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11 source for the extraction of valuable resources. This study investigated the recovery of 

12 reactive MgO from reject brine obtained from a local desalination plant. This was enabled via 

13 the reaction of Mg2+ present within reject brine with an alkali source (NaOH), which led to 

14 the precipitation of Mg(OH)2, along with a small amount of CaCO3. The determination of the 

15 optimum NaOH/Mg2+ ratio led to the production of the highest amount of yield. The 

16 synthesized Mg(OH)2 was further calcined under a range of temperatures (500-700 °C) and 

17 durations (2-12 hours) to produce reactive MgO. A detailed characterization of MgO 

18 obtained under these conditions was presented in terms of its reactivity, specific surface area 

19 (SSA), composition and microstructure. While an increase in the calcination temperature and 

20 duration decreased the reactivity and SSA of MgO, samples calcined at 500 °C for 2 hours 
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25 1 Introduction 

26 Magnesium oxide (MgO) finds use in various applications ranging from the refractory 

27 industry to agriculture, chemical and environmental applications [1-4]. Another increasingly 

28 popular use of reactive MgO was reported in the construction industry as an expansive 

29 additive [5] and as a novel binder in the development of concrete formulations [6-11]. While 

30 the majority of MgO produced today is obtained through the processing of naturally 

31 occurring minerals such as magnesite (MgCO3) [3], around 14% of the global MgO supply is 

32 from the calcination of magnesium hydroxide (Mg(OH)2) synthesized from seawater or 

33 magnesium-rich brine sources. The synthetic MgO obtained from seawater/brine 

34 demonstrates a higher purity and reactivity compared with MgO produced through the 

35 calcination of magnesite [12]. MgO that possesses higher purity and specific surface area 

36 (SSA) is widely used in high-end pharmaceutical and semiconductor applications as an 

37 additive or a catalyst [1-4].

38

39 The recovery of brucite (Mg(OH)2) from seawater/brine deploys the use of a strong base to 

40 precipitate Mg2+ from the solution. During this process, it is essential to reach an appropriate 

41 pH level in order to form the precipitates. Previous studies [13, 14] have shown that the ideal 

42 pH for the formation of carbonates is above 9, which favors the transformation of carbon 

43 dioxide and bicarbonates to CO3
2-. The pH level of gelatinous Mg(OH)2 could be even higher 

44 due to the requirement of surplus hydroxide. These trends were also confirmed by [15], who 

45 demonstrated the occurrence of the precipitation process at a pH of 8.5, whereas higher pH 

46 values led to increased brucite formation. 

47

48 Lime (CaO) [16] or dolomite lime (CaO∙MgO) [17] are used as a base during the synthesis of 

49 Mg(OH)2 from seawater. The use of dolomite lime reduces the amount of seawater/brine 
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50 needed for the production of the same amount of MgO obtained via the use of CaO because 

51 dolomite lime itself contains MgO. However, the uses of these Ca-bearing bases often lead to 

52 the precipitation of Ca-based compounds (e.g. CaCO3) and thus reduce the purity and content 

53 of Mg-based precipitates. Furthermore, the Ca-bearing bases can react with sulphate (SO4
2-) 

54 present in the solution to form gypsum (CaSO4∙2H2O), which may necessitate the pre-

55 treatment of the solution through the addition of CaCl2 to remove sulphate in seawater/brine. 

56

57 Apart from Ca-based bases, several studies have suggested the use of other alkali sources to 

58 precipitate Mg2+ from seawater/brine [15, 18-23]. NaCO3 and NaOH were reported to recover 

59 Ca and Mg from mining and seawater desalination brines. Recovery ratios higher than 94-96 

60 % of Ca were achieved for pH higher than 10 via the use of NaCO3 and recovery ratios 

61 higher than 97-99 % of Mg were achieved for pH higher than 11 via the addition of NaOH 

62 [23]. Another proposed additives was sodium hydroxide (NaOH) along with oxalic acid, 

63 which produce magnesium oxalate (MgC2O4) from brine. Previous studies [21] demonstrated 

64 the selective precipitation of Mg- and Ca-oxalate at different pH values. Ca-oxalate was first 

65 precipitated and removed at an oxalate/Ca molar ratio of 6.82 at a pH of < 1. This was 

66 followed by the precipitation of Mg2+ from the brine residue at a NaOH/oxalate/Mg ratio of 

67 3.21:1:1.62 at a pH range of 3-5.5, leading to a high yield of pure magnesium oxalate.

68

69 These steps can be followed by the production of reactive MgO via the calcination of Mg-

70 containing precipitates, such as magnesium hydroxide and magnesium oxalate. Numerous 

71 studies have been carried out to characterize MgO obtained from different sources [12, 24-

72 32]. The outcomes of these studies have identified the main factors that influence the 

73 properties of MgO produced through the dry route (i.e. decomposition of magnesite) as the 

74 calcination conditions (i.e. temperature and residence time). Accordingly, increased 
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75 calcination temperatures and/or prolonged durations lead to the agglomeration of MgO 

76 particles due to sintering, which decreases the porosity and reactivity of MgO [30].

77

78 Desalination provides an alternative means to meet the residential and industrial water 

79 demands in water-stressed countries like Singapore [33, 34]. Currently, the two desalination 

80 plants in Singapore provide 100 million gallons (448,500 m3) of drinking water on a daily 

81 basis, which can meet 25% of Singapore’s current water demand. With three additional 

82 desalination plants being built, the five desalination plants are designed to provide a total of 

83 190 million gallons (852,150 m3) of water per day by 2020 [35]. On a global level, the daily 

84 production level of desalinated water by 18,426 desalination plants exceeds 86.8 million 

85 cubic meters [36]. Production of desalinated water generates an almost equal amount of reject 

86 brine [20], a high salt concentration waste by-product produced at the end of the desalination 

87 process [37]. Reject brine is often discharged directly back into sea, which threatens the 

88 marine life and ecosystem by altering the local flora and fauna due to its high salinity [38]. 

89 Therefore, the disposal and management of reject brine remains a major challenge as well as 

90 an environmental threat [38, 39], which can pave the way for its use in the recovery of 

91 valuable metals and useful solids instead of direct discharge [40]. 

92

93 The desalination process involves the addition of a variety of chemicals to enable the 

94 precipitation of the colloidal particles before running through the filtration process. 

95 Therefore, the resulting reject brine contains a very high concentration of dissolved salts and 

96 suspended constituents, creating variations in its composition in comparison to seawater, 

97 natural brine or synthetic solutions. While previous studies [15, 18-22] have reported the 

98 synthesis of MgO or its derivatives from seawater, natural brine or synthetic solutions, this 

99 study aims to explore the feasibility of the recovery of Mg2+ from reject brine collected from 
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100 a local desalination plant. The proposed method involves the addition of NaOH, which serves 

101 as a pH adjuster and controls the pH of the solution. Unlike Ca-bearing bases, which often 

102 lead to the precipitation of a Ca-based compound (e.g. CaCO3) along with Mg-phases, the use 

103 of NaOH can increase the purity of Mg-based precipitates. Furthermore, when compared with 

104 other bases (e.g. NH4OH, KOH and Na2CO3), NaOH possesses other advantages in terms of 

105 health and safety, cost effectiveness and base strength it provides [31]. 

106

107 This research presents a comprehensive study on the synthesis of Mg(OH)2 and production of 

108 reactive MgO from reject brine via the use of NaOH. The key parameters affecting the 

109 properties of the synthesized Mg(OH)2 and its calcination to produce reactive MgO were 

110 investigated. Several techniques were utilized to characterize the synthesized Mg(OH)2 and 

111 MgO including inductively coupled plasma-optical emission spectroscopy (ICP-OES), X-ray 

112 powder diffraction (XRD), field emission scanning electron microscopy (FESEM), 

113 thermogravimetric and differential thermal analysis (TG/DTA), Brunauer-Emmett-Teller 

114 (BET) analysis and acid neutralization. Production cost of reactive MgO from reject brine via 

115 the addition of NaOH was calculated to evaluate the economic feasibility of the approach. 

116 Results obtained at the end of this study were used to demonstrate the use of reject brine as an 

117 alternative source for the recovery of MgO with a high reactivity.

118

119 2 Materials and Methodology

120

121 2.1 Materials

122 Reject brine was collected and sampled from a local desalination plant in Singapore, which 

123 adopts a reverse osmosis (RO) membrane system to purify saline water and produce 

124 drinkable water for human use. These membranes reject more than 99.5% of the dissolved 
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125 salts and suspended materials in the feedwater, resulting in a highly concentrated reject waste 

126 stream which contains suspended constituents and a 2- to 7-fold increased concentration of 

127 dissolved salts [33, 34, 41]. Prior to any analysis, the reject brine was first filtrated through a 

128 45 μm membrane filter to remove the large suspended solids. The pH of reject brine as 

129 received was around 8.0. The chemical composition of the reject brine, obtained via 

130 inductively coupled plasma-optical emission spectroscopy (ICP-OES) and ion 

131 chromatography (IC), is summarized in Table 1. Along with Mg2+, which was present at a 

132 concentration of 1718 ppm, other impurities such as Na+, K+ and Ca2+ were also identified in 

133 the reject brine. Sodium hydroxide (NaOH, reagent grade, pellets) supplied by VWR Pte Ltd 

134 in Singapore, was used as the alkaline base in the current study.

135

136 Table 1 Chemical composition of the reject brine used in this study

Element Cl Na SO4 Mg K Ca Sr B Si Li P Al
Concentration 
(ppm)

55243 13580 4423 1718 845.7 471.3 14.6 3.8 3.7 0.3 0.2 0.1

137

138 2.2 Methodology

139 Different amounts of NaOH solution (16 M) were added into 200 ml of reject brine to study 

140 the influence of NaOH/Mg2+ molar ratio (ranging from 2 to 4) on the recovery of Mg2+. 

141 NaOH solution was added into reject brine at once and the initial pH of solution was recorded. 

142 The solution was mixed at constant speed of 300 rpm by a magnetic stirrer at room 

143 temperature (25 °C). A pH/thermometer probe was used to monitor and record the 

144 temperature and pH of the reaction in the solution. Experiment was terminated when the pH 

145 of the solution stabilized. The solids were separated from the residual brine through a 

146 centrifuge. After the solids were collected, they were re-dispersed and washed thoroughly by 

147 ultra-pure water in an ultrasonic bath to remove surface-attached ions. The washed solids 

148 were separated from the solution through a centrifuge. This washing process was repeated for 

https://en.wikipedia.org/wiki/Ion_chromatography
https://en.wikipedia.org/wiki/Ion_chromatography
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149 three times to remove surface-attached ions and soluble salts. The washed solids were then 

150 oven-dried at 105 °C for 24 hours to remove free water before grinding into powder form. 

151 The ground samples were calcined at pre-determined temperatures (500-700 °C) and 

152 durations (2-12 hours) in an electric furnace to produce reactive MgO.

153

154 Several techniques were utilized to characterize the synthesized Mg(OH)2 and MgO. X-ray 

155 powder diffraction (XRD) was performed via a Bruker D8 Advance with a Cu Kα source 

156 under the operation conditions of 40 kV and 40 mA, emitting radiation with a wavelength of 

157 1.5405 angstroms, scan rate of 0.02 °/step, and a 2θ range of 5 to 70°. A JSM-7600F thermal 

158 field emission scanning electron microscopy (FESEM) was used to analyze the 

159 microstructure of the solids by imaging powder surface. The decomposition of each sample 

160 was studied via thermogravimetric and differential thermal analysis (TG/DTA) using a 

161 PyrisDiamond TGA 4000 operated at a heating rate of 10 °C/min under air flow. The specific 

162 surface area (SSA) of the synthesized samples was obtained by Brunauer-Emmett-Teller 

163 (BET) analysis from nitrogen adsorption-desorption isotherms using a Quadrasorb Evo 

164 automated surface area and pore size analyser. The reactivity of MgO was measured by acid 

165 neutralization, during which 0.28 grams of the synthesized MgO was added into 50 ml of 

166 0.07 mol/L citric acid solution along with phenolphthalein (i.e. pH indicator). The 

167 neutralization time was measured and reported as an indicator of reactivity [3, 30].

168

169 Economic feasibility of the production of reactive MgO from reject brine in this study was 

170 evaluated and compared with other production routes. The total cost of the production of 

171 reactive MgO from reject brine mainly consists of the raw material cost for synthesis (e.g. 

172 NaOH) and the energy cost during calcination. Reject brine is the waste water produced at the 

173 end in the desalination plant, and thus the material cost and energy cost of reject brine are 



`8

174 assumed to be zero. Transportation of raw materials and the grinding and packing of reactive 

175 MgO products are not considered into the calculation since they do not contribute 

176 significantly to the overall process. 

177

178 3 Results and Discussion

179

180 3.1 Recovery of Mg2+ and Ca2+ from reject brine

181 The formation of Mg(OH)2 was observed via the reaction between the Mg2+ in the reject brine 

182 and OH- provided by NaOH. The addition of NaOH also enabled the conversion of HCO3
-, 

183 present in the reject brine, to CO3
2-. This led to a reaction of CO3

2- with Ca2+ and resulted in 

184 the precipitation of CaCO3. The reaction paths observed during this process are shown in 

185 Equations 1-4 below.

186

187 NaOH(aq)  →  Na+ + OH-      (1)

188 Mg2+ + 2OH- ↔ Mg(OH)2      (2)

189 NaOH(aq) + HCO3
- ↔ CO3

2- + Na+ + H2O           (3)

190 Ca2+ + CO3
2- ↔ CaCO3      (4)

191

192 The kinetics of the reaction between reject brine and NaOH reflected by the change of pH are 

193 summarized in Figure 1. A rapid reaction was observed, which was completed in less than 30 

194 minutes as the pH reached an equilibrium state. The pH increased with the molar ratio of 

195 NaOH/Mg2+. This was due to the increased concentration of OH- provided by the higher 

196 amounts of NaOH introduced into the solution, whereas a smaller increase was observed at 

197 NaOH/Mg2+ ratios of > 2.5.

198
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199

200 Figure 1 pH of the reaction between reject brine and NaOH at different NaOH/Mg2+ ratios

201

202 Figure 2 shows the recovery rate of Mg2+ and Ca2+ in weight percentage after the reaction of 

203 reject brine with NaOH. As can be seen, the recovery rates for both Mg2+ and Ca2+ increased 

204 with increasing NaOH/Mg2+ molar ratio, which achieved a similar recovery level of 94-99% 

205 of Mg as reported in [23]. The recovered Mg2+/Ca2+ ratio was used as an indication of the 

206 purity level of the resulting Mg(OH)2 precipitates. As shown in Figure 2, Mg2+/Ca2+ was 

207 highest (19.6) at a NaOH/Mg2+ ratio of 2 and decreased with increasing NaOH/Mg2+ ratio. 

208 This was because at a NaOH/Mg2+ molar ratio of 2, the ion product in the solution 

209 ([Mg2+][OH-]2 = 7×10-8.6 mol3 l-3, pH = 11.2) was larger than the solubility product constant 

210 of Mg(OH)2 (1.8×10-11 mol3 l-3) [42]. The supersaturation condition enabled the reaction 

211 between OH- and Mg2+ and the formation of Mg(OH)2. Furthermore, pH increased with 

212 increasing NaOH/Mg2+, which provided excessive OH- in the solution to attack HCO3
-. This 

213 caused in a shift in Equation 3 towards the right hand side, resulting in the generation of 

214 additional CO3
2-. The excessive CO3

2- reacted with Ca2+ in the solution to produce more 

215 CaCO3, thus lowing the overall Mg2+/Ca2+ ratio.
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216

217

218 Figure 2 Percentage of Mg2+ and Ca2+ sequestrated from reject brine as a function of the 

219 NaOH/Mg2+ molar ratio

220

221 3.2 Characterization of the synthesized Mg(OH)2

222

223 3.2.1 XRD

224 Figure 3 shows the XRD diffractograms of Mg(OH)2 obtained from the reaction of reject 

225 brine and NaOH at different NaOH/Mg2+ molar ratios. The diffraction patterns of all samples 

226 demonstrated the presence of Mg(OH)2 along with CaCO3. A shift in the crystal structure of 

227 CaCO3 from aragonite to calcite was observed at increased NaOH/Mg2+ ratios. This could be 

228 attributed to the presence of Mg2+ in brine, which inhibited the precipitation of calcite and 

229 favored the formation of aragonite at low NaOH/Mg2+ ratios [43]. Alternatively, the high pH 

230 of the solution at elevated NaOH/Mg2+ ratios, at which the influence of Mg2+ was minimal, 

231 favored the formation of calcite.

232
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233

234 Figure 3 XRD diffractograms of Mg(OH)2 obtained from the reaction of reject brine with 

235 NaOH at different NaOH/Mg2+ molar ratios

236

237 3.2.2 FESEM

238 The morphologies of Mg(OH)2 samples obtained at different NaOH/Mg2+ molar ratios were 

239 investigated by FESEM, as shown in Figure 4. A plate-like morphology was observed at a 

240 NaOH/Mg2+ ratio of 2. The morphology of Mg(OH)2 transformed into a granular pattern 

241 consisting of a denser structure at increased NaOH/Mg2+ ratios, which could be due to the 

242 increased pH of the solution. This was because higher pH values led to the generation of 

243 higher concentrations of OH- in the solution. The increased availability of OH- accelerated 

244 the nucleation of Mg(OH)2 crystals and enabled the formation of larger amounts of Mg(OH)2, 

245 facilitating the densification of the overall structure.

246
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247   

248    

249 Figure 4 FESEM images of Mg(OH)2 obtained from the reaction of reject brine with NaOH 

250 at different NaOH/Mg2+ molar ratios of (a) 2, (b) 2.5, (c) 3 and (d) 4

251

252 3.2.3 TG/DTA

253 Figure 5 illustrates a typical TG/DTA graph of Mg(OH)2 obtained via the reaction of brine 

254 with NaOH at a NaOH/Mg2+ molar ratio of 2. The dehydration of Mg(OH)2 took place at 

255 ~400 °C and resulted in a mass loss of around 24.2%, which was attributed to the loss of 

256 water. The decomposition patterns observed during TG/DTA were in line with previous 

257 studies that investigated the decomposition of Mg(OH)2 into MgO [24, 26-28, 30, 32]. The 

258 second endothermic peak, observed at ~720 °C, was due to the decarbonation of CaCO3. The 

259 decomposition of CaCO3 led to the release of CO2, resulting in a mass loss of around 2.3%.

260

(a) (b)

(c) (d)

1 m

1 m

1 m

1 m
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261

262 Figure 5 A typical TG/DTA curve of Mg(OH)2 obtained from the reaction of reject brine at a 

263 NaOH/Mg2+ molar ratio of 2

264

265 Table 2 summarizes the TG/DTA results of Mg(OH)2 obtained from the reaction of brine 

266 with NaOH at various NaOH/Mg2+ ratios ranging between 2 and 4. The results show that the 

267 mass loss due to dehydration of Mg(OH)2 at ~400 °C slightly decreased (24.2 to 22.6%), 

268 while the mass loss due to decarbonation of CaCO3 at ~720 °C slightly increased (2.3 to 3.9%) 

269 with increasing NaOH/Mg2+ ratios. This was mainly attributed to the increased content of 

270 CaCO3 in the precipitates at higher NaOH/Mg2+ ratios, which was in line with the findings 

271 shown in Figure 2.

272

273 Table 2 TG/DTA results of the decomposition of Mg(OH)2 obtained from the reaction of 

274 reject brine with NaOH at different NaOH/Mg2+ ratios

Mg2+/
NaOH

Peak
temperature (°C)

Mass loss between
340-440 °C (%)

Peak 
temperature (°C)

Mass loss between
650-750 °C (%)

1:2 402.2 24.2 715.3 2.3
1:2.5 401.2 23.5 721.1 3.2
1:3 400.8 23.3 719.3 3.5
1:4 404.1 22.6 724 3.9

275
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276 Table 3 compares the compositions of the synthesized Mg(OH)2 based on the TG/DTA 

277 (Table 2) and the ICP-OES (Figure 2) results. Both measurements revealed similar trends, 

278 showing a decrease in the mass percentage of Mg(OH)2, accompanied with an increase in the 

279 mass percentage of CaCO3 (and thus a decrease in the purity of precipitates) with increasing 

280 NaOH/Mg2+ molar ratios, which was further discussed in Section 3.1. Accordingly, the 

281 highest amount of Mg(OH)2 (93.7% by TGA and 95.4% by ICP-OES) was synthesized at a 

282 NaOH/Mg2+ molar ratio of 2. Therefore, this ratio was chosen as the optimum condition for 

283 the subsequent production and characterization of reactive MgO. 

284

285 Table 3 Composition of synthesized Mg(OH)2 based on TG/DTA and ICP-OES results

TG/DTA ICP-OESMg2+/NaOH
Mg(OH)2
(%)

CaCO3
(%)

Mg(OH)2
(%)

CaCO3
(%)

1:2 93.7 6.3 95.4 4.6
1:2.5 91.2 8.8 91.2 8.8
1:3 90.4 9.6 90.6 9.4
1:4 89.2 10.8 88.1 11.9

286

287 3.3 Characterization of the synthesized reactive MgO

288

289 3.3.1 SSA

290 Figure 6 presents the SSA of the reactive MgO obtained under different calcination 

291 conditions. In general, SSA reduced with increasing calcination temperature and duration, 

292 which was in line with the findings of previous studies [24, 26-28, 30, 32]. This was 

293 associated with the sintering and agglomeration of MgO grains at higher temperature and 

294 prolonged residence times. In the current study, the highest SSA of 51.4 m2/g was obtained 

295 when the synthesized Mg(OH)2 was calcined at 500 oC for 2 hours. When compared to other 

296 studies, the SSA value (51.4 m2/g) obtained under these conditions was significantly higher 

297 than the results presented in the literature, where MgO synthesized from a magnesium 
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298 chloride solution via the addition of NaOH and calcined under the same conditions (i.e. 500 

299 oC for 2 hours), was reported to possess a SSA of 22.1 m2/g [44]. However, compared with 

300 our previous study, MgO calcined at 500 °C for 2 hours from reject brine via the addition of 

301 NH4OH  showed a higher SSA of 78.8 m2/g [31]. This could be because the use of NaOH as 

302 the alkali source was found to form Mg(OH)2 with a globular cauliflower-like morphology; 

303 while the use of NH4OH resulted in a more porous plate-like morphology [31]. A relative 

304 more porous mother precursor would result in a more porous MgO, thus a higher reactivity. 

305 These values can be optimized even further with an adjustment of the calcination temperature 

306 and duration towards the lower range, while enabling the complete decomposition of 

307 Mg(OH)2.

308

309

310 Figure 6 SSA of MgO produced under different calcination temperatures and durations

311

312 3.3.2 Reactivity

313 Figure 7 shows the acid reactivity of MgO obtained under different calcination conditions. 

314 An increase in the neutralization time was observed with increasing calcination temperature 
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315 and duration, which reflected the reduction in the reactivity of MgO. This observation 

316 corresponded well with the SSA measurements reported earlier in Figure 6. A comparison of 

317 the reactivity and SSA of MgO is shown in Figure 8, where the inverse correlation between 

318 the two parameters was revealed. Accordingly, MgO samples with higher SSA resulted in 

319 shorter acid neutralization times, which was an indication of their higher reactivities. These 

320 findings were in line with those reported in earlier studies [12, 30], where a direct correlation 

321 between the SSA and reactivity of MgO was reported. 

322

323

324 Figure 7 Effect of calcination temperature and duration on the reactivity of MgO

325
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326

327 Figure 8 Relationship between the SSA and the reactivity of MgO

328

329 3.3.3 XRD

330 Figure 9 illustrates the diffractograms of MgO obtained via the calcination of Mg(OH)2, 

331 which was synthesized at a NaOH/Mg2+ molar ratio of 2. The main peak positions of the 

332 synthesized MgO were located at ~37.0°, 42.9° and 62.3° 2θ, which matched well with the 

333 reference peaks of MgO indicated in JCPDS card no. 89-7746. These peaks were 

334 accompanied with a few minor peaks attributed to CaCO3. The absence of Mg(OH)2 peaks 

335 indicated the complete decomposition of brucite under the calcination conditions adopted in 

336 this study. Aragonite, which was initially present along with Mg(OH)2, transformed into 

337 calcite at higher calcination temperatures of 600 °C [45]. A further increase in the calcination 

338 temperature (700 °C) and duration led to a reduction in the intensity of the calcite peaks due 

339 to decomposition of CaCO3.

340
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341

342 Figure 9 XRD diffractograms of reactive MgO produced via the calcination of Mg(OH)2 

343 under different temperatures and durations

344

345 3.3.4 FESEM

346 A further investigation on the influence of calcination temperature and duration on the SSA 

347 of MgO was revealed through FESEM. The changes in the microstructure of MgO at 

348 increased temperatures and durations are indicated in Figure 10, which is a good indication of 

349 the typical morphology of MgO produced at a calcination temperature of 500-700 °C and a 

350 residence time of 2-12 hours. The microstructure of MgO was composed of a single particle 

351 which was a combination of several grains. A plate-like morphology, which was inherited 

352 from the parent material (Mg(OH)2), was observed throughout the microstructure of MgO 

353 produced at lower temperatures. An increase in the particle size, accompanied with the 

354 creation of a more porous structure, was observed at increased temperatures and durations. 

355 The loss of water during the decomposition of Mg(OH)2 led to the formation of a porous 

356 structure, which gradually reduced with the increase in the size of the MgO grains due to 

357 continued sintering, causing a reduction in the total pore volume.  
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358

359         

360         

361          

362 Figure 10 FESEM images of MgO obtained from the calcination of Mg(OH)2 under different 

363 conditions: (a) 500°C-2h, (b) 500°C-6h, (c) 500°C-12h, (d) 600°C-2h, (e) 600°C-6h, (f) 

364 600°C-12h, (g) 700°C-2h, (h) 700°C-6h and (i) 700°C-12h

365

366 3.4 Economic feasibility 

367 The costs of the production of reactive MgO from reject brine via the addition of NaOH, NH3, 

368 or CaO were calculated and compared. In the first step, base is added into reject brine to 

369 precipitate Mg(OH)2. Raw material costs of NaOH, NH3, and CaO are reported to be 

370 ~S$571/ton NaOH [46], ~S$525/ton NH3 [47], and ~S$170/ton CaO [48], respectively. Cost 

371 of reject brine, transportation of raw materials, and grinding and packing of reactive MgO are 

372 not considered. Since a production yield of 1 ton reactive MgO requires 2 tons NaOH, 1 ton 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

1 m 1 m 1 m

1 m 1 m 1 m

1 m 1 m 1 m



`20

373 NH3, or 1.4 ton CaO as the base source, the raw material costs are calculated to be 

374 S$1142/ton MgO, S$525/ton MgO and S$238/ton MgO via the addition of NaOH, NH3, or 

375 CaO, respectively. 

376

377 The resulting Mg(OH)2 produced in the first step was in the form of filter cake which consists 

378 of 55.2% solids and 44.8% free water. In the second step, Mg(OH)2 filter cake was calcinated 

379 to produce MgO. Energy consumption during calcination of Mg(OH)2 filter cake is derived 

380 by considering the following two steps: (i) Energy consumed to increase the temperature 

381 from room temperature (298 K, 25 °C) to the decomposition temperature of Mg(OH)2 (773K, 

382 500 °C), and (ii) enthalpy of decomposition of Mg(OH)2 [3]. A production yield of 1 ton 

383 MgO requires decomposing 1.45 ton Mg(OH)2 and the decomposition temperature of 

384 Mg(OH)2 under one atmosphere CO2 pressure is in the range between 773 and 973 K (500 

385 and 700 °C). Firstly the energy required to raise the temperature from ambient air (298 K) to 

386 the decomposition temperature (773 K) is calculated using the formula: Cp × increase in 

387 temperature (K). The specific heat capacity (Cp) of Mg(OH)2 at 773 K is 1.78 kJ/kg K, which 

388 results in the energy demand of 1.15 GJ in consideration of the purity of the synthesized 

389 Mg(OH)2 of ~94%. The energy required for decomposition of Mg(OH)2 is calculated based 

390 on the enthalpy of decomposition (1304 kJ/kg K), which brings in 1.77 GJ. As for the free 

391 water, energy required to increase temperature of free water from room temperature (298 K) 

392 to the boiling point (373 K) is calculated based on the specific heat capacity of water (4.18 

393 kJ/kg K) and the percentage of water in the filter cake (44.8%), resulting in 0.37 GJ. This is 

394 followed by the enthalpy of the vaporization of water (2283 kJ/kg K), resulting in 2.69 GJ. 

395 Finally the energy required to heat up the resultant steam to 773 K is calculated via the heat 

396 capacity of water vapour (1.86 kJ/kg K), bringing in 0.88 GJ. The total energy required for 

397 the calcination process is the summation of the energy required for each individual step, 
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398 resulting in a total of 6.85 GJ (1902.8 kWh) for the production of 1 ton reactive MgO from 

399 reject brine via the addition of base. As of 2015, Singapore uses natural gas (95%) and others 

400 (4%) for the power generation at a price of  20.2 cents per kWh [49], which results in an 

401 energy cost of S$384 to product 1 ton reactive MgO from reject brine via the addition of a 

402 base.

403

404 Production cost of the resulting MgO via the addition of NaOH, NH3, and CaO in reject brine 

405 are S$1526, S$909, and S$622 per ton MgO, respectively, as shown in Figure 11. Price of 

406 MgO produced via a dry route in the US market was reported to be S$617 per ton MgO [50]. 

407 Thus, a cheaper base alternative would make the production of reactive MgO from reject 

408 brine more economically feasible. Furthermore, synthetic MgO from reject brine shows a 

409 much higher purity and reactivity compared to the dry route as the SSA of commercial MgO 

410 is usually ~20 m2/g [3], which makes synthetic MgO more competitive in the global market.

411

412

413 Figure 11 Production cost of reactive MgO from reject brine via the addition of NaOH, NH3, 

414 or CaO. 

415

https://en.wikipedia.org/wiki/Natural_gas
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416 4 Conclusions

417 This study presented a comprehensive investigation on the synthesis of Mg(OH)2 and 

418 production of reactive MgO from reject brine via the use of NaOH. The key parameters 

419 affecting the properties of the synthesized Mg(OH)2 and its calcination to produce reactive 

420 MgO were revealed. The results demonstrated the feasibility of recovering reactive MgO 

421 from reject brine obtained as a waste at the end of the desalination process. The initial set of 

422 experiments successfully demonstrated the use of NaOH as an alkali source in the 

423 precipitation of Mg(OH)2 from reject brine. The effect of the NaOH/Mg2+ ratio on the final 

424 yield was investigated with the goal of optimizing the amount and purity of the synthesized 

425 Mg(OH)2. An optimum NaOH/Mg2+ ratio of 2, which generated the highest purity of 

426 Mg(OH)2, was determined and used in the subsequent production of MgO. The influence of 

427 calcination conditions (i.e. temperature and residence time) on the reactivity of MgO obtained 

428 via the calcination of the synthesized Mg(OH)2 were reported. While a certain minimum 

429 temperature was required for the complete decomposition of Mg(OH)2 into MgO, an increase 

430 in the calcination temperature and duration lowered the reactivity of MgO. Calcination of 

431 Mg(OH)2 at 500 ºC for 2 hours resulted in the most reactive MgO samples, with a SSA of 

432 51.4 m2/g. This study demonstrated that reject brine can be considered as a feasible and 

433 economic alternative source for the sustainable recovery of MgO with a high reactivity, 

434 which can be used in various applications within the food, cosmetics, pharmaceutical and 

435 construction industries [1-3].

436
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9 Abstract

10 Reject brine, generated as a waste at the end of the desalination process, presents a useful 

11 source for the extraction of valuable resources. This study investigated the recovery of 

12 reactive MgO from reject brine obtained from a local desalination plant. This was enabled via 

13 the reaction of Mg2+ present within reject brine with an alkali source (NaOH), which led to 

14 the precipitation of Mg(OH)2, along with a small amount of CaCO3. The determination of the 

15 optimum NaOH/Mg2+ ratio led to the production of the highest amount of yield. The 

16 synthesized Mg(OH)2 was further calcined under a range of temperatures (500-700 °C) and 

17 durations (2-12 hours) to produce reactive MgO. A detailed characterization of MgO 

18 obtained under these conditions was presented in terms of its reactivity, specific surface area 

19 (SSA), composition and microstructure. While an increase in the calcination temperature and 

20 duration decreased the reactivity and SSA of MgO, samples calcined at 500 °C for 2 hours 

21 revealed the highest reactivity, which was reflected by their SSA of 51.4 m2/g.

22
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25 1 Introduction 

26 Magnesium oxide (MgO) finds use in various applications ranging from the refractory 

27 industry to agriculture, chemical and environmental applications [1-4]. Another increasingly 

28 popular use of reactive MgO was reported in the construction industry as an expansive 

29 additive [5] and as a novel binder in the development of concrete formulations [6-11]. While 

30 the majority of MgO produced today is obtained through the processing of naturally 

31 occurring minerals such as magnesite (MgCO3) [3], around 14% of the global MgO supply is 

32 from the calcination of magnesium hydroxide (Mg(OH)2) synthesized from seawater or 

33 magnesium-rich brine sources. The synthetic MgO obtained from seawater/brine 

34 demonstrates a higher purity and reactivity compared with MgO produced through the 

35 calcination of magnesite [12]. MgO that possesses higher purity and specific surface area 

36 (SSA) is widely used in high-end pharmaceutical and semiconductor applications as an 

37 additive or a catalyst [1-4].

38

39 The recovery of brucite (Mg(OH)2) from seawater/brine deploys the use of a strong base to 

40 precipitate Mg2+ from the solution. During this process, it is essential to reach an appropriate 

41 pH level in order to form the precipitates. Previous studies [13, 14] have shown that the ideal 

42 pH for the formation of carbonates is above 9, which favors the transformation of carbon 

43 dioxide and bicarbonates to CO3
2-. The pH level of gelatinous Mg(OH)2 could be even higher 

44 due to the requirement of surplus hydroxide. These trends were also confirmed by [15], who 

45 demonstrated the occurrence of the precipitation process at a pH of 8.5, whereas higher pH 

46 values led to increased brucite formation. 

47

48 Lime (CaO) [16] or dolomite lime (CaO∙MgO) [17] are used as a base during the synthesis of 

49 Mg(OH)2 from seawater. The use of dolomite lime reduces the amount of seawater/brine 
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50 needed for the production of the same amount of MgO obtained via the use of CaO because 

51 dolomite lime itself contains MgO. However, the uses of these Ca-bearing bases often lead to 

52 the precipitation of Ca-based compounds (e.g. CaCO3) and thus reduce the purity and content 

53 of Mg-based precipitates. Furthermore, the Ca-bearing bases can react with sulphate (SO4
2-) 

54 present in the solution to form gypsum (CaSO4∙2H2O), which may necessitate the pre-

55 treatment of the solution through the addition of CaCl2 to remove sulphate in seawater/brine. 

56

57 Apart from Ca-based bases, several studies have suggested the use of other alkali sources to 

58 precipitate Mg2+ from seawater/brine [15, 18-23]. NaCO3 and NaOH were reported to recover 

59 Ca and Mg from mining and seawater desalination brines. Recovery ratios higher than 94-96 

60 % of Ca were achieved for pH higher than 10 via the use of NaCO3 and recovery ratios 

61 higher than 97-99 % of Mg were achieved for pH higher than 11 via the addition of NaOH 

62 [23]. Another proposed additives was sodium hydroxide (NaOH) along with oxalic acid, 

63 which produce magnesium oxalate (MgC2O4) from brine. Previous studies [21] demonstrated 

64 the selective precipitation of Mg- and Ca-oxalate at different pH values. Ca-oxalate was first 

65 precipitated and removed at an oxalate/Ca molar ratio of 6.82 at a pH of < 1. This was 

66 followed by the precipitation of Mg2+ from the brine residue at a NaOH/oxalate/Mg ratio of 

67 3.21:1:1.62 at a pH range of 3-5.5, leading to a high yield of pure magnesium oxalate.

68

69 These steps can be followed by the production of reactive MgO via the calcination of Mg-

70 containing precipitates, such as magnesium hydroxide and magnesium oxalate. Numerous 

71 studies have been carried out to characterize MgO obtained from different sources [12, 24-

72 32]. The outcomes of these studies have identified the main factors that influence the 

73 properties of MgO produced through the dry route (i.e. decomposition of magnesite) as the 

74 calcination conditions (i.e. temperature and residence time). Accordingly, increased 
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75 calcination temperatures and/or prolonged durations lead to the agglomeration of MgO 

76 particles due to sintering, which decreases the porosity and reactivity of MgO [30].

77

78 Desalination provides an alternative means to meet the residential and industrial water 

79 demands in water-stressed countries like Singapore [33, 34]. Currently, the two desalination 

80 plants in Singapore provide 100 million gallons (448,500 m3) of drinking water on a daily 

81 basis, which can meet 25% of Singapore’s current water demand. With three additional 

82 desalination plants being built, the five desalination plants are designed to provide a total of 

83 190 million gallons (852,150 m3) of water per day by 2020 [35]. On a global level, the daily 

84 production level of desalinated water by 18,426 desalination plants exceeds 86.8 million 

85 cubic meters [36]. Production of desalinated water generates an almost equal amount of reject 

86 brine [20], a high salt concentration waste by-product produced at the end of the desalination 

87 process [37]. Reject brine is often discharged directly back into sea, which threatens the 

88 marine life and ecosystem by altering the local flora and fauna due to its high salinity [38]. 

89 Therefore, the disposal and management of reject brine remains a major challenge as well as 

90 an environmental threat [38, 39], which can pave the way for its use in the recovery of 

91 valuable metals and useful solids instead of direct discharge [40]. 

92

93 The desalination process involves the addition of a variety of chemicals to enable the 

94 precipitation of the colloidal particles before running through the filtration process. 

95 Therefore, the resulting reject brine contains a very high concentration of dissolved salts and 

96 suspended constituents, creating variations in its composition in comparison to seawater, 

97 natural brine or synthetic solutions. While previous studies [15, 18-22] have reported the 

98 synthesis of MgO or its derivatives from seawater, natural brine or synthetic solutions, this 

99 study aims to explore the feasibility of the recovery of Mg2+ from reject brine collected from 
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100 a local desalination plant. The proposed method involves the addition of NaOH, which serves 

101 as a pH adjuster and controls the pH of the solution. Unlike Ca-bearing bases, which often 

102 lead to the precipitation of a Ca-based compound (e.g. CaCO3) along with Mg-phases, the use 

103 of NaOH can increase the purity of Mg-based precipitates. Furthermore, when compared with 

104 other bases (e.g. NH4OH, KOH and Na2CO3), NaOH possesses other advantages in terms of 

105 health and safety, cost effectiveness and base strength it provides [31]. 

106

107 This research presents a comprehensive study on the synthesis of Mg(OH)2 and production of 

108 reactive MgO from reject brine via the use of NaOH. The key parameters affecting the 

109 properties of the synthesized Mg(OH)2 and its calcination to produce reactive MgO were 

110 investigated. Several techniques were utilized to characterize the synthesized Mg(OH)2 and 

111 MgO including inductively coupled plasma-optical emission spectroscopy (ICP-OES), X-ray 

112 powder diffraction (XRD), field emission scanning electron microscopy (FESEM), 

113 thermogravimetric and differential thermal analysis (TG/DTA), Brunauer-Emmett-Teller 

114 (BET) analysis and acid neutralization. Production cost of reactive MgO from reject brine via 

115 the addition of NaOH was calculated to evaluate the economic feasibility of the approach. 

116 Results obtained at the end of this study were used to demonstrate the use of reject brine as an 

117 alternative source for the recovery of MgO with a high reactivity.

118

119 2 Materials and Methodology

120

121 2.1 Materials

122 Reject brine was collected and sampled from a local desalination plant in Singapore, which 

123 adopts a reverse osmosis (RO) membrane system to purify saline water and produce 

124 drinkable water for human use. These membranes reject more than 99.5% of the dissolved 
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125 salts and suspended materials in the feedwater, resulting in a highly concentrated reject waste 

126 stream which contains suspended constituents and a 2- to 7-fold increased concentration of 

127 dissolved salts [33, 34, 41]. Prior to any analysis, the reject brine was first filtrated through a 

128 45 μm membrane filter to remove the large suspended solids. The pH of reject brine as 

129 received was around 8.0. The chemical composition of the reject brine, obtained via 

130 inductively coupled plasma-optical emission spectroscopy (ICP-OES) and ion 

131 chromatography (IC), is summarized in Table 1. Along with Mg2+, which was present at a 

132 concentration of 1718 ppm, other impurities such as Na+, K+ and Ca2+ were also identified in 

133 the reject brine. Sodium hydroxide (NaOH, reagent grade, pellets) supplied by VWR Pte Ltd 

134 in Singapore, was used as the alkaline base in the current study.

135

136 Table 1 Chemical composition of the reject brine used in this study

Element Cl Na SO4 Mg K Ca Sr B Si Li P Al
Concentration 
(ppm)

55243 13580 4423 1718 845.7 471.3 14.6 3.8 3.7 0.3 0.2 0.1

137

138 2.2 Methodology

139 Different amounts of NaOH solution (16 M) were added into 200 ml of reject brine to study 

140 the influence of NaOH/Mg2+ molar ratio (ranging from 2 to 4) on the recovery of Mg2+. 

141 NaOH solution was added into reject brine at once and the initial pH of solution was recorded. 

142 The solution was mixed at constant speed of 300 rpm by a magnetic stirrer at room 

143 temperature (25 °C). A pH/thermometer probe was used to monitor and record the 

144 temperature and pH of the reaction in the solution. Experiment was terminated when the pH 

145 of the solution stabilized. The solids were separated from the residual brine through a 

146 centrifuge. After the solids were collected, they were re-dispersed and washed thoroughly by 

147 ultra-pure water in an ultrasonic bath to remove surface-attached ions. The washed solids 

148 were separated from the solution through a centrifuge. This washing process was repeated for 

https://en.wikipedia.org/wiki/Ion_chromatography
https://en.wikipedia.org/wiki/Ion_chromatography
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149 three times to remove surface-attached ions and soluble salts. The washed solids were then 

150 oven-dried at 105 °C for 24 hours to remove free water before grinding into powder form. 

151 The ground samples were calcined at pre-determined temperatures (500-700 °C) and 

152 durations (2-12 hours) in an electric furnace to produce reactive MgO.

153

154 Several techniques were utilized to characterize the synthesized Mg(OH)2 and MgO. X-ray 

155 powder diffraction (XRD) was performed via a Bruker D8 Advance with a Cu Kα source 

156 under the operation conditions of 40 kV and 40 mA, emitting radiation with a wavelength of 

157 1.5405 angstroms, scan rate of 0.02 °/step, and a 2θ range of 5 to 70°. A JSM-7600F thermal 

158 field emission scanning electron microscopy (FESEM) was used to analyze the 

159 microstructure of the solids by imaging powder surface. The decomposition of each sample 

160 was studied via thermogravimetric and differential thermal analysis (TG/DTA) using a 

161 PyrisDiamond TGA 4000 operated at a heating rate of 10 °C/min under air flow. The specific 

162 surface area (SSA) of the synthesized samples was obtained by Brunauer-Emmett-Teller 

163 (BET) analysis from nitrogen adsorption-desorption isotherms using a Quadrasorb Evo 

164 automated surface area and pore size analyser. The reactivity of MgO was measured by acid 

165 neutralization, during which 0.28 grams of the synthesized MgO was added into 50 ml of 

166 0.07 mol/L citric acid solution along with phenolphthalein (i.e. pH indicator). The 

167 neutralization time was measured and reported as an indicator of reactivity [3, 30].

168

169 Economic feasibility of the production of reactive MgO from reject brine in this study was 

170 evaluated and compared with other production routes. The total cost of the production of 

171 reactive MgO from reject brine mainly consists of the raw material cost for synthesis (e.g. 

172 NaOH) and the energy cost during calcination. Reject brine is the waste water produced at the 

173 end in the desalination plant, and thus the material cost and energy cost of reject brine are 
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174 assumed to be zero. Transportation of raw materials and the grinding and packing of reactive 

175 MgO products are not considered into the calculation since they do not contribute 

176 significantly to the overall process. 

177

178 3 Results and Discussion

179

180 3.1 Recovery of Mg2+ and Ca2+ from reject brine

181 The formation of Mg(OH)2 was observed via the reaction between the Mg2+ in the reject brine 

182 and OH- provided by NaOH. The addition of NaOH also enabled the conversion of HCO3
-, 

183 present in the reject brine, to CO3
2-. This led to a reaction of CO3

2- with Ca2+ and resulted in 

184 the precipitation of CaCO3. The reaction paths observed during this process are shown in 

185 Equations 1-4 below.

186

187 NaOH(aq)  →  Na+ + OH-      (1)

188 Mg2+ + 2OH- ↔ Mg(OH)2      (2)

189 NaOH(aq) + HCO3
- ↔ CO3

2- + Na+ + H2O           (3)

190 Ca2+ + CO3
2- ↔ CaCO3      (4)

191

192 The kinetics of the reaction between reject brine and NaOH reflected by the change of pH are 

193 summarized in Figure 1. A rapid reaction was observed, which was completed in less than 30 

194 minutes as the pH reached an equilibrium state. The pH increased with the molar ratio of 

195 NaOH/Mg2+. This was due to the increased concentration of OH- provided by the higher 

196 amounts of NaOH introduced into the solution, whereas a smaller increase was observed at 

197 NaOH/Mg2+ ratios of > 2.5.

198
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199

200 Figure 1 pH of the reaction between reject brine and NaOH at different NaOH/Mg2+ ratios

201

202 Figure 2 shows the recovery rate of Mg2+ and Ca2+ in weight percentage after the reaction of 

203 reject brine with NaOH. As can be seen, the recovery rates for both Mg2+ and Ca2+ increased 

204 with increasing NaOH/Mg2+ molar ratio, which achieved a similar recovery level of 94-99% 

205 of Mg as reported in [23]. The recovered Mg2+/Ca2+ ratio was used as an indication of the 

206 purity level of the resulting Mg(OH)2 precipitates. As shown in Figure 2, Mg2+/Ca2+ was 

207 highest (19.6) at a NaOH/Mg2+ ratio of 2 and decreased with increasing NaOH/Mg2+ ratio. 

208 This was because at a NaOH/Mg2+ molar ratio of 2, the ion product in the solution 

209 ([Mg2+][OH-]2 = 7×10-8.6 mol3 l-3, pH = 11.2) was larger than the solubility product constant 

210 of Mg(OH)2 (1.8×10-11 mol3 l-3) [42]. The supersaturation condition enabled the reaction 

211 between OH- and Mg2+ and the formation of Mg(OH)2. Furthermore, pH increased with 

212 increasing NaOH/Mg2+, which provided excessive OH- in the solution to attack HCO3
-. This 

213 caused in a shift in Equation 3 towards the right hand side, resulting in the generation of 

214 additional CO3
2-. The excessive CO3

2- reacted with Ca2+ in the solution to produce more 

215 CaCO3, thus lowing the overall Mg2+/Ca2+ ratio.
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216

217

218 Figure 2 Percentage of Mg2+ and Ca2+ sequestrated from reject brine as a function of the 

219 NaOH/Mg2+ molar ratio

220

221 3.2 Characterization of the synthesized Mg(OH)2

222

223 3.2.1 XRD

224 Figure 3 shows the XRD diffractograms of Mg(OH)2 obtained from the reaction of reject 

225 brine and NaOH at different NaOH/Mg2+ molar ratios. The diffraction patterns of all samples 

226 demonstrated the presence of Mg(OH)2 along with CaCO3. A shift in the crystal structure of 

227 CaCO3 from aragonite to calcite was observed at increased NaOH/Mg2+ ratios. This could be 

228 attributed to the presence of Mg2+ in brine, which inhibited the precipitation of calcite and 

229 favored the formation of aragonite at low NaOH/Mg2+ ratios [43]. Alternatively, the high pH 

230 of the solution at elevated NaOH/Mg2+ ratios, at which the influence of Mg2+ was minimal, 

231 favored the formation of calcite.

232
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233

234 Figure 3 XRD diffractograms of Mg(OH)2 obtained from the reaction of reject brine with 

235 NaOH at different NaOH/Mg2+ molar ratios

236

237 3.2.2 FESEM

238 The morphologies of Mg(OH)2 samples obtained at different NaOH/Mg2+ molar ratios were 

239 investigated by FESEM, as shown in Figure 4. A plate-like morphology was observed at a 

240 NaOH/Mg2+ ratio of 2. The morphology of Mg(OH)2 transformed into a granular pattern 

241 consisting of a denser structure at increased NaOH/Mg2+ ratios, which could be due to the 

242 increased pH of the solution. This was because higher pH values led to the generation of 

243 higher concentrations of OH- in the solution. The increased availability of OH- accelerated 

244 the nucleation of Mg(OH)2 crystals and enabled the formation of larger amounts of Mg(OH)2, 

245 facilitating the densification of the overall structure.

246
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247   

248    

249 Figure 4 FESEM images of Mg(OH)2 obtained from the reaction of reject brine with NaOH 

250 at different NaOH/Mg2+ molar ratios of (a) 2, (b) 2.5, (c) 3 and (d) 4

251

252 3.2.3 TG/DTA

253 Figure 5 illustrates a typical TG/DTA graph of Mg(OH)2 obtained via the reaction of brine 

254 with NaOH at a NaOH/Mg2+ molar ratio of 2. The dehydration of Mg(OH)2 took place at 

255 ~400 °C and resulted in a mass loss of around 24.2%, which was attributed to the loss of 

256 water. The decomposition patterns observed during TG/DTA were in line with previous 

257 studies that investigated the decomposition of Mg(OH)2 into MgO [24, 26-28, 30, 32]. The 

258 second endothermic peak, observed at ~720 °C, was due to the decarbonation of CaCO3. The 

259 decomposition of CaCO3 led to the release of CO2, resulting in a mass loss of around 2.3%.

260

(a) (b)

(c) (d)

1 m

1 m

1 m

1 m
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261

262 Figure 5 A typical TG/DTA curve of Mg(OH)2 obtained from the reaction of reject brine at a 

263 NaOH/Mg2+ molar ratio of 2

264

265 Table 2 summarizes the TG/DTA results of Mg(OH)2 obtained from the reaction of brine 

266 with NaOH at various NaOH/Mg2+ ratios ranging between 2 and 4. The results show that the 

267 mass loss due to dehydration of Mg(OH)2 at ~400 °C slightly decreased (24.2 to 22.6%), 

268 while the mass loss due to decarbonation of CaCO3 at ~720 °C slightly increased (2.3 to 3.9%) 

269 with increasing NaOH/Mg2+ ratios. This was mainly attributed to the increased content of 

270 CaCO3 in the precipitates at higher NaOH/Mg2+ ratios, which was in line with the findings 

271 shown in Figure 2.

272

273 Table 2 TG/DTA results of the decomposition of Mg(OH)2 obtained from the reaction of 

274 reject brine with NaOH at different NaOH/Mg2+ ratios

Mg2+/
NaOH

Peak
temperature (°C)

Mass loss between
340-440 °C (%)

Peak 
temperature (°C)

Mass loss between
650-750 °C (%)

1:2 402.2 24.2 715.3 2.3
1:2.5 401.2 23.5 721.1 3.2
1:3 400.8 23.3 719.3 3.5
1:4 404.1 22.6 724 3.9

275
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276 Table 3 compares the compositions of the synthesized Mg(OH)2 based on the TG/DTA 

277 (Table 2) and the ICP-OES (Figure 2) results. Both measurements revealed similar trends, 

278 showing a decrease in the mass percentage of Mg(OH)2, accompanied with an increase in the 

279 mass percentage of CaCO3 (and thus a decrease in the purity of precipitates) with increasing 

280 NaOH/Mg2+ molar ratios, which was further discussed in Section 3.1. Accordingly, the 

281 highest amount of Mg(OH)2 (93.7% by TGA and 95.4% by ICP-OES) was synthesized at a 

282 NaOH/Mg2+ molar ratio of 2. Therefore, this ratio was chosen as the optimum condition for 

283 the subsequent production and characterization of reactive MgO. 

284

285 Table 3 Composition of synthesized Mg(OH)2 based on TG/DTA and ICP-OES results

TG/DTA ICP-OESMg2+/NaOH
Mg(OH)2
(%)

CaCO3
(%)

Mg(OH)2
(%)

CaCO3
(%)

1:2 93.7 6.3 95.4 4.6
1:2.5 91.2 8.8 91.2 8.8
1:3 90.4 9.6 90.6 9.4
1:4 89.2 10.8 88.1 11.9

286

287 3.3 Characterization of the synthesized reactive MgO

288

289 3.3.1 SSA

290 Figure 6 presents the SSA of the reactive MgO obtained under different calcination 

291 conditions. In general, SSA reduced with increasing calcination temperature and duration, 

292 which was in line with the findings of previous studies [24, 26-28, 30, 32]. This was 

293 associated with the sintering and agglomeration of MgO grains at higher temperature and 

294 prolonged residence times. In the current study, the highest SSA of 51.4 m2/g was obtained 

295 when the synthesized Mg(OH)2 was calcined at 500 oC for 2 hours. When compared to other 

296 studies, the SSA value (51.4 m2/g) obtained under these conditions was significantly higher 

297 than the results presented in the literature, where MgO synthesized from a magnesium 
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298 chloride solution via the addition of NaOH and calcined under the same conditions (i.e. 500 

299 oC for 2 hours), was reported to possess a SSA of 22.1 m2/g [44]. However, compared with 

300 our previous study, MgO calcined at 500 °C for 2 hours from reject brine via the addition of 

301 NH4OH  showed a higher SSA of 78.8 m2/g [31]. This could be because the use of NaOH as 

302 the alkali source was found to form Mg(OH)2 with a globular cauliflower-like morphology; 

303 while the use of NH4OH resulted in a more porous plate-like morphology [31]. A relative 

304 more porous mother precursor would result in a more porous MgO, thus a higher reactivity. 

305 These values can be optimized even further with an adjustment of the calcination temperature 

306 and duration towards the lower range, while enabling the complete decomposition of 

307 Mg(OH)2.

308

309

310 Figure 6 SSA of MgO produced under different calcination temperatures and durations

311

312 3.3.2 Reactivity

313 Figure 7 shows the acid reactivity of MgO obtained under different calcination conditions. 

314 An increase in the neutralization time was observed with increasing calcination temperature 
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315 and duration, which reflected the reduction in the reactivity of MgO. This observation 

316 corresponded well with the SSA measurements reported earlier in Figure 6. A comparison of 

317 the reactivity and SSA of MgO is shown in Figure 8, where the inverse correlation between 

318 the two parameters was revealed. Accordingly, MgO samples with higher SSA resulted in 

319 shorter acid neutralization times, which was an indication of their higher reactivities. These 

320 findings were in line with those reported in earlier studies [12, 30], where a direct correlation 

321 between the SSA and reactivity of MgO was reported. 

322

323

324 Figure 7 Effect of calcination temperature and duration on the reactivity of MgO

325
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326

327 Figure 8 Relationship between the SSA and the reactivity of MgO

328

329 3.3.3 XRD

330 Figure 9 illustrates the diffractograms of MgO obtained via the calcination of Mg(OH)2, 

331 which was synthesized at a NaOH/Mg2+ molar ratio of 2. The main peak positions of the 

332 synthesized MgO were located at ~37.0°, 42.9° and 62.3° 2θ, which matched well with the 

333 reference peaks of MgO indicated in JCPDS card no. 89-7746. These peaks were 

334 accompanied with a few minor peaks attributed to CaCO3. The absence of Mg(OH)2 peaks 

335 indicated the complete decomposition of brucite under the calcination conditions adopted in 

336 this study. Aragonite, which was initially present along with Mg(OH)2, transformed into 

337 calcite at higher calcination temperatures of 600 °C [45]. A further increase in the calcination 

338 temperature (700 °C) and duration led to a reduction in the intensity of the calcite peaks due 

339 to decomposition of CaCO3.

340
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341

342 Figure 9 XRD diffractograms of reactive MgO produced via the calcination of Mg(OH)2 

343 under different temperatures and durations

344

345 3.3.4 FESEM

346 A further investigation on the influence of calcination temperature and duration on the SSA 

347 of MgO was revealed through FESEM. The changes in the microstructure of MgO at 

348 increased temperatures and durations are indicated in Figure 10, which is a good indication of 

349 the typical morphology of MgO produced at a calcination temperature of 500-700 °C and a 

350 residence time of 2-12 hours. The microstructure of MgO was composed of a single particle 

351 which was a combination of several grains. A plate-like morphology, which was inherited 

352 from the parent material (Mg(OH)2), was observed throughout the microstructure of MgO 

353 produced at lower temperatures. An increase in the particle size, accompanied with the 

354 creation of a more porous structure, was observed at increased temperatures and durations. 

355 The loss of water during the decomposition of Mg(OH)2 led to the formation of a porous 

356 structure, which gradually reduced with the increase in the size of the MgO grains due to 

357 continued sintering, causing a reduction in the total pore volume.  
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358

359         

360         

361          

362 Figure 10 FESEM images of MgO obtained from the calcination of Mg(OH)2 under different 

363 conditions: (a) 500°C-2h, (b) 500°C-6h, (c) 500°C-12h, (d) 600°C-2h, (e) 600°C-6h, (f) 

364 600°C-12h, (g) 700°C-2h, (h) 700°C-6h and (i) 700°C-12h

365

366 3.4 Economic feasibility 

367 The costs of the production of reactive MgO from reject brine via the addition of NaOH, NH3, 

368 or CaO were calculated and compared. In the first step, base is added into reject brine to 

369 precipitate Mg(OH)2. Raw material costs of NaOH, NH3, and CaO are reported to be 

370 ~S$571/ton NaOH [46], ~S$525/ton NH3 [47], and ~S$170/ton CaO [48], respectively. Cost 

371 of reject brine, transportation of raw materials, and grinding and packing of reactive MgO are 

372 not considered. Since a production yield of 1 ton reactive MgO requires 2 tons NaOH, 1 ton 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

1 m 1 m 1 m

1 m 1 m 1 m

1 m 1 m 1 m



`20

373 NH3, or 1.4 ton CaO as the base source, the raw material costs are calculated to be 

374 S$1142/ton MgO, S$525/ton MgO and S$238/ton MgO via the addition of NaOH, NH3, or 

375 CaO, respectively. 

376

377 The resulting Mg(OH)2 produced in the first step was in the form of filter cake which consists 

378 of 55.2% solids and 44.8% free water. In the second step, Mg(OH)2 filter cake was calcinated 

379 to produce MgO. Energy consumption during calcination of Mg(OH)2 filter cake is derived 

380 by considering the following two steps: (i) Energy consumed to increase the temperature 

381 from room temperature (298 K, 25 °C) to the decomposition temperature of Mg(OH)2 (773K, 

382 500 °C), and (ii) enthalpy of decomposition of Mg(OH)2 [3]. A production yield of 1 ton 

383 MgO requires decomposing 1.45 ton Mg(OH)2 and the decomposition temperature of 

384 Mg(OH)2 under one atmosphere CO2 pressure is in the range between 773 and 973 K (500 

385 and 700 °C). Firstly the energy required to raise the temperature from ambient air (298 K) to 

386 the decomposition temperature (773 K) is calculated using the formula: Cp × increase in 

387 temperature (K). The specific heat capacity (Cp) of Mg(OH)2 at 773 K is 1.78 kJ/kg K, which 

388 results in the energy demand of 1.15 GJ in consideration of the purity of the synthesized 

389 Mg(OH)2 of ~94%. The energy required for decomposition of Mg(OH)2 is calculated based 

390 on the enthalpy of decomposition (1304 kJ/kg K), which brings in 1.77 GJ. As for the free 

391 water, energy required to increase temperature of free water from room temperature (298 K) 

392 to the boiling point (373 K) is calculated based on the specific heat capacity of water (4.18 

393 kJ/kg K) and the percentage of water in the filter cake (44.8%), resulting in 0.37 GJ. This is 

394 followed by the enthalpy of the vaporization of water (2283 kJ/kg K), resulting in 2.69 GJ. 

395 Finally the energy required to heat up the resultant steam to 773 K is calculated via the heat 

396 capacity of water vapour (1.86 kJ/kg K), bringing in 0.88 GJ. The total energy required for 

397 the calcination process is the summation of the energy required for each individual step, 
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398 resulting in a total of 6.85 GJ (1902.8 kWh) for the production of 1 ton reactive MgO from 

399 reject brine via the addition of base. As of 2015, Singapore uses natural gas (95%) and others 

400 (4%) for the power generation at a price of  20.2 cents per kWh [49], which results in an 

401 energy cost of S$384 to product 1 ton reactive MgO from reject brine via the addition of a 

402 base.

403

404 Production cost of the resulting MgO via the addition of NaOH, NH3, and CaO in reject brine 

405 are S$1526, S$909, and S$622 per ton MgO, respectively, as shown in Figure 11. Price of 

406 MgO produced via a dry route in the US market was reported to be S$617 per ton MgO [50]. 

407 Thus, a cheaper base alternative would make the production of reactive MgO from reject 

408 brine more economically feasible. Furthermore, synthetic MgO from reject brine shows a 

409 much higher purity and reactivity compared to the dry route as the SSA of commercial MgO 

410 is usually ~20 m2/g [3], which makes synthetic MgO more competitive in the global market.

411

412

413 Figure 11 Production cost of reactive MgO from reject brine via the addition of NaOH, NH3, 

414 or CaO. 

415

https://en.wikipedia.org/wiki/Natural_gas
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416 4 Conclusions

417 This study presented a comprehensive investigation on the synthesis of Mg(OH)2 and 

418 production of reactive MgO from reject brine via the use of NaOH. The key parameters 

419 affecting the properties of the synthesized Mg(OH)2 and its calcination to produce reactive 

420 MgO were revealed. The results demonstrated the feasibility of recovering reactive MgO 

421 from reject brine obtained as a waste at the end of the desalination process. The initial set of 

422 experiments successfully demonstrated the use of NaOH as an alkali source in the 

423 precipitation of Mg(OH)2 from reject brine. The effect of the NaOH/Mg2+ ratio on the final 

424 yield was investigated with the goal of optimizing the amount and purity of the synthesized 

425 Mg(OH)2. An optimum NaOH/Mg2+ ratio of 2, which generated the highest purity of 

426 Mg(OH)2, was determined and used in the subsequent production of MgO. The influence of 

427 calcination conditions (i.e. temperature and residence time) on the reactivity of MgO obtained 

428 via the calcination of the synthesized Mg(OH)2 were reported. While a certain minimum 

429 temperature was required for the complete decomposition of Mg(OH)2 into MgO, an increase 

430 in the calcination temperature and duration lowered the reactivity of MgO. Calcination of 

431 Mg(OH)2 at 500 ºC for 2 hours resulted in the most reactive MgO samples, with a SSA of 

432 51.4 m2/g. This study demonstrated that reject brine can be considered as a feasible and 

433 economic alternative source for the sustainable recovery of MgO with a high reactivity, 

434 which can be used in various applications within the food, cosmetics, pharmaceutical and 

435 construction industries [1-3].
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