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Droplet-based screening of phosphate transfer catalysis 
reveals how epistasis shapes MAP kinase interactions with 
substrates



Reviewers' Comments: 

Reviewer #1: 
Remarks to the Author: 
The current studies present the development of a high throughput system to evaluate how 
intragenic mutations can regulate the activation of the extracellular signal-regulated kinase-2 
(ERK2) by its upstream activator MKK1. This approach has significant implications for the 
comprehensive assessment of key amino acids that determine interactions necessary to support 
the efficient phosphoryl transfer from a protein kinase to a substrate. 
A novel and rapid approach is described where ERK2 activity is monitored based on the 
phosphorylation of a fluorescently labeled proline-directed peptide. The unphosphorylated peptide 
is sensitive to protease cleavage, which releases green fluorescent protein (GFP) tag. 
Phosphorylated GFP labeled peptide is stable and can be monitored by FACS analysis to determine 
the degree of ERK2 activity. The level of GFP signal is then correlated to different D-domain 
sequence mutations generated from a 6 amino acid combinatorial library. 
The extensive data sets support an overall conclusion that two key hydrophobic residues in the D-
domain act as an anchor and allow interactions with ERK2 regardless of other residues in D-
domain. The studies are important an provide a novel approach to examine the molecular 
determinant of kinase interactions with substrates. However, the following items should be 
addressed to help complete the story. 
1. Fig. 1A: Can the model discriminate between the MKK1 D-domain used in the studies and the 
corresponding D-domains on MKK3/4/6/7? Part of the basis for excluding the basic residues in the 
D-domain analysis was that they were not determinants for MAPK targeting. However, this was not 
examined in the current model. The use of MKK2 in Fig. 1B seemed a little confusing since the rest 
of the studies primarily focus on MKK1. 
2. The model describes peak phosphorylation of ERK2 by MKK1 after 3 hours (Fig. S3), which 
seems to be quite a bit slower than typical protein kinase phosphorylation kinetics observed in 
other in vitro assays or cell models. Can the authors comment on this discrepancy? 
3. Mutating isoleucine and leucine in MKK1 D-domain slows ERK2 phosphorylation but does not 
block it. This suggests other residues might be involved. Would mutating lysine/arginine residues 
in the D-domain block MKK1 interactions with ERK2? This relates back to point #1 and the 
rationale to exclude the basic residues in the D-domain. 
4. The studies focus on the key residues in the D-domain of MKK1 that are important for 
interactions with ERK2. Conversely, the role of amino acids in the D-domain recruitment site (DRS) 
of ERK2 may also play a role. For example, would mutations in ERK2 DRS (eg. D321 and E322) 
impact MKK1 interactions? 
5. Fig. S7: Panels D and E have same label, missing p1? 

Reviewer #2: 
Remarks to the Author: 
The paper presents a droplet-based experimental method for massively parallel screening of 
kinase activities in a cell-free environment. The advantage of the method is clear, since it 
separates the target pathway from the confounding factors of a cellular environment. The authors 
applied this method to the MKK-ERK signaling pathway. Specifically, they made combinatorial 
mutagenesis library on six residues on the docking domain of MKK1, and assay the kinase 
activities of variants using a phosphorylation detection mechanism. The main findings include 
synergistic interactions among hydrophobic motifs on the docking domain, degeneracy on other 
positions caused by positive epistasis, and high connectivity among functional variants as a result 
of the high degeneracy. 

Overall comment: 
I think the experiment assay is very elegant and could be a valuable tool for studying sequence-
function maps for kinases or other proteins. I also find the findings on the epistatic interactions 
interesting. 
I do however, have several complaints about the statistical analyses. And I suggest that the 
authors redo at least some of the analyses with a more principled method to corroborate/improve 



their findings, to make it suitable for publication on Nature Communications. 

First, I find the the analyses very similar to Podgornia and Laub 2015. It seems to me that the 
authors might have used this paper as a guideline for conducting their own analyses, since 
Podgornia and Laub 2015 uses a very similar system and perform similar experiments (but in 
vivo). While this is not problematic per se, the computational methods for analyzing massive 
parallel mutagenesis data have advanced quite significantly in the last five years, so better, more 
principled analyses can be done. 

Second, the inference on the per site amino acid preference and pairwise epistatic interactions are 
based on the enrichment ratios. Although this inference approach is common in bioinformatics, the 
mathematical justification for this procedure relies on multiple assumptions that are often violated 
in real experiments (see Atwal, G.S., Kinney, J.B.: Learning Quantitative Sequence–Function 
Relationships from Massively Parallel Experiments. J Stat Phys 162(5), 1203–1243 (2016)). 
In addition, there are several procedures done in the paper that might help drown out the signal 
with noise, or introduce biases. For example, the authors sorted the variant carrying beads into 
three bins, but at the end only focused on the high-activity bin, by lumping the low and medium 
gates together. Therefore, a lot of valuable information might have been lost this way. Next, the 
authors calculated the enrichment ratio for single and pairs of amino acids based the final active 
set of n = 29,563 active variants found in the high gate with counts >=51. The problem is that the 
per variant count data is lost in this process, so that all variants in the final pool are treated 
equally, regardless of their variance/noise distributions. Additionally, there could be other high 
activity variants that got thrown out due to low counts, which can increase the noise to signal 
ratio. 

Based on these concerns, I suggest the authors redo the enrichment and epistatic analysis using a 
new software package called MAVE-NN 
(https://www.biorxiv.org/content/10.1101/2020.07.14.201475v1). MAVE-NN is a python package 
that is capable of learning the noise model and separates it from the biology, thus avoiding the 
problems with enrichment ratios. And its noise-agnostic regression functionality is specifically 
designed for FACs type data. 

Specifically, MAVE-NN models an unobserved phenotype (in this case relative phosphorylation 
activity) under additive or additive + pairwise effects. It then maps the phenotype of a variant to a 
distribution among the gates (bins). The parameters of the model (additive or additive + pairwise 
regression coefficients on the phenotypic value) are then found by maximizing the likelihood of the 
count data. 
The input to the method is the sequences and counts in each bin per sequence, so no experimental 
information is lost and the authors do not have to set arbitrary thresholds. 

So I think most of the problems with the analyses can be solved by this package. And I have used 
this package before and found it very user-friendly and well documented. Therefore, I suggest that 
the authors try to reanalyze their data using MAVE-NN to supplement/replace the single and 
pairwise AA enrichment ratios with the regression coefficients from MAVE-NN. 
For Figure 3C-D, use the additive noise agnostic regression in MAVE-NN. 
For Figure 4, use the pairwise noise agnostic regression. 
For Figure 5, the authors can generate a series of subsets of the data, where subset of sequences 
with vs without the motif at certain positions are fed to MAVE-NN to generate the conditional 
PWMs. 

Detailed comments: 

line 20: signalling to signaling 

Line 166-171: what false positive rate? Is it 8%? The authors should point this out here. 

Line 151-153: what is the criteria for selecting subsets of AA for each position? This should be 



elaborated a little (perhaps in the supplement) 

Fig 2D and 2G: Why do the post-digest beads have a bimodal distribution? Can the authors give a 
biological explanation for this in the main text? 

Figure 3B. I suggest the authors add sequence logos, as the bar charts are hard to read. 

Fig3C: It seems that rows 8a and I9 have been swapped. 

The calculation of enrichment ratios in Fig 3 and 4 (ignore if figures are replaced with results of 
MAVE-NN): 
Why the enrichment ratio is calculated relative to the expected frequencies in a perfectly balanced 
library, instead of the observed frequencies in the actual library? (What if the expected frequencies 
differ systematically from the frequencies in the library, due to the library preparation process?) 
The pie charts in Fig 3B show a relatively balance distribution across sites in the low gate, but I do 
not think this justifies the use of the idealized frequencies 

Fig 6: The similarity network is helpful for revealing clusters of different functional variants and 
their relationships. But a problem is that the variants shown here are an arbitrary subset of 
functional variants that might not contain ALL the functional variants due to incomplete sampling, 
sequence count thresholding, and experimental noise. The figure might also contain false positive 
variants. Therefore, I suggest the authors generate a model for the sequence-function map that 
contain ALL the possible variants (n=12*13*2*12*12*12 = 539136), and visualize the 
relationship among the functional variants according to this model. 
For example, the authors can fit a pairwise MAVE-NN model and generate the full sequence-
function map by predicting the functions for all possible sequences using the trained model, then 
identify the high activity subset by setting a threshold (a sensible choice is the fitted value of the 
WT). Alternatively, the authors could train a binary classifier using the experimental data and 
apply it to all possible sequences (see Podgornia and Laub 2015). 

Supplement contains many typos and grammatical errors. I suggest the authors carefully read 
through it and fix all the problems in the revision. 

Reviewer #3: 
Remarks to the Author: 
The authors report on (i) the development of a high throughput in vitro assay to measure 
mutational effects on phosphorylation activity of kinases (in a controlled context, with no inference 
from cellular components), and (ii) analysis of epistasis in the generated data, revealing sequence 
determinants of phosphorylation activity in MKK1. This study combines biochemistry, molecular 
biology, droplet microfluidics, high throughput sequencing, and sequence data analysis to tackle a 
hard problem of deep relevance both for the fundamental understanding of enzymes and 
biomedical applications related specifically to kinases. It thus represents an impressive amount of 
work of high novelty, quality, and impact. In short I find the experimental workflow and obtained 
results extremely interesting, and therefore in my opinion this study is suitable for publication 
pending major points detailed below about sequencing depth and quantitative analysis. In 
addition, I would suggest to emphasize the identified sequence determinants of phosphorylation 
activity rather than epistasis per se. 

Major points regarding sequencing depth and quantitative analysis: 
- The authors report data in FigS12 on wt and 56 single mutants, out of which 42 negative 
mutants, 1 undetermined mutant, 13 positive mutants. However the total number of possible 
single mutants is 12x4 + 13 + 2 = 63 single mutants. Therefore 7 single mutants are not scored 
apparently, probably because of insufficient sequencing depth (too low counts), but these missing 
mutants might be enzymatically active (see next point). Consequently, epistasis involving these 7 
mutations is more challenging to quantify a priori. Moreover, if the set of positive mutants is not 
robustly identified, then the argument that the exhaustive combinations of 13 mutations cannot 



account for 30k observed positive variants (highlighting positive epistasis) becomes weaker. In the 
next point I suggest how to solve this issue. 

- The definition of positive clones (Sup.Mat.) includes a criterion on the absolute number of counts 
in the high gate and additional criteria on the relative fractions of counts in all gates. This choice is 
made to avoid false positives, but ends up ranking mutants mainly according to high gate counts 
as shown in FigS12, which is maybe not the best choice as there are many false positives in the 
medium gate for instance. Aren’t the relative fractions of counts in the 3 gates the most reliable 
indicators? For instance, PA-ILP and PW-ILP have mostly or only high gate counts but very few in 
absolute numbers so they are counted as negative mutants, not clear to me why (since the high 
gate contains very few false positives as shown in FigS4). P- -IWP is also mainly in the high gate, 
more so than wt, I would argue that it should be counted as positive regardless of its absolute 
total number of counts. Fluctuations in the absolute total number of counts between different 
variants may derive from lack of uniformity in the initial library (unlikely given the construction 
method) and/or error/biases occurring at the many steps of the workflow. 
My suggestion: to compute enrichments between each gate and the sequencing readout applied to 
the initial library, with sufficient depth to get enough counts for every library sequence. The low 
gate sequencing readout seems not to be a perfect proxy for the initial library sequencing readout 
(see below). And the ideal frequencies used to normalize observed frequencies are not a priori as 
reliable as actual frequencies measured in the initial library. 

- The accuracy of measurements is key to quantify significant deviations from additivity of 
mutational effects. This is important as the experimental workflow consists in many steps 
(including sequencing readout), each of which adds up to the total measurement noise. What is 
the variance of independent data points for a single variant? (wt to start with). If I correctly 
understood the workflow, comparing independent measurements of the same variant in parallel 
batches that partially overlap should address this issue without any additional experiment. The 
significance of results displayed in FigS13 for instance depends critically on measurement 
accuracy. I am rather confident that the authors’ main conclusions are correct given the wide 
margin they took to define active variants, and the robust Phi-X-Phi motif they report, but this 
important point should be addressed by further data analysis to be added to the Sup.Mat. to 
support the conclusions about observed epistasis. 

- Fig3C data is not consistent with the structure of the library shown in Fig2B. Fig3D displays 
mutations that are enriched in the low gate, compared to a uniformly distributed initial library, but 
then the low gate is not a good proxy for the full initial library if so many mutations are 
significantly enriched. Please clarify this point. Does 7aI (red in Fig3C and blue in Fig3D) reflect 
epistasis? 

- Epistasis in FigS13 is computed precisely as deviation from expectations based on independent 
contributions of two single amino acids to the enrichment of their pairwise combination. Aren’t the 
enrichments of the 13 single mutants among positive variants much more accurately measured 
than those of the other single mutation enrichments? How does that affect computing epistasis? 
Wouldn’t a more uniform accuracy of single mutation effects, from low activity to high activity, 
ensure more straightforward epistasis analysis? 

Overall addressing these major points concerning the quantification of epistasis involves reanalysis 
of the sequencing data, and potentially deeper sequencing of current samples, but requires no 
additional screening experiment. However, in my opinion the study’s most impactful result is not 
the extent of epistasis observed in the data, but rather the Phi-X-Phi motif reported by the 
authors, whose position is not fixed among variable positions of the library. Indeed, this finding 
includes the idea that epistasis plays a strong role as this sliding motif cannot be identified through 
a mere ‘logo analysis’ (Fig.3C, once corrected), and above all it captures the relation between 
sequence and function which is the main goal of research in the field. Several mutational scans on 
various proteins have reported the observation of pervasive epistasis, but very few have concluded 
on how function is encoded in the sequence as in the present work. 

Minor points: 



- the subGFP construct is described in the Sup.Mat. p.S43. I can see 3 phosphorylation sites 
separated by flexible linkers. Can the authors comment on this substrate structure? How was the 
distance between the AVI biotinylation site to the phosphorylation sites optimized in terms of 
chymotrypsin accessibility? Why 3 phosphorylation sites ? (reaction kinetics are potentially not 1st 
order) 

- If I understand correctly, positive predicted value=1-false positive rate, I would just give false 
positive rate (in high gate) and false negative rate (in low gate, or low+med gates) in FigS4. Do 
FRET-tested sorted variant statistics (Fig2I) reflect what you expect from positive control and 
negative control sorting statistics (FigS4)? (A simple statistical test would add a quantitative 
argument on top of the qualitative picture provided in the text). 

- The authors show a time course of the phosphorylation emulsion assay to find an optimal 
incubation time to discriminate between positive control and negative control. Ideally, the library 
whose phenotypic distribution is a priori unknown should be screened with a varying incubation 
time as well to maximize dynamic range and accuracy. In addition, FigS8 shows that chymotrypsin 
digestion readout also depends on time, so this is another parameter that could be used to 
maximize dynamic range and accuracy. I think this point would be worth discussing at least. 
Additional experiments to address this point would be asking for a lot, maybe a simulation would 
be possible without requiring too much time and efforts. 

- FigS9 illustrates the minimization of PCR cycles to avoid biases using qPCR, which is a great idea. 
But then the authors should show how much of a bias there is in the first pace and how minimizing 
PCR cycles allowed to minimize such bias. This could be done by performing different numbers of 
PCR cycles upstream of sequencing and comparing results between runs. The sentence ‘Plotting… 
correlated’ in the FigS9 legend is unclear. 

- FigS11 illustrates the choice of cutoff for the sequence counts to discriminate sequencing noise 
from signal. The choice of the cutoff is however not clearly motivated, could you plot the number 
of distinct sequences as a function of the cutoff and show that it becomes nearly constant above 
the chosen threshold? Also, the optimal cutoff is likely determined by the number of PCR cycles 
shown in FigS9, a simulation could help here. FigS11B is not clearly described in the legend. 
Figs11A, C and D: 20 should be >=20 on the x-axis I guess. 

- Main text line 257: ‘stripes of co-enrichement between a large hydrophobic residue (Ile/Leu) at 
one position and any other amino acid at the other ‘, there is no co-enrichment proper since only 
one amino-acid is selected regardless of the other. 

- From FigS16B, the Phi-X-Phi motif is rather Phi-X-Phi flanked by A->K amino-acids. 

- caMKK1 is called both wt (Fig3D) and a constitutively active mutant (main text), potentially 
confusing. 

- Fig3B is not so informative and could be sent to the Sup.Mat. 

- Typo line 690 of the SI. 

- Main text line 360: Leu-D = consensus but low affinity, a really nice illustration of epistasis. But I 
cannot identify Leu-D as a consensus from Fig3C, rather from top left panel of FigS15B, Fig16B, 
Fig17B. Is affinity synonymous with phosphorylation activity for a given peptide? (In general 
substrate affinity does not necessarily correlate with enzymatic activity) 

- Network analysis: not sure what to take from it, could be sent to the Sup.Mat. as no clear 
message seems to emerge. 
Lines 334-335: the authors report no hub in the network but do not show any analysis. Can you 
plot the node degree distribution? And the clustering coefficient (probability that neighbours are 
connected) vs node degree? These plots would clearly display the absence/presence of any 
hierarchical network structure. Also, a color heatmap of enrichments would display the enzymatic 
activity landscape on top of the network.
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- NCOMMS-21-13316-T 
 
We thank all reviewers for their detailed reading of the manuscript and their thoughtful 
and relevant comments that helped us to test and redefine our ideas and results. All 
attachments can be found at the bottom of this document. Attachment 1 and 2 are 
additionally added to the supplementary information as Supplementary Note 2, and 
Fig. S14. 
 
 
Reviewer #1  
 
 
1. Fig. 1A: Can the model discriminate between the MKK1 D-domain used in the 
studies and the corresponding D-domains on MKK3/4/6/7? Part of the basis for 
excluding the basic residues in the D-domain analysis was that they were not 
determinants for MAPK targeting. However, this was not examined in the current 
model. The use of MKK2 in Fig. 1B seemed a little confusing since the rest of the 
studies primarily focus on MKK1. 
 
It would indeed be intriguing to follow up this excellent suggestion in future work. In 
this instance we have not yet used the model system to probe questions of selectivity 
of D-domains in the MAPK signalling pathway. Our aim was to map the sequence 
determinants and underlying epistasis in the MKK1 D-domain that make for 
complementary interactions and subsequent activation of its cognate partner, ERK2.  
 
To clarify our objectives, we made the following change: 

- Removed line 142-143: with recent studies emphasising either the spacer 2 or 
hydrophobic residues 3  

 
Removal of this sentence might also satisfy the reviewers comment on the exclusion 
of basic residues, as our approach was not aimed at dissecting the individual 
contribution of basic/spacer and hydrophobic residues for MAPK specificity. The basic 
residues were additionally not randomised because: 

- Bardwell et al. (DOI: 10.1074/jbc.M115.691436) reported the following; 
results suggest that the precise chemical identity of a given basic residue does 
not dramatically influence binding efficiency and thus likewise does not 
determine binding specificity. This is consistent with the idea that the basic 
residues may be able to bind to corresponding acidic patches in the docking 

this portion of the D-site in many co- .  
Therefore, the basic residues, while important for catalytic activity (Tanoue et 
al. (DOI: 10.1038/35000065) and Grewal et al. (DOI:  
10.1016/j.cellsig.2005.04.001)) by interacting with acidic residues on the ERK2 
surface, would have been very likely to be mutated either to lysine or arginine 
when screening for activity.  Such an outcome would have been somewhat 
expected and thus yielded less information on epistatic relationships than 
randomising the other amino acids in the D-domain. Since only a limited 
number of residues could be chosen for randomisation, we excluded these in 
our design.  
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- When designing a future experiment, the screening capacity of the newly 
developed in vitro screen has to be considered. Randomising the basic 
residues would have exponentially increased the library size beyond our 
screening capacity (e.g. by randomising basic residues to 8 amino acids, KLH 
+P + 4 controls, our library size would increase 512-fold). We thought the 
spacer and hydrophobic residues to be of more direct interest in terms of site 
saturation, as a larger variety of amino acids are hydrophobic (compared to 
basic) and little is known about the sequence preference of spacer residues for 
this interaction.   

 
There is no structure of ERK2 with an MKK1 D-domain. To make sure that the use of 
the co- -domain and ERK2 is not confusing the reader: 

- We removed mention of MKK2 in the figure, and kept this to the figure legend. 
We highlighted the different amino acids that make up a typical D-domain to 
give context to the importance of hydrophobic residues for activity downstream. 
D-domain binding follows well established principles, and the figure highlights 
the basic requirements of these interactions (Garai 2012, DOI: 
10.1126/scisignal.2003004) 

 
 
2. The model describes peak phosphorylation of ERK2 by MKK1 after 3 hours (Fig. 
S3), which seems to be quite a bit slower than typical protein kinase phosphorylation 
kinetics observed in other in vitro assays or cell models. Can the authors comment on 
this discrepancy? 
 
The reviewer s assessment of typical protein kinase phosphorylation kinetics is 
correct. However, the timeframe for which peak phosphorylation was found here 
depends both on the time needed for in vitro transcription and translation of MKK1 
from the linear gene and the kinetics of the MKK1-ERK2 interaction. The former is 
thought to take up the bulk of the 3 hour incubation period, as shown by Lindenburg 
et al (DOI 10.1002/anie/202013486, Figure 3C) where formate dehydrogenase in vitro 
expression in similar droplets by (using the same in vitro transcription translation 
system) takes hours (measured by the catalytic activity in this study, reduction of  NAD 
to NADH). 
 

- At the optimal timepoint (t =3h, which includes the time it 
took to express MKK1), the sequence-  

 
 
3. Mutating isoleucine and leucine in MKK1 D-domain slows ERK2 phosphorylation 
but does not block it. This suggests other residues might be involved. Would mutating 
lysine/arginine residues in the D-domain block MKK1 interactions with ERK2? This 
relates back to point #1 and the rationale to exclude the basic residues in the D-
domain. 
 
The reviewer s intuition is right, and other residues are indeed involved. As mentioned 
in point 1 of reviewer 1, the basic residues are also important for catalytic activity of 
MKK1 on ERK2, and it will be detrimental for said activity to mutate these residues. 
Truncated constitutively active MKKs without a D-domain were shown to be unable to 
phosphorylate ERK/p38, (Grewal et al, DOI: 10.1016/j.cellsig.2005.04.001) 
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likely that mutating all residues in the D-domain to non-preferred residues would 
completely block phosphorylation.  

Mutation of basic amino acids could have additionally confirmed this again, but 
given the previously found results of Bardwell et al. (DOI: 10.1074/jbc.M115.691436) 
outlined in point 1, it would have been likely that all active mutants would contain 
mutations to a positive charge at those randomised sites, without much sequence 
preference for either lysine or arginine. As we were limited by our screening capacity 
to randomise 5-6 residues, we chose to more thoroughly randomise the spacer and 
hydrophobic residues, as they were considered more likely to yield interesting 
promiscuity in terms of sequence preference.  
 
 
4. The studies focus on the key residues in the D-domain of MKK1 that are important 
for interactions with ERK2. Conversely, the role of amino acids in the D-domain 
recruitment site (DRS) of ERK2 may also play a role. For example, would mutations 
in ERK2 DRS (eg. D321 and E322) impact MKK1 interactions? 
 
Previously, mutating the DRS has been shown to negatively impact ERK2 activation 
as well. A study by Tanoue (DOI: 10.1038/35000065) showed that mutating D321 and 
E322 greatly impaired the binding of ERK2 with its substrates and activators. Although 
a library vs library approach would be of considerable interest in the future (mutating 
both the D-domain and the DRS simultaneously), the current set-up was chosen 
because of constraints on screening capacity and difficulties constructing a 
randomised MKK1 and ERK2 libraries on the same paramagnetic bead. 
 
 
5. Fig. S7: Panels D and E have same label, missing p1? 
 
The panels D and E both contained unique data, and only the header was faulty: 

- Changed p2 to p1 for panel D 
 
 
 
Reviewer #2  
 
 
 First, I find the the analyses very similar to Podgornia and Laub 2015. It seems to 

me that the authors might have used this paper as a guideline for conducting their own 
analyses, since Podgornia and Laub 2015 uses a very similar system and perform 
similar experiments (but in vivo). While this is not problematic per se, the 
computational methods for analyzing massive parallel mutagenesis data have 
advanced quite significantly in the last five years, so better, more principled analyses 
can be done. 
 
The reviewer is correct in recognising that we were initially inspired by the analysis in 
Podgornia and Laub, though our approach to exploring epistasis in the human kinase 
pair differs: Podgornaia and Laub highlighted specific examples of pairwise positive 
epistasis, while we observe formation of a hydrophobic motif through multi-
dimensional epistasis.  
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 Second, the inference on the per site amino acid preference and pairwise epistatic 

interactions are based on the enrichment ratios. Although this inference approach is 
common in bioinformatics, the mathematical justification for this procedure relies on 
multiple assumptions that are often violated in real experiments (see Atwal, G.S., 
Kinney, J.B.: Learning Quantitative Sequence Function Relationships from Massively 
Parallel Experiments. J Stat Phys 162(5), 1203 1243 (2016)). 
 
We view the enrichment ratios as good indicators of epistasis, especially as this 
analysis was confirmed by Podgornia and Laub to indicate epistatically intertwined 
pairs. Although noise does affect enrichment calculations, we analyse variants of 
which at least (based on the PPV of the sorting gate) 91% are active. These variants 
include parameters of experimental noise (resulting in 9% false positives), which, by 
increasing the stringency of what is considered active in this group, is likely to be 
reduced even further. 
 

the signal with noise, or introduce biases. For example, the authors sorted the variant 
carrying beads into three bins, but at the end only focused on the high-activity bin, by 
lumping the low and medium gates together. Therefore, a lot of valuable information 
might have been lost this way. Next, the authors calculated the enrichment ratio for 
single and pairs of amino acids based the final active set of n = 29,563 active variants 
found in the high gate with counts >=51. The problem is that the per variant count data 
is lost in this process, so that all variants in the final pool are treated equally, regardless 
of their variance/noise distributions. Additionally, there could be other high activity 
variants that got thrown out due to low counts, which can increase the noise to signal 
ratio.  
 
We agree with reviewer 2 that the lack of information that can be derived from the 
exact sequencing counts results in the loss of valuable information. We chose this 
approach because we did not observe a correlation between activity in the secondary 
screen (FRET assay) and either proportion or number of sequencing reads in the 
medium and low gate. Consequently, we focused the analysis on the abundantly 
sequenced variants as a group. The >=51 count arose from using WT caMKK1 as a 
benchmark. We agree that this choice is conservative, intended to reduce the false 
positive rate in the collection of active variants. 
 
However, we know that the high-gate sequences are active (with high accuracy), and 
the sequence preferences in the high gate are clear cut. We agree that the choice of 
the active variant threshold is ultimately arbitrary, as the exact calibration would 
require numerous additional FACS controls. We repeated the analysis using three 
different choices for the active variants (10+ reads in high gate, 51+ reads in high gate, 
WT-like or better distribution of reads across three gates) and found similar results 
(see Attachment 1  defining active variants). Indeed, when the threshold of the 
minimal number of sequencing count for each unique variant is lowered from >=51 
(29,563 unique variants) to counts >= 10 (36,401 unique variants), adding 19% of the 
variants that were taken out, (as they were deemed more likely to contain false 
positives), the results are very similar; the same goes if instead activity is defined by 
the distribution of reads across the three FACS/NGS gates. 
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Currently, we kept the most conservative choice in the main text. If the reviewer 
requires, we could adopt this lowering of the threshold to what is considered active in 
the high activity gate, or switch to the definition based on % counts in each gate, 
although it will not affect the general conclusions drawn in the paper on basis of the 
high active gate variants as a group.    
 
 Based on these concerns, I suggest the authors redo the enrichment and epistatic 

analysis using a new software package called MAVE-NN 
(https://www.biorxiv.org/content/10.1101/2020.07.14.201475v1). MAVE-NN is a 
python package that is capable of learning the noise model and separates it from the 
biology, thus avoiding the problems with enrichment ratios. And its noise-agnostic 
regression functionality is specifically designed for FACs type data.  
 

Specifically, MAVE-NN models an unobserved phenotype (in this case relative 
phosphorylation activity) under additive or additive + pairwise effects. It then maps the 
phenotype of a variant to a distribution among the gates (bins). The parameters of the 
model (additive or additive + pairwise regression coefficients on the phenotypic value) 
are then found by maximizing the likelihood of the count data.  
The input to the method is the sequences and counts in each bin per sequence, so no 
experimental information is lost and the authors do not have to set arbitrary 
thresholds.  So I think most of the problems with the analyses can be solved by this 
package. And I have used this package before and found it very user-friendly and well 
documented.  
 
Therefore, I suggest that the authors try to reanalyze their data using MAVE-NN to 
supplement/replace the single and pairwise AA enrichment ratios with the regression 
coefficients from MAVE-NN. 
 For Figure 3C-D, use the additive noise agnostic regression in MAVE-NN.  
 For Figure 4, use the pairwise noise agnostic regression.  
 For Figure 5, the authors can generate a series of subsets of the data, where subset 

of sequences with vs without the motif at certain positions are fed to MAVE-NN to 
generate the conditional PWMs. 
 
 
We thank the reviewer for suggesting the MAVE-NN python package and its 
measurement-process agnostic (MPA) regression (previously noise-agnostic 
regression). Our dataset (a pandas dataframe listing all sequences and FACS bin 
counts) is compatible with the MAVE-NN approach, although at first the application of 
MAVE-NN was tricky due to very limited documentation of the MPA regression. After 
helpful communication with the package author, these issues were resolved and we 
were able to test the use of MAVE-NN.  
 
Since the full dataset is large (300K+ variants with 10 or more total reads) and heavily 
biased towards low activity variants (only 11% have 25% or more NGS reads in the 
high gate), training any of the models on the full dataset (80:20 train-test split) gave 
meaningless results, unless the training set was reduced and weighed in favour of the 
medium and high FACS bins. Unfortunately, this training dataset  constructed in line 
with standard practice in data science  did not give informative or indeed interpretable 
results under any of the three models included in the MAVE-NN package. We have 
attached a brief report on our MAVE-NN analysis for the reviewers  convenience (see 
Attachment 3  MAVE NN).  (We were unsure whether to include this report in the SI 
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on MAVE-NN.) 
 
Although full use of the MAVE-NN package would have been interesting (taking the 
sequencing counts, and the variants sorted in low and medium gate into account), the 
MAVE-NN package was ultimately incompatible with our dataset, primarily because of 
the library design using a reduced and uneven randomisation alphabet, and because 
the number of reads in the low and medium gate do not inform on fitness significantly 
(see discussion of false positive and false negative rates in response to Reviewer 3). 
We have therefore opted to maintain the pooled analysis on the active sequences in 
the high gate to inform on sequence parameters and underlying epistasis, as this data 

 even without the exact sequencing counts  informs on which unique sequences 
constitute active MKK1 D-domains. 
  
Detailed comments: 
 

line 20: signalling to signalling  
 
Changed 
 
 Line 166-171: what false positive rate? Is it 8%? The authors should point this out 

here.  
 
The reviewer s assessment on the false positive rate is correct, and equals (1-positive 
predictive value (PPV)), or 8% in, and has been spelled out in the text more clearly 
 

-  
- Line 166- we expect the positive predictive value of the high gate 

to be 91±2% for encoding functional D- to 
 

 
 Line 151-153: what is the criteria for selecting subsets of AA for each position? This 

should be elaborated a little (perhaps in the supplement). 
 
Changed at line 151-153:  
  

screened at each position, which were picked to ensure a diverse set of amino acid 
 

 
 
To: In order to stay within bounds of the screening capacity, a subset of amino acids 
was screened at each position, which were picked to ensure amino acids with polar, 
charged, or hydrophobic residues were included, with a wider range of possible 
hydrophobic substitutions as they complement the hydrophobic pockets in the ERK2 
DRS (Fig. 1B).   
 
 

Fig 2D and 2G: Why do the post-digest beads have a bimodal distribution? Can the 
authors give a biological explanation for this in the main text?   
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Added to line 131: The bimodal distribution is likely to stem from the exponential 
activation of subGFP via activated ERK2, as the substrate (ERK2) is enzymatic, and 
will continue to phosphorylate subGFP upon activation by MKK1. 
 

Figure 3B. I suggest the authors add sequence logos, as the bar charts are hard to 
read.  
 
As suggested by reviewer 3, this figure has been placed in the SI.  
 
 
 Fig3C: It seems that rows 8a and I9 have been swapped. 

 
Reviewer is right in this assessment, the rows were indeed swapped, and the figure 
3C has been remade. Thanks for spotting this mistake! 
 
 

The calculation of enrichment ratios in Fig 3 and 4 (ignore if figures are replaced with 
results of MAVE-NN): 
  

Why the enrichment ratio is calculated relative to the expected frequencies in a 
perfectly balanced library, instead of the observed frequencies in the actual library? 
(What if the expected frequencies differ systematically from the frequencies in the 
library, due to the library preparation process?) 
 
The low gate contained ~95% of the unique sequences recovered (including the 
inevitable false negatives, and shown as the overlap in the Venn diagram (Fig. 3A)). 
Analysis of these sequences revealed the low gate sequences to be close to ideal 
(Shannon entropy of >0.995). Additionally, we show the deviation in the low gate 
recovered sequences from the ideal frequencies (at 6  1/12, at 7a  1/13, at 8a  1/2, 
at 9, 11 and 13  1/12) in  Fig. S12, and Attachment 2  choosing the denominator. 
This figure highlights that the sequences that we recovered, are close to ideal 
expected frequencies, and we choose to calculate the enrichment ratio on basis of 
ideal frequencies expected at each position.   
 
We agree with the reviewer that we could have calculated the enrichment ratios by 
dividing the frequencies observed in the high activity gate over either) those observed 
in the low activity gate or) all observed sequences or) the sequences with (almost) all 
sequencing reads in the low gate. Here, the choice of the denominator for the 
enrichment ratios is in some respect just as arbitrary as the definition of the active 
variant dataset  we did need to make a choice. We included alternative figures when 
dividing by the amino acid frequencies in all observed variants (see Attachment 2  
choosing the denominator), and the give results very close to those when dividing 
over ideal frequencies.  The included Attachment 2 includes tables showing the ideal 
and experimental amino acid frequencies for both all detected and active variants, 
which illustrate that the latter much outweigh any differences in the denominator.  
 

how a relatively balance distribution across sites in the low 
gate, but I do not think this justifies the use of the idealized frequencies. 
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The pie charts are accompanied both by the Shannon entropy, and Fig S11 (See 
comment above) to establish out use of ideal frequencies. We have additionally 
prepared the heatmaps in which enrichments are calculated by dividing the amino acid 
frequencies at each position in the high gate, over the frequencies in all detected 
sequences (containing 91% all theoretical sequences) (see Attachment 2  
choosing the denominator).  
 
 

Fig 6: The similarity network is helpful for revealing clusters of different functional 
variants and their relationships. But a problem is that the variants shown here are an 
arbitrary subset of functional variants that might not contain ALL the functional variants 
due to incomplete sampling, sequence count thresholding, and experimental noise
 The figure might also contain false positive variants. Therefore, I suggest the authors 

generate a model for the sequence-function map that contain ALL the possible 
variants (n=12*13*2*12*12*12 = 539136), and visualize the relationship among the 
functional variants according to this model. 
For example, the authors can fit a pairwise MAVE-NN model and generate the full 
sequence-function map by predicting the functions for all possible sequences using 
the trained model, then identify the high activity subset by setting a threshold (a 
sensible choice is the fitted value of the WT). Alternatively, the authors could train a 
binary classifier using the experimental data and apply it to all possible sequences 
(see Podgornia and Laub 2015). 
 
The concerns raised here are closely tied in with the issue of defining the active variant 
criteria and the feasibility of generating a complete sequence-function map via MAVE-
NN, which have been addressed in response to previous comments. We have done 
our best to explore the possible methods for defining positive variants, using the WT 
values as suggested (using either the high gate read count or the distribution of reads 
across the three FACS gates). Currently, we kept the similarity network unchanged to 
illustrate the impact of the 8aA insertion and the clustering around the -X-F motif in 
the network.  
We have also re-examined the network when a more generous measure of activity 
was used (10+ reads in the high gate). This did not change the conclusions, 
suggesting that the data interpretation is robust and the conclusions hold regardless. 
 
 Supplement contains many typos and grammatical errors. I suggest the authors 

carefully read through it and fix all the problems in the revisions. 
 
We thank the reviewer for bringing this to our attention, and to the best of our 
knowledge, we have revised the supplement to contain as little typos and errors as 
possible. 
  
 
Reviewer #3  
 
Major points regarding sequencing depth and quantitative analysis: 
 

The authors report data in FigS12 on wt and 56 single mutants, out of which 42 
negative mutants, 1 undetermined mutant, 13 positive mutants. However the total 
number of possible single mutants is 12x4 + 13 + 2 = 63 single mutants. Therefore 7 
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single mutants are not scored apparently, probably because of insufficient sequencing 
depth (too low counts), but these missing mutants might be enzymatically active (see 
next point). Consequently, epistasis involving these 7 mutations is more challenging 
to quantify a priori. Moreover, if the set of positive mutants is not robustly identified, 
then the argument that the exhaustive combinations of 13 mutations cannot account 
for 30k observed positive variants (highlighting positive epistasis) becomes weaker. In 
the next point I suggest how to solve this issue. 
 
There is a misunderstanding here regarding the expected number of mutants. Where 
a position is randomised to 12/13/2 possible amino acids, these divide into 11/12/1 
mutant residues and 1/1/1 MKK1 WT residue per randomised positions. Therefore, we 
expected 11x4 + 12 + 1 = 56 single mutants, of which only one is missing due to 
insufficient sequencing depth. The missing mutant is also unlikely to be active, as the 
sequencing depth in the high gate is relatively higher (due to the low number of beads 
in the high gate) than in the low gate. 
 

The definition of positive clones (Sup.Mat.) includes a criterion on the absolute 
number of counts in the high gate and additional criteria on the relative fractions of 
counts in all gates. This choice is made to avoid false positives, but ends up ranking 
mutants mainly according to high gate counts as shown in FigS12, which is maybe not 
the best choice as there are many false positives in the medium gate for instance. 

instance, PA-ILP and PW-ILP have mostly or only high gate counts but very few in 
absolute numbers so they are counted as negative mutants, not clear to me why (since 
the high gate contains very few false positives as shown in FigS4). P- -IWP is also 
mainly in the high gate, more so than wt, I would argue that it should be counted as 
positive regardless of its absolute total number of counts. Fluctuations in the absolute 
total number of counts between different variants may 
derive from lack of uniformity in the initial library (unlikely given the construction 
method) and/or error/biases occurring at the many steps of the workflow. 
 
We thank the reviewer for his suggestions, and agree that the sequencies P IWP, 
PA-ILP and PW-ILP might be considered as active protein sequences. However, we 
know that ~9% of the variants observed in the high activity gate encode false positives. 
As such, while it is tempting to consider all variants which are enriched in the high gate 
as active, we choose a more conservative approach (in which each variant needs to 
be observed >=51 times in the high gate). We have established that ~91% of the 
variants in the high activity gate are of caMKK1-like activity. As mentioned, increasing 
the stringency was thought to additionally get rid of false positives, yielding a dataset 
of 29563 variants which were deemed active. Although it would have been of 
considerable interest to obtain fitness values for each individual variants, in all gates 
(as suggested by reviewer 2), our dataset would not permit such investigation, as 
discussed below under Rev Table 1. The 29,563 variants are of immediate interest, 
however, as they allowed us to determine the sequence landscape in which active D-
domains exist, and proved functional in determining the underlying epistatic 
interactions which shape formation of the hydrophobic motif required for ERK2 
activation. Nevertheless, we also considered alternative definitions of active variants, 
including based on the read distribution across gates and not just absolute counts 
(Attachment 1  choosing active variants), which ultimately yield identical 
conclusions. 
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My suggestion: to compute enrichments between each gate and the sequencing 
readout applied to the initial library, with sufficient depth to get enough counts for every 
library sequence. The low gate sequencing readout seems not to be a perfect proxy 
for the initial library sequencing readout (see below). And the ideal frequencies used 
to normalize observed frequencies are not a priori as reliable as actual frequencies 
measured in the initial library. 
 
While the input library is unfortunately not sequenced here, as the functionalised 
beads were all used in FACS and other experiments, we choose to use the ideal 
frequencies as a substitute. . 
Because we found these sequences to closely represent ideal frequencies we 
considered the input library as ideal (see Attachment 2  choosing the 
denominator. Alternatively, we could have calculated the enrichment based on the 
low gate sequences or all observed sequences, which could be considered more 
reliable, and has been attached  (see Attachment 2  
choosing the denominator). Still, the choice does not change the biological 
implications derived from the dataset, especially as we focus on broad patterns, rather 
than individual epistatic interactions. 
 
 The accuracy of measurements is key to quantify significant deviations from 
additivity of mutational effects. This is important as the experimental workflow consists 
in many steps (including sequencing readout), each of which adds up to the total 
measurement noise. What is the variance of independent data points for a single 
variant? (wt to start with). If I correctly understood the workflow, comparing 
independent measurements of the same variant in parallel batches that partially 
overlap should address this issue without any additional experiment. The significance 
of results displayed in FigS13 for instance depends critically on measurement 
accuracy. I am r
the wide margin they took to define active variants, and the robust Phi-X-Phi motif they 
report, but this important point should be addressed by further data analysis to be 
added to the Sup.Mat. to support the conclusions about observed epistasis. 
 
The variance, or spread, of two example variants, caMKK1 and caMKK1I9A/L11A in the 
low, medium and high activity gate from three experiments run in parallel is shown in 
Fig. S10, and is additionally shown here in Rev_Table 1.  
 
Rev_Table 1 

variant gate % of beads  
Average 
% beads st. dev. seq counts % seq counts 

caMKK1 
  

high  55 40 55 50.0 7.1 51 42% 

med 26 30 26 27.3 1.9 36 30% 

low 17 29 17 21.0 5.7 34 28% 

 
caMKK1_I9A/L11A 
  

high 4.5 2.8 7.2 4.8 1.8 0 0% 

med 9.6 5.7 14 9.8 3.4 6 23% 

low 85 91 78 84.7 5.3 20 77% 
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The variance (or the differences in percentages of beads from either variant in the 3 
different gates) all range from 1.8~7.1%. The small standard deviations suggest good 
data quality, i.e. reproducibility of the screening experiment. Interestingly, the variance 
in the average capture in each gate for both variants in parallel experiments is well 
correlated with the % of sequencing counts in each gate (r2=0.93) (Rev_Fig 1, Fig. 
S10), implying little PCR bias and that NGS counts approximate the binning by 
function well. Although there is correlation between count and activity, we have to few 
gates to resolve the activity spectrum, especially for variants of medium activity, as 
the number of false positives increased quite substantially as a result of the spread of 
caMKK1I9A/L11A across the three gates. 

So even though the spread of these two variants between parallel batches is 
low (and implies reproducibility of the screening experiment in parallel emulsions) the 
spread of caMKK1I9A/L11A across the three different gates (as a result of polydispersity 
of droplets within a single emulsion) lowers the resolution of the high gate (8% false 
positives, but even more so in the medium gate (26% false positives). The number of 
false positives is calculated as per example: for emulsion 1, the high gate contains 
55% of caMKK1 beads, and 4.5% of caMKK1I9A/L11A beads. 1-(55/(55+4.5) yields the 
false discovery rate for the first emulsion. For the second emulsion, this would be 1-
(40/(40+2.8) etc.  

As the high gate suffers least from the spread of caMKK1I9A/L11A as a result of 
the polydisperse format, we choose to do our analysis on the sequences 
sequenced/enriched from/in this gate.  
 

 
Rev_Fig 1. Correlation of variance across gates with the variance in sequencing counts across gates.   

 
Fig3C data is not consistent with the structure of the library shown in Fig2B. Fig3D 

displays mutations that are enriched in the low gate, compared to a uniformly 
distributed initial library, but then the low gate is not a good proxy for the full initial 
library if so many mutations are significantly enriched. Please clarify this point. Does 
7aI (red in Fig3C and blue in Fig3D) reflect epistasis? 
 

 the rows of I9 and 8A were accidentally swapped. 
Figure 3C has been corrected. 
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Figure 3D was unclear, and has been removed. This figure displayed all single point 
mutations that were enriched in the high gate in a dummy heatmap (from the raw 
sequencing counts in Fig. S15. This figure is therefore not displaying mutations that 
are enriched in the low gate, which is evenly distributed at each position for all amino 
acids.  
 

Epistasis in FigS13 is computed precisely as deviation from expectations based on 
independent contributions of two single amino acids to the enrichment of their pairwise 

much more accurately measured than those of the other single mutation enrichments? 

mutation effects, from low activity to high activity, ensure more straightforward 
epistasis analysis? 
 
The core of the issue here is the ability to accurately infer the enzymatic activity of any 
variant from the NGS read values, whether belonging to an improved variant, WT-like, 
non-functional or anything in-between. However, as we discussed in the response to 
reviewer 2, the resolution of our dataset is not sufficient to place such high confidence 
in individual variant measurement. Especially challenging is the interpretation of 
medium activity variants, which may fall below WT but still show some biological 
activity. Instead our experiment was calibrated with stringent controls especially for 
highly active variants (the boundary between the medium and high gate was set at the 
median activity of the WT variant), such that we are confident about the properties of 
variants sorted into the high gate. This is supported by flow cytometry controls (Figure 
2C-E, Fig. S4).  
 
Instead, the epistasis is not computed on basis of the expected frequency of the two 
single point mutations, but rather over the frequency of each separate amino acid in 
the total dataset of 29,563 active variants. For example, the magnitude epistasis 
between residue Ile at position 7a and residue Asp at position 9 would not be 
calculated by the pairwise deviation from both the 7aI and 9D mutants, but rather, 
compared to the percentage of active variants containing Ile at position 7a (14.2% of 
all 29,563 active variants) multiplied with the percentage of active variants containing 
Asp at position 9 (3.2% of all active variants). If the frequency of the pairwise 
interaction, or the percentage of sequences containing 7aI and 9D exceeded the 
expected frequency of this pair (0.142*0.320), positive epistasis is observed and vice 
versa.  
 

Overall addressing these major points concerning the quantification of epistasis 
involves reanalysis of the sequencing data, and potentially deeper sequencing of 
current samples, but requires no additional screening experiment. However, in my 

data, but rather the Phi-X-Phi motif reported by the authors, whose position is not fixed 
among variable positions of the library. Indeed, this finding includes the idea that 
epistasis plays a strong role as this sliding motif cannot be identified through a mere 

sequence and function which is the main goal of research in the field. Several 
mutational scans on various proteins have reported the observation of pervasive 
epistasis, but very few have concluded on how function is encoded in the sequence 
as in the present work. 
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We thank the reviewer for sharing his enthusiasm in a result that we were also excited 
to observe. We agree that the formation of a Phi-X-Phi motif through the interplay of 
positive/negative epistasis in active D-domain sequences could be highlighted more. 

removed Fig. S16B from the SI (the epistasis map of subsets containing -X-
, and added it to Main Figure 5 as Figure 5B. Figure 5A (Identical to the now 

removed Fig. S16A) shows as before the epistasis map of subsets containing -X-
motifs) 

- Incorporated at line 297: -X-
datasets for the initial distribution of amino acid frequencies in heatmap 3B gave 
us a glimpse into multi-dimensional epistasis i.e. the positive or negative 
magnitude epistasis with a third residue outside of t -X- (Figure 
5B) -X-

-X-
- -X-

(may it be at positions 6-X-7a, 7a-X-9, 9-X-11 or 11-X-13) negative epistasis is 
observed with a third hydrophobic at any other position, while positive epistasis 
is observed with any third residue which is non-beneficial in isolation.  Likewise, 
when residues other than Ile/Leu are present at these positions, positive 
epistasis is observed with Ile and Leu at all other positions in the subset, 
meaning that the frequency of finding a Ile/Leu goes beyond the already 
abundant frequencies of Ile and Leu at these positions in the entire active 
variant dataset. On the contrary, non-beneficial amino acids become ever more 
detrimental in this context through negative epistasis.  

 
 
Minor points: 
 

the subGFP construct is described in the Sup.Mat. p.S43. I can see 3 
phosphorylation sites separated by flexible linkers. Can the authors comment on this 
substrate structure? How was the distance between the AVI biotinylation site to the 
phosphorylation sites optimized in terms of chymotrypsin accessibility? Why 3 
phosphorylation sites? (reaction kinetics are potentially not 1st order) 
 
The three phosphorylation sites increased the sensitivity of the screen and enabled us 
to pick up relative activity effects for ERK2 as little as ~2 fold (incorporation of I9A and 
L11A (Xu, DOI: 10.1074/jbc.M102769200). The optimisation of linker sizes was not 
necessary, as the first design, containing the relatively standard GGSGGS linker 
sufficed. Although the reaction kinetics are likely affected by the additional 
phosphorylation sites, our model, which contains ERK2 as substrate and activator of 
subGFP was likely not to follow 1st order kinetics even with a single phosphorylation 
site.  
Our screen captures the entire molecular process encompassing: 

- The binding affinity of the D-domain of MKK1 to ERK2 
- The precise targeting of the ERK2 DRS so that the active sites of MKK1 and 

ERK2 in proximity.  
- Allosteric effects of the D-domain binding ERK2 

 
If I understand correctly, positive predicted value=1-false positive rate, I would just 

give false positive rate (in high gate) and false negative rate (in low gate, or low+med 
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gates) in FigS4. Do FRET-tested sorted variant statistics (Fig2I) reflect what you 
expect from positive control and negative control sorting statistics (FigS4)? (A simple 
statistical test would add a quantitative argument on top of the qualitative picture 
provided in the text). 
 
The false positive rate is indeed the complement of the positive predictive value, to 
make this clear, the following changes were made: 
 

-  
- Line 166-167. we expect the positive predictive value of the high gate 

to be 91±2% for encoding functional D- to 
 

 
With regard to a statistical test for the secondary screen, we would have had to 
consider an arbitrary threshold to what constitutes active compared to a non-active 
kinase. For instance, if we set any kinase as being active when they surpass the 
caMKK1I9A/L11A emission ratio, every kinase in the high gate would be active, and we 
would have a false positive rate of 0%, lower than the 8% indicated in Fig. S4. As we 
did not want to set an arbitrary threshold, we choose to analyse the validation in a 
qualitative manner.  
 
 

The authors show a time course of the phosphorylation emulsion assay to find an 
optimal incubation time to discriminate between positive control and negative control. 
Ideally, the library whose phenotypic distribution is a priori unknown should be 
screened with a varying incubation time as well to maximize dynamic range and 
accuracy. In addition, FigS8 shows that chymotrypsin digestion readout also depends 
on time, so this is another parameter that could be used to maximize dynamic range 
and accuracy. I think this point would be worth discussing at least. Additional 
experiments to address this point would be asking for a lot, maybe a simulation would 
be possible without requiring too much time and efforts. 
 
The chymotrypsin digest was always run to completion (after 30 minutes), so that 
additional time would not result in additional cleavage (and has been additionally 
highlighted in as shown in Fig. S8). As a proxy for the bead-assay, the FRET sensor 
can be followed in terms of dynamic range (Rev_Fig 2, Fig. S8). 
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Rev_Fig 2. Time course and of the phosphorylation assay. (Left) IVTT expressed caMKK1(blue) or 
caMKK1I9A/L11A was combined with purified ERK2, and the FRET sensor. After each time point, an aliquot was taken, 
and incubated with chymotrypsin until completion, with the resulting emission ratio plotted. (Right). End point 
measurement after 30 minutes incubation with FRET and ERK2, and additional 30 minutes incubation with 
chymotrypsin.  

In the left panel, IVTT expressed caMKK1 or caMKK1I9A/L11A was mixed with the FRET 
sensor. At each time point, a sample was taken, and chymotrypsin was added to the 
mixture. The point plotted is the emission ratio after 30 minutes of chymotrypsin 
digestion (when it has gone to completion).  

This experiment was done with different volume percentage of IVTT, and based 
on this experiment we chose to use a 5% (v/v) of IVTT for our subsequent FRET based 
assays, incubating for 30 minutes (dotted line) before chymotrypsin digest. (for Fig 2I). 
The comparison of addition of 5 (v/v) % caMKK1 or caMKK1I9A/L11A, incubating for 30 
minutes, before adding chymotrypsin and incubating for an additional 30 minutes can 
be seen in the right panel (and additionally in FigS8, where the end-point after 30 
minutes of CT digestion results in the bar chart shown here). 

Following the same rationale, when caMKK1 has reached saturation (having 
most of their beads in the subGFP positive gate after chymotrypsin digest in the droplet 
based assay) the dynamic range is optimal: caMKK1I9A/L11A will at this timepoint have 
phosphorylated only a fraction of the beads (false positive rate, ~8%) which are likely 
to arise from beads encapsulated in smaller droplets so that the effective concentration 
of caMKK1I9A/L11A is very high.  
 
 

FigS9 illustrates the minimization of PCR cycles to avoid biases using qPCR, which 
is a great idea. But then the authors should show how much of a bias there is in the 
first pace and how minimizing PCR cycles allowed to minimize such bias. This could 
be done by performing different numbers of PCR cycles upstream of sequencing and 

legend is unclear. 
 
Unfortunately we do not have the bead samples anymore that would allow us to 
sequence the output after different number of cycles of amplification on the bead. 
Starting from the assumption that fewer cycles have lower PCR bias, we established 
a protocol with the minimal number of cycles necessary to reach the low-exponential 
threshold set it Fig S9A. We have added Fig. S10, which highlights the correlation of 
the FACS sort to the actual sequencing reads for 2 independent variants in three 
separate emulsions. As our analysis was done on the pool of unique variants found in 
the high activity gate (where each unique variant is counted as one of 29563 options) 
the PCR bias is additionally less compromising. PCR bias would be more detrimental 
if we tried to infer fitness for each individual variant on the basis of sequencing counts, 
which, due to the low resolution of especially the medium and low gate (resulting the 
polydisperse droplets, which increase the spread of caMKK1 and caMKK1I9A/L11A across 
the gates, see above), was unfortunately not possible. 
 

The number of cycles required to reach 
the low-exponential amplification threshold (Black bar  A) was exponentially 
correlated to the number of beads used as  
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FigS11 illustrates the choice of cutoff for the sequence counts to discriminate 
sequencing noise from signal. The choice of the cutoff is however not clearly 
motivated, could you plot the number of distinct sequences as a function of the cutoff 
and show that it becomes nearly constant above the chosen threshold? Also, the 
optimal cutoff is likely determined by the number of PCR cycles shown in FigS9, a 
simulation could help here. 

We refer the reviewer to the discussion in Attachment 1 choosing active variants
for an overview of our thoughts on this issue and to the response above on defining 
the active variants.  
As requested, here we include a plot of the number of sequences as a function of the 
cutoff values (Rev Fig 3, and additionally shown in Supplementary text 2).

This representation shows that there is a marked transition at ~10 high gate reads, so 
the cut-off should not be set lower than that value. Later the curve is continuous, so 
that there is no obvious choice f -off. We based our choice of the 
threshold value 51 on the WT read counts, but also note that alternative choices here 
are valid and they lead to the same conclusions.

FigS11B is not clearly described in the legend. Figs11A, C and D: 20 should be >=20 
on the x-axis I guess.

The annotation in Fig. S11 (Fig. S13 in the revised SI) has been updated to indicate 
where the columns represent a sum of the variants, and the legend clarified. The 
discussion of variant counting was moved and expanded on in the new 
Supplementary Text 2.

-enrichement between a large hydrophobic residue 
-

enrichment proper since only one amino-acid is selected regardless of the other.

Rev Fig 3: The number of active variants as a function of the cutoff number of reads in the high gate.
Highlighted are the two values (10 and 51) which are further evaluated in attachment 1.
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- Line 257: clusters of enrichment wherever a Leu/Ile is present, 
indicating that previously determined non-beneficial residues such as Ala are 
allowed in the context of a hydrophobic anchor residue.  

 
From FigS16B, the Phi-X-Phi motif is rather Phi-X-Phi flanked by A->K amino-acids. 

 
Fig. S16B (the epistasis map of subsets containing -X-
the main figures, as Figure 5B (the enrichment map of subsets containing -X-
motifs) A-K amino-acids. 
 

- Figure 5 legend: -X-
included, there is an epistatic preference for non-hydrophobic residues (Ala, 
Gly, Pro, Tyr, Asp or Lys) in the rest of the D-domain.   

 
caMKK1 is called both wt (Fig3D) and a constitutively active mutant (main text), 

potentially confusing. 
 
As described above, Figure 3D was unclear, and has been removed. This figure 
displayed all single point mutations that were enriched in the high gate in a dummy 
heatmap (from the raw sequencing counts in Fig. S15, but only added confusion to 
the data already present in Fig. S15. 
 
 

Fig3B is not so informative and could be sent to the Sup.Mat. 
 

(Fig.S11). We had included it in the main figures 
before because we felt the low gate unique sequences indicate the quality of the library 
assembly, and the subsequent deviation (enrichment) in the medium and high gate. 
 
 Typo line 690 of the SI. 

 
Corrected 
 

Main text line 360: Leu-D = consensus but low affinity, a really nice illustration of 
epistasis. But I cannot identify Leu-D as a consensus from Fig3C, rather from top left 
panel of FigS15B, Fig16B, Fig17B. Is affinity synonymous with phosphorylation activity 
for a given peptide? (In general substrate affinity does not necessarily correlate with 
enzymatic activity) 
 
Figure 3C (now figure 3B in the revised version) should have indeed been the same 
plot as the top left panels in FigS15B, Fig16B, Fig17B (now S18B, Figure 5B, S19B), 
and has been corrected. The consensus peptide therefore does match the highest 
enriched amino acid at each randomised position. 
 

-domain Lib1-10 as a construct with caMKK1, replacing the wt D-
domain to contain one of 10 possibilities. Each caMKK1 construct was expressed, 
combining 1.25% (v/v) of the IVTT expressed variant with the FRET sensor, and 
measuring the emission ratio at different timepoints by taking an aliquot and incubating 
with chymotrypsin for 30 minutes (Rev Fig 4).  
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Rev_Fig 4. Activity of Lib1-10 D-domain-caMKK1 fusion variants over time.  Each of the individually rescreened 
isolated D-domains Lib1-10 were cloned as fusions with caMKK1, replacing its wildtype D-domain.  

 

 
Rev_Fig 5. Correlating the affinities of Lib1-10 to their enzymatic activity as part of caMKK1.  The affinities 
of the rescreened D-domains Lib1-Lib10 for the DRS of ERK2 were correlated to the enzymatic activity of 
caMKK1 construct with Lib1-Lib10 as its D-domain. 

Each construct of caMKK1 with one of the Lib1-10 as its D-domain is active, and will 
have saturated the phosphorylation cascade after ~120 minutes. The differences in 
activity are most pronounced after 60 minutes incubation and were correlated to the 
affinities of each Lib1-10 (Rev Fig 5). Here, the affinities of the Lib1-Lib10 D-domains 
showed weak correlation with their enzymatic activity, that is, the activity of caMKK1 
constructs with Lib1-Lib10 as their D-domain. Although higher affinity is weakly 
correlated with increase in activity, it is hardly significant (r2=0.2). However, as the 
reviewer suggested, this is no surprise, as several studies have found only weak 
correlation between binding data and enzymatic activity data from high-throughput 
screens of kinase domains (Rudolf et al., DOI 10.1371/journal.pone.0098800). 
 
 

Network analysis: not sure what to take from it, could be sent to the Sup.Mat. as no 
clear message seems to emerge. 
 
We view the network analysis as a showcase of positive epistasis in a highly 
connected network, so we would like to keep it in the main text. Furthermore, the 
network is in line with the expectations of multidimensional or multi-site saturation 
screening, as the holey landscape  model predicts the genotype to permeate all 
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regions of sequence space, underlining the importance of neutral ridges in multi-
dimensional screening.  
 
 Lines 334-335: the authors report no hub in the network but do not show any 

analysis. Can you plot the node degree distribution? And the clustering coefficient 
(probability that neighbours are connected) vs node degree? These plots would clearly 
display the absence/presence of any hierarchical network structure. Also, a color 
heatmap of enrichments would display the enzymatic activity landscape on top of the 
network. 
 
We added the node degree distribution as Fig. S20 and the plot of clustering 
coefficient vs node degree as Fig. S21, with an appropriate reference in the main text. 
These plots show that there is little hierarchical network structure in the sequence 
similarity network, as we had stated before. 
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Attachment 1: Defining the active variants: choosing 
the numerator.

NB. The general conclusions from attachment 1 and 2 are written up as 
Supplementary Note 2, whereas the heatmaps based on alternative formulations of 
the active dataset (numerator) divided over either ideal frequencies or the entire 
recovered diversity (denominator) are additionally implemented as Fig. S14.

In this manuscript we show the enrichment ratios ( ), where the observed 
frequencies for active variants (fobs) are divided by the frequencies expected in a 
perfect library with the ideal distribution of amino acids (fid). The active dataset which 
shapes the numerator fobs comprises all sequences which are recovered from the 
high activity gate and contain >51 sequences

Here we demonstrate that the choice of filtering method for the active dataset does 
not change the enrichment ratios;

SINGLE ENRICHMENT

Att 1. Fig 1: Four choices for defining active variants displayed as heatmaps, with numeric 
value of the log2 enrichment ratio overlaid for comparison.

This plot shows the relative observed AA distribution / ideal distribution ( , 

The four choices of active variants are constructed as follows:
- 10+ sequencing reads in the high gate (Att 1, Fig 1 first heatmap): all 

variants that are abundant in the high gate, regardless of their appearance in 
the other gates. This set is the largest and the most permissive, yet it already 
shows a strong enrichment for L/I in most positions.

- 51+ sequencing reads in the high gate (Att 1, Fig 1 second heatmap): the 
most restrictive choice, examining only variants that are at least as abundant 
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as WT (51 reads) in the high gate, but again ignoring the sequencing counts 
from the lower gates. 

- WT or better distribution of reads (Att 1, Fig 1  third heatmap)): this time, the 
variants may be from any region of the Venn diagram (i.e. have fewer than 10 
reads in the high gate), but must have <30% reads in the low gate (cf. 28% for 
WT) and >40% reads in the high gate (cf. WT 42%). This choice is the largest, 
as it also includes some rarer variants. 

- The combined criterion, this time with high-gate-abundant variants (10+ reads 
in high gate) (Att 1, Fig 1  fourth heatmap) that also have a suitable 
distribution of sequencing reads, i.e. conditions 1 and 3 combined. This option 

-off, while it is 
potentially confusing (using both absolute counts and the distribution 
information). 

In all cases each active variant is counted only once when calculating the 
enrichment, i.e. the amino acid distribution is not weighed according to variant 
abundance within the chosen dataset. 
The choice currently presented in the main manuscript (51+ reads in the high gate) 
shows slightly stronger preferences in positions 9 and 11, but simultaneously slightly 
reduces the calculated preferences in position 7a. Although it may be debated which 
choice is preferred, the enrichment heatmaps ultimately lead to identical conclusions.  
 
  



R22

PAIRWISE ENRICHMENT
Looking beyond the simple sequence preference in the active datasat, we also re-
consider the trends in pairwise enrichment, depending on the choice of active 
variants. 

Att 1. Fig 2: 10+ sequencing reads in the high gate (as Att 1, Fig 1 first heatmap): all 
variants that are abundant in the high gate, regardless of their appearance in the other 
gates. This set is the largest and the most permissive, yet it already shows a strong 
enrichment for L/I in most positions.

10+ reads in high gate
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Att 1. Fig 3. 51+ sequencing reads in the high gate (as Att 1, Fig 1 second heatmap): the 
most restrictive choice, examining only variants that are at least as abundant as WT (51 
reads) in the high gate, but again ignoring the sequencing counts from the lower gates.

51+ reads in high gate
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Att 1. Fig 4. WT or better distribution of reads (as Att 1, Fig 1 third heatmap)): this time, 
the variants may be from any region of the Venn diagram (i.e. have fewer than 10 reads in 
the high gate), but must have <30% reads in the low gate (cf. 28% for WT) and >40% reads 
in the high gate (cf. WT 42%). This choice is the largest, as it also includes some rarer 
variants.

WT-like or better read 
distribution across the three 
gates
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Attachment 2. Defining the enrichment ratios: 
dividing by the ideal distribution or all observed 
variants?
NB. The general conclusions from attachment 1 and 2 are written up as 
Supplementary Note 2, whereas the heatmaps based on alternative formulations of 
the active dataset (numerator) divided over either ideal frequencies or the entire 
recovered diversity (denominator) are additionally implemented as Fig. S14.

In the main manuscript we show the enrichment ratios ( ), where the 
observed frequency for active variants (fobs) are divided by the frequencies expected 
in a perfect library with the ideal distribution of amino acids (fid). We chose this 
denominator because we did not have sequence information for the full, unsorted 
library.
Here, we demonstrate that this choice gives the same results as if we had chosen to 
use the amino acid distribution in all observed variants (fall), which is our best proxy 
for the composition of the entire library.

Table 1: The observed proportion in % of each amino acid (fall) in the combined set of all 
detected variants (505,957 variants).

ALL 6 7A 8A 9 11 13
IDEAL 8.333 7.692 50 8.333 8.333 8.333

A 8.473 7.509 49.624 8.354 8.340 8.448
G 8.168 7.609 7.754 8.267 8.313
P 8.225 7.751 8.455 8.235 8.358
Y 8.362 7.772 8.551 8.175 7.962
D 8.533 7.791 8.329 8.422 8.368
K 8.213 7.668 8.308 8.345 8.395
M 8.346 7.617 8.411 8.370 8.562
V 8.512 7.534 8.337 8.418 8.469
I 7.992 7.809 8.249 8.379 8.423
L 8.454 7.728 8.458 8.452 8.086
F 8.334 7.791 8.371 8.366 8.235
W 8.389 7.600 8.422 8.230 8.382

7.821 50.376

Examining actual distribution of amino acids by position shows that the distribution is 
very even and close to the expected distribution (all within 0.5% absolute deviation 
from the ideal frequencies), but it is difficult to interpret exactly. It is easier to get a 
feel for the data distribution by calculating the difference between fall and fid, 
expressed as a relative difference (fall fid)/fall. This data re-formulation is shown in 
Table 2 below.
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Table 2: The percentage deviation from ideal amino acid frequencies, shaded by absolute 
deviation. 0=blue, ±5 or more % = red. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Most amino acid frequencies are within 2% relative deviation of the ideal frequency, 
with only three exceptions: 

- Glycine at position 9, 
- Isoleucine at position 6, 
- Tyrosine at position 13, 

All of which are mildly depleted (=underrepresented) from the overall library. That 
has the practical effect of reducing the signal/noise ratio for these amino acids if they 
were enriched, and increasing S/N for the depletion. However, these values should 
be considered in tandem with the size of changes we observe in the active variants: 

 

Table 3: The amino acid frequencies by position in the active variants 

Active 6 7a 8a 9 11 13 
IDEAL 8.333 7.692 50 8.333 8.333 8.333 

A 5.451 4.380 50.222 4.995 3.863 7.067 
G 6.263 4.363  3.126 3.476 4.914 
P 11.227 9.558  6.925 4.160 7.114 
Y 6.627 3.994  4.922 4.419 5.426 
D 2.962 1.822  3.393 3.184 5.120 
K 7.578 6.953  4.705 3.651 5.882 
M 9.341 5.345  10.215 7.829 9.564 
V 6.652 7.350  6.399 8.001 10.123 
I 7.631 14.890  14.586 19.311 13.185 
L 15.009 21.956  22.515 23.338 10.902 
F 10.760 7.442  10.184 10.498 9.575 
W 10.498 5.740  8.034 8.268 11.130 

  6.207 49.778    

 

% 
deviation 

6 7a 8a 9 11 13 

IDEAL 8.333 7.692 50 8.333 8.333 8.333 
A 1.67 -2.38 -0.75 0.25 0.09 1.38 
G -1.99 -1.09  -6.95 -0.80 -0.25 
P -1.30 0.76  1.46 -1.18 0.30 
Y 0.35 1.04  2.62 -1.90 -4.46 
D 2.39 1.29  -0.05 1.07 0.41 
K -1.44 -0.31  -0.30 0.14 0.74 
M 0.15 -0.98  0.93 0.45 2.74 
V 2.15 -2.05  0.04 1.01 1.62 
I -4.10 1.51  -1.02 0.55 1.08 
L 1.44 0.46  1.50 1.42 -2.96 
F 0.00 1.28  0.45 0.39 -1.18 
W 0.67 -1.20  1.07 -1.24 0.59 

  1.68 0.75    



R27 
 

Here, the deviations are substantial, reaching 4-fold or more (except for position 8a); 
the deviations are further highlighted in a relative table with colour shading: 

Table 4: The relative deviation from ideal amino acid frequency in active variants 

% 
deviation 6 7a 8a 9 11 13 

IDEAL 8.333 7.692 50 8.333 8.333 8.333 
A -34.59 -43.06 0.44 -47.44 -53.65 -15.20 
G -24.85 -43.28  -47.64 -58.28 -41.03 
P 34.72 24.26  14.70 -50.08 -14.63 
Y -20.47 -48.08  -52.08 -46.97 -34.89 
D -64.46 -76.32  -78.14 -61.79 -38.56 
K -9.06 -9.62  -16.57 -56.18 -29.42 
M 12.10 -30.51  -35.86 -6.06 14.77 
V -20.17 -4.45  -11.80 -3.99 21.48 
I -8.43 93.56  78.68 131.74 58.22 
L 80.11 185.43  163.47 180.06 30.82 
F 29.12 -3.25  -10.70 25.98 14.90 
W 25.98 -25.38  -31.12 -0.78 33.56 

  -19.31 -0.44    
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Consequently, while we observe very minor deviations from ideal amino acid 
distribution in the set of all detected variants, these differences are trumped by the 
changes in amino acid distribution in the active set. When the data is cast into a 
relative enrichment format (see below), the results are visually identical for the plots 
where the different active datasets (see Attachment 1) are divided over the ideal 
frequencies or over the amino acid frequencies in all variants. 

Att 2. Fig 2: Three choices of active variants, with enrichment ratios defined over the 
ideal library distribution or all observed SPliMLiB variants. The log2(ratio) is 
superimposed on the heatmaps to illustrate the small numeric difference. Included in the 
SI as Fig. S14
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As such we believe our choice to present enrichment factors as active/ideal in the 
main manuscript as justified.
Furthermore, there is also no discernible difference on examination of the 2D 
enrichment plots:

Att 2. Fig2: Pairwise enrichment plots for enrichment ratios calculated between the 
distribution in active variants (>51 reads in high gate, as in the main text) compared to the 
ideal distribution; Figure 4 in main text.

Denominator = 
Ideal library distribution
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Att 2. Fig 3. Pairwise enrichment plots for active/all detected variants, where the active 
variants are still those with 51+ reads in the high gate. The plots are arranged identically as in 
the previous figure.

Denominator = 
all detected variants





























Reviewers' Comments: 

Reviewer #1: 
Remarks to the Author: 
The authors have adequately addressed my initial comments and concerns. 

Reviewer #2: 
Remarks to the Author: 
First I want to thank the authors in addressing the questions raised by the three reviewers 
including myself. I can tell that the authors put much effort in composing the rebuttal letter, which 
is among most clearly written I have seen. Most of my questions have been satisfied. My 
contention is mostly focused on the authors analysis of their data using the software MAVE-NN 
that I recommended. I appreciate the authors’ effort in trying to use MAVE-NN to analyze their 
data to estimate the additive and pairwise interaction terms. The authors provided a report of the 
MAVE-NN output and concluded that its model fits are not sensible nor consistent with their 
previous finding. However, I encourage the authors to rerun MAVE-NN and examine more of its 
output more carefully. I want to emphasize that I am not the author of MAVE-NN and this is not 
mandatory and the authors are free to opt out. But I do believe that using a principled method 
that takes into account the measurement noise to analyze the data will make the results a lot 
more robust and help resolve concerns about the current log enrichment ratio calculations raised 
by me and reviewer #3, and potentially other experts in the field. 

For this round of revision, I encourage the authors (a). reexamine their previous model fit more 
thoroughly to check if MAVE-NN had indeed failed; (b). retrain the models with new 
hyperparameters if necessary; (c). report the new results; (d). replace the current enrichment 
ratios with the MAVE-NN inferred single and double mutant effects, if these results are good. I 
elaborate my suggestions below. 

(1) a good way to measure the performance of MAVE-NN is to plot the distribution across bins for 
all possible latent phenotypic value. The authors did make this plot for all three models they fitted. 
However, I note that the plot ranges in the p(y | phi) vs. latent phenotype figures for the three 
models are all -5 to +3. I think it is very unlikely that the three models all happened to have the 
exact same range for their latent phenotypes. And since this plot range is the same as this 
example 
(https://github.com/jbkinney/mavenn/blob/master/mavenn/examples/tutorials/sortseq_mpa_visu
alization.png), I think it is probable that the authors used the same arbitrary plot range for all 
three methods. The actual dynamic range for the latent phenotype could be much wider than what 
is shown. This can explain why the distribution among bins are so uniform across the plotted 
range, since the plots only show the middle region of the phenotypic distribution. So I suggest the 
authors remake these figures using the actual range of phi. 

(2) I think the authors have not provided enough output to examine the effect of single and double 
mutants. For all three models, the authors only provided sequence logos for the single mutant 
effects. While this is one way to visualize single mutational effects, the sequence logo is not very 
readable. And this makes it hard to compare the MAVE-NN results with the results in the paper 
which is presented in a position weight matrix. More importantly, for the two epistatic models, 
there should be a heat map showing the pairwise interaction strengths, similar to figure 4 in the 
manuscript. I believe there are helper methods in MAVE-NN that can automatically generate the 
heat map for both the single mutant and double mutant effects. Therefore, I suggest the authors 
make these figures and compare them with their existing results, for example by making a scatter 
plot and examine the R^2. 

(3) based on the model outputs (for example, in the pairwise model, the non-monotonic relation 
between bin distribution and phenotype, as well as the preference for deletions), I think there are 
reasons to believe that MAVE-NN might have not converged (in particular for the pairwise model) 
and/or the hyperparameters used were not optimal for this dataset. Therefore, I suggest the 
authors try different values for the regularization parameters and learning rate and examine if the 



model had converged by plotting the validation loss against epochs and calculating the 
performance metric (predictive information or log likelihood) on the test set. All of these can be 
done following standard machine learning practice. Since MAVE-NN does not contain as many 
parameters as typical neural networks, finding the optimal hyperparameters should be relatively 
easy. And one way to tell if the models have worked is to see if the performance of the pairwise 
models are better than the additive model. 

(4) the authors raised concerns that the low number of bin numbers might affect MAVE-NN’s 
performance. I want to assure the authors that this is not a problem and that MAVE-NN’s 
framework can work with any bin number larger than 1. 

Reviewer #3: 
Remarks to the Author: 
The revised manuscript and supplement contain mainly new analyses, as well as new data and 
corrections suggested by referees, which altogether clarify and strengthen their work. In their 
revised version and rebuttal letter, the authors have addressed all of my comments. In short, their 
conclusions are robust with respect to the precise choice of the enrichment computation method, 
likely because the signal to noise ratio is very strong in their data (which is a striking feature of 
their new experimental setup). In particular, the library construction method seems to alleviate 
the need for initial frequency measurements as the latter seem to be very close to “ideal 
frequencies”, which is a clearly strong asset of this method. I agree with reviewer 2 that deeper 
analysis of their dataset (e.g. statistical modeling) would be possible/informative and will certainly 
be performed by computational biologists on the published dataset in the near future. The current 
work describes a new and powerful experimental setup, and a first significant step in analyzing the 
experimental data, with robust conclusions regarding how signaling function is encoded in the 
sequence. 

In my opinion their work is thus now ready for publication.










