decay the learning rate every 2500 steps using
the exponential decay function in Tensorflow at a factor of 0.9.

The CNN architecture is implemented in TensorFlow 1.4 !. We perform training and
testing exploiting Tensorflow GPU support on an NVIDIA GeForce GTX 980 Ti.

To predict a visibility map for a full-size image, we split it into 48x48 patches with
42-pixel overlap, infer a visibility map for each patch and finally assemble the complete
map by averaging each pixel shared by the overlapping patches. Prediction for an 800x600

pixel distorted image takes approximately 3.5 seconds.

4.5 Determining the batch-size

In this section, we will analyze the effects of batch-sizes through the lens of stochastic
non-convex optimization. Minimizing non-convex error functions over continuous and
high-dimensional spaces has been a primary challenge because of a large number of local

minima [111]. To optimize the parameters of deep neural networks, the stochastic gradient

https://www.tensorflow.org/
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descent (SGD) method is widely used for optimizing highly non-convex functions, such as
deep neural networks [111, 112]. The SGD computes gradients on random samples of the
dataset—a mini-batch instead of computing gradients on the entire dataset. The gradient
computed on the mini-batch is often referred to as the stochastic gradient [111, 113]
because it is a noisy estimation of the gradient computed on the entire dataset. However,
the stochastic noise of the gradient computed on the mini-batch has been shown to improve
the neural network generalization performance by helping the optimization process to jump
out of local minima [113]. Because this stochastic noise is from mini-batch computation, it
is important to determine the right batch-size to achieve better generalization performance.

Intuitively, when batch-sizes become smaller, the gradient will be a noisier estimation
of the gradient on the entire dataset because the smaller batch-size gives less information
about the entire dataset. To provide some theoretical evidence for this intuition, we denote
the parameter to be learned as 6 and the loss function of a random sample of the dataset
as f(f). We denote the batch-size as B and the SGD algorithm can be written as follows
[112]:

B
Ory1 =0 — Uvé ; fi(0) (4.5)

where ¢ is the number of iterations, 7 is the learning rate, and f;(#) is the loss computed
on i-th data in the mini-batch. f;(#) is a random variable because it is randomly drawn
from the dataset. We can approximate the distribution of f;(#) as a Gaussian distribution
N (u, o) as in the previous work [113], where p is the mean and o is the variance. The
variance of the mini-batch loss % Z? fi(0) then can be re-scaled by a factor of B according

to the sample variance law for independently identically distributed random variables:

1
Var = 5° (4.6)

From Equation 4.6, we can conclude that with the decrease of batch-size B, the variance
of the stochastic gradients will increase. Zhang et al. has shown that the increased
magnitudes of stochastic noise in the gradients can help the optimization process to
jump out of local minima in non-convex optimization and thus improve the generalization
performance [113].

To validate our approximate computation empirically, we compute the test error of the
MNIST dataset—a well-known dataset for benchmarking machine learning algorithms with
regard to different batch-sizes shown in Figure 4.5. For the experiment, we use the LeNet
architecture [92] and set the stochastic gradient descent method with a learning rate of 0.01
and a momentum of 0.5. We run the optimization for 10 epochs and obtain the error on the
test dataset of MNIST. From Figure 4.5, we can observe that when the batch-size becomes

larger, the test accuracy decreases almost exponentially fast. This example demonstrates
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Figure 4.5: Test accuracy of varying batch-sizes.

that the choice of the batch-size has large effects on generalization performances. When the
batch-size is excessively large, the magnitude of the stochastic noise will be too small for
the optimization process to jump out of local minima. Besides, too large batch-sizes will be
impossible because such sizes exceed the graphics processing unit’s memory limit. When
the batch-size is too small, it will be too noisy for the optimization process to converge to
a better solution and too time-consuming because the smaller batch-size requires a larger
number of iterations to go over the same dataset. We use the same experiment protocol
in Section 4.4 and search for the optimal batch-size. The cross-fold validation results
are shown in Figure 4.6. The decreasing trend of LocVis dataset is not as monotonic as
MNIST dataset because our neural network is much more complex and harder to optimize.

We find the batch-size 48 generally gives us good empirical performance.

4.6 Results

We use 5-fold cross-validation for comparing metrics’ performances. For training-test
split, we ensured that the testing set did not contain any of the scenes used for training,
regardless of the distortion level.

We customized the OpenTuner? optimization software to run on cluster computation
facilities to train different metrics. In our experiment, we use the absolute difference
(ABS), structural similarity index (SSIM), visual saliency induced index (VSI), feature
similarity index (FSIM), CIEDE2000, sCIELab, Butteraugli and HDR-VDP metric for

’http://opentuner.org
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Figure 4.6: Likelihood of varying batch-sizes on the LocVis dataset. (The higher the better)

comparison. For re-scaling the values of metrics’ predictions to be in the range of 0-1, we

use a psychometric function. We use the probability loss function to train all metrics.

[ABS] ABS computes the absolute differences (D) between pixel values. Then, we divide

D by the threshold value ¢ and then re-scale it with a psychometric function:

B
Pul,y) = 1 — oxp (log<o.5>- (D“’y)) ) , (4.7)

t

where x, y are pixel coordinates. The two parameters to be optimized were ¢t and f.
The absolute difference D was computed between luma values of distorted and reference

images.

[SSIM] As SSIM metric’s predictions are negatively correlated with image quality, we

have the following constructions to use SSIM to predict for visibility:

Dssin(@, ) = % (log (1 — Msgrn (2,1) + exp(—€)) +¢) (4.8)

where € = 10 and Mggrps is the original SSIM difference map. The transformation makes
the Dggrpr values positive, in the range 0-1 and increasing with higher image differences.

The Dgsra(z,y) values are then processed by the psychometric function from Equation 4.7.

[VSI, FSIM] After transforming the difference maps Dys; and Dpgryy into increasing

values in the range 0-1, We also apply equation 4.7 for re-scaling. The parameters to be
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optimized were psychometric function’s parameters ¢, 5, and three parameters of the VSI
metric, C1, Cy, and C3 (Equations 46 in [4]), or respectively two parameters of the FSIM
metric, 7} and Ty (refer to Equations 4-5 in [5]).

[CIEDE2000] The distorted and reference images were transformed into linear XYZ
space assuming Rec. 709 color primaries and using a gain-gamma-offset display model
simulating our experimental display. The predicted AE were transformed into probabilities

using the psychometric function (Equation 4.7). The parameters to be optimized were ¢

and .

[sCIELab] Our adaptation of sCIELab was identical to the one we used for CIEDE2000,
except that the metric was also supplied with the image angular resolution in pixels per

visual degree.

[Butteraugli] Butteraugli is an image quality metric proposed by Google [68] based on
combining image frequency and luminance features. In the original Butteraugli implemen-
tation the threshold for visible distortions is determined by a constant “good_quality”.
However, we found that this constant does not correlate well with human experiment
results, and better results can be achieved if the map is transformed by the psychophysical

function from Equation 4.7.

[HDR-VDP] We modified HDR-VDP (v2.2) for better performance. Firstly, we found
that orientation-selective bands did not improve predictions for any of our datasets;
therefore, we simplified the multi-scale decomposition to all-orientations spatial-frequency
bands. Secondly, we improved the spatial probability pooling. The original HDR-VDP
was calibrated to detection datasets in which one distortion was visible at a time. This
enabled using a simplified spatial pooling, in which all differences in an image were added
together. However, this resulted in inaccurate results for our datasets, in which distortions
vary in their magnitude across an image. The original pooling was replaced with spatial

probability summation

Py(r,y) =1 —exp (log(1 — P(z,y) + €)*g,) (v,y) , (4.9)

where P(z,y) is the original probability of detection map (Equation 20 in [1]), € is a small
constant, and g, is the Gaussian kernel. The fitted parameters were the peak sensitivity,
a self masking factor (mask_self), a cross-band masking factor (mask xn), the p-exponent
of the band difference (mask_p), and the standard deviation of the spatial pooling kernel

(si_sigma) in visual degrees.
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In the following parts, we use the prefix “T-”, e.g., T-Butteraugli, to distinguish
between the metrics trained by us or in their original version.

The results for all metrics are shown in Figure 4.7. CNN, T-Butteraugli, and T-HDR-
VDP are top 3 best performing visibility metrics with CNN outperforms all other metrics.
Besides, predicting visibility on some datasets is more difficult (lower likelihood). Notably,
COMPRESSION was the most difficult dataset, followed by PERCEPTIONPATTERNS.

We also show a few interesting examples in Figure 4.8 to compare different metrics.

Image uncorrelated noise contains three noisy circular patterns modulated by a Gaussian
envelope, presented on the background of a lower amplitude noise. T-Butteraugli and
CNN performed better as they can ignore the difference in background noise to some
extent.

The gorilla image was distorted by image compression. As mentioned before, COMPRES-
SION is the hardest one. The compression distortion contains complex masking patterns,
which largely affect the visibility of the distortions. Only more advanced metrics, CNN,
T-Butteraugli, and T-HDR-VDP can predict the visibility of the gorilla’s face and CNN is
even more accurate in predicting the chest area.

The peter panning image contains distortion caused by shadow mapping where the
shadow is detached from an object casting it [101]. The images also contain small differences
in pixel values due to shading and post-processing effects in the game engine. T-FSIM
metric failed to mask such small differences (best seen in the electronic version), while
other metrics correctly ignore the visibility of those small differences. T-Butteraugli and
T-HDR-VDP tend to excessively expand the region with the difference. This is because a
simple contrast masking function cannot model human’s perception ability correctly. The
general approximation ability of CNN makes it able to model complex masking function
automatically from data.

The car image contains distortion on the body of the car, but there is also a readily
visible noise pattern in the bottom right corner. Though the distortions are well visible in
the corner, very few people marked the noise pattern as more attention is paid to the car.
This is an example that observers’ markings cannot be treated as ground truth and we
need the statistical model from Section 4.2 to correctly model uncertainty in the data. In
this case, all metrics predicted the visibility of the noise pattern on the body of the car
correctly.

The classroom image contains a rendering of the same scene, but from a slightly
different camera position in the distorted and reference images. While the observers could
not notice any differences, such pixel misalignment triggered a lot of false positives for
most metrics. CNN could only partially compensate for pixel misalignment. However, for
applications such as visually lossless image compression, we always have pixels aligned

before predicting visibility, which is a common assumption in image quality assessment.
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4.7 Visually lossless image compression

100

X X X X - = = = 5 = = X
80
I
>
2 60
>
1
©
>
[og
o 40
|
C‘_-, —8— Human's measurement
—=— T-HDR-VDP
20 --v-- HDR-VDP
—=— T-Butteraugli
--a- Butteraugli
—¥— CNN
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Scene Index

Figure 4.9: Results for visual lossless image compression. The blue line is the median and the
blue shaded region is 20th and 80th percentile of manual adjustment.

In this research, we also tried using the visibility metric for visually lossless image
compression. To validate metrics’ performance in this application, we conducted an
additional experiment, in which observers indicated the lowest JPEG quality setting for
which distortions remained invisible in a side-by-side presentation. In the experiment, we
use the standard JPEG codec (libjpeg?®). To avoid using the same images for training, we
used Rawzor’s free dataset? which contains a rich set of image content. The images are
cropped to 960 x 600 pixels to fit on our screen. The images are distorted by compression
with a standard JPEG codec using a range compression qualities. The experimental
procedure involved selecting a distorted image from 4 presented, where only one image
was distorted (four-alternative-forced-choice protocol). The quality setting was adaptively
adjusted using the QUEST method. Between 20 and 30 trials were collected per image
to find the quality settings at which an observer could select a distorted image with
75% confidence probability level in the QUEST procedure. 10 observers completed the
experiment. To predict the visually lossless quality setting for JPEG compression, we take
the maximum value of the metrics’ predicted visibility map, which gives a conservative
estimate. A similar approach was used in [68]. We search the quality settings from 0 to 98

and choose the lowest quality setting that produces the visibility map of maximum value

3https://github.com/LuaDist/libjpeg
‘http://imagecompression.info/test_images/
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less than 0.5, which corresponds to 50% of observers spotting the difference. We select the
best three metrics, CNN, T-HDR-VDP, and T-Butteraugli, and their original versions,
HDR-VDP and Butteraugli, for evaluation.

The results of the experiment and the predictions of the top-performing visibility
metrics are shown in Figure 4.9. The blue line denotes the median value computed across
observers and the blue shaded area represents the range between the 20th and 80th
percentiles. CNN, T-HDR-VDP, and T-Butteraugli correlate reasonably well with the
experiment results, although the distortions in scenes 9 and 11, were under-predicted by
the trained metrics. The most visible distortions in those images are due to contouring in
smoothly shaded regions. Such distortion types were missing in our training set, which
could lead to the worse-than-expected performance.

We quantify the accuracy of metrics’ predictions as the mean squared error (MSE)
between the predictions and levels found in the experiment. Among the top three metrics,
CNN’s performance is the best with an MSE of 367.7 followed by T-HDR-VDP with
an MSE of 467.5 and T-Butteraugli with an MSE of 479.4. The original (untrained)
versions of HDR-VDP and Butteraugli resulted in strongly over-predicted visibility of
JPEG artifacts. This result confirms that, with our proposed dataset, the trained metrics
could generalize well to different distortion types (we did not include JPEG distortions in
the dataset) and different content. Compared with the common practice of setting the
quality to a fixed value of 90, the best CNN metric could help to reduce file size on average
by 60% for the selected set of images. This example demonstrates the potential of using
the CNN visibility metric for visually lossless image compression. We will later extend

this work in Chapter 6 and much improve the prediction performance on large datasets.

4.8 Summary

In this chapter, we have proposed a deep neural network-based visibility metric that can
work very well under the fixed display brightness and viewing distance. The cross-fold
evaluation of the proposed visibility metric on the current largest dataset shows that the
proposed CNN metric outperforms other state-of-the-art visibility metrics.

In the next chapter, we will introduce how to extend the deep neural network-based
visibility metric to different viewing conditions, such as display brightness and viewing

distance.
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CHAPTER 5

PREDICTING VISIBILITY UNDER VARYING
DISPLAY BRIGHTNESS AND VIEWING
DISTANCES

5.1 Introduction

Predicting visibility under viewing conditions is important in many applications. For
example, when a user is browsing images on a dimmed display of a mobile phone, image
compression distortions are much less visible than when a user is browsing images on
a bright mobile phone display. However, the accuracy of existing white-box visibility
metrics that can predict visibility under varying viewing conditions, such as HDR-VDP,
is often not sufficient. CNN-based black-box visibility metrics have proven to be more
accurate, but they cannot take account of differences in viewing conditions, such as
display brightness and viewing distance. In this chapter, we propose a CNN-based
visibility metric, which maintains the accuracy of deep network solutions and takes viewing
conditions into consideration. To achieve these aims, we use the extended version of the
LocVis dataset with a new set of measurements, collected considering the aforementioned
viewing conditions—LocVisVC dataset (https://doi.org/10.17863/CAM.37996). Then,
we develop a hybrid model that combines white-box processing stages, modeling the effects
of luminance masking and contrast sensitivity, with a black-box deep neural network. We
will demonstrate that the novel hybrid model can handle the change of viewing conditions
correctly and outperforms state-of-the-art metrics.

Most existing image visibility metrics, such as the Sarnoff Visual Discrimination Model
(VDM) [30], VDP [14], and HDR-VDP [1] are white-box models that are designed to
model the low-level perception mechanisms of the human visual system. Because of their

white-box nature, these models can generalize well to new conditions, such as different
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viewing distances or absolute luminance levels. However, because of the limited number of
trainable parameters and their complexity, these models cannot be trained to fit complex
multi-modal data distributions as effectively as black-box machine learning-based models.
In Chapter 4, we have already demonstrated that a CNN-based visibility predictor achieves
higher performance than the existing white-box metrics. However, this deep learning
solution was trained for and could predict visibility only for a fixed viewing condition: a
display with a peak luminance of 110 ¢d/m? and an angular resolution of 40 ppd.

In this chapter, we extend the visibility in Chapter 4 so that the proposed visibility
metric can take a range of display brightness levels and angular resolutions into account.
We achieve this by combining white-box models of luminance masking and angular
resolution resampling with a black-box CNN-based model, based on the architecture
from [104]. In the following, we will refer to our proposed visibility metric as deep
photometric visibility metric (DPVM). The code of this chapter is available at https:
//www.cl.cam.ac.uk/research/rainbow/projects/dpvm/.

To obtain sufficient data for training our DPVM, we use HDR-VDP([1], an existing
white-box visibility metric, to generate predictions for a large number of images affected
by JPEG and WebP image compression under different absolute luminance levels and
viewing distances. This generated dataset is used to pre-train DPVM. Then, we use a
human-labeled dataset to fine-tune the DPVM and validate the results. The human-labeled
dataset consists of both existing local visibility dataset (LocVis ') and a newly-collected
dataset of 264 images labeled under different viewing conditions. The details of the dataset

are shown in Section 3.2.

5.2 Metric architecture

Most neural network-based metrics rely on existing architectures, which are trained in
an end-to-end manner. In our case, both the viewing distance and the display peak
brightness are significant factors that affect predictions. Both parameters could be fed
to the network in a standard manner, hoping that the network will learn the correct
relationships. However, such a solution requires a large quantity of subjective data, which
cannot be easily collected for our task in a reasonable time. To address this challenge,
we design a hybrid architecture, in which the viewing distance and the display peak
luminance are modeled explicitly as a pre-processing stage of the CNN-based metric. The
architecture of the proposed metric and the data pre-processing are illustrated in Figure 5.1

and described in the following sections.

Thttps://www.repository.cam.ac.uk/handle/1810/274368
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Figure 5.1: CNN visibility metric architecture.

5.2.1 Display model

Since modern displays differ substantially in their peak brightness, it is important to
model how much light they emit. As an example, some mobile displays can reach the
peak luminance of 900 cd/m? and can be dimmed to as low light levels as 3 cd/m?. The
visibility of image distortions is very different between both cases. To model the amount

of the emitted light, we use the standard gain-gamma-offset display model:

7\ 22
L = (Lpeak — Llac ey LaC7 5.1
(Lpeak blk)(255)+b1k (5.1)
where [ is the input pixel value, Lycak is the peak luminance of the display, and Lyjacx is
the luminance of black level (light emitted from pixels set to black). Each image provided
to the metric is first transformed from pixel values to colorimetric red, green and blue

values using the display model from the equation above.

5.2.2 Viewing distance

An intuitive way to take account of the viewing distance is to provide to the model an
image with the fixed angular resolution. As the contrast sensitivity of visual system is
mostly dependent on the spatial frequency content in cycles per visual degree (cpd), the
constant angular resolution ensures that spatial frequencies remain the same regardless of
the viewing distance. From Section 2.2.2, we already know how to compute the angular
resolution of an image on the display. Once we know the angular resolution of the input
image, we resample it so that it has the angular resolution of 60 ppd. 60ppd is the
highest resolution in our dataset and also a reasonable limit for most visual task, since
the sensitivity of visual system drops rapidly below 30 cpd [15]. An example of this step
is shown in Figure 5.2. In Figure 5.2, the same image is cropped with different patch
sizes under varying ppds. For example, 60 ppd’s image patch is two times larger than the
30 ppd’s image patch in each dimension. Then, we resize the cropped image patches into
the same size (48X48) and use the patches as the inputs for deep neural networks in our

architecture.
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Figure 5.2: The resampling step based on the angular resolution.

Since resampling alone cannot take account of all frequency-dependent effects, such as

the shift of peak sensitivity with luminance, we also introduce the ppd parameter to the

latent code. This is achieved by concatenating a slice with replicated ppd values to the

feature maps generated by the encoders (see Figure 5.1).

5.2.3 Luminance masking
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Figure 5.3: PU and logarithmic transform functions, for converting absolute light levels into

approximately perceptually uniform values, which could be input to a CNN.

Since differences are less visible at lower absolute luminance levels, we need to take

account of this drop of visual system sensitivity. Luminance masking can be modeled by

a transfer function derived from the contrast sensitivity function of visual system [1, 7].
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The transfer function we use is also known as Perceptually Uniform (PU) encoding [7], as
it transforms physical luminance into approximately perceptually uniform units. The PU

encoding is defined as an integral of inverse of detection thresholds:

L
1
P(L) = / ——dl 5.2

( ) Lmin T(l) ( )
where L,,;, is the minimum luminance to be encoded. The detection thresholds T'(L) are

modeled as a function of absolute luminance L:

T(L) = 5 ((%) - 1) : (5.3)

Where S is the absolute sensitivity constant, L is the luminance, and C;, C5y, C5 are
parameters obtained by fitting to contrast sensitivity measurements. We use the parameters
from [1] which is (C; : 4.0627, Cy : 1.6596, C5 : 0.2712).

For comparison, we also experiment with the logarithmic encoding of luminance, as it
is the first-order approximation of the visual system response, which takes account of the

Fechner law. We show both perceptual encoding functions in Figure 5.3.

5.2.4 CNN architecture

The CNN architecture of the proposed metric is based on the one proposed in Section 4.3.
Although image metrics are often modeled using Siamese architectures [114], the CNN we
employ has two independent branches, which encode different information: the first branch
encodes the difference between test and reference images (after pre-processing steps) and
the second branch encodes the reference image. Such independent branches, shown in
Figure 5.1, are used to improve the detection of small image differences. In contrast to
CNN architectures used for classification or detection tasks, which need to be robust to
noise, our model needs to be particularly sensitive to small variations in input.

Each branch of the encoder uses two convolutional layers of the AlexNet [71]. Two
branches and the ppd value are concatenated together, as explained in Section 5.2.2. The
patch with the predicted probability of detection map is generated by two deconvolution
layers. More formally, we denote the perceptually encoded color images of the difference
and reference patches as D and R, respectively. We also define mapping functions F),,,,,a
and Fyeoner t0 Tepresent the convolutional operations for two branches, in which wconv?
and wconv” are weights for the difference and reference encoding branches, respectively.

We also denote the wge. as the weights for deconvolutional operations with skip connections.
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Our metric can then be expressed as:

Py(D,R) = Fu,,, (Fu,, (D) © Fu,,.(R) ©r), (5.4)

conv

where () represents the concatenation operation of the output of the difference branch,
reference branch, and the slice with the replicated ppd values r. Note that we do not
use batch normalization as batch normalization will normalize data with different peak
luminance.

To predict a visibility map for an image of arbitrary size, we slice the image into 48 x48
pixel patches with 42-pixel overlap, infer visibility of each patch and compute the final
visibility map by averaging the predictions from the overlapping patches. Predicting a
visibility map usually takes 2-4 seconds for 1920x 1080 image using NVidia GTX 1080Ti
GPU.

5.3 Training

For training deep visibility metrics, we use the probabilistic loss function from Section 4.2,
as it provides a principled way of modeling the experimental data. The probabilistic
loss function models the marking task as a stochastic process taking accounting of the
mistakes, lack of attention and a limited number of observations. This allows us to capture
the uncertainty in the human-labeled dataset. After the pre-processing steps, we split
images into 48x48 pixel non-overlapping patches. We remove the patches where there is
no difference between their distorted and reference versions. We implement the CNN in
Tensorflow 1.10.1 2. We use the adaptive momentum optimizer (Adam) with a learning
rate le™® and a batch size of 48 is used for optimization.

We split the training process into two stages.

Stage 1: Pre-training with HDR-VDP As the collected dataset contains only
limited variation in viewing distance and display peak luminance levels, we supplement our
training with over 13 million patches that have been automatically labeled by a white-box
visibility metric — HDR-VDP. The generation of this PRETRAIN dataset was explained in
Section 3.2. The idea is inspired by the work of Kim et al. [76], who demonstrated that
PSNR scores can be used to pre-train CNN-based quality metrics. Similarly, we run 20000
iterations of training on the PRETRAIN dataset, which is followed by fine-tuning in Stage 2.
Although the labels generated by HDR-VDP can be inaccurate, they capture the general
relationship between input and output patches and therefore prime the CNN to capture

the relationships, which could be missing in manually labeled data.

Zhttps://www.tensorflow.org
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Stage 2: Fine-tuning At this stage, we initialize the neural network with weights from

the first stage and use the manually labeled datasets for training.

5.4 Results

To validate prediction performance, we randomly split the LocVisVC dataset into 5 folds,
ensuring that each scene is in a single fold, and run 5-fold cross-validation. We report the
mean and standard error of the likelihood used for the loss function (the higher likelihood

indicated the higher accuracy).

PU vs. logarithmic encoding First, we compare the performance when either a PU
encoding or a logarithmic function is used to take account of luminance masking. The
likelihood of the PU encoding (0.87740.015) was substantially higher than of logarithmic
function (0.70540.02). This suggests that luminance masking is a significant effect in
our dataset, which cannot be easily learned by black-box CNN. Given sufficient data, we
could expect similar performance for both luminance encodings. This result demonstrates
that when the data is limited, the combination of white-box preprocessing and black box

learning is a more efficient strategy.

HDR-VDP pre-training Next, we investigate the effect of pre-training on metric
performance. We run pre-training for the number of iterations ranging from 10,000 to
50,000, followed by fine-tuning of 50,000 steps, and report the results in Figure 5.4. The
figure shows that pre-training always results in higher accuracy, but the performance
dropped after about 20,000 iterations. This shows that the amount of pre-training needs
to be carefully controlled to retain the ability of the network to effectively learn from the
human-labeled data. In the following experiments, we use 20,000 iteration for pre-training.
Note the variations of likelihood is high but similar in different folds’ validation. This is
because, for the training-test split in cross-fold validation, we ensure that the testing set

does not contain any of the scenes used for training, regardless of the distortion level.

Metric comparison Finally, we compare the proposed metric to the HDR-VDP, which
is the state-of-the-art visibility metric that can take account of the viewing conditions.
The result of the cross-validation is shown individually for each subset in Figure 5.5. The
likelihood of the proposed DPVM is significantly higher in each subset, demonstrating the
CNN-based metric can be trained for higher accuracy.

From Figure 5.5, we can also see that on almost all dataset, the proposed metric
outperforms traditional white-box visibility metric-HDR-VDP. Besides, the proposed

metric achieves good performance at TID2013 dataset and perceptionpatterns dataset.
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Figure 5.4: The effect of pre-training iterations on the performance. The red line denotes the

result without pre-training. The error bars denote standard errors. The higher likelihood, the
better is accuracy.

Examples of metric predictions and user markings are shown in Figure 5.6. We can
observe there that similar to HDR-VDP, DPVM can take account of the change of viewing
distance and absolute luminance as shown in row 1-3. Pre-training with HDR-VDP also

helps improve the generalization performance in most cases.
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Figure 5.5: Metric cross-validation results for each subset and for the entire dataset.
Generalizing performance under viewing conditions To demonstrate how the

proposed DPVM visibility metric can generalize under different display brightness and

viewing distances, we show the DPVM’s predictions in Figure 5.7.
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5.5 Summary

In this chapter, we have extended the black-box CNN visibility metric to consider different
viewing conditions with white-box models. The proposed gray-box model outperforms
the state-of-the-art visibility metric HDR-VDP that can work under different display
brightness and viewing distances. Next, we will introduce how to improve the CNN
visibility metric for visually lossless image compression. For simplicity, we focus on the
case with fixed viewing conditions. Similar methods can be applied to the case with

varying viewing conditions.

93



94



CHAPTER 6

VISUALLY LOSSLESS IMAGE
COMPRESSION

6.1 Introduction

To achieve the best trade-off between image compression performance and image quality,
we may want to encode images in a visually lossless manner, so that any compression
artifacts are invisible to the majority of users. This can be achieved by manually adjusting
the compression quality parameter of existing lossy compression methods, such as JPEG or
WebP. Visibility metrics can be used to automatically determine the optimal compression
quality parameter. The visually lossless threshold (VLT) is the encoder’s parameter setting
that produces the smallest image file while ensuring visually lossless quality. In this
paper, we propose to train a visibility metric to determine the VLT. The proposed flow
is shown in Figure 6.1. The original image is compressed at several quality levels by a
lossy compression method, such as JPEG or WebP. Then, decoded and original images are
compared by the visibility metric to determine the quality level at which the probability
of detecting the difference (pget) is below a predetermined threshold.

However, creating an accurate visibility metric is a challenging task because of the
complexity of the visual system and the effort needed to collect the required data. In this
chapter, we investigate how to train a more accurate visibility metric for visually lossless
compression with a relatively small dataset. More specifically, we find that the use of
pre-training techniques can significantly improve the accuracy of the CNN visibility metric.
The experiments show that we can reduce the prediction error by 40% compared with the
state-of-the-art method. In addition, with our proposed method, we can potentially save
between 25%-75% of storage space compared with a fixed quality parameter setting of 90
that is similar to the default quality parameters (92-99) used in Photoshop for visually
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Figure 6.1: Proposed flow of our method for visually lossless compression based on visibility
metrics.

lossless image compression !. We also demonstrate how the visibility metric can be used

to compare the performance of image compression methods.

6.2 Image quality metric for visually lossless image

compression

Image quality metrics (IQMs) are very successful at assessing image quality for suprathresh-
old distortions. However, for visually lossless image compression that requires accurate
measurements of near-threshold distortions, IQMs may not be suitable for this task. To
explore whether IQMs can predict the visually lossless image compression threshold, we use
the state-of-the-art image quality metric, including full-reference IQMs and non-reference
IQMs, and demonstrate that both types of IQMs are not suitable for this task in the
following experiments. We take the state-of-the-art full-reference IQM—Weighted average
Deep Image Quality Measure for Full-Reference image quality assessment (WaDIQaM-
FR) from [115] trained on largest publicly available subjective image quality dataset
(TID2013) [99]. We use the WaDIQaM-FR ? to predict the mean opinion scores (MOSs)
of 5 randomly-selected images in the VLIC dataset(collected in Section 3.3). The results
are shown in Figure 6.2.

As trends are similar for all images, we randomly select 5 images for clarity of plots.

From Figure 6.2, we can observe that the WaDIQaM-FR is not sensitive to the changes in

!Commercial software may has different quantization tables, some wide-used software, such as Photo-
shop, may use a more conservative quantization table and the default quality setting may vary across
different versions (https://www.impulseadventure.com/photo/jpeg-quantization-lookup.html?src1=255).
Here we use the quality 90 using the libjpeg for benchmarking purposes.

2Implementation can be found in https://github.com/dmaniry/deepIQA

96


https://github.com/dmaniry/deepIQA

100

i i L — elk
: : : : turtle
| | : i —— boston
80 1 | ! ! ! —— bridge
! ! ! ! — artificial
1 1 I 1
1 1 I 1
1 1 I 1
1 1
w0 1 1 1
O 60 . //_-'/T//\AT__:M
= 1 T 1
kel 1 1 1
9 1 ! i
3 L T
(9
= 40 A — - + ——
e 1 1 I 1
1 1 ] 1
1 1 1 1
1 ] 1 1
1 1 I 1
1 1 I 1
20 A 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 ]
1 1 I 1
1 1 I 1
1 1 ] 1
0 1 1 1 1

0 20 40 60 80 100
Compression quality

Figure 6.2: The WaDIQaM-FR(full-reference IQM) predictions on images compressed with
increasing compression quality. The higher the predicted MOS, the better the visual quality. The
vertical lines denotes the VLTs from human experiment. Each color represents a different image.

compression quality for most images. It is also impossible to set a fixed MOS threshold
for visually lossless compression because the lowest predicted MOS values of some images
are even higher than those of other images. In addition, we also test a widely-used simple
full-reference IQM—SSIM that is trained with the LocVis dataset (details in Section 4.6).
The results are shown in Figure 6.3. Similar to Figure 6.2, the predictions are noisy flat
lines, making it impossible to set a fixed threshold for visually lossless image compression
as well.

Besides, we test the state-of-the-art non-reference IQM—Neural IMage Assessment
(NIMA) on the same set of images. As the range of NIMA’s predictions are from 0-10 and
the higher the better, we re-scale NIMA’s prediction score to the same range 0-100 as
the previous IQMs. We use an open source implementation for NIMA in our experiment
3 The result is shown in Figure 6.4. The result for this non-reference IQM is even worse as
the MOS predictions are almost straight lines. This is because non-reference IQM do not
have the information for reference images, and it is very hard to predict the visibility of
near-threshold distortions without reference images to compare.

We demonstrate an interesting example of the image named “elk” for analysis as shown
in Figure 6.5. From Figure 6.5, we can see that the distortions in the image are definitely
visible. However, IQMs are not sensitive to the near-threshold distortions, making IQMs

not readily suitable for visually lossless image compression.

3Implementation can be found in https://github.com/kentsyx/Neural-IMage-Assessment
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Figure 6.3: SSIM(full-reference IQM) predictions on images compressed with increasing com-
pression quality. For clarity, we transform the Y axis into the log domain. The higher the value
of the vertical axis, the better the visual quality. The vertical lines denotes the VLTs from human
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Figure 6.4: NIMA (Non-reference IQM) predictions on images compressed with increasing

compression quality. The higher the predicted MOS, the better the visual quality. The vertical
lines denotes the VLTs from human experiment. Each color represents a different image.

6.3 Training the network

We train our network on the LocVis dataset?, which consists of test images, reference

images, and maps with the probability of detection experimentally determined for each

4LocVis dataset: https://doi.org/10.17863/CAM.21484
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Reference Compress quality 2 Compress quality 98

Figure 6.5: Image “elk” is compressed at compression quality of 2 or 98 using the Webp encoder.
When the compression quality is very low at 2, the distortion is well visible at the elk’s fur
and grassland. However, IQMs cannot give different predictions when visible distortions are
presented as the majority part of the compressed image’s appearance is similar to the original
uncompressed image.

location in the image. The network is trained using the probabilistic loss function, taking
account of the measurement noise, as explained in Section 4.2. To minimize random effects
and allow for more rigorous testing, we divide the LocVis dataset into 5 parts and repeat
training 5 times for each test, using the leave-one-out approach. Moreover, we do not
validate the metric on the left-out part but use the newly collected VLIC dataset instead,
as explained in the next section.

To give more insights, we compare a number of training strategies, which we will
discuss in the following sections. To make the task computationally feasible, we restrict
our experimentation to a subset of possible combinations of strategies. For comparison,
we use the ablation study method in the following parts to determine the training method
for our proposed visually lossless compression algorithm. In the following experiments, we
use the batch size of 48 with 50000 iterations and Adam optimizer. We implemented our

experiments in Tensorflow 1.8.

6.3.1 Validation measure

We use the LocVis dataset for training. The validation error is computed on the newly
collected VLIC dataset. This ensures that the generalization ability of the proposed metric
is tested not only on different images, containing different distortions but also on a different
task.

To find the VLT of compressing a particular image, the prediction of pgs is computed
for 50 quality levels. The prediction, shown as a blue line in in Figure 6.6 (for big_building
image), often results in non-monotonic function. For that reason, we cannot rely on a
binary search or any fast root-finding procedure. Instead, we search from high to low

quality to find the quality level (¢1) at which pge; raises above the predetermined threshold
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Figure 6.6: The procedure used to determine the visually lossless threshold using the visibility
metric.

(0.5 in our case). Then, we search from the low quality to the high quality to find the
quality level (¢2) at which pge; drops below the threshold. Then, we compute the mean
of these two levels as the metric’s prediction for scene i. The validation error reported
in the following sections is computed as a root-mean-squared-error (RMSE) between the
metric’s prediction and the threshold determined in the experiment and averaged across

all observers.

6.3.2 Pre-training

Kim et al. demonstrated that PSNR scores could be used to pre-train DNN quality metrics,
which later fine-tuned on a smaller, human-labeled dataset [76]. Inspired by this idea,
we use existing visibility metrics, HDR-VDP and Butteraugli, to generate the additional
set of 3000 images with local visibility marking, which greatly increases the amount of
training data. The images were taken from TID2013 image quality dataset [99], which
consists of 25 scenes affected by 24 different types of distortion at several distortion levels.
We first pre-train the visibility metric on the newly generated dataset and then fine-tune
the CNN weights on the LocVis dataset with accurate human markings.

In Table 6.1 we compare the performance of the metric trained without pre-training, pre-
trained using the dataset generated with HDR-VDP, and with Butteraugli. From Table 6.1,
we find that both pre-training datasets can reduce RMSEs and the standard deviations.
This suggests that pre-training improved accuracy and enhanced the generalizing ability of
the neural network. However, we also observe much larger improvement for HDR-VDP pre-
training dataset. The statistical significance of the difference is confirmed by a two-sample
t-test and illustrated as underlined in Table 6.1.

Examples of the metric-generated markings are shown in Figure 6.7. We can observe

in this figure that Butteraugli can predict sharper results but tends to underestimate
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RMSE of VLT Prediction
No-pretraining Butteraugli-pretraining HDR-VDP-pretraining
24.82 £ 5.42 22.48 £+ 3.35 12.62 + 0.56

Table 6.1: Pre-training cross-fold validation result (Results that do not have statistically
significant differences are underlined)

the effects of Gaussian blur compared with HDR-VDP (column 2 and column 4). The
better pre-training performance could be potentially explained by higher complexity of
HDR-VDP, which takes account of a larger set of visual phenomena. Even as the metric
may appear to be less accurate in terms of actual predictions, it can capture important

functional relationships, which are later fine-tuned on the human-labeled LocVis dataset.

HDR-VDP-2

..}’f'

Butteraugli

Figure 6.7: Proxy labels generated by HDR-VDP and Butteraugli. Note that the Butteraugli’s
predictions have boundary artifacts. (Best viewed on the screen when enlarged.)

6.3.3 Data oversampling

To further increase the number of samples for training, we can augment the human-labeled
dataset by different techniques. However, many commonly used image-based methods for
data augmentation are unsuitable for our task. For example, though adding Gaussian
noise or changing image contrast is a common practice in classification problems, it would
drastically change the visibility of distortions and thus render marking maps invalid. For
instance, it has been shown that one can improve the generalization performance of neural
networks by adding synthetic data through simple perturbations to input and output
training data, encouraging the model to assign similar outputs to the set of artificial

inputs derived from the same training point [116]. To fully test several data augmentation
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Figure 6.8: Distortion level interpolation (r = 0.5). The first row shows the reference images;
the second row shows the distorted images; the third row is the marking images. The interpolated
version images are interpolated between neighbouring distortion levels.

methods, we try different combinations of simple data augmentation methods, such as
random rotation and flipping with other oversampling approaches based on the previously
mentioned idea of generating local perturbations of training data. The data augmentations

techniques we experimented with were as follows:

ROF: During training, we randomly flip and/or rotate training images and markings by
0, 90, 180 or 270 degrees.

DI: Inspired by the success of data interpolation for oversampling [117, 118], we propose
to interpolate images and markings between neighboring distortion levels. We use the
uniform distribution in the range of [0, 1] to determine the interpolation ratio. An example

of DI is shown in Figure 6.8.

MIX: The common way of training deep neural networks is to minimize the loss on a
finite training dataset, which is referred to as empirical risk minimization (ERM). ERM
shows good performance in generalizing the predictions to unseen data. However, ERM-
based trained neural networks often show degenerated performance for test data close to
the training data because the functions learned by neural networks are often not smooth
[119]. For predicting the visibility maps for visually lossless compression, we need neural
networks to be accurate when predicting small distortions. Thus we also consider using
the mix-up oversampling method to generate training samples from our data distribution

[118]. This reduces to using data interpolation in an agnostic way, i.e. independent of
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content and distortion level. We sample from the beta distribution to determine the mixup
ratio of r. It is described by the probability density function (PDF):
1

p(r) = Bla.a) r 1)t o<r <1, (6.1)

where B is the Bernoulli distribution, and a is the parameter controlling the skewness.
The PDF for two parameters used in the experiments is shown in Figure 6.9. The PDF
with high values near 0 and 1 indicates that most newly generated samples are dominated
by one or the other image from the sampled pair, as shown in Figure 6.10. The reason
to use the beta distribution’s PDF is that the beta distribution’s PDF has demonstrated
superior performance in the previous publication [118]. We find that the best performance
can be achieved when mixup samples are introduced every 100 iterations and decide to

use this strategy in the following experiments.

6.3.4 Ablation study

We test different combinations of the above data oversampling techniques, with and without
pre-training, to find potential interactions between them. The experiment results are
shown in Table 6.2. When no pre-training is used (index 13-17), data augmentation helps
the neural network to better generalize by reducing the mean or the standard deviation of
RMSE results. However, when pre-training is used (index 1-12 in the table), there is little
improvement in the performance. Nonetheless, given that data interpolation and mixup
training have been shown to help the generalization performance in previous research with

many different datasets [118], we decide to use the data interpolation and mixup training
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Figure 6.10: Mixup (r = 0.9). The first row is the reference images; the second row is the
distorted images; the third row is the marking images. The mixed version images are interpolated
between neighbouring distortion levels.

Pre-training | Index ROF DI | MIX RMSE
1 no no no 12.62 + 0.56
2 no yes no 12.75 + 1.39
3 no no |a=0.11| 12259+ 0.77
4 no no [a=0.21 12.59 £ 0.77
) no yves | a=0.1]12.36 £ 1.25
6 no yes | a=0.2| 12.41 £ 1.18
HDR-VDP 7 yes no no 14.93 + 2.02
8 yes yes no 14.29 4+ 1.46
9 yes no [a=0.1] 14.7 £ 1.44
10 yes no [a=0.2] 147+ 1.44
11 yes yes | a=0.1| 13.38 &£ 0.49
12 yes yes | a=0.2] 1513 £1.2
13 no no no 24.82 4+ 5.42
Hone 14 no yes [ a=0.1| 20.69 £+ 6.23
15 yes no no 23.22 £ 3.70
16 | only rotate | no no 23.04 £ 2.00
17 only flip | no no 24.95 + 2.87

Table 6.2: Data augmentation experiment results.

as the baseline, i.e., the experiment setting of index 5 in Table 6.2. It is worth-noting that
rotation and flipping (ROF) results in degenerated performance in all cases. One reason
may explain that is human perception ability changes with regard to the orientation of

distortions, and ROF for data augmentation is not accurate with visibility data.
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6.3.5 Comparison with other methods

In this section, we use the best training strategy obtained from the previous experiments
and train our neural network on the entire LocVis dataset. Then, we compare our results
with other best performing visibility metrics [104]. The results are shown in Table 6.3.
The proposed method reduces RMSE by 40% compared with the CNN-based metric from
our previous work in Chapter 4. It should be noted that this result is computed for the
newly collected VLIC dataset, which was not used in training. Figure B.3 in the appendix
shows a number of images encoded at the VLT, together with the corresponding reference

images and the achieved saving in file size.

RMSE of VLT Prediction
Proposed CNNJ104] Butteraugli [68] HDR-VDP [1]
12.38 20.33 20.91 43.33

Table 6.3: Experiment results on the visually lossless image compression dataset.

6.4 Applications

We demonstrate the utility of our metric in two applications: visually lossless image
compression and benchmarking of lossy image compression. For this demonstration, we
randomly selected 1000 high-quality images from the Flicker8K dataset®, which were
encoded with JPEG quality of 96.

6.4.1 Visually lossless image compression

For visually lossless compression, we used the procedure from Section 6.3.1 to find the
VLT with the probability of detection 0.25. This ensured that only 25% of the population
had a chance of spotting the difference between the compressed and original images. The
threshold was found separately for each image. Then, we computed the saving in file
size between our visually lossless coding and JPEG or WebP, both set to quality 90. We
chose the quality of 90 as many applications have often used it as a default setting. We
plotted the histogram of per-image file size saving in Figure 6.11. The figure shows that
our metric can save between 25% to 75% of file size for most images in the dataset for
both compression methods. Note that the negative number in the plots indicates that

some images need to be compressed with higher quality than 90.

Shttp://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
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Figure 6.12: Relationship between probability of detection and file size. We use bits-per-pixel

because of different size of images in the dataset. The shaded region marks the range between
2.5th to 97.5th percentile.

6.4.2 Benchmarking lossy image compression

To demonstrate that our metric can be utilized for benchmarking lossy image compression
methods, we encoded images from Flicker8K dataset at different bit-rates with JPEG and
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WebP image compression. Then, for each decoded image, we used our metric to predict
the probability of detection and plotted the results in Figure 6.12. The figure shows that
WebP can encode low bit-rate images with less noticeable artifacts than JPEG. However,
the advantage of WebP is lost at higher bit-rates. This observation is confirmed by several
examples shown in Figures B.1 and B.2 in the appendix. The coding artifacts are more
visible for JPEG at lower bit-rates as shown in Figure B.1. It is more difficult to spot the
difference at higher bit-rates, but examples in Figure B.2 show slightly richer textures
(pay attention to the fur and the hair) and more saturated colors in JPEG images. Such
analysis can provide useful insights into image compression methods without the need to
run tedious quality assessment experiments. Furthermore, such analysis can be performed
on thousands of images rather than several dozens, which can be realistically tested in
a subjective study. Compared to quality metrics, our visibility metric can express the
difference in terms of the probability of detecting artifacts, rather than in terms of an
arbitrarily scaled quality value. It was also shown that quality metrics were much less

accurate in predicting the visibility of artifacts [104].

6.5 Summary

In this chapter, we have demonstrated that hand-crafted metrics could help to train the
CNN-based metric: we used HDR-VDP to generate a large dataset for pre-training the
CNN-based metric. This showed that a large dataset with possible inaccurate labels
was helpful to initialize the network so that it could capture the main relations between
the input and output data. Then, a smaller but accurately labeled dataset was used to
fine-tune the weights. This approach seemed to be much more effective than oversampling
or data augmentation techniques, and it demonstrated the synergy between white-box
metrics and black-box, learning-based metrics.

This work also showed that a CNN-based visibility metric trained on a locally marked
dataset (LocVis) could well generalize to the task of predicting visually lossless thresholds.
All models were validated on a newly collected dataset (VLIC), containing different images
and distortion types, and measured using different procedure than that of the dataset
used for training. We demonstrated that the metric could be used to encode images
with JPEG and WebP in a visually lossless manner, providing a substantial saving in
bandwidth and data storage as compared to a fixed (usually conservative) compression
quality setting. Such a visually lossless compression could be applied, for example, to web-
caches to reduce the amount of data sent to end-devices, especially through low-bandwidth
wireless networks. Moreover, the same metric can be used to compare the performance
of image compression methods, which is usually delegated to quality metrics. We argue

that predicting visibility (probability of detection) rather than quality (mean-opinion-
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score) provides a more accurate and meaningful measurement of visually lossless image

compression performance.
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CHAPTER 7

PERCEPTUAL QUALITY TRANSFORM FOR
HIGH DYNAMIC IMAGE QUALITY
ASSESSMENT

7.1 Introduction

Although the majority of this thesis is about visibility, image quality assessment is an
important research field. Quality metrics are necessary to develop robust compression and
processing algorithms for high dynamic range (HDR) imaging.

In Chapter 5, we have explored combining perceptual uniform transform into black-box
neural networks for luminance masking. However, given that the perception of linear red,
green, blue, or luminance values, found in HDR content, is strongly non-linear, standard
low-dynamic-range quality metrics, such as peak signal-to-noise ratio (PSNR) or structural
similarity index (SSIM), cannot be directly used with HDR images or videos. Linear
HDR pixel values can become more perceptually uniform by transforming them into the
logarithmic domain [120, 121]. However, such a logarithmic transform does not take
account of the absolute brightness of the HDR display. Content shown on a brighter
display will reveal more distortions than the same content shown on a darker display.
Therefore, most widely used HDR metrics are dependent on displays and require HDR
values to be adjusted by a display model so that they represent absolute luminance values
(in cd/m?) emitted from the HDR display. Such adjustment usually involves multiplying
pixel values by a constant and clipping the values above or below the dynamic range of a
particular display.

The display-referred HDR quality metrics include those metrics that were specifically
designed to handle HDR content, such as HDR-VDP [1, 122], HDR-VQM [6], or DRIQM

[123], as well as metrics that were adapted from standard-dynamic-range (SDR) metrics
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Figure 7.1: The existing SDR quality metrics, such as PSNR, can be adapted to handle HDR
content by transforming display-referred color values into perceptually uniform values.

to process HDR content. The adaptation involves a perceptual transform (PT) that
converts linear HDR pixel values into perceptually uniform units, which can be directly
used with SDR metrics [7], such as PSNR or SSIM. Figure 7.1 illustrates the typical
processing blocks of PT-based metrics. The original HDR images are first transformed by
a display model to simulate the HDR display and to obtain absolute display-referred color
values. Then, a perceptual transform converts both distorted and reference images into
perceptually uniform units, which could be input directly into SDR quality metrics. Such
an approach may not provide the best predictive performance but it leads to a simple, fast
and differentiable quality metric, which could be easily used as a loss function in training
image processing algorithms. The property of being differentiable is particularly important
when the metric is used as a loss function in optimization-driven problems.

In this chapter, we extend previous work on PT-based metrics [7], proposing a new
version that improves the predictive performance of the PU-PSNR metric. Instead of
deriving PT from contrast detection models (contrast sensitivity function), we use existing
HDR subjective image quality datasets [124-127] to fit the parameters of a new PT

function.

7.2 Related work

Quality metrics for HDR images are traditionally based on the models of low-level vision,
taking account of the limitations of the visual system. The very first metric, HDR-VDP
[128] was designed to predict a map representing visibility of differences between a pair of
images, rather than a quality score that would be correlated with mean opinion scores
(MOS). The prediction of quality was added in HDR-VDP-2 [1] and then improved in
HDR-VDP-2.2 [6] by calibrating metric parameters on HDR quality datasets. The dynamic
range independent quality metric (DRIQM) [123] extended HDR-VDP with a set of rules
for predicting loss, amplification and reversal of visible contrast to predict objectionable
changes between images of different dynamic range, for example, a tone-mapped image and
its HDR counterpart. The metric for high dynamic range video, HDR-VQM [6], simplified
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spatial processing but added temporal pooling to offer quality predictions for video.

Aydin et al. [7] proposed a perceptually uniform (PU) transform to convert absolute
display-referred HDR color values into perceptually uniform units', which could be used
with existing SDR metrics, such as PSNR or SSIM. The transform is derived to ensure that
the change in PU units is relative to just-noticeable differences in luminance, as predicted
by the contrast sensitivity function. The transform is further constrained so that the range
of luminance values typically reproduced on SDR monitors (0.8—80 cd/m?) is mapped
to a range 0—255 so that the resulting quality values for SDR images corresponded to
those values produced by SDR quality metrics. Some authors have started to apply PQ
EOTF [129] to achieve similar goals as the PU transform. The main difference between
PU and PQ transforms is that the former approach was derived from the HDR-VDP-2
CSF function, whereas the latter strategy was taken from Barten’s CSF [16]. It should be
noted that a perceptual transform is one of the first processing steps of all advanced HDR
quality metrics, including HDR-VDP, HDR-VDP-2, DRIQM, and HDR-VQM.

Although simple quality metrics based on a perceptual uniform transform do not achieve
as high predictive performance as more advanced HDR quality metrics, they offer many
benefits. Such metrics are significantly less complex, fast to compute, and differentiable,
making them a suitable candidate for a perceptual loss function in optimization problems.
The obvious limitation of the PU transform is that it does not take account of more
complex visual phenomena, such as contrast masking. In this chapter, we explore whether
such more complex effects can be partially taken account of by training the PU transform
on HDR quality datasets.

7.3 'Trained perceptual uniform encoding

Perceptual transform functions (PT), such as PU and PQ, were derived and optimized
from contrast detection models intended for simple patterns, such as sinusoidal gratings
and Gabor patches. This derivation and optimization results in some of the drawbacks
found with the existing PT encodings: i) the used models predict visibility, but visibility
may not be directly related to quality and ii) those models do not take complex semantic
information in images into account; thus, they may not perform well on complex scenes.
These two reasons motivate us to consider fitting the PT using HDR image quality datasets
with real-world complex images.

To train such a PT, we first need to determine which transform to use. In practice,
both PU [7] and PQ [129] PT encodings have highly similar function shapes. However,

after analyzing their results, we can see that the PU function’s performance is better than

!The code for the PU transform can be found at https://sourceforge.net/projects/hdrvdp/
files/simple_metrics/
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Figure 7.2: Plausible PT encoding functions, where C7, Cs, and Cs follow uniform distributions
in [0.1—10] with 100 samples.

the PQ function. This improvement is shown in Table 7.3, where it can be seen that
the Spearman rank correlation coefficient (SROCC) of PU-PSNR is higher than that of
PQ-PSNR. Hence, we use the function used for the PU encoding. The PU transform is

defined as an integral of the inverse of detection thresholds:

L
P(L):/L mdl (7.1)

min

where L,,;, is the minimum luminance to be encoded. The detection thresholds T'(L) are

modeled as a function of absolute luminance L:

AR
T(L)zS-((fl) +1> (7.2)

Where S is the absolute sensitivity constant, L is the luminance, C, C5, and Cj5 are
scaling parameters. We further linearly rescale the P(L) values so that P(0.8) = 0 and
P(80) = 255. Because of the rescaling, the parameter S does not influence the shape of
the function, and the only three adjustable parameters are C'y, Cs ,and C3. To illustrate
how the curve changes with regard to C, Cs and Cj, in Figure 7.2 we plot the PU curves
when each parameter is varied individually in the range of [0.1—10].

A major challenge when using multiple image quality datasets is that each dataset
represents quality scores using a different scale. For example, the quality score for two
images in two different datasets could be highly similar, but the actual quality of both

images may be particularly different. To use all datasets together, those datasets have to
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be realigned and put into a common quality scale. Zerman at el. [130] realigned four HDR
image quality datasets by using multiple well-known quality metrics. We argue, however,
that this may not be an appropriate approach when attempting to test the performance
of quality metrics because the realignment may bias the quality scores to offer better
predictions for the metrics used in the alignment.

To address the alignment problem we optimize the PT by maximizing SROCC between
the predicted quality and dataset’s MOS scores. SROCC is computed individually for
each dataset, and the values are averaged. SROCC is invariant to any monotonic scaling
function and thus avoids the need for quality realignment.

We use a Bayesian optimization method to optimize the parameters that was demon-
strated to be effective in hyper-parameter fine-tuning in many applications [131]. The
Bayesian optimization method uses Gaussian process regression to estimate the landscape

of the loss function and determine the next parameter set for evaluation.

7.4 Results

This section presents the experiments performed to test the behavior of the new trained

PU encoding function.

Dataset Observers | Conditions | Scenes Distortion type
#1 Narwaria2013[124] 27 140 10 JPEG
#2 Narwaria2014[125] 29 210 6 JPEG 2000
#3 Korsunov2015[127] 24 240 21 JPEG-XT
#4 Zerman2017 [130] 15 100 11 JPEG, JPEG2000, JPEG-XT

Table 7.1: Summary of characteristics of the datasets used in the experiments.

7.4.1 HDR image quality datasets

The available number of subjectively annotated image quality HDR datasets is limited.
For our experiments, we selected Narwaria’s 2013 dataset® [124] and 2014 dataset [125],
the dataset by Korshunov® [127], and the latest HDR image quality assessment dataset
[130] by Zerman et al.*. These are, to the best of our knowledge, all the datasets that can
be found for HDR image quality assessment. A summary of the main characteristics of
these datasets can be found in Table 7.1, including the number of observers, the subjective
quality measurement method, the number of conditions and scenes, the distortion type,
and display type. All datasets contain images in absolute display-referred units, which
correspond to physical luminance and color emitted from the display used in the original

experiments. However, due to the differences in implementation of Radiance HDR format,

’http://ivc.univ-nantes.fr/en/databases/JPEG_HDR_Images/
3http://mmspg.epfl.ch/jpegxt-hdr
‘http://webpages.12s.centralesupelec.fr/perso/giuseppe.valenzise/download.htm
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the values from Narwaria2013 and Narwaria2014 datasets need to be multiplied by 179

when reading images with pfstools software °.

7.4.2 Trained perceptually uniform encoding

To derive the trained PT encoding function and validate the consistency of the results on
different datasets, we train our metric using three datasets and test it on the remaining
dataset, repeating the procedure four times. Parameters are initialized in our optimization
procedure to the original parameters for the PU function. The results are shown in
Table 7.2, which includes the final trained parameter C, Cs, and C5 (T-Cy, T-Cy and T-
C5) and our optimized result (T-PT-PSNR), the original PQ encoding’s result (PQ-PSNR),
and the original PU encoding’s result (PU-PSNR).

Test dataset T-C4 T-C, T-C3
#1 Narwaria2013[124] | 0.10568 | 4.7378 | 0.10824
#2 Narwaria2014[125] | 0.10078 | 8.8794 | 4.405
#3 Korsunov2015[127] | 0.1135 | 3.3663 | 0.22871
#4 Zerman2017 [130] | 0.10054 | 9.794 | 2.2137

——

Table 7.2: The trained T-C; — T-C'5 parameters.

Test dataset T-PT-PSNR | PQ-PSNR | PU-PSNR | HDR-VDP2.2 | HDR-VQM
#1 Narwaria2013[124] 0.6024 0.58478 0.5898 0.8911 0.8874
#2 Narwaria2014[125] 0.4887 0.38043 0.3605 0.5727 0.8126
#3 Korsunov2015[127] 0.8908 0.8751 0.8833 0.9503 0.9572
#4 Zerman2017 [130] 0.8673 0.81347 0.8249 0.9298 0.9193

Table 7.3: SROCC results for cross-dataset validation. Each row corresponds to a different
test dataset. Bold font indicates the best result excluding complex metrics (HDR-VDP2.2 and
HDR-VQM).

Resulting T-PT encoding functions are shown in Figure 7.3. The name of the dataset
in the legend indicates the test dataset. From this figure, we can observe that despite
training on different datasets, the curves show a similar trend. The biggest difference in
the shape of curves can be noted for low luminance, where the T-PT curves have steeper
slopes. This result suggests that the visibility of distortions is higher than predicted by
the simple detection models (CSFs) used to derive PU and PQ. From Table 7.2, we can
also conclude that T-PT functions achieved better results than PU and PQ functions on
all datasets. Note that despite an improved performance, the new T-PT-PSNR metric
is still worse than HDR-VDP2.2 and VQM metrics. However, the new T-PT-PSNR can

compute quality in a fraction of the time required by these two complex metrics.

Shttp://pfstools.sourceforge.net/
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Figure 7.3: T-PT encoding function results from the cross-dataset validation experiment, where

the dataset name indicates the one dataset missing in training. The PQ curve is rescaled to have
the same maximum value as the PU encoding curve.

Test Dataset T-PT-PSNR
#1 Narwaria2013[124] 0.6186
#2 Narwaria2014[125] 0.5230
#3 Korsunov2015[127] 0.8906
#4 Zerman2017 [130] 0.8669

Table 7.4: T-PT-PSNR SROCC results when training on all datasets.

To derive our final proposed PT encoding function, we use all the datasets for training.
In the training, we optimize the mean of the SROCC values for each dataset to achieve
better performance on all datasets. The proposed function curve is shown in Figure 7.4.
The final T-C;, T-C5, and T-C3 on all datasets are 0.14249, 2.192 and 0.30499. The
SROCC results for this final PT encoding, shown in Table 7.4, indicate further improvement
in prediction performance. To further evaluate the results, we take the final PT encoding
function and use it as a transfer function for SSIM. The results in Table 7.5, indicates that
T-PT-SSIM offers better performance than PU and PQ alternatives for datasets # 3 and
# 4, but not for datasets # 1 and # 2, for which PQ-SSIM provides better predictions.

We are not sure what could be causing this difference, but we also observe that PQ-SSIM
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Figure 7.4: T-PT encoding function trained on all datasets. The PQ curve is rescaled to have
the same maximum value as PU encoding.

outperforms PU-SSIM for this pair of datasets. Because T-PT is based on the PU function,
it is also likely to share worse performance for that particular combination of metric and
datasets. It must be noted that T-PT-SSIM was not trained using the SSIM metric, and

it is likely that a transfer function needs to be trained separately for each metric.

Test Dataset T-PT-SSIM | PU-SSIM | PQ-SSIM
#1 Narwaria2013([124] 0.6838 0.6969 0.7348
#2 Narwaria2014[125] 0.6145 0.5149 0.8292
#3 Korsunov2015[127] 0.9268 0.9239 0.8728
#4 Zerman2017 [130] 0.8864 0.8430 0.8022

Table 7.5: T-PT-SSIM, PU-SSIM, and PQ-SSIM results.

7.5 Summary

In this chapter, we have proposed a trained perceptually uniform transform for fast quality
assessment for HDR images and videos by fitting a perceptual encoding function to a

set of subjective quality assessment datasets. We have shown that when combined with
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SDR metrics, such as PSNR and SSIM, better performance can be achieved compared
to original perceptually uniform transforms. The new transfer function offers a better

alternative for low-complexity HDR quality metrics, which are used in the applications for

which computational cost is a significant factor.
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CHAPTER &

CONCLUSION

This section summarizes the contributions this thesis has made for visibility metrics and

visually lossless image compression, as well as discusses some potential future research.

8.1 Contribution

1. In Chapter 3, we have discussed the process of collecting datasets for visibility and
visually lossless image compression under fixed and varying viewing conditions. I was
involved in collecting visually lossless image compression datasets, and the visibility

datasets were collected in the MPI and the University of Cambridge jointly.

2. In Chapter 4, as the result of collaborative work with MPI, we have proposed a
visibility metric that works well under the fixed display brightness and viewing

distance.

3. In Chapter 5, I incorporated white-box modules, such as luminance masking and
viewing distance accommodations, in the black-box CNN to allow the proposed
visibility metric to be able to work under varying display brightness and viewing

distances.

4. In Chapter 6, I improved the performance of the visibility metric in Chapter 4 by
almost 40% for visually lossless image compression. I tested the improved visibility
metric on 1000 high-quality images and found that this improved visibility metric
could save 5075 % of the storage space compared with the default setting in

commercial software to achieve visually lossless image compression.

5. In Chapter 7, I improved the performance of the perceptual uniform transform for
HDR image quality assessment by training the transform with HDR image quality

datasets.

119



8.2 Future work

Although we have achieved tremendous performance improvement for visibility metrics
and visually lossless image compression with machine learning, there are clearly some

questions left to be explored later.

1. Interpretable machine learning for visibility metrics and visually lossless image
compression. Although black-box machine learning methods, such as deep learning,
can provide us with significant performance improvements, it would be interesting

to determine how black-box machine learning methods provide such a prediction.

2. Because videos are playing a more important role in our daily lives, would it be
possible to extend our visibility metrics to temporal domains to ensure a good visibility
metric for videos. Eventually, we can achieve visually lossless video compression
with video visibility metrics, potentially by combining our visibility metric with the
white-box temporal contrast sensitivity function model to provide a spatial-temporal
CNN visibility metric. How to collect video visibility datasets would then be an open
question because there is no experimental protocol of video visibility data collection

readily available.

3. On-line learning for visually lossless image compression. In real applications, some-
times, we may not have a perfect visually lossless image compression system at first
due to the limited size of the training dataset. However, users can often provide
a significant amount of feedback on the quality of compression. If we can use the
feedback effectively, a practically useful visually lossless image compression system

can be developed despite not having a substantial amount of initial training data.
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APPENDIX A

SUMMARY OF STIMULI IN LocVIs
DATASET

The LocVis dataset has 557 low dynamic range (LDR) images with 170 unique scenes.
Many of them are generated for up to 3 distortion levels. The distortion types covered
many common and specialized computer graphic artifacts such as noise, image compression,
shadow acne etc. This variety makes our data challenging for even the state-of-the-art
image metrics. During the selection process that aimed to generate a large database
collecting images from different sources, we gathered scenes with multiple artifact types
in a specific category named mixed. In this way we avoided ambiguities in all the other
sets or possible hiding effects of one artifact over another one. In the following, the
newly-collected stimuli subsets are marked with *. At the end of this section, we present
all images from the dataset except TID2013 subset due to its big volume. In this part of
the work, I proposed the idea of using TID2013 dataset and generated the initial version
of TID2013 dataset for visibility predictions. Then, a pairwise comparision experiment

was conducted in the Max Planck Institute to clean some images in TID2013 subset.

A.1 Mixed dataset

The mixed dataset has 59 images from LOCCG data set [98] and contains more than
one distortion type. The distortions used in this dataset include high-frequency and
low-frequency noise, structured noise, virtual point lights (VPL) artifacts, clamping,
downsampling, blurring and light leaking artifacts. One example of those artifacts is
presented in Figure A.1.

High frequency noise is a common artifact in many global illumination methods e.g.
ray tracing, path tracing, radiosity etc. It is caused by low number of samples and appears

usually in shadowed areas. Structured noise is a distortion that results from correlated
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pixel errors. Both noise and bias are showed. Instant radiosity [132], photon mapping
[133] and radiance caching algorithm [134] [135] can exhibit interpolation and caching
artifacts.

VPL is one of many global illumination methods. VPL causes local brightness changes
and low-frequency noise, that spoil the overall look of the image. Due to its high
computational complexity, this method is not used in real time computer graphics but in
production renderings (movies, animations, architectural visualizations).

Light leaking is one of the photon mapping artifacts and appears like an area clearly
brighter than normal. It depends on illumination of particular geometries in the scene, like
corners in a room, or related to specific attributes of a material like smoothness, showing
reflected light even if the object is closed off by other geometries.

These last two techniques (VPL and photon mapping) are classified as approximate
global illumination algorithms. Locally they inject errors, sometimes deliberately to
camouflage more evident artifacts. Artifacts like VPL clamping in instant radiosity, light

leaking in photon mapping and irradiance caching belong to this set.

Full sized image Distorted sample Reference sample

Figure A.1: Example of artifacts in VPL method.

A.2 Perception patterns

Contrast-Luminance-Frequency-Masking (CLFM) dataset consists of 34 images from [100]
that are artificial patterns designed to expose well-known perceptual phenomena, such as
luminance masking, contrast masking and contrast sensitivity. The images are generated
in the luminance domain (linear) and converted to gray scale images (luma) using the
sRGB color space. Different from other sets in our collection this one includes abstract
patterns like blobs or stripes with different contrast values. For those scenes we prepared
three distortion levels by blending the linearly reference and the distorted image. One of

the scenes is shown in Figure A.2.
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Full sized image Distorted sample Reference sample

Figure A.2: Example of perception patterns dataset.

A.3 Aliasing dataset

Generally aliasing is a phenomenon which happens when sampling frequency of a signal
is too low to reproduce high frequency details accordingly to the Nyquist criterion. In
the image domain, aliasing appears as an effect that include jagged profiles, improperly
rendered details, and stair step artifacts on the edges. All these images are rendered
starting from 3D scenes of interior rooms or outdoor environments. In this category
we created from one up to three distortion levels by using different sample numbers for

multi-sampling anti-aliasing method. Images source: [101]. Figure A.3 shows an example

of aliasing artifact.

Full sized image Distorted sample Reference sample

Figure A.3: Example of aliasing artifact.

A.4 Shadow acne*®

Shadow acne is an effect caused by the discrete nature and limited resolution of the shadow
map. During depth map generation the angle between surface and ray of light has to be

taken into account. Tilted depth texel can cross the surface with a part above and a part
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below it. The resulting effect is a striped Moire pattern. This supra-threshold type of
artifact is commonly seen in computer games and can be the reason of unnatural looking
image. Images come from [101]. An example of this kind of artifact is presented in Figure
AA4.

Full sized image Distorted sample Reference sample

Figure A.4: Example of Moire pattern known as shadow acne artifact.

A.5 Peter panning*

This artifact appears clearly as supra-threshold distortion and is related to objects with
missing shadows or part of it, which look like detached from the surface, conveying the
illusion of floating above the surface. Peter Panning arises from a correction of another
problem. Since adding a depth offset is a technique for removing shadow acne (Section
A.4), this increment is related to pixel position in light space. Peter Panning results arises
from too large depth offset which causes errors in the depth test. Like shadow acne, peter
panning is aggravated when there is insufficient precision in the depth buffer. Calculating

near planes and far planes also helps avoid peter panning. Figure A.5 shows an example

of peter panning artifact.

Full sized image Distorted sample Reference sample

Figure A.5: Example of peter panning artifact - typical 'detached’ shadows.
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A.6 Shadow map downsampling*

Downsampling of an image is the process of information reduction. Using lower resolution
of shadow maps results in a loss of shadows accuracy but improves the computational
performance. Game rendering benefits a lot from this technique. In order to maintain a
fast refresh rate during game rendering, it is common practice to use the possibly smallest
shadow maps. If the map used for generating shadows is too small, it appears on the screen
as the jagginess of shadows’ edges. This is similar to a supra-threshold artifact, but since
it is localized only on the shadows’ edges it is quite difficult to notice, especially without

any reference image. An example of artifact caused by too low shadow map resolution is

shown in Figure A.6.

Full sized image Distorted sample Reference sample

Figure A.6: Example of jagged shadows’ edges as typical artifact that appears when the shadow
map resolution is too low.

A.7 Z-fighting

Z-fighting (or stitching) is a 3D rendering effect that happens where two or more primitives
have close values in the z-buffer. This causes annoying flickering issues since one primitive
can be displayed in front of or behind the other inconsistently. Several techniques as
increasing depth buffer resolution or changing slightly the position of the objects can
mitigate the problem. Since it is usual in game engines to deal with very complex scenes
with many objects, it is quite common to have this kind of artifact. All 10 images were
render in Unity or CryEngine and come from [101]. Figure A.7 shows an example of

z-fighting artifact.
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Full sized image Distorted sample Reference sample

Figure A.7: Example of Z-fighting artifact caused by small precision of the depth buffer.

A.8 Compression™

Compression dataset consists of 71 images and contains distortions due to experimental
low-complexity image compression, operating at several bit-rates. Compression artifacts
are the most common ones in computer graphics. Too low quality settings of compression
result in very well known blockiness or mosaic artifact (Figure A.8) which has a great
impact on the overall image quality. The distortion appears globally on the whole image
and its visibility depends on the local image content. Usually it is well seen on gradients

and can be easily masked by some specific frequencies. This set is an important source of
near-threshold distortions.

Full sized image Distorted sample Reference sample

Figure A.8: Example of blockiness effect - compression artifact.

A.9 Deghosting

High dynamic range (HDR) images become very popular in the recent years. Merging
multiple exposures is a common method for generating HDR images. During acquisition,

in the presence of a dynamic scene, non static objects can cause ghosting artifacts. Usually
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deghosting algorithms replace detected the motion pixels either with pixels from only one
exposure, or from multiple exposures. The main drawback of these methods is the reduction
of high dynamic range of the moving object and local color or brightness deviation (Figure
A.9). Some other common artifacts that could be introduced by the deghosting process

are motion artifacts and noise. This set of artifacts consists of either supra-threshold and

near-threshold distortions. Images come from [136].

Full sized image Distorted sample Reference sample

Figure A.9: Example shows local color and brightness deviations.

A.10 IBR

This set contains typical optical flow warping artifacts (Figure A.10) and small shifts
caused by nearest neighbor warping methods. Optical flow warping usually results in
deformation of the objects, slight ghosting and discontinuities. The images created with
NN method do not contain any artifacts, but they are slightly shifted according to the
reference image. This effect is almost unnoticeable for a human, even when he compares
the testing image with the reference one. This kind of distortions were prepared to make
our metric invulnerable to slightly misaligned images. The images come from dense
light-field camera acquisition, followed by a process of images reduction and subsequently a
reconstruction process with an optical flow or a nearest neighbor (NN) policy. NN images
have only one distortion level and optical flow ones have three of them. All the images

originate from [137].
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Full sized image Distorted sample Reference sample

Figure A.10: Double edges and discontinuities caused by optical flow warping method.

A.11 CGIBR

This set consists 5 rendered images and one photography that contains optical flow and
linear warping artifacts (ghosting and discontinuity presented in Figure A.11). Ghosting
artifact results in the image as the objects with double edges and semi-transparent areas
between those edges. In this case objects closer to the camera have stronger ghosting effect
than objects in background. Each image has only one distortion level. All images of this

set come from [137].

Full sized image Distorted sample Reference sample

Figure A.11: Example of ghosting as typical artifact of linear warping.

A.12 TID2013*

In addition to the 296 newly marked images, we added 261 images from the TID2013 image
quality dataset [99], for which we could automatically generate marking. We selected from
that dataset a subset of images that did not contain noticeable differences and assigned
them marking maps set to Os (no user markings). Then we selected another subset
with well-noticeable distortions and set corresponding marking maps to 1s (distortions

visible in the entire image). To ensure that both subsets were correctly selected, we
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compared the four least severe distortion levels with the reference images in an additional
pairwise comparison experiment (comparisons missing in the original dataset) and scaled
the original (per-observer) pairwise data together with additional measurements using
methods described in [103] and assuming Thurstone Case V observer model. Then, we
selected for the first subset the images with the score of less than 0.2 just-objectionable-
difference (JOD) to the reference, and for the second subset the images with the difference
larger than 3 JODs. We also excluded the distortion types that affected only small image

regions, such as JPEG transmission errors, and left the distortions that affected all pixels.
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Figure A.13: Perception patterns subset.
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Figure A.14: Aliasing subset.

Figure A.15: Shadow acne subset.

Figure A.16: Peter panning subset.
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Figure A.17: Shadow map downsampling subset.

Figure A.18: Z-fighting subset.
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Figure A.19: Compression subset (continued on the next page).
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Figure A.19: Compression subset. (cont.)

Figure A.20: Deghosting subset.
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Nearest neighbor warping method

Optical flow warping method

Figure A.22: CGIBR subset.
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APPENDIX B

VISUALLY LOSSLESS IMAGE
COMPRESSION DEMONSTRATIONS

We demonstrate the utility of the CNN visibility metric in two applications: benchmarking
of lossy image compression and visually lossless image compression. In Figure B.1, the
figure shows that WebP can encode low bit-rate images with less noticeable artifacts than
JPEG. However, the advantage of WebP is lost at higher bit-rates. The coding artifacts
are more visible for JPEG at lower bit-rates as shown in Figure B.1. For example, in the
first row, the background compression artifacts are more visible in the JPEG compressed
image than in the WebP compressed image. However, it is more difficult to spot the
difference at higher bit-rates, but examples Figure B.2 show slightly richer textures (pay
attention to the fur and the hair) and more saturated colors in JPEG images.

Another application is visually lossless image compression as shown in Figure B.3. This
example demonstrates that with more accurate visibility metrics, we can achieve visually
lossless image compression with lossy image compression methods and save a lot of storage
space compared with their default settings that set a fixed compression parameter for

visually lossless image compression.
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Figure B.1: Comparison between JPEG and WebP for lower bit-rates. Best seen on the screen.
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Figure B.2: Comparison between JPEG and WebP for higher bit-rates. Best seen on the

screen.
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Figure B.3: The pairs of reference and compressed images in which the compression quality was

adjusted using the proposed metric to be at the visually lossless level. The values in parenthesis

denote saving as compared to JPEG and WebP with the fixed quality of 90. Best seen on the
154

screen.
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