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Compositional inhomogeneities as a source of
indirect noise in subsonic and supersonic nozzles

By L. Magri†, J. O’Brien AND M. Ihme

1. Motivation and objectives

Engine-core noise in aeronautical gas-turbines is commonly divided into direct and
indirect noise (Strahle 1978; Dowling & Mahmoudi 2015; Ihme 2017). Direct combustion
noise is a source of self-noise, and describes the generation of acoustic pressure fluctua-
tions by unsteady heat release in the combustion chamber (Figure 1). In contrast, indirect
combustion noise represents an induced noise-source mechanism that arises from the in-
teraction between non-acoustic perturbations exiting the combustion chamber and down-
stream engine components. The indirect noise generation by temperature inhomogeneities
arising from hot and cold spots is referred to as entropy noise (Marble & Candel 1977a),
and indirect noise from vorticity fluctuations is referred to as vorticity noise (Cumpsty
1979). Once sound has been generated, its propagation through the engine core depends
on mean flow gradients and the geometry, which distort, diffract and reflect the acoustic
propagation. Contributions of indirect noise to the overall core-noise emission have been
examined theoretically and experimentally. These studies focused on separating out the
contributions to noise from the (i) direct transmission and (ii) entropy noise. Different
techniques have been employed to determine the transfer functions, including compact
nozzle theories (Marble & Candel 1977a) and expansion methods (Stow et al. 2002; Goh
& Morgans 2011; Moase et al. 2007; Giauque et al. 2012; Durán & Moreau 2013). These
theoretical investigations were supported by experimental studies (Bake et al. 2009; Kings
& Bake 2010). These studies showed that indirect combustion noise requires consider-
ation in the analysis of engine-core noise and can exceed the contribution from direct
noise under some circumstances (see, e.g., Dowling & Mahmoudi 2015).

Common to all of these previous investigations, however, is the restriction to a single-
component gas mixture without considering effects of inhomogeneities in mixture com-
position on the indirect noise generation. In particular, compositional inhomogeneities
can arise from incomplete mixing, air dilution, and variations in the combustor exhaust
gas compositions. In this work, it is shown that these inhomogeneities constitute an
additional indirect noise-source mechanism by deriving the differential equations. The
equations for multi-component gas mixtures are considered, and compositional fluctu-
ations are expressed as a function of the mixture fraction. By extending the work of
Ihme (2017); Magri et al. (2016), the governing equations for non-compact nozzles are
derived and discussed. The limit of the compact nozzle is taken to apply the theory and
show (i) the existence of compositional noise acting as a dipole-like acoustic source and
(ii) the relative importance between noise induced by entropy spots, compositional in-
homogeneities and direct noise. Vorticity noise is not investigated because the nozzle is
assumed to be quasi-one-dimensional.

Lastly, the physics of composition noise are examined for each combustion product,
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Figure 1. Pictorial representation of the acoustic sources in the combustion chamber of a gas
turbine. Inspired by Dowling & Mahmoudi (2015).

attempting to draw a link between individual species and changes in a mixture’s propen-
sity to generate indirect noise. The sensitivity of individual species can be explained by
a combination of large differences between the species and mixture’s Gibbs free energy
and strong gradients in product concentration with mixture fraction. However, by ana-
lyzing the species dependency of combustion products at several different mean mixture
fractions, it is found that no single species dominates the noise generation over the com-
bustor’s entire range, but rather which species is the noisiest varies strongly depending
on local stoichiometry.

2. Species-composition inhomogeneities generate sound

A quasi-one-dimensional nozzle flow is considered and it is assumed that (i) the flow
is advection-dominated, hence, viscosity and heat/species diffusion effects are negligible;
(ii) the flow is isentropic; (iii) body forces are negligible; (iv) the gas composition is
parameterized in the mixture fraction space, Z; (v) intermolecular forces are negligible
(thermally perfect gas), hence, the ideal gas state equation is valid; and (vi) vibrational
energy modes are negligible (calorically perfect gas), therefore, the gas constant and
specific heat are functions of the mixture fraction, R = R(Z), cp = γ

γ−1R(Z) and γ =

cp/cv is constant.
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2.1. Governing equations

It can be shown that the problem is governed by
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∂ũ

∂η
, (2.2)

He
∂

∂τ

{
s′

c̄p

}
+ ũ
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where p is the pressure; u is the velocity; s is the entropy; Ψ = 1
cpT

∑Ns

i
µi

Wi

dYi

dZ is

the chemical potential function, where µi is the chemical potential, Wi is the molar
mass, Yi are the Ns species mass fractions; and M = u/c is the Mach number. The non-
dimensionalized variables are denoted by a tilde ,̃ the steady mean-flow quantities by a bar
¯and the unsteady fluctuations by a prime ′. The axial coordinate is non-dimensionalized
as η = x/L, where L is the nozzle axial length; the time as τ = ft, where f is the
frequency of the inlet perturbations; the mean-flow velocity as ũ = ū/c̄a, where c̄a is the
mean-flow speed of sound at the inlet; and the mean-flow speed of sound as c̃ = c̄/c̄a.
The Helmholtz number, He = fL/c̄a, represents the nozzle compactness with respect to
acoustic perturbations, hence, He = 0 in compact nozzles.

A further assumption that was made in the derivation of Eqs. (2.1)-(2.4) is that the
chemical potential function gradient is sufficiently small, which means that the term
ūZ ′∂Ψ̄/∂x is assumed of higher order, therefore, it is neglected. The terms

[
2u′/ū −(γ−

1)p′/γp̄
]
∂ũ/∂η in (2.2) represent refraction and reflection of the acoustics due to the

mean-flow gradient, which can be induced by geometric variations. As already pointed out
by Marble & Candel (1977b), the unsteady interaction between the entropy disturbance
s′ and the mean-flow gradient is a dipole-like source term. New to this analysis is the
identification of the term Ψ̄Z ′∂ũ/∂η as a second source of indirect noise, again through
the action of an acoustic dipole. Physically, not only do density variations create noise
through entropy mechanisms, but also differences in species generate noise through the
chemical potential when mean-flow gradients are present.

2.2. Equations for the Riemann invariants

In such a flow, four integral quantities are globally conserved, which are the mass flow
rate, total enthalpy, entropy and mixture fraction, respectively, and Iṁ = ṁ′/ ¯̇m, IhT

=
h′T /h̄T , Is = s′/c̄p, Iz = Z ′. It is useful to express these invariants in terms of the
compact-nozzle invariants, which are denoted with the superscript C. Due to the mean
flow gradients, it can be shown that IChT

6= IhT
, ICṁ 6= Iṁ. On the other hand, the entropy

and mixture fraction invariants are the same as those in the compact nozzle Is = ICs and
Iz = ICz . The invariants of the non-compact nozzle and the compact configuration are
the same as the mean-flow gradients tend to zero. Therefore, in a general non-compact
nozzle, the compact-nozzle invariants are functions of time and space. Assuming that
the flow is forced harmonically at non-dimensional frequency He, the equations can be



238 Magri, O’Brien & Ihme

recast in terms of the compact-nozzle invariants, yielding
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3. The compact-nozzle limit

In the compact-nozzle limit He → 0, the total enthalpy, mass flow rate, and entropy
invariants read, respectively
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As He → 0, by integration, (2.5) automatically provides the jump conditions across
the nozzle

JICṁKba = 0, JIChT
Kba = 0, JICs Kba = 0, JIcZKba = 0, (3.2)

where the subscripts a and b denote the conditions at the inlet and outlet of the nozzle,
respectively (Figure 2). In a choked nozzle, the variables are constrained by the condition
that the mass flow rate attains a maximum, which yields the additional condition
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Note that the temperature fluctuation, T ′, can be expressed in terms of the other variables
through the linearized equation of state

p′
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=
dR/dZ
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+
ρ′
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+
T ′
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, (3.4)

where (dR/dZ)/R̄ = (dcp/dZ)/c̄p because of assumption (vi) in Section 2. By employing
a characteristic decomposition of the governing equations, four independently evolving
solutions at each side of the nozzle are identified, as shown in Figure 2. They correspond
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Figure 2. Acoustic wave, π, entropy spot, σ, compositional blob, ξ, decomposition in a (a)
subcritical nozzle and (b) supercritical nozzle. Incoming quantities are denoted by solid arrows,
outgoing quantities are denoted by dashed arrows.
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Table 1. Transfer functions for subcritical and supercritical nozzles. The transfer functions
π+
b /π

+
a and π+

b /σa were derived by Marble & Candel (1977a) and the compositional noise

transfer functions π+
b /ξa by Magri et al. (2016).

to the downstream and upstream propagating acoustic waves, advected entropy spot and
compositional blob, respectively, π± = 1/2 [dp′/(γp̄)± du′/c̄] σ = ds′/c̄p, and ξ = dZ ′.

A nozzle transfer function is defined as the ratio between a single output (effect), such
as an outgoing acoustic wave, and a single input (cause), such as an incoming entropy
spot or compositional blob. Possible outputs/inputs are denoted by solid/dashed lines in
Figure 2. The resulting expressions are presented in Table 1 (Magri et al. 2016).

4. Compositional vs. entropy noise for an n-dodecane mixture

By definition, the chemical potential of the substance i is the partial derivative of the
Gibbs energy, G, with respect the number of moles of the same substance, i.e., µi =
(∂G/∂Ni)T,p,nj 6=i

. The chemical potential function, Ψ, is calculated by finite differences

from flamelet calculations Ψ = 1
cpT

∑
i
µi

Wi

dYi

dZ = 1
cpT

dg
dZ , where g is the specific Gibbs

energy (see Section 5 for more details).
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Figure 3. Representation of one-dimensional diffusion flame in mixture-fraction composition
space for three different scalar dissipation rates; first row: flame structure, showing temperature
T̄ (solid black lines), oxygen mass fraction YO2

(blue dot-dashed lines), n-dodecane mass fraction
YC12H26

(red dashed lines), and water mass fraction YH2O
(magenta dotted lines); second row:

chemical potential function Ψ̄a (solid black lines) and specific Gibbs energy of the mixture,
g =

∑ µi
Wi
Yi (dashed red lines). Zst is the stoichiometric mixture fraction; operating conditions:

C12H26/air combustion, Tfuel = Tox = 295 K, p̄ = 1 bar (Magri et al. 2016).

We consider an idealized configuration in which the combustor exhaust-gas composi-
tion enters the nozzle. This exhaust-gas composition is represented from the solution of
a series of one-dimensional strained diffusion flames that include the equilibrium compo-
sition, typically observed at low-power cruise conditions, and highly strained combustion
conditions representative of high-load operation. The flame solutions are generated by
considering n-dodecane (C12H26), a kerosene surrogate, as fuel and air in the oxidizer
stream at operating conditions of 295 K and ambient pressure. The flame structure is
parameterized by mixture fraction, with Z = 0 corresponding to the oxidizer stream and
Z = 1 corresponding to the pure fuel stream. The flame structure is obtained from the
steady-state solution of conservation equations for continuity, species, and energy, which
are solved using the Cantera software package (Goodwin 1998). The reaction chemistry
is described by a 24-species mechanism (Vie et al. 2015).

The degree of straining, i.e., the deviation from equilibrium, is characterized by the
scalar dissipation rate, χ, which is evaluated at stoichiometric condition, corresponding
to a value of Zst = 0.063. Three physically significant operating conditions are consid-
ered (a) χst = 0.1 s−1 (quasi-unstrained condition near equilibrium), (b) χst = 21 s−1 (an
intermediately strained flame condition), and (c) χst = 50 s−1 (highly strained flame at
condition near extinction). The structure of each flame together with the chemical poten-
tial function and specific Gibbs energy is shown in Figure 3. The results are presented as a
function of the transformed mixture-fraction coordinate (1+Zst/Z)−1, which divides the
plot evenly between lean (Z < Zst) and rich (Z > Zst) conditions. The chemical potential
function Ψ can reach values ∼ O(10− 100), with Ψ largest on the lean side of the flame
(Figure 3). These flame solutions can be interpreted as an idealized representation of the
gas composition exiting the combustor. The combustor operates at a global equivalence
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Figure 4. Transfer function ratios for (first row) compositional noise to direct noise and (second
row) compositional noise to entropy noise. The vertical red dashed line indicates the condition
of equivalence ratio of φ = 0.3 (Magri et al. 2016).

ratio φ corresponding to a mean mixture fraction Z, with Z = φZst/[Zst(φ − 1) + 1],
and the corresponding thermochemical state is then taken from the flame solution of
Figure 3.

To assess the compositional noise that is generated, the combustor exhaust composition
for a given value of Z is isentropically compressed through an ideal nozzle, keeping the
mean mixture composition frozen at this flame state. Without loss of generality, it is
assumed that Ma = 0 (higher inlet Mach numbers were tested and the results did not
change appreciably).

The transfer function ratios between compositional noise, direct noise, and entropy
noise for different nozzle flows and combustor exhaust compositions are presented in
Figure 4, which shows the ratio of the transfer functions between compositional and
direct noise and between compositional and entropy noise, respectively, for an ideally
expanded compact nozzle.

First, the transfer function for the compositional noise depends on the nozzle-exit
condition, gas composition and dissipation rate. This is most pronounced for fuel-lean
and supersonic conditions. The dependence of the compositional noise on the gas mixture
at fuel-lean conditions is relevant to aero-engines because it corresponds to the typical
operating regime of modern gas-turbine engines. This sensitivity is a direct result of
stronger variations of the mixture composition and inherent differences in the chemical
potential at fuel-lean conditions. This suggests that variations in the equivalence ratio,
for instance during the engine operation or the consideration of low-emission combustor
concepts, can lead to noise modulation by induced compositional noise, in addition to
direct and entropy noise.

Second, increasing the scalar dissipation rate has effects that are noticeable in fuel-
lean conditions. This is physically attributed to the leakage of reactants and incomplete
combustion, which reduces the chemical potential function. Figure 3 shows the variation
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of the chemical potential function as well as the specific Gibbs energy as a function of the
mixture fraction. The variation in g, and correspondingly the magnitude of Ψ, are largest
at fuel-lean conditions. While this broadening effect is most easily seen in physical space,
it also has a weaker sensitivity in mixture fraction space, leading to the differences with
respect to χst. At extreme temperatures and pressures, where dissociation of diatomic
gases occurs, the sensitivity to the thermodynamic state is likely to be much stronger.

Third, to connect these results to practical applications, we provide an estimate of the
ratio of composition noise to entropy noise by multiplying the corresponding transfer
function ratios with the factor ξa/σa = δZa/(δTa/Ta). This factor is estimated by con-
sidering that the mixture composition at the combustor exit reaches equilibrium with a
mean temperature of Ta = 1085 K, corresponding to an equivalence ratio of φa = 0.3 and
mean mixture fraction of Za = 0.0197 at conditions shown in Figure 3(a). The mixture-
fraction distribution at the combustor exit is represented, to a first approximation, by a
beta-distribution, β(Z). The fluctuation magnitude is estimated as δZa =

√
ζZa(1− Za),

where ζ ∈ [0, 1] is a coefficient for the mixedness (Dimotakis & Miller 1990). In a combus-
tor in which the mixing is nearly completed with ζ = 10−4, the temperature fluctuation
can be evaluated from

δTa =

√∫ 1

0

[T (Z)− Ta]2β(Z)dZ, (4.1)

where T (Z) is the flame solution from Figure 3(a). Hence, one finds that ξa/σa = 0.015,
indicating that the noise ratio at subsonic condition is below ∼ O(10−1). However, this
ratio increases to values of ∼ O(1) in supercritical nozzles, as shown by the red dashed
lines in Figure 4. This suggests that the compositional noise can become a relevant
contributor to indirect combustion noise at these conditions, especially in nozzles with a
shock wave in the divergent section (Magri et al. 2016).

5. Identification of acoustically efficient species

The previous sections have focused on compositional noise at the mixture level. This
section explores the relationship between the chemical properties of individual species and
the amount of indirect noise produced. While the transfer functions in Table 1 present
predictions for the magnitude of compositional noise generated, they do not show how
differences between species concentrations and properties give rise to indirect noise.

The impact of species chemistry is introduced via the term Ψ = (1/cpT )
∑Ns

i=1 (µi/Wi)Yi
in the transfer functions, which effectively represents the mixture’s normalized chemical
potential on a mass basis. Since the chemical potential µ is a term that is not often re-
ported in the literature, an alternative expression for Ψ, based on the Gibbs free energy
of a mixture

Ψ =
1

cpT

∂g(T, p)

∂Z

∣∣∣∣
T,p

=
1

cpT

Ns∑
i=1

gi(T, p)
∂Yi
∂Z

. (5.1)

Analysis of the transfer functions shows that it is differences in the chemical term ∆Ψ
across the nozzle that generate pressure fluctuations, so (5.1) indicates that it is largely
differences in Gibbs free energy ∆gi across the nozzle and strong species gradients ∂Yi/
∂Z that generate large changes in Ψ and compositional indirect noise.

To probe the mechanism’s sensitivity to individual species, the case of a single dodecane-
air flamelet is examined in detail. Specifically, three points along a χ = 1.0 s−1 flamelet
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Figure 6. Variation in species-specific Gibbs free energy gi for common combustion species
and radicals in a dodecane-air flame vs. temperature at p = 1 bar. Solid, broken, and dotted
vertical lines indicate the temperatures corresponding to M = {0, 1, 2} with thick, intermediate,
and thin lines corresponding to lean, stoichiometric and rich conditions, respectively.

solution were chosen for additional analysis, Z∗ = {0.3, 0.5, 0.7}, corresponding to lean,
stoichiometric, and rich conditions, respectively. Figure 5 shows the variation of the com-
position term Ψ as well as the mixture Gibbs free energy for each operating condition.
For the lean case, taken from a high-response region, it can be seen that there are strong
variations in g (≈ 40% from Ma = 0 to Mb = 2) which contribute to the ∆Ψ term that
drives the composition noise. For the stoichiometric and rich cases, the Gibbs free energy
changes less drastically and, correspondingly, both ∆Ψ and the acoustic response are
much lower.

To relate these changes to individual species, Figure 6 shows the variation of species-
specific Gibbs free energy versus temperature for common species. (The pressure depen-



244 Magri, O’Brien & Ihme

(a) Lean mixture, Z∗ = 0.4 (b) Stoichiometric mixture (c) Rich mixture, Z∗ = 0.6

Figure 7. Contribution of the ten most dominant species to Ψ, ∂Yi/∂Z · gi, at different mean
mixture fractions. Black bars (leftmost) correspond to the stagnation condition, red (center)
to an isentropic acceleration from stagnation to Mb = 1, and green (right) bars to Mb = 2.0.
Non-monotonicity in bar height vs Mb generally indicates a change in sign for that species’
contribution.

dence of gi is neglected in this figure since it is known to be relatively weak.) The figure
indicates that the major components of air, O2 and N2, are relatively acoustically ineffi-
cient since their Gibbs free energies are much less sensitive than other common species.
Among combustion products, it can be seen that H2O is substantially more efficient than
CO2 while the fuel is also an efficient species. Radicals such as OH and H are also poten-
tially strong sources of noise; the variation of gH is so strong that it could not be shown
on the same scale as the other species.

However, strong gradients in a species’ gi alone are not sufficient to produce indirect
noise; the relative abundance of these components must also be taken into account. Equa-
tion (5.1) indicates that large values of both ∂gi/∂Mb and strong composition gradients
∂Yi/∂Z must both be present to generate noise. For example, the radical H has much
stronger variation in its mass-specific Gibbs free energy than those of other molecules,
but, due to the chemical instability of the species, it is unlikely to be found at mean-
ingful concentrations regardless of mixture fraction, and therefore cannot generate much
indirect noise. Conversely, the Gibbs free energies of O2 and N2 vary quite weakly with
temperature, but since O2 is consumed and N2 does not diffuse appreciably to the rich
side of the flame, the mass fraction gradients of these species, ∂Yi/∂Z, are large enough
that even their small differences in gi over the expansion produce appreciable noise. Thus,
to more quantitatively identify each species’ contribution to the indirect noise, Figure 7
shows the weighted contribution of each major species to the chemical effects term Ψ or
∂Yi/∂Z · gi.

One major feature of Figure 7 is that, in reacting flows, there does not appear to
be a single species which dominates the production of indirect noise. Instead, the most
acoustically efficient species is a strong function of the mixture stoichiometry, just as
overall noise production varies strongly with Z. For lean mixtures, both O2 (which is
being rapidly consumed) and H2O (which is being rapidly produced) are the strongest
components of composition noise while at rich conditions neither of these molecules
produces appreciable noise. Likewise, dodecane is the dominant noise producer for rich
mixtures, but because it is not (appreciably) present on the lean side of the flame, it has
effectively no impact on noise generation near or below stoichiometric values of Z. From
this, it can be concluded that analysis of the composition noise mechanism must account
for both a device’s intended fuel type and stoichiometry; predictions that only account
for fuel choice will unlikely be accurate over a range of operating conditions.
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6. Conclusions

By modelling inhomogeneities in the gas composition exiting the combustor and enter-
ing a nozzle, the compositional noise is identified as a source of indirect combustion noise,
acting as an acoustic dipole. To describe this source mechanism, the nozzle theory is ex-
tended to consider a multi-component gas mixture and the chemical potential function to
non-compact nozzles. This theory is applied to subcritical and supercritical nozzle flows
in the limit of negligible Helmholtz numbers. It is found that the compositional noise
exhibits strong dependence on the mixture composition, and can become comparable to
– and even exceed – direct noise and entropy noise for supercritical nozzles and lean
mixtures. The case of a dodecane-air flame is examined in detail to identify the indi-
vidual combustion products that contribute most strongly to the acoustic response. It is
found that no single species is responsible for this effect, but, rather, the most acoustically
efficient compound varies with mixture stoichiometry. Independent of stoichiometry, how-
ever, it is seen that species which have high mass fractions, high mass fraction gradients,
and whose molecular weight deviates most strongly from that of the background mixture
are most acoustically efficient. This work suggests that compositional noise may require
consideration with the implementation of low-emission combustors, high power-density
engine cores, or compact burner concepts.
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