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Supplementary Table 1: Details of related work

Authors Data inputs Method overview Outputs
Birrell et al. Med-
ical Research
Council (MRC)
Biostatistics Unit
(BSU), PHE [18]

Daily death and
serological data at
PHE region level.
ONS CIS data.

Age-strati�ed ordinary di�erential
equation (ODE)-based transmission
models in each of the seven NHS

regions of England, with regional
epidemics sharing common parame-
ters, and estimation carried out in a
Bayesian framework

Daily, PHE re-
gional Rt

Irons and Raftery
[19]

Deaths and case
count data in
the United States
(including some
randomised surveil-
lance data)

Bayesian framework built on an empir-
ical functional relationship between cu-
mulative under-reporting of cases and
cumulative number of tests conducted,
allowing inference on cumulative inci-
dence and SIR epidemic model �tting

Infection-to-fatality
ratio, cumulative
incidence and Rt
at US state-wide
level

Teh et al., Data
Evaluation and
Learning for Vi-
ral Epidemics
(DELVE) [20]

Pillar 1+2 daily
case data across
England, Wales
and Scotland.
Commuter-�ow
data.

Hierarchical Bayesian method for esti-
mating localRt, modelling both tempo-
ral and spatial dependence in transmis-
sion rates, and based on renewal equa-
tions [21, 22]

Local LTLA-level
estimates and pre-
dictions of Rt and
positive case num-
bers

Jewell et al. [23] Pillar 1+2 case
data across Eng-
land. Human
mobility data.

Bayesan implementation of an
Susceptible-Exposed-Infectious-
Removed (SEIR) model allowing
for transmission within and betweem
local authority districts (LADs)

Daily case preva-
lence (proportion
of infected popu-
lation), incidence,
and Rt

Mishra et al., Epi-
demia [38, 32, 39,
22]

Daily UK case
data; weekly
deaths data; daily
randomized surveil-
lance outputs from
the ONS CIS and
REACT studies

Modi�ed version of the Bayesian semi-
mechanistic model of [22] calibrated
through the infection fatality ratio and
infection ascertainment rate estimated
from national-level randomised surveil-
lance data

Estimates and pre-
dictions of Rt, pos-
itive case numbers,
and change in new
infections

Colman et al. [24] Pillar 1+2 case
counts across
England's PHE

regions. ONS CIS
data.

Targets the proportion of infections
that result in a positive diagnosis, com-
prising time-dependent test sensitivity
and the proportion of infected individ-
uals who seek testing, with estimation
calibrated against surveillance data at
PHE region level

Daily incidence of
infections over time
at a PHE region
level

Abbott et al.
centre for mathe-
matical modelling
of infectious dis-
eases (cmmid)
COVID modelling
group. [25]

Case counts and
death noti�cations

Bayesian renewal equation approach
based on [21] allowing for uncertainty
in delay between onset and case report
or death

Daily estimates of
Rt at a global,
national and sub-
national (PHE re-
gional) level

Nicholson et al.
The Alan Turing
Institute and Royal
Statistical Society
Statistical Mod-
elling and Machine
Learning Labo-
ratory (Current
work)

Pillar 1+2 weekly
positive and total
counts at glsltla
level; REACT

weekly positive
and total counts at
PHE regional level

Ascertainment bias estimated from
REACT data at PHE region level and
used to infer prevalence from positive
and total test counts at the local LTLA
level. SIR model used to infer Rt

Weekly estimates
of point prevalence
and Rt at LTLA

level
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Stochastic epidemic model

The DAG for the stochastic epidemic model whereby individuals become immune through population vaccina-
tion and/or exposure to COVID-19 is shown in Supplementary Fig. 1).

Susceptible
S

Infectious
I

Immune
R+

Vaccinated
V

Supplementary Figure 1: SIR/V epidemic model compartmental diagram.

Model parameters

A full list of model parameters, along with either their prior distribution or the value at which they were �xed,
can be found in Supplementary Table 2.

Supplementary Table 2: Model parameters with speci�ed prior distributions or �xed values

Parameter Prior / Fixed value
Ascertainment bias, δ1:T Empirical Bayes prior (see Eq. (16)):

- AR(1) coe�cient, ψ = 0.99
- Standard deviation, σε = 1
- Intercept, c ∼ N (0, σ2

flat) with σflat = 10

PCR false-positive rate, α Fixed, α = 3× 10−4 (see Eq. (58) and Supplementary Fig. 5)
PCR false-negative rate, β, Fixed, β = 0.05, taken from [40]
Expected time to recovery, 1/γ Trecovery ∼ Exponential(γ), with γ = 1 week
E�ective reproduction number, Rt Random walk: Rt ∼ N (Rt−1, σ

2
R), with σR = 0.2

Proportion immune at t = 0, R+
0 /M Truncated Gaussian (see Eq. (20), and reference [41])

- Mean, µR = 0.06
- Standard deviation, σR = 0.01
- Minimum proportion, pmin = 0
- Maximum proportion, pmax = 0.1

Proportion infectious at each t, It/M Truncated Gaussian (see Eq. (20)):
- Mean, µI = 0.005
- Standard deviation, σI = 0.01
- Minimum proportion, pmin = 0
- Maximum proportion, pmax = 0.04
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Discussion of methodological assumptions and caveats

Interval-based prevalence inference � set-up and assumptions

The full prevalence state space comprises all potential numbers of infectious individuals in the population, i.e.
I ∈ {0, . . . ,M}. For computational tractability we de�ne B �M bins:3

Bb := {I : eb−1 ≤ I < eb} b = 1, . . . , B (25)

having midpoints:

Ǐb :=

⌊
eb−1 + eb − 1

2

⌋
, b = 1, . . . , B , (26)

and make three assumptions to allow computationally e�cient inference on the B-dimensional space of bins,
denoting these assumptions Interval-1:3 as follows:

Interval-1 The testing data likelihood, conditional on prevalence bin, is evaluated at the bin midpoint:

P(n of N, u of U | I ∈ Bb) := P(n of N, u of U | I = Ǐb) . (27)

Interval-2 Prevalence I is uniformly distributed within each bin:

P(I = k | I ∈ Bb) :=

{ 1
eb−eb−1

k ∈ Bb
0 otherwise.

(28)

Interval-3 The distribution of new infections, conditional on prevalence bin, is evaluated at the bin midpoint
(with the same assumption applying to new recoveries):

P(# new infections | I ∈ Bb) := P(# new infections | I = Ǐb) (29)

P(# new recoveries | I ∈ Bb) := P(# new recoveries | I = Ǐb) . (30)

Ascertainment bias model � assumptions and caveats

Debias-1 Spatial homogeneity of δ across LTLAs within a PHE region. The fact that we see relatively low
variation in δ at each time point across PHE regions in Fig. 3, particularly after October 2020, is
consistent with a �ner-scale spatial homogeneity assumption being reasonable.

Debias-2 We handle prevalence in a reduced-dimension space of bins as described in SI section Interval-based
prevalence inference � set-up and assumptions

Debias-3 (In)stability of ascertainment mechanism. It is clear from Fig. 3 that the ascertainment e�ects cap-
tured by δ can change rapidly and without obvious cause over time. Contemporaneous randomised
surveillance data, such as REACT or ONS CIS, allow estimation of δ. However, when predicting
prevalence forward in time beyond availability of randomised surveillance data, we are making the
implicit assumption that the ascertainment bias remains stable forwards in time, and such results
should therefore be interpreted with caution.

PCR+ to infectious mapping � assumptions and caveats

For full details please see Supplementary Information�PCR positive to infectious mapping � method details.

Infectious-1 Pillar 1+2 positive test counts, across a four-week period, are used as an approximation to the true
relative incidence over that time interval at coarse-scale level (e.g. PHE region).

Infectious-2 The probability (with credible intervals) of testing PCR positive when swabbed d days post infection
is taken from Fig. 1A of Hellewell et al. [35].

Infectious-3 The infectious interval for an average individual is de�ned to span days 1 to 11 post infection,
based on Fig. 1A of Ferretti et al. [34].

3Bins are equally sized on log scale, with interval edges are de�ned recursively as e0 = 0, eb = deb−1(1 + εB)e, and εB is a �xed
constant giving B intervals.
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SIR model � discussion, assumptions and caveats

The illustrative epidemic model we implement here has one of the simplest SIR compartmental structures
available, as summarised in Supplementary Information�SIR model � discussion, assumptions and caveats and
particularly Assumption SIR-2. Other teams have developed more realistic and sophisticated compartmen-
tal models of transmission, re�ecting for example that individuals are not immediately infectious after being
infected [18, 42, 43, 44]. Importantly, these are able to relate epidemiological disease dynamics to outcomes
far downstream, such as hospitalisation and deaths. The fact that a large number and variety of models has
been developed can be viewed as a strength, as demonstrated by e�cacy of ensembles of multi-model forecasts
to inform policy on future resource needs and population impacts [27]. One attractive feature of such model
ensembles is that their forecasts may be relatively robust to changes in spatiotemporal and compartmental
dynamics over the course of an epidemic. Notably, the de-biased prevalence likelihood outputted in Results�
Cross-sectional local prevalence from targeted testing data is agnostic to the downstream epidemic model, and
so there might be bene�ts to incorporating it into such multi-compartment epidemic models.

SIR-1 The population is homogeneous within an LTLA, with each individual equally likely to be infected

SIR-2 We assume individuals become instantly infectious and recover at a �xed rate γ = 7 days, i.e. with no
spatiotemporal variation, and with recovery time distributed exponentially with mean 1/γ.

SIR-3 Any projections forward in time are made under the implicit assumption that there is no change in NPIs,
such as tiering or lockdown status, a�ecting the LTLA.

SIR-4 We do not include age, ethnicity or deprivation indices in our model, and so epidemiological parameter
estimates are to be interpreted as an average across these strata (with unknown weights).

SIR-5 We do not explicitly model transmission between regions or the demographic e�ects of births, deaths and
migration � the SIR model is �tted to each LTLA separately. While it would be possible to account for
transmission between LTLAs [45], this dramatically increases the number of parameters to be estimated
and consequently the computational burden of the model. Given that the study period here is almost
all in lockdown, the e�ect of transmission between LTLAs is relatively small. In non-lockdown periods,
epidemic models allowing for inter-region transmission could be bene�cial.

SIR-6 The number of new infections in the stochastic SIR model is modelled as a Poisson approximation,
approximating the `true' Binomial conditional distribution.

Gaussian approximation for δ

We approximate the cross-sectional component of the EB prior for δ using a moment-matched Gaussian ap-
proximation (see (12)). Supplementary Fig. 2 illustrates the suitability of this approximation for PHE regions
London and the North West across nine weeks.

SIR model details

We implement a DTMC SIR epidemic model based on the standard model as described in ([36], Chapter 3).
As we choose ∆t to be a day/week, we allow multiple infections and recoveries in a time interval width ∆t; this
requires derivation of Markov transition probabilities between all states (rather than just neighbouring ones),
which we do below having established some notation.

Notation

Parameters are subscripted by timepoint index t (indexing week for the analyses presented, with ∆t set to one
week):

It : number of infectious individuals

R+
t : number of immune individuals (with infection- and/or vaccination-acquired immunity)

Vt : total number of vaccinated individuals in region (i.e. with vaccine-acquired immunity)

St : number of susceptible individuals (St ≡M −R+
t − It)
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Supplementary Figure 2: Comparison of moment-matched Gaussian EB prior (12) (red lines) with raw
estimates (histograms) on δ for PHE regions North West (top) and London (bottom) from 29th November 2020
to 24th January 2021.
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∆Qt : number of new infections in interval (t−∆t, t]

∆Rt : number of new recoveries in interval (t−∆t, t]

∆Vt : number of vaccinations administered in interval (t−∆t, t]

∆Ṽt : number of vaccinations administered to susceptible individuals in interval (t−∆t, t]

βt : transmission rate, i.e. the number of e�ective contacts in interval (t−∆t, t]

γ : recovery rate, with expected time to recovery E[T ] = 1/γ

γt : probability of recovery in interval (t−∆t, t], i.e. γt := P(T ≤ ∆t) where T ∼ Exp(γ)

R0
t : basic reproduction number, R0

t ≡ βt/γt
Rt : e�ective reproduction number, Rt ≡ R0

tSt/M

Distribution of the number of new infections ∆Qt

Under the standard DTMC SIR model, the number of new infections, denoted here ∆Qt, occurring in the time
interval ∆t up to time t has conditional distribution4

P(∆Qt | St−1, βt−1, It−1) = Binomial

(
∆Qt | St−1,

βt−1It−1

M

)
. (31)

The probability in (31) can be parameterised by the e�ective reproduction number, Rt:

Rt :=
βtSt
γtM

(32)

P(∆Qt | St−1,Rt−1, It−1) ≡ Binomial

(
∆Qt | St−1,

γtRt−1It−1

St−1

)
. (33)

We approximate (33) with a Poisson distribution as follows [46]:5

P(∆Qt | Rt−1, It−1) := Poisson (∆Qt | γtRt−1It−1) . (34)

Distribution of the number of new recoveries ∆Rt

The number of new recoveries, denoted ∆Rt, occurring in the time interval ∆t up to time t is distributed

P(∆Rt | It−1) = Binomial (∆Rt | It−1, γt) . (35)

4Based on each of St−1 ≡M −R+
t−1 − It−1 susceptibles at time t− 1 being infected independently with probability

P(Susceptible infected | βt−1 effective contacts in (t−∆t, t])

= 1− P(Susceptible is not infected | βt−1 effective contacts)

= 1− P(A random effective contact is with a noninfectious individual)βt−1

= 1−
(

1−
It−1

M

)βt−1

=
βt−1It−1

M
+O

([
It−1

M

]2)
.

5According to Rule 2 in [46], the Poisson approximation is reasonable when both of these inequalities hold:

γtRt−1It−1 > 5

γtRt−1It−1

St−1
<

1

2
.

Of the two, the �rst is the least likely to obtain, but is still reasonable under most circumstances. For a simple example, if we set
γt = 1 and Rt−1 = 1, the number of infectious individuals It−1 > 5 is su�cient for the approximation to be reasonable.
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Transition probabilities for the number of infectious individuals It

The change in the number of infectious individuals at time t, ∆It can then be expressed as

∆It = ∆Qt −∆Rt

this and so the conditional distribution for ∆It follows from (34) and (35):

P(∆It | It−1,Rt−1) =

It−1∑
∆Rt=0

{
Binomial(∆Rt | It−1, γt)

× Poisson (∆It + ∆Rt | γtRt−1It−1)

}
. (36)

Interval-to-interval transition probabilities are evaluated as

P(It ∈ Bb′ | It−1 ∈ Bb,Rt−1) =
∑
k∈Bb

P(It−1 = k | It−1 ∈ Bb)× P(k + ∆It ∈ Bb′ | It−1 = k,Rt−1)

=
∑
k∈Bb

1

eb − eb−1
× P(k + ∆It ∈ Bb′ | It−1 = Ǐb,Rt−1) (37)

where the �rst term in the sum at (37) follows from Assumption 2 at (28), and the second term is conditional
on prevalence at bin midpoint (It−1 = Ǐb) based on Assumption 3 at (29)-(30), and can be evaluated using (36).

Transition probabilities for the number of immune individuals R+
t

Denote by ∆Vt the number of vaccinations administered in interval (t − ∆t, t]. Only a subgroup of those
individuals vaccinated at time t may have been susceptible at time t − ∆t; we denote the number in the
subgroup by ∆Ṽt (≤ ∆Vt), and evaluate its conditional distribution as follows:

∆Ṽt := # susceptibles newly vaccinated in (t−∆t, t]

P(∆Ṽt | ∆Vt, R+
t−1, It−1) = HyperGeom(∆Ṽt |M − Vt, M −R+

t−1 − It−1, ∆Vt) , (38)

where Vt is the current number of vaccinated individuals in the population (with ∆Vt ≡ Vt − Vt−1). The total
number of immune, i.e. vaccinated and/or recovered, individuals at time t (denoted R+

t ) can then be represented
by the recurrence

R+
t = R+

t−1 + ∆Rt + ∆Ṽt .

This leads to the Markov conditional distribution for R+
t via convolution of (35) with (38)

P(R+
t | R+

t−1, It−1,∆Vt) =

It−1∑
∆Rt=0

{
Binomial (∆Rt | It−1, γt)

× HyperGeom(R+
t −R+

t−1 −∆Rt |M − Vt−1, M −R+
t−1 − It−1, ∆Vt)

}
. (39)

The above treatment of immunity assumes individuals are made permanently immune immediately through
either vaccination or infection. It would be straightforward to relax the above formulation to allow for more
sophisticated treatment of immunity, for example specifying (a) a delay in vaccine e�ects, (b) incomplete vaccine
e�cacy (e.g. in the case of novel variants), or (c) decaying immunity over time.

Inference on the basic reproduction number

The basic reproduction number at time t, R0
t is related to the e�ective reproduction number Rt by the following

equation,

R0
t =

St
M
Rt, (40)

where M is the total number of individuals and St is the number of susceptible individuals at time t. Recall
that St ≡ M − R+

t − It where R+
t is the number of immune individuals and It is the number of infectious

individuals, both of which are estimated by our DTMC SIR model. We can plug in these estimates into (40)
to estimate R0

t for a given LTLA. Supplementary Fig. 4 plots R0
t and Rt for a selection of LTLAs.
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PCR positive to infectious mapping � method details

Recall we require P(Ĩ | I) in (3), which is the probability distribution on the number of PCR positive individuals
Ĩ given the number of infectious individuals I. This can be expressed via Bayes' theorem as

P(Ĩ | I) ∝ P(I | Ĩ)P(Ĩ) (41)

where the likelihood is binomial:

P(I | Ĩ) = Binomial(I | Ĩ , P(Infectious | PCR positive)) . (42)

To target the P(Infectious | PCR positive) success probability in (42), we introduce the following notation:

Infectedt ≡ Individual becomes infected in week t (43)

Infectioust ≡ Individual is infectious in week t (44)

PCR+t ≡ Individual is PCR positive from swab taken in week t (45)

and proceed as follows:6

P(Infectioust | PCR+t) (46)

=
P(Infectioust ∧ PCR+t)

P(PCR+t)
(47)

=

∑3
k=0 P(Infectioust ∧ PCR+t | Infectedt−k)P(Infectedt−k)∑3

k=0 P(PCR+t | Infectedt−k)P(Infectedt−k)
(48)

=

∑3
k=0 P(Infectioust | Infectedt−k)P(PCR+t | Infectedt−k)P(Infectedt−k)∑3

k=0 P(PCR+t | Infectedt−k)P(Infectedt−k)
, (49)

where, at (49), we assumed conditional independence between Infectioust and PCR+t conditional on Infectedt−k.
Also, at (48), we assumed that testing PCR positive implies that an individual was infected at most four weeks
prior to being swabbed, which is consistent with Fig. 1A of [35] (data input 2 below). We import three distinct
data inputs to estimate the various terms in (49).

Data input 1 � Infectious interval

Fig. 1A of Ferretti et al. [34] shows the estimated probability density function of the serial interval for SARS-
CoV-2 transmission � we denote this density function fFer(d). Noting the support of this density to be approx-
imately [1, 11], we specify that an average individual is infectious between days 1 to 11. Formally we de�ne,
independently for each individual in the population,

P(Infectious on dth day post-infection) :=

I {EX [P(individual X Infectious on dth day post-infection)] > 0}

≈
{

1 if fFer(d) > 0, i.e. if 1 ≤ d ≤ 11
0 otherwise

where X denotes an individual selected uniformly at random from the population. We can use this to estimate
the P(Infectioust | Infectedt−k) term appearing in the numerator of (49) as follows

P(Infectioust | Infectedt−k) ≈

 6/7 k = 0
5/7 k = 1
0 k > 1 .

(50)

Data input 2 � PCR positive interval

Fig. 1A of Hellewell et al. [35] plots posterior probabilities (with credible intervals) of testing PCR positive
when swabbed d days post infection. We denote this data input

PHel(PCR+ | swabbed day d after becoming infected) (51)

6We use ∧ to denote logical AND.
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and use it to estimate the term P(PCR+t | Infectedt−k) appearing twice in (49), evaluating the following
estimator for each k = 0, . . . , 3:

P(PCR+t | Infectedt−k) ≈ 1

7

7(k+1)−1∑
d=7k

PHel(PCR+ | swabbed day d after becoming infected) (52)

Hellewell et al. [35] helpfully provide reproducible scripts7 and we use these to extract the posterior distribution
on PHel(PCR+ | swabbed day d after becoming infected) from their Fig. 1A, whose uncertainty we propagate
to estimator (52) and onwards to (49), yielding a distribution on P(Infectioust | PCR+t) which we take forward
approximated by a moment-matched Beta distribution (at each week t) to be used as an EB conjugate prior on
the success probability in (42).

Data input 3 � Pillar 1+2 incidence

For the purposes of adjusting the PCR positive map to changing incidence, we use the raw regional weekly
positive test counts n0:T , where we denote weeks by t = 0, . . . , T . We use this data input to estimate the term
P(Infectedt−k) appearing twice in (49), evaluating the following estimator for each k = 0, . . . , 3:8

P(Infectedt−k) = P(Infectedt−k ∧
[
∨3
k′=0Infectedt−k′

]
) (53)

= P(Infectedt−k | ∨3
k′=0Infectedt−k′)P(∨3

k′=0Infectedt−k′) (54)

≈ nt−k∑3
k′=0 nt−k′

P(∨3
k′=0Infectedt−k′) (55)

which can be directly substituted for P(Infectedt−k) in top and bottom of (49) with the second term on the
right of (55) cancelling between numerator and denominator, and therefore not requiring evaluation. We note
that we are using raw counts to model relative incidence over a relatively short period (four weeks), which is
making the assumption that the bias is relatively stable over this timeframe (see Assumption Infectious-1 in
SI�PCR+ to infectious mapping � assumptions and caveats).

Estimating antigen testing false positive rate � method details

We estimate the type I error rate α for PCR antigen testing based on REACT data under the following model:

P(uJ,t of UJ,t | πJ,t, α) = Binomial(uJ,t | UJ,t, α+ πJ,t) (56)

where uJ,t and UJ,t are positive and total REACT test counts in PHE region J for week t, and πJ,t denotes the
corresponding prevalence proportion (the proportion of individuals in region J for week t who would test PCR
positive if tested). For inference we de�ne the following i.i.d. empirical Bayes prior for the πJ,t:

p(πJ,t) = F̂ (πJ,t) (57)

where F̂ denotes the empirical CDF of the prevalence proportion estimates, i.e. of {uJ,t/UJ,t : J = 1, . . . , 9; t =
1, . . . , T}. We then evaluate the following marginal log likelihood:

log p(α) =
∑
J,t

log

∫ 1

0

P(uJ,t of UJ,t | πJ,t, α)F̂ (πJ,t)dπJ,t . (58)

Supplementary Fig. 5 plots log p(α); we select the value α = 0.0003, rounding the maximum likelihood estimate
to one signi�cant �gure.

Supplementary results

Sensitivity analyses

Prior hyperparameters for δ

The EB prior for δ depends on two hyperparameters: σε controls the variance of the white noise associated
with each individual time point, while ψ controls the degree of autocorrelation from one time point to the next.
Supplementary Fig. 6 shows the estimates for prevalence and Rt of infectious individuals using di�erent values
of these two hyperparameters. Note that in the main text, we present results using σε = 1 and ψ = 0.99.

7https://github.com/cmmid/pcr-pro�le
8We use ∨ to denote logical OR.
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Supplementary Figure 5: Estimated log marginal likelihood for false positive rate of PCR swab testing.
Details are given in SI�Estimating antigen testing false positive rate � method details, with the log marginal
likelihood evaluated as described at (58).

Sensitivity and speci�city of PCR tests

PCR tests are not perfect and are subject to both false positives and false negatives. In our analysis, we account
for imperfect testing via the false positive rate, α, and the false negative rate, β (see (8)). Supplementary
Fig. 7 shows the estimates for prevalence and Rt of infectious individuals using di�erent values of these two
hyperparameters. Note that in the main text, we present results using α = 3× 10−4 and β = 0.05.
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Supplementary Figure 6: (a) Estimates of prevalence of infectious individuals for �ve LTLAs using di�erent
values of the hyperparameters σε and ψ controlling the smoothness of the bias parameter δ. (b) Estimates
of prevalence of infectious individuals �ve LTLAs using di�erent values of the false positive rate α and false
negative rate β.
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Supplementary Figure 7: (a) Estimates of Rt of infectious individuals �ve LTLAs using di�erent values
of the false positive rate α and false negative rate β controlling the smoothness of the bias parameter δ. (b)
Estimates of prevalence of infectious individuals for �ve LTLAs using di�erent values of the hyperparameters
σε and ψ controlling the smoothness of the bias parameter δ.
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