
Iterative Monte Carlo Approximations
for Bayesian Inference

Samuel Duffield

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

St Edmund’s College September 2021

For my beloved Alexandra

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this dissertation are original and have not been submitted in whole or in part for consideration
for any other degree or qualification in this, or any other university. This dissertation is my own
work and contains nothing which is the outcome of work done in collaboration with others,
except as specified in the text and Acknowledgements. This dissertation contains fewer than
65,000 words including appendices, bibliography, footnotes, tables and equations and has fewer
than 150 figures.

Samuel Duffield
September 2021

Abstract

Author: Samuel Duffield
Thesis Title: Iterative Monte Carlo Approximations for Bayesian Inference

The common theme of this thesis is the concept of using Monte Carlo techniques to
approximate a sequence of probability distributions. Novel methodological contributions are
found in Chapter 3 through to Chapter 6.

In Chapter 3 we derive a method for the complete characterisation of online statistical
models where Monte Carlo approximations are defined sequentially as new data arrive. We then
demonstrate the utility of this method in Chapter 4 for the compelling application of de-noising
sequential GPS coordinates to be restricted to a road network.

In Chapter 5 and Chapter 6, the sequence of probability distributions are defined artificially
in order to gradually (and more effectively) approach a single offline target probability distribu-
tion. Chapter 5 adopts ideas from high-dimensional time series to efficiently tackle the difficult
setting where we cannot evaluate the density of the target distribution and instead can only
generate synthetic data. Chapter 6 explores the use of a scalable Hessian approximation in the
more common scenario where the target density can be evaluated and even differentiated.

Finally, Chapter 7 describes a general purpose software package that can be used to
implement and customise all of the discussed algorithms at competitive speeds.

Acknowledgements

To my supervisor Professor Sumeetpal Singh, I would like to express my heartiest thanks for
the opportunity, experience and guidance. His wisdom has been influential in the development
of my research and indeed my ability as a researcher.

My time in the Signal Processing and Communications Laboratory has been thoroughly
enjoyable due to the warm and welcoming environment instilled by its members. Immeasurable
thanks goes to Jacob Vorstup Goldman for his countless valuable insights; Hugo Hadfield for
tolerating my terrible Spanish and annoying questions about Python; Oliver Bonner and Fergal
Cotter for their kindness and friendship; Ehsan Asadi and Parham Boroumand for developing
my taste for saffron; Alex Grafton and Ulrika Andersson for their crossword support; Alix
Marie d’Avigneau, Yaman Kindap and all of the further distinguished members of SigProC
who have each contributed to a hugely enjoyable period - both socially and academically. It is
sad that we have had to be so distanced for the last two years. Beyond the laboratory, I owe
great thanks to my peers from the mathematics department Sam Power and Torben Sell whose
regular conversations proved highly enjoyable and improved my mathematical acumen no end.

St Edmund’s College has provided a steady and comforting foundation during my time in
Cambridge. To those who had the (mis)fortune to call themselves a flatmate of mine - Florence
Cochrane, Michael Stanton, Leanne O’Brien and Max Butler - I thank deeply for making the
college a home.

I am forever grateful to my parents and brother, Josh. Even if some of the mathematics
goes over their heads, I am exceedingly appreciative of their love and unconditional support in
all aspects of my life.

The conclusion of my PhD was spent under somewhat atypical conditions, I am grateful
to Natalia Sánchez, Nidhi Jetley and Dusty for their companionship during this time. Most
importantly, I offer a whale of appreciation to my partner Alex who has provided me with
encouragement and such happiness for the entire journey.

A final thanks goes to James Cryne, for finding a typo in the introduction of this thesis.

Table of contents

1 Introduction 1

2 Background 7
2.1 Importance Sampling . 7

2.1.1 Self-Normalised Importance Sampling 8
2.2 Rejection Control . 9
2.3 Sequential Monte Carlo . 11

2.3.1 Reweighting . 11
2.3.2 Resampling . 12

2.4 Markov Chain Monte Carlo . 14
2.4.1 Gibbs Sampling . 15
2.4.2 Accept-Reject . 16
2.4.3 within Sequential Monte Carlo . 22

2.5 Approximate Bayesian Computation . 22
2.5.1 with Importance Sampling . 23
2.5.2 with Markov Chain Monte Carlo . 24
2.5.3 with Sequential Monte Carlo . 25
2.5.4 Distance Functions . 26

2.6 State-Space Models . 28
2.6.1 Linear Gaussian State-Space Models 28
2.6.2 Particle Filtering . 31
2.6.3 Particle Smoothing . 34

3 Online Particle Smoothing 39
3.1 Particle Smoothing . 40

3.1.1 Path Degeneracy . 40
3.1.2 Marginal Fixed-Lag . 42
3.1.3 Offline Smoothing . 42

xii Table of contents

3.1.4 Online Smoothing . 43
3.2 Fixed-lag Particle Stitching . 44

3.2.1 Fixed-lag Forward Simulation - Intractable 45
3.2.2 Fixed-lag Forward Simulation - Tractable 46
3.2.3 Rejection Sampling . 48

3.3 Sampling from p(xT−L−1:T | y0:T) . 48
3.3.1 Particle Filter . 48
3.3.2 Partial Backward Simulation . 51

3.4 Numerical Experiments . 51
3.5 Discussion . 58

4 Map-Matching 61
4.1 Model . 61

4.1.1 Model Variables . 63
4.1.2 Model Distributions . 63
4.1.3 Optimal Proposal . 65

4.2 Offline Smoothing . 66
4.2.1 Backward Simulation . 66
4.2.2 Synthetic Data . 67

4.3 Parameter Inference . 69
4.3.1 Expectation Maximisation . 69
4.3.2 Offline Parameter Inference for Map-matching 71

4.4 Online Smoothing . 72
4.4.1 Fixed-lag Particle Stitching . 73
4.4.2 Real Data . 74

4.5 Discussion . 77
4.6 bmm . 79

4.6.1 Downloading a graph . 79
4.6.2 Offline Map-matching . 80
4.6.3 Online Map-matching . 83
4.6.4 Parameter Tuning . 83

5 Ensemble Kalman Inversion for Generic Likelihoods 85
5.1 Ensemble Kalman Filter . 86

5.1.1 Linear Gaussian State-space Models 86
5.1.2 Non-Linear Gaussian Likelihoods 88

5.2 Ensemble Kalman Inversion . 89

Table of contents xiii

5.3 Ensemble Kalman Inversion for Generic Likelihoods 90
5.3.1 Generic Likelihoods . 91
5.3.2 Stepsize Selection . 92
5.3.3 Stopping Criteria . 94

5.4 Numerical Experiments . 94
5.4.1 g-and-k Distribution . 95
5.4.2 Stochastic Lorenz 96 . 98

5.5 Discussion . 101

6 Quasi-Newton Sequential Monte Carlo 103
6.1 Likelihood Tempering . 103

6.1.1 Sequential Importance Weights . 104
6.1.2 Adaptive Tempering . 105

6.2 Langevin Kernel . 106
6.3 Quasi-Newton Langevin Kernel . 107

6.3.1 BFGS . 109
6.4 Numerical Experiments . 112

6.4.1 High Dimensional Gaussian . 112
6.4.2 Gaussian Mixture Model . 114

6.5 Discussion . 117

7 mocat 121
7.1 JAX . 121
7.2 Monte Carlo Sampling . 125
7.3 ABC . 138
7.4 State-space Models . 143

8 Conclusions 151
8.1 Contributions . 151
8.2 Future Directions . 152

References 155

Chapter 1

Introduction

The first step in a statistical analysis most commonly comes down to the construction of a
statistical model or data generating process. We notate this relationship as

p(y | x),

where y represents the collected data and x is a parameter whose value is unknown. In the
statistics paradigm, the relationship between the unknown parameter x and the data y is random
or stochastic in nature. We therefore refer to p(y | x) as a probability distribution in y given x
- it describes the probability that the data y was generated by the given value of x. It is often
useful to describe p(y | x) as a function in x since the value of the data y is known, in this
case we use the term likelihood or likelihood function. Interestingly, the term likelihood was
introduced by Fisher (1954) specifically to emphasise the point that p(y | x) is not a probability
distribution in x.

Generally speaking, classical statistics can be thought of as a two step procedure:

• First, is the formulation of the statistical model and the structure of the unknown parame-
ter x. We refer to this step as statistical modelling. The general idea is to leverage prior
domain knowledge to build a data generating process that is consistent with both the
observed data y as well as any constraints or dynamics that we are aware of.

• The second step is that of statistical inference. That is, translate the statistical model and
observed data y into logical reasoning about the value of the unknown parameter x. This
may involve point estimates, confidence intervals or predictions.

The construction of the statistical model is something of an art form with the key features
depending on the nature of available prior knowledge and the field of study. Indeed, most

2 Introduction

successful statistical models are developed as part of an iterative procedure, interweaving model
refinement with statistical inference Gelman et al. (2020).

This statistical paradigm has underpinned data driven advances in a wide range of fields
including but by absolutely no means limited to

• Econometrics, e.g. Creal (2012); Glasserman (2004).

• Natural sciences, e.g. Beaumont et al. (2002); Landau and Binder (2005); van Dyk
(2014); Wilkinson (2018); Wood (2010).

• Signal processing, e.g. Doucet et al. (2013); Reich and Cotter (2015).

• Sports, e.g. Biermann (2019); Marchi et al. (2018).

• Catching Youtubers cheating at video games, e.g. Minecraft Speedrunning Team (2020).

Over the past century statistical inference has mostly fallen into one of two paradigms - the
frequentist approach and the Bayesian approach.

Frequentist Inference

The frequentist approach dominated for most of the 20th century and focuses on probabilistic
uncertainty surrounding the data y. Recall that p(y | x) represents a probability distribution in y
- alternatively we might say that y is a random variable and the data represents a realisation
of the random variable. Frequentist reasoning assumes that there is a single true underlying
value of the parameter x - on this basis various different estimators of x can be established that
minimise a cost function. These include the maximum likelihood estimator x̂= argmaxx p(y | x)
and method of moments estimators x̂ = argminx ||g(x,y)||2, Hansen (1982) - the utility of the
estimator is highly dependent on the form of the data and statistical model. Frequentist
uncertainty is reasoned by considering how the parameter behaves under repeated sampling
of the data. Indeed a frequentist confidence interval (with confidence δ where 0 < δ < 1)
represents a function of the data [L(y),U(y)] that states

p(L(y)< x <U(y))≤ 1−δ .

That is, if we were to randomly generate N different data sets (with N very large) the true value
of the parameter x would lie in [L(y),U(y)] for at least δN of those data sets.

Obtaining exact bounds [L(y),U(y)] is typically not easy, often we resort to computationally
cheap approximations based on asymptotic theory as the amount of data increases, Young and
Smith (2005).

3

Bayesian Inference

Over the past 30 years, driven somewhat by advances in computational technology, the Bayesian
paradigm has seen something of a maturation. The Bayesian philosophy is underpinned by the
decision to additionally model the unknown parameter x as a random variable. Subsequently,
one can define a probability distribution over values of x we would expect to observe before
seeing any data. This is termed the prior distribution

p(x).

On one hand the concept of a prior distribution adds another layer of subjectivity to the statistical
model, on the other it adds another layer of flexibility - one can formally encode physical
constraints (i.e. a temperature parameter cannot be less than -273.15°C or a vehicle’s position
lies on a roadway).

Given a well-defined prior and likelihood one can apply Bayes’ Theorem

p(x | y) = p(x)p(y | x)
p(y)

,

to obtain a probability distribution in x given the value of the data y - the so-called posterior
distribution.

Bayes’ theorem itself represents a fact of probability. The more subjective concept of
Bayesian inference is better defined by the use of a prior distribution and indeed the overriding
principle of treating x as a random variable.

Assuming we have sufficient knowledge of the posterior distribution to be able to calculate
the required integrals, then the concept of expectation

Ep(x|y)[f (x)] =
∫

f (x)p(x | y)dx,

represents an extremely general way to incorporate uncertainty into data driven predictions or
metrics of interest. The integral Ep(x|y)[f (x)] corresponds to the expected value of the function
f (x) given that x is distributed according to the posterior p(x | y). Importantly, expectations
taken with respect to the posterior distribution do not assume the parameter x takes a single
value rather it is distributed over a range, with regions of high probability depending on the
value of the observed data.

The integration required to compute expectations of interest for non-trivial models can be
very computationally expensive, particularly when the parameter x is high dimensional and/or
the statistical model is complex.

4 Introduction

Online Data

In many practical settings, data is arriving in real-time and we are expected to provide statistical
reasoning instantaneously as the new data arrives. We refer to this setting as online, in contrast
to offline or static settings where the amount of data is fixed.

Posterior expectations make no assumptions over the amount of data gathered, as such
the Bayesian paradigm is very powerful in the face of only a few observations. This can
be extended to the case where inference is required as data arrives sequentially - i.e. online
inference.

One option for handling online data is to apply iterative Bayesian posterior updates

p(x | y0:T) =
p(x | y0:T−1)p(yT | x)

p(yT | y0:T−1)
,

where y0:T−1 is an array containing the first T − 1 observations and y0:T is the same array
extended to include a new observation yT .

For many online settings, it is more useful to model the state of the underlying parameter
as variable with time i.e. x→ xT . This increases the complexity of the statistical model as we
are no longer interested in the state of a single parameter but rather the state of a parameter
as a function of time. Fortunately, there exists a convenient and general state-space model
framework Chopin and Papaspiliopoulos (2020) that will allow us to execute fully Bayesian
online inference for the posterior distributions p(xT | y0:T) and even p(x0:T | y0:T).

Outline

Chapter 2 presents a thorough review of Monte Carlo methods, which underpins all subsequent
chapters. Monte Carlo methods approximate a probability distribution of interest (i.e. posterior
distribution) by a collection of representative points - which we refer to synonymously as
samples or particles. Once samples have been generated they provide a very fast and flexible
method of numerical integration through expectation.

Chapter 3 develops a new Monte Carlo method that approximates the full historical posterior
distribution p(x0:T | y0:T) for online inference in state-space models. In doing so we provide
a solution to the well-known problem of path degeneracy for Monte Carlo methods in state-
space models that has previously limited online inference to marginals p(xt | y0:T) rather than
p(x0:T | y0:T).

In Chapter 4 a novel statistical model is developed for the problem of map-matching -
converting a series of noisy, unconstrained GPS coordinates into a logical trajectory constrained
to a road network. The particularly difficult case of dense, urban road networks is examined

5

where the data may provide significant uncertainty over the underlying trajectory - motivating a
Bayesian approach. Urban map-matching also represents a compelling application of the online
inference technique introduced in Chapter 3 which is demonstrated on real data. Chapter 4
is accompanied by bmm, an open source python package that provides easy and flexible
map-matching using the discussed Monte Carlo methods for offline and online settings.

Chapter 5 considers offline or static inference in the constrained scenario where the likeli-
hood function p(y | x) cannot be evaluated due to computational restraints. In these settings,
approximate inference is still possible when the generation of synthetic data from the like-
lihood is available and relatively cheap. We apply ideas from ensemble Kalman filtering (a
collection of numerically efficient algorithms originating from meteorological applications) to
this very general setting of intractable likelihoods for both maximum likelihood optimisation
and uncertainty quantification.

In Chapter 6 we consider offline Bayesian inference problems where the posterior distri-
bution is differentiable - as made possible by advances in modern automatic differentiation
software. We borrow established optimisation techniques to leverage the first derivative (gra-
dient) of the posterior distribution into a cheap and scalable approximation of the second
derivative (Hessian). In doing so, we characterise the local scaling of the posterior distribution
and accelerate Bayesian inference for difficult high-dimensional problems.

Chapter 7 presents a second python package, mocat that provides a flexible and fast Monte
Carlo framework for a wide variety of Bayesian inference tasks. This includes the methods
introduced in Chapter 3, Chapter 5, Chapter 6 and much more!

Notation

I(condition) Identity function, 1 if condition otherwise 0

Id Identity matrix - diagonal matrix ∈ Rd×d with all ones on the diagonal

δ (x | y) Dirac (point) distribution in the random variable x with all mass at the value y

N(x | µ,Σ) Gaussian distribution in the random variable x with mean µ and covariance Σ

U(x | a,b) Uniform distribution in the random variable x over (a,b)

x∼ π A sample or simulation with value x from the distribution π

Chapter 2

Background

Monte Carlo methods provide a very general approach to approximating integrals

Eπ [f (x)] =
∫

f (x)π(x)dx, (2.1)

But why is it called
Monte Carlo?

Monte Carlo simulation
dates back to the work of
physicist Enrico Fermi be-
fore being refined by John
von Neumann and Stanis-
law Ulam. But it was
their colleague Nicholas
Metropolis that coined the
term Monte Carlo, liken-
ing the element of chance
in the method to that of
casino games, abundant in
Monte Carlo, Monaco.

where π is a well defined probability distribution.
In the case we can generate samples from π directly and

Eπ [f (x)]< ∞ then the law of large numbers tells us that

lim
N→∞

1
N

N

∑
i=1

f (x(i)) = Eπ [f (x)], x(i) ∼ π. (2.2)

And so by taking a suitably large number of samples we can
approximate Eπ [f (x)] to arbitrary precision.

Algorithm 1 Pure Monte Carlo

1: Sample x(i) ∼ π i = 1, . . . ,N
2: return {x(i)}N

i=1

2.1 Importance Sampling

In most practical settings we cannot sample directly from π . We may however be able
to evaluate its density π(x) for any given x and additionally have access to an alternative
importance distribution q which we can sample from and also evaluate its density q(x).

8 Background

We can then write

Eπ [f (x)] =
∫

f (x)π(x)dx,

=
∫ f (x)π(x)

q(x)
q(x)dx.

and use Equation (2.2) to get a consistent importance sampling estimator

lim
N→∞

1
N

N

∑
i=1

f (x(i))π(x(i))
q(x(i))

= Eπ [f (x)], x(i) ∼ q.

We can write the above estimator as 1
N ∑

N
i=1 f (x(i))w(i) with importance weights w(i) = π(x(i))

q(x(i))
.

But why is it called
Importance Sampling?

The variance of the Monte Carlo es-
timator can be improved by instead
sampling from q(x) ∝ f (x)π(x) - the
important regions of the integrand.

The task of choosing an importance distribution is
often a difficult one. It is natural to attempt to minimise
the variance of the single-sample importance estimator

Covq

[
f (x)π(x)

q(x)

]
= Eπ

[
f (x)2π(x)

q(x)

]
−Eπ [f (x)]2.

(2.3)

From which it can be seen that the optimal choice of importance distribution is q(x) ∝ f (x)π(x)
and that it produces a zero variance estimator. Indeed the normalising constant for this choice
of proposal distribution is exactly the expectation of interest.

In many statistical tasks we are interested in using samples to take expectations over a
variety of different functions. Chatterjee and Diaconis (2018) show that in terms of expected
absolute deviation, the most difficult test function is f (x) = 1 ∀x, and that the number of
samples required increases proportional to exp(DKL(π||q)), where DKL is the Kullback-Leibler
divergence. This motivates a guiding principle of choosing the importance distribution q to be
close to π .

2.1.1 Self-Normalised Importance Sampling

In the above we have assumed that we can evaluate the density π(x) exactly. It is much more
common, particularly in Bayesian inference, to only have access to evaluations of π up to a
normalisation constant. That is

π(x) =
γ(x)

Z
,

where we can evaluate γ(x) exactly but not Z =
∫

γ(x)dx.

2.2 Rejection Control 9

We can navigate this hurdle by approximating the normalisation constant with importance
samples

Z =
∫

γ(x)dx,

=
∫

γ(x)
q(x)

q(x)dx.

and so

lim
N→∞

1
N

N

∑
i=1

γ(x(i))
q(x(i))

= Z. (2.4)

Consequently, most importance samplers self-normalise the weights

w(i) =

γ(x(i))
q(x(i))

∑
N
j=1

γ(x(j))

q(x(j))

,

lim
N→∞

N

∑
i=1

w(i) f (x(i)) = Eπ [f (x)], x(i) ∼ q. (2.5)

We often write w(i) ∝
γ(x(i))
q(x(i))

where self-normalisation in i is implied.
Note that we have assumed that the importance density q is itself normalised. In the case

that it is not, the mean of the weights Equation (2.4), then approximates the ratio of normalising
constants Z/Zq instead, but the estimator in Equation (2.5) is still consistent.

Algorithm 2 Self-Normalised Importance Sampling

1: Sample x(i) ∼ q i = 1, . . . ,N
2: Normalise Ẑ = 1

N ∑
N
i=1

γ(x(i))
q(x(i))

3: Weight w(i) = γ(x(i))
q(x(i))NẐ

i = 1, . . . ,N

4: return {x(i),w(i)}N
i=1

2.2 Rejection Control

In some settings, it may be inefficient to store samples with low importance weights. We can
then consider the algorithm introduced in Liu et al. (1998) that only retains a sample x∼ q with
probability min

(
1, γ(x)

q(x)C

)
for parameter C that controls the acceptance rate.

10 Background

Algorithm 3 Rejection Control
1: for i = 1, . . . ,N do
2: Sample x′ ∼ q

3: Sample u∼ U(· | 0,1)
4: if u < min

(
1, γ(x′)

q(x′)C

)
then set x(i) = x′

5: else go to 2

6: if C > γ(x(i))
q(x(i))

∀i then

7: return {x(i)}N
i=1

8: else
9: Normalise Ẑ = 1

N ∑
N
i=1 max

(
γ(x(i))
q(x(i))

,C
)

10: Weight w(i) = max
(

γ(x(i))
q(x(i))

,C
)
/NẐ i = 1 . . . ,N

11: return {x(i),w(i)}N
i=1

But why is it called
Rejection Control?

Pure rejection sampling
was first used by John von
Neumann and the term
refers to the process of
discarding low probability
proposals. The introduc-
tion of the C parameter al-
lows the user to control
the acceptance rate.

This algorithm can be viewed as an importance sampler with
adjusted importance distribution

q∗(x) ∝ min
(

1,
γ(x)

q(x)C

)
q(x),

and so comes with accompanying importance weights

w =
π(x)
q∗(x)

,

∝
γ(x)

min
(

1, γ(x)
q(x)C

)
q(x)

,

∝ max
(

γ(x)
q(x)

,C
)
.

In this light we can see that the choice of C = 0, naturally accepts all proposals and recovers
pure importance sampling. On the other hand taking C sufficiently large such that C > γ(x)

q(x) ∀x
produces weights that are all equal (and as such unweighted), this is known as (pure) rejection
sampling.

The parameter C trades off acceptance rate vs sample quality. When memory is no issue
and the particles are not reused in a recursive manner it is desirable to set C = 0 and retain the
pure importance sampling setup where all generated particles contribute to expectations - i.e.
the algorithm is waste-free. In memory constrained or iterative settings it may be desirable to
generate a weighted sample where each particle has a significant weight as achieved by using

2.3 Sequential Monte Carlo 11

a non-zero C. A convenient feature of rejection control is that C can be set adaptively after
generating an initial N proposals from q. For example, we could set C to the αth quantile
of {w′(i)}N

i=1 where α is some desired acceptance rate, w′(i) ∝
γ(x′(i))
q(x′(i))

and x′(i) ∼ q are initial
proposals that can be subsequently sent to the rejection control sampler after setting C - the
adaptation therefore comes at no additional cost.

2.3 Sequential Monte Carlo

The theory of importance sampling can be extended to the case where expectations are taken
over a sequence of target distributions on a state-space of increasing dimension

π0:t(x0:t), t = 0, . . . ,T. (2.6)

This concept of sequential importance sampling was first introduced by Gordon et al. (1993) in
the specific context of state-space models 2.6 and then fully generalised to any sequence of
targets in Del Moral et al. (2006).

2.3.1 Reweighting

Let us assume we have a weighted sample (x0:t−1,wt−1) from π0:t−1 and desire a sample from
π0:t . We can then extend our sample by proposing from a conditional importance distribution

xt ∼ qt|0:t−1(xt |x0:t−1), (2.7)

and weight over the entire space

wt =
π0:t(x0:t)

q0:t(x0:t)
,

=
π0:t(x0:t)

q0:t−1(x0:t−1)qt|0:t−1(xt |x0:t−1)
,

=
π0:t−1(x0:t−1)

q0:t−1(x0:t−1))

π0:t(x0:t)

π0:t−1(x0:t−1)qt|0:t−1(xt |x0:t−1)
,

= wt−1
π0:t(x0:t)

π0:t−1(x0:t−1)qt|0:t−1(xt |x0:t−1)
.

In practice, as described in 2.1.1, we may not know the normalising constant of π0:t and can
instead replace it with unnormalised γ0:t where π0:t(x0:t) = γ0:t(x0:t)/Z0:t and the normalising
constant Z0:t can be approximated by normalising the sequential importance weights.

12 Background

It is common to focus on the latest marginal distribution πt(xt) =
∫

π0:t(x0:t)dx0:t−1 rather
than the full joint distribution. In this case we can rewrite the weights as

wt = wt−1
πt(xt)π0:t−1|t(x0:t−1|xt)

π0:t−1(x0:t−1)qt|0:t−1(xt |x0:t−1)
. (2.8)

where π0:t−1|t(x0:t−1|xt) is a normalised auxiliary distribution that we are free to choose. In this
setting where we care only about xt and discard x0:t−1, the optimal choice of π0:t−1|t(x0:t−1|xt)

(that which minimises the variance of the weights) is shown in Del Moral et al. (2006) to be

π
opt
0:t−1|t(x0:t−1|xt) = q0:t−1|t(x0:t−1|xt) =

q0:t−1(x0:t−1)qt|0:t−1(xt |x0:t−1)

qt(xt)
, (2.9)

where qt(xt) =
∫

q0:t−1(x0:t−1)qt|0:t−1(xt |x0:t−1)dx0:t−1 ensures the density is normalised. The
importance weights then act only in the reduced space

wopt
t =

πt(xt)

qt(xt)
, (2.10)

despite the samples being generated sequentially.
Unfortunately, the integration required in the calculation of qt is rarely tractable. However,

as we will see, suboptimal but tractable backward kernels have been used with great success in
a variety of settings and of course still inherit the consistency of estimators from Equation (2.5).

2.3.2 Resampling

Iterating the weight update, Equation (2.8), can lead to an accumulation in the variance of the
weights. This can be mitigated using a resampling technique. Resampling converts a weighted

sample
{

x(i)0:t ,w
(i)
t

}N

i=1
into an unweighted sample

{
x(i)0:t ,

1
N

}N

i=1
that may contain duplicates.

There are a variety of resampling techniques, for a review see Douc and Cappe (2005), here we
only describe the most popular multinomial resampling (with replacement)

Sample a(i)t ∼ Categorical
({

w(j)
t

}N

j=1

)
, i = 1, . . . ,N,

Set x(i)0:t ← x(a
(i)
t)

0:t w(i)
t ←

1
N
, i = 1, . . . ,N.

(2.11)

Where Categorical({w(i)}N
i=1) = ∑

N
i=1 w(i)δ (· | i) simply draws an index i from the index set

{1, . . . ,N} with probabilities w(i).

2.3 Sequential Monte Carlo 13

Algorithm 4 Sequential Monte Carlo

1: Sample x(i)0 ∼ q0 i = 1 . . . ,N

2: Normalise Ẑ0 =
1
N ∑

N
i=1

γ0(x
(i)
0)

q0(x
(i)
0)

3: Weight w(i)
0 =

γ0(x
(i)
0)

q0(x
(i)
0)NẐ0

i = 1 . . . ,N

4: for t = 1, . . . ,T do
5: if resampling criterion then

6:
{

x̃(i)0:t−1, w̃
(i)
t−1 =

1
N

}N

i=1
= Resample

({
x(i)0:t−1,w

(i)
t−1

}N

i=1

)
7: else
8:

{
x̃(i)0:t−1, w̃

(i)
t−1

}N

i=1
=
{

x(i)0:t−1,w
(i)
t−1

}N

i=1

9: Propose
x(i)t ∼ qt|0:t−1(xt | x̃(i)0:t−1) i = 1 . . . ,N

10: Normalise

Ẑt|0:t−1 =
N

∑
i=1

w̃(i)
t−1

γt(x
(i)
t)γ0:t−1|t(x̃

(i)
0:t−1|x

(i)
t)

γ0:t−1(x̃
(i)
0:t−1)qt|0:t−1(x

(i)
t |x̃

(i)
0:t−1)

11: Reweight

w(i)
t = w̃(i)

t−1
γt(x

(i)
t)γ0:t−1|t(x̃

(i)
0:t−1|x

(i)
t)

γ0:t−1(x̃
(i)
0:t−1)qt|0:t−1(x

(i)
t |x̃

(i)
0:t−1)Ẑt|0:t−1

i = 1 . . . ,N

12: return
{{

x(i)t ,w(i)
t

}N

i=1

}T

t=0

14 Background

Resampling is a rejuvenation mechanism that ensures particles with negligible weights are
not proposed at the next iteration. However, resampling should only be applied if particles need
rejuvenating as resampling can only reduce sample diversity - the number of unique particles.
As such it is common to resample when some resampling criterion is met. The most common
such criterion resamples when the effective sample size (ESS) Kong et al. (1994) falls below
some predefined threshold

ESS({w(i)}N
i=1) =

(∑N
i=1 w(i))2

∑
N
i=1 w(i)2

, (2.12)

=
1

∑
N
i=1 w(i)2

. (for normalised weights)

But why is it called
effective sample size?

The term effective sample
size is used to refer to
any metric of sample qual-
ity that (typicallly) lies in
[1,N] such that exact sam-
ples from π have an ESS
of N. Indeed in MCMC,
an alternative ESS is used
based on the autocorrela-
tion of the chain.

Conveniently, ESS({w(i)}N
i=1) ∈ [1,N] and for uniform

weights (i.e. unweighted) we have ESS({N−1}N
i=1) = N. The

effective sample size can be thought of as an empirical approxi-
mation to (a transformation of) the χ2-divergence between target
π and importance distribution q Chopin and Papaspiliopoulos
(2020) as

ESS({w(i)}N
i=1)

N→∞−−−→ N
1+χ2(π||q)

.

Where χ2(π||q) = Eq[(
π(x)
q(x) − 1)2] is non-negative and

χ2(π||π) = 0.
The composition of optional resampling (2.11), proposal

(2.7) and reweighting (2.8) results in a single iteration of sequen-
tial Monte Carlo (SMC) in its most general form, Algorithm 4.

2.4 Markov Chain Monte Carlo

An alternative approach to the aforementioned importance sampling regimes is that of Markov
chain Monte Carlo (MCMC).

In MCMC, a Markov chain is formed based on some kernel K(y | x). We say that a kernel
is π-invariant (or admits π as a stationary distribution) if∫

π(x)K(y | x)dx = π(y). (2.13)

2.4 Markov Chain Monte Carlo 15

This invariance means that if we were to take a sample x∼ π(·) and generate y∼ K(· | x) then
our new sample would also have marginal distribution π . The implication is that under certain
conditions (informally123) a law of large numbers applies to the scheme that iterates sampling
x(i) ∼ K(· | x(i−1)) with x(0) ∼ K0, when K0 = π . We can therefore approximate expectations of
interest using the estimator in Equation (2.2). For a full theoretical treatment including kernel
dependent convergence rates for when K0 ̸= π see Meyn and Tweedie (1993) or more recently
Douc et al. (2018).

But why is it called
Markov Chain Monte
Carlo?

A(n) (Andrey) Markov
chain is any discrete-time
stochastic process such
that p(x(i) | x(0:i−1)) =

p(x(i) | x(i−1)). Thus,
MCMC forms a Markov
chain by iterating the
same π-invariant kernel
and taking Monte Carlo
averages along the final
chain.

A Markov kernel is said to be π-reversible if

π(x)K(y | x) = π(y)K(x | y). (2.14)

We can show that π-reversibility implies π-invariance (2.13),
indeed ∫

π(x)K(y | x)dx =
∫

π(y)K(x | y)dx,

= π(y)
∫

K(x | y)dx,

= π(y).

It is typically easier to verify π-reversibility rather than π-
invariance directly, as we will see in the next two sections.

Note that although π-reversibility implies π-invariance the
reverse is not necessarily true, indeed the composition of π-reversible kernels are typically not
π-reversible but π-invariance is preserved under composition.

2.4.1 Gibbs Sampling

Suppose we can partition our space x = (xa)a∈A such that we can sample from each full
conditional π(xa|x−a) where x−a = (xb)b∈A\a. Then a Gibbs sampler iteratively selects an
index a ∈ A either randomly or deterministically and then samples

ya ∼ π(· | x−a), (2.15)

before setting y = ya∪ x−a.

1Aperiodicity - the Markov chain does not have a cyclic structure.
2Irreducibility - the Markov chain explores all regions of the state-space with positive probability under π .
3Ergodicity - π is the only distribution for which Equation (2.13) holds.

16 Background

We can show for a given index, Gibbs sampling is π-reversible

π(x)Ka(y | x) = π(x)π(ya | x−a)δ (y−a | x−a),

= π(x−a)π(xa | x−a)π(ya | x−a)δ (y−a | x−a),

= π(y−a)π(xa | y−a)π(ya | y−a)δ (x−a | y−a), [y−a = x−a]

= π(y)π(xa | y−a)δ (x−a | y−a),

= π(y)Ka(x | y).

Gibbs sampling was first introduced in Geman and Geman (1984) and provides a very general
approach for the construction of Markovian kernels that leverage the structure of the state space,
either directly or through the use of auxiliary variables.

Algorithm 5 Gibbs Sampler

1: Sample x(0) ∼ K0

2: for i = 1, . . . ,N do
3: Select a either deterministically or randomly
4: Sample x(i) ∼ π(xa | x(i−1)

−a)δ (x−a | x(i−1)
−a)

5: return {x(i)}N
i=1

2.4.2 Accept-Reject

An alternative way to ensure π-reversibility is to adopt an accept-reject approach where a
sample is proposed y∼ q(· | x) from a proposal distribution q but only accepted with a certain
probability α(x,y) and otherwise the previous state in the chain x is duplicated.

As described in Tierney (1998), a Markov kernel of this ilk can be expressed as

K(y | x) = α(x,y)q(y | x)+δ (y | x)
∫
(1−α(x,x′))q(x′ | x)dx′. (2.16)

In deriving valid acceptance probabilities, α(x,y), it will be useful to consider balancing
functions g : [0,∞)→ [0,1] that satisfy

g(r) = rg(1/r), r > 0, (2.17)

with g(0) = 0.

2.4 Markov Chain Monte Carlo 17

Stochastic Proposals

Suppose that q has positive probability everywhere π does, then we can show that setting

α(x,y) = g
(

π(y)q(x | y)
π(x)q(y | x)

)
(2.18)

induces a kernel that is π-reversible. Indeed, Equation (2.14) is satisfied trivially when y = x so
for y ̸= x we get

π(x)K(y | x) = π(x)q(y | x) g
(

π(y)q(x | y)
π(x)q(y | x)

)
,

= π(y)q(x | y) g
(

π(x)q(y | x)
π(y)q(x | y)

)
,

= π(y)K(x | y).

Therefore Equation (2.17) provides a general framework for constructing accept-reject ker-
nels that are π-reversible for any proposal distribution q(y | x) that has positive probability
everywhere π does.

A significant property of the ratio π(y)q(x|y)
π(x)q(y|x) is that it does not require the target distribution

π to be normalised. Thus, as in importance sampling, Section 2.1.1, we can approximate
expectations with respect to unnormalised targets. However, unlike importance sampling type
approaches, Markov chain Monte Carlo does not directly provide us with an estimate of the
normalising constant.

Deterministic Proposals

In the case that the proposal is deterministic q(y | x) = δ (y | T (x)) and T is an involution
T = T−1. We can set

α(x,y) = g
(

π(y)
π(x)
|∇T (x)|

)
, (2.19)

18 Background

with Jacobian matrix [∇T (x)]i j =
∂

∂xi j
T (x) and a balancing function g from Equation (2.17).

For y ̸= x we can then check for π-reversibility

π(x)K(y|x) = π(x)δ (y | T (x)) g
(

π(y)
π(x)
|∇T (x)|

)
,

= π(y)δ (y | T (x))|∇T (x)| g
(

π(x)
π(y)

1
|∇T (x)|

)
,

= π(y)δ (x | T (y)) g
(

π(x)
π(y)
|∇T (y)|

)
,

= π(y)K(x|y).

As |∇T (y)| = |∇T−1(y)| = |[∇T (x)]−1| = |∇T (x)|−1 by the inverse function theorem and
δ (x | T (y)) = δ (y | T−1(x))|∇T−1(x)|= δ (y | T (x))|∇T (x)| by the change of variables formula
for random variables and the involution property T = T−1.

Note that to take consistent ergodic averages we still need to ensure irreducibility and
aperiodicity which often are not characteristics of deterministic proposals. To overcome this we
can compose a deterministic accept-reject kernel with a stochastic kernel that is also π-invariant.

Choice of Balancing Function

One example of a valid acceptance probability is gB(r) = r
1+r Barker (1965) but the most

popular is that of Metropolis-Hastings gMH(r) = min(1,r) Metropolis et al. (1953), Hastings
(1970). The popularity of the Metropolis-Hastings acceptance probability can be somewhat
attributed to Peskun (1973) who showed that it is optimal amongst kernels of the form in
Equation (2.16). Where said optimality is defined in terms of asymptotic variance in Monte
Carlo estimators 1

N ∑
N
i=1 f (x(i)), where the key observation is that gMH maximises the probability

of moving from x to a new y.
Now that we have established some general accept-reject rules in both stochastic and

deterministic settings we can describe some of the most frequently used proposals.

Random Walk

Possibly the simplest choice of proposal is

q(y | x) = N(y | x,εD), (2.20)

for stepsize ε ∈ (0,∞) and preconditioning matrix D ∈ Rd×d which is often simply set to the
identity Id . A useful property of the random walk proposal is that q(y|x) = q(x|y) and thus the

2.4 Markov Chain Monte Carlo 19

Algorithm 6 Accept-Reject MCMC

1: Sample x(0) ∼ K0

2: for i = 1, . . . ,N do
3: Propose x′ ∼ q(· | x(i−1))

4: Set α according to Equation (2.18) or Equation (2.19)
5: Sample u∼ U(· | 0,1)
6: if u < α then
7: x(i) = x′

8: else
9: x(i) = x(i−1)

10: return {x(i)}N
i=1

acceptance probability reduces to α(x,y) = g
(

π(y)
π(x)

)
. Much is to be said for the simplicity of

the random walk proposal - not least from a coding perspective - however without utilising
any π specific information in the proposal it can perform very poorly for difficult or structured
problems.

Gradient informed proposals

It is natural to consider a Markov proposal as a discretisation of a particular stochastic dif-
ferential equation (SDE), indeed the random walk proposal is an exact discretisation of the
Brownian motion dxt =

√
DdWt .

In the case that we have an SDE with π as a stationary distribution and we discretised it
perfectly all proposals would be accepted by the definition of stationarity. Fundamentally Ma
et al. (2015) show that an SDE of the form

dxt = b(xt)dt +
√

2D(xt)dWt , (2.21)

has stationary distribution π if and only if the drift term b(x) can be written in the form

b(x) =−(D(x)+Q(x))∇U(x)+Γ(x), (2.22)

Γi(x) =
d

∑
j=1

∂

∂x j
(Di j(x)+Qi j(x)).

where U is the potential function i.e. π(x) = exp(−U(x)), D is symmetric, positive semidefinite
and Q is skew-symmetric, i.e. Q =−QT.

20 Background

Note that there still exist stochastic processes that do not take the form in Equation (2.21)
(e.g. jump processes) but admit π as a stationary distribution.

Thus a gradient informed proposal with tractable density can be obtained with an Euler-
Maruyama discretisation

q(y | x) = N(y | x+ εb(x),2εD(x)), (2.23)

which will be nearly π-reversible for small stepsize ε .
The choice of D(x) = D and Q = 0 induces an SDE corresponding to (preconditioned)

overdamped Langevin dynamics. This combined with the Euler-Maruyama discretisation and
the Metropolis-Hastings acceptance probability gives rise to a (preconditioned) Metropolis
adjusted Langevin algorithm (MALA).

A very popular approach in constructing gradient informed proposals is to introduce an
auxiliary variable v ∈ Rd , termed momenta. Defining an extended target which is Gaussian
N (v | 0,M) in the momenta, gives the extended potential

U(x,v) =U(x)+
1
2

vTM−1v, (2.24)

here M is a preconditioning matrix that is often set to Id . We can obtain the more general
Langevin dynamics (or underdamped Langevin dynamics) by defining Equation (2.22) on this
extended space and setting

D(x,v) =

(
0 0
0 γId

)
, Q(x,v) =

(
0 −Id

Id 0

)
, (2.25)

where γ is a friction parameter.
Taking the limit γ → ∞ induces an SDE that can be solved for v. This solution is an SDE

only in x that exactly corresponds to that of overdamped Langevin dynamics.
Setting γ = 0 induces a fully deterministic SDE, i.e. ordinary differential equation (ODE).

This ODE (or system of ODEs) is commonly referred to as Hamiltonian dynamics.
The strength of this construction, in terms of practical simulation, is that there exists

a variety of efficient discretisations for Hamiltonian dynamics that are volume preserving,
i.e. |∇T (x)| = 1 and reversible T (x,v) = (x′,v′) =⇒ T (x′,−v′) = (x,v) so we can obtain
π-reversibility with an acceptance probability from Equation (2.19) (defined on the extended

2.4 Markov Chain Monte Carlo 21

target Equation (2.24)). The most commonly used such discretisation is the leapfrog integrator

vt+ε/2 = vt−
ε

2
∇U(xt),

xt+ε = xt + εM−1vt+ε/2, (2.26)

vt+ε = vt+ε/2−
ε

2
∇U(xt+ε).

Reversibility and volume preservation are preserved under composition, therefore multiple
steps of the leapfrog (or other) integrator are often taken. We then flip the momenta, v =−v, to
ensure an involution before applying the accept-reject step. For alternative discretisations as
well as proofs of reversibility and volume preservation see Leimkuhler and Matthews (2015).

Deterministic discretisations of Hamiltonian dynamics are typically interweaved with
momenta refreshment to ensure irreducibility and aperiodicity. In the case of Hamiltonian
Monte Carlo this is done by simply sampling the momenta v afresh from N (0,Id) which is
π-invariant for the extended π as it represents a single step of a Gibbs sampler. Although
for non-zero friction γ it is possible to partially refresh momenta by splitting the SDE in
Equation (2.25) and solving the corresponding Ornstein-Uhlenbeck SDE in v exactly - this is
discussed in detail in Section 6.2.

By utilising gradient information the samplers described above can typically explore the
state space much faster than a random walk.

Stepsize Tuning

For all of the described accept-reject MCMC samplers a stepsize parameter ε and precondi-
tioning matrix D have to be tuned. For random walk Metropolis-Hastings on a Gaussian target
π(x) =N (x|0,Σ) it can be shown Rosenthal (2009) that the optimal stepsize and precondition-
ing matrix combination is

εD =
2.382

d
Σ. (2.27)

It is difficult to reason much further on the optimality of the static preconditioning matrix D
for general target distributions, thus choosing D to approximate the covariance of the target π

(either adaptively Andrieu and Thoms (2008) or if further information about π is available) is a
commonly applied heuristic.

In the seminal work of Roberts and Rosenthal (2001) pseudo-optimal Metropolis-Hastings
acceptance rates of 0.234 for random walk Metropolis-Hastings and 0.574 for MALA are
established. These rates are pseudo-optimal in the sense that they are optimal in the limit of
extending the target with itself infinitely many times. They are however still very much utilised
in practice - by tuning the stepsize ε to achieve the desired acceptance rate. This can be done

22 Background

adaptively (with diminishing adaptation) via a Robbins-Monro scheme Andrieu and Thoms
(2008) or with preliminary runs. The optimal rate for Hamiltonian Monte Carlo-like algorithms
depends on the number of integrator steps but is typically set to 0.651 Beskos et al. (2013) or
higher.

2.4.3 Markov Chain Monte Carlo within Sequential Monte Carlo

It is sometimes possible to use a Markovian transition kernel qt|0:t−1(xt | x0:t−1) = qt|t−1(xt | xt−1)

that is πt−1-invariant in the proposal step of a sequential Monte Carlo algorithm, Section 2.3.
In this case the optimal backward kernel, Equation (2.9), remains intractable. However a

natural sub-optimal choice Del Moral et al. (2006) is

π0:t−1|t(x0:t−1 | xt) = π0:t−2|t−1(x0:t−2 | xt−1)
πt−1(xt−1)qt|t−1(xt | xt−1)

πt−1(xt)
, (2.28)

which is normalised by the πt−1-invariance of qt|t−1.
In this case, the SMC weights, Equation (2.8), take the very simple form

wt = wt−1
πt(xt)

πt−1(xt)
. (2.29)

2.5 Approximate Bayesian Computation

Consider a Bayesian inference problem

π(x) = p(x | y) = p(x)p(y | x)
p(y)

,

with the additional complication that we cannot evaluate the likelihood density p(y|x) as it is
intractable or too costly. Assume, however, that we can relatively cheaply generate a simulated
observation y′ ∼ p(· | x) from the likelihood for a given value of x without any trouble.

Approximate Bayesian computation (ABC) proceeds by instead targeting the extended
distribution

νκ(x,y′) =
p(x)p(y′|x)I(d(y′,y)< κ)

pκ(y)
, (2.30)

where d : Y ×Y → [0,∞) is a distance function, κ is a threshold parameter and pκ(y) =∫
p(x)p(y′|x)I(d(y′,y)< κ)dy′dx is the normalising constant. Note that y is the true given data

and y′ is an auxiliary random variable representing simulations from the likelihood - in νκ(x,y′)
we suppress the dependence on y for brevity.

2.5 Approximate Bayesian Computation 23

By focusing on the marginal distribution of νκ(x,y′) in x and noting that κ → 0 =⇒
I(d(y′,y)< κ)→ δ (y′ | y) we can see that

κ → 0 =⇒ νκ(x) =
∫

νκ(x,y′)dy′,

=
∫ p(x)p(y′|x)I(d(y′,y)< κ)

pκ(y)
dy′,

→
∫ p(x)p(y′|x)δ (y′ | y)

p(y)
dy′,

= π(x),

where pκ(y)→ p(y) by the same argument. This gives us the ability to control the bias
νκ(x) ̸= π(x) for κ > 0 through the threshold parameter κ , although decreasing κ increases
simulation costs leaving a computational trade-off.

2.5.1 ABC Importance Sampling

But why is it called
Approximate Bayesian
Computation?

Bayesian computation or
Bayesian inference refers to
the process of taking expec-
tations over the true poste-
rior p(x | y), most often with
Monte Carlo samples. By
instead taking expectations
over νκ(x) we obtain ap-
proximate Bayesian compu-
tation.

We can generate weighted samples from νκ(x,y′) by first gen-
erating

x∼ q(·), y′ ∼ p(·|x),

and then applying importance weights with target νκ

w ∝
p(x)p(y′|x)I(d(y′,y)< κ)

q(x)p(y′|x)
,

=
p(x)
q(x)

I(d(y′,y)< κ).

A common choice of importance distribution is the prior q(x)=
p(x). In this case, the weights become

w ∝ I(d(y′,y)< κ).

The resulting algorithm, we term vanilla ABC Pritchard et al. (1999); Tavaré et al. (1997),
is simultaneously an importance sampler and a rejection sampler where a sample (x,y′) is
accepted if I(d(y′,y)< κ). A convenient practical property of the vanilla ABC algorithm is
that the threshold parameter κ can be selected after sampling to achieve a desired acceptance
rate - making the trade-off between bias and computational tractability particularly transparent.

24 Background

For complex problems the posterior π or rather the ABC posterior νκ (for small κ) is going
to look very different from the prior. A consequence is very low acceptance rates for vanilla
ABC and therefore an inefficient algorithm. One option is to consider a more sophisticated
proposal q, although as described in Section 2.1, general purpose informed proposals are
difficult to construct.

Algorithm 7 Importance ABC

1: Sample x(i) ∼ q i = 1, . . . ,N
2: Sample y(i) ∼ p(· | x(i)) i = 1, . . . ,N
3: Normalise p̂κ(y) = 1

N ∑
N
i=1

p(x(i))
q(x(i))

I(d(y(i),y)< κ)

4: Weight w(i) = p(x(i))
q(x(i))N p̂κ (y)

I(d(y(i),y)< κ)

5: return {x(i),w(i)}N
i=1

2.5.2 ABC Markov Chain Monte Carlo

An alternative approach is to run a Markov chain Monte Carlo algorithm targeting νκ , Marjoram
et al. (2003). Consider the following Markovian proposal kernel on the extended space

q(x′,y′ | x(i−1),y(i−1)) = q(x′ | x(i−1),y(i−1))p(y′ | x′),

Then the Metropolis-Hastings acceptance probability becomes

α(x(i−1),y(i−1),x′,y′) = min

(
1,

νκ(x′,y′)q(x(i−1),y(i−1) | x′,y′)
νκ(x(i−1),y(i−1))q(x′,y′ | x(i−1),y(i−1))

)
,

= min

(
1,

p(x′)q(x(i−1) | x′,y′)
p(x(i−1))q(x′ | x(i−1),y(i−1))

I(d(y′,y)< κ)

)
. (2.31)

As gradients are naturally out of the question, the random walk proposal q(x′ | x(i−1),y(i−1)) =

N (x′ | x(i−1),εD) from Equation (2.20) is typically used. By the symmetry of the random walk
proposal, the acceptance probability then simplifies to

α(x(i−1),y(i−1),x′,y′) = min
(

1,
p(x′)

p(x(i−1))
I(d(y′,y)< κ)

)
.

In the case that the posterior distribution is unimodal, it is intuitive to think that this
Markovian approach can be much more efficient the vanilla version Marjoram et al. (2003) as
the algorithm explores the posterior locally rather than starting afresh at every iteration.

2.5 Approximate Bayesian Computation 25

The parameters ε , D and κ can be tuned either adaptively or using trial runs. Vihola and
Franks (2020) recommend tuning so that εD ≈ 2.382

d Σ as in Equation (2.27) where Σ is the
posterior covariance (which can be approximated by the previously generated samples). This
leaves κ which can be adapted using a Robbins-Monro schedule to achieve a desired acceptance
rate, Vihola and Franks (2020) argue that due to the extension of the state-space the optimal
acceptance rate must be lower than 0.234 and make a recommendation of 0.1.

Algorithm 8 ABC-MCMC

1: Sample x(0),y(0) ∼ K0

2: for i = 1, . . . ,N do
3: Propose x′ ∼ q(· | x(i−1),y(i−1))

4: Propose y′ ∼ p(· | x′)
5: Set α according to Equation (2.31)
6: Sample u∼ U(· | 0,1)
7: if u < α then
8: x(i), y(i) = x′, y′

9: else
10: x(i), y(i) = x(i−1), y(i−1)

11: return {x(i)}N
i=1

2.5.3 ABC Sequential Monte Carlo

We can also utilise a sequential Monte Carlo approach for ABC Sisson et al. (2007), Del Moral
et al. (2012), where we define the sequence of intermediate marginal distributions as

νκt (xt ,yt) =
p(xt)p(yt |xt)I(d(yt ,y)< κt)

pκt (y)
, t = 0, . . . ,T,

for a decreasing sequence of threshold parameters

κ0 > κ1 > · · ·> κT .

Assuming we have a Markovian transition qt|0:t−1(xt ,yt |x0:t−1,y0:t−1) = qt|t−1(xt ,yt |xt−1,yt−1)

then the sequential importance weights become

wt ∝ wt−1
νκt (xt ,yt)νt−1|t(xt−1,yt−1|xt ,yt)

νκt−1(xt−1,yt−1)qt|t−1(xt ,yt |xt−1,yt−1)
.

26 Background

A choice of transition kernel that induces tractable weights is

qt|t−1(xt ,yt |xt−1,yt−1) = qt|t−1(xt |xt−1,yt−1)p(yt |xt).

Similarly setting the auxiliary target νt−1|t(xt−1,yt−1|xt ,yt) = νt−1|t(xt−1|xt ,yt)p(yt−1|xt−1)

then gives

wt ∝ wt−1
p(xt)νt−1|t(xt−1|xt ,yt)

p(xt−1)qt|t−1(xt |xt−1,yt−1)
I(d(yt ,y)< κt).

Given a transition kernel qt|t−1(xt |xt−1,yt−1) we still need to define a sensible backward kernel
νt−1|t(xt−1|xt ,yt) which can be difficult for complex proposals.

Alternatively we could choose qt|t−1(xt ,yt |xt−1,yt−1) to be a νκt−1-invariant MCMC kernel
from 2.5.2. In this case, we can choose the backward kernel as in 2.4.3 and obtain tractable
weights

wt ∝ wt−1I(d(yt ,y)< κt).

2.5.4 Distance Functions

The distance function d is an important factor in both the bias induced by extending the space
and the efficiency of the aforementioned simulation algorithms.

As the data y can be very high dimensional, most distance functions first summarise the
data

d(y′,y) = d∗(S(y′),S(y)),

for a summary function S : Y →Y∗ where Y∗ is typically of much lower dimension. The new
distance function d∗ is most often simply set to the Euclidean distance or a preconditioned
version thereof. Choosing summary functions that sufficiently reduce the dimension but
retain as much of the information described by the data is a particularly scenario specific task
Fearnhead and Prangle (2012).

2.5 Approximate Bayesian Computation 27

Algorithm 9 ABC-SMC

1: Sample x(i)0 ∼ q0 i = 1 . . . ,N
2: Sample y(i)0 ∼ p(· | x(i)0) i = 1 . . . ,N

3: Normalise Ẑ0 =
1
N ∑

N
i=1

p(x(i)0)

q0(x
(i)
0)

I(d(y(i)0 ,y)< κ0)

4: Weight w(i)
0 =

p(x(i)0)

q0(x
(i)
0)NẐ0

I(d(y(i)0 ,y)< κ0) i = 1 . . . ,N

5: for t = 1, . . . ,T do
6: if resampling criterion then

7:
{(

x̃(i)t−1, ỹ
(i)
t−1

)
, w̃(i)

t−1 =
1
N

}N

i=1
= Resample

({(
x(i)t−1,y

(i)
t−1

)
,w(i)

t−1

}N

i=1

)
8: else
9:

{(
x̃(i)t−1, ỹ

(i)
t−1

)
, w̃(i)

t−1

}N

i=1
=
{(

x(i)t−1,y
(i)
t−1

)
,w(i)

t−1

}N

i=1

10: Propose from νκt−1-invariant qt|t−1

x(i)t ,y(i)t ∼ qt|t−1(xt ,yt | x̃(i)t−1, ỹ
(i)
t−1) i = 1 . . . ,N

11: Normalise

Ẑt|t−1 =
N

∑
i=1

w̃(i)
t−1I(d(y

(i)
t ,y)< κt)

12: Reweight
w(i)

t = w̃(i)
t−1I(d(y

(i)
t ,y)< κt)/Ẑt|t−1 i = 1 . . . ,N

13: return
{{

x(i)t ,w(i)
t

}N

i=1

}T

t=0

28 Background

x

y

Fig. 2.1 Static Bayesian model.

xt−1 xt xt+1

yt−1 yt yt+1

Fig. 2.2 State-space model.

2.6 State-Space Models

But why are they called
State-Space Models?

In the language of Rudolf
E. Kálmán, the variables
x0:T are termed state vari-
ables and y0:T observation
variables - thus inferring
x0:T given y0:T becomes
state-space modelling.

The Bayesian paradigm, Figure 2.1, provides a very flexible
framework for describing data generating processes. When the
data arrives sequentially it can be particularly useful to impose
a stricter conditional independence structure where data is gener-
ated from an underlying Markov process Figure 2.2. Models with
this conditional independence structure are commonly referred
to as state-space models (or hidden Markov models).

The full posterior or smoothing distribution of a state-space
model takes the form

p(x0:T |y0:T) =
p(x0:T ,y0:T)

p(y0:T)
, (2.32)

p(x0:T ,y0:T) = p(x0|y0)
T

∏
t=1

p(xt |xt−1)p(yt |xt). (2.33)

In online settings, it is often only the filtering marginal p(xT |y0:T) that is of interest.

But why is it called filtering and smoothing?

In signal processing, the term filtering refers to inferring xT by denoising the noisy observations y0:T .
Smoothing refers to inference over a full trajectory x0:T where it is common for the transition density
p(xt |xt−1) to favour nearby consecutive variables - thus encouraging a smooth trajectory.

2.6.1 Linear Gaussian State-Space Models

A useful subset of state-space models is when all distributions are assumed to be linear and
Gaussian, that is

2.6 State-Space Models 29

p(x0) = N(x0 | µ0|0,Σ0|0), (2.34a)

p(xt | xt−1) = N(xt | Ftxt−1,Qt), t = 1, . . . ,T, (2.34b)

p(yt | xt) = N(yt | Htxt ,Rt), t = 0, . . . ,T. (2.34c)

As all intermediate distributions are Gaussian, so is the full joint distribution p(x0:T ,y0:T). Any
conditionals (including p(x0:T |y0:T) and p(xT |y0:T)) are therefore also Gaussian and can be
obtained by applying standard properties of Gaussian distributions to p(x0:T ,y0:T), however
this approach will come at cost O(T 3).

Instead, we can utilise the conditional independence of the state-space model Figure 2.2 to
calculate the filtering marginals recursively. Assume we know the previous filtering marginal

p(xT−1|y0:T−1) = N(xT−1 | µT−1|T−1,ΣT−1|T−1)

then the predictive marginal is

p(xT |y0:T−1) =
∫

p(xT−1,xT | y0:T−1)dxT−1,

=
∫

p(xT | xT−1)p(xT−1 | y0:T−1)dxT−1,

= N(xT−1 | µT |T−1,ΣT |T−1),

where µT |T−1 = FT µT−1|T−1 and ΣT |T−1 = FT ΣT−1|T−1FT
T +QT can be found by applying the laws

of total expectation and covariance.
We can then use the predictive marginal and the observation yT to calculate the updated

filtering marginal

p(xT |y0:T) =
p(yT |xT)p(xT |y0:T−1)

p(yT |y0:T−1)
, (2.35)

= N(xT | µT |T ,ΣT |T),

where

µT |T = µT |T−1 +KT |T(yT −HT µT |T−1),

ΣT |T = ΣT |T−1−KT |T HT ΣT |T−1,

KT |T = ΣT |T−1HT
T
(
HT ΣT |T−1HT

T +RT
)−1

,

30 Background

can be derived by completing the square in (2.35) or considering the joint distribution of
(xT ,yT) | y0:T−1 and conditioning on yT . The resulting recursion is the celebrated Kalman filter,
Kalman (1960).

Algorithm 10 Kalman Filter
1: Given µT−1|T−1 and ΣT−1|T−1

2: Calculate predictive marginal statistics

µT |T−1 = FT µT−1|T−1

ΣT |T−1 = FT ΣT−1|T−1FT
T +QT

3: Calculate filtering marginal statistics

KT |T = ΣT |T−1HT
T
(
HT ΣT |T−1HT

T +RT
)−1

µT |T = µT |T−1 +KT |T(yT −HT µT |T−1)

ΣT |T = ΣT |T−1−KT |T HT ΣT |T−1

4: return µT |T and ΣT |T

In offline settings we can store all the filtering marginals from a Kalman filter and run a
backward pass to obtain the smoothing marginals p(xt |y0:T). Assuming we have p(xt+1|y0:T) =

N(xt+1 | µt+1|T ,Σt+1|T)

p(xt |y0:T) =
∫

p(xt ,xt+1|y0:T)dxt+1, (2.36)

=
∫

p(xt |xt+1,y0:T)p(xt+1|y0:T)dxt+1,

=
∫

p(xt |xt+1,y0:t)p(xt+1|y0:T)dxt+1,

=
∫ p(xt+1|xt)p(xt |y0:t)

p(xt+1|y0:t)
p(xt+1|y0:T)dxt+1.

= N(xt+1 | µt|T ,Σt|T).

where

µt|T = µt|t +Kt|T(µt+1|T −Ft+1µt|t),

Σt|T = Σt|t +Kt|T
(
Σt+1|T −Ft+1Σt|tFT

t+1−Qt+1
)

KT
t|T ,

Kt|T = Σt|tFT
t
(
FtΣt|tFT

t +Qt+1
)−1

.

2.6 State-Space Models 31

A full pass of either the Kalman filter or Kalman smoother has cost O(T).

Algorithm 11 Kalman Smoother

1: Given filtering statistics
{

µt|t ,Σt|t
}T

t=0 from Kalman filter, Algorithm 10.
2: for t = T −1, . . . ,0 do
3: Calculate smoothing marginal statistics

Kt|T = Σt|tFT
t
(
FtΣt|tFT

t +Qt+1
)−1

µt|T = µt|t +Kt|T(µt+1|T −Ft+1µt|t)

Σt|T = Σt|t +Kt|T
(
Σt+1|T −Ft+1Σt|tFT

t+1−Qt+1
)

KT
t|T

4: return
{

µt|T ,Σt|T
}T

t=0

2.6.2 Particle Filtering

The sequential Monte Carlo techniques we described in full generality in 2.3 were first intro-
duced in the context of state-space models Gordon et al. (1993).

Sequential Monte Carlo when applied to online inference in state-space models is com-
monly referred to as particle filtering. In this context, we assume we have weighted particles
{x(i)0:T−1,w

(i)
T−1}N

i=1 approximating p(x0:T−1|y0:T−1). Upon receiving a new observation yT , we
extend trajectories by sampling from some proposal distribution qT |0:T−1

x(i)T ∼ qT |0:T−1(xT | x(i)0:T−1,yT), i = 1, . . . ,N.

Note that we can additionally condition the proposal on the previous observations y0:T−1,
however the conditional independence of the state-space model, Figure 2.2, implies that x0:T−1

are sufficient for y0:T−1.
With target distribution p(x0:T |y0:T) the importance weights in Equation (2.8) become

wT = wT−1
p(x0:T | y0:T)

p(x0:T−1 | y0:T−1)qT |0:T−1(xT | x0:T−1,yT)
,

= wT−1
p(xT | xT−1)p(yT |xT)

qT |0:T−1(xT | x0:T−1,yT)

p(y0:T−1)

p(y0:T)
,

∝ wT−1
p(xT | xT−1)p(yT |xT)

qT |0:T−1(xT | x0:T−1,yT)
, (2.37)

32 Background

where we have substituted in the smoothing distribution Equation (2.32). The weights now
take a simple, sequential form and we can also use the self-normalising described in 2.1.1 to
approximate p(y0:T)

p(y0:T−1)
= p(yT |y0:T−1).

The most common choice of proposal distribution is

qBF
T |0:T−1(xT | x0:T−1,yT) = p(xT | xT−1), (2.38a)

wBF
T ∝ wT−1 p(yT |xT), (2.38b)

and the resulting algorithm is termed the bootstrap filter. An important property of the bootstrap
filter is that the induced weights are independent of p(xT |xT−1) and can therefore provide exact
inference in state-space models where the transition density p(xT |xT−1) is intractable (i.e. can
be simulated from but not evaluated).

It was shown in Doucet et al. (2000) that the (locally) optimal proposal is

qopt
T |0:T−1(xT | x0:T−1,yT) =

p(xT | xT−1)p(yT |xT)

p(yT |xT−1)
, (2.39a)

wopt
T ∝ wT−1 p(yT |xT−1). (2.39b)

Where the optimality is in the sense of minimising the variance of the weights under the
sampling distribution

qopt
T |0:T−1 = argmin

qT |0:T−1

CovqT |0:T−1[wt].

Indeed, we can see that induced optimal weights wopt
T ∝ wT−1 p(yT |xT−1) are independent of

xT and therefore Covqopt
T |0:T−1

[wt] = 0.

However, it is only in a few special cases that both sampling from the optimal proposal and
evaluating the induced weights are tractable.

As can be seen from the weights in Equation (2.37), the particle filter is doing importance
sampling targeting the smoothing distribution p(x0:T |y0:T). Without resampling, the particle
filter is entirely non-interacting and is therefore pure importance sampling targeting p(x0:T |y0:T)

with importance distribution

q0:T(x0:T) = q0(x0)
T

∏
t=1

qt|0:t−1(xt |x0:t−1).

The dimension of the state-space increases with each iteration and therefore without resampling
the divergence between target distribution and importance distribution increases until we are left
with only a single particle duplicated N times, Del Moral and Doucet (2003). Thus resampling
is essential to ensure a diverse particle approximation to the filtering marginals p(xT |y0:T).

2.6 State-Space Models 33

Algorithm 12 Particle Filter

1: Given {x(i)0:T−1,w
(i)
T−1}N

i=1

2: if resampling criterion then

3:
{

x̃(i)0:T−1, w̃
(i)
T−1 =

1
N

}N

i=1
= Resample

({
x(i)0:T−1,w

(i)
T−1

}N

i=1

)
4: else
5:

{
x̃(i)0:T−1, w̃

(i)
T−1

}N

i=1
=
{

x(i)0:T−1,w
(i)
T−1

}N

i=1

6: Propose
x(i)T ∼ qT |0:T−1(xT | x̃(i)0:T−1,yT) i = 1 . . . ,N

7: Normalise

ẐT |0:T−1 =
N

∑
i=1

w̃(i)
T−1

p(x(i)T | x̃
(i)
T−1)p(yT | x(i)T)

qT |0:T−1(x
(i)
T | x̃

(i)
0:T−1,yT)

8: Reweight

w(i)
T = w̃(i)

T−1
p(x(i)T | x̃

(i)
T−1)p(yT | x(i)T)

qT |0:T−1(x
(i)
T | x̃

(i)
0:T−1,yT)ẐT |0:T−1

i = 1, . . . ,N

9: Append x(i)0:T = x̃(i)0:T−1∪ x̃(i)T

10: return {x(i)0:T ,w
(i)
T }N

i=1

34 Background

2.6.3 Particle Smoothing

In each iteration of a particle filter only the latest coordinate xT is generated, and then resampling
steps may be performed to ensure only particles with reasonable weights are proposed at the
next iteration. Consequently, the diversity (number of unique particles) of the approximations
to all previous coordinates x0:T−1 can only decrease at each iteration. As such, the resampling
operation preserves the diversity of particle approximations to the filtering marginals p(xT |y0:T)

but at the cost of degeneracy to the smoothing approximations at early coordinates. Indeed
for T large enough the particle filter approximation to the first smoothing marginal p(x0|y0:T)

converges to a single particle duplicated N times - this is known as path degeneracy. In online
settings we may only be interested in the filtering marginals and can accept path degeneracy.

In offline settings where we are interested in expectations over the full smoothing distribu-
tion p(x0:T |y0:T) we have more work to do. Fortunately, we can recycle the output of a particle
filter and, similarly to the Kalman smoother, utilise the conditional independence structure of
state-space models to run a backward pass and obtain a diverse particle approximation. Al-
though unlike the Kalman smoother, we can use the particles to approximate the joint smoothing
distribution p(x0:T |y0:T) rather than only smoothing marginals {p(xt |y0:T)}T

t=0. These particle
smoothing techniques can be viewed as recycling the filtering marginals {p(xt |y0:t)}T

t=0 in
order to approximate the joint smoothing distribution p(x0:T |y0:T).

Assume we have filtering particles which we represent with a tilde{
x̃(i)t−1, w̃

(i)
t−1

}N

i=1
approximating p(xt−1|y0:t−1),

and unweighted smoothing particles{
x(j)

t

}N

j=1
approximating p(xt |y0:T).

But desire unweighted joint smoothing particles{(
x(j)

t−1,x
(j)
t

)}N

j=1
approximating p(xt−1,xt |y0:T).

We can write the intermediate joint smoothing distribution as

p(xt−1,xt |y0:T) = p(xt |y0:T)p(xt−1|xt ,y0:t−1).

Our xt particles already have the correct marginal distribution so we only need to update xt−1

according to p(xt−1|xt ,y0:t−1). By Bayes’ theorem and the conditional independence structure

2.6 State-Space Models 35

of state-space models

p(xt−1|xt ,y0:t−1) =
p(xt |xt−1)p(xt−1|y0:t−1)

p(xt |y0:t−1)
, (2.40)

and we have empirical approximations

p(xt−1|y0:t−1)≈
N

∑
i=1

w̃(i)
t−1δ (xt−1 | x̃

(i)
t−1),

p(xt |y0:t−1) =
∫

p(xt |xt−1)p(xt−1|y0:t−1)dxt−1

≈
N

∑
i=1

w̃(i)
t−1 p(xt |x̃(i)t−1).

By plugging these into the decomposition Equation (2.40) we get

p(xt−1|x
(j)
t ,y0:t−1)≈

∑
N
i=1 w̃(i)

t−1 p(x(j)
t |x̃

(i)
t−1)δ (xt−1 | x̃

(i)
t−1)

∑
N
i=1 w̃(i)

t−1 p(x(j)
t |x̃

(i)
t−1)

,

=
N

∑
i=1

w(i← j)
t−1 δ (xt−1 | x̃

(i)
t−1). (2.41)

where w(i← j)
t−1 ∝ w̃(i)

t−1 p(x(j)
t |x̃

(i)
t−1) are normalised across i.

By iteratively backwards sampling from this empirical conditional distribution

x(j)
t−1 ∼

N

∑
i=1

w(i← j)
t δ (xt−1 | x̃

(i)
t−1) t = T,T −1, . . .1,

with x(j)
t−1 = x̃(j)

t−1, we obtain the forward filtering-backward simulation algorithm Godsill et al.
(2004). The backward simulation converts the weighted filtering marginal particles into an
unweighted particle approximation {x(j)

0:T}N
j=1 that is asymptotically unbiased for the joint

smoothing distribution p(x0:T |y0:T).
The cost of backward simulation is O(N2) as all the weights w(i← j)

t for i, j = 1, . . . ,N need
to be computed in Equation (2.41). It was noted in Douc et al. (2011) that by using a rejection
sampling technique, we can reduce the cost of backward simulation to O(N) when we can
bound the transition density

p(xt |xt−1)<C ∀xt−1,xt . (2.42)

36 Background

At a single iteration of backward simulation we have
{

x̃(i)t−1, w̃
(i)
t−1

}N

i=1
∼ p(xt−1|y0:t−1) and{

x(j)
t

}N

j=1
∼ p(xt |y0:T). Then the pure rejection sampler proceeds by repeating the following

procedure until a sample is accepted for each smoothing trajectory j

1. Sample x′t−1 ∼ ∑
N
i=1 w̃(i)

t−1δ (xt−1 | x̃
(i)
t−1).

2. With probability α = p(x(j)
t |x′t−1)/C < 1

• Set x(j)
t−1 = x′t−1,

• Otherwise go to 1.

Asymptotically the resulting sample is from the conditional importance distribution

q∗t−1|t(xt−1|xt) =
p(xt |xt−1)

C
p(xt−1|y0:t−1)/Z∗t−1|t(xt),

where the normalisation constant is

Z∗t−1|t(xt) =
∫ p(xt |xt−1)

C
p(xt−1|y0:t−1)dxt−1

=
p(xt |y0:t−1)

C
.

and therefore we have
q∗t−1|t(xt−1|xt) = p(xt−1|xt ,y0:t−1),

as desired.
Therefore, by rejection sampling we no longer need to compute normalising constant of the

backwards sampling weights and have reduced the cost to O(NRE) where RE is the expected
number of attempts proposed to the rejection sampler, which for stays constant for very large N
Douc et al. (2011).

Note that if we instead replace the pure rejection sampling with a rejection control sampler
2.2, i.e. we were to use a parameter C that was not a strict bound and augment our smoothing
particles with importance weights, the induced weights would include a p(xt |y0:t−1) term which
cannot typically be evaluated.

For finite N the rejection sampling technique is not always faster than the N2 version. A
pragmatic approach is described in Taghavi et al. (2013) where up to R proposals are sent to
the rejection sampler for each particle. Any particles remaining without an acceptance are sent
to the N2 version. This hybrid backward simulation is described in Algorithm 13.

2.6 State-Space Models 37

Algorithm 13 Backward Simulation

1: Given filtering marginal particles
{{

x̃(i)t , w̃(i)
t

}N

i=1

}T

t=0

2:
{

x(i)T

}N

i=1
= Resample

({
x̃(i)T , w̃(i)

T

}N

i=1

)
3: for t = T −1, . . . ,0 do
4: for i = 1, . . . ,N do
5: for r = 1, . . . ,R do R = max number of rejections

6: Sample c∗ ∼ Categorical
({

w̃(i)
t

}N

i=1

)
7: Sample u∼ U(· | 0,1)
8: if u < p(x(i)t+1 | x̃

(c∗)
t)/C then Bound C > p(xt+1 | xt) ∀xt ,xt+1

9: Accept c∗ and break to 10

10: if a sample c∗ was accepted then
11: Set x(i)t = x̃(c

∗)
t

12: else
13: Calculate interacting weights and normalise in k

w(k←i)
t ∝ p(x(i)t+1 | x̃

(k)
t)w̃(k)

t k = 1, . . . ,N

14: Sample ci ∼ Categorical
({

w(k←i)
t

}N

k=1

)
15: Set x(i)t = x̃(ci)

t

16: return {x(i)0:T}N
i=1

Chapter 3

Online Particle Smoothing

In this chapter, we introduce a novel approach to online smoothing in state-space models based
on a fixed-lag approximation. Unlike classical fixed-lag techniques, our method approximates
the joint posterior distribution rather than just the marginals. It does this without suffering path
degeneracy as the length of the state-space model increases.

Recall that a state-space model is fully defined by the following distributions for the hidden
{xt}∞

t=0 and observed process {yt}∞
t=0

p(x0),

p(xt | xt−1), t = 1,2,3, . . .

p(yt | xt), t = 0,1,2, . . .

The statistical inference goal of smoothing is the task of approximating the full joint posterior
or smoothing distribution

p(x0:T | y0:T) ∝ p(x0 | y0)
T

∏
t=1

p(xt | xt−1)p(yt | xt), (3.1)

where x0:T = (x0, . . . ,xT) are latent states to be inferred and y0:T = (y0, . . . ,yT) are given
observations.

For online smoothing, we have the additional requirement of being able to quickly and
accurately update an approximation of p(x0:T−1 | y0:T−1) to approximate p(x0:T | y0:T) in light
of receiving a new observation yT .

As described in Chapter 2, particle smoothers approximate p(x0:T | y0:T) with a collection
of weighted particles

p(x0:T | y0:T)≈
N

∑
i=1

w(i)
T δ

(
x0:T | x

(i)
0:T

)
,

40 Online Particle Smoothing

as opposed to particle filters which are (normally) only asked to approximate the filtering
marginal p(xT | y0:T). Existing online particle smoothing approximations either degenerate
as the length of the state-space model, T , increases or only target the smoothing marginals
{p(xt | y0:T)}T

t=0 rather than the joint smoothing distribution. A particle approximation to the
joint smoothing distribution is significantly more useful as mathematical expectations can be
calculated over a variety of functions defined over full trajectories, thus providing the user with
complete flexibility.

In summary, our motivation is to develop an algorithm that simultaneously satisfies the
following requirements

• Joint Smoothing: The algorithm efficiently approximates the joint smoothing distribu-
tion p(x0:T | y0:T) rather than only marginals.

• Online: Our approximation can be quickly updated on receipt of new observations.

• Non-degenerate: The algorithm avoids the path degeneracy of classical particle filters.

The contribution of this chapter is to introduce two general techniques for generating
samples on-the-fly that approximate p(x0:T | y0:T) via a fixed-lag approximation.

The rest of the chapter is structured as follows. In Section 3.1, we recap and discuss related
online and offline algorithms for particle smoothing, as summarised in Table 3.1 alongside
those introduced in this chapter. Section 3.2 describes how to combine blocked samples in a
way that is invariant for a fixed-lag joint smoothing distribution before Section 3.3 introduces
two efficient online methods for generating these blocked samples. Section 3.4 investigates
numerically the performance of the introduced online particle smoothers and their sensitivity to
key parameters. Finally, in Section 3.5 we conclude and discuss some potential extensions.

3.1 Particle Smoothing

Particle smoothing refers to particle approximations of the smoothing distribution p(x0:T | y0:T).
This can be done directly by treating the task as a static Bayesian inference problem Figure 2.1,
however by leveraging the conditional independence structure of state-space models Figure 2.2,
sequential Monte Carlo techniques can be used to effectively reduce the dimension.

3.1.1 Path Degeneracy

A classical particle filter runs a single forward pass, updating particles at every observation.
Each update consists of three steps: an optional resample step, a propagation step and a
weighting step, Algorithm 12.

3.1 Particle Smoothing 41

The resampling operation converts a weighted sample into an unweighted sample that likely

contains duplicates
{

x(i),w(i)
}N

i=1
→
{

x(i), 1
N

}N

i=1
. The most common resampling method is

multinomial sampling (2.11) which we repeat here

Sample a(i) ∼ Categorical
({

w(i)
}N

i=1

)
, i = 1, . . . ,N,

Set x(i)← x(a
(i)) w(i)← 1

N
, i = 1, . . . ,N.

Due to the optional nature of the resampling step, adaptive schemes are desirable, with a
popular choice to be to only resample if the effective sample size 1/∑

N
i=1 w(i)2

T falls below some
threshold.

Although most commonly used only to approximate the filtering marginals p(xT | y0:T),
the particle filter as described in Algorithm 12 does provide an asymptotically unbiased
approximation to the full smoothing distribution p(x0:T | y0:T).

The reason that a classical particle filter is almost never used to approximate the smoothing
distribution is due to path degeneracy. Path degeneracy occurs in state-space models with large
T . For repeated particle filter updates, the early coordinates of particles (e.g. x(i)0) will only be
altered in the resampling step. Resampling can only decrease particle diversity (the number of
distinct particles) and therefore as T increases the particle approximation of p(x0 | y0:T) will
eventually collapse to just a single particle repeated N times.

In addition to criteria such as the effective sample size that ensure resampling is only
applied when necessary, a variety of techniques have been developed to mitigate the effects
of path degeneracy. These include adaptively increasing the number of particles Elvira et al.
(2017) as well as more sophisticated resampling schemes Douc and Cappe (2005); Li et al.
(2015) which aim to only resample particles with negligible weights. These approaches can
improve performance over multinomial resampling however still suffer the collapse in the
approximation of p(x0 | y0:T) for T sufficiently large.

The merits of resampling are well known, in particular resampling is vital in ensuring
a diverse particle approximation to the filtering marginals - the particle filter’s primary task.
Indeed, a particle filter without resampling is simply importance sampling on an a space whose
dimension increases with every new observation. As a result, the divergence between impor-
tance and target distribution increases and the number of particles must increase exponentially
Chatterjee and Diaconis (2018) - the addition of resampling means the number of particles can
be kept constant and a stable approximation to the filtering marginals is maintained.

42 Online Particle Smoothing

3.1.2 Marginal Fixed-Lag

An alternative approach in mitigating the path degeneracy induced by repeated resampling is to
simply stop resampling the early coordinates of particles, as proposed in Kitagawa and Sato
(2001). That is replace the resample step (Algorithm 12, line 3) for T > L with the scheme
described in Algorithm 14. The justification for freezing x(i)0:T−L−1 is that after a certain lag L

Algorithm 14 Marginal Fixed-lag Resampling (for T > L)

1: Fix {x(i)0:T−L−1}N
i=1

2: Resample only recent coordinates{
x(i)T−L:T ,w

(i)
T

}N

i=1
→
{

x(i)T−L:T ,
1
N

}N

i=1

Stitch arbitrarily x(i)0:T = (x(i)0:T−L−1,x
(i)
T−L:T).

the smoothing distribution of early coordinates become (approximately) independent of new
observations

p(x0:t | y0:T)≈ p(x0:t | y0:min(t+L,T)). (3.2)

The major issue with the fixed-lag resampling scheme described in Algorithm 14 is that
early and recent coordinates of particles are arbitrarily stitched together and therefore only
provide a particle approximation to the fixed-lag marginal smoothing distribution:

pL
marg(x0:T | y0:T) =

[
T−L−1

∏
t=0

p(xt | y0:t+L)

]
p(xT−L:T | xT−L−1,yT−L:T). (3.3)

As such we lose information about the joint distribution of early coordinates x0:T−L−1.
A more useful particle approximation targets the fixed-lag joint smoothing distribution

pL(x0:T | y0:T) = p(x0 | y0:L)

[
T−L−1

∏
t=1

p(xt | xt−1,yt:t+L)

]
p(xT−L:T | xT−L−1,yT−L:T), (3.4)

which permits expectations over full trajectories x0:T .

3.1.3 Offline Smoothing

The idea of running a forward particle filter pass that stores the marginal filter approximations
{x(i)t ,w(i)

t }N
i=1 ∼ p(xt | y0:T) before recycling them in a backward pass was first introduced

as forward filtering-backward smoothing in Hürzeler and Künsch (1998) and then further

3.1 Particle Smoothing 43

developed in Doucet et al. (2000). This method runs a full backward pass that updates the
weights based on the backward decomposition

p(xt−1 | xt ,y0:t−1) =
p(xt | xt−1)p(xt−1 | y0:t−1)

p(xt | y0:t−1)
. (3.5)

In this method, the particles remain arbitrarily stitched and their weights updated according to
Equation (3.5) in order to approximate the marginal smoothing distributions p(xt | y0:T).

As mentioned in Section 2.6.3, forward filtering-backward simulation (FFBSi) Godsill et al.
(2004) similarly runs a full backward pass based on the same decomposition, but samples a
new ancestor from the particle cloud (according to Equation (3.5)) rather than only updating
the weights and thus targets the joint smoothing distribution. Additionally, Douc et al. (2011)
showed that rejection sampling can significantly reduce the complexity of this pass in the case
that p(xt | xt−1) has a tractable upper bound.

Both of these algorithms require a full backward pass in light of every new observation and
therefore are not suitable for online smoothing. In addition, the popular PMCMC approach
Andrieu et al. (2010) is iterative in nature and thus not extensible to online smoothing.

3.1.4 Online Smoothing

It was noted in Del Moral et al. (2010) that the forward filtering-backward smoothing algorithm
can be implemented in a single forward pass in the case of additive functionals, i.e. expectations
of the form

Ep(x0:T |y0:T)[h(x0:T)] where h(x0:T) =
T−1

∑
t=0

h̃t(xt ,xt+1).

The PaRIS algorithm Olsson and Westerborn (2017) combines this technique with rejection
sampling to implement an efficient and cheap version of forward filtering-backward simulation
in a single forward pass for additive functionals.

Although it permits the implementation of these online algorithms, the requirement of
additive functionals is very restrictive. Additionally, the forward only technique is function
specific, i.e. it directly updates an approximation to the expected value of the additive func-
tional. Our approach induces a controllable bias through the fixed-lag approximation but can
approximate any expectation Ep(x0:T |y0:T)[f (x0:T)] over the joint smoothing distribution and is
therefore significantly more general than the marginal or additive functional approaches.

Block sampling Doucet et al. (2006) is an online method that targets the full smoothing
distribution (3.1). Every time a new observation is received, the block sampling scheme
discards the most recent coordinates (within lag L) and re-proposes from an enlarged proposal
distribution based on many more recent observations. Although this scheme does make use of

44 Online Particle Smoothing

Joint
Smoothing Online

Path
Degeneracy

Fixed-lag
Approx. Complexity

Particle Filter
Gordon et al. (1993) ✓ ✓ ✓ N

Marginal Fixed-lag
Kitagawa and Sato (2001) ✓ For large L ✓ N

Forward Filtering-Backward
Smoothing Doucet et al. (2000) N2

Forward Filtering-Backward
Simulation Godsill et al. (2004) ✓

N2

N with RS†

Forward Filtering-Backward
Smoothing for Additive Functionals
Del Moral et al. (2010)

✓ N2

PaRIS Olsson and Westerborn (2017) ✓ N with RS†

Block Sampling Doucet et al. (2006) ✓ ✓ ✓ LN
Online Particle Smoother
(Algorithm 16) ✓ ✓ For large L ✓

N2

N with RS†

Online Particle Smoother
with Backward Simulation
(Algorithm 17)

✓ ✓ ✓
LN2

LN with RS†

Table 3.1 Comparison of particle smoothing algorithms, for number of particles N and fixed-lag
parameter L.
†For these algorithms the rejection sampling technique of Douc et al. (2011) can be applied to
obtain linear complexity when a bound for the transition density, Equation (2.42), is available.

a fixed-lag parameter, the weights and resampling still act on the full smoothing distribution
Equation (3.1). By moving a larger proportion of the trajectories, block sampling can (when
combined with adaptive resampling schemes) mitigate but not avoid path degeneracy as
resampling still takes place over full trajectories. Our proposed method builds on the block
sampling approach by proposing blocks with a single coordinate overlap and then resampling
in a way that targets the fixed-lag joint (3.4).

3.2 Fixed-lag Particle Stitching

In this section, we show how the backward simulation derivation in Section 2.6.3 can be adapted
into a fixed-lag forward simulation technique.

For the forward implementation we initially assume we can generate block samples directly
from p(xT−L−1:T | y0:T) even though this is not immediately possible for non-trivial state-space
models. In Section 3.3 we then describe two efficient methods for block sampling by recycling
previously generated particles.

3.2 Fixed-lag Particle Stitching 45

3.2.1 Fixed-lag Forward Simulation - Intractable

In the setting of fixed-lag forward simulation, we have{
x(i)t−1

}N

i=1
approximating p(xt−1 | y0:T−1),{

x̃(j)
t , w̃(j)

t

}N

j=1
approximating p(xt | y0:T),

where t = T −L and the fixed-lag approximation implies p(xt−1 | y0:T−1)≈ p(xt−1 | y0:T).
We desire unweighted samples from the joint{(

x(i)t−1,x
(i)
t

)}N

i=1
approximating pL(xt−1,xt | y0:T),

where
pL(xt−1,xt | y0:T) = p(xt−1 | y0:T−1)p(xt | xt−1,yt:T).

Both
{

x(i)t−1

}N

i=1
and

{
x̃(j)

t , w̃(j)
t

}N

j=1
have the correct marginals but we propose freezing{

x(i)t−1

}N

i=1
in order to avoid path degeneracy as T increases. Thus, obtaining the desired

joint samples amounts to sampling

x(i)t ∼ p(xt | x(i)t−1,yt:T) for i = 1, . . . ,N.

We cannot sample this directly, so we try the decomposition

p(xt | x(i)t−1,yt:T) = p(xt | x(i)t−1,y0:T)

=
p(yt:T | xt)p(xt | x(i)t−1)

p(yt:T | x(i)t−1)
,

=
p(yt:T | xt)p(xt | x(i)t−1)

p(yt:T | x(i)t−1)p(xt | y0:T)
p(xt | y0:T).

where in the last line we have multiplied and divided by p(xt | y0:T) - the sampling distribution

of
{

x̃(j)
t , w̃(j)

t

}N

j=1
.

Application of Bayes’ theorem to p(xt | y0:T) gives us

p(xt | x(i)t−1,yt:T) =
p(yt:T | y0:t−1)p(xt | x(i)t−1)

p(yt:T | x(i)t−1)p(xt | y0:t−1)
p(xt | y0:T),

46 Online Particle Smoothing

which is where we stop as the density p(xt | y0:t−1) is not tractable (note that we could replace
p(xt | y0:t−1) with an empirical approximation using marginal filtering particles but the resulting
algorithm would have a prohibitive O(N3) complexity).

3.2.2 Fixed-lag Forward Simulation - Tractable

Now consider the setting of fixed-lag forward simulation but with a single coordinate overlap{
x(i)t−1

}N

i=1
approximating p(xt−1 | y0:T−1),{

(x̃(j)
t−1, x̃

(j)
t), w̃(j)

t

}N

j=1
approximating p(x̆t−1,xt | y0:T),

where x̆t−1 is the coordinate overlap to be discarded. We now desire samples from an extended
joint distribution{

(x(i)t−1,x
(i)
t , x̆(i)t−1)

}N

i=1
approximating π(xt−1,xt , x̆t−1 | y0:T),

where

π(xt−1,xt , x̆t−1 | y0:T) = pL(xt−1,xt | y0:T)λ (x̆t−1 | xt−1,xt | y0:T),

= p(xt−1 | y0:T−1)p(xt | xt−1,yt:T)λ (x̆t−1 | xt−1,xt ,y0:T).

We eventually discard x̆t−1 and so are free to choose λ . Again we freeze
{

x(i)t−1

}N

i=1
and note

that they have the correct marginals π(xt−1 | y0:T) = p(xt−1 | y0:T−1). Thus generating samples
from the extended joint amounts to sampling(

x(i)t , x̆(i)t−1

)
∼ π(xt , x̆t−1 | x

(i)
t−1,y0:T) for i = 1, . . . ,N.

Where

π(xt , x̆t−1 | x
(i)
t−1,y0:T) = p(xt | x(i)t−1,yt:T)λ (x̆t−1 | x

(i)
t−1,xt ,y0:T),

=
p(yt:T | xt)p(xt | x(i)t−1)

p(yt:T | x(i)t−1)
λ (x̆t−1 | x

(i)
t−1,xt ,y0:T).

3.2 Fixed-lag Particle Stitching 47

In order to make an empirical approximation we multiply and divide by p(x̆t−1,xt | y0:T) =

p(x̆t−1 | y0:T)p(xt | x̆t−1,yt:T) - the sampling distribution of {(x̃(j)
t−1, x̃

(j)
t), w̃(j)

t }N
j=1

π(xt , x̆t−1 | x
(i)
t−1,y0:T) =

p(yt:T | xt)p(xt | x(i)t−1)

p(yt:T | x(i)t−1)p(x̆t−1,xt | y0:T)
λ (x̆t−1 | x

(i)
t−1,xt ,y0:T)p(x̆t−1,xt | y0:T).

Bayes’ theorem on p(x̆t−1,xt | y0:T) gives

π(xt , x̆t−1 | x
(i)
t−1,y0:T)

=
p(xt | x(i)t−1)p(yt:T | y0:t−1)

p(xt | x̆t−1)p(yt:T | x(i)t−1)p(x̆t−1 | y0:t−1)
λ (x̆t−1 | x

(i)
t−1,xt ,y0:T)p(x̆t−1,xt | y0:T).

We now observe that the choice of λ (x̆t−1 | x
(i)
t−1,xt ,y0:T) = p(x̆t−1 | y0:t−1) will make all terms

involving (x̆t−1,xt) tractable.

π(xt , x̆t−1 | x
(i)
t−1,y0:T) =

p(xt | x(i)t−1)p(yt:T | y0:t−1)

p(xt | x̆t−1)p(yt:T | x(i)t−1)
p(x̆t−1,xt | y0:T).

Then using the empirical approximations

p(x̆t−1,xt | y0:T)≈
N

∑
j=1

w̃(j)
t δ

(
x̆t−1,xt | x̃(j)

t−1, x̃
(j)
t

)
,

p(yt:T | x(i)t−1)

p(yt:T | y0:t−1)
=
∫ p(xt | x(i)t−1)

p(xt | x̆t−1)
p(x̆t−1,xt | y0:T)dx̆t−1dxt ,

≈
N

∑
j=1

w(j)
t

p(x̃(j)
t | x

(i)
t−1)

p(x̃(j)
t | x̃

(j)
t−1)

.

Finally giving us an empirical approximation to the extended conditional

π(xt , x̆t−1 | x
(i)
t−1,y0:T) =

∑
N
j=1 w̃(j)

t
p(x̃(j)

t |x
(i)
t−1)

p(x̃(j)
t |x̃

(j)
t−1)

δ

(
xt , x̆t−1 | x̃

(j)
t , x̃(j)

t−1

)
∑

N
j=1 w̃(j)

t
p(x̃(j)

t |x
(i)
t−1)

p(x̃(j)
t |x̃

(j)
t−1)

(3.6)

=
N

∑
j=1

w(i→ j)
t δ

(
xt , x̆t−1 | x̃

(j)
t , x̃(j)

t−1

)
, (3.7)

48 Online Particle Smoothing

where

w(i→ j)
t ∝ w̃(j)

t
p(x̃(j)

t | x
(i)
t−1)

p(x̃(j)
t | x̃

(j)
t−1)

are normalised across j. Again, we can now sample from this approximation directly, discarding
the sampled x̆t−1. This leaves samples (xt−1,xt) from the desired joint pL(xt−1,xt | y0:T).
Repeating this for each i results in an O(N2) algorithm that is asymptotically unbiased for the
fixed-lag joint distribution.

We have described above an algorithm that stitches together particles p(xT−L−1 | y0:T−1)

with those from p(xT−L−1:T−L | y0:T). By the conditional independence structure of state-space
models this is equivalent to stitching together blocks from p(x0:T−L−1 | y0:T−1) with those from
p(xT−L−1:T | y0:T) - assuming we can sample from p(xT−L−1:T | y0:T).

3.2.3 Rejection Sampling

Sampling from (3.7) can be done directly at a computational complexity of O(N2). However,
when a bound for the transition density is available Equation (2.42)

p(xt |xt−1)<C ∀xt−1,xt ,

we can utilise the rejection sampling approach of Douc et al. (2011) to avoid calculating all N2

normalisation constants and bring the computational complexity down to O(N). In practice,
we can apply the early-stopping regime of Taghavi et al. (2013) where, for each particle
independently, the rejection sampler is halted after R < N proposals and if no acceptance has
occured the direct scheme is applied, thus setting R = 0 recovers the direct scheme. This hybrid
stitching algorithm is detailed in Algorithm 15.

3.3 Sampling from p(xT−L−1:T | y0:T)

We now describe two methods for sampling the coordinates x̃T−L−1:T in a way that is asymp-
totically unbiased for p(xT−L−1:T | y0:T), and can therefore be plugged into the aforementioned
fixed-lag particle stitching procedure.

3.3.1 Particle Filter

Recall the online setting where we have unweighted particles {x(i)0:T−1}N
i=1 approximating

pL(x0:T−1|y0:T−1) and receive a new observation yT .

3.3 Sampling from p(xT−L−1:T | y0:T) 49

Algorithm 15 Fixed-lag Particle Stitching
1: Given {

x(i)0:T−L−1

}N

i=1
approximating pL(x0:T−L−1 | y0:T−1),{

x̃(j)
T−L−1:T , w̃

(j)
T

}N

j=1
approximating p(xT−L−1:T | y0:T),

2: Calculate the non-interacting stitching weights and normalise in j

ŵ(j)
T ∝

1

p(x̃(j)
T−L | x̃

(j)
T−L−1)

w̃(j)
T j = 1, . . . ,N.

3: for i = 1, . . . ,N do
4: for r = 1, . . . ,R do R = max number of rejections

5: Sample c∗ ∼ Categorical
({

ŵ(j)
T

}N

j=1

)
6: Sample u∼ U(· | 0,1)
7: if u < p(x̃(c

∗)
T−L | x

(i)
T−L−1)/C then Bound C > p(xt | xt−1) ∀xt−1,xt

8: Accept c∗ and break to 9
9: if a sample c∗ was accepted then

10: Set x(i)T−L:T = x̃(c
∗)

T−L:T
11: else
12: Calculate the stitching weights and normalise in j

w(i→ j)
T ∝

p(x̃(j)
T−L | x

(i)
T−L−1)

p(x̃(j)
T−L | x̃

(j)
T−L−1)

w̃(j)
T j = 1, . . . ,N.

13: Sample ci ∼ Categorical
({

w(i→ j)
T

}N

j=1

)
14: Set x(i)T−L:T = x̃(ci)

T−L:T

15: return
{

x(i)0:T

}N

i=1
approximating pL(x0:T | y0:T).

50 Online Particle Smoothing

Our first method is based on the fact that the particle approximation provided by a classical
particle filter is asymptotically unbiased for the full joint smoothing distribution, Equation (3.1).
Although this approximation deteriorates due to path degeneracy it may still be sufficient for
sampling the later coordinates xT−L−1:T .

Thus, we propose applying the classical particle filter proposal and weighting steps to
{x(i)0:T−1}N

i=1, generating weighted particles {x(i)0:T , w̃
(i)
T }N

i=1, before splitting the trajectories

{
x(i)0:T , w̃

(i)
T

}N

i=1
→
{

x(i)0:T−L−1

}N

i=1
and

{
x̃(i)T−L−1:T , w̃

(i)
T

}N

i=1
,

where x̃(i)T−L−1:T = x(i)T−L−1:T . Under the fixed-lag approximation, x0:T−L−1 is conditionally
independent of yT and therefore the new weights need not apply to these earlier coordinates.
Whereas the {x̃(i)T−L−1:T , w̃

(i)
T }N

i=1 are asymptotically unbiased for the desired sampling distribu-
tion p(xT−L−1:T |y0:T) and can therefore be plugged into the stitching procedure, Algorithm 15.
The coordinates xT−L−1 are duplicated to provide the overlap required for stitching.

Algorithm 16 Online Particle Smoother (for T > L)

1: Given
{

x(i)0:T−1

}N

i=1
approximating pL(x0:T−1|y0:T−1)

2: Fix
{

x(i)0:T−L−1

}N

i=1
3: Execute particle filter propagate and reweight steps, Algorithm 12: lines 5:9

Generate
{

x̃(j)
T−L−1:T , w̃

(j)
T

}N

j=1
from

{
x(j)

T−L−1:T−1

}N

j=1
and yT ,

forming a weighted sample approximating p(xT−L−1:T |y0:T).
4: Stitch together {

x(i)0:T−L−1

}N

i=1
and

{
x̃(j)

T−L−1:T , w̃
(j)
T

}N

j=1
→
{

x(i)0:T

}N

i=1
.

using Algorithm 15.

5: return
{

x(i)0:T

}N

i=1
approximating pL(x0:T |y0:T)

The algorithm is described in Algorithm 16, and ends up being a relatively simple modifica-
tion to a classical particle filter where the resampling step is compulsory and altered to include
the stitching probabilities in the weights, Equation (3.7).

When the transition bound, Equation (2.42), is available the complexity of the update
remains O(N) or O(N2) when the bound is unavailable.

3.4 Numerical Experiments 51

3.3.2 Partial Backward Simulation

If the lag parameter L is chosen to be too large, the above mechanism will still suffer from
path degeneracy in the same way a particle filter does or indeed the online marginal smoother
Kitagawa and Sato (2001). To remedy this we propose a partial run of the forward filtering-
backward simulation Godsill et al. (2004), Douc et al. (2011) (Algorithm 13) at each time
step to rejuvenate the trajectories xT−L−1:T . This technique is considered in Clapp and Godsill
(1999) for generating samples from p(xT−L:T |y0:T) without the subsequent stitching.

The backward simulation has the additional requirement of storing the marginal approxi-

mations
{

x̃(k)t , w̃(k)
t

}N

k=1
for t = T−L−1, . . . ,T from the particle filter, but permits the use of

adaptive resampling and typically avoids path degeneracy even for large L.
The resulting algorithm, Algorithm 17, has a complexity of O(LN) per update if the

transition bound Equation (2.42) is available otherwise O(LN2).
We note that both techniques to sample from p(xT−L−1:T |y0:T) utilise the output of a particle

filter. Indeed, they are both also applicable to alternative filtering techniques such as auxiliary
particle filters Pitt and Shephard (1999) and the backward simulation technique to filters that
discard historic trajectories such as the marginal particle filter Klaas et al. (2005).

3.4 Numerical Experiments

In this section we examine the performance of the aforementioned online smoothers in a simple
one-dimensional linear Gaussian state-space model

p(x0) = N(x0 | 0,1), (3.8a)

p(xt | xt−1) = N(xt | xt−1,1), t = 1, . . . ,T, (3.8b)

p(yt | xt) = N(yt | xt ,1), t = 0, . . . ,T. (3.8c)

In this example we can find the full joint distribution p(x0:T ,y0:T) and smoothing distribution
p(x0:T | y0:T) analytically by first noting that we can rewrite

xt =
t

∑
i=1

ηi,

yt =
t

∑
i=1

ηi +ζt ,

52 Online Particle Smoothing

Algorithm 17 Online Particle Smoother with Backward Simulation (for T > L)
1: Given {

x(i)0:T−1

}N

i=1
approximating pL(x0:T−1 | y0:T−1){

x̃(k)t , w̃(k)
t

}N

j=1
approximating p(xt | y0:t) for t = T−L−1, . . . ,T−1

2: Fix
{

x(i)0:T−L−1

}N

i=1
3: Execute particle filter update, Algorithm 12, to generate the new marginal filtering sample

Generate
{

x̃(k)T , w̃(k)
T

}N

k=1
from

{
x̃(k)T−1, w̃

(k)
T−1

}N

k=1
and yT .

4: Run partial backward simulation, Algorithm 13, on the weighted filtering samples{
x̃(k)t , w̃(k)

t

}N

k=1
for t = T, . . . ,T−L−1→

{
x̃(j)

T−L−1:T

}N

j=1
.

forming an unweighted sample approximating p(xT−L−1:T |y0:T).
5: Stitch together {

x(i)0:T−L−1

}N

i=1
and

{
x̃(j)

T−L−1:T ,
1
N

}N

j=1
→
{

x(i)0:T

}N

i=1
.

using Algorithm 15.
6: return {

x(i)0:T

}N

i=1
approximating pL(x0:T | y0:T){

x̃(k)t , w̃(k)
t

}N

j=1
approximating p(xt | y0:t) for t = T−L, . . . ,T

3.4 Numerical Experiments 53

where each ηi and ζi are independent draws from N(· | 0,1). We can therefore write the joint
distribution p(x0:T ,y0:T) as(

x0:T

y0:T

)
∼ N

(
·

∣∣∣∣∣
(

0T

0T

)
,

(
Σx Σxy

Σyx Σy

))

where 0T is a length T vector of zeros. The covariance matrices are defined as

Σ
x
i j = Cov[xi,x j],

= Cov

[
i

∑
k=1

ηk,
j

∑
l=1

ηl

]
,

= min(i, j),

Σ
xy
i j = Cov[xi,y j],

= Cov

[
i

∑
k=1

ηk,
j

∑
l=1

ηl +ζ j

]
,

= min(i, j),

Σ
y
i j = Cov[yi,y j],

= Cov

[
i

∑
k=1

ηk +ζi,
j

∑
l=1

ηl +ζ j

]
,

= min(i, j)+ I[i = j],

and Σyx = ΣxyT. Then by applying the standard rule for Gaussian conditionals, we get the
smoothing distribution

x0:T | y0:T ∼ N
(
· | Σxy

Σ
y−1y0:T ,Σ

x−Σ
xy

Σ
y−1

Σ
xy) . (3.9)

The smoothing mean and one standard deviation are plotted in Figure 3.1 alongside the true
simulated process x0:T and observations y0:T all for T = 40.

In this example, the (locally) optimal proposal Equation (2.39) is tractable

qT |0:T−1(xT | x0:T−1,yT) = p(xT | xT−1,yT),

= N
(

xT

∣∣∣∣12xT−1 +
1
2

yT ,
1
2

)
.

54 Online Particle Smoothing

Fig. 3.1 True hidden process and obser-
vations in red. Smoothing mean ± one
standard deviation in blue.

Fig. 3.2 Particle filter marginals.

Fig. 3.3 Particle filter for smoothing.
Fig. 3.4 Forward filtering-backward simu-
lation.

In Figure 3.2 we display the particle filter approximations to the filtering marginals p(xt |
y0:T), t = 0, . . . ,T , we observe that the particles suitably cover the high probability regions
around the true smoothing posterior mean in blue.

In Figure 3.3 we attempt to use the full trajectories from the particle filter at time T to
approximate the smoothing distribution. We can see that the particle approximation is diverse
for the later coordinates but severe path degeneracy has occurred at early coordinates - due to
the repeated resampling.

Figure 3.4 represents the marginal approximations from Figure 3.2 recycled with offline
backward simulation (FFBSi). The result is a diverse particle approximation to the joint
smoothing distribution p(x0:T | y0:T).

In Figures 3.5-3.10 we visualise online particle smoothing techniques that make use of a
fixed-lag approximation, Equation (3.2).

3.4 Numerical Experiments 55

Fig. 3.5 Marginal fixed-lag, L = 2. Fig. 3.6 Marginal fixed-lag, L = 10.

Fig. 3.7 Online particle smoother, L = 2. Fig. 3.8 Online particle smoother, L = 10.

Fig. 3.9 Online particle smoother with
backward simulation, L = 2.

Fig. 3.10 Online particle smoother with
backward simulation, L = 10.

56 Online Particle Smoothing

As seen from Equation (3.3), the marginal fixed-lag approach of Kitagawa and Sato (2001)
only approximates the marginals for early coordinates - due to arbitrary stitching. We can see
that the marginals are diverse for small lag parameter Figure 3.5 but deteriorate under repeated
resampling for the larger lag parameter Figure 3.6.

The same effect is observed for the online particle smoother with blocks generated using the
particle filter, Figure 3.7 and Figure 3.8 - with the key difference that the full joint distribution
is approximated rather than just marginals.

Adding backward simulation mitigates against effects of path degeneracy for large lags as
observed by the diverse particle approximation in Figure 3.10. The fixed-lag joint distribution
Equation (3.4) will look different for varying lags, the larger the lag the closer it is to the true
smoothing distribution

L→ T =⇒ pL(x0:T | y0:T)→ p(x0:T | y0:T).

However, the sensitivity of pL(x0:T | y0:T) to the choice of L is difficult to observe from the
visualised particle approximations in Figure 3.9 and Figure 3.10.

In order to investigate the choice of the lag parameter L we compare the particle approxi-
mations from the aforementioned algorithms that approximate the joint smoothing distribution
with the true smoothing distribution, Equation (3.9). We do so by first extracting the empirical
mean and covariance from the particle approximations

x̄0:T =
1
N

N

∑
i=1

x(i)0:T ,

C̄0:T =
1

N−1

N

∑
i=1

(x(i)0:T − x̄0:T)(x
(i)
0:T − x̄0:T)

T.

We then evaluate the KL-divergence between the inferred Gaussian distribution p̂(x0:T |y0:T) =

N(x0:T | x̄0:T , C̄0:T) and the true Gaussian smoothing distribution p(x0:T | y0:T) described in
Equation (3.9). Here we use the identity for the KL-divergence between two Gaussian distribu-
tions

KL(N(x | µ0,Σ0)||N(x | µ1,Σ1))

=
1
2
(
trace(Σ−1

1 Σ0)+(µ1−µ0)
T
Σ
−1
1 (µ1−µ0)−d + logdetΣ1− logdetΣ0

)
, (3.10)

where d is the dimension of x, in our example d = T = 40.
All algorithms in Figure 3.11 were ran with N = 10000. We observe that the resampled final

particle filter trajectories perform very poorly - due to path degeneracy in the early coordinates.

3.4 Numerical Experiments 57

Fig. 3.11 KL(p̂(x0:T |y0:T)||p(x0:T |y0:T))

for (joint) particle smoothing techniques with varying lag parameter.

The KL-divergence for the offline forward filtering-backward simulation is very small and
therefore it is accurately approximating the smoothing mean x̄0:T and covariance C̄0:T statistics.
Both of these techniques are asymptotically unbiased for the true smoothing distribution and do
not utilise a lag parameter. However, the online particle smoothers are asymptotically unbiased
for the fixed-lag joint Equation (3.4) and we observe their performance is sensitive to the
choice of lag parameter L. In particular, the online particle smoother (with blocks generated
from the particle filter) is poor for small lags due to a divergence between pL(x0:T | y0:T) and
p(x0:T | y0:T), increasing the lag parameter mitigates this, but for suitably large lag parameters
(here L > 5) path degeneracy sets in and more particles would be required. In contrast, the
addition of backward simulation means the lag parameter can be set arbitrarily high to obtain
performance approaching that of the offline FFBSi. Increasing the lag beyond L = 5 appears to
only gradually increase the quality of the approximation. However, we must note that these
takeaways are very much limited to this example and even this particular trajectory and set
of observations, Figure 3.1 - in Chapter 4 we also examine the lag parameter for a particular
map-matching model. In general, choosing the lag parameter is difficult as it depends on the
mixing times of the state-space model Olsson et al. (2008).

In Figure 3.12 and Figure 3.13 we investigate the effect of choosing the maximum number
of rejections sent to the rejection sampler. Recall for each choice of R the algorithm samples
from the same distribution and therefore it is a purely computational parameter. Further that
setting R = 0 regains the full N2 stitching (3.7) and backward simulation (2.41) techniques. We

58 Online Particle Smoothing

Fig. 3.12 Online Particle Smoother Fig. 3.13 with Backward Simulation

Number of transition density p(xt | xt−1) evaluations per observation for varying maximum
number of rejections R for fixed L = 5.

observe that larger values of R result in far fewer evaluations of the transition density p(xt | xt−1),
which represents the O(N2) bottleneck in the full stitching and backward simulation techniques.
The effect of this parameter is further examined in Taghavi et al. (2013) and in the context of
map-matching in Chapter 4.

3.5 Discussion

This chapter has introduced a solution to the problem of path degeneracy in classical particle
filtering. We do so by first invoking a fixed-lag approximation and secondly adapting the
technique that underpins backward simulation in order to execute an online forward simulation.
As with backward simulation, this comes at a complexity of O(N2), we can however adopt
the rejection sampling strategy of Douc et al. (2011) and reduce the complexity to O(N) when
a bound for the transition density is available. An important feature of the presented online
smoothers is that they target an approximation to the joint smoothing distribution p(x0:T | y0:T)

and therefore each particle represents a plausible, complete trajectory permitting mathematical
expectations with complete generality, this contrasts with alternative marginal or additive
functional based online smoothing techniques.

The choice of L determines the distance between the distributions pL(x0:T |y0:T) and
p(x0:T |y0:T), naturally we desire this to be small and therefore L large. The question of
how large is a difficult one as it is dependent on the mixing of the state-space model, as
discussed in Olsson et al. (2008) - for now we recommend choosing the lag parameter based on
preliminary runs with synthetic data simulated from a given state-space model. An interesting
extension would be to investigate the possibility of using a variable lag parameter which is

3.5 Discussion 59

chosen dynamically, as achieved for a function specific version of the marginal fixed-lag particle
filter in Alenlöv and Olsson (2019).

In some state-space models, the transition bound is not easily available - particularly when
it varies between observation times. A pragmatic approach is to find the bound adaptively. One
can set an initial psuedo-bound as the maximum of the first N transition density evaluations
before proceeding as usual. On the event a new evaluation exceeds the pseudo-bound, the
pseudo-bound can be reset and the algorithm (at that observation time) restarted. Indeed this
implementation is available in mocat, Chapter 7, although caution is required as the transition
density could well be unbounded - in which case the O(N2) variant is recommended.

The realisation of a low-probability transition or observation in the true underlying process
can cause degeneracy either at stitching time or in the filtering weights. It is possible to
reintroduce particle diversity by applying an MCMC kernel after stitching as in resample-move
particle filters Gilks and Berzuini (2001) or particle rejuvenation Lindsten et al. (2015). The
MCMC kernel is applied independently to each particle and must be invariant for the full
smoothing distribution p(x0:T |y0:T) but as we are only concerned with increasing particle
diversity rather than taking ergodic averages we need only propose moving a subset of the
trajectories, whether that be at stitching time or the latest observation time.

Chapter 4

Map-Matching

In this chapter, we examine the task of map-matching - inferring a vehicle’s trajectory given a
road network and noisy GPS observations. We specifically focus on the difficult scenario of
dense urban road networks. We formulate the problem as a state-space model and demonstrate
the applicability of offline particle smoothing and the online particle smoothing from Chapter 3.

A road network is defined as a graph in R2, where intersections are represented by nodes
(vertices). Roads, which are assumed to be single lane and one-way, are represented by
edges which preserve the possibly complex geometry of the road network (a two-way road is
represented by two edges). Some collections of nodes and edges are depicted in Figure 4.1
alongside some real GPS data.

We start by describing map-matching as a state-space model in Section 4.1 with a transition
density that is specifically designed for difficult urban road networks. We then develop and
demonstrate how to implement offline particle smoothing for given static parameter values of
the state-space model’s transition and observation densities in Section 4.2, before discussing
how to tune said static parameters using a maximum likelihood approach. In Section 4.4 we
examine the application of the online particle smoothers from Chapter 3 to map-matching and
review in Section 4.5. Finally, this chapter is accompanied with a python package called
bmm (Bayesian map-matching) that provides easy offline and online map-matching as well as
parameter tuning - a description of bmm’s the core functionality is found in Section 4.6.

4.1 Model

There are two key points to consider in constructing a statistical model for map-matching, the
first is the prior knowledge that the vehicle takes a continuous trajectory, which in this work we
assume is pinned to the road network. The second is that at observation times the vehicle is (or

62 Map-Matching

Fig. 4.1 Snapshot of Porto road network and some real GPS observations from the Porto taxi
dataset Moreira-Matias et al. (2013).

4.1 Model 63

x0 e1,x1 e2,x2 . . . eT ,xT

y0 y1 y2 yT

Fig. 4.2 Conditional independence structure of the state-space model for map-
matching.

was) somewhat close to the received GPS observation coordinate - how close is defined by the
level of the GPS noise which may or may not be known a priori.

4.1.1 Model Variables

We now formally define the variables that constitute a single vehicle’s trajectory

• et ⊂ N, a finite ordered set of connected edge labels, each edge label corresponds to a
unique one-way section of road. The variable et details the edges traversed (and in which
order) between observation times t−1 and t, including the choices made at encountered
intersections (nodes).

• xt ∈R2 the position of the vehicle at observation time. The variable xt defines a Cartesian
coordinate restricted to lie on the road network, specifically xt lies on the final edge of
the finite ordered set of edge labels et , for t > 0.

• yt ∈ R2 noisy observation of the vehicle’s position xt , not restricted to the road network.

Note here the change of notation from Chapter 3, now xt refers only to vehicle position and
the full latent states are x0,(e1,x1),(e2,x2), . . . ,(eT ,xT) depicted as a state-space model in
Figure 4.2. We will also use the notation e(xt) to denote the edge label of the edge on which xt

lies, whilst we denote eo
t for the first edge in the series et and e∗t for the last edge of et .

4.1.2 Model Distributions

The most popular map-matching approach is that of Newson and Krumm (2009) and variations
thereof - such as the online adaptation in Goh et al. (2012). Their data generating process is
summarised as

• p(x0) uniform on the road network.

64 Map-Matching

• p(et ,xt | xt−1,yt−1,yt) ∝ exp(−β |∥xt−xt−1∥et −∥yt−yt−1∥|) where ∥xt−xt−1∥et is the
distance travelled between xt−1 and xt along the series et (restricted to the road network)
whereas ∥yt− yt−1∥ is the great circle distance between observations (not restricted to
the road network).

• p(yt |xt) =N (yt | xt ,σ
2
GPSI2) isotropic Gaussian observation noise.

The motivation behind the transition density p(et ,xt | xt−1,yt−1,yt) is to penalise routes that
are particularly windy or non-direct such as multiple loops of a roundabout - which if not taken
into consideration could be given high probability in dense urban road networks.

The inference procedure of Newson and Krumm (2009) proceeds, at each observation
time, by selecting a candidate point (typically the closest point to the observation) on each
edge within a truncation distance (200m) of the observed GPS coordinate, yt . This forms a
discrete state-space and the Viterbi algorithm can be applied to produce a single route of high
probability.

It was noted in Raymond et al. (2012) that in this formulation the transition density depends
on the observations and therefore violates the conditional independence structure of a state-
space model. They propose the logical modification p(et ,xt | xt−1) ∝ exp(−β |∥xt− xt−1∥et −
∥xt− xt−1∥|).

This Viterbi approach produces only a single route without uncertainty quantification which
contrasts with Monte Carlo based techniques. Particle filters were applied to map-matching in
Davidson et al. (2011); Kempinska et al. (2016) without tackling the problem of path degeneracy.
In an offline setting, Roth et al. (2012) introduced the use of FFBSi for map-matching. In this
work, we use a formulation that takes the particle smoothing approach of Roth et al. (2012)
but includes a term in the transition density adapted from Newson and Krumm (2009) that
penalises non-direct routes (which is vital in dense urban road networks) and an additional
term that puts probability mass on a stationary vehicle between observation times (due to traffic
lights or congestion). We also use the optimal proposal density (that takes into account the new
observation) rather than simply the bootstrap proposal which will perform poorly for small
GPS noise or dense road networks with frequent intersections.

Our transition density can be written as

p(et ,xt |xt−1) =
γ(∥xt− xt−1∥et)exp(−β |∥xt− xt−1∥et −∥xt− xt−1∥|)

Z(xt−1)
, (4.1)

with normalising constant

Z(xt−1) = ∑
et

∫
xt

γ(∥xt− xt−1∥et)exp(−β |∥xt− xt−1∥et −∥xt− xt−1∥|)dxt , (4.2)

4.1 Model 65

where we always have the constraints e(xt−1) = eo
t (the first edge of et) and e(xt) = e∗t (the last

edge of et). Recall that et is an finite ordered set of edge labels, starting with eo
t and ending

with e∗t . The summation in (4.2) is taken over all possible series of edges starting at e(xt−1).
Thus, the following distributions fully define our state-space model:

• γ(∥xt− xt−1∥et). Prior on distance travelled between observations - some simple analyti-
cal distribution on R+, penalising lengthy routes. We assume an exponential distribution
with probability mass at 0 to represent the possibility of the vehicle remaining stationary
(at traffic lights, in heavy traffic etc)

γ(∥xt− xt−1∥et) (4.3)

= p0I(∥xt− xt−1∥et = 0)+(1−p0)I(∥xt− xt−1∥et>0)λ exp(−λ∥xt− xt−1∥et).

• exp(−β |∥xt− xt−1∥et −∥xt− xt−1∥|) adapted from Newson and Krumm (2009), penalis-
ing non-direct (or winding) routes. Non-direct routes with lots of curvature will have a
high discrepancy between the road distance travelled and great circle distance and thus
will have a low probability under this term, reflecting a driver’s preference to take short,
direct routes where possible.

• p(yt |xt) =N (yt |xt ,σ
2
GPSI2). Isotropic Gaussian observation noise.

• We set p(x0) to be uniform on the road network. I.e. no prior information on the start of
the trajectory other than constricting it to the road network (as with all inferred positions).

To make p(x0|y0) tractable we define the initial observation density to be a truncated Gaussian:

p(y0|x0) ∝N (y0|x0,σ
2
GPSI2) I(||y0− x0||< rGPS),

giving
p(x0|y0) ∝N (x0|y0,σ

2
GPSI2) I(||y0− x0||< rGPS),

where x0 is restricted to the road network but y0 is not. We set rGPS = 5σGPS.

4.1.3 Optimal Proposal

The (locally) optimal proposal Doucet et al. (2000) for particle filtering combines the transition
density Equation (4.1) and the newly received observation yT :

qopt (xT ,eT | xT−1,eT−1,yT) ∝ p(eT ,xT |xT−1)p(yT |xT). (4.4)

66 Map-Matching

The standard reweighting step of the particle filter update (Algorithm 12) then becomes

wopt (i)
T ∝ p(yT |x(i)T−1),

where
p(yT |xT−1) = ∑

eT

∫
xT

p(eT ,xT |xT−1)p(yT |xT) dxT , (4.5)

is the normalisation constant of the proposal distribution, Equation (4.4).
Neither sampling from the optimal proposal (4.4), nor evaluating the subsequent weights

(4.5), nor evaluating the normalising constant of the transition density (4.2) are immediately
tractable as we do not have closed form expressions for the edge geometries.

Instead, we opt to approximate the required integrals numerically by discretising the edges
up to some maximal possible distance travelled dmax. This numerical integration can be
implemented efficiently across particles by caching route searches and likelihood evaluations -
as many particles will typically lie on the same or adjacent edges.

4.2 Offline Smoothing

We now have all of the tools we need to develop an offline map-matching technique that
provides uncertainty quantification through a collection of particles - each one representing a
plausible continuous trajectory for the vehicle. Indeed, this mirrors the approach of Roth et al.
(2012) but with the aforementioned model modifications and particle filter proposals generated
from the optimal proposal density.

4.2.1 Backward Simulation

In the context of backward simulation, we propose combining(
x(j)

t:T ,e
(j)
t:T

)
with a sample from

{(
x̃(i)t−1, ẽ

(i)
t−1

)}N

i=1
.

The backward weights take the form

w(i← j)
t−1 ∝ w̃(i)

t−1 p
(

e(j)
t ,x(j)

t | ẽ
(i)
t−1, x̃

(i)
t−1

)
,

= w̃(i)
t−1 p

(
e(j)

t ,x(j)
t | x̃

(i)
t−1

)
I
[
e
(

x̃(i)t−1

)
= eo (j)

t

]
,

which we can calculate in closed form under the aforementioned discretisation to implement
the full O(N2) backward simulation. For the O(N) rejection sampling variant in the backward

4.2 Offline Smoothing 67

direction we require a bound

p(et ,xt | xt−1)<C, ∀xt−1,et ,xt .

On inspection of Equation (4.1) we note that this equivalent to bounding γ(∥xt − xt−1∥et) -
which we can do so with C = max(p0,(1− p0)λ).

In practice, the acceptance rate of the rejection sampling will depend greatly on the quality
of this bound - which depends on the value of the parameters p0 and λ . In dense urban road
networks, we will typically have p0 >> (1− p0)λ . However, at a given observation time,
we may often have that none of the N2 particles overlap such that ∥x(j)

t − x̃(i)t−1∥e(j)
t

= 0 and

therefore using the larger bound C = p0 would be wasteful. We can speed up the rejection
sampling by adopting the adaptive approach described in Section 3.5 where we initiate the
bound at each observation time with the smaller C = (1− p0)λ and if any particles are observed
to overlap such that ∥x(j)

t − x̃(i)t−1∥e(j)
t

= 0, we restart the rejection sampling at the observation

time with C = p0.

4.2.2 Synthetic Data

In Figures 4.3-4.5 we demonstrate the benefits of uncertainty quantification for offline map-
matching by comparing FFBSi (Figure 4.4) against the popular optimisation approach of
Newson and Krumm (2009) (Figure 4.3) on challenging synthetic observations for a trip
between the Cambridge Engineering department and the Fort St George pub. For FFBSi, we
use parameter values discussed in the next section, Section 4.3.

Although the optimisation based approach finds a plausible route (point estimate) it misses
out on others that are equally plausible and thus valuable information is lost, this is particularly
prevalent when inferring the distances the vehicle travelled, Figure 4.5. There is significant
uncertainty in both the edges traversed and the distances travelled that is captured by FFBSi
but not by the Viterbi algorithm.

All particles generated by FFBSi appear plausible - more direct routes are preferred but not
overly so - this provides evidence to suggest the model is well suited to difficult dense urban
road networks and that the optimal proposal is efficiently generating high probability particles.

68 Map-Matching

Fig. 4.3 Offline FFBSi with N = 1000 for
synthetic trip across Cambridge.

Fig. 4.4 Viterbi map-matching Newson and
Krumm (2009) for synthetic trip across
Cambridge.

Fig. 4.5 Histograms represent p(∥xt − xt−1∥et |y0:T) from FFBSi.
Spots represent distances inferred using Viterbi map-matching.

4.3 Parameter Inference 69

4.3 Parameter Inference

We have described our state-space model for map-matching in Section 4.1, however we are still
left to determine suitable values for the parameters θ = (p0,λ ,β ,σGPS). We first describe the
intuition behind each of the parameters

• p0 - defines the a priori probability of the vehicle remaining stationary between observa-
tions.

• λ - large values of λ penalise long distance routes, in particular vehicles are not expected
to travel at speeds above the speed limit.

• β - large values of β penalise routes with significant curvature, such as multiple loops of
a roundabout.

• σGPS - controls the level of noise in the GPS observations, which is assumed to be the
same in both x and y directions and constant across observation times.

4.3.1 Expectation Maximisation

A very general approach to parameter inference in Bayesian models is to explicitly rewrite the
joint distribution to be conditioned on the parameters

pθ (x,y) = p(x,y | θ). (4.6)

The goal is then to find the value of the parameter θ that maximises the marginal likelihood

θMLE = argmax
θ

p(y | θ), (4.7)

where

p(y | θ) =
∫

p(x,y | θ)dx.

Note that we could additionally put a prior on the parameter θ and then optimise to find the
maximum a posteriori parameter θMAP = argmaxθ p(y | θ)p(θ) or even use MCMC methods
to explore the posterior p(θ | y) or p(θ ,x | y) as in the popular particle MCMC of Andrieu et al.
(2010).

Expectation maximisation is an iterative algorithm that searches for a local maximum of
p(y | θ) (or p(θ | y)). Given a current value θ (ℓ), a single iteration of expectation maximisation
is composed of two steps

70 Map-Matching

1. E-step: Compute Q(θ | θ (ℓ)) = Ep(x|y,θ (ℓ))[log p(x,y | θ)].

2. M-step: θ (ℓ+1) = argmax
θ

Q(θ | θ (ℓ)).

We can show that each iteration can only increase the value of p(y | θ). First rewrite

log p(x,y | θ) = log p(y | θ)+ log p(x | y,θ),

and take expectations with respect to p(x | y,θ (ℓ))

Q(θ | θ (ℓ)) = log p(y | θ)+Ep(x|y,θ (ℓ))[log p(x | y,θ)].

We then consider Q(θ (ℓ+1) | θ (ℓ))−Q(θ (ℓ) | θ (ℓ)) which is non-negative by the M-step

Q(θ (ℓ+1) | θ (ℓ))−Q(θ (ℓ) | θ (ℓ))

= log p(y | θ (ℓ+1))− log p(y | θ (ℓ))+Ep(x|y,θ (ℓ))

[
log

p(x | y,θ (ℓ+1))

p(x | y,θ (ℓ))

]
≥ 0.

By Jensen’s equality we have

Ep(x|y,θ (ℓ))

[
log

p(x | y,θ (ℓ+1))

p(x | y,θ (ℓ))

]
≤ logEp(x|y,θ (ℓ))

[
p(x | y,θ (ℓ+1))

p(x | y,θ (ℓ))

]
= 0.

Therefore

log p(y | θ (ℓ+1))≥ log p(y | θ (ℓ))

=⇒ p(y | θ (ℓ+1))≥ p(y | θ (ℓ)).

When we cannot evaluate the integral Q(θ | θ (ℓ)) = Ep(x|y,θ (ℓ))[log p(x,y | θ)] analytically,
we typically resort to approximate methods such as Monte Carlo (or variational inference).
In the case that p(x,y | θ) is part of the exponential family, the M-step can be solved exactly.
However, in general the M-step can be difficult or intractable but the gradient ∇θ Q(θ | θ (ℓ))

may be available and thus we can replace the M-step with a gradient step

θ
(ℓ+1) = θ

(ℓ)+ εℓ∇θ Q(θ | θ (ℓ))|
θ=θ (ℓ),

which gives gradient EM.

4.3 Parameter Inference 71

Algorithm 18 Expectation Maximisation

1: Given initial θ (0)

2: for ℓ= 0, . . . ,L−1 do
3: Approximate Q(θ | θ (ℓ)) = Ep(x|y,θ (ℓ))[log p(x,y | θ)]

e.g. generate samples {x(i)}N
i=1 ∼ p(x | y,θ (ℓ))

4: Set θ (ℓ+1) = argmaxθ Q(θ | θ (ℓ))

or if this is intractable set θ (ℓ+1) = θ (ℓ)+ εℓ∇θ Q(θ | θ (ℓ))|
θ=θ (ℓ)

5: return θ (L)

In the context of offline parameter inference in state-space models, the E-step becomes

Q(θ | θ (ℓ)) = Ep(x0:T |y0:T ,θ (ℓ))

[
log pθ (x0)+

T

∑
t=1

log pθ (xt | xt−1)+
T

∑
t=0

log pθ (yt | xt)

]
,

which can be approximated using particle smoothing (FFBSi)

Q(θ | θ (ℓ))≈ 1
N

N

∑
i=1

[
log pθ

(
x(i)0

)
+

T

∑
t=1

log pθ

(
x(i)t | x

(i)
t−1

)
+

T

∑
t=0

log pθ

(
yt | x(i)t

)]
.

4.3.2 Offline Parameter Inference for Map-matching

As discussed above, we can use the expectation maximisation algorithm with FFBSi to tune
the map-matching parameters θ = (p0,λ ,β ,σGPS). In the M-step we can maximise analyt-
ically with respect to the parameter σGPS, however the normalisation constant (4.2) makes
maximisation of the parameters p0,λ and β intractable and thus we take gradient steps in these
parameters with decreasing stepsize εℓ = 10−5× ℓ−0.5.

In Figure 4.6, we verify the expectation maximisation algorithm, running FFBSi at each
iteration over 20 trips simulated from the map-matching model with known parameters on
the Cambridge road network. The algorithm correctly converges to the vicinity of the true
parameters.

We then tune the parameters on the map-matching model over 20 real trips from the Porto
taxi dataset Moreira-Matias et al. (2013) in Figure 4.7. The result is p0 ≈ 0.14, λ ≈ 0.07,
β ≈ 0.05 and σGPS ≈ 5.2 which are the parameters we used in Section 4.2.2 and in Section 4.4.

72 Map-Matching

Fig. 4.6 Convergence of expectation max-
imisation over 20 synthetic trips in Cam-
bridge. True parameters in red.

Fig. 4.7 Convergence of expectation max-
imisation over 20 real trips in Porto.

4.4 Online Smoothing

We now apply the online particle smoothers introduced in Chapter 3 to the problem of map-
matching. Recall that the goal of the online smoothing is to obtain an approximation to
p(x0:T−1 | y0:T−1) that can be quickly and accurately updated to approximate p(x0:T | y0:T) on
receipt of a new observation yT . More specifically the techniques developed in Chapter 3 utilise
a fixed-lag approximation to update the particles with a complexity that is independent of T .

The advantages of targeting the full joint smoothing distribution p(x0:T | y0:T) rather than
smoothing marginals {p(xt | y0:T)}T

t=0, Kitagawa and Sato (2001) are particularly prevalent
in map-matching. By only targeting smoothing marginals, arbitrary stitching cannot produce
a continuous trajectory, Figure 4.8, and therefore does not permit expectations over multiple
observation times. In contrast, fixed-lag particle stitching, Figure 4.9, produces particles that
each represent a continuous trajectory and therefore can be used to approximate mathematical
expectations with complete generality.

4.4 Online Smoothing 73

Fig. 4.8 Single particle with arbitrary stitch-
ing targeting {p(xt | y0:T)}T

t=0.
Fig. 4.9 Single particle with fixed-lag par-
ticle stitching targeting p(x0:T | y0:T).

4.4.1 Fixed-lag Particle Stitching

In the context of the particle stitching described in Section 3.2, we propose stitching together
each (

x(i)0:T−L−1,e
(i)
1:T−L−1

)
with a sample from

{(
x̃(j)

T−L−1:T , ẽ
(j)
T−L:T

)}N

j=1
.

where x̃T−L−1:T is an overlapping coordinate required for fixed-lag particle stitching, that is
ultimately discarded. Thus the fully adjusted weights become

w(i→ j)
T ∝

p(ẽ(j)
T−L, x̃

(j)
T−L|x

(i)
T−L−1)

p(ẽ(j)
T−L, x̃

(j)
T−L|x̃

(j)
T−L−1)

w(j)
T I
(

e(x(i)T−L−1) = ẽo (j)
T−L

)
.

Similarly, for the rejection sampling we get non-interacting weights

ŵ(j)
T ∝

w(j)
T

p(ẽ(j)
T−L, x̃

(j)
T−L|x̃

(j)
T−L−1)

,

and we accept a sample if e(x(i)T−L−1) = ẽo (j)
T−L and

u <

γ

(
∥x̃(j)

T−L− x(i)T−L−1∥ẽ(j)
T−L

)
exp
(
−β

∣∣∣∣∥x̃(j)
T−L− x(i)T−L−1∥ẽ(j)

T−L
−∥x̃(j)

T−L− x(i)T−L−1∥
∣∣∣∣)

C
,

where u ∼ U(· | 0,1). We can adopt the same adaptive procedure for the bound parameter
C > γ

(
∥x̃T−L− xT−L−1∥eT−L

)
as described in Section 4.2.1.

74 Map-Matching

4.4.2 Real Data

We now explore the effects of the algorithmic parameters in the online particle smoothers
(sample size, lag parameter and number of rejections) for map-matching a route from the Porto
taxi dataset Moreira-Matias et al. (2013), Figure 4.18.

In Figure 4.10 and Figure 4.11, we analyse the posterior distribution for the cumulative
(road) distance travelled by the taxi across each minute. As observations are received every 15
seconds this amounts to expectations averaged over blocks of the full smoothing distribution
and thus marginal approximations, Figure 4.8, would be insufficient. For each minute of the trip,
we compare particle approximations by calculating a total variation metric over the empirical
distributions. This total variation metric is calculated by binning the distance travelled variable,
then the empirical distributions are defined over a discrete space and the total variation metric
is tractable

TV
({

d(i)
1

}N1

i=1
,
{

d(j)
2

}N2

j=1

)
=

1
2 ∑
d∈D

∣∣∣∣∣∣∑
N1
i=1 I[d

(i)
1 ∈ d]

N1
−

∑
N2
j=1 I[d

(j)
2 ∈ d]

N2

∣∣∣∣∣∣ ,
where D is the space [0,dmax] discretised to 5m incremental bins.

Figures 4.12-4.15 depicts the varying algorithmic performance on the start of the route.
We initially observe that setting L = 0 performs very poorly for all sample sizes. The

overly small lag parameter results in a large deviation between the true smoothing distribution
p(x0:T | y0:T) and the joint fixed-lag smoothing distribution pL(x0:T | y0:T) (3.4) - Figure 4.13.

The online particle smoother suffers from path degeneracy for the large lag L = 10 as
observed by a loss of particle diversity (compared to the backward simulation techniques) in
Fig. 4.14. It does however perform well for L = 3.

The addition of backward simulation avoids the issue of path degeneracy in this setting.
We observe that increasing the lag parameter from L = 3 to L = 10 does little to improve
performance and as such can posit that the distributions p(x0:T | y0:T) and pL(x0:T | y0:T) are
suitably close for L = 3, at least for the observations on this route, Figure 4.18.

Finally, in Figure 4.16 and Figure 4.17 we compare the effect on algorithmic runtime from
increasing the maximum number of rejections, R, attempted in the hybrid stitching scheme
Algorithm 15, as well as backward simulation if applicable. Recall that setting R = 0 recovers
the full O(N2) scheme. For a suitably large number of rejections the runtimes of both algorithms
can be seen to increase linearly in N.

4.4 Online Smoothing 75

Fig. 4.10 Online Particle Smoother Fig. 4.11 with Backward Simulation.

Total variation distance from gold standard (offline FFBSi) for posterior over cumulative
distance travelled in each minute of a 16 minute taxi route (observation every 15 seconds)
Moreira-Matias et al. (2013). Simulations averaged over 20 random seeds.

76 Map-Matching

Fig. 4.12 Gold standard, offline FFBSi with
N = 1000.

Fig. 4.13 Online particle smoother with L =
0 and N = 200. Poor approximation due to
small lag.

Fig. 4.14 Online particle smoother, L = 10
and N = 200. Evidence of path degeneracy
due to large lag.

Fig. 4.15 Online particle smoother with
backward simulation, L = 10 and N = 200.

4.5 Discussion 77

Fig. 4.16 Online Particle Smoother Fig. 4.17 with Backward Simulation.

Algorithmic runtime vs maximum number of rejections tolerated for L = 3. Runtimes averaged
over 65 observations (Fig. 4.18) and 20 random seeds.

4.5 Discussion

This chapter has focused on the specific application of Monte Carlo techniques to map-matching.
In dense, urban networks inferring the true trajectory of a vehicle given infrequent and/or noisy
GPS observations can be a challenging task. By adopting a particle based approach targeting
the smoothing distribution we provide a collection of plausible continuous trajectories for the
vehicle, from which generic quantities can be estimated with uncertainty quantification - such
as the speed or distance travelled of the vehicle as well as their decisions at intersections.

In Section 4.1, we have developed a map-matching state-space model that explicitly restricts
vehicle movement to the road network and is specifically designed to handle urban networks
with frequent intersections and roads with complex geometry. We discussed how to apply
efficient particle smoothing given parameter values and GPS observations in Section 4.2 and
demonstrated the validity of the model as well as the benefits of uncertainty quantification
over the state-of-the-art optimisation based approach of Newson and Krumm (2009). We then
described how to tune the parameters given offline GPS observations in Section 4.3 before
applying the novel online smoothing techniques from Chapter 3 to obtain real time particle
approximations to a vehicle’s continuous route and location.

Looking forward, it would be interesting to develop more a sophisticated form for the γ term
in the transition density that penalises lengthy routes. In particular, this should be developed
to incorporate further information such as irregular timestamps (observation times) and speed
limits. Further, the model could also be enhanced to encode information on road systems and
traffic lights. However these enhancements assume extra information that may or may not be
available.

78 Map-Matching

Fig. 4.18 GPS observations for single taxi route Moreira-Matias et al. (2013).

4.6 bmm 79

It would also be useful to extend map-matching to multiple lane road networks. This
extension is nontrivial as vehicles have the opportunity to switch lanes without reaching a
formal intersection - therefore they would have to be treated differently (rather than simply
adding additional road labels).

Map-matching is often used as an internal tool within a larger inference goal. Therefore, an
exciting extension is to use particle map-matching to address problems such as analysing driver
behaviour or congestion prediction, particularly in online settings.

4.6 bmm

This chapter is accompanied by bmm, an open source python Van Rossum and Drake (2009)
package that implements both offline and online particle smoothing for map-matching. The
documentation for the bmm package can be found at bmm.readthedocs.io as well as source code
at github.com/SamDuffield/bmm, including code to reproduce all of the simulations in this
chapter. In this section we review the key functionality of the bmm package, which is hosted on
PyPI (2021) and can be installed easily from the command line with pip.

pip install bmm

4.6.1 Downloading a graph

bmm is built on top of OSMnx Boeing (2017), which is a useful tool for downloading and
processing data from OpenStreetMap contributors (2017).

import osmnx as ox

import bmm

Using OSMnx you can easily download the graph for a given region into python

graph = ox.graph_from_place('Cambridge, UK')

or more flexibly by defining a longitude-latitude bounding box

bmm.readthedocs.io
https://github.com/SamDuffield/bmm

80 Map-Matching

graph = ox.graph_from_bbox(north=52.22, south=52.19, east=0.136,
west=0.11)↪→

Either of these commands will download the OpenStreetMap data encoding the road
network for the region and store it in a NetworkX object Hagberg et al. (2008). By default,
OSMnx will simplify the road network, removing redundant edges and nodes whilst storing the
non-linear edge geometry. In fact, bmm is applicable to any NetworkX graph as long as edges
are labelled with u, v, k, geometry variables, where u and v are origin and destination
nodes, k is a key differentiating the possibility of multiple edges with the same u and v and
geometry encodes the edge curvature. Note that edges are assumed to be single lane and
one-way - a two-way road is represented by two edges. By default, OSMnx downloads all streets
and paths stored in the region, however this can be adjusted to filter for only drive / bike /
walk streets with the network_type argument.

Longitude-latitude represents a spherical coordinate system with unit degrees, this can be
cumbersome for inference purposes. It is common practice to project into the UTM (Universal
Transverse Mercator) x-y coordinate system which divides the world into sixty square zones
with unit metres. The graph object can be projected into UTM automatically

graph = ox.project_graph(graph)

4.6.2 Offline Map-matching

Assuming we have GPS observations of a route loaded in longitude-latitude polyline form, i.e.
a list or numpy array Harris et al. (2020) of 2 dimensional longitude-latitude coordinates

import numpy as np

polyline_longlat = np.array([[-8.613234, 41.1669],
[-8.613243, 41.166666],
[-8.612253, 41.166342],
[-8.611695, 41.16528],
[-8.611182, 41.164668],
[-8.611173, 41.164677], ...

4.6 bmm 81

we can use bmm to convert to UTM x-y coordinates

polyline_utm = bmm.long_lat_to_utm(polyline_longlat)
polyline_utm

array([[532445.46, 4557356.90],
[532444.82, 4557330.92],
[532528.03, 4557295.32],
[532575.36, 4557177.63],
[532618.70, 4557109.89],
[532619.45, 4557110.89], ...

We are now ready to map-match the polyline to the graph using the forward filtering-
backward simulation algorithm

matched_particles = bmm.offline_map_match(graph,
polyline=polyline_utm, n_samps=100, timestamps=15)↪→

The n_samps parameter represents the number of particles to generate whereas the times-
tamps parameters is either the constant time interval between observations (in seconds) or an
array of UNIX timestamps (in seconds) representing each observation time.

The output is a bmm.MMParticles object that stores the inferred route for each particle.
In particular, it contains a particles attribute - a list of arrays, each array has a row every
time the route reaches an intersection or if an observation occurs. Each array has columns

• t - time (seconds) if row represents an observation time otherwise 0,

• u - index of edge origin node,

• v - index of edge destination node,

• k - edge key (0 unless there are multiple u-v edges in the graph),

• alpha - proportional position in [0,1] along edge,

• x - x coordinate if row represents an observation time otherwise 0,

• y - y coordinate if row represents an observation time otherwise 0,

• d - distance travelled since previous observation time.

82 Map-Matching

matched_particles.particles[0]
array([[0., 4.53e+09, 4.74e+08, 0., 0.1, 5.32e+05, 4.56e+06, 0.],

[0., 4.53e+09, 4.75e+08, 0., 1., 0., 0., 39.],
[15., 4.75e+08, 4.75e+08, 0., 0.9, 5.32e+05, 4.56e+06, 52.12],
[0., 4.75e+08, 4.75e+08, 0., 1., 0., 0., 2.],

...↪→

The map-matched particles can be plotted alongside the observed polyline

bmm.plot(graph, particles=matched_particles, polyline=polyline_utm)

Fig. 4.19 Taxi polyline (red) from Moreira-Matias et al. (2013) map-matched (orange) and
visualised using bmm.

4.6 bmm 83

4.6.3 Online Map-matching

In the case that we receive observations in an online fashion, we can update our MMParticles
object as GPS observations arrive.

First we have to initiate the MMParticles object with the first observation in the polyline
(which assume is already in UTM coordinates)

matched_particles = bmm.initiate_particles(graph,
first_observation=polyline_utm[0], n_samps=100)↪→

Then we can extend the particle approximation as new observations are received

matched_particles = bmm.update_particles(graph, matched_particles,
new_observation=polyline_utm[1], time_interval=15)↪→

The bmm.update_particles implements the fixed-lag online smoothing algorithms
introduced in Chapter 3 and described for map-matching Section 4.4. It has a number of
additional, optional parameters. An update parameter which can be set to either ’PF’ or
’BSi’ to choose between online smoothing with particle filter block sampling Algorithm 16 or
with backward simulation block sampling Algorithm 17 - it defaults to backward simulation
’BSi’ although must be consistent across repeated calls of bmm.update_particles. Addi-
tionally, there is a lag parameter which defaults to 3 and controls the length of the particle
history regenerated as each observation comes in as well as a max_rejections parameter
which defaults to 20 and determines how many attempts are applied to the rejection sampler
Section 3.2.3, setting max_rejections=0 obtains the full O(N2) scheme for stitching (and
backward simulation if update=’BSi’).

4.6.4 Parameter Tuning

An additional optional argument to offline_map_match, initiate_particles and up-
date_particles is mm_model which is a bmm.MapMatchingModel object and describes
the form of the state-space model Section 4.1.2 via its methods and attributes.

A MapMatchingModel object contains methods to evaluate the transition density compo-
nents from Equation (4.1). In particular, the deviation_prior_evaluate method evaluates
the

exp(−β |∥xt− xt−1∥et −∥xt− xt−1∥|)

84 Map-Matching

component that penalises non-direct routes dependent on the parameter attribute devia-
tion_beta. Whilst, the distance_prior_evaluate method is a placeholder for the
γ(∥xt − xt−1∥et) component which is not implemented in the raw MapMatchingModel ob-
ject - similarly for its gradient distance_prior_gradient, truncation d_max and upper
bound distance_prior_bound. Additionally there is a method for the observation density
likelihood_evaluate which depends on the parameter gps_sd.

The default value for the bmm.MapMatchingModel object is
bmm.ExponentialMapMatchingModel, i.e. the distance prior described in Equation (4.3)

γ(dt) = p0I(dt = 0)+(1−p0)I(dt>0)λ exp(−λdt),

where dt = ∥xt− xt−1∥et , the distance along edges et between observation times.
To deal with variable time intervals we parameterise the stationary (dt = 0) probability as

p0 = exp(−r0
∆t),

for time interval (between observation times) ∆t.
This leaves in total 4 model parameters

• ExponentialMapMatchingModel.deviation_beta

• ExponentialMapMatchingModel.gps_sd

• ExponentialMapMatchingModel.zero_dist_prob_neg_exponent (or r0)

• ExponentialMapMatchingModel.lambda_speed

as well as ExponentialMapMatchingModel.max_speed which determines the (time inter-
val dependent) truncation distance ExponentialMapMatchingModel.d_max.

These parameters can be tuned using expectation-maximisation Algorithm 18 over multiple
polylines

mm_model = bmm.ExponentialMapMatchingModel()
optimised_params = bmm.offline_em(graph, mm_model, timestamps,

polylines, save_path, n_ffbsi=100, n_iter=50)↪→

where polylines is a list of (UTM) polylines accompanied by their corresponding times-
tamps. Indeed, the default values in bmm.ExponentialMapMatchingModel are taken from
expectation-maximisation on the Porto taxi dataset Moreira-Matias et al. (2013) as in Figure 4.7.

Chapter 5

Ensemble Kalman Inversion for Generic
Likelihoods

Ensemble Kalman inversion represents a powerful technique for inference in statistical models
with likelihoods of the form y | x∼ N(y | H(x),R) where the covariance R is known andH(x)
is a potentially non-linear function that maps the unknown x ∈ Rdx into observation space
Rdy . In this chapter, we generalise the ensemble Kalman approach to generic likelihoods,
y | x ∼ p(y | x) where the likelihood can be sampled from, but its density not necessarily
evaluated. The generalisation is obtained by empirically estimating the noise covariance R in a
manner that remains asymptotically unbiased in the fully linear Gaussian case. We examine the
performance of generalised ensemble Kalman inversion for both optimisation and uncertainty
quantification against state-of-the-art approximate Bayesian computation techniques from
Section 2.5.

This chapter marks a departure from the sequential Bayesian inference setting of state-space
models into the offline setting of static Bayesian inference, Figure 2.1, which we will build
upon in Chapter 6. However, ensemble Kalman methods have originated from the field of
high-dimensional state-space models - as will be described in the start of this chapter before
proceeding to demonstrate their applicability in static Bayesian inference problems.

In Section 5.1 we briefly recount the origin of ensemble Kalman methods and their im-
plementation within state-space models. Section 5.2 details the more recent application of
ensemble Kalman techniques to static Bayesian inference problems where the likelihood has
additive Gaussian noise before introducing our generalisation to generic likelihoods in Sec-
tion 5.3. Section 5.4 investigates numerically the ensemble Kalman and approximate Bayesian
computation techniques in two difficult static Bayesian inference problems with intractable
likelihoods, before concluding in Section 5.5.

86 Ensemble Kalman Inversion for Generic Likelihoods

5.1 Ensemble Kalman Filter

Ensemble Kalman techniques were first introduced Evensen (1994) for online inference in
state-space models, i.e. filtering. In the so-called update step of an ensemble Kalman filter, it is
assumed that we have particles approximately distributed according to the predictive marginal
or prior p(xT | y0:T−1) and seek particles distributed according to the filtering marginal or
posterior p(xT | y0:T) ∝ p(yT | xT)p(xT | y0:T−1). For online inference in state-space models,
this update step is combined with a predictive step and iterated as more data is received.
Ensemble Kalman techniques are asymptotically biased but have been shown to be numerically
stable in a variety of settings.

5.1.1 Linear Gaussian State-space Models

Consider the special case of linear Gaussian state-space models, Section 2.6.1, where we have

p(xT | y0:T−1) = N(xT | µT |T−1,ΣT |T−1), (5.1a)

p(yT | xT) = N(yT | HT xT ,RT), (5.1b)

with each xt ∈ Rdx and yt ∈ Rdy . Then the filtering marginal is analytically tractable

p(xT | y0:T) = N(mT |T ,ΣT |T),

mT |T = µT |T−1 +ΣT |T−1HT
T
(
HT ΣT |T−1HT

T +RT
)−1

(yT −HT µT |T−1), (5.2a)

ΣT |T = ΣT |T−1−ΣT |T−1HT
T
(
HT ΣT |T−1HT

T +RT
)−1

HT ΣT |T−1. (5.2b)

The above posterior comprises the update step of a classical Kalman Filter, Algorithm 10.
The original ensemble Kalman filter Evensen (1994) was derived to deal with the fact

that in generic state-space models the predictive marginal p(xT | y0:T−1) is non-Gaussian and
it’s density cannot be evaluated. In this setting, we assume we have particles approximately
distributed according to the prior {x̂(i)T }N

i=1∼ p(xT | y0:T−1) and can use the empirical covariance

Ĉxx
T =

1
N−1

N

∑
i=1

(x̂(i)T − ¯̂xT)(x̂
(i)
T − ¯̂xT)

T

in place of ΣT |T−1. Assuming the likelihood is still linear and Gaussian p(yT | xT) = N(yT |
HT xT ,RT) with HT and RT known, Evensen (1994) proposed applying the Kalman mean
update, Equation (5.2a), to each particle

x(i)T = x̂(i)T + Ĉxx
T HT

T
(
HT Ĉxx

T HT
T +RT

)−1
(y−HT x̂(i)T), (5.3)

5.1 Ensemble Kalman Filter 87

for i = 1, . . . ,N introducing the original ensemble Kalman update.
It was then noted simultaneously by Burgers et al. (1998) and Houtekamer and Mitchell

(1998) that the update in Equation (5.3) is asymptotically biased even in the Gaussian case and
further that this can be corrected by the addition of a randomly generated perturbation

x(i)T = x̂(i)T + Ĉxx
T HT

T
(
HT Ĉxx

T HT
T +RT

)−1
(y−HT x̂(i)T −η

(i)
T),

η
(i)
T ∼ N(ηT | 0,RT),

(5.4)

for i = 1, . . . ,N. Therefore, if the prior is Gaussian p(xT | y0:T−1) = N(xT | µT |T−1,ΣT |T−1) we
have Ĉxx

T → ΣT |T−1 as N → ∞ and that under Equation (5.4) it can be shown, Le Gland et al.
(2009), that

E[x(i)T]→ µT |T−1 +ΣT |T−1HT
T
(
HT ΣT |T−1HT

T +RT
)−1

(yT −HT µT |T−1),

Cov[x(i)T]→ ΣT |T−1 +ΣT |T−1HT
T
(
HT ΣT |T−1HT

T +RT
)−1

HT ΣT |T−1,

coinciding with Equation (5.2). Thus the ensemble Kalman filter update is asymptotically
unbiased in the linear Gaussian case. We can ensure the above asymptotic statistics without
adding any additional noise by instead deterministically shifting the particles, this is achieved
by the popular ensemble transform Kalman filter Bishop et al. (2001) and ensemble adjustment
Kalman filter Anderson (2001). Although in this work we will only consider stochastic
ensemble Kalman updates.

These techniques are known to be asymptotically biased for general state-space models, i.e.
non-Gaussian priors. There is however, a vast amount of empirical evidence demonstrating
stability in a variety of complex non-linear state-space models with a very small number of
particles, e.g. Houtekamer et al. (2005), Roth et al. (2017). In our view, this summarises the
ensemble Kalman paradigm:

Asymptotically unbiased in the linear Gaussian case, otherwise biased
but empirically stable.

(5.5)

We also note that an important motivation for the ensemble Kalman filter is that in cases
where N << dy (a requirement for many meteorological applications), the matrix inversion
lemma can be applied to the update Equation (5.4) so that the complexity is O(N3) rather than
O(d3

y).

88 Ensemble Kalman Inversion for Generic Likelihoods

Algorithm 19 Ensemble Kalman Filter

1: Given {x(i)T−1}N
i=1

2: Predict
x̂(i)T ∼ p(xT | x(i)T−1) i = 1 . . . ,N

3: Generate perturbed observations

y(i)T ∼ N(yT | HT (x̂
(i)
T),RT) i = 1 . . . ,N

4: Calculate covariances ĈxH
T and ĈHH

T - Equation (5.6)
5: Update

x(i)T = x̂(i)T + ĈxH
T
(
ĈHH

T +RT
)−1

(yT − y(i)T) i = 1 . . . ,N

6: return {x(i)T }N
i=1

5.1.2 Non-Linear Gaussian Likelihoods

It was first noted in Houtekamer and Mitchell (2001) that an ensemble Kalman move can still
be applied to likelihoods of the form

yT | xT ∼ N(yT | HT (xT),RT),

whereHT is now some non-linear function and RT is still known. This can be done by noting
that if the likelihood was linear and Gaussian, the matrices ΣT |T−1HT

T and HT ΣT |T−1HT
T could

also be approximated empirically with

ĈxH
T =

1
N−1

N

∑
i=1

(x̂(i)T − ˆ̄xT)(HT (x̂
(i)
T)−HT (ˆ̄xT))

T, (5.6a)

ĈHH
T =

1
N−1

N

∑
i=1

(HT (x̂
(i)
T)−HT (ˆ̄xT))(HT (x̂

(i)
T)−HT (ˆ̄xT))

T. (5.6b)

As before we have that in the fully linear Gaussian case (5.1) that ĈxH
T → ΣT |T−1HT

T and
ĈHH

T → HT ΣT |T−1HT
T . Therefore the non-linear ensemble Kalman update

x(i)T = x̂(i)T + ĈxH
T
(
ĈHH

T +RT
)−1

(yT −HT (x
(i)
T)−η

(i)
T),

η
(i)
T ∼ N(ηT | 0,RT),

(5.7)

5.2 Ensemble Kalman Inversion 89

leads to particles {x(i)T }N
i=1 that are asymptotically unbiased for the true posterior p(xT | y0:T) in

the linear Gaussian case (5.1) but can be applied to state-space models with the only requirement
being that the likelihood takes the form p(yT | xT) = N(yT | HT (xT),RT).

5.2 Ensemble Kalman Inversion

It was recognised in Iglesias et al. (2013) that the utility of the ensemble Kalman update can be
extended outside of state-space models, in particular to static Bayesian inference problems of
the form

x∼ p(x), (5.8a)

y∼ p(y | x) = N(y | H(x),R). (5.8b)

Where we are asymptotically unbiased in the special case of Gaussian prior and linear Gaussian
likelihood

p(x) = N(x | m,Q), (5.9a)

p(y | x) = N(y | Hx,R), (5.9b)

=⇒ p(x,y) = N

((
m

Hm

)
,

(
Q QHT

HQ HQHT +R

))
, (5.9c)

where the posterior is

p(x | y) =N (my,Qy),

my = m+QHT (HQHT +R
)−1

(y−Hm), (5.10a)

Qy = Q−QHT (HQHT +R
)−1

HQ. (5.10b)

with x ∈ Rdx and y ∈ Rdy . For the rest of the chapter we will focus on static Bayesian inference
problems (rather than state-space models).

For non-Gaussian priors and non-linear Gaussian likelihoods (5.8), the limiting distribution
of the particles from a single step ensemble Kalman update (5.7) may be quite different from
the true posterior. However, as introduced in Iglesias et al. (2013), by iterating the ensemble
Kalman update Equation (5.7) one can still generate a collection of informative particles. This
idea was refined in Iglesias (2015) to be more in line with the tempered likelihood approach of
SMC samplers Del Moral et al. (2006); Jasra et al. (2011), Chapter 6. This iterative ensemble

90 Ensemble Kalman Inversion for Generic Likelihoods

Kalman approach is termed ensemble Kalman inversion and a single iteration takes the form

x(i)ℓ = x(i)ℓ−1 +CxH
ℓ−1
(
CHH
ℓ−1 +h−1

ℓ R
)−1

(y−H(x(i)ℓ−1)−η
(i)
ℓ),

η
(i)
ℓ ∼ N(ηℓ | 0,h−1

ℓ R).
(5.11)

where CxH
ℓ−1 and CHH

ℓ−1 are as in Equation (5.6) applied to the particles {x(i)ℓ−1}
N
i=1. The parameter

h−1
ℓ can be considered a stepsize parameter or equivalently hℓ as an incremental inverse

temperature parameter. In the fully linear Gaussian case (5.9), the particles {x(i)ℓ }
N
i=1 at each

step are asymptotically unbiased for a tempered version of the posterior

pℓ(x) ∝ p(x)p(y | x)λℓ

=N (mℓ,Qℓ),

mℓ = m+QHT (HQHT +λ
−1
ℓ R

)−1
(y−Hm), (5.12a)

Qℓ = Q−QHT (HQHT +λ
−1
ℓ R

)−1
HQ, (5.12b)

where λℓ = ∑
ℓ
r=1 hr is the inverse temperature. The tempered posterior can also be defined

iteratively

mℓ = mℓ−1 +Qℓ−1HT (HQℓ−1HT +h−1
ℓ R

)−1
(y−Hmℓ−1), (5.13a)

Qℓ = Qℓ−1−Qℓ−1HT (HQℓ−1HT +h−1
ℓ R

)−1
HQℓ−1, (5.13b)

Thus, we can iterate L steps with stepsizes such that λL = ∑
L
r=1 hr = 1 and obtain particles

{x(i)L }N
i=1 that are asymptotically unbiased for the true posterior in the linear Gaussian case.

Iterating until λL = 1 is only one possible stopping criterion, another common approach is
to adopt an optimisation style stopping criterion, for example Iglesias (2015) suggest stopping
at iteration L when (y− ȳL)

TR−1(y− ȳL)< τ for some stopping parameter τ .

5.3 Ensemble Kalman Inversion for Generic Likelihoods

In this section, we generalise ensemble Kalman inversion to the case where the data is generated
from any likelihood p(y | x) rather than the setting described in Sections 5.1 and 5.2 which is
restricted to likelihoods of the form N(y | H(x),R) where R is known. The resulting algorithm
only requires samples from the prior p(x) and the ability to simulate from the likelihood
p(y | x) for a given x, as in approximate Bayesian computation, Section 2.5. The final particle
approximation is asymptotically biased for the true posterior with the exception of the fully
linear Gaussian case (5.9).

5.3 Ensemble Kalman Inversion for Generic Likelihoods 91

5.3.1 Generic Likelihoods

In the more general case where we can only simulate y∼ p(· | x), we can no longer form the
empirical covariance matrices in Equation (5.6) as we do not have access to the deterministic
H. Instead we can form

Cxx
ℓ =

1
N−1

N

∑
i=1

(x(i)ℓ − x̄ℓ)(x
(i)
ℓ − x̄ℓ)T, (5.14a)

Cxy
ℓ =

1
N−1

N

∑
i=1

(x(i)ℓ − x̄ℓ)(y
(i)
ℓ − ȳℓ)T, (5.14b)

Cyy
ℓ =

1
N−1

N

∑
i=1

(y(i)ℓ − ȳℓ)(y
(i)
ℓ − ȳℓ)T, (5.14c)

and Cyx
ℓ = CxyT

ℓ where each y(i)ℓ ∼ p(· | x(i)ℓ).
In the fully linear Gaussian case (5.9) or rather the tempered version (5.12, 5.13) we have

Cxy
ℓ → QℓHT and Cyy

ℓ → HQℓHT +R as N→ ∞. We now note that we can also calculate

Cy|x
ℓ = Cyy

ℓ −Cyx
ℓ Cxx−1

ℓ Cxy
ℓ , (5.15)

and that in the linear Gaussian case

Cy|x
ℓ → (HQℓ−1HT +R)− (HQℓ−1)Q−1

ℓ−1(Qℓ−1HT),

= R.

Thus we can use the particles to approximate the covariance of the likelihood empirically.
We now consider the tempered ensemble Kalman iteration (5.11) but with the following

adjustment

x(i)ℓ = x(i)ℓ−1 +Cxy
ℓ−1

(
Cyy
ℓ−1 +(h−1

ℓ −1)Cy|x
ℓ−1

)−1(
y− y(i)ℓ−1−η

(i)
ℓ

)
,

y(i)ℓ−1 ∼ p(yℓ−1 | x
(i)
ℓ−1), (5.16)

η
(i)
ℓ ∼ N(η | 0,(h−1

ℓ −1)Cy|x
ℓ−1).

92 Ensemble Kalman Inversion for Generic Likelihoods

In the linear Gaussian case and large sample limit the above ensemble Kalman move becomes

x(i)ℓ = x(i)ℓ−1 +Qℓ−1HT ((HQℓ−1HT +R)+(h−1
ℓ −1)R

)−1
(y− y(i)ℓ−1−η

(i)
ℓ),

y(i)ℓ−1 ∼ N(yℓ−1 | Hx(i)ℓ−1,R),

η
(i)
ℓ ∼ N(ηℓ | 0,(h−1

ℓ −1)R).

Where the (h−1
ℓ −1) scaling has been chosen to ensure that

E[x(i)ℓ] = mℓ−1 +Qℓ−1HT (HQℓ−1HT +h−1
ℓ R

)−1
(y−Hmℓ−1),

Cov[x(i)ℓ] = Qℓ−1−Qℓ−1HT (HQℓ−1HT +h−1
ℓ R

)−1
HQℓ−1.

These limiting statistics coincide with Equation (5.13) and therefore the ensemble Kalman
update in Equation (5.16) is asymptotically unbiased in the linear Gaussian case, and remains
faithful to the ensemble Kalman paradigm 5.5.

5.3.2 Stepsize Selection

The motivation of iterative ensemble Kalman inversion is that for difficult non-Gaussian
problems, moving directly from prior to posterior in one step is an extremely difficult task, by
taking many smaller steps the particles can explore the state-space and have a better chance of
settling in regions of high posterior probability. There is, therefore, a trade-off to be made -
more steps means greater exploration but also more likelihood simulations and a longer runtime.

The stepsizes equivalently define an inverse temperature schedule

0 = λ0 < λ1 < · · ·< λL

where hℓ = λℓ−λℓ−1 > 0 for ℓ= 1, . . . ,L.
In SMC samplers Del Moral et al. (2006) it is common for the next inverse temperature (and

therefore stepsize) to be selected adaptively Jasra et al. (2011) such that the effective sample
size at each iteration decreases by a fixed amount, i.e. select λℓ such that ESS({w(i)

ℓ }
N
i=1)≈ ρN,

where the normalised weights are a function of λℓ and ρ ∈ (0,1) is a tuning parameter that
controls the size of the steps. The root in λℓ can be found using a bisection algorithm in
(λℓ−1,λL] and requires no additional likelihood evaluations. This idea was ported to ensemble
Kalman inversion in Iglesias et al. (2018), as ensemble Kalman inversion does not compute

5.3 Ensemble Kalman Inversion for Generic Likelihoods 93

Algorithm 20 Ensemble Kalman Inversion for Generic Likelihoods

1: Given (possibly adaptive) methods to set inverse temperatures λℓ and stopping criterion L
2: Sample from prior

x(i)0 ∼ p(x) i = 1, . . . ,N

3: for ℓ= 1, . . . ,L do
4: Simulate observations

y(i)ℓ−1 ∼ p(y | x(i)ℓ−1) i = 1, . . . ,N

5: Form sample covariances

Cxx
ℓ−1 =

1
N−1

N

∑
i=1

(x(i)ℓ−1− x̄ℓ−1)(x
(i)
ℓ−1− x̄ℓ−1)

T

Cxy
ℓ−1 =

1
N−1

N

∑
i=1

(x(i)ℓ−1− x̄ℓ−1)(y
(i)
ℓ−1− ȳℓ−1)

T

Cyy
ℓ−1 =

1
N−1

N

∑
i=1

(y(i)ℓ−1− ȳℓ−1)(y
(i)
ℓ−1− ȳℓ−1)

T

Cy|x
ℓ−1 = Cyy

ℓ−1−Cyx
ℓ−1Cxx−1

ℓ−1 Cxy
ℓ−1

where Cyx
ℓ−1 = CxyT

ℓ−1
6: Set stepsize hℓ = λℓ−λℓ−1
7: for i = 1, . . . ,N do
8: Generate observation perturbations

η
(i)
ℓ ∼N

(
0,
(
h−1
ℓ −1

)
Cy|x
ℓ−1

)
9: Move particles

x(i)ℓ = x(i)ℓ−1 +Cxy
ℓ−1

(
Cyy
ℓ−1 +(h−1

ℓ −1)Cy|x
ℓ−1

)−1(
y− y(i)ℓ−1−η

(i)
ℓ

)
10: return {x(i)L }N

i=1

94 Ensemble Kalman Inversion for Generic Likelihoods

importance weights, the following psuedo-weights are used

ŵ(i)
ℓ ∝ exp

(
−1

2
(λℓ−λℓ−1)

(
y−H(x(i)ℓ−1)

)T
R−1

(
y−H(x(i)ℓ−1)

))
.

The effective sample size (over true importance weights) can be viewed as a measure of the
χ2-divergence between the tempered posterior at λℓ−1 and λℓ as described in Chopin and
Papaspiliopoulos (2020), Section 2.3.2. In Iglesias and Yang (2020) this idea was extended to
instead use an effective sample size based on the symmetric KL-divergence.

In this work, we adopt the more conventional χ2 approach with adapted pseudo-weights

ŵ(i)
ℓ ∝ exp

(
−1

2
(λℓ−λℓ−1)

(
y− y(i)ℓ−1

)T
Cy|x−1
ℓ−1

(
y− y(i)ℓ−1

))
. (5.17)

As noted in Iglesias et al. (2018), the lack of resampling means the user can be more aggressive
with the choice of ρ , in our experiments we set ρ = 1

2 .

5.3.3 Stopping Criteria

We consider two stopping criteria:

• Sampling - stop when λL = 1. This stopping criterion mimics that of tempered likelihood
approaches for tractable likelihoods and is applied to ensemble Kalman inversion in
Iglesias et al. (2018). This approach is asymptotically unbiased for the true posterior in
the linear Gaussian case and aims to quantify uncertainty around parameters.

• Optimisation - stop when all marginal standard deviations of the particles fall below 0.1
of their initial or prior standard deviation. Under this approach the algorithm is iterated
until the particles form a consensus approaching a single point estimate, which in the
linear Gaussian case will (asymptotically) be the maximum likelihood estimator.

5.4 Numerical Experiments

We now examine the performance of both ensemble Kalman inversion for sampling and
optimisation versus two approximate Bayesian computation methods for two static Bayesian
inference problems with intractable likelihoods.

The first approximate Bayesian computation technique is that of ABC-SMC, Section 2.5.3.
We follow Del Moral et al. (2012) in designing the proposal distribution, the threshold schedule

5.4 Numerical Experiments 95

{κℓ}L
ℓ=0, resampling criterion and stopping criterion. The proposal distribution is the random-

walk Metropolis-Hastings kernel from Section 2.5.3 with proposal covariance εD = 2.382

d Cxx
ℓ−1

a scaled version of the empirical covariance of the previous particles. Each threshold is chosen
adaptively such that ESS≈ 0.9N. Particles are resampled when the ESS drops below 0.5N.
Finally, the algorithm terminates when the acceptance rate of the Metropolis-Hastings kernel
first falls below 1.5%.

We also run the random-walk Metropolis-Hastings kernel directly as an ABC-MCMC
algorithm. As described in Section 2.5.2, Vihola and Franks (2020) we use a Robbins-Monro
schedule to adaptively tune the stepsize, preconditioner combination to 2.382

d Σ̂ where Σ̂ is the
empirical covariance of the historical chain and adapt the threshold parameter such that 10% of
samples are accepted. We note that for ABC-MCMC there is additional work (not considered
in these simulations) based on post-hoc regression adjustments Beaumont et al. (2002) that
resemble the ensemble Kalman update Nott et al. (2012). These methods however utilise no
tempering and are applied on top of an ABC-MCMC sample - they are therefore, in our view,
somewhat removed from the ensemble Kalman paradigm.

As mentioned, for EKI we determine the stepsize hℓ (equivalently the next inverse tempera-
ture λℓ) adaptively such that the ESS of the pseudo-weights, Equation (5.17), is approximately
0.5N. We examine both the sampling and optimisation stopping criteria discussed in Sec-
tion 5.3.3.

5.4.1 g-and-k Distribution

Popular as a benchmark for ABC algorithms the g-and-k distribution family is defined by the
quantile function

F−1(u) = A+B
(

1+ c
1− exp(−gz(u))
1+ exp(−gz(u))

)
(1+ z(u)2)kz(u), (5.18)

where z(·) is the quantile function of a standard normal distribution. The g-and-k family
represent a class of distributions with flexible skewness and kurtosis features useful for mod-
elling financial returns Drovandi and Pettitt (2011) and life insurance Peters et al. (2016). The
constant c is typically set to 0.8 and considered known. We set the remaining parameters
x = (A,B,g,k) with true values (3,1,2,1/2) but consider them unknown (to be inferred) with
prior U(· | 0,10)4. The g-and-k likelihood is defined implicitly by the quantile function (5.18).
This likelihood function cannot be evaluated easily and thus we cannot readily utilise traditional
posterior inference methods such as MCMC or importance sampling - although their ABC

96 Ensemble Kalman Inversion for Generic Likelihoods

Fig. 5.1 Marginal densities for N = 500 on g-and-k distribution. Underlying simulation values
in red.

counterparts remain possible as the likelihood can be easily simulated for given parameters by
simply evaluating the quantile function (5.18) at a sampled standard uniform random variable.

We assume we have data of 1000 i.i.d. samples from Equation (5.18) which we sum-
marise into 100 evenly spaced order statistics for both EKI and ABC. For ABC we use the
Euclidean distance function. For both ABC and EKI we unconstrain the parameters using the
transformation z(·/10).

In Figure 5.1, we compare the marginal distributions produced by EKI for sampling and
those from ABC-SMC. We observe that EKI has centred on the vicinity of the truth for all 4
parameters whereas ABC-SMC has failed to concentrate in the g variable in particular. We note
that the two posteriors differ quite significantly - an indication of the high levels of non-linearity
in the g-and-k likelihood - yet the EKI posterior remains informative. We also display the true
posterior obtained from a long run (105 samples) of classical random-walk Metropolis-Hastings
where the density function is evaluated using numerical inversion and numerical differentiation
Rayner and MacGillivray (2002). We observe relative agreement between all three approaches
in the B parameter but intriguing discrepancies in the remaining dimensions.

We then examine the second EKI stopping criterion, that of optimisation. The EKI optimi-
sation procedure, Section 5.3.3, iterates beyond λℓ = 1 until a consensus is reached on a single
point for an approximate maximum likelihood estimator. Figure 5.2 displays seven equally

5.4 Numerical Experiments 97

Fig. 5.2 Convergence of EKI for optimisation, N = 500, on g-and-k distribution. Underlying
simulation values in red.

spaced iterations as the adaptive inverse temperature schedule increases above λℓ = 1 before
terminating when all standard deviations are suitably small. The particles converge quickly and
very closely to the true underlying parameter values.

Finally, we vary the sample size N between 200 and 5000 then repeat the experiment 10
times. The root mean squared error is defined as

RMSE({x(i)}N
i=1 =

√√√√ 1
Ndx

N

∑
i=1

dx

∑
m=1

(x(i)[m]− x†[m])2,

where x[m] is the mth dimension of x and x† is the true underlying parameter. We plot the root
mean squared error against the number of likelihood simulations utilised by each algorithm
as N changes in Figure 5.3. We observe that both EKI stopping criteria are consistently
outperforming both ABC-SMC and ABC-MCMC for the same computational cost. Curiously,
we observe that the performance of EKI for sampling deteriorates as N increases although this
is not the case for the optimisation approach. We posit that this might be due to the smaller
sample sizes over estimating the noise covariance and therefore moving the particles further -
this suggests that stopping when the inverse temperature λL = 1 is suboptimal for this example

98 Ensemble Kalman Inversion for Generic Likelihoods

Fig. 5.3 Root mean squared error for number of likelihood simulation induced by varying N,
on g-and-k distribution. Repeated over 10 randomly generated sets of observations.

and that the induced EKI posterior for inverse temperatures larger than λℓ = 1 are closer to the
true posterior.

5.4.2 Stochastic Lorenz 96

We now consider the task of inferring the initial conditions of a noisy version of the Lorenz 96
model Lorenz (1995). The Lorenz 96 (from 1995) is a simplified model of oceanic flows that
is commonly used as a testbed for high-dimensional data assimilation techniques such as the
ensemble Kalman filter.

The Lorenz 96 dynamics (with added stochasticity) are defined by the SDE

dxt [m] =−xt [m−2]xt [m−1]dt + xt [m−1]xt [m+1]dt− xt [m]dt +Fdt +dWt ,

for m= 1, . . . ,dx with cyclic coordinates xt [0] = xt [dx], xt [−1] = xt [dx−1] and xt [dx+1] = xt [1].
We adopt the common high-dimensional setup of dx = 40 and F = 8, which is known to produce
challenging, chaotic dynamics.

We define our inference goal as obtaining the initial conditions x0 ∈ Rdx given observations
of every other dimension, perturbed by Gaussian noise with variance 0.1, at times t = 1,2,3,4,5

5.4 Numerical Experiments 99

Fig. 5.4 Marginal densities for N = 500 on Lorenz 96 example. Underlying simulation values
in red.

- resulting in dy = 100 observations. We set the prior to p(x0) = N(x0 | F,5I40) and simulate
from the likelihood with an Euler-Maruyama scheme (stepsize 0.001). The stochasticity
in the Lorenz 96 dynamics provides a more realistic influence of noise but the stochastic
Euler-Maruyama scheme makes evaluating the likelihood density intractable.

In our experiments, underlying true values for the initial conditions are sampled from the
prior and then observations generated using the same Euler-Maruyama scheme as above.

Recall that odd dimensions are directly observed whereas even dimensions are unobserved.
We can see in Figure 5.4 that EKI for sampling converges very closely around the truth in
observed dimensions and is understandably less certain about unobserved dimensions. In
contrast ABC-SMC, performs similarly for all dimensions and is likely struggling with the
dimensionality of the problem.

When we push the EKI into high inverse temperatures in Figure 5.5 for optimisation, we
first see that the particles struggle to collapse in the dimensions without observations. This is
an indication that the given data is insufficient to provide a confident point estimate in those
unobserved coordinates. We also notice that the particles converge in the second dimension
away from the true underlying value of the parameter - this may imply that the true maximum
likelihood is not necessarily guaranteed to be close to the truth (in unobserved dimensions)
under this model setup.

100 Ensemble Kalman Inversion for Generic Likelihoods

Fig. 5.5 Convergence of EKI for optimisation, N = 500, on Lorenz 96 example. Underlying
simulation values in red.

Fig. 5.6 Root mean squared error for number of likelihood simulation induced by varying N,
on Lorenz 96 example. Repeated over 10 randomly generated sets of observations.

5.5 Discussion 101

In Figure 5.6, we also observe the phenomenon of decreasing performance in EKI for
sampling as N increases for the L96 example - although less so than the g-and-k example.
However, again we see that EKI consistently outperforms ABC, although this is perhaps not
surprising in a high-dimensional example given the regular use of ensemble Kalman techniques
in this type of problem. In this case, the EKI for optimisation utilised significantly more
likelihood simulations as it requires more iterations to converge - it also suffered high variance
results whereas the performance of the EKI for sampling was more steady.

5.5 Discussion

In this chapter, we have extended the work of ensemble Kalman inversion Iglesias et al. (2018,
2013) to problems with generic likelihoods as opposed to the common restriction of additive
Gaussian noise. We remain faithful to the ensemble Kalman paradigm, i.e. our generalisation is
asymptotically unbiased in the linear Gaussian case. We described how to apply the technique
for both optimisation and for sampling (uncertainty quantification). We have demonstrated both
speed and accuracy of the novel ensemble Kalman inversion algorithm in a difficult benchmark
problem as well as a high dimensional spatial example. The computational cost of the ensemble
Kalman inversion is O(Ld3

y +LNd2
y) and only requires LN likelihood simulations which is the

typical computational bottleneck for problems within approximate Bayesian computation.
We observe the curious phenomenon that increasing the number of particles fails to increase

accuracy when applying ensemble Kalman inversion for sampling - at least in terms of root
mean square error. An outstanding question is how to correct for this. This phenomenon is
not entirely new but is not well understood, it would be intriguing to investigate whether it
could potentially be mitigated by covariance regularisation Houtekamer and Mitchell (2001) or
moment-matching ideas Lei and Bickel (2011).

A natural extension of the stochastic ensemble Kalman inversion algorithm presented in
this chapter would be the conversion to the square-root ensemble Kalman variants Anderson
(2001); Bishop et al. (2001) that instead deterministically move particles in a way that remains
asymptotically unbiased for fully linear Gaussian problems. By removing a layer of stochasticity
we hope to further increase the numerical stability of the inversion algorithm.

Outside of linear Gaussian problems, ensemble Kalman inversion is asymptotically biased.
It would interesting to investigate embedding an ensemble Kalman kernel within an ABC-SMC
sampler. That is, with importance weights from Section 2.5.3

wℓ ∝ wℓ−1
p(xℓ)νℓ−1|ℓ(xℓ−1|xℓ,yℓ)

p(xℓ−1)qℓ|ℓ−1(xℓ|xℓ−1,yℓ−1)
I(d(yℓ,y)< κℓ).

102 Ensemble Kalman Inversion for Generic Likelihoods

Where now qℓ|ℓ−1 is an ensemble Kalman move and νℓ−1|ℓ is some backward kernel. This way,
the ensemble Kalman inversion would inherit the theory of approximate Bayesian computation
and become asymptotically unbiased for νκ . However, it is not clear how to choose the
backward kernel to induce stable importance weights.

A further application of the presented ensemble Kalman inversion would be its use within
state-space models. It is possible that the use of an iterative tempered approach within a single
update step of an ensemble Kalman filter may improve sample quality. Additionally, we could
adapt ensemble Kalman inversion to be used for state-space models with intractable observation
densities Jasra et al. (2012).

Chapter 6

Quasi-Newton Sequential Monte Carlo

In this chapter, we investigate the use of a Hessian approximation to accelerate Sequential
Monte Carlo for static Bayesian inference tasks. The Hessian matrix represents a natural
pre-conditioner, capturing the local scaling and correlations of the target distribution, however
calculating the Hessian matrix exactly is computationally expensive. We instead adapt a quasi-
Newton method, ubiquitous in optimisation literature, to convert gradient evaluations from a
particle’s historical trajectory into a computationally cheap, positive definite projection of the
Hessian matrix.

Sequential Monte Carlo for static Bayesian inference problems with tempered intermediate
distributions is reviewed in Section 6.1. In Section 6.2 we detail a very general approach to
incorporating gradient information via a SMC transition kernel. We then describe the L-BFGS
Hessian approximation and its implementation within the transition kernel in Section 6.3.
Section 6.4 presents two challenging numerical experiments, one high dimensional toy example
with difficult scaling and one multi-modal with real data. Section 6.5 provides discussion and
extensions.

6.1 Likelihood Tempering

Sequential Monte Carlo requires a sequence of target distributions π0:t(x0:t), t = 0, . . . ,T .
For static Bayesian inference problems, the sequence is typically defined artificially such
that the marginal distribution of particles at the final iteration is the posterior distribution
πT (x) = p(x | y) ∝ p(x)p(y | x).

104 Quasi-Newton Sequential Monte Carlo

In this work we will consider the case of likelihood tempering Gelman and Meng (1998);
Neal (2001) where we fix the intermediate marginal distributions

πt(x) ∝ p(x)p(y | x)λt ,

∝ exp(−Ut(x)),

where Ut(x) = − log p(x)− λt log p(x | y) is the tempered potential and λt is an increasing
inverse temperature parameter

0≤ λ0 < λ1 < · · ·< λT = 1. (6.1)

Under this construction the sequence ‘smoothly’ transitions from the prior (which we assume
we can sample from) to the posterior.

Alternative intermediate targets are possible. For example, in the case where we receive
T observations (y1, . . . ,yT) we can set batched intermediate targets πt(xt) = p(xt | y1, . . . ,yt)

as in Chopin (2002). However, this strategy does not necessarily induce smooth transitions
between the intermediate target distributions.

The likelihood tempering approach inspired much of Chapter 5 and although not investigated
here it would be possible to consider similar alternative stopping criteria that extend to λT > 1
with the goal of optimisation rather than integration.

6.1.1 Sequential Importance Weights

Having fixed the marginal targets πt(xt), we can assume we have weighted particles at time
t−1 approximating πt−1(xt−1). Suppose we use a Markovian transition kernel

qt|0:t−1(xt | x0:t−1) = qt|t−1(xt | xt−1),

then we can write the sequential weights as

wt =
πt(xt)πt−1|t(xt−1 | xt)

qt−1(xt−1)qt|t−1(xt | xt−1)
,

=
πt−1(xt−1)

qt−1(xt−1)

πt(xt)πt−1|t(xt−1 | xt)

πt−1(xt−1)qt|t−1(xt | xt−1)
,

= wt−1
πt(xt)πt−1|t(xt−1 | xt)

πt−1(xt−1)qt|t−1(xt | xt−1)
.

where πt−1|t(xt−1 | xt) is a normalised backward kernel which we are free to choose.

6.1 Likelihood Tempering 105

Further suppose that the Markovian transition kernel is πt−1-invariant∫
qt|t−1(xt | xt−1)πt−1(xt−1)dxt−1 = πt−1(xt).

Then the natural (but suboptimal) choice of πt−1|t(xt−1 | xt), Section 2.4.3, Del Moral et al.
(2006), is

πt−1|t(x0:t−1|xt) =
πt−1(xt−1)qt|t−1(xt |xt−1)

πt−1(xt)
,

which induces sequential importance weights of the form

wt = wt−1
πt(xt)

πt−1(xt)
. (6.2)

6.1.2 Adaptive Tempering

Combining the sequential importance weights induced from a πt−1-invariant, Markovian
transition kernel with likelihood tempered intermediate distributions gives weights

wt = wt−1 p(y | xt)
λt−λt−1. (6.3)

A major advantage of this formulation is that the weights wt can be evaluated as a function
of λt without any further likelihood evaluations, Jasra et al. (2011), Section 5.3.2. Thus, we
can define the inverse temperature schedule adaptively by using a numerical root finder (i.e.
bisection) at each iteration to solve

ESS(λt)≈ ρN.

For λt ∈ (λt−1,1] where ρ is a design parameter controlling the χ2-distance between πt−1 and
πt and therefore the number of iterations, T , required to reach the posterior πT (x) = p(x | y).
As in Equation (2.12), we define the effective sample size as

1≤ ESS(λt) =

(
∑

N
i=1 w(i)

t (λt)
)2

∑
N
i=1 w(i)

t (λt)2
≤ N.

106 Quasi-Newton Sequential Monte Carlo

6.2 Langevin Kernel

We now turn to the choice of transition kernel qt|t−1(xt | xt−1). Assuming we have access to
gradients ∇Ut(x) we can adopt the general gradient informed proposal of Horowitz (1991)
before applying an accept-reject step to ensure πt−1-reversibility.

The proposal of Horowitz (1991), sometimes referred to as Hamiltonian Monte Carlo
with persistent momenta, adopts the common approach of augmenting the state-space with an
auxiliary momenta variable, v. As described in Section 2.4.2, we then extend a generic target
distribution π(x) ∝ exp(−U(x)) to be Gaussian in v

U(x,v) =U(x)+
1
2

vTM−1v.

In continuous time, Langevin dynamics (synonymously underdamped Langevin dynamics) can
be written

dxt = M−1vtdt,

dvt =−∇U(xt)dt− γM−1vtdt +
√

2γdWt ,

where γ is a friction parameter controlling the diffusive nature of the momenta. Continuous
time invariance for π(x,v) ∝ exp(−U(x,v)) can be checked with Equation (2.22), Ma et al.
(2015).

Langevin dynamics can be discretised by splitting the dynamics Leimkuhler and Matthews
(2015). First we can consider

dvt =−γM−1vdt +
√

2γdWt ,

which is an Ornstein-Uhlenbeck process and can be discretised exactly for stepsize ε by
sampling from

N(v′ | e−γεv,(1− e−2γε)M).

This steps represents a (partial) momenta refreshment. As this step is exact there is no need
to apply an accept-reject step in this half of the split dynamics (the acceptance probability is
always 1).

The other half of the split is Hamiltonian dynamics

dxt = M−1vtdt,

dvt =−∇U(xt)dt,

6.3 Quasi-Newton Langevin Kernel 107

which we can discretise using one or more steps of the leapfrog integrator Equation (2.26).
We then flip the momenta to induce an involutive deterministic transition before applying a
Metropolis accept-reject step.

We then additionally add a final momenta flip after the accept-reject step Horowitz (1991)
so that trajectories with high acceptance rates can continue in the same direction whereas a
rejection reverses the momenta. This momenta flip is always accepted as the extended target is
symmetric in v.

The tuning parameters of this kernel are the stepsize ε , friction parameter γ and the number
of leapfrog steps. Taking γ → ∞ changes the partial momenta refreshment into full momenta
refreshment, i.e. sampling the momenta from N(v′ | 0,M). Subsequently taking one leapfrog
step results in the Metropolis adjusted Langevin algorithm (MALA) and taking more than one
leapfrog step results in Hamiltonian Monte Carlo (HMC) - as such the Horowitz (1991) scheme
represents a convenient unifying framework. Sophisticated adaptive schemes for tuning the
stepsize within sequential Monte Carlo have been developed in Buchholz et al. (2021), in this
work we use a Robbins-Monro algorithm (with constant adaptation stepsize δ) to ensure the
average Metropolis-Hastings acceptance probability ᾱt =

1
N ∑α

(i)
t is pushed towards a target

α∗. The full sequential Monte Carlo regime in the case of a single leapfrog step and stepsize
adaptation is detailed in Algorithm 21.

6.3 Quasi-Newton Langevin Kernel

The idea behind Girolami and Calderhead (2011) is to extend gradient based Markov Chain
Monte Carlo methods Section 2.4 to the case where the the preconditioning matrix M is position
dependent M(x). The simplified pre-conditioned Langevin dynamics become

dxt = M(xt)
−1vtdt,

dvt =−∇U(xt)dt− γM(xt)
−1vtdt +

√
2γdWt .

for target

π(x,v) ∝ exp(−U(x,v)), U(x,v) =U(x)+
1
2

vTM(x)−1v.

Note that the continuous time dynamics are no longer π-invariant as we have omitted the matrix
derivative terms from Equation (2.22), hence simplified pre-conditioned Langevin dynamics.
The matrix derivatives are normally prohibitively expensive to compute and we can still retain
π-invariance via an accept-reject step Leimkuhler et al. (2018).

108 Quasi-Newton Sequential Monte Carlo

Algorithm 21 Metropolised SMC with Langevin Proposal

1: Sample from prior x(i)0 ∼ p(x0) i = 1 . . . ,N
2: Sample momenta v(i)0 ∼ N(v0 | 0,M0) i = 1 . . . ,N
3: Solve for λ0 ∈ (0,1] such that ESS(λ0)≈ ρN

4: Normalise Ẑ0 =
1
N ∑

N
i=1 p(y | x(i)0)λ0

5: Weight w(i)
0 =

p(y|x(i)0)λ0

NẐ0
i = 1 . . . ,N

6: Set t = 0
7: while λt ≤ 1 do
8: Set t = t +1
9: if ESS(λt−1)< κN then

10:
{

x̃(i)0:t−1, w̃
(i)
t−1 =

1
N

}N

i=1
= Resample

({
x(i)0:t−1,w

(i)
t−1

}N

i=1

)
11: else
12:

{
x̃(i)0:t−1, w̃

(i)
t−1

}N

i=1
=
{

x(i)0:t−1,w
(i)
t−1

}N

i=1

13: for i = 1, . . . ,N do
14: Set x′[0] = x̃(i)t−1 and refresh momenta

v′[0] ∼ N(vt | e−γεt ṽ(i)t−1,(1− e−2γεt)Mt−1)

15: Leapfrog

v′[εt/2] = v′[0]−
εt

2
∇Ut−1(x′[0])

x′[εt]
= x′[0]+ εtM−1

t−1v′[εt/2]

v′[εt]
= v′[εt/2]−

εt

2
∇Ut−1(x′[εt]

)

16: Flip momenta v′[εt]
=−v′[εt]

17: With probability min
(

1,
πt−1(x′[εt]

,v′[εt]
)

πt−1(x′[0],v
′
[0])

)
set
(

x(i)t ,v(i)t

)
=
(

x′[εt]
,v′[εt]

)
otherwise

(
x(i)t ,v(i)t

)
=
(

x′[0],v
′
[0]

)
18: Flip momenta v(i)t =−v(i)t

19: Solve for λt ∈ (λt−1,1] such that ESS(λt)≈ ρN

20: Normalise Ẑt|0:t−1 = ∑
N
i=1 w̃(i)

t−1 p(y | x(i)t)λt

21: Reweight

w(i)
t = w̃(i)

t−1
p(y | x(i)t)λt

Ẑt|0:t−1

i = 1 . . . ,N

22: Adapt stepsize logεt+1 = logεt +δ (ᾱt−α∗)

23: return
{{

x(i)t ,w(i)
t

}N

i=1

}T

t=0

6.3 Quasi-Newton Langevin Kernel 109

Approximating a convex neighbourhood of the target with a Gaussian distribution suggests
a logical choice for the position dependent preconditioner M(x) is the Hessian matrix B(x) =
∇2U(x).

Unfortunately, we cannot easily use the Hessian matrix directly for general target distri-
butions. Firstly, the matrix inversion and square root required comes at a prohibitive cost of
O(d3) and secondly the Hessian matrix is not necessarily positive definite, a requirement for a
valid covariance matrix.

6.3.1 BFGS

Zhang and Sutton (2011) suggest overcoming these issues by invoking a Hessian approximation
based on the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm Nocedal and Wright
(2006). The BFGS algorithm and its limited-memory variant (L-BFGS) represent the state-
of-art in non-stochastic optimisation where a sequence of iterates xt = xt−1− εtB̂−1

t−1∇U(xt−1)

is generated to minimise the function U(x) where B̂−1
t−1 is an approximation to the inverse

Hessian at xt−1 - thus representing a so called quasi-Newton method. The traditional BFGS
and L-BFGS algorithms do not provide access to a factorised form of the Hessian matrix that
we require for sampling algorithms. Zhang and Sutton (2011) instead utilise the following
recursion which directly approximates a square-root of the Hessian and its inverse

Bt+1 = Ct+1CT
t+1, B−1

t+1 = St+1ST
t+1, (6.4a)

Ct+1 = (Id−ut tTt)Ct , St+1 = (Id−ptqT
t)St , (6.4b)

tt =
st

sT
t Btst

, pt =
st

sT
t yt

, (6.4c)

ut =

√
sT
t Btst

sT
t yt

yt +Btst qt =

√
sT
t yt

sT
t Btst

Btst + yt , (6.4d)

where st = xt+1− xt and yt = ∇U(xt+1)−∇U(xt). The limited-memory variant initiates the
recursion with diagonal matrices Ct−m = S−1

t−m that represent an initial guess for the square root
of the Hessian and inverse.

In practice, the vectors {pr,qr,ur, tr}tr=t−m are pre-computed at a cost of O(m2d) and
subsequent matrix vector products can be computed at a cost of O(md) using the sequence of

110 Quasi-Newton Sequential Monte Carlo

inner products

Ct+1z =
t

∏
r=t−m+1

(Id−urtTr)Ct−mz,

= (Id−ut tTt) . . .(Id−ut−m+1tTt−m+1)Ct−mz,

St+1z =
t

∏
r=t−m+1

(Id−prqT
r)St−mz,

= (Id−ptqT
t) . . .(Id−pt−m+1qT

t−m+1)St−mz,

thus the L-BFGS variant as described above provides access to a factorised approximation of
the Hessian and inverse Hessian matrices all at a cost that is linear in dimension.

We are yet to ensure the Hessian approximation is positive definite. We can do this by
checking that sT

r yr > 0 for each r = t−m, . . . , t Nocedal and Wright (2006). This is obtained in
Zhang and Sutton (2011) by simply removing points from the recursion when sT

r yr ≤ 0. In this
work, we adopt a strategy similar to Schraudolph et al. (2007) where we notice that we can
instead approximate ∇2U(x)+βBt−m by adjusting each yr← yr +βBt−msr. We can guarantee
a positive definite approximation given β suitably large and a positive definite (diagonal) initial
guess Bt−m. In practice, we adaptively set

β = max

(
0,max

({
−sT

r yr

sT
r Bt−msr

}t

r=t−m

)
+ω

)
, (6.5)

so that each sT
r yr > ω for some bounding parameter ω > 0.

We now have the tools we need to apply a Langevin proposal on the extended target with
adjusted tempered potential

Ut(xt ,vt) =Ut(xt)+
1
2

vT
t Bt(xt−m−1:t−1)

−1vt ,

where Bt(xt−m−1:t−1) represents the L-BFGS Hessian approximation at inverse temperature λt

using trajectory values xt−m−1:t−1.
The use of the previous trajectory means the proposal is no longer Markovian. Zhang

and Sutton (2011) correct for this to obtain a valid Markov Chain Monte Carlo sampler by
extending the state to include all m previous values. In this work, we do not correct for this
bias and instead note as in Wang et al. (2021) that the bias is controllable as increasing m and
decreasing the stepsize εt increases the accuracy of the Hessian approximation (or rather its
positive definite projection). A modified version of the full sequential Monte Carlo procedure
Algorithm 21 that uses an L-BFGS subroutine is described in Algorithm 22.

6.3 Quasi-Newton Langevin Kernel 111

Algorithm 22 Metropolised SMC with Quasi-Newton Langevin Proposal

1: Sample from prior x(i)0 ∼ p(x0) i = 1 . . . ,N
2: Sample momenta v(i)0 ∼ N(v0 | 0,M0) i = 1 . . . ,N
3: Solve for λ0 ∈ (0,1] such that ESS(λ0)≈ ρN

4: Normalise Ẑ0 =
1
N ∑

N
i=1 p(y | x(i)0)λ0

5: Weight w(i)
0 =

p(y|x(i)0)λ0

NẐ0
i = 1 . . . ,N

6: Set t = 0
7: while λt ≤ 1 do
8: Set t = t +1
9: if ESS(λt−1)< κN then

10:
{

x̃(i)0:t−1, w̃
(i)
t−1 =

1
N

}N

i=1
= Resample

({
x(i)0:t−1,w

(i)
t−1

}N

i=1

)
11: else
12:

{
x̃(i)0:t−1, w̃

(i)
t−1

}N

i=1
=
{

x(i)0:t−1,w
(i)
t−1

}N

i=1

13: for i = 1, . . . ,N do

14: Compute
{

p(i)r ,q(i)r ,u(i)r , t(i)r

}t−1

r=t−m−1
using

{
x̃(i)r ,∇Ut−1(x̃

(i)
r)
}t−1

r=t−m−1

15: Set x′[0] = x̃(i)t−1 and refresh momenta

v′[0] ∼ N(vt | e−γεt ṽ(i)t−1,(1− e−2γεt)Bt−1(x̃
(i)
t−m−1:t−1))

16: Leapfrog

v′[εt/2] = v′[0]−
εt

2
∇Ut−1(x′[0])

x′[εt]
= x′[0]+ εtBt−1(x̃

(i)
t−m−1:t−1)

−1v′[εt/2]

v′[εt]
= v′[εt/2]−

εt

2
∇Ut−1(x′[εt]

)

17: Flip momenta v′[εt]
=−v′[εt]

18: With probability min
(

1,
πt−1(x′[εt]

,v′[εt]
)

πt−1(x′[0],v
′
[0])

)
set
(

x(i)t ,v(i)t

)
=
(

x′[εt]
,v′[εt]

)
otherwise

(
x(i)t ,v(i)t

)
=
(

x′[0],v
′
[0]

)
19: Flip momenta v(i)t =−v(i)t

20: Solve for λt ∈ (λt−1,1] such that ESS(λt)≈ ρN

21: Normalise Ẑt|0:t−1 = ∑
N
i=1 w̃(i)

t−1 p(y | x(i)t)λt

22: Reweight

w(i)
t = w̃(i)

t−1
p(y | x(i)t)λt

Ẑt|0:t−1

i = 1 . . . ,N

23: Adapt stepsize logεt+1 = logεt +δ (ᾱt−α∗)

24: return
{{

x(i)t ,w(i)
t

}N

i=1

}T

t=0

112 Quasi-Newton Sequential Monte Carlo

6.4 Numerical Experiments

We now investigate the numerical performance of the sequential Monte Carlo regimes with
both classical Langevin proposal and quasi-Newton Langevin proposal.

It is common for sequential Monte Carlo on static problems to take multiple leapfrog steps
and/or accept-reject steps at each iteration alongside an aggressive choice of the ESS threshold
parameter ρ (i.e. ρ = 0.5) that controls the size of temperature jumps. With an aggressive
choice of ρ many likelihood evaluations are taken at each iteration but the χ2-distance between
tempered distributions is large. In this work, we take an alternative approach with only one
leapfrog step accompanied with accept-reject step alongside modest ρ = 0.95, this way only
one likelihood evaluation is executed per particle per iteration. Although not utilised here,
this approach has the advantage that every likelihood evaluation can contribute to expectation
approximations via the waste-recycling technique used in Gramacy et al. (2010); Nguyen
et al. (2016). This technique uses the fact that the output from each iteration {x(i)t ,w(i)

t }N
i=1 is

asymptotically unbiased for the tempered intermediate distribution πt(x), and therefore we can
adjust the weights to target the posterior πT (x), this way all NT particles contribute to posterior
expectations.

In all experiments we fix N = 1000 and resample when the effective sample size falls below
0.5N. As mentioned we use a Robbins-Monro schedule with constant adaptation stepsize δ = 1
to keep the Metropolis acceptance probability close to 80%. We investigate a range of friction
parameters γ ∈ {0.1,1,10,100,∞}. For the classical Langevin proposals we adopt the common
practice of setting the preconditioning matrix Mt = Id . In the L-BFGS subroutine, we fix the
positive-definite parameter ω = 1. All experiments are repeated 20 times.

6.4.1 High Dimensional Gaussian

The first inference task we consider exhibits high dimensionality and inhomogeneous scaling
Neal (2010) where the target distribution π(x) is a 100-dimensional, zero mean Gaussian with
covariance Σ = diag(1, . . . ,100).

As the problem does not have a prior-likelihood structure we use the following artificial
likelihood tempering

πt(xt) = π0(xt)

(
π(xt)

π0(x)

)λt

,

where π0(x) = N(x | 0,50.5I100).
In our L-BFGS implementation, we use a memory m = 20 and initiate the Hessian approxi-

mations with the inverse of the diagonal sample covariance of the previous particles.

6.4 Numerical Experiments 113

Fig. 6.1 Number of temperatures required to reach posterior for varying friction parameter in
high dimensional Gaussian example.

Fig. 6.2 KL-divergence between final particle approximation and target distribution for varying
friction parameter in high dimensional Gaussian example.

114 Quasi-Newton Sequential Monte Carlo

In Figure 6.1, we display the number of iterations, T , the adaptive sequential Monte Carlo
schemes required to reach the target distribution at inverse temperature λT = 1. The number of
iterations required represents the difference in computational cost between the Metropolised
classical proposal and the Metropolised quasi-Newton Langevin proposal - as both require the
same number of likelihood and gradient evaluations per iteration. In Figure 6.2, we analyse the
accuracy of the particle approximations by comparing the KL-divergence from the Gaussian
distribution induced by the weighted sample mean and covariance of the final particles to the
true target distribution N(x | 0,Σ) - calculated using Equation (3.10).

Recall that a small friction coefficient, γ , represents only a partial momenta refreshment,
whereas γ = ∞ represents a full momenta refreshment - sampling directly from N(v′ | 0,M(x)).
We observe in Figure 6.1 that for the smallest friction parameter the momenta is slower to adjust
to the scaling of the Hessian approximation, resulting in similar performance between classical
and quasi-Newton regimes. For larger friction parameters, the performance of the classical
Langevin SMC significantly deteriorates in both speed Figure 6.1 and accuracy Figure 6.2.
This is in contrast to the quasi-Newton scheme which is faster and more accurate for larger
friction parameters, finding a sweet-spot at γ = 1.

6.4.2 Gaussian Mixture Model

Our second example is considered in Chopin et al. (2012) and represents fitting a univariate
dataset y = (y1, . . . ,yK) with a weighted sum of three Gaussian distributions

p(yk | z,µ,ν) =
3

∑
i=1

zi N(yk | µi,ν
−1
k),

where ∑
3
i=1 zi = 1. We define the prior distribution hierarchically

(z1,z2,z3)∼ Dirichlet(1,1,1),

µi ∼ N(· | m,κ−1), i = 1,2,3,

νi ∼ Gamma(· | α,β), i = 1,2,3,

β ∼ Gamma(· | g,h),

where m, κ , α , g and h are constants. Thus our parameter to be inferred is the nine dimensional
x = (µ,ν ,z1,z2,β) with z3 = 1− z1− z2.

Note that we have the constraints νi > 0, β > 0 and a 3-simplex constraint on the weights
z. To facilitate the gradient based sampling algorithms we take log transforms on the positive

6.4 Numerical Experiments 115

Fig. 6.3 Hidalgo stamp data.

parameters ν ,β and use the simplex transformation detailed in Betancourt (2012) to unconstrain
the weights z. We adjust the prior density with the transformation Jacobians accordingly.

We consider fitting the Hidalgo stamp dataset Izenman and Sommer (1988) which consists
of 485 datapoints representing the thickness of individual stamps, depicted in Figure 6.3. This
model exhibits a label switching problem where a-priori each of the three mixture components
are identical and are therefore invariant to re-labelling. Thus the model admits 3! = 6 local
modes which will each have their own local scaling.

We again tested the quasi-Newton Langevin sequential Monte Carlo scheme (Algorithm 22)
against sequential Monte Carlo with classical Langevin proposals (Algorithm 21) over a range
of friction parameters. When calculating the L-BFGS Hessian approximations Equation (6.4),
we set m = 40 and initiated the Hessian with a constant diagonal matrix based on the prior
covariance.

Figure 6.4 displays the number of temperatures or iterations required to reach the posterior
distribution - which is determined adaptively. We again notice as in the Gaussian example
that the more gentle momenta refreshment from the smallest friction results in similar speeds
induced by the classical and quasi-Newton proposals. For larger friction parameters, the quasi-
Newton accelerates more quickly to the posterior distribution and is significantly faster than its
classical counterpart.

116 Quasi-Newton Sequential Monte Carlo

Fig. 6.4 Number of temperatures required to reach posterior for varying friction parameter in
Gaussian mixture model example.

Fig. 6.5 Estimate of log normalising constant for varying friction parameter in Gaussian mixture
model example. Truth represented by horizontal red line.

6.5 Discussion 117

Fig. 6.6 Langevin. Fig. 6.7 Quasi-Newton Langevin.

SMC posterior samples for Gaussian mixture model.

In this example, the true posterior is not available analytically. Thus to compare the
accuracy of particle approximations we compare the estimate of the (log) normalising constant
ẐT ≈ ZT =

∫
p(x)p(y | x)dx which is calculated sequentially ẐT = Ẑ0 ∏

T
t=1 Ẑt|0:t−1. The final

estimate of log ẐT for the two sequential Monte Carlo algorithms over a range of friction
parameters is displayed in Figure 6.5 alongside the “true” log normalising constant calculated
from an extended run of SMC with classical Langevin proposals and a very large 10000
particles. We observe that the quasi-Newton approach is consistently more precise and accurate
for each friction parameter. In addition, we display the posterior samples generated in the µ1

and µ2 dimensions for Langevin proposals in Figure 6.6 and quasi-Newton Langevin proposals
in Figure 6.7. We clearly see that the use of the local Hessian approximation has allowed the
quasi-Newton algorithm to explore all 6 modes whereas the classical Langevin proposals have
all but collapsed to a single mode.

6.5 Discussion

In this chapter, we derived a sequential Monte Carlo technique for sampling from static Bayesian
inference problems where gradient evaluations are used to form a Hessian approximation,
efficiently preconditioning the dynamics Zhang and Sutton (2011). The Hessian approximation
uses a variant of the L-BFGS algorithm that provides access to both the Hessian and inverse
Hessian in a factorised square-root form Equation (6.4). The approximation is cheap to compute
at a cost of O(m2d), where m is a tunable memory parameter that is typically set in the range
10-50. Importantly, the Hessian approximation requires no additional gradient evaluations.

118 Quasi-Newton Sequential Monte Carlo

To our knowledge, this work provides the first application of Hessian approximations within
sequential Monte Carlo methods for static Bayesian inference problems.

The Hessian approximation utilises the previous m states of the particles trajectory and
therefore breaks the validity of the sequential importance weights. We accept this bias in the
belief that for practical problems this bias is likely to be dominated by standard Monte Carlo
variance and that for suitably large m and small stepsize the Hessian approximation (or rather
its positive definite approximation) will be increasingly accurate. In the case that approximation
is exact, we become asymptotically unbiased again.

We have demonstrated the benefits of the local preconditioner in both a high dimensional
example with difficult scaling as well as a hierarchical, multi-modal example with real data.

With regards to future work, alternative Hessian approximations could be investigated. It
is possible to derive a preconditioned version of Langevin dynamics that does not require the
square root of the preconditioner Fu et al. (2016); Leimkuhler et al. (2018). This can be achieved
by targeting a vanilla extended potential U(x,v) = U(x)+ 1

2vTv but instead preconditioning
with the modified skew symmetric matrix

Q(x,v) =

(
0 −∇2U(x)−1

∇2U(x)−1 0

)

from Equation (2.22). We now no longer require a factorised version of the Hessian however
we still require its inverse. We note that modern automatic differentiation offers Hessian-vector
products at an equivalent computational cost to a gradient evaluation, subsequently we can
take approximate inverse Hessian-vector products using a (possibly stochastic) truncation of
the series B−1 = ∑

∞
i=1(I−B)i - assuming the spectrum of B allows convergence Agarwal et al.

(2017). It may even be possible to extend this further to calculate unbiased estimates of the
matrix divergence terms in Equation (2.22) using the techniques described in Leimkuhler et al.
(2018).

Another extension would be to investigate the potential of using a Hessian approximation
within sequential Monte Carlo schemes that do not make use of an accept-reject step and
therefore use a transition kernel that is not πt−1-invariant. That is sequential importance
weights of the form

wt = wt−1
πt(xt)πt−1|t(xt−1 | xt)

πt−1(xt−1)qt|t−1(xt | xt−1)
,

where the forward kernel qt|t−1 no longer utilises an accept-reject step and πt−1|t is an alternative
backward kernel. An optimal forward kernel qt|t−1 would directly convert a sample from πt−1

6.5 Discussion 119

into one from πt , i.e. ∫
πt−1(xt−1)qt|t−1(xt | xt−1)dxt−1 = πt(xt).

It would be exciting to investigate whether one could combine Taylor expansions on the
tempered potential Titsias and Papaspiliopoulos (2016) with a Hessian approximation to derive
an approximation to an optimal forward kernel - similar to the ideas presented in Chapter 5.

As mentioned, another choice of intermediate distributions for sequential Monte Carlo is
the so called batch intermediates Chopin et al. (2012)

πt(xt) = p(xt | y1, . . . ,yt).

We note that it is indeed possible to combine likelihood tempering and data batching in the
choice of intermediate distributions

πt(xt) ∝ p(xt | y1, . . . ,yr)p(yr+1 | xt)
λt .

We can now enforce smooth transitions between targets using the same effective sample size
based adaptive tempering from Section 6.1.2, although we still require a routine describing
how to batch the data. An interesting extension of this approach is that the aforementioned
sequential Monte Carlo algorithms can be applied in online settings, where the data is received
sequentially but the unknown parameters are still assumed to be static. This represents an
advantage over Markov Chain Monte Carlo approaches which cannot be updated in light of
further observations.

Chapter 7

mocat

This thesis is accompanied by an open source python Van Rossum and Drake (2009) package
mocat that represents a general purpose toolbox for fully customisable Monte Carlo sampling
including plug and play implementations for all of the sampling algorithms presented in this
thesis (Chapter 2, Chapter 3, Chapter 5, Chapter 6).

Just like bmm, Section 4.6, mocat is hosted on PyPI (2021) and can be installed easily from
the command line with pip.

pip install mocat

Source code can be found at github.com/SamDuffield/mocat.

7.1 JAX

mocat is written in python but is entirely dependent on the package JAX, Bradbury et al.
(2018). JAX code is compiled using XLA Sabne (2020), a computational backend in C++, as
such JAX provides lightning fast scientific calculations via a convenient python frontend. JAX
documentation can be found at jax.readthedocs.io, but note the caveat that JAX is still being
regularly updated and some numpy function are yet to be implemented or may not be fully
optimised.

JAX adopts the familiar interface of numpy Harris et al. (2020) but goes much further.
Indeed many numpy manipulations can be replaced with JAX counterparts

from jax import numpy as jnp

https://github.com/SamDuffield/mocat
jax.readthedocs.io

122 mocat

for an easy speedup.
Carefully written JAX code is differentiable

from jax import grad

grad(jnp.sin)(2 * jnp.pi)
DeviceArray(1., dtype=float32)

or perhaps more usefully

from jax import value_and_grad

value_and_grad(jnp.sin)(2 * jnp.pi)
(DeviceArray(0., dtype=float32), DeviceArray(1., dtype=float32))

Additionally, JAX is equipped with a jax.jit function for accelerated just-in-time compi-
lation in a similar fashion to numba Lam et al. (2015) as well as efficient parallel dispatch on
modern computer architectures (GPUs and TPUs).

In order to retain differentiability and allow XLA acceleration, if statements as well as for
and while loops have to be written with care.

if statements

For very simple if statements that require no additional function calls dependent on the value
of the boolean condition we can replace

if condition:
x = 5

else:
x = 10

with

x = jnp.where(condition, 5, 10)

7.1 JAX 123

For more complex if statements where we only want to execute one of two functions we can
use jax.lax.cond

from jax.lax import cond

x = cond(condition,
lambda y: y,
lambda y: y * 2,
operand=5)

for loops

Basic for loops that can be written in python using list comprehension

out_list = [func(x) for x in range(10)]

can be vectorised (for a suitable func) using jax.vmap

out_array = vmap(func)(jnp.arange(10))

Typically the vectorised vmap call is significantly faster than the native python list compre-
hension.

For Markovian for loops where the function iterates depending on its previous value, we
can use the extremely flexible jax.lax.scan. From the JAX documentation we have

def scan(f, init, xs):
carry = init
ys = []
for x in xs:
carry, y = f(carry, x)
ys.append(y)

return carry, np.stack(ys)

which becomes succinctly

124 mocat

from jax.lax import scan

carry, stacked_ys = scan(f, init, xs)

Note the flexibility in the output of scan - the first element carry represents the first
element of the output of the final call to f whereas the second element stacked_ys represents
the second element of the output from every call to f stacked into a single array. This flexibility
as well as the speed of XLA compilation makes jax.lax.scan extremely useful for iterative
algorithms such as Markov chain Monte Carlo Section 2.4.

JAX has a similar implementation for while loops in jax.lax.while_loop, however
only the output from the final iteration call is returned. Since jax.lax.scan has the added
flexibility of being able to return stacked output, it is generally favoured for while loops that
can be reformulated as for loops. For while loops where we desire stacked output, mocat
provides a solution with mocat.utils.while_loop_stacked.

Bonus comments

In order to retain differentiability (jax.grad and jax.value_and_grad), all arrays (inter-
mediate or otherwise) within calls of vmap, scan etc must be of constant size - this can be an
issue for algorithms such as rejection sampling Section 2.2.

JAX favours pure functions and as such does not immediately support the in-place updates
that are common in numpy (e.g. x[0] = 4). This can be circumvented using
jax.ops.index_update however it is typically preferred to use pure functions defined over
full arrays or calls to jnp.where.

Finally, JAX behaves somewhat atypically in its treatment of pseudo-random seeds. In
particular, every call to one of JAX’s functions that calls a pseudo-random number generator
must be accompanied with a two element array representing a random key.

from jax import random

random_key = random.PRNGKey(0)
random_key

DeviceArray([0, 0], dtype=uint32)

Using the same key will generate the same random numbers

7.2 Monte Carlo Sampling 125

random.normal(random_key)
DeviceArray(-0.20584235, dtype=float32)

random.normal(random_key)
DeviceArray(-0.20584235, dtype=float32)

for this reason we have to split the random key before calling a pseudo-random number
generator

random_key, sub_key_1, sub_key_2 = random.split(random_key, 3)
random.normal(sub_key_1)

DeviceArray(0.5781487, dtype=float32)

random.normal(sub_key_2)
DeviceArray(0.85355157, dtype=float32)

Of course JAX has many more useful features and many more gotchas - all thoroughly
described in the documentation jax.readthedocs.io.

7.2 Monte Carlo Sampling

mocat makes it easy to run the most common Monte Carlo algorithms for offline Bayesian
inference as well as providing a framework to implement exciting, new sampling algorithms.

mocat.cdict

A fundamental object within mocat is that of a cdict. A cdict conveniently stores multiple
named attributes including DeviceArrays.

jax.readthedocs.io

126 mocat

import mocat

random_key = random.PRNGKey(0)
random_key, sub_key_1, sub_key_2 = random.split(random_key, 3)

sample = mocat.cdict(x=-5+0.1*random.normal(sub_key_1, shape=(4, 2)),
momenta=random.normal(sub_key_2, shape=(4, 2)),
name='Gaussian sample')

sample.name
'Gaussian sample'

sample.x
DeviceArray([[-5.1619368, -4.871614],

[-5.1136875, -5.048856],
[-5.0195227, -4.8458843],
[-5.037027 , -5.017855]], dtype=float32)

sample.momenta
DeviceArray([[-0.38537452, -1.4707391],

[0.5467919 , 2.095505],
[1.1165614 , 0.16117463],
[-0.5371375 , -0.89213836]], dtype=float32)

We can display the elements of the cdict

sample.keys()
dict_keys(['x', 'momenta', 'name'])

and even index all of the DeviceArrays stored within the cdict

7.2 Monte Carlo Sampling 127

first_sample = sample[0]

first_sample.name
'Gaussian sample'

first_sample.x
DeviceArray([-5.1619368, -4.871614], dtype=float32)

sample.momenta
DeviceArray([-0.38537452, -1.4707391], dtype=float32)

We can also save and load cdicts easily

sample.save(path)
same_sample = mocat.load_cdict(path)

mocat.Scenario

In order to apply Monte Carlo methods, we need a distribution to sample from! For classical
Monte Carlo methods such as Markov chain Monte Carlo and importance sampling we require
access to evaluations of the target distribution’s density function. In mocat, this is achieved via
the so called potential function U(x)

U(x) =− logπ(x) ⇐⇒ π(x) = exp(−U(x)),

where π(x) is the probability density function of the target distribution. A strength of Monte
Carlo methods is that π(x) (and subsequently U(x)) only need be defined up to normalisation
constant.

In mocat, a target distribution’s potential is stored in a class that inherits mocat.Scenario.
This can be done either directly

128 mocat

class Funnel(mocat.Scenario):
dim = 5
def potential(self,

x: jnp.ndarray,
random_key: jnp.ndarray = None) -> float:

return 0.5 * (x[-1] ** 2 / 9 + (x[:-1] ** 2 / jnp.exp(x[-1]) +
x[-1]).sum())↪→

or by defining a Bayesian prior and likelihood function

class BayesFunnel(mocat.Scenario):
dim = 5
prior_sd = 10.

def prior_potential(self,
x: jnp.ndarray,
random_key: jnp.ndarray = None) -> float:

return 0.5 * jnp.square(x / self.prior_sd).sum()

def likelihood_potential(self,
x: jnp.ndarray,
random_key: jnp.ndarray = None) -> float:

return 0.5 * (x[-1] ** 2 / 9 + (x[:-1] ** 2 / jnp.exp(x[-1]) +
x[-1]).sum())↪→

def prior_sample(self,
random_key: jnp.ndarray) -> jnp.ndarray:

return self.prior_sd * random.normal(random_key,
shape=(self.dim,))↪→

Note that the Scenario class has a compulsory dim attribute that is used by subsequent
sampling algorithms. Additionally note that the BayesFunnel has a prior_sd parameter
that is accessed within prior_potential via self.prior_sd - this technique could also
be used alongside a data attribute accessed within likelihood_potential.

The prior_sample method is required for initiating some sampling algorithms, such as
the approaches that use tempering in Chapter 5 and Chapter 6.

7.2 Monte Carlo Sampling 129

The additional random_key argument in the potential methods is there to permit the option
of stochastic mini-batching in the likelihood calls - in the majority of cases it can be left as an
unused argument.

Initiating an instance of the scenario

funnel_scen = BayesFunnel()

will initiate a potential method in the case of Bayesian prior and likelihood scenario.
Additionally it will automatically initiate the first derivative of the potential grad_potential
and potential_and_grad as well as the equivalent methods for prior_potential and
likelihood_potential.

Markov Chain Monte Carlo

We can now develop our sampling algorithms. Recall that Markov chain Monte Carlo (MCMC),
Section 2.4 collects samples by iterating a π-invariant kernel

x(i) ∼ K(· | x(i−1)), i = 1, . . . ,N,

where K most commonly consists of a proposal followed by an accept-reject step. mocat
has a built-in MCMCSampler class that can be inherited to build bespoke MCMC sampling
algorithms.

mocat has built-in the very general gradient based sampler mocat.Underdamped of
Horowitz (1991) which as described in Section 6.2 incorporates the popular MALA and HMC
sampling algorithms. mocat also has the basic random-walk Metropolis Hastings algorithm
mocat.RandomWalk whose code we describe here

130 mocat

class RandomWalk(MCMCSampler):
name = 'Random Walk'
correction = Metropolis

def __init__(self,
stepsize: float = None):

super().__init__()
self.parameters.stepsize = stepsize
self.tuning.target = 0.234

def startup(self,
scenario: Scenario,
n: int,
initial_state: cdict,
initial_extra: cdict,
**kwargs) -> Tuple[cdict, cdict]:

initial_state, initial_extra = super().startup(scenario, n,
initial_state, initial_extra, **kwargs)

initial_extra.random_key, scen_key = random.split(initial_extra.random_key)
initial_state.potential = scenario.potential(initial_state.value, scen_key)
return initial_state, initial_extra

def proposal(self,
scenario: Scenario,
reject_state: cdict,
reject_extra: cdict) -> Tuple[cdict, cdict]:

proposed_state = reject_state.copy()

d = scenario.dim
x = reject_state.value

stepsize = reject_extra.parameters.stepsize

reject_extra.random_key, subkey, scen_key = random.split(reject_extra.random_key, 3)

proposed_state.value = x + jnp.sqrt(stepsize) * random.normal(subkey, (d,))
proposed_state.potential = scenario.potential(proposed_state.value, scen_key)

return proposed_state, reject_extra

def acceptance_probability(self,
scenario: Scenario,
reject_state: cdict, reject_extra: cdict,
proposed_state: cdict, proposed_extra: cdict) -> float:

return jnp.minimum(1., jnp.exp(- proposed_state.potential + reject_state.potential))

Firstly, note that the MCMCSampler has a correction attribute. This represents a mo-
cat.Correction object and determines the nature of the accept reject step. The three
built-in corrections are

• Uncorrected - always accept proposal.

7.2 Monte Carlo Sampling 131

• Metropolis - accept proposal with probability determined by the MCMCSampler’s
acceptance_probability method, otherwise duplicate previous sample.

• RMMetropolis - as above but additionally adapt the stepsize parameter with a
Robbins-Monro schedule Andrieu and Thoms (2008) according to the MCMCSampler’s
tuning attribute.

Of course mocat permits fully customisable inheritance from the mocat.Correction class
in order to create alternative MCMC algorithms based on the same proposal.

There are therefore four key methods to define when inheriting MCMCSampler.

• __init__ is the method that is called when an instance of the sampler is initiated.
The MCMCSampler already creates a parameters cdict, the sampler’s __init__ is
where the sampling algorithm parameters and their defaults are defined - in the case of
RandomWalk, only the stepsize parameter. It is also the opportunity to set sampler
defaults in the tuning cdict

rw_sampler = mocat.RandomWalk(stepsize=0.1)
rw_sampler.tuning

mocat.cdict({'parameter': 'stepsize', 'target': 0.234,
'metric': 'alpha', 'monotonicity': 'decreasing'})↪→

• startup is called when the sampler is first exposed to the Scenario. The purpose
of startup is to setup the cdicts - initial_state and initial_extra. When
jax.lax.scan is called the sampler will adjust iterated state and extra cdicts
were anything in extra will be discarded at the end (e.g. random keys) and anything
in state will be stacked and returned. The startup ensures all attributes are initiated
correctly to be consistent through jax.lax.scan - this includes, for example, initiating
gradient evaluations. By default initial_state will only be initiated with an initial
value and initial_extra with a random_key and iteration counter iter.

• proposal represents the function that modifies the state and extra at each iteration.
If in addition it is desired to make iterative modifications that are always accepted, these
can be applied in the always method that is applied before proposal (not required for
RandomWalk).

• acceptance_probability determines the probability of accepting a proposal for
when the correction is set to Metropolis (or an inheritance thereof).

132 mocat

We are then ready to sample!

mcmc_sample = mocat.run(funnel_scen, rw_sampler, n=100000,
random_key=random.PRNGKey(0))↪→

mcmc_sample.keys()
dict_keys(['value', 'alpha', 'potential', 'time', 'summary'])

where the output is a cdict where the samples are stored in value, runtime in time, a sum-
mary of the run parameters in summary and any other attributes initiated by the MCMCSampler
or its Correction in startup.

Alternatively we could have sampled with stepsize adaptation

rw_sampler = RandomWalk(stepsize=0.1)

mcmc_sample = mocat.run(funnel_scen, rw_sampler, n=100000,
random_key=random.PRNGKey(0), correction=mocat.RMMetropolis)↪→

mcmc_sample.keys()
dict_keys(['value', 'stepsize', 'alpha', 'potential', 'time',

'summary'])↪→

Transport Sampling

mocat also provides a framework for Monte Carlo sampling under an alternative paradigm
- that of iteratively updating a full particle approximation of fixed size, as opposed to grad-
ually building a particle approximation of increasing size as in MCMC. In mocat samplers
following this paradigm (such as sequential Monte Carlo with likelihood tempering) inherit the
TransportSampler class.

A vanilla TransportSampler has four key methods to be implemented

• __init__ as in MCMCSampler, initiate any sampler parameters and their default
values however TransportSampler does not pre-initiate a tuning attribute.

• startup as in MCMCSampler except that initial_state now contains a full parti-
cle approximation and thus attributes (including value which by default is initiated
with n calls to scenario.prior_sample) having a leading dimension of length n.
initial_extra attributes remain singular in length.

7.2 Monte Carlo Sampling 133

• update modifies the particle approximation at each iteration.

• termination_criterion tells mocat.run when to stop.

mocat has built-in implementations of Stein Variational Gradient Descent (SVGD) Liu and
Wang (2016) (mocat.SVGD with some basic kernels defined in mocat.kernels) as well as
a customisable framework for sequential Monte Carlo with likelihood tempering Section 6.1
including

• TemperedSMCSampler a general class with forward_proposal and log_weight
methods to be defined. Either requires a temperature_schedule at initiation or the
method next_temperature_adaptive to be defined.

• MetropolisedSMCSampler - specifically for πt-invariant transition kernels as in Chap-
ter 6. Takes on initiation an mcmc_sampler argument which is an MCMCSampler object
defining the nature the transition kernel. Supports a temperature_schedule or effec-
tive sample size based adaptive tempering.

• RMMetropolisedSMCSampler - as above but additionally adapts the stepsize of the
mcmc_sampler using a Robbins-Monro schedule according to mcmc_sampler.tuning
as in Algorithm 21.

We can again sample using mocat.run. For SVGD

svgd_sampler = mocat.SVGD(stepsize=0.1,
kernel=mocat.kernels.Gaussian(), max_iter=1000)↪→

svgd_sample = mocat.run(funnel_scen, svgd_sampler, n=100,
random_key=random.PRNGKey(0))↪→

svgd_sample.keys()
dict_keys(['value', 'potential', 'grad_potential', 'time',

'summary'])↪→

svgd_sample.value.shape
(1001, 100, 5)

or for sequential Monte Carlo with likelihood tempering

134 mocat

mcmc_sampler=mocat.Underdamped(leapfrog_steps=10, stepsize=0.1,
friction=jnp.inf)↪→

smc_sampler =
mocat.RMMetropolisedSMCSampler(mcmc_sampler=mcmc_sampler)↪→

smc_sample = mocat.run(funnel_scen, smc_sampler, n=10000,
random_key=random.PRNGKey(0))↪→

smc_sample.keys()
dict_keys(['value', 'log_weight', 'ess', 'prior_potential',

'grad_prior_potential', 'likelihood_potential',
'grad_likelihood_potential', 'potential', 'grad_potential',
'temperature', 'log_norm_constant', 'alpha', 'momenta',
'stepsize', 'time', 'summary'])

↪→

↪→

↪→

↪→

Sample Metrics

mocat contains a collection of functions to analyse sample quality.
Let us analyse the mcmc_sample we generated from the BayesFunnel distribution using

RandomWalk. The first thing we might check is some univariate marginals

mocat.hist_1d_samples(mcmc_sample, dim=0)
mocat.hist_1d_samples(mcmc_sample, dim=-1)

or perhaps the bivariate marginals without and with burn-in

mocat.plot_2d_samples(mcmc_sample, dim1=0, dim2=-1)
mocat.plot_2d_samples(mcmc_sample[1000:], dim1=0, dim2=-1)

Given that we modified the stepsize adaptively we should check our acceptance rates were
appropriate

7.2 Monte Carlo Sampling 135

Fig. 7.1 dim=0 Fig. 7.2 dim=-1

Univariate marginals for MCMC samples from BayesFunnel.

Fig. 7.3 No burn-in Fig. 7.4 Burn-in of 1000

Bivariate marginals for MCMC samples from BayesFunnel.

rw_sampler.tuning.target
0.234

mcmc_sample.alpha.mean()
DeviceArray(0.23056579, dtype=float32)

Lovely stuff. We can even visualise the stepsize adaptation (simply using matplotlib Hunter
(2007))

136 mocat

import matplotlib.pyplot as plt

plt.plot(mcmc_sample.stepsize)

Fig. 7.5 RandomWalk stepsize adaptation on BayesFunnel

It wouldn’t be Markov chain Monte Carlo without some trace plots

plt.plot(mcmc_sample.potential[1000:])
plt.plot(mcmc_sample.value[1000:, 0])

Fig. 7.6 potential Fig. 7.7 dim=0

Trace plots for MCMC samples (with burn-in of 1000) from BayesFunnel.

and autocorrelations

7.2 Monte Carlo Sampling 137

mocat.autocorrelation_plot(mcmc_sample.potential[1000:])
mocat.autocorrelation_plot(mcmc_sample.value[1000:, 0])

Fig. 7.8 potential Fig. 7.9 dim=0

Autocorrelation plots for MCMC samples (with burn-in of 1000) from BayesFunnel.

Indeed we can also calculate the ess_autocorrelation (or
integrated_autocorrelation_time)

mocat.ess_autocorrelation(mcmc_sample.potential)
DeviceArray(8026.1, dtype=float32)

vmap(mocat.ess_autocorrelation)(mcmc_sample.value.T)
DeviceArray([2079.1, 1665.7, 767.7, 647.3, 33951.8],

dtype=float32)↪→

In addition, we can analyse the quality of any sample (irrespective of its generating mecha-
nism) using a kernelised Stein discrepancy (KSD) Liu et al. (2016) (which we mini-batch to
avoid having to calculate a 100000x100000 gram matrix).

138 mocat

mcmc_sample.grad_potential =
vmap(funnel_scen.grad_potential)(mcmc_sample.value)↪→

mocat.ksd(mcmc_sample, kernel=mocat.kernels.Gaussian(),
ensemble_batchsize=100, random_key=random.PRNGKey(0))↪→

DeviceArray(0.9774283, dtype=float32)

where we had to compute the gradient of the potential (required for KSDs) as it wasn’t
computed during sampling - this of course wouldn’t have been the case if we had used
mocat.Underdamped.

The kernelised Stein discrepancy is applicable to any sample including TemperedSMCSam-
plers as it also takes a log_weight argument. Remember that the output of a TransportSam-
pler is a particle approximation at each iteration and so metrics should only be called on the
final particle approximation

mocat.ksd(smc_sample[-1], kernel=mocat.kernels.Gaussian(),
ensemble_batchsize=100, random_key=random.PRNGKey(0),
log_weight=smc_sample.log_weight[-1])

↪→

↪→

Naturally the output of a MetropolisedSMCSampler also contains the attributes gener-
ated during sampling ess, temperature, alpha, stepsize and log_norm_constant that
can be analysed to assess sample quality in addition to the marginal plots and KSD.

7.3 ABC

But what about problems where we cannot compute likelihood_potential but can can
compute likelihood_sample? We can do exactly that using mocat’s submodule abc

from mocat import abc

We can define a target distribution with an intractable likelihood density by inheriting the
abc.ABCScenario class

7.3 ABC 139

class GaussianABC(abc.ABCScenario):
dim = 3
prior_std = 5.
likelihood_matrix = jnp.array([[1., -0.5, 2.],

[-0.4, -0.1, 0.]])
likelihood_std = 1.
data = jnp.array([3., -1.])

def prior_sample(self,
random_key: jnp.ndarray) -> jnp.ndarray:

return self.prior_std * random.normal(random_key, (self.dim,))

def prior_potential(self,
x: jnp.ndarray,
random_key: jnp.ndarray = None) -> float:

return 0.5 * jnp.square(x / self.prior_std).sum()

def likelihood_sample(self,
x: jnp.ndarray,
random_key: jnp.ndarray) -> jnp.ndarray:

return self.likelihood_matrix @ x
+ self.likelihood_std * random.normal(random_key,

shape=(self.likelihood_matrix.shape[0],))↪→

If data is summarised, as is common in approximate Bayesian computation (ABC), this
is defined implicitly in the data attribute and likelihood_sample method, i.e. data
represents the summarised data and likelihood_sample directly simulates summarised
synthetic data.

abc.ABCScenario additionally hosts a distance_function method that defaults to the
Euclidean distance

def distance_function(self,
simulated_data: jnp.ndarray) -> float:

return jnp.sqrt(jnp.square(simulated_data - self.data).sum())

140 mocat

mocat.abc has built-in implementations of the ABC algorithms described Section 2.5. Indeed
abc.VanillaABC inherits abc.ImportanceABC and is jointly an importance and rejection
sampler. The threshold parameter of abc.VanillaABC can be defined explicitly

vanilla_abc = abc.VanillaABC(threshold=3.)

or post-hoc via an acceptance rate

vanilla_abc = abc.VanillaABC(acceptance_rate=0.1)

and as usual we can run using mocat.run

gaussian_abc_scen = GaussianABC()

vanilla_abc_sample = mocat.run(gaussian_abc_scen, vanilla_abc,
n=10000, random_key=random.PRNGKey(0))↪→

(vanilla_abc_sample.log_weight == 0).mean()
DeviceArray(0.1, dtype=float32)

where vanilla_abc_sample.log_weight represents an array of accept (0.) and reject
(-inf) values.

mocat.abc also contains a fully customisable ABCMCMCSampler class and an implemen-
tation of RandomWalkABC which by default runs with mocat.Metropolis correction but can
also adaptively determine both the stepsize and threshold parameters using the RMMetropolis-
DiagStepsize correction as described in Vihola and Franks (2020)

7.3 ABC 141

abc_mcmc_sampler = abc.RandomWalkABC()

abc_mcmc_sample = mocat.run(gaussian_abc_scen, abc_mcmc_sampler,
n=10000, random_key=random.PRNGKey(0),
correction=abc.RMMetropolisDiagStepsize())

↪→

↪→

abc_mcmc_sampler.tuning
mocat.cdict({'parameter': 'threshold', 'target': 0.1, 'metric':

'alpha', 'monotonicity': 1})↪→

abc_mcmc_sample.alpha.mean()
DeviceArray(0.08237284, dtype=float32)

plt.plot(abc_mcmc_sample.stepsize)
plt.plot(abc_mcmc_sample.threshold)

Fig. 7.10 Stepsize adaptation to match sample
covariance in each dimension.

Fig. 7.11 Threshold adaptation

Adaptive ABC-MCMC on GaussianABC.

Similarly, mocat.abc implements ABC-SMC via a customisable ABCSMCSampler and
MetropolisedABCSMCSampler. By default, MetropolisedABCSMCSampler uses an
abc.RandomWalkABC proposal, an adaptive effective sample size based threshold schedule
and sets the MetropolisedABCSMCSampler.adapt_mcmc_params to modify the stepsize
(diagonal pre-conditioner) to the diagonal sample covariance scaled by d/2.382 as in Del Moral
et al. (2012).

142 mocat

abc_smc_sampler = abc.MetropolisedABCSMCSampler()
abc_smc_sample = mocat.run(gaussian_abc_scen, abc_smc_sampler, n=1000,

random_key=random.PRNGKey(0))↪→

abc_smc_sample.keys()
dict_keys(['value', 'log_weight', 'ess', 'prior_potential',

'simulated_data', 'distance', 'threshold', 'alpha', 'time',
'summary'])

↪→

↪→

plt.plot(abc_smc_sample.ess)
plt.plot(abc_smc_sample.alpha.mean(1))
plt.plot(abc_smc_sample.threshold)
plt.plot(abc_smc_sample.distance.mean(1))

Fig. 7.12 Effective sample size
Fig. 7.13 Average Metropolis acceptance
rate

Fig. 7.14 Adaptive threshold parameter
Fig. 7.15 Average distance between simu-
lated and true data

Adaptive ABC-SMC on GaussianABC.

7.4 State-space Models 143

mocat also includes implementation of the tempered ensemble Kalman inversion (EKI)
introduced in Chapter 5. Ensemble Kalman inversion represents a TransportSampler
and only requires the Scenario to have prior_sample and likelihood_sample im-
plemented. A general implementation is stored in mocat.TemperedEKI and EKI with
adaptive temperature schedule using the pseudo-weights Equation (5.17) is found in mo-
cat.AdaptiveTemperedEKI. The stopping criterion can be adjusted by modifying the
max_temperature attribute and/or the termination_criterion method.

eki_sample = mocat.run(gaussian_abc_scen, mocat.AdaptiveTemperedEKI(),
n=1000, random_key=random.PRNGKey(0))↪→

7.4 State-space Models

Sequential Bayesian inference in state-space models Section 2.6 is also supported via mocat’s
ssm submodule.

from mocat import ssm

A fully general state-space model can be stored by inheriting the ssm.StateSpaceModel.
For example consider the univariate non-linear benchmark model Gordon et al. (1993)

144 mocat

class NonLinear1DBenchmark(ssm.StateSpaceModel):
name = '1D Non-linear Benchmark'
dim = 1
dim_obs = 1

def __init__(self,
initial_sd: float = jnp.sqrt(2.),
transition_sd: float = jnp.sqrt(10.),
likelihood_sd: float = 1.,
name: str = None):

self.initial_sd = initial_sd
self.transition_sd = transition_sd
self.likelihood_sd = likelihood_sd
super().__init__(name=name)

def initial_potential(self,
x: jnp.ndarray,
t: float) -> float:

return 0.5 * jnp.square(x / self.initial_sd).sum()

def initial_sample(self,
t: float,
random_key: jnp.ndarray) -> jnp.ndarray:

return random.normal(random_key, (1,)) * self.initial_sd

def transition_potential(self,
x_previous: jnp.ndarray,
t_previous: float,
x_new: jnp.ndarray,
t_new: float) -> float:

transition_mean = 0.5 * x_previous+ 25 * x_previous / (1 + x_previous ** 2) + 8 *
jnp.cos(1.2 * t_previous)↪→

return 0.5 * jnp.square((x_new - transition_mean) / self.transition_sd).sum()

def transition_sample(self,
x_previous: jnp.ndarray,
t_previous: float,
t_new: float,
random_key: jnp.ndarray) -> jnp.ndarray:

transition_mean = 0.5 * x_previous+ 25 * x_previous / (1 + x_previous ** 2) + 8 *
jnp.cos(1.2 * t_previous)↪→

return transition_mean + random.normal(random_key, (1,)) * self.transition_sd

def likelihood_potential(self,
x: jnp.ndarray,
y: jnp.ndarray,
t: float) -> float:

lik_mean = x ** 2 / 20
return 0.5 * jnp.square((y - lik_mean)/self.likelihood_sd).sum()

def likelihood_sample(self,
x: jnp.ndarray,
t: float,
random_key: jnp.ndarray) -> jnp.ndarray:

lik_mean = x ** 2 / 20
return lik_mean + random.normal(random_key, (1,)) * self.likelihood_sd

7.4 State-space Models 145

Observe the additional compulsory attribute dim_obs describing the dimension of a single
observation. The state-space model comes down to the implementation of the following six
methods

• initial_potential evaluates the potential corresponding to the first latent variable
p(x0).

• initial_sample generates a single random sample from p(x0).

• transition_potential evaluates the potential corresponding to the transition density
pt(xt | xt−1) which may vary with t.

• transition_sample generates a single random sample from pt(xt | xt−1).

• likelihood_potential evaluates the potential corresponding to the transition density
pt(yt | xt) which may vary with t.

• likelihood_sample generates a synthetic observation from pt(yt | xt). Not necessary
for the most basic inference in state-space models (i.e. ssm.BootstrapFilter).

Synthetic values of both the underlying trajectory and observations can then be generated

benchmark_ssm = NonLinear1DBenchmark()

simulated_values = benchmark_ssm.simulate(t_all=jnp.arange(10),
random_key=random.PRNGKey(0))↪→

simulated_values.keys()
dict_keys(['x', 'y', 't', 'name'])

Linear Gaussian

As discussed in Equation (2.34), a convenient class of state-space models occurs when all
distributions p(x0), pt(xt | xt−1) and pt(yt | xt) are linear and Gaussian. mocat provides
a customisable ssm.LinearGaussian class and ssm.TimeHomogenousLinearGaussian
which reduces computational cost by assuming all of the matrices in the transition and likelihood
are time homogeneous, i.e.

pt(xt | xt−1) = p(xt | xt−1), pt(yt | xt) = p(yt | xt).

146 mocat

lg_ssm = ssm.TimeHomogenousLinearGaussian(
initial_mean=jnp.zeros(2),
initial_covariance=jnp.eye(2),
transition_matrix=jnp.eye(2),
transition_covariance=0.2 * jnp.eye(2),
likelihood_matrix=jnp.array([[0.5, 0.5]]),
likelihood_covariance=0.3*jnp.eye(1))

Specifically for ssm.LinearGaussian models, we can run exact marginal filtering - Algo-
rithm 10

t = jnp.arange(10)
y = random.normal(random.PRNGKey(0), shape=(10, 1))

filter_means, filter_covs =
ssm.run_kalman_filter_for_marginals(lg_ssm, y, t)↪→

and exact marginal smoothing Algorithm 11

smoother_means, smoother_covs =
ssm.run_kalman_smoother_for_marginals(lg_ssm, y, t,
filter_output=(filter_means, filter_covs))

↪→

↪→

Particle Methods

For more general state-space models such as the NonLinear1DBenchmark model defined
above, we cannot do exact inference. Instead we can adopt the Monte Carlo approaches
described in Section 2.6 and Chapter 3.

Underlying all of these particle methods is the concept of a particle filter Algorithm 12. A
particle filter is defined by its a sequential proposal distribution q(xt | xt−1,yt) that is permitted
to incorporate the new observation yt . mocat.ssm provides a customisable ParticleFilter
class to be inherited as well as a built-in implementation of the most basic BootstrapFilter
described here

7.4 State-space Models 147

class BootstrapFilter(ParticleFilter):
name = 'Bootstrap Filter'

def proposal_potential(self,
ssm_scenario: StateSpaceModel,
x_previous: jnp.ndarray,
t_previous: float,
x_new: jnp.ndarray,
y_new: jnp.ndarray,
t_new: float) -> Union[float, jnp.ndarray]:

return ssm_scenario.transition_potential(x_previous,
t_previous, x_new, t_new)↪→

def proposal_sample(self,
ssm_scenario: StateSpaceModel,
x_previous: jnp.ndarray,
t_previous: float,
y_new: jnp.ndarray,
t_new: float,
random_key: jnp.ndarray) -> jnp.ndarray:

return ssm_scenario.transition_sample(x_previous, t_previous,
t_new, random_key)↪→

def intermediate_log_weight(self,
ssm_scenario: StateSpaceModel,
x_previous: jnp.ndarray,
t_previous: float,
x_new: jnp.ndarray,
y_new: jnp.ndarray,
t_new: float) -> Union[float,

jnp.ndarray]:↪→

return -ssm_scenario.likelihood_potential(x_new, y_new, t_new)

where intermediate_log_weight refers to the function h(xt−1,xt ,yt) that updates the loga-
rithm of the (unnormalised) importance weights

logwt = logwt−1 +h(xt−1,xt ,yt)+ k ⇐⇒ wt ∝ wt−1eh(xt−1,xt ,yt).

148 mocat

mocat.ssm has built-in more efficient, informed particle filtering for the specific NonLin-
earGaussian class of state-space models Section 5.1, Godsill et al. (2004) where transitions
and likelihoods are time-homogenous and take the form

p(xt | xt−1) = N(xt | f (xt−1),R),

p(yt | xt) = N(yt | Hxt ,Q).

In this case the (locally) optimal proposal Equation (2.39) is tractable and an implementation
is provided in ssm.OptimalNonLinearGaussianParticleFilter. Additionally these
models are amenable to ensemble Kalman filtering Algorithm 19 and an implementation is
stored in ssm.EnsembleKalmanFilter.

Now for a given ParticleFilter we can tackle inference.

Online

For online particle filtering (for marginals p(xT | y0:T) we can initiate a particle approximation
at the first observation

y, t = simulated_values.y, simulated_values.t

pf = ssm.BootstrapFilter()

random_key, key0 = random.split(random.PRNGKey(0))
filter_marginal = ssm.initiate_particles(benchmark_ssm, pf, n=1000,

random_key=key0, y=y[0], t=t[0])↪→

filter_marginal.keys()
dict_keys(['value', 'log_weight', 't', 'y', 'ess'])

and then update for new observations

random_key, key1 = random.split(random_key)

filter_marginal = ssm.propagate_particle_filter(benchmark_ssm, pf,
filter_marginal, y_new=y[1], t_new=t[1], random_key=key1)↪→

7.4 State-space Models 149

which by default will append the proposal to the trajectory - the most recent values can be
extracted with filter_marginal[-1].

Additionally, we can generate an online particle approximation to the full joint smoothing
distribution p(x0:T | y0:T) using the techniques from Chapter 3

smoothing_joint = ssm.initiate_particles(benchmark_ssm, pf, n=1000,
random_key=random.PRNGKey(0), y=y[0], t=t[0])↪→

smoothing_joint = ssm.propagate_particle_smoother(benchmark_ssm, pf,
filter_marginal, y_new=y[1], t_new=t[1], random_key=key1, lag=5)↪→

which will execute the online smoother with backward simulation Algorithm 17, setting
backward_sim=False in propagate_particle_smoother will run the online smoother
with particle filter block proposal Algorithm 16.

Offline

In the case we have all of the observations at once, we can execute forward filtering-backward
simulation Algorithm 13 to generate a particle approximation to the smoothing distribution
p(x0:T | y0:T). We can do this either via an explicit two-step procedure

random_key, key0, key1 = random.split(random.PRNGKey(0), 3)

filtering_marginals =
ssm.run_particle_filter_for_marginals(benchmark_ssm, pf, y, t,
n=1000, random_key=key0)

↪→

↪→

smoothing_joint = ssm.backward_simulation(benchmark_ssm,
filtering_marginals, key1)↪→

or all at once

150 mocat

smoothing_joint =
ssm.forward_filtering_backward_simulation(benchmark_ssm, pf, y, t,
n_samps=100, random_key=random.PRNGKey(0))

↪→

↪→

smoothing_joint.keys()
dict_keys(['value', 't', 'y', 'ess', 'num_transition_evals',

'time', 'pf_time', 'bsi_time'])↪→

plt.plot(smoothing_joint.t, smoothing_joint.value[:, :, 0],
c='orange')↪→

plt.plot(simulated_values.t, simulated_values.x, c='red')

Fig. 7.16 FFBSi applied to NonLinear1DBenchmark

Chapter 8

Conclusions

This thesis has presented new Monte Carlo methods for a range of Bayesian inference problems.
In particular, we have focused on a sequential approach where particle approximations are
iteratively updated. In online settings an iterative procedure is desirable in order to update
approximations as new observations arrive. In offline settings iterative procedures are applied,
often with adaptation, to ensure the difference between successive target distributions is small
and therefore increasing numerical stability

We conclude by summarising these contributions and providing insights into future direc-
tions.

8.1 Contributions

In Chapter 3, we introduced a novel online particle smoothing framework that provides a
solution to the well-known problem of path degeneracy in the field of particle filtering. That
is, the online smoothers approximate the full joint smoothing distribution p(x0:T | y0:T) in an
online fashion with particles that do not degenerate as the length of the state-space model
increases. The framework combines a fixed-lag approximation Kitagawa and Sato (2001), ideas
from block sampling Doucet et al. (2006) and a newly introduced particle stitching algorithm
(15) that represents a forward implementation of the technique underlying backward simulation
Godsill et al. (2004).

Chapter 4 derives a new state-space model for the problem of map-matching specifically
in dense, urban road networks. Map-matching is a particularly compelling application of the
online smoothing algorithms from Chapter 3, as the continuity of trajectories makes particle
approximations to the smoothing distribution p(x0:T | y0:T) significantly more useful than
filtering p(xT | y0:T) or smoothing p(xt | y0:T) marginals that do not enforce continuity. We
describe how to tune the parameters of the state-space model using data-driven expectation-

152 Conclusions

maximisation and demonstrate the benefits of uncertainty quantification for map-matching
over point estimate based approaches. In order to make map-matching with uncertainty
quantification in both online and offline settings more accessible we developed the open source
python package bmm and described its functionality.

In Chapter 5, we shift focus to the difficult task of inference in static Bayesian inference
problems where we cannot evaluate the likelihood function, only generate synthetic data. We
generalise ideas from numerically efficient ensemble Kalman methods and describe a fully
adaptive implementation for both sampling and optimisation. We demonstrate a significant
speedup in comparison to state-of-the-art approximate Bayesian computation techniques.

Chapter 6 considers the more standard setup of static Bayesian inference where the likeli-
hood is tractable and furthermore we have access to the gradient of the target potential. We
introduce a fully adaptive sequential Monte Carlo sampler that utilises a Hessian approximation
to efficiently pre-condition proposals and better grasp the local scaling of the tempered posterior.
The Hessian approximation adapts the L-BFGS algorithm which represents the state-of-the-art
in non-stochastic optimisation. The L-BFGS Hessian approximation utilises previous states
of a particle’s trajectory and is extremely cheap in the dimension of the inference problem -
we demonstrate the benefits of the Hessian pre-conditioning in difficult and high-dimensional
Bayesian inference problems.

Finally we developed mocat, a general purpose python package using JAX for extremely
fast and accessible implementations of all of the discussed and introduced techniques, with
complete flexibility to adapt existing algorithms and create new ones.

8.2 Future Directions

It would be desirable to obtain theoretical guarantees bounding the error induced by thhe online
smoothing algorithms in Chapter 3. This is left as future work as we anticipate this analysis
to be somewhat intricate. It would involve combining the work on central limit theorems for
particle smoothing such as Del Moral et al. (2010); Douc et al. (2011), the bias introduced by
a fixed-lag approximation Olsson et al. (2008) as well as quantifying the impact of using the
tractable weights with overlapping coordinate from Section 3.2.2 as opposed to the optimal but
intractable weights in Section 3.2.1.

Additionally, the development of an adaptive procedure to determine a suitable lag param-
eter, similar to that in Alenlöv and Olsson (2019) (for marginal online particle smoothing),
would result in a fully adaptive algorithm where we are only left to choose the number of
particles N.

8.2 Future Directions 153

The nature of the introduced online smoothing algorithms is extremely general - they
provide online approximations to the full posterior distribution of generic state-space models.
For this reason, we expect future applications in a wide range of fields such as alternative
tracking settings Gustafsson et al. (2002) or financial inference Creal (2012).

An outstanding question regarding the ensemble Kalman inversion introduced in Chapter 5,
is understanding its asymptotic behaviour numerically as the sample size N increases. The
first step would be to analyse this behaviour in further examples and under alternative metrics.
However, the lack of asymptotic results quantifying the bias for generic target distributions (i.e.
non-Gaussian) is apparent for all ensemble Kalman methods.

Similarly to the online smoothers, a key contribution of our novel ensemble Kalman
inversion algorithm is that it is extremely general. The only requirement is the ability to
generate samples from the prior and synthetic data from the likelihood for a given value of the
parameter, as such a wide range of applications are available. The benefits of the ensemble
Kalman approach are expected to be greatest in cases where the state dimension is high and
the posterior distribution is somewhat smooth such as Bayesian inverse problems Dashti and
Stuart (2017) and the training of neural networks Kovachki and Stuart (2019) where under the
introduced generalisation we can now consider more general models with non-Gaussian noise.

Both the ensemble Kalman inversion in Chapter 5 and the quasi-Newton SMC sampler in
Chapter 6 have potential to be embedded within a sequential Monte Carlo sampler (or ABC
equivalent) with intermediate weights of the form

wt = wt−1
πt(xt)πt−1|t(xt−1 | xt)

πt−1(xt−1)qt|t−1(xt | xt−1)
,

where qt|t−1 represents the EKI or quasi-Newton kernel and πt−1|t is a backward balancing
kernel to be defined. In the case of EKI the backward kernel is difficult to define as ideas
of likelihood tempering and adaptive ABC thresholding become somewhat convoluted. The
quasi-Newton setup is somewhat simpler and we can use Taylor expansions to derive logical
forward and backward kernels (e.g. that would be exact for Gaussian targets) in the spirit of
Titsias and Papaspiliopoulos (2016). However, the accept-reject step adds an additional layer of
numerical stability (as outlandish proposals are simply rejected) which is particularly prevalent
when an additional approximation is used, in this case the L-BFGS Hessian approximation.

The last comment is on parallel programming. The fastest modern computer architures
such as GPUs and TPUs - on which mocat (Chapter 7) and JAX are naturally amenable to -
obtain their speed by dividing tasks amongst many processors, i.e. in parallel. It is a great
strength of sequential Monte Carlo methods (and indeed ensemble Kalman methods) over
Markov chain Monte Carlo techniques that they are inherently parallelisable. Investigating the

154 Conclusions

extent of the computational gains over Markov chain Monte Carlo techniques with the use of
parallel architectures would be extremely valuable. Leveraging this notion further, it would
be interesting to experiment with modifications of the sequential Monte Carlo and ensemble
Kalman techniques that are embarrassingly parallel (i.e. without any communication amongst
particles) or close to. This would prevent the use of traditional resampling and in the case
of likelihood tempering would amount to investigating stochastic numerical solutions to the
Fokker-Planck equation that describes the probabilistic evolution of a particle from prior to
posterior.

References

Agarwal, N., Bullins, B., and Hazan, E. (2017). Second-Order Stochastic Optimization for
Machine Learning in Linear Time. J. Mach. Learn. Res., 18(1):4148–4187.

Alenlöv, J. and Olsson, J. (2019). Particle-Based Adaptive-Lag Online Marginal Smoothing in
General State-Space Models. IEEE Transactions on Signal Processing, 67(21):5571–5582.

Anderson, J. L. (01 Dec. 2001). An Ensemble Adjustment Kalman Filter for Data Assimilation.
Monthly Weather Review, 129(12):2884 – 2903.

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov Chain Monte Carlo
Methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
72(3):269–342.

Andrieu, C. and Thoms, J. (2008). A Tutorial on Adaptive MCMC. Statistics and Computing,
18(4):343–373.

Barker, A. A. (1965). Monte Carlo Calculations of the Radial Distribution Functions for a
Dense Proton-Electron Plasma. Australian Journal of Physics.

Beaumont, M. A., Zhang, W., and Balding, D. J. (2002). Approximate Bayesian Computation
in Population Genetics. Genetics, 162(4):2025–2035.

Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J.-M., and Stuart, A. (2013). Optimal Tuning
of the Hybrid Monte Carlo Algorithm. Bernoulli, 19(5A):1501–1534.

Betancourt, M. (2012). Cruising the Simplex: Hamiltonian Monte Carlo and the Dirichlet
Distribution.

Biermann, C. (2019). Football Hackers: The Science and Art of a Data Revolution. Blink
Publishing.

156 References

Bishop, C. H., Etherton, B. J., and Majumdar, S. J. (01 Mar. 2001). Adaptive Sampling with the
Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Monthly Weather Review,
129(3):420 – 436.

Boeing, G. (2017). OSMnx: New methods for acquiring, constructing, analyzing, and visualiz-
ing complex street networks. Computers, Environment and Urban Systems, 65:126–139.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: Composable
transformations of Python+NumPy programs.

Buchholz, A., Chopin, N., and Jacob, P. E. (2021). Adaptive Tuning of Hamiltonian Monte
Carlo Within Sequential Monte Carlo. Bayesian Analysis, pages 1 – 27.

Burgers, G., van Leeuwen, P. J., and Evensen, G. (01 Jun. 1998). Analysis Scheme in the
Ensemble Kalman Filter. Monthly Weather Review, 126(6):1719 – 1724.

Chatterjee, S. and Diaconis, P. (2018). The Sample Size Required in Importance Sampling.
Ann. Appl. Probab., 28(2):1099–1135.

Chopin, N. (2002). A Sequential Particle Filter Method for Static Models. Biometrika,
89(3):539–552.

Chopin, N., Lelièvre, T., and Stoltz, G. (2012). Free Energy Methods for Bayesian Inference:
Efficient Exploration of Univariate Gaussian Mixture Posteriors. Statistics and Computing,
22(4):897–916.

Chopin, N. and Papaspiliopoulos, O. (2020). Introduction to Sequential Monte Carlo. Springer
International Publishing.

Clapp, T. and Godsill, S. (1999). Fixed-lag Smoothing using Sequential Importance Sampling.

Creal, D. (2012). A Survey of Sequential Monte Carlo Methods for Economics and Finance.
Econometric Reviews, 31(3):245–296.

Dashti, M. and Stuart, A. M. (2017). The Bayesian Approach to Inverse Problems, pages
311–428. Springer International Publishing, Cham.

Davidson, P., Collin, J., and Takala, J. (2011). Application of Particle Filters to a Map-matching
Algorithm. Gyroscopy and Navigation, 2(4):285.

Del Moral, P. and Doucet, A. (2003). On a Class of Genealogical and Interacting Metropolis
Models, pages 415–446. Springer New York.

References 157

Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential Monte Carlo Samplers. Journal of
the Royal Statistical Society. Series B (Statistical Methodology), 68(3):411–436.

Del Moral, P., Doucet, A., and Jasra, A. (2012). An Adaptive Sequential Monte Carlo method
for Approximate Bayesian Computation. Statistics and Computing, 22(5):1009–1020.

Del Moral, P., Doucet, A., and Singh, S. S. (2010). A Backward Particle Interpretation of
Feynman-Kac Formulae. ESAIM: M2AN, 44(5):947–975.

Douc, R. and Cappe, O. (2005). Comparison of Resampling Schemes for Particle Filtering. In
ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing
and Analysis, 2005., pages 64–69.

Douc, R., Garivier, A., Moulines, E., and Olsson, J. (2011). Sequential Monte Carlo Smooth-
ing for General State Space Hidden Markov Models. The Annals of Applied Probability,
21(6):2109–2145.

Douc, R., Moulines, E., Priouret, P., and Soulier, P. (2018). Markov chains. Operation research
and financial engineering. Springer.

Doucet, A., Briers, M., and Sénécal, S. (2006). Efficient Block Sampling Strategies for
Sequential Monte Carlo Methods. Journal of Computational and Graphical Statistics,
15(3):693–711.

Doucet, A., Freitas, N., Murphy, K., and Russell, S. (2013). Sequential Monte Carlo Methods
in Practice.

Doucet, A., Godsill, S., and Andrieu, C. (2000). On Sequential Monte Carlo Sampling Methods
for Bayesian Filtering. Statistics and Computing, 10(3):197–208.

Drovandi, C. C. and Pettitt, A. N. (2011). Likelihood-free Bayesian Estimation of Multivariate
Quantile Distributions. Computational Statistics and Data Analysis, 55(9):2541–2556.

Elvira, V., Míguez, J., and Djurić, P. M. (2017). Adapting the Number of Particles in Sequential
Monte Carlo Methods Through an Online Scheme for Convergence Assessment. IEEE
Transactions on Signal Processing, 65(7):1781–1794.

Evensen, G. (1994). Sequential Data Assimilation with a Nonlinear Quasi-geostrophic Model
using Monte Carlo Methods to Forecast Error Statistics. Journal of Geophysical Research:
Oceans, 99(C5):10143–10162.

158 References

Fearnhead, P. and Prangle, D. (2012). Constructing Summary Statistics for Approximate
Bayesian Computation: Semi-automatic Approximate Bayesian Computation. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 74(3):419–474.

Fisher, R. A. (1954). Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh.

Fu, T., Luo, L., and Zhang, Z. (2016). Quasi-Newton Hamiltonian Monte Carlo. In Proceedings
of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI’16, page
212–221, Arlington, Virginia, USA. AUAI Press.

Gelman, A. and Meng, X.-L. (1998). Simulating Normalizing Constants: From Importance
Sampling to Bridge Sampling to Path Sampling. Statistical Science, 13(2):163 – 185.

Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y., Kennedy, L.,
Gabry, J., Bürkner, P.-C., and Modrák, M. (2020). Bayesian Workflow.

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-6(6):721–741.

Gilks, W. R. and Berzuini, C. (2001). Following a Moving Target — Monte Carlo Inference
for Dynamic Bayesian Models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 63(1):127–146.

Girolami, M. and Calderhead, B. (2011). Riemann Manifold Langevin and Hamiltonian Monte
Carlo Methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(2):123–214.

Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Applications of
mathematics : stochastic modelling and applied probability. Springer.

Godsill, S. J., Doucet, A., and West, M. (2004). Monte Carlo Smoothing for Nonlinear Time
Series. Journal of the American Statistical Association, 99(465):156–168.

Goh, C., Dauwels, J., Mitrovic, N., Asif, M. T., Oran, A., and Jaillet, P. (2012). Online
Map-matching based on Hidden Markov Model for Real-time Traffic Sensing Applications.
pages 776–781.

Gordon, N., Salmond, D., and Smith, A. (1993). Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEEE Proceedings F, Radar and Signal Processing, 140(2):107–
113.

References 159

Gramacy, R., Samworth, R., and King, R. (2010). Importance Tempering. Statistics and
Computing, 20(1):1–7.

Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., and
Nordlund, P. . (2002). Particle Filters for Positioning, Navigation, and Tracking. IEEE
Transactions on Signal Processing, 50(2):425–437.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring Network Structure, Dynamics,
and Function using NetworkX. In Varoquaux, G., Vaught, T., and Millman, J., editors,
Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena, CA USA.

Hansen, L. P. (1982). Large Sample Properties of Generalized Method of Moments Estimators.
Econometrica, 50(4):1029–1054.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk,
M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020).
Array programming with NumPy. Nature, 585(7825):357–362.

Hastings, W. K. (1970). Monte Carlo Sampling Methods using Markov Chains and their
Applications. Biometrika, 57(1):97–109.

Horowitz, A. M. (1991). A Generalized Guided Monte Carlo Algorithm. Phys. Lett. B,
268:247–252.

Houtekamer, P. L. and Mitchell, H. L. (01 Jan. 2001). A Sequential Ensemble Kalman Filter
for Atmospheric Data Assimilation. Monthly Weather Review, 129(1):123 – 137.

Houtekamer, P. L. and Mitchell, H. L. (01 Mar. 1998). Data Assimilation Using an Ensemble
Kalman Filter Technique. Monthly Weather Review, 126(3):796 – 811.

Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., Spacek, L., and
Hansen, B. (01 Mar. 2005). Atmospheric Data Assimilation with an Ensemble Kalman Filter:
Results with Real Observations. Monthly Weather Review, 133(3):604 – 620.

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science &
Engineering, 9(3):90–95.

Hürzeler, M. and Künsch, H. R. (1998). Monte Carlo Approximations for General State-Space
Models. Journal of Computational and Graphical Statistics, 7(2):175–193.

160 References

Iglesias, M., Park, M., and Tretyakov, M. V. (2018). Bayesian Inversion in Resin Transfer
Molding. Inverse Problems, 34(10):105002.

Iglesias, M. and Yang, Y. (2020). Adaptive Regularisation for Ensemble Kalman Inversion.

Iglesias, M. A. (2015). Iterative Regularization for Ensemble Data Assimilation in Reservoir
Models. Computational Geosciences, 19(1):177–212.

Iglesias, M. A., Law, K. J. H., and Stuart, A. M. (2013). Ensemble Kalman Methods for Inverse
Problems. Inverse Problems, 29(4):045001.

Izenman, A. J. and Sommer, C. J. (1988). Philatelic Mixtures and Multimodal Densities.
Journal of the American Statistical Association, 83(404):941–953.

Jasra, A., Singh, S. S., Martin, J. S., and McCoy, E. (2012). Filtering via Approximate Bayesian
Computation. Statistics and Computing, 22(6):1223–1237.

Jasra, A., Stephens, D. A., Doucet, A., and Tsagaris, T. (2011). Inference for Lévy-Driven
Stochastic Volatility Models via Adaptive Sequential Monte Carlo. Scandinavian Journal of
Statistics, 38(1):1–22.

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal
of Basic Engineering, 82(1):35–45.

Kempinska, K., Davies, T., and Shawe-Taylor, J. (2016). Probabilistic Map-matching using
Particle Filters. arXiv e-prints, page arXiv:1611.09706.

Kitagawa, G. and Sato, S. (2001). Monte Carlo Smoothing and Self-Organising State-Space
Model, pages 177–195. Springer New York, New York, NY.

Klaas, M., Freitas, N. d., and Doucet, A. (2005). Toward Practical N2 Monte Carlo: The
Marginal Particle Filter. In Proceedings of the Twenty-First Conference on Uncertainty in
Artificial Intelligence, UAI’05, page 308–315, Arlington, Virginia, USA. AUAI Press.

Kong, A., Liu, J. S., and Wong, W. H. (1994). Sequential Imputations and Bayesian Missing
Data Problems. Journal of the American Statistical Association, 89(425):278–288.

Kovachki, N. B. and Stuart, A. M. (2019). Ensemble Kalman Inversion: A Derivative-free
Technique for Machine Learning Tasks. Inverse Problems, 35(9):095005.

Lam, S. K., Pitrou, A., and Seibert, S. (2015). Numba: A llvm-based python jit compiler. In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pages
1–6.

References 161

Landau, D. and Binder, K. (2005). A Guide to Monte Carlo Simulations in Statistical Physics.
Cambridge University Press, USA.

Le Gland, F., Monbet, V., and Tran, V.-D. (2009). Large Sample Asymptotics for the Ensemble
Kalman Filter. Research Report RR-7014, INRIA.

Lei, J. and Bickel, P. (2011). A Moment Matching Ensemble Filter for Nonlinear Non-Gaussian
Data Assimilation. Monthly Weather Review, 139:3964–3973.

Leimkuhler, B. and Matthews, C. (2015). Molecular Dynamics: With Deterministic and
Stochastic Numerical Methods. Interdisciplinary Applied Mathematics. Springer.

Leimkuhler, B., Matthews, C., and Weare, J. (2018). Ensemble Preconditioning for Markov
Chain Monte Carlo Simulation. Statistics and Computing, 28(2):277–290.

Li, T., Bolic, M., and Djuric, P. M. (2015). Resampling Methods for Particle Filtering:
Classification, Implementation, and Strategies. IEEE Signal Processing Magazine, 32(3):70–
86.

Lindsten, F., Bunch, P., Singh, S. S., and Schön, T. B. (2015). Particle Ancestor Sampling for
Near-degenerate or Intractable State Transition Models.

Liu, J. S., Chen, R., and Wong, W. H. (1998). Rejection Control and Sequential Importance
Sampling. Journal of the American Statistical Association, 93(443):1022–1031.

Liu, Q., Lee, J., and Jordan, M. (2016). A Kernelized Stein Discrepancy for Goodness-of-fit
Tests. In Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 276–284, New York, New York, USA. PMLR.

Liu, Q. and Wang, D. (2016). Stein Variational Gradient Descent: A General Purpose Bayesian
Inference Algorithm. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and Garnett, R.,
editors, Advances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc.

Lorenz, E. (1995). Predictability: A Problem Partly Solved. In Seminar on Predictability, 4-8
September 1995, volume 1, pages 1–18, Shinfield Park, Reading. ECMWF, ECMWF.

Ma, Y.-A., Chen, T., and Fox, E. (2015). A Complete Recipe for Stochastic Gradient MCMC.
In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 28. Curran Associates, Inc.

162 References

Marchi, M., Albert, J., and Baumer, B. S. (2018). Analyzing Baseball Data with R. Chapman
and Hall/CRC.

Marjoram, P., Molitor, J., Plagnol, V., and Tavaré, S. (2003). Markov Chain Monte Carlo
without Likelihoods. Proceedings of the National Academy of Sciences, 100(26):15324–
15328.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of State Calculations by Fast Computing Machines. The Journal of Chemical
Physics, 21(6):1087–1092.

Meyn, S. and Tweedie, R. (1993). Markov Chains and Stochastic Stability. Springer-Verlag.

Minecraft Speedrunning Team (2020). Response to Critique of Dream Investigation Results.

Moreira-Matias, L., Gama, J., Ferreira, M., Moreira, J., and Damas, L. (2013). Predicting Taxi-
Passenger Demand Using Streaming Data. IEEE Transactions on Intelligent Transportation
Systems, 14:1393–1402.

Neal, R. M. (2001). Annealed Importance Sampling. Statistics and Computing, 11(2):125–139.

Neal, R. M. (2010). MCMC Using Hamiltonian Dynamics. Handbook of Markov Chain Monte
Carlo, 54:113–162.

Newson, P. and Krumm, J. (2009). Hidden Markov Map Matching through Noise and Sparse-
ness. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, GIS ’09, page 336–343, New York, NY, USA. Association
for Computing Machinery.

Nguyen, T., Septier, F., Peters, G., and Delignon, Y. (2016). Efficient Sequential Monte-Carlo
Samplers for Bayesian Inference. IEEE Transactions on Signal Processing, 64(5):1305–
1319.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, New York.

Nott, D. J., Marshall, L., and Ngoc, T. M. (2012). The Ensemble Kalman Filter is an ABC
Algorithm. Statistics and Computing, 22(6):1273–1276.

Olsson, J., Cappé, O., Douc, R., and Éric Moulines (2008). Sequential Monte Carlo Smoothing
with Application to Parameter Estimation in Nonlinear State Space Models. Bernoulli,
14(1):155 – 179.

References 163

Olsson, J. and Westerborn, J. (2017). Efficient Particle-based Online Smoothing in General
Hidden Markov models: The PaRIS Algorithm. Bernoulli, 23(3):1951–1996.

OpenStreetMap contributors (2017). Planet Dump Retrieved from https://planet.osm.org.

Peskun, P. H. (1973). Optimum Monte-Carlo Sampling using Markov Chains. Biometrika,
60(3):607–612.

Peters, G. W., Chen, W. Y., and Gerlach, R. H. (2016). Estimating Quantile Families of Loss
Distributions for Non-Life Insurance Modelling via L-Moments. Risks, 4(2).

Pitt, M. K. and Shephard, N. (1999). Filtering via Simulation: Auxiliary Particle Filters.
Journal of the American Statistical Association, 94(446):590–599.

Pritchard, J., Seielstad, M., Perez-Lezaun, A., and Feldman, M. (1999). Population Growth of
Human Y Chromosomes: A Study of Y Chromosome Microsatellites. Molecular biology
and evolution, 16(12):1791—1798.

PyPI (2021). Python Package Index - PyPI.

Raymond, R., Morimura, T., Osogami, T., and Hirosue, N. (2012). Map Matching with Hidden
Markov Model on Sampled Road Network. pages 2242–2245.

Rayner, G. D. and MacGillivray, H. L. (2002). Numerical Maximum Likelihood Estimation for
the g-and-k and Generalized g-and-h Distributions. Statistics and Computing, 12(1):57–75.

Reich, S. and Cotter, C. (2015). Probabilistic Forecasting and Bayesian Data Assimilation.
Cambridge University Press.

Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-Hastings
algorithms. Statistical Science, 16(4):351 – 367.

Rosenthal, J. S. (2009). Optimal Proposal Distributions and Adaptive MCMC. Handbook of
Markov Chain Monte Carlo.

Roth, M., Gustafsson, F., and Orguner, U. (2012). On-road Trajectory Generation from GPS
data: A Particle Filtering/Smoothing Application. In 2012 15th International Conference on
Information Fusion, pages 779–786.

Roth, M., Hendeby, G., Fritsche, C., and Gustafsson, F. (2017). The Ensemble Kalman Filter:
A Signal Processing Perspective. EURASIP Journal on Advances in Signal Processing,
2017(1):56.

164 References

Sabne, A. (2020). XLA : Compiling Machine Learning for Peak Performance.

Schraudolph, N. N., Yu, J., and Günter, S. (2007). A Stochastic Quasi-Newton Method for
Online Convex Optimization. In Meila, M. and Shen, X., editors, Proceedings of the Eleventh
International Conference on Artificial Intelligence and Statistics, volume 2 of Proceedings
of Machine Learning Research, pages 436–443, San Juan, Puerto Rico. PMLR.

Sisson, S. A., Fan, Y., and Tanaka, M. M. (2007). Sequential Monte Carlo without Likelihoods.
Proceedings of the National Academy of Sciences, 104(6):1760–1765.

Taghavi, E., Lindsten, F., Svensson, L., and Schön, T. B. (2013). Adaptive Stopping for Fast
Particle Smoothing. In 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 6293–6297.

Tavaré, S., Balding, D. J., Griffiths, R. C., and Donnelly, P. (1997). Inferring Coalescence
Times From DNA Sequence Data. Genetics, 145(2):505–518.

Tierney, L. (1998). A note on Metropolis-Hastings Kernels for General State Spaces. The
Annals of Applied Probability, 8(1):1 – 9.

Titsias, M. and Papaspiliopoulos, O. (2016). Auxiliary Gradient-based Sampling Algorithms.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80.

van Dyk, D. A. (2014). The Role of Statistics in the Discovery of a Higgs Boson. Annual
Review of Statistics and Its Application, 1(1):41–59.

Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA.

Vihola, M. and Franks, J. (2020). On the Use of Approximate Bayesian Computation Markov
Chain Monte Carlo with Inflated Tolerance and Post-correction. Biometrika, 107(2):381–395.

Wang, Y., Deng, W., and Lin, G. (2021). An Adaptive Hessian Approximated Stochastic
Gradient MCMC Method. Journal of Computational Physics, 432:110150.

Wilkinson, D. J. (2018). Stochastic Modelling for Systems Biology. CRC Press.

Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systems.
Nature, 466(7310):1102–1104.

Young, G. A. and Smith, R. L. (2005). Essentials of Statistical Inference. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge University Press.

References 165

Zhang, Y. and Sutton, C. (2011). Quasi-Newton Methods for Markov Chain Monte Carlo. In
Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems, volume 24. Curran Associates, Inc.

	Table of contents
	1 Introduction
	2 Background
	2.1 Importance Sampling
	2.1.1 Self-Normalised Importance Sampling

	2.2 Rejection Control
	2.3 Sequential Monte Carlo
	2.3.1 Reweighting
	2.3.2 Resampling

	2.4 Markov Chain Monte Carlo
	2.4.1 Gibbs Sampling
	2.4.2 Accept-Reject
	2.4.3 within Sequential Monte Carlo

	2.5 Approximate Bayesian Computation
	2.5.1 with Importance Sampling
	2.5.2 with Markov Chain Monte Carlo
	2.5.3 with Sequential Monte Carlo
	2.5.4 Distance Functions

	2.6 State-Space Models
	2.6.1 Linear Gaussian State-Space Models
	2.6.2 Particle Filtering
	2.6.3 Particle Smoothing

	3 Online Particle Smoothing
	3.1 Particle Smoothing
	3.1.1 Path Degeneracy
	3.1.2 Marginal Fixed-Lag
	3.1.3 Offline Smoothing
	3.1.4 Online Smoothing

	3.2 Fixed-lag Particle Stitching
	3.2.1 Fixed-lag Forward Simulation - Intractable
	3.2.2 Fixed-lag Forward Simulation - Tractable
	3.2.3 Rejection Sampling

	3.3 Sampling from p(xT-L-1:T y0:T)
	3.3.1 Particle Filter
	3.3.2 Partial Backward Simulation

	3.4 Numerical Experiments
	3.5 Discussion

	4 Map-Matching
	4.1 Model
	4.1.1 Model Variables
	4.1.2 Model Distributions
	4.1.3 Optimal Proposal

	4.2 Offline Smoothing
	4.2.1 Backward Simulation
	4.2.2 Synthetic Data

	4.3 Parameter Inference
	4.3.1 Expectation Maximisation
	4.3.2 Offline Parameter Inference for Map-matching

	4.4 Online Smoothing
	4.4.1 Fixed-lag Particle Stitching
	4.4.2 Real Data

	4.5 Discussion
	4.6 bmm
	4.6.1 Downloading a graph
	4.6.2 Offline Map-matching
	4.6.3 Online Map-matching
	4.6.4 Parameter Tuning

	5 Ensemble Kalman Inversion for Generic Likelihoods
	5.1 Ensemble Kalman Filter
	5.1.1 Linear Gaussian State-space Models
	5.1.2 Non-Linear Gaussian Likelihoods

	5.2 Ensemble Kalman Inversion
	5.3 Ensemble Kalman Inversion for Generic Likelihoods
	5.3.1 Generic Likelihoods
	5.3.2 Stepsize Selection
	5.3.3 Stopping Criteria

	5.4 Numerical Experiments
	5.4.1 g-and-k Distribution
	5.4.2 Stochastic Lorenz 96

	5.5 Discussion

	6 Quasi-Newton Sequential Monte Carlo
	6.1 Likelihood Tempering
	6.1.1 Sequential Importance Weights
	6.1.2 Adaptive Tempering

	6.2 Langevin Kernel
	6.3 Quasi-Newton Langevin Kernel
	6.3.1 BFGS

	6.4 Numerical Experiments
	6.4.1 High Dimensional Gaussian
	6.4.2 Gaussian Mixture Model

	6.5 Discussion

	7 mocat
	7.1 JAX
	7.2 Monte Carlo Sampling
	7.3 ABC
	7.4 State-space Models

	8 Conclusions
	8.1 Contributions
	8.2 Future Directions

	References

