
Alternative splicing and single-cell

RNA-sequencing: a feasibility

assessment

Jennifer Westoby

January 2020

Darwin College

This dissertation is submitted for the degree of Doctor of
Philosophy.

1



Preface

This dissertation is the result of my own work and includes nothing which is the out-

come of work done in collaboration except as declared in the Preface and specified in

the text. It is not substantially the same as any that I have submitted, or, is being

concurrently submitted for a degree or diploma or other qualification at the Univer-

sity of Cambridge or any other University or similar institution except as declared in

the Preface and specified in the text. I further state that no substantial part of my

dissertation has already been submitted, or, is being concurrently submitted for any

such degree, diploma or other qualification at the University of Cambridge or any

other University or similar institution except as declared in the Preface and specified

in the text. It does not exceed the prescribed word limit of 60,000 words.

2



Summary

We know little about how isoform choice is regulated in individual cells for most

spliced genes. In theory, single-cell RNA-sequencing (scRNA-seq) could enable us

to investigate isoform choice at cellular resolution. Therefore, scRNA-seq could give

insight into the fundamental molecular biology process of how alternative splicing

is regulated within cells. However, scRNA-seq is a relatively new technology, and

at the start of my PhD it was not clear whether existing bioinformatics approaches

would enable accurate splicing analyses. In my PhD I consider what the limitations

are when attempting to study alternative splicing using scRNA-seq and what can be

done to overcome them.

Alternative splicing is commonly analysed using bulk RNA sequencing (bulk

RNA-seq) data with isoform quantification software. It was not clear whether iso-

form quantification software designed for bulk RNA-seq would perform well when

run on scRNA-seq data. To address this, I performed a simulation-based benchmark

of isoform quantification software developed for bulk RNA-seq when run on scRNA-

seq. I made two important findings. Firstly, I found that isoform quantification

software performs poorly when run on Drop-seq data, but performs better when run

on scRNA-seq data generated using full-length transcript protocols (eg. SMART-seq

and SMART-seq2). Secondly, I found that for the most part, isoform quantifica-

tion software performs almost as well when run on full-length scRNA-seq as it does

when run on bulk RNA-seq. Based on these findings, I concluded that software

tools to accurately quantify the reads from full-length scRNA-seq experiments exist,

theoretically enabling alternative splicing to be analysed using scRNA-seq.

Encouraged by this result, I embarked on a series of experiments designed to
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answer questions such as ‘How many isoforms does a gene typically produce per

cell?’. This is a key basic biology question that could in theory be answered using

scRNA-seq. Unfortunately, I found that the results of these experiments were largely

impossible to interpret because I was unable to distinguish between biological signal

and technical noise. I realised that without a solid understanding of the technical

noise and confounding factors associated with scRNA-seq, distinguishing biological

signal from technical noise would be challenging and might not be possible. To

address this, I embarked on a second simulation-based study, this time investigat-

ing the impact of technical noise on our ability to study alternative splicing using

scRNA-seq. I simulated four situations: a situation where every gene expressed one

isoform per cell, a situation where all genes expressed two isoforms per cell, a sit-

uation where all genes expressed three isoforms per cell and a situation where all

genes expressed four isoforms per cell. Importantly, I explicitly simulated isoform

choice, dropouts and quantification errors. The results of the four simulated situ-

ations were not trivial to distinguish from each other, raising concerns about the

feasibility of resolving the more complex splicing patterns that probably exist in re-

ality using scRNA-seq data. I concluded that attempts to study alternative splicing

using scRNA-seq are currently substantially confounded by a high rate of dropouts

and a lack of understanding about the mechanism of isoform choice. Importantly,

improvements to isoform quantification software accuracy alone were insufficient to

correct for confounding effects caused by dropouts. I propose that to enable accu-

rate alternative splicing analyses using scRNA-seq, further research into accurately

modelling dropouts is required, or alternatively, scRNA-seq technologies should be

improved to increase their capture efficiency. Additionally, research into how isoform

choice is regulated at a cellular level is necessary to enable accurate analyses. Over-

all, I find that it is not currently possible to accurately perform alternative splicing

analyses using scRNA-seq. However, I am optimistic that with further research, it

may become possible in the future.
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1

Introduction

I never am really satisfied that I understand anything; because, understand

it well as I may, my comprehension can only be an infinitesimal fraction of

all I want to understand...

– Ada Lovelace, quoted by (Henderson, 1995).

1.1 Motivation

Alternative splicing is a fundamental process in molecular biology which enables

multiple proteins to be generated from single genes. Alternative splicing is implicated

in many biological processes, including the activation of pluripotency genes (Gabut

et al., 2011), cell fate decisions (Yamazaki et al., 2018) and transcriptional regulation

(Li et al., 2017). In addition, errors in alternative splicing have been implicated in

numerous human diseases, including cancer (David and Manley, 2010) and genetic

diseases such as Duchenne Muscular Dystrophy (Muntoni et al., 2003). Therefore,

furthering our understanding of alternative splicing would be highly beneficial to our

understanding of basic biology and human disease.

When bulk RNA-seq was first developed over a decade ago (Emrich et al., 2007;

Lister et al., 2008), it enabled researchers to quantitatively measure transcript abun-

dance on a genome wide scale. For the first time, researchers were able to study
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alternative splicing across the entire transcriptome in a quantitative manner. How-

ever, although bulk RNA-seq enabled researchers to study more genes in a single

experiment than had previously been possible using array based technologies, in one

sense the resolution of bulk RNA-seq experiments remains poor. Consider Figure

1.1.

Figure 1.1: An imaginary bulk RNA-seq experiment in the liver and brain.

In Figure 1.1, we imagine an experiment in which we perform bulk RNA-seq on a

mouse liver and brain. We find that for our gene of interest, ‘Gene1’, only one isoform

(‘Isoform1’) is detected in the liver, whereas two isoforms (‘Isoform1’ and ‘Isoform2’)

are detected in the brain. This is an informative result which indicates that there

is differential splicing of Gene1 in the brain and the liver. However, because bulk

RNA-seq is performed on a population of cells, based on this result there is very

little that we can infer about how this differential splicing is regulated at a cellular

level. For example, based on our bulk RNA-seq results, it would be challenging or

impossible to answer the following questions:

1. Does Gene1 expresses two isoforms in every cell in the brain, or do some brain
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cells exclusively express Isoform1 and others exclusively express Isoform2, or is

there is some intermediate situation between these two extremes?

2. If there is heterogeneity in isoform expression between cells, does the hetero-

geneity correlate with cell type?

3. Do all cells express Gene1 in the brain or the liver?

At first sight, these questions appear deceptively simple. However, they are

fundamental questions in molecular biology. If we are unable to answer them, we are

severely limited in our understanding both of how alternative splicing is regulated in

individual cells and of how splicing is regulated across complex tissues and organs.

In theory, single-cell RNA-seq (scRNA-seq) could enable us to answer all of the

questions posed above, and more, by allowing us to study alternative splicing at a

cellular resolution. That is, of course, if it is possible to study alternative splicing

using scRNA-seq.

1.2 What is alternative splicing?

Alternative splicing is the process by which more than one mRNA transcript can be

produced from a single gene. An example is illustrated in Figure 1.2.

Figure 1.2 illustrates a gene with a promoter, two exons and an intron. The

promoter is the region where transcription begins, the exons are coding regions of

the gene and the intron is non coding sequence. The gene in Figure 1.2 is transcribed

and spliced to produce two mRNA isoforms, one consisting of only the first exon,

and one consisting of the first and the second exon with the intron removed. The

process by which two distinct isoforms can be produced from a single gene is known

as alternative splicing.
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Figure 1.2: An example of an alternatively spliced gene.

1.3 Molecular mechanisms of alternative splicing

The previous section described the outcome of alternative splicing. In this section I

will briefly explain how alternative splicing takes place at a molecular level.

Alternative splicing is catalysed by the spliceosome. The spliceosome is a ribonu-

cleoprotein (RNP) complex made up of five spliceosomal RNP subunits and many

more protein cofactors. snRNAs, the RNA molecules that form part of the spliceo-

somal subunits, are thought to provide the catalytic activity required for alternative

splicing (Matera and Wang, 2014). This hypothesis is supported by experiments in

which splicing-like reactions have been catalysed in protein free systems (Valadkhan

et al., 2007, 2009).
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Figure 1.3: A schematic of the alternative splicing process. Adapted from Matera et

al. (Matera and Wang, 2014)
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Figure 1.3 illustrates the splicing process from start to end. The catalytic process

of alternative splicing can be considered to take place in two steps, however prior

to catalysis the spliceosome must assemble. This begins with two of the spliceoso-

mal subunits, U1 and U2, assembling onto the pre-mRNA co-transcriptionally. The

Carboxy-Terminal Domain (CTD) of RNA polymerase II possibly mediates this pro-

cess (Görnemann et al., 2011; Wiesner et al., 2002; Morris and Greenleaf, 2000).

Next, U1 and U2 interact to form the pre-spliceosome, also known as Complex A.

The U4-U6.U5 tri-snRNP complex is then recruited to Complex A, leading to the

formation of Complex B. Complex B releases two spliceosomal subunits, U1 and U4

(Raghunathan and Guthrie, 1998), and undergoes rearrangements to form catalyti-

cally active Complex B*. The spliceosome is now finally ready to begin catalysing

a splicing reaction. The first step of the splicing reaction (Step I or ‘branching’)

generates Complex C. Complex C contains free exon1 and the intron-exon2 lariat

intermediate. Complex C then undergoes rearrangements and carries out Step II,

leading to the formation of the post spliceosomal complex. The post spliceosomal

complex contains the lariat intron and the spliced together exons. The post spliceo-

somal complex then dissembles, releasing the spliced product.

A question that is likely to arise from this description is how the spliceosome

is able to recognise where it should assemble on the pre-mRNA and thus which

sequences it should splice out and which sequences should be retained in the final

mature mRNA. The DNA sequence at splice sites (the locations on the pre-mRNA

where the splicesome assembles) is not random. In the nucleus, introns typically

begin with a GT and end with an AG (Breathnach et al., 1978). As the number of

splice sites studied increased, it was recognised that there were a number of consensus

splice site sequences, although the consensus sequences are not universal and vari-

ations have been observed (Mount, 1982). With the advent of genomic sequencing,

software to predict splice sites based on genomic sequence was developed. Whilst

this has been extremely useful in terms of enabling scientists to study alternative

splicing on a genome wide scale, predicting splice sites based on sequence is not

trivial and is likely to be error prone (Mount, 2000). However, although predicting

splice sites based on sequence is challenging for humans and computers, the sequence
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at splice sites is recognised by components of the spliceosome and thus determines

where alternative splicing should take place. The 5’ splice site, located at the start of

the intron, is recognised by the U1 snRNP, both by base pairing with the U1 snRNA

and in a base pairing independent manner by the U1C subunit of U1 snRNP (Du

and Rosbash, 2002). The 3’ splice site, located at the end of the intron, is recognised

by the U2 snRNP and other associated splicing factors (Matera and Wang, 2014).

1.4 History of alternative splicing

Alternative splicing was independently discovered in 1977 by Berget et al. and

Chow et al. (Berget et al., 1977; Chow et al., 1977). The discovery was made

by studying hybridisation reactions between single stranded adenovirus DNA and

its complementary RNA. The formation of single stranded DNA loops, interspersed

between lengths of RNA-DNA hybridisation, were observed by electron microscopy.

These loops corresponded to introns. Based on these observations, a mechanism in

which lengths of RNA were ‘spliced’ out of mature mRNAs was proposed to explain

the observation that the length of DNA sequence corresponding to a gene is often

much longer than the length of the transcribed mRNA (Berget et al., 1977).

Two years later, a study by Lerner et al. into two antibodies produced by sys-

temic Lupus patients found that the antibodies pulled down six snRNPs (Lerner

and Steitz, 1979). Lerner et al. identified that the six snRNPs formed a complex

with one another, likely making this the first time that the spliceosome was exper-

imentally isolated. The observation that one of the six snRNP’s (U1’s) RNA has

a complementary nucleotide sequence to many splice sites led some to suggest that

the isolated snRNP complex might play a role in alternative splicing (Lerner et al.,

1980). In the years that followed, further studies confirmed that the other snRNPs

in the complex played a role in splicing (Black et al., 1985; Krainer and Maniatis,

1985; Berget and Robberson, 1986; Grabowski and Sharp, 1986).

17



Figure 1.4: A timeline of the major events in splicing research.

Development of in vitro splicing assays enabled further biochemical insights into

the process of alternative splicing (Shi, 2017). In vitro assays identified that ATP and

Mg2+ were necessary for alternative splicing (Hernandez and Keller, 1983; Hardy

et al., 1984) and confirmed the existence of an intron lariat intermediate (Grabowski

et al., 1984; Padgett et al., 1984; Ruskin et al., 1984). Non-denaturing gel elec-

trophoresis experiments identified that the spliceosome formed several distinct com-

plexes throughout the splicing reaction (Lamond et al., 1987; Konarska and Sharp,

1986, 1987; Pikielny et al., 1986; Cheng and Abelson, 1987; Bindereif and Green,
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1987).

Further biochemical experiments studying the interactions and spatial location of

spliceosome components enabled researchers to build a simple ‘map’ of the spliceo-

some and furthered the field’s mechanistic understanding of the chemical processes

behind alternative splicing (Shi, 2017; Newman and Norman, 1991; Madhani and

Guthrie, 1992; Wassarman and Steitz, 1992; Wyatt et al., 1992; Lesser and Guthrie,

1993; Sontheimer and Steitz, 1993; Anokhina et al., 2013; Newman et al., 1995).

Microscopy based approaches were also used to study the structure of the spliceo-

some. Due to the highly dynamic nature of the spliceosome, it is almost impossible

to crystallise spliceosome complexes (Shi, 2017). Consequently, X-ray crystallogra-

phy based approaches have had some success in studying some of the subcomplexes

and components of the spliceosome (Sickmier et al., 2006; Lin and Xu, 2012; Jenkins

et al., 2013; Yoshida et al., 2015; Leung et al., 2011; Zhou et al., 2014; Montemayor

et al., 2014; Weber et al., 2010; Pomeranz Krummel et al., 2009; Kondo et al., 2015;

Price et al., 1998), but a fully assembled spliceosome has never been successfully

crystalised. Electron microscopy approaches have had more success, and have been

used to successfully study the structure of many of the spliceosomal complexes (Be-

hzadnia et al., 2007; Furman and Glitz, 1995; Boehringer et al., 2004; Wolf et al.,

2009; Deckert et al., 2006; Bessonov et al., 2010; Golas et al., 2010; Jurica et al.,

2004; Ilagan et al., 2013; Fabrizio et al., 2009; Ohi et al., 2007; Chen et al., 2014).

However, these studies only had moderate resolutions, meaning the structural insight

that could be gained from them was limited. A real breakthrough came in 2015, when

cryo-EM studies of the spliceosome enabled structural study of the spliceosome at

atomic level resolutions (Yan et al., 2015; Hang et al., 2015). The cryo-EM studies

of 2015 and after have given researchers a new level of mechanistic insight into the

biochemical splicing reaction (Yan et al., 2015; Hang et al., 2015; Agafonov et al.,

2016; Yan et al., 2016; Wan et al., 2016b,a; Galej et al., 2016; Yan et al., 2017; Fica

et al., 2017; Rauhut et al., 2016; Bertram et al., 2017; Nguyen et al., 2016; Zhang

et al., 2018; Haselbach et al., 2018; Zhang et al., 2019).

In parallel to the biochemical study of the mechanistic process of alternative

splicing, since the advent of whole genome sequencing alternative splicing has also
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been studied at a genomic level. Initially, DNA sequence was annotated using gene

annotation software, which made predictions about gene structure including splice

sites and promoters (Mount, 2000; Reese et al., 2000). Later, reads from RNA-seq

experiments enabled researchers to verify gene and isoform structure predictions,

make new predictions, and to quantify the relative abundance of each splice isoform

(Weber, 2015). Whilst methods for quantifying isoform abundance or predicting

gene structure based on sequencing reads remain far from perfect (Hölzer and Marz,

2019; Everaert et al., 2017), it is fair to say that sequencing technologies have given

us a level of insight into splicing which was previously unimaginable.

1.5 Alternative splicing and disease

Alternative splicing defects have been linked to many human diseases, including

Duchenne Muscular Dystrophy (Muntoni et al., 2003), Early Onset Parkinson Disease

(Samaranch et al., 2010), Retinitis pigmentosa (Tanackovic et al., 2011; Cvačková

et al., 2014) and cancer (David and Manley, 2010). Furthering our understanding of

how splicing is regulated at a cellular level is likely to be relevant to the therapeutic

treatment of many diseases in which splicing errors play a role.

It is perhaps unsurprising that splicing has been implicated in such a wide range

of diseases given that a study by Lopez-Bigas et al. suggests that in humans, up to

60% of disease causing mutations affect splicing (López-Bigas et al., 2005). Related

studies suggested that one third of all mutations (Lim et al., 2011), and one quarter

of all coding mutations (Sterne-Weiler et al., 2011) impact splicing. Clearly these

numbers can differ quite substantially depending on the type of mutation investigated

and the methodology used, however they do all support the hypothesis that a high

proportion of mutations alter splicing. An additional hypothesis for why splicing

is implicated in so many human diseases is that mutations which alter splice sites

can dramatically change the protein produced from the parent gene. In contrast,

non-splice site mutations have a moderate likelihood of having a small or no impact

on the protein structure produced. Such mutations are unlikely to produce a disease

phenotype.
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1.6 What is scRNA-seq?

scRNA-seq is a relatively new sequencing technology in which RNA molecules are

captured from individual cells and sequenced. scRNA-seq has the potential to give

deep insight into how alternative splicing is regulated in individual cells across the

entire transcriptome. However, this is only possible if splicing analyses are not con-

founded by the high degree of technical noise in scRNA-seq data. I will begin my

discussion of the current state of scRNA-seq based approaches by considering the

history of scRNA-seq.

1.7 History of scRNA-seq

Figure 1.5 is a timeline of some of the major events in the scRNA-seq’s short history.

Our timeline begins with the first published scRNA-seq experiment in 2009, when

Tang et al. performed scRNA-seq on a handful of mouse blastomeres and oocytes

(Tang et al., 2009). In their study, Tang et al. noted that 8-19% of known genes with

two or more isoforms expressed at least two isoforms in individual cells, showing that

there has been an interest in studying alternative splicing in individual cells from

the first scRNA-seq experiments.

Our next major event comes a year later, when Guo et al. took an array based

approach to profile the expression of 48 genes in approximately 500 cells (Guo et al.,

2010). Although this was not an scRNA-seq experiment, it had an important impact

on the single cell community. Guo et al. demonstrated that they could use the

expression of their 48 profiled genes to identify each cell’s cell type. The idea that a

cell’s identity can be determined by the expression of a selection of its genes is a key

part of the philosophy of modern scRNA-seq clustering algorithms.

In 2011, Islam et al. developed STRT-seq, a multiplexed scRNA-seq protocol

(Islam et al., 2011). This was revolutionary because it enabled researchers to se-

quence hundreds or thousands of cells in a single experiment, whereas previously most

scRNA-seq experiments sequenced tens of cells, if not fewer (Tang et al., 2009, 2010).

A year later, an scRNA-seq protocol called SMART-seq was published (Ramsköld
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Figure 1.5: Timeline of selected events in the history of scRNA-seq.

et al., 2012). SMART-seq was the first ‘full-length’ scRNA-seq protocol, so called

because the protocol attempted to sample reads across the full length of transcripts

and thus reduce the 3’ bias observed in previous protocols. In practice, SMART-seq

is not entirely free from 3’ bias although it is reduced (Picelli, 2017). A newer pro-

tocol called SMART-seq2 has further reduced coverage bias, although again the bias

22



is not fully eliminated (Picelli et al., 2014). The development of ‘full-length’ proto-

cols is important for studying alternative splicing using scRNA-seq. Protocols which

only sequence one end of each transcript are unable to distinguish between isoforms

whose exon usage differs only at the other end of the transcript. Such protocols are

therefore of limited use for alternative splicing studies.

It is challenging to obtain intact isolated cells from some tissues, such as neural

progenitor cells and dental gyrate. Consequently, scRNA-seq can be difficult in these

tissues. This problem was overcome in 2013 by Grindberg et al., who developed an

scRNA-seq protocol in which nuclei rather than whole cells were sequenced (Grind-

berg et al., 2013). This enabled neurobiologists to apply scRNA-seq to their studies

in a widespread manner. It was also exciting news for those interested in studying

alternative splicing, as alternative splicing is known to be widespread in the human

brain and to correlate with brain development and neuronal differentiation (Su et al.,

2018).

2013 could be regarded as a turning point in scRNA-seq’s history. Following tech-

nological advances in 2013 and in previous years, scRNA-seq was crowned Nature

Method of The Year 2013 (NatMethods, 2014). By the start of 2014, scRNA-seq had

advanced to a point where a sufficiently large number of cells could be sequenced

to perform meaningful statistical analyses (ie. over one hundred cells) and the ex-

perimental protocols were reasonably accessible for many labs. This heralded the

beginning of an explosion in the number of scRNA-seq publications.

The next major event on our timeline is the development of droplet based scRNA-

seq methods. Droplet based scRNA-seq methods capture cells for sequencing in

droplets and changed the field by enabling hundreds of thousands and eventually

millions of cells to be sequenced in a single experiment. The first two droplet based

methods were Drop-seq and InDrop, which were published in the same issue of Cell

in 2015 (Klein et al., 2015; Macosko et al., 2015). Two years later, 10X Genomics

released their droplet based protocol (Zheng et al., 2017). Due to the low cost

and user friendly nature of 10X’s platform, 10X is currently the dominant player in

scRNA-seq.

Whilst this thesis was being written, a new scRNA-seq library preparation proto-
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col called SMART-seq3 was released (Hagemann-Jensen et al., 2019). SMART-seq3

is the first technology to combine full length reads and reads containing Unique

Molecular Identifiers (UMIs) and has therefore been greeted with excitement by the

scRNA-seq community.

At the time of writing, a range of scRNA-seq protocols are widely in use and new

protocols are still being developed. Identifying which of these protocols are likely to

be applicable to studying alternative splicing is an important goal of my thesis.

1.8 A generalised scRNA-seq protocol

Figure 1.6 is a flowchart for a generalised scRNA-seq protocol. In this section I

will discuss each step of the generalised protocol and how some steps differ between

protocols.

The first step of our generalised protocol is cell capture and lysis. Broadly speak-

ing, scRNA-seq protocols can be split into three groups depending on their mecha-

nism of cell capture:

1. Microwell based capture methods. In these methods, cells are captured in wells

using lasers, pipettes or Fluorescent Activated Cell Sorting (FACS) (Lafzi et al.,

2018; Svensson et al., 2018). Using FACS for sorting has two major advantages

- firstly FACS methods often lend themselves well to automation and secondly,

FACS based methods allow researchers to enrich for cells of a particular cell

type.

2. Microfluidics based capture methods. These technologies capture cells in nano-

liter reaction volumes in an automated fashion, lending themselves well to

medium sized experiments (order of 1000 cells) (Lafzi et al., 2018; Svensson

et al., 2018).

3. Droplet based capture methods. These are the newest methods in which cells

are captured in nanoliter droplet emulsions (Svensson et al., 2018). Very large
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Figure 1.6: Flowchart of a generalised scRNA-seq protocol.

numbers of cells can be captured in these experiments (order of 10,000 cells

and greater), making them best suited to large scale experiments.

Once they have been captured, cells are lysed in their wells/reaction volumes/droplets.

In the next step of our protocol RNA is captured from each cell. All of the scRNA-

seq protocols I will consider in my thesis capture poly(A) tailed mRNAs, typically

using poly(T) oligonucleotides (Lafzi et al., 2018). The captured RNA is converted

to cDNA prior to amplification in Step 3. All of the protocols considered in my the-

sis use PCR to amplify the harvested cDNA although protocols which use in vitro
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transcription as their amplification method also exist (Svensson et al., 2018). Any

final library preparation steps take place and the libraries are sequenced in Step 4. In

Step 5, the obtained sequences can be computationally analysed. Typically this will

involve some form of reads alignment and gene or isoform quantification, followed

by a single cell specific analysis. Some typical analyses are considered in the next

section.

1.9 Typical applications of scRNA-seq

In this section, I give a brief overview of a selection of popular scRNA-seq applica-

tions. All of the applications below are typically run using gene rather than isoform

level expression estimates. In theory, these applications could be used with isoform

level expression estimates. Uncertainty over the feasibility of isoform quantification

in scRNA-seq and ability to detect isoforms in scRNA-seq data are two likely rea-

sons that these applications are usually run with gene level expression estimates.

In addition, gene level quantification is sufficient for many scRNA-seq experiments.

For example, if the goal of an scRNA-seq experiment is to identify cell types in a

blood sample, gene level quantification estimates are likely to enable accurate cell

type identification.

1.9.1 Clustering

Guo et al.’s pioneering experiments identifying cells based on their gene expression

gave rise to perhaps the most popular application of scRNA-seq (Guo et al., 2010).

Clustering is now considered to be an essential step of many scRNA-seq experiments

and is typically used to attempt to infer cell identities based on gene expression

(Luecken and Theis, 2019; Petegrosso et al., 2019). This is not trivial. Technical

noise is a major issue in scRNA-seq, and if not appropriately corrected for, technical

noise rather than biological signal can dominate clusters (Luecken and Theis, 2019).

Clustering approaches and ideas about cell types have played a role in motivating

large scale scRNA-seq projects such as the Human Cell Atlas. The goal of the Human
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Cell Atlas project is to provide a catalogue of the cell types present in the human

body and a map of the relationships between them (Regev et al., 2017). Projects

such as the Human Cell Atlas are likely to lead to an increased understanding of what

a typical human looks like at a cellular level, and may help answer questions such

as: ‘How many cell types are there in a typical human?’. In addition, the Human

Cell Atlas will provide a valuable resource to the scientific community.

1.9.2 Pseudotime

It may not always be possible to separate a population of cells into discrete types.

For example, a differentiating population of cells may lie along a continuum between

two cell types, rather every cell being entirely one cell type or the other. Unlike clus-

tering algorithms, which attempt to cluster cells into discrete cell types, pseudotime

algorithms attempt to order cells along a linear or branching topological continuum

based on similarity of expression (Saelens et al., 2019).

1.9.3 Differential expression

Identifying differences in gene expression between two populations of cells is a pop-

ular application of scRNA-seq. Differential expression analyses pre-existed scRNA-

seq and a number of software tools for differential expression in bulk RNA-seq exist

(Costa-Silva et al., 2017). However, there are substantial differences between bulk

and scRNA-seq, most notably the much higher degree of technical noise present

in scRNA-seq relative to bulk. Therefore it was not clear whether differential ex-

pression software designed for bulk RNA-seq would give accurate results when run

on scRNA-seq (Luecken and Theis, 2019; Soneson and Robinson, 2018b). A recent

benchmark found that bulk RNA-seq differential expression software did not per-

form more poorly on scRNA-seq than differential expression software that had been

designed for scRNA-seq (Soneson and Robinson, 2018b). However, some bulk RNA-

seq differential expression softwares were more sensitive to pre-filtering of genes than

scRNA-seq softwares (Soneson and Robinson, 2018b).

27



1.9.4 Network modelling

Network modelling approaches represent biological systems as nodes and edges, where

nodes can represent genes, proteins or other biological molecules, and edges can

represent binding, enzymatic reactions, or other types of interaction (Blencowe et al.,

2019). Network modelling is a classic systems biology approach that attempts to

understand a complex system. Traditionally, network modelling has relied on bulk

genomic data, and attempts to apply network modelling approaches to scRNA-seq

data are relatively recent. A benchmark study found that network methods designed

for bulk RNA-seq performed extremely poorly when run on scRNA-seq data (Chen

and Mar, 2018). This is likely to reflect the substantial differences between bulk

and scRNA-seq data. The high rate of technical dropouts, more dramatic batch

effects and much larger dimensionality of scRNA-seq compared with bulk RNA-seq

are possible reasons that bulk methods performed poorly on scRNA-seq (Blencowe

et al., 2019). Despite these challenges, a large number of scRNA-seq methods for

network analysis have been developed. However, in the benchmark above three

scRNA-seq network analyses were considered in addition to the bulk approaches,

and the performance of the scRNA-seq approaches was also generally poor (Chen

and Mar, 2018). This indicates a need for further, larger benchmarks to establish

whether scRNA-seq network methods with good performance exist. If they do not,

research into which features of scRNA-seq data make network analyses so challenging

would be informative.

1.10 Technical noise in scRNA-seq

A major issue when analysing scRNA-seq data is the high degree of technical noise

relative to bulk RNA-seq. In this section I will discuss some of the main types of

technical noise that are commonly seen in scRNA-seq. An understanding of the tech-

nical noise present in scRNA-seq data is crucial when analysing scRNA-seq data, as

failing to recognise and correct for technical noise can lead to inappropriate analyses

being performed, generating misleading results.
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1.10.1 Read quality

As in any sequencing technology, issues relating to read quality are a source of

technical noise in scRNA-seq. Tools such as FastQC can be used to investigate a

variety of read quality metrics and establish the degree to which read quality is

likely to be a significant source of technical noise (Andrews, 2015). Tools such as

cutadapt can be used to trim unwanted sequencing adapters from reads, improving

the accuracy of alignment (Martin, 2011).

1.10.2 Multiplets and empty wells

The goal of scRNA-seq is to sequence individual cells. However, the cell capture and

isolation process is not perfect for any protocol. A common problem is that cells

will sometimes clump together, so that multiple cells (’multiplets’) end up in one

well or droplet, depending on the sequencing protocol. Another common problem is

that some wells or droplets contain no cells. These empty wells or droplets do still

typically contain RNA, originating cells that lysed prematurely before capture.

As the goal of scRNA-seq is to sequence individual cells, multiplets and empty

wells or droplets should be removed prior to analysing the data, leaving only ’singlets’

(wells or droplets containing only one cell). There are a variety of methods for

removing multiplets and empty wells or droplets from scRNA-seq datasets (Zappia

et al., 2018). Perhaps the simplest method is to plot the dataset’s distribution

of library size and use the distribution to determine which cells are singlets and

should be kept. If the dataset contains a large number of multiplets and empty cells,

typically multiple peaks can be seen in the library size distribution. The first peak

lies close to zero and corresponds to wells or droplets which didn’t capture any cells.

These empty cells should be removed. The second peak corresponds to the average

library size of a singlet. These cells should be kept. Typically, the multiplet peaks

will appear at multiples of the average library size of singlet. These multiplets should

be removed.

More sophisticated tools for identifying multiplets and empty wells and droplets

also exist (Ilicic et al., 2016; DePasquale et al., 2018; Wolock et al., 2019). If the
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dataset under consideration contains genetically heterogeneous cells, genetic infor-

mation can be used to resolve between singlets and multiplets (Kang et al., 2018).

A new technology called Cell Hashing, in which oligo-tagged antibodies are used

to label distinct cell populations, enables oligo information to be used to facilitate

multiplet identification (Stoeckius et al., 2018).

1.10.3 Unwanted Biological Noise

Usually the aim of a scRNA-seq experiment is to detect biological signal. However,

sometimes some of the biological noise present can confound the biological signal we

are trying to detect. For example, during cell isolation and lysis, some cells become

stressed and die. The stressed cells activate apoptosis pathways, altering their tran-

scriptional profile. This is a strong biological signal with the potential to confound

downstream analyses. Therefore, these cells should normally be removed. When

dying cells lyse, cytoplasmic RNA leaks out of the cells, whereas mitochondrial RNA

is relatively protected because it is encapsulated by the mitochondrial memberanes.

Therefore, stressed and dying cells are commonly identified based on the proportion

of each cell’s sequencing library made up of mitochondrial reads (Luecken and Theis,

2019).

If an scRNA-seq dataset is made up of cells in a variety of cell cycle stages, it is

common for clustering algorithms to cluster cells by their cell cycle stage, potentially

hiding undetected subpopulations of cells. Buettner et al developed software that

attempts to correct gene expression based on cell cycle stage, thus removing this

confounder (Buettner et al., 2015).

1.10.4 Dropouts

Dropouts are a phenomenon where genes or isoforms for which high expression is

detected in some cells are not detected as expressed at all in other cells (Kharchenko

et al., 2014). This can occur for biological reasons. For example, if a mixture of cell

types is sequenced, and a gene of interest is expressed in some cell types but not

others, there will be biological dropouts in the scRNA-seq data. Alternatively, if a
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gene has ‘bursty’ expression, so each cell sometimes switches that gene’s transcription

‘ON’ and at other times does not express the gene at all, it is likely that the gene

will exhibit biological dropouts in scRNA-seq data.

However, it is now known that a substantial proportion of dropouts in a typical

scRNA-seq experiment are technical in origin. In this thesis, I will define the cap-

ture efficiency of an scRNA-seq experiment as the proportion of expressed genes (or

isoforms) in a cell that are detected as expressed by scRNA-seq, ie.:

CaptureEfficiency =
NumberOfGenesDetected

NumberOfGenesExpressed

It has been shown that the capture efficiency of scRNA-seq can be 10% or less

(Marinov et al., 2014; Svensson et al., 2017; Islam et al., 2014). In an scRNA-seq

experiment with a capture efficiency of 10%, only about 10% of transcripts in a cell

generate sequencing reads. Consequently, a high percentage of expressed genes and

isoforms will not be detected as expressed. Dropouts that occur due to a failure

to capture reads from expressed transcripts are known as technical dropouts, and

are a major source of technical noise. In addition to the low capture efficiency of

scRNA-seq, technical dropouts can also occur if cells are very shallowly sequenced.

Sequencing cells at low read depths is more common in droplet based protocols, and

sometimes occurs due to financial considerations.

How best to correct for technical dropouts is an area of ongoing research. A

common approach for attempting to correct for technical dropouts is imputation.

Imputation approaches use mathematical modelling approaches to attempt to predict

which dropouts are technical, and convert these zero values to their predicted ‘true’

values. A recent benchmark found that many imputation methods introduce false

positives, illustrating that the problem of correcting for technical dropouts is not yet

fully solved (Andrews and Hemberg, 2018b).
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1.10.5 Batch effects

Batch effects occur due to technical variability between samples. Batch effects are not

exclusive to scRNA-seq, they are also commonly corrected for in bulk RNA-seq (Fei

et al., 2018). However batch effects are more complex and thus more challenging to

correct for in scRNA-seq, where each cell can be regarded as a sample and therefore

a batch (Tung et al., 2017).

Methods to correct for batch effects in scRNA-seq experiments exist, however they

are only effective if the experiment has been appropriately designed. Importantly,

if the different biological conditions being tested entirely overlap with batch effects,

the experiment is confounded and it will be impossible to correct for batch effects.

For example, if an experiment with two conditions, A and B, is performed, and cells

in condition A are sequenced in one lab and cells in condition B are sequenced in

another lab, it is impossible to determine whether differences between A and B are

due to the condition or the lab. The experiment is therefore completely confounded

by batch effects. If cells in each condition had been split between the two labs, batch

correction would have been possible.

Reasons batch effects can occur in scRNA-seq include:

1. Samples were prepared in different facilities

2. Samples were prepared at different times

3. Samples were prepared by different people

4. Samples were sequenced at different depths

5. Samples were prepared using different reagents

6. Samples were sequenced in different lanes

7. Samples were prepared on different plates

8. Samples were prepared in different wells

9. Pipetting errors during library preparation
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Reasons 1-7 can sometimes (though not always) be avoided with good experi-

mental design. Reasons 8 and 9 can lead to batch effects between cells sequenced in

the same run and are almost impossible to fully avoid.

Some of the reasons above generate more technical noise than others and are thus

more important to correct for. For example, plate based and well based effects tend

to be very minor, whereas having different people prepare samples can lead to more

substantial noise, especially if their interpretation of how to follow the experimental

protocol differs. Unfortunately, it is usually impossible to design a perfect experi-

ment entirely unconfounded by batch effects, especially when dealing with rare or

perishable samples. The goal should therefore be to minimise confounding factors as

far as possible, and to recognise what confounders are likely to remain when inter-

preting results. A number of batch correction methods exist and should be used to

correct for batch effects where possible. Based on a benchmark comparing scRNA-

seq pipelines, Tian et al. recommended MNNs as a good general method (Tian et al.,

2019; Haghverdi et al., 2018).

1.10.6 PCR amplification bias

Like batch effects, PCR amplification bias is not unique to scRNA-seq. PCR amplifi-

cation bias exists in any protocol which involves a PCR amplification step. However,

due to the small amount of starting material in scRNA-seq experiments, PCR ampli-

fication bias is more dramatic in scRNA-seq compared to eg. bulk RNA-seq (Smith

et al., 2017).

Unique Molecular Identifiers (UMIs) have largely corrected for PCR amplification

bias in some scRNA-seq protocols. UMIs are unique barcodes that are added to

cDNA molecules prior to PCR amplification (see Figure 1.7) (Islam et al., 2014).

After sequencing, the combination of the transcript identity and the UMI can be

used to estimate how many copies of the transcript were originally captured.

Errors can occur during UMI deduplication, especially if there is a sequencing

error in the UMI barcode or if the same UMI sequence binds to more than one

cDNA molecule originating from the same gene. However, provided that the UMIs
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Figure 1.7: Schematic illustrating how addition of UMIs enables us to correct for
PCR amplification bias.

are 8 bases or longer (Islam et al., 2014), these errors are usually relatively minor

compared to the bias that would be introduced by not correcting for PCR amplifica-

tion. Methods exist that attempt to correct for UMI errors (Petukhov et al., 2018;

Smith et al., 2017). Unfortunately, UMIs are not compatible with all scRNA-seq

protocols, and in particular are not compatible with full-length protocols such as

SMART-seq2. Given full-length protocols are likely to be best suited to studying

alternative splicing, that we are unable to effectively correct for PCR amplification

bias in these protocols is concerning.

1.11 Previous attempts to study alternative splic-

ing using scRNA-seq

In the first published scRNA-seq study, Tang et al. noted that 8-19% of known genes

with two or more isoforms expressed at least two isoforms in individual cells (Tang
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et al., 2009). There has therefore been an interest in studying alternative splicing in

individual cells since the first days of scRNA-seq. A common approach taken in later

studies was to identify genes expressing multiple isoforms in bulk RNA-seq data and

to ask how many isoforms were detected from these genes in individual cells using

matched scRNA-seq data. These studies found that typically, only one or a few

isoforms were detected in individual cells using scRNA-seq, even if multiple isoforms

were detected using bulk RNA-seq (Shalek et al., 2013; Zhao et al., 2016; Marinov

et al., 2014; Song et al., 2017). However, these studies typically did not consider

dropouts, or if they did attempt to correct for dropouts used approximations that

now seem inappropriate, given the field’s greater understanding of dropout modelling

(Marinov et al., 2014). As dropouts impair our ability to detect expressed isoforms

and the goal was to count the number of expressed isoforms in each cell, this raises

questions about the accuracy of these studies’ findings. In addition, the bioinfor-

matic methods to detect isoforms used in these studies had not been independently

benchmarked for their performance on scRNA-seq data, raising another potential

confounder in these analyses.

In addition to scRNA-seq studies attempting to answer fundamental molecular

biology questions about alternative splicing, there have been a small number of stud-

ies where scRNA-seq has been used to study alternative splicing to answer questions

from other areas of biology. For example, a recent study of a neuronal scRNA-seq

dataset investigated the splicing patterns of neurexins, synaptic organisers which

have thousands of isoforms, and found that developmentally related cell types had

shared patterns of neurexin isoform expression (Lukacsovich et al., 2019). However,

the overall number of publications investigating alternative splicing using scRNA-seq

is low. This is likely to reflect uncertainty over what confounders are present when

trying to study alternative splicing using scRNA-seq, and how best to correct for

these confounders.
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1.12 Approaches for studying alternative splicing

with RNA-seq data

It is rare to study alternative splicing using scRNA-seq data, but far more common

to study splicing using bulk RNA-seq data. Indeed, a large number of software tools

have been developed to enable splicing analyses using bulk RNA-seq data (Li and

Dewey, 2011; Roberts and Pachter, 2013; Bray et al., 2016; Patro et al., 2017, 2014;

Trapnell et al., 2010). There are two common approaches to studying alternative

splicing using bulk RNA-seq data. The first is isoform quantification, in which the

goal is to determine the magnitude of expression of splice isoforms. RSEM, Salmon

and Kallisto are examples of popular isoform quantification software tools (Li and

Dewey, 2011; Bray et al., 2016; Patro et al., 2017). The second approach is some-

times described as an ‘exon centric’ approach. Instead of attempting to quantify the

expression of entire isoforms, a ratio or percentage is calculated for each exon, based

on the percentage of reads spanning the exon in which the exon is spliced in versus

the percentage of reads spanning the exon in which the exon is spliced out. MISO

is a popular example of the ‘exon centric’ approach (Katz et al., 2010). In my the-

sis, I have exclusively considered isoform quantification based approaches. My main

reason for doing this is that whilst it can be interesting to find the ratio at which

an exon is spliced in or out, it would usually be more interesting to know unambigu-

ously which isoforms were produced from the parent gene. From a basic biology and

disease perspective, we are often most interested in alternative splicing as a mecha-

nism for generating multiple protein structures from a single gene. If we know which

isoforms were produced, we have some chance of inferring which proteins might have

been translated. If we only have information at the level of exons, it can be far

harder to infer protein information. Therefore, I focus on isoform quantification in

my feasibility assessment.

It is recognised that isoform quantification is a hard problem (Garber et al., 2011;

Finotello and Di Camillo, 2015; Zhang et al., 2017). Despite a range of strategies hav-

ing been developed to quantify isoforms (Li and Dewey, 2011; Roberts and Pachter,

2013; Bray et al., 2016; Patro et al., 2017, 2014; Trapnell et al., 2010; Huang and
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Sanguinetti, 2017), in benchmarks no strategy is found to perform perfectly (Ger-

main et al., 2016; Teng et al., 2016). Previous scRNA-seq studies have detected one

or a small number of isoforms in individual cells for most genes, even if multiple iso-

forms were detected in matched bulk RNA-seq data (Shalek et al., 2013; Zhao et al.,

2016; Marinov et al., 2014; Song et al., 2017). If these observations are accurate,

they suggest that isoform quantification may be simpler using scRNA-seq compared

to bulk RNA-seq data due to fewer multi-mapping reads. However, at present most

scRNA-seq publications quantify reads at a gene rather than an isoform level, prob-

ably due to uncertainty over best practices when quantifying at an isoform level.

Although many isoform quantification tools are available for bulk RNA-seq, when

I began my thesis it was unclear whether these tools would perform well when run

on scRNA-seq. For tasks such as normalisation and network modelling, it has been

found that methods designed for bulk RNA-seq do not give accurate results when

run on scRNA-seq (Vallejos et al., 2017; Chen and Mar, 2018). Therefore, there

was a possibility that new software would need to be developed to enable accurate

isoform quantification using scRNA-seq.

Although there is currently no perfect strategy for quantifying isoforms (Germain

et al., 2016; Teng et al., 2016), existing methods are considered to be sufficiently

accurate to enable many studies to analyse alternative splicing using bulk RNA-seq.

An important observation from bulk RNA-seq studies is that most genes produce a

‘major’, more highly expressed isoform and one or more ‘minor’, less highly expressed

isoforms (Wang et al., 2008; Gonzàlez-Porta et al., 2013). How splicing is regulated

in individual cells to generate this pattern at the tissue level is not well understood.

One hypothesis is that cells exclusively express either the major or the minor isoform,

and that more cells express the major isoform than the minor isoform. A second

hypothesis is that all cells express both isoforms, and transcribe more copies of

the major than the minor isoform. Theoretically, scRNA-seq could enable us to

determine the extent to which each of these hypotheses are true by resolving which

isoforms are present in individual cells. However, such an approach would rely upon

it being possible to accurately resolve isoforms in individual cells using scRNA-seq.
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1.13 smFISH as an orthogonal approach for study-

ing alternative splicing at a cellular resolu-

tion

The main orthogonal approach to scRNA-seq for studying splicing in individual cells

is smFISH. In smFISH approaches, cells are fixed and permeabilised. The cells are

then hybridised with multiple short fluorescently labeled DNA probes (Femino et al.,

1998; Haimovich and Gerst, 2018). The probes have complementary sequences to

the targeted RNA species, and together the probes typically span the length of the

target transcript. In the permeabilised cell, the probes preferentially hybridise to the

target RNA molecule, generating spots of high intensity fluorescence corresponding

to target RNA molecules. An advantage of smFISH based approaches is that spatial

information (ie. the location of transcripts within the cell) can be obtained, whereas

this is not possible using scRNA-seq.

There are two main challenges for using smFISH to study alternative splicing.

The first is that it is technically challenging to design fluorescent probes that would

enable smFISH to resolve between highly similar isoforms. Previous smFISH studies

which have resolved isoforms from the same parent gene have typically used isoforms

with large unique regions to overcome this problem (Ciolli Mattioli et al., 2019; Waks

et al., 2011; Velten et al., 2015). A variant on smFISH has been developed which

enables smFISH to resolve between transcripts which only differ at a single nucleotide

variant (SNV) (Levesque et al., 2013). Whether this or a related approach could be

adapted to resolve between highly similar isoforms remains to be seen, to the best

of my knowledge it has never been attempted.

The second challenge for studying alternative splicing using smFISH is through-

put. Traditionally smFISH has been a low throughput technology. Consequently,

in previous smFISH experiments investigating how many isoforms are produced per

gene per cell, only a handful of genes were investigated (Ciolli Mattioli et al., 2019;

Waks et al., 2011; Velten et al., 2015). Whilst these experiments delivered splicing

insights for the particular genes investigated, they did not deliver much general in-
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sight into the cellular process of alternative splicing across the entire transcriptome.

In this respect, using scRNA-seq to study splicing delivers a major advantage over

smFISH based approaches. However, the throughput of smFISH based approaches

has improved in recent years (Eng et al., 2019; Moffitt et al., 2016). If the throughput

continues to improve, it may one day become possible to validate transcriptome wide

predictions from RNA-seq experiments using smFISH data.

1.14 Is it possible to study alternative splicing us-

ing scRNA-seq?

If we are not concerned about the accuracy of our measurements, it obviously is

possible to ‘study’ alternative splicing using scRNA-seq in the sense that there is

nothing to stop us running scRNA-seq data through an alternative splicing bioinfor-

matics pipeline. However, as researchers we are hopefully concerned about whether

the experiments we perform produce meaningful results. I consider a meaningful re-

sult to be a result for which we either have high confidence that the result is correct,

and/or for which we have a very good estimate of the error. If the error rate is very

high, it may still be challenging to draw biologically valid conclusions from our data,

even if we understand the errors in our data very well.

At the start of my PhD, I consider that the following questions were unanswered:

1. Do isoform quantification software tools designed for bulk RNA-seq give accu-

rate measurements when run on scRNA-seq?

2. What impact does the number of cells sequenced and the number of reads

sequenced per cell have on isoform quantification in scRNA-seq?

3. To what extent do isoform quantification errors confound alternative splicing

analyses in single-cell RNA-seq?

4. To what extent do dropouts confound alternative splicing analyses in scRNA-

seq?
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5. Could isoform choice within cells confound alternative splicing analyses in

scRNA-seq?

6. To what extent is it possible to distinguish between biological signal and tech-

nical noise when studying alternative splicing using scRNA-seq?

As a consequence of not knowing the answer to these questions, we had no clear

idea what errors we might encounter when studying alternative splicing using scRNA-

seq. Of course, this does not mean it is impossible to perform an alternative splicing

analysis with scRNA-seq data, as many have previously done. But it does mean that

after running such an analysis, it is hard to say how much confidence we can have

in the results of the analysis, because we do not understand what errors might be

present.

To address our lack of knowledge about the errors present in scRNA-seq, I first

performed a benchmark of isoform quantification softwares, which addressed ques-

tions 1 and 2. This work is presented in chapter 2. I next attempted to address a

series of biological alternative splicing questions using scRNA-seq, but found that

uncertainty over the degree of technical noise in scRNA-seq made interpreting my

results in a biological context impossible. These results are presented in chapter 3.

To address the challenges I faced in chapter 3, I used a novel simulation approach

to investigate the degree to which technical noise might be confounding my splicing

analyses in chapter 4. In chapter 4, I address questions 3-6, and thus answer the

over-arching question which motivated my thesis: Is it feasible to study alternative

splicing using scRNA-seq?
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2

Simulation Based Benchmarking of

Isoform Quantification Using

scRNA-seq.

The truth is rarely pure and never simple.

– Oscar Wilde, The Importance of Being Earnest(Wilde, 1895)

Preface

The overall goal of the work presented in this chapter is to answer the following

questions:

1. Do isoform quantification software tools designed for bulk RNA-seq give accu-

rate measurements when run on scRNA-seq?

2. What impact does the number of cells sequenced and the number of reads

sequenced per cell have on isoform quantification in scRNA-seq?

I address these questions by carrying out a simulation based benchmark of isoform

quantification using scRNA-seq. I find that four of the five isoform quantification
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tools evaluated in my benchmark perform almost as well when run on scRNA-seq as

when run on bulk RNA-seq, thus answering question 1. I find that the number of cells

sequenced has no impact on the performance of a popular isoform quantification tool

called Salmon. Over a range of read depths per cells, the performance of Salmon

peaks at 1-2 million reads per cell, implying that there may be an optimum read

depth for performing isoform quantification using scRNA-seq.

The work presented in this chapter has been published, consequently some pas-

sages have been quoted verbatim from the following sources: (Westoby et al., 2018a,b).

Additionally, some figures have been reproduced from the aforementioned sources.

2.1 Introduction

Numerous isoform quantification tools have been developed for bulk RNA-seq (Li and

Dewey, 2011; Roberts and Pachter, 2013; Bray et al., 2016; Patro et al., 2017, 2014;

Trapnell et al., 2010), however at the start of my thesis, it was not clear whether

these tools would perform appropriately when run on scRNA-seq data. scRNA-seq

data differs from bulk RNA-seq data in several notable ways. For example, due to

the low amount of starting material, there is an increased frequency of dropouts

and increased PCR amplification bias in many scRNA-seq protocols relative to bulk

RNA-seq (Islam et al., 2014; Kharchenko et al., 2014). It was not obvious what

effect these technical factors, and others, might have on the performance of isoform

quantification tools.

In addition to general technical concerns, an interesting question was whether

the performance of isoform quantification tools might differ depending on the library

preparation protocol used to generate the scRNA-seq data. A wide range of library

preparation protocols have been developed for scRNA-seq (Hashimshony et al., 2012,

2016; Macosko et al., 2015; Klein et al., 2015; Jaitin et al., 2014; Gierahn et al., 2017;

Picelli et al., 2014; Ramsköld et al., 2012; Islam et al., 2011), some of which are

likely to be more appropriate for isoform quantification than others. For example,

one way in which library preparation protocols could differ in their suitability for

isoform quantification is in their degree of gene length bias, which has been shown
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to be greater for full length transcript protocols compared with UMI based protocols

(Phipson et al., 2017). An understanding of which library preparation protocols gen-

erate data suitable for isoform quantification and which library preparation protocols

do not would allow researchers to better design experiments to suit their needs.

There is currently a trade-off in scRNA-seq between the number of cells sequenced

and the number of reads sequenced per cell (Bacher and Kendziorski, 2016). A

pertinent question is whether the number of cells sequenced or the number of reads

sequenced per cell impacts on the performance of isoform quantification tools when

run on scRNA-seq. For bulk RNA-seq, a wide range of read numbers have been

sequenced depending on the desired accuracy of quantification and whether it is

desirable to detect and quantify lowly expressed transcripts (Conesa et al., 2016).

However, it has been recognised that whilst sequencing at higher read depths can

increase the accuracy of quantification, in the context of differential expression, a

higher number of reads can also increase the number of false positives if not corrected

for (Tarazona et al., 2011). For scRNA-seq, a decision on how many reads to sequence

per cell is often driven by multiple factors, including how many cells should be

sequenced and whether the goal of the experiment is to find detailed information

on gene expression in each cell or to identify sub-populations of cells by clustering

or pseudotime analysis (Haque et al., 2017). A recent study suggests that if the

goal is clustering cells, it is more beneficial to sequence more cells than to sequence

fewer cells slightly more deeply (Svensson et al., 2019). Multiple studies have found

that the number of genes detected reaches saturation for current library preparation

protocols at around 1 million reads per cell (Wu et al., 2014; Ziegenhain et al.,

2017), suggesting that for gene detection there is little purpose in further increasing

sequencing depth. Whether increased sequence depth would improve the accuracy

of isoform quantification is not known.

To assess isoform quantification for scRNA-seq, I present a simulation based

benchmarking study using data generated from three different scRNA-seq projects.

Whilst benchmarking studies have been performed previously for bulk RNA-seq (Ger-

main et al., 2016; Teng et al., 2016), to the best of my knowledge this is the first

benchmark of isoform quantification performed for scRNA-seq. I evaluated the over-
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all accuracy of different isoform quantification methods when applied to scRNA-

seq, and I also specifically studied the impact of library preparation protocol and

dropouts. I tested five popular isoform quantification tools on simulated scRNA-seq

data based on three publicly available scRNA-seq datasets produced using different

library preparation protocols and cell types. Unless otherwise stated, in all of my

simulations in this chapter, all of the isoforms in the Ensembl 89 mouse transcrip-

tome were considered (approximately 120,000 transcripts). The entire transcriptome

was considered because researchers are commonly interested in a variety of different

isoforms, from highly expressed isoforms that are detected in most cells to lowly

expressed isoforms that are only rarely detected. With the exception of eXpress,

performance was generally good for simulated data based on SMARTer and SMART-

seq2 (Picelli et al., 2014) data. Compared to bulk RNA-seq, isoform quantification

was only slightly worse for SMARTer and SMART-seq2 data, suggesting that it is

appropriate to use these methods for full-transcript single-cell data.

2.2 Results

2.2.1 The performance of isoform quantification tools was

generally good and consistent across two different sim-

ulation methods.

The first dataset considered in this benchmark consisted of 96 mouse quiescent B

lymphocytes collected as part of the BLUEPRINT epigenome project (Adams et al.,

2012) (GEO accession code GSE94676). The SMARTer library preparation protocol

was used to collect this dataset, which has been shown to have a degree of 3’ coverage

bias (Wu et al., 2014). On average, just over 2.7 million reads had been sequenced

per B lymphocyte.

To perform the benchmark, simulated data was generated from the selected cells

using two simulation methods. The first simulation method used was RSEM (Li and

Dewey, 2011) (see Methods chapter for details). RSEM is an isoform quantification
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tool which uses a generative model and expectation maximization to estimate isoform

expression. In addition, RSEM is capable of simulating reads using its generative

model and input values for the latent variables in the model, which can be estimated

during isoform quantification. An important reason for selecting RSEM to perform

the simulations is that during the simulation process, RSEM records where each

simulated read originated in the transcriptome. Consequently, it is known how highly

expressed each isoform is in the simulated data. This will be referred to as the ‘ground

truth.’ Knowing the ground truth allows us to benchmark expression estimates from

isoform quantification tools using the simulated data.

The second simulation method relied on two tools, Splatter (Zappia et al., 2017b)

and Polyester (Frazee et al., 2015). The methodology used to generate simulated data

is illustrated in Figure 2.1. Splatter is a simulation tool which takes an expression

matrix of counts from an scRNA-seq experiment as input and gives a simulated

expression matrix of counts as output. Splatter was used to simulate counts data

based on an expression matrix of counts from the BLUEPRINT B lymphocytes

generated by isoform quantification tool Kallisto (Bray et al., 2016). The output of

Splatter is a gene count expression matrix, where the columns are cells and the rows

are non-specific gene names (e.g., ‘Gene1’, ‘Gene2’, ‘Gene3’). Polyester was then

used to simulate one read per count in the Splatter gene count expression matrix.

Since the exact origin in the transcriptome is not known from Splatter, Polyester

generated simulated reads using a transcriptome consisting of the isoforms called

as expressed by Kallisto in at least one cell. The rownames of the Splatter count

matrix were updated to reflect the isoforms simulated by Polyester. The Splatter

count matrix was then converted to a matrix of TPM values, which were used as the

‘ground truth’.

The RSEM- and Splatter- and Polyester-simulated reads data was then given as

input to RSEM, eXpress (Roberts and Pachter, 2013), Kallisto, Salmon (Patro et al.,

2017), and Sailfish (Patro et al., 2014). The isoform quantification tools provide

two useful pieces of information for each isoform—whether it is expressed and its

expression level. To quantify the ability of each method to detect the presence of

an isoform, the precision and recall were calculated. In this context, the precision is

45



Figure 2.1: Flowchart showing methodology for generating Splatter- and Polyester-
simulated data
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the fraction of isoforms predicted to be expressed by each tool which are expressed

in the ground truth. The recall is the fraction of isoforms expressed in the ground

truth which are predicted to be expressed using the tool. For a single overall quality

score, I used the F1 score, which is defined as the harmonic mean of precision and

recall.
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Figure 2.2: Performance statistics for each isoform quantification tool for the
BLUEPRINT simulations. The yellow bars represent RSEM simulations, the blue
bars represent Splatter and Polyester simulations with 3’ coverage bias and the green
bars represent Splatter and Polyester simulations with no coverage bias. The bars
represent the average performance across all simulated cells, the error bar limits are
defined by the standard deviation. A F1 score, precision and recall of isoform detec-
tion. The F1 score is the harmonic mean of the precision and recall. The precision is
the proportion of the isoforms predicted to be expressed by an isoform quantification
tool which are expressed. The recall is the proportion of expressed isoforms which
are predicted to be expressed by the isoform quantification tool. B Spearman’s rho.
C Normalised root mean square error (NRMSE)



Salmon can be run in three modes—an alignment-based mode, in which aligned

reads are taken as input, or one of two alignment free modes (a quasi mode or an

SMEM mode). The performance of all three modes was evaluated in this benchmark.

For most isoform quantification tools, the mean F1 score was remarkably similar

and in the range of 0.777–0.888. The exception was eXpress, which had a slightly

higher recall but a much lower precision than other tools, and consequently had the

lowest mean F1 score (between 0.463 and 0.492 depending on the simulation method)

(Figure 2.2A). The mean F1 scores, precisions, and recalls calculated for each of these

tools were similar regardless of whether RSEM or Splatter and Polyester were used

to generate the simulated data. The statistics were not dramatically altered when

Polyester simulated reads using a 3’ coverage bias model compared to when Polyester

simulated reads uniformly across transcript length. However, as the Polyester 3’

coverage bias model is not based on single-cell RNA-seq data, care needs to be taken

when interpreting this result.

In addition to determining whether an isoform is expressed, it is often of in-

terest to estimate isoform abundance. To evaluate how well isoform quantification

tools perform this task, two measures were considered—Spearman’s rho and the nor-

malised root mean square error (NRMSE) (Figure 2.2B, C). Spearman’s rho gives a

measure of how monotonic the relationship between the ground truth expression and

each tool’s expression estimates is, while the NRMSE gives a measure of the extent

to which the relationship deviates from a one to one linear relationship (see Methods

chapter for details on how the NRMSE was calculated).

Consistent with the results for isoform detection, mean Spearman’s rho was

similar between isoform quantification tools and simulation methods and in the

range 0.782–0.891. The exception was eXpress, which had much lower mean Spear-

man’s rho than the other tools with values from 0.550 to 0.574. eXpress also per-

formed poorly relative to the other isoform quantification tools when considering

the NRMSE. Although the overall pattern of NRMSE results was similar for both

simulation methods, the NRMSE was consistently far higher for the Splatter and

Polyester simulations compared to the RSEM simulations. One possible explanation

is that the difference in the NRMSE is due to a small number of outliers. However,
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this did not appear to be the case (see Figure 2.3). Another explanation for the dif-

ference in the NRMSE could be that the differences are largely driven by differences

in the ground truth expression distributions of the RSEM simulations compared to

the Splatter and Polyester simulations. Since the NRMSE is proportional to the sum

of squared differences between the ground truth and the isoform quantification tool’s

expression estimates, it is plausible that it will be relatively rare for an unexpressed

isoform to have an estimated expression other than zero, but relatively common for

an expressed isoform to have an estimated expression that differs from the ground

truth expression. I found that the distribution of ground truth expression values

differs for each simulation method (see Figure 2.4). Therefore, differences in the

ground truth expression distributions seem to be the most likely explanation for the

systematic difference in the NRMSE between simulation methods.

The difference in the NRMSE between simulation methods was not the only

aspect in which the simulation methods differed. A comparison of the simulated data

with the real data was carried out using both a comparison tool included in Splatter

and using CountsimQC (Soneson and Robinson, 2018a), a package which facilitates

comparison of simulated datasets. The RSEM-simulated data more closely resembled

the real data than the Splatter and Polyester-simulated data by a number of metrics,

including the sample-sample correlations, the mean-variance relationship, and the

relationship between magnitude of expression and fraction of zeros (see Figure 2.5).

In contrast, when comparing the simulation tools using gene-level statistics such as

the distribution of mean expression, distribution of variance and percentage of zeros

per gene, the resemblance between the Splatter/Polyester-simulated data and real

data is much closer (see Figure 2.6). I suspect that these differences are because

Splatter loses gene names during its simulations. When the Splatter counts matrix

was used with Polyester to simulate reads data, I updated the row names to reflect

the transcripts simulated by Polyester. Consequently, I would expect there to be

little or no relationship between the expression of a given gene in real data and the

corresponding Polyester/Splatter-simulated data. Indeed, I find that the correlation

between ground truth isoform expression in the Splatter- and Polyester-simulated

data and isoform expression estimates generated by running Kallisto on the real

50



BLUEPRINT B lymphocyte data is very low (see Figure 2.7). In contrast, the

correlation between ground truth expression in the RSEM simulations and Kallisto

expression estimates in the real data was much higher.

The difference in the correlation between the real data and the RSEM simulations

compared with the Splatter/Polyester simulations is probably due to a core difference

between the simulation methodologies. RSEM keeps isoform names throughout its

simulations, and bases the number of reads it simulates for each isoform in part on

how many reads it detected for that isoform in the real data. Therefore, we would

expect an isoform’s RSEM simulated expression level to correlate with its expression

level in the real data. In contrast, in the Splatter/Polyester simulations, isoform

names are not kept. Splatter simulates isoform expression levels based on the global

distribution of isoform expression, in addition to other factors. Splatter does not

name its isoforms based on the original isoform names, but renames them ’Gene1’,

’Gene2’, etc. The Splatter counts are then used by Polyester to simulate reads,

but the mapping between a given isoform’s expression in the real data and in the

simulated data is lost due to the loss of isoform names.

Therefore, different transcriptional profile in the Splatter- and Polyester-simulated

data compared with the real BLUEPRINT B lymphocyte data is a likely consequence

of updating the Splatter gene names to reflect the transcriptome used in the Polyester

simulations (Step 3 in Figure 2.1). An additional potential issue with this step in my

methodology is that factors which would normally impact on expression estimates,

such as gene length, GC content, and secondary structure, are not considered during

my simulation protocol. The relationships between these features and expression

estimates in my simulated data are unlikely to match the real data. Based on these

limitations and my findings above, I concluded that the RSEM simulations resembled

the real data more closely than the Splatter and Polyester simulations. I suspect that

this occurs due to the loss of gene labels during the Splatter simulations and subse-

quent reassignment during the Polyester simulations, leading to a radically different

transcriptional profile in the Splatter/Polyester-simulated data. Consequently, for

the rest of this chapter, all data was simulated using RSEM. Despite the differences

between the RSEM and Splatter and Polyester simulations, the results of the bench-
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mark were remarkably consistent. This suggests that the findings in this benchmark

are robust to some differences between datasets, including dramatic changes in the

transcriptional profile.
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Figure 2.4: Histograms of ground truth expressions values for different simulation
methods. A Histogram of ground truth expression values for RSEM simulations. B
Histogram of ground truth expression values for Splatter and Polyester simulations
with 3’ coverage bias. C Histogram of ground truth expression values for Splatter
and Polyester simulations with no coverage bias. D Percentage of isoforms which
are unexpressed (ie. have zero expression) in RSEM and Splatter and Polyester
simulations. Each point represents one simulated cell.
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Figure 2.5: A comparison of the RSEM and Splatter simulations with the real
BLUEPRINT data. CountsimQC(Soneson and Robinson, 2018a) was used to gen-
erate these figures, using expression estimates generated by running Kallisto(Bray
et al., 2016) on the real BLUEPRINT B lymphocytes (red), ground truth expression
values from the RSEM simulated data (green) and ground truth expression values
from the Splatter and Polyester simulated date (blue). A Boxplots of sample-sample
correlations. Each point represents the Spearman correlation coefficient between two
cells. B Frequency density plot of library sizes. C Scatter plots of the mean-variance
relationship for log2(CPM). D Scatter plots showing the relationship between the
fraction of zeros and the average log CPM.



Figure 2.6: Plots showing characteristics of the different simulation methods included
within Splatter, compared with the RSEM simulations and the real data. Based on
these plots, the Lun2 method was selected for use in the rest of this chapter.



Figure 2.7: The relationship between expression estimates generated by running
Kallisto on the real BLUEPRINT B lymphocytes and the ground truth expression
estimates from simulated data. Points are coloured by density.A Relationship be-
tween expression estimates generated by running Kallisto on the real BLUEPRINT B
lymphocytes and the ground truth expression values from the Splatter and Polyester
3’ bias simulated data. B Relationship between expression estimates generated by
running Kallisto on the real BLUEPRINT B lymphocytes and the ground truth ex-
pression values from the Splatter and Polyester simulated data with no coverage bias.
C Relationship between expression estimates generated by running Kallisto on the
real BLUEPRINT B lymphocytes and the ground truth expression values from the
RSEM simulated data
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2.2.2 Isoform quantification tools generally perform well on

SMART-seq2 data with high sequencing coverage.

To test whether the results of my benchmark were robust across different datasets,

I next considered a mouse embryonic stem cell (mESC) dataset published by

Kolodziejczyk et al. (Kolodziejczyk et al., 2015). On average, over 7 million reads

were sequenced per cell in this dataset, considerably more than in the BLUEPRINT

dataset. Intuitively, it seems likely that sequencing more reads per cell should lead to

improved isoform quantification. However, sequencing more reads per cell is expen-

sive and may come at the cost of being unable to sequence as many cells. Therefore,

determining whether sequencing a higher number of reads per cell improves isoform

quantification is likely to be of interest to many researchers.

From the Kolodziejczyk et al. dataset, 271 mESCs grown in standard 2i media +

LIF which passed quality control were used for the benchmark (see Methods chapter).

This dataset should therefore give a good indication of the performance of isoform

quantification tools when there are a high number of reads per cell but a relatively

low number of cells. In addition, this dataset has uniform coverage of transcripts, as

it was sequenced using the SMART-seq2 protocol (Picelli et al., 2014).

To perform the benchmark, simulated data was generated as described previously

from the selected cells from Kolodziejczyk et al. (see Methods chapter for details).

The simulated reads data were then given as input to RSEM, eXpress, Kallisto,

Salmon, and Sailfish. The highest F1 score was achieved by Salmon run in SMEM

mode (0.889), with RSEM, Salmon run in quasi mode, Sailfish, and Kallisto also

achieving mean F1 scores greater than 0.85 (Figure 2.8A). Again, eXpress performed

most poorly by a substantial margin, with a mean F1 score of 0.548, and again,

eXpress had a higher mean recall (0.997) but a much lower mean precision (0.378)

than other tools. It seems likely that eXpress’s low precision is due to it being too

liberal when calling isoforms as expressed. The average number of isoforms called as

expressed per cell was twice as high for eXpress, which called an average of 41,372

isoforms as expressed per cell, as for any other tool. The other isoform quantification

tools had high mean recalls between 0.956 and 0.960. In contrast, the highest mean
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Figure 2.8: Performance statistics for each isoform quantification tool for the
Kolodziejczyk et al. ES cell simulations. POints are coloured by density. A F1
score and precision and recall of isoform detection. The F1 score is the harmonic
mean of the precision and recall. The precision is the proportion of the isoforms pre-
dicted to be expressed by an isoform quantification tool which are expressed. The
recall is the proportion of expressed isoforms which are predicted to be expressed by
the isoform quantification tool. B Spearman’s rho. C Normalised root mean square
error (NRMSE)
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precision was just 0.831 by Salmon run in SMEM mode, which means that nearly one

in six isoforms predicted to be expressed by the best performing tool were not actually

expressed. The high recall values achieved by all the tools considered here indicate

that the vast majority of isoforms expressed in the simulated data are detected,

with the lower precision values being a greater cause for concern. Knowing that an

isoform is not expressed can be as important as knowing that an isoform is expressed,

especially if that isoform is being used as a marker, for example in clustering analysis.

A strategy for improving the detection ability as quantified by the F1 score of isoform

quantification tools for scRNA-seq could be to make future tools more conservative

when calling isoforms as expressed.

The highest mean value of Spearman’s rho was obtained by Salmon run in SMEM

mode (0.896), with Salmon run in quasi mode, Kallisto, RSEM, and Sailfish obtaining

similar values. The lowest mean value of the NRMSE was also obtained by Salmon

run in SMEM mode (19.5), with Salmon run in quasi mode, Kallisto, RSEM, and

Sailfish obtaining similar values. Again, of the tools considered, eXpress performed

most poorly by a substantial margin.

2.2.3 The performance of isoform quantification tools was

generally poor using the Drop-seq library preparation

method.

Droplet based library preparation methods for scRNA-seq enable tens or hundreds

of thousands of cells to be sequenced in a single experiment, but at a relatively

low coverage per cell (Macosko et al., 2015; Klein et al., 2015; Gierahn et al., 2017;

Zheng et al., 2017). To determine whether a high number of cells can compensate

for low sequencing depth, a Drop-seq dataset of retinal bipolar cells published by

Shekhar et al. (Shekhar et al., 2016) was considered. Approximately 45,000 cells

were sequenced at a median read depth of 8,200 mapped reads per cell in this dataset.

From the dataset, 1,000 cells were randomly selected and given as input to RSEM

to generate simulated data (see Methods chapter for details). The simulated reads

were then given as input to RSEM, eXpress, Kallisto, Salmon and Sailfish as before,
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and the performance of these tools for the Drop-seq simulated data was evaluated.

With the exception of RSEM, the mean F1 score is far lower for the Shekhar et

al. Drop-seq simulated data as compared with the Kolodziejczyk et al. or the

BLUEPRINT simulated data (Figure 2.9A). For most tools, this is a consequence

of a drop in both the precision and the recall. The mean precision is less than 0.5

for most isoform quantification tools, including those which performed well on the

Kolodziejczyk et al. and BLUEPRINT simulated data. Salmon run on SMEM mode,

which achieved the highest mean precision on the Kolodziejczyk et al. simulated data,

performed particularly poorly, achieving a mean precision of just 0.399. Only RSEM

and Kallisto achieved mean precisions greater than 0.5 (0.743 and 0.614 respectively).

This result has important implications for the notion that sequencing a high

number of cells could capture the overall transcriptional profile of a population of

cells despite a low number of reads per cell. If sequencing a high number of cells could

compensate for a low coverage per cell, a very high precision of isoform detection

would be required. Without a high precision, attempting to combine data from

multiple cells to recapture the population transcriptional profile will result in calling

a high number of unexpressed isoforms as expressed, whereas if low read numbers

only reduced recall it could be compensated for by combining data across cells.

In addition to a low precision and recall, the isoform quantification tools perform

relatively poorly on the Shekhar et al. Drop-seq simulated data when Spearman’s

rho and NRMSE are used as performance metrics (Figure 2.9B, C). Again, Kallisto

and RSEM perform relatively well by these metrics compared to the other tools.

The overall picture painted by these results is that a low number of reads per cell

reduces the performance of isoform quantification tools, and this cannot be compen-

sated for by sequencing more cells. RSEM appears to perform better than the other

isoform quantification tools when run on the Shekhar et al. Drop-seq simulated data,

however this result needs to be interpreted with caution. Since RSEM was used to

perform the Shekhar et al. Drop-seq simulations, and as it essentially uses the same

model to perform isoform quantification and simulations, it is plausible that RSEM’s

performance is close to optimal when run on its own simulated data. This was also

the case for the Kolodziejczyk et al. and some of the BLUEPRINT simulations, but
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Figure 2.9: Performance statistics for each isoform quantification tool for the Shekhar
et al. Drop-seq simulations. Points are coloured by density. A F1 score, precision
and recall of isoform detection. The F1 score is the harmonic mean of the precision
and recall. The precision is the proportion of the isoforms predicted to be expressed
by an isoform quantification tool which are expressed. The recall is the proportion of
expressed isoforms which are predicted to be expressed by the isoform quantification
tool. B Spearman’s rho. C Normalised Root Mean Square Error (NRMSE).
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for these simulations the performance of Sailfish, Salmon and Kallisto was not dissim-

ilar to the performance of RSEM. One hypothesis generated from these observations

is that on high quality single cell datasets, most isoform quantification tools perform

well, meaning that if RSEM is performing optimally, it provides a relatively small

advantage. However, on a dataset with a low number of reads per cell, short reads

and 3’ coverage bias, most tools perform poorly. If RSEM is performing optimally,

this may result in a much greater impact on relative performance.

2.2.4 The decrease in the performance of isoform quantifi-

cation using scRNA-seq compared with bulk RNA-seq

is generally small

I find that the performance of existing isoform quantification tools is generally good

when run on simulated data based on SMART-seq2 and SMARTer scRNA-seq data.

I next consider the performance of isoform quantification tools when scRNA-seq

data is used compared with bulk RNA-seq data. Although previous benchmarks

of isoform quantification have been performed using bulk RNA-seq data (Germain

et al., 2016; Teng et al., 2016), a direct comparison with my benchmark is challenging

due to differences in the experimental approaches taken. Consequently, it is not

possible to say whether any perceived change in the performance of a given tool in

my benchmark compared with a bulk RNA-seq benchmark is due to differences in

how the benchmark was performed, differences in which statistics were collected, or

due to a genuine difference in performance on bulk and single-cell data.

63



●●●

●
●

●
● ●

●

●
●

●
● ●

●● ●●
●●

●
●

●
●●

●
● ●

●
●

● ●
●

●
● ●

●●
●
●

●
● ●

●
●

●
●● ●●

●
● ●●

●
● ●

●
●●

●
● ●

●
●●

●
● ●

● ●
●

●
●

●

●

●● ●●
●

●
●

●
●

●●
●

●

●
●

●

●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

● ●
●

● ●
●

● ● ●
●

●
●

●●
●

●
●

●
●

●
●

● ●
●●
●

●
● ● ●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●

●

●

●
●

●●
●●

●
●
● ●

● ●
●

●
●

●

●

●
●

●
●

●

●
●

● ●
● ●

●● ●
●

●
●

● ●
●

●
●

●
●

●●
●

●
● ●

● ●
●

●
●

● ● ●
●

●
●

●

●
●

●
●

●
●

●●
●

●●
●

●

●
●

●
● ●

● ●
●●

●

● ●
●

● ● ●

● ●●
●

●
●

●
●

●
● ●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
● ●

●
● ●

●
●

●
●

●
●

●● ●
●

●
●●

●
● ●

●
●

●
●

●
● ●

●
●

● ● ●
●

●
●

●
●

● ●
●

●●
●

●
●

●
●

●● ●
●

●
●

●
●

● ●●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●

●
●

●

●
●

●
●

●●
●

●
● ●● ●●

●
● ●●

●
●

●
●

●
●●

● ●●
●

●
●

●
● ●● ●

●
●

●
●

● ●●

●

●
●

●

●

●
●

●●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●●
●

● ●
●

●●

●

●
●

● ●
●●

● ●
●

●
●

●

●
●

● ● ●
●

●
●

●
●

●
● ●

●●
● ●
●●

●
●

●
● ●

●
●

●
●

●●
●

●●
●

●
● ●

●
●

●
●

●●
●

●
●

●
●

●
●

●●
●

●
●
●

●
●

●●
●

●
●

●
●

●
●●

●● ●
●

●
●

●

●

●●●
●

●
● ●

●●
●

● ●
●

●
●

●

●
●

●
●

●●
● ●

● ●●●
● ●

●
●

●
● ●● ● ●

●
● ●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●●

●
●

●
●

●
● ●

● ●

●
●

●
●

●
●

●

●
●●

●
●●

●
●

●
●

●
●

●

eX
pr

es
s

K
al

lis
to

R
S

E
M

S
ai

lfi
sh

S
al

m
on

A
lig

n
S

al
m

on
Q

ua
si

S
al

m
on

S
M

E
M

0.
5

0.
6

0.
7

0.
8

0.
9

F1

F
1

A

●
●

●

●
● ●

●
●

● ●
●●

●
●

●
●

●
● ●

● ●●
● ●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●

●
●

●
●

●

●
●

●
● ●

●
●

●●
●

●
● ●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

● ●
●

●●
●

●
● ●

● ●●
● ●

●
●●

●● ●
●

●●
●

●
●

●
● ●

●●
●

●
●

●
●

●●
●

●
● ●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●
●

●
●

●
●●

●
●

●
● ●

●
● ●

●
●

● ●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

● ●
●

● ●
● ●

●
●●●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●●
●

●
●

●
●

●

● ●●
●

●
●● ●

●
●

●
●

●
● ●

●
●

●
●●

●
●

● ●
●●

●
●

●
●

●
●●

●
●

●
●

●
●
● ●

●
●

●
●

●● ● ●
●

●
●

●
●

●
●

●● ●
● ●

●●
●

●
●

●
●

●
●

●●
● ●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●● ●●
●

●
●

●●
●

●
●●

●
●

●●
●●

●
●

● ●
●

●
●

● ●
● ●

●
●

●●
●

●
●● ●

● ●
●

●
●●

●●
●●

● ●●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●●

●
●

●
●●

●
●

●
●

●●
● ●

●
●●● ●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
● ●

●
●

●●
●

● ●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●● ●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
● ●

●
●●

●
● ●

●
●

●●
●

●
●

●
●

●
●

●●
● ●

●●
●

● ●
●

●
●

●
●

●
●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●● ●
● ●

●
●●

●
●

●
●

●●
●

●
●●

●
●

●
●●

●
●

eX
pr

es
s

K
al

lis
to

R
S

E
M

S
ai

lfi
sh

S
al

m
on

A
lig

n
S

al
m

on
Q

ua
si

S
al

m
on

S
M

E
M

0.
4

0.
6

0.
8

Precision

P
re

ci
si

on

●●
●

● ●
●

●
●

●●
●

●
●

●
●

●
● ●

●
●

●
●

●
● ●

●
●

●
●

●● ●
●

●
●

●
●

●
● ●
●

●
● ● ●

●
●

●
●

● ●●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●●
●

●
●

●●
●

●●
●

●
●

●
●

●
●

●
● ●

●
●●

●
●

●

● ●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
● ●

●●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●

●

●
●

●
●

●
● ●

●
●

●
● ●

●
●

● ●●●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
● ●●●

●
●

●
●

●●
●

●
●
●

●
●●● ●

●●
●

●
● ●
●

●
●

●
●

●●
●●●

●
●

●
● ●

● ●●
●

●
●

●●
●

●
●

●

●
●

●

●
●

●
●●

●
● ●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●●
● ●

● ●
●

●
●

●
●

●

●
●

●
●

●
● ●

● ●
●
●

●

●

●

● ●
●●

●

●
● ●

●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●●

●
●

●

●● ●●●●
●

●
● ●

●
●

●
●

●
●

●

●
●

●
●

●
●

●●
●

●● ●
●

●

●●
●●

● ●
●

●
●

●● ●●
● ●

●
● ●

●
●

●
●

● ●

●

● ●●
●

● ●
●

●● ●
●

●
●●

●
●

●
●

●

●

●
● ●●

●
●

●●
●

●
●

●

●
●

●

●
●

●
●●

●
●

●
●

●
●

● ●
●

●

●
● ●●

●
●

●

●
● ●

●
●

● ●

●
●

●
●

●
●

●
●

● ●● ●
●

●
●

●●
● ●

●
●

●
●

●

●●
●

●●
●

●●
●

●
●●

●
●

●
●

●
●

● ●

●

●
●

●●
●

●
●

● ●
●

●
●

●

●
● ●

●
●

●
●

●
● ●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●
● ●●

●
●

●
●

● ●
●

●
●●

●●
●

●
●●

●
● ●

●
●

● ●

●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
● ●

●
●

●
●

●
●

● ●

●●

●
●

●
●

●

●
●

●
●

●
●● ●

●
●

●
●

●
●

● ●
●

● ●
●● ●

●
●

●
●

●
●

● ●
●

●
● ●● ●

●
●

●
●

●
●

●
●

eX
pr

es
s

K
al

lis
to

R
S

E
M

S
ai

lfi
sh

S
al

m
on

A
lig

n
S

al
m

on
Q

ua
si

S
al

m
on

S
M

E
M

0.
94

0.
96

0.
98

1.
00

Recall

R
ec

al
l

●
●

●

●
●

●
●

●
● ●

●
●●

●
●●
●● ●

● ●●
● ●

●
●

●
●

● ●
●

●●
●●

●
● ●●

● ●
●

●
●●

●
●

●
●

●
●● ●

●
●

●
●

● ●● ●
●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●

● ●
●●

●●
●

●
●

●
●

●
●

●
●
●●

● ●
●

●

●

●
●

●
●●

●
●

●
●●

●
●

●
●

● ● ●

●
●

●
●

●
●

●

●
●

●
●

● ●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●

●●●
●

●●

●
●

●
●

●●
●

●●
●

●
● ●

●
●

●

●

●
●

● ●

●

●
●

● ●●
● ●

●
●

●
●

●
● ●

●
●●

●
●

●
●

● ●●
●

●
●●

●●
●

●
●

● ●
●

●

●
●

●
● ●

●
●

●

●
●●

●
●

●
●

●
● ●

●
●

●
●

●●

●
●●

●
●

●

●
●

●
●

●
●

●
●
●

●
●

●

●

●
●

●

●

●●
● ●

●
● ●●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●● ●
●

●
● ●

●
●

●
●

●
●

●
●

●
●● ●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●●●
●● ●

●

●
●

●
● ●

●

●
●●●

●
●

●●
●

●
●

● ●

●
●●

● ●
●●

●● ●
●●

●
●

●
●●

●
●●

●
●

●
●

●
●

●●
●●

●
●●

●
●

●●
●

●
●

●
●

● ●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

● ● ●
●

●
●

●
●●

●

●

●
●

●
● ●● ●

●
●

●
●

●
●

● ●
●●

●

●

●
●

●

●

●
●

● ●

●
●

●
●

●●●
● ●

●
●

●
●

●●
●

●

●
● ●

●
●

● ●●
●

●
●

● ●
●

●

●
●

●
●

● ●
● ●

●
● ●

●
●

●
●

●
●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
● ●

● ●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

● ●

●
●

●
●

●
●

●●
●

●
●

●
● ●

●
●

●
●

●
● ●

●
●

●●
●

●
●

● ●
● ●

●
●●
●

●
●

●●
●

●

●
●

●

●
●●

●● ●●
●

●
●

● ●
●

●
●●●

●●

●● ●
●● ●

●

●

●
●

●
●

●
●

●
●

●
●●

●
●

eX
pr

es
s

K
al

lis
to

R
S

E
M

S
ai

lfi
sh

S
al

m
on

A
lig

n
S

al
m

on
Q

ua
si

S
al

m
on

S
M

E
M

0.
6

0.
7

0.
8

0.
9

Spearman's Rho

S
pe

ar
m

an
's

 R
ho

B

●

●
●

●

●

● ●

● ●●

●

●
●

●
●

●

●

●
●

●●
● ●

●

● ●

● ●●

●●
● ●● ●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●●

●
●

●
●

●

●

●

●● ● ●

●
●

●

●

●

●●
● ●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●
● ●

●
●

●
●

●
● ●

●
●

●●

●

● ●
● ●

●

● ●
●

●
●

●
●

●
●

●

●

●
●● ● ●

●
● ●

●

●

●

●● ●
●

●●
●

●
● ●

●
●

●
●

● ●
● ●

●
●●●

●

●
●

●

●
●● ●

●
●

●
● ●

●

●● ● ●

●

●
●

●

●
● ●

●

●
●

●●

●
●

●
●

●●
●

●●

●

●
●

●
●

●● ●●

●

●●
●

● ●
●

●
●

●
●

●

●

●
● ●●

● ●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●
●

●

●●

●
●

●
●

● ●
●●

●

●
●●

●
●

●

●
●

●

●
●

●

●
●

●
●

●

●
● ●

●

● ●
●

● ●
●

●
●

●

●

●

●
●

●
●

●●
●

● ●●●
● ●● ●

●

●
●

●
●

●

●
●
●

●●

●●
● ●

●
●

●
●

●
●

●

●
●●

●
●

●

●
●

●

●●

●
● ●●

● ●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

● ●
●

●

●

●
●●

●

●

●
●●

●●
●●

●
●

●

●
●

●

●
●

●
●●●

●
●

●
●

●

●●● ●

●
●

●

●
●● ●

●
●

●
●
●

●

●●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●●
●●

●

●●
●

●
● ●

●

●

● ●

●
●

●

●
●

●
●

●
●

●
●

● ●
●

●
●●

●

● ●
●

●

●

●

●
● ●
●

●
●

●
●

●● ●
●

●
● ●● ●

●
●

●

●

●
●

●
●

●
● ●

●
●

●
●

●

●
●●

●●
●

●

●
●

●●

●
●

●

●●●

●
●

●
●● ●

●

●
●

● ●
●

●

●
●

●
●●

●●
●●●

●
●

●
●

●
●● ●

●

●

●
●

●
●

●

●

●
●

●
●

● ●
●

●
●

● ●●
●

● ●

●
●

●●

●

●●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
● ●

●

●
●

●●

● ●
●●

●
●

● ●
●

●
●

eX
pr

es
s

K
al

lis
to

R
S

E
M

S
ai

lfi
sh

S
al

m
on

A
lig

n
S

al
m

on
Q

ua
si

S
al

m
on

S
M

E
M

20304050 NRMSE

N
R

M
S

E
C

F
ig

u
re

2.
10

:
C

om
p
ar

is
on

of
th

e
p

er
fo

rm
an

ce
of

is
of

or
m

q
u
an

ti
fi
ca

ti
on

to
ol

s
on

B
L

U
E

P
R

IN
T

B
ly

m
p
h
o
cy

te
b
u
lk

an
d

si
n
gl

e-
ce

ll
R

N
A

-s
eq

d
at

a.
E

ac
h

p
oi

n
t

re
p
re

se
n
ts

on
e

ce
ll

fr
om

th
e

sc
R

N
A

-s
eq

d
at

as
et

or
on

e
b
u
lk

R
N

A
-s

eq
ex

p
er

im
en

t.
Y

el
lo

w
p

oi
n
ts

re
p
re

se
n
t

b
u
lk

R
N

A
-s

eq
ex

p
er

im
en

ts
,

b
lu

e
p

oi
n
ts

re
p
re

se
n
t

on
e

ce
ll

fr
om

th
e

sc
R

N
A

-s
eq

ex
p

er
im

en
t.

A
F

1
sc

or
e

an
d

p
re

ci
si

on
an

d
re

ca
ll

of
is

of
or

m
d
et

ec
ti

on
.

T
h
e

F
1

sc
or

e
is

th
e

h
ar

m
on

ic
m

ea
n

of
th

e
p
re

ci
si

on
an

d
re

ca
ll
.

T
h
e

p
re

ci
si

on
is

th
e

p
ro

p
or

ti
on

of
th

e
is

of
or

m
s

p
re

d
ic

te
d

to
b

e
ex

p
re

ss
ed

b
y

an
is

of
or

m
q
u
an

ti
fi
ca

ti
on

to
ol

w
h
ic

h
ar

e
ex

p
re

ss
ed

.
T

h
e

re
ca

ll
is

th
e

p
ro

p
or

ti
on

of
ex

p
re

ss
ed

is
of

or
m

s
w

h
ic

h
ar

e
p
re

d
ic

te
d

to
b

e
ex

p
re

ss
ed

b
y

th
e

is
of

or
m

q
u
an

ti
fi
ca

ti
on

to
ol

.
B

S
p

ea
rm

an
’s

rh
o.

C
N

or
m

al
is

ed
ro

ot
m

ea
n

sq
u
ar

e
er

ro
r

(N
R

M
S
E

)

64



●
●

●
●

●

●

●
●●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●●

●
●

●
●

●
●

●

●
●

●
●●● ●

● ●
●

●

●
●●

●
●

●
●●

●
●

●
●●

●

●

●
●● ●●

●
●

●

●
●

●

●●

●

● ● ●
●

● ●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●●

●●
●

●●
●

●
●

●
●●

●
●

●
● ●

●●
●

●
●

●
●

●
● ●

●
● ●● ●

●
● ●●

● ●●
●

●
●

●
●

●
●

●●
●

●
● ●

●●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
● ●

●●
●

●
● ●

●
●

●
●● ●

●
●

●
●

●●
●

●
●

●
●

●● ●
●

●
●●

●
●

●
●

●
●

●● ●
●

●●
●

● ●
● ● ●

● ●
●

●
●

●
●

●●
● ●

●
●

●●
●

●
●

● ●●
●

●
●

●
●

●
●

●●
●

● ●
●

●
●

●
●

●

●●
●

●
●

●
●

●

●
●

●
●

●

●

●●
●

●

●

●
●

●

●
● ●

●● ●● ●

●

●

●

●

●●

●
●

●
●

● ● ●
●

●
●

●
●

●
● ●●

● ●

●
●

●
● ●

●
●

●

● ●

● ●
●

●
●

●

●
●

●
●

●
●

●

●
●

● ●
●●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

● ●
●●

●
●

●●
●

●
●

●
● ●●

●
●

●
●

●
●

●
● ●

●
●

●
● ●

● ●
●

●
●

●
●

●
●

●
●

● ●
●

●
● ●

●
● ●●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●●
●

●
●

●
●●

●●
●

●
●

●
● ●

●
●

●
●

●
●●

●
●

●
● ●● ●

●
●●●●

●
●●

●
●

●
●●●

●●
●

● ●
● ● ●
● ●

●
●

●
●

●
●

●
●

●●
●

●●●
●

●
●

●●
●

●
● ●

●
●● ●

●●
●●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●●●
●

●●
●

●
●●

●
●

●
● ●

●
●

●

●
●●

● ●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●

●

● ●
● ●●

●●

●●

●●
●

● ●●
●

●●
●

●
●

●●
●

●

●●
●

●
●

●
●●

●
●

●

●●

●
●

●

● ● ●
●

●
● ●

●
● ●

●
●

●
●

●

●
●

● ●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
● ●

●● ● ●
● ●

●
●

● ●
●

● ●
●

●
●

●
●

●
●

● ●
●

●
●

●●
●

●
●●

●● ●
●

●
●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
● ●●

●
●

●●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
● ●●

●
● ●

●
● ●

●
●

●
●

●●
●

● ●
●

●
●

●
●
●

●
● ●

●
●

●
●

●
●

●
● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●●
●

●
● ●

●

●

● ●

●

●

●

●

●

● ●●

●
●

●
●

● ●
●

●

●
●

●
● ●

●

●

●
●

●

●●
● ●

●

● ●

●

●
●

● ●●

●
●

●

●
●

●
●

●
●

●

●
● ● ●
●●

●

●

● ●
●

●
●

●

● ●
●

●
● ●

● ●
●

●
●

●
●●

●
● ●

●
●

● ●
●

●
●

●
●● ●

●
●

●
● ●●

●
● ●

● ●
●

●
●

●
● ●

●
●

●
●●

●
●

●
●

●●
●

●
● ●
●

●
●

●
●●

●
●

●
●

●
●●

●
●

●
●

●
●

●●
●

● ●
●

●
●

●
●

●
●

●
●

● ● ●
● ●

●
●

●
●

●
● ●

● ●
●

●
●●

● ●●
●

●●
●● ●

●
●

●
●

● ●
●

● ●
●● ●

●
●●

●
●

●
●

●
●

●
●●

●
●

●
●

● ●
●

●
●

●
●

●
●

● ●●
●

●
● ●

●●
●

● ● ●
●

●●
●

●
●

●
● ●●
●

●
●●

●
●●

●

●
●●

●
●

●

●
●●

●

●

●
● ●

●
●

●

●

●
●

●

●
●

●
●●

●

●

●
●

●
●

●● ●
● ●

●
●●

●●
●●

●

●
●

●
● ●

● ●
●●

●
●

●

●
●

●
● ●

●
●

●

●

● ● ●

●
●

● ●
●●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
● ●

●● ●
●

●
●

●
●

●
●●

● ●
●

●
●

●
●

●
●●

●
● ●

●
●

● ●
●

●
●

●
●

● ●●
●

●
●

●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●●

●

●
●

●
●
●

●
●

●
●

●
●

●
●●

●
●

●
●●

● ●
●●●

●
●

● ●●

●● ●●●
●●

● ●

●
●

● ●
●

●
●

●
●

●
●

●
● ●●

●
●

●
●

●
● ● ●

●
●

● ●
●

●●
●

●
●

●●
●

●
●

●
●

●
●●

●
●

●
●

●
●

● ●

●
●

● ● ●●

●

●
●●

●
● ●

●●●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●

●
●

●

●

●● ●

●
●●

●
●

●
●

●

●
●

●

●
● ●

●
●

●
●

●
●

●
●

●●
●

●

●
●

●
●

●

●● ●

●
●

●

●
●

● ●
●

●
●

●
●

●
●

● ●
●●

● ●●
●

●●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

● ●
●

●
●

●
●

●
● ● ●

●
● ●

●
●●

● ●
●

●
●

●
●

●
●
●

●
●

●
●

● ●
●

●
●

●
●

● ●
●

●
●

●●
●

●
● ●

●
●

●
●●

●
●

●●
● ●

●
●

●
●

●
●

● ●
●

●●
●

● ●
●

●
●

●
●

●
● ●

●
●●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●●

● ●
●

●
●

● ●
●

●
●

●
●●

●
●

●
●

●
●

●
●●

●
●

●
●

●

●

●●
●

●
● ●

●
●

●
●

●

● ●
●●

● ●

●

● ●

●

●

●

● ●●

●

●

●
●●●

●
●

●●

●●●●
●● ●

●
● ●

●
●

● ●
●

●
●

●

● ●

● ●●

●
●●

●
●

●
●

●
●

●

●
●

● ●
●

●
● ●

●●
●

●
●

●●
●

● ●● ●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●● ●

●
●

●
●

●●
●

●
● ●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

● ●
●

●
●

●
●

●
●

●
●● ● ●

●
●

●
●

●
● ● ●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●●
●

●
●

●
●● ●

●
●

●
●

●
●

●
●

●
●

●
●● ●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●
●

●
●● ●●

●
●

●
● ●

●

eX
pr

es
s

K
al

lis
to

R
S

E
M

S
ai

lfi
sh

S
al

m
on

A
lig

n
S

al
m

on
Q

ua
si

S
al

m
on

S
M

E
M

0.
5

0.
6

0.
7

0.
8

0.
9

F1
F

1
A

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
● ●

●
● ●●

●
● ●

●
●

●●
●

●
●

●●
●●

●
●

●
●

●●●
●

●●
● ●

●
●

●
●

●
●●

●
● ●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●●

●●
●

●
●

●
●

● ●
● ●

●
●

●
●

●
● ● ●

●
●●

●
●

●●
● ● ●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●
● ●

●
●

●
●

●● ●● ●
●

●
●●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●
● ●

●
●

●
●

●
●

● ●
●

●● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

● ●
●

●
●

●●
●

●● ●
●

●
●

●
●

●●●
●

●
●● ●
●

●
●

● ●
● ●

●
●

● ●
●●

●

●●
●

●
●

●●●● ●
●● ●

●
●

●
●

●
● ●

● ●
●

●
●

●
●

●

●●
●

●
●

●
●●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●●
●

●● ● ●
●

● ●
●

●●
●

●
●
●

●
●●●●
●● ●
●

●●
●

●●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●● ●
●

●
●

●
● ● ●

● ●●
●

●
● ●

●
●

●
●●

●●
●

●
●

●●
●

●
●

●
●

●
● ●

● ●●
●●

●
● ●●

●
●

●●● ●
● ●●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●●
● ●

●
●

●
●

● ●
●

●
●

●
●

●
●

● ●
● ●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●●
●

●
●

●●
●

●
●

● ●●
●

● ● ●
●

●

●●
●

●
●

●
●

●●
● ●

●
● ●

● ●
●

●
● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●●
●

●
●

●
● ● ● ● ●

●
● ●●

●
●

●
●

●
●

●
● ●●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●●

●●
●

●
●

●
●

● ●
●

●
●

●●
●

●
●

●
● ●

●
●●

●
●

●
●

●●
●

● ●
●

●
●

● ●
●

●
● ●

● ●
●

●
●

●●
●

●
● ●

●
●

●
● ●● ●

●
●

●
● ●

●
●

●
●

●
●

●●
●● ●
●

● ●
●

●●
●

●
●

● ●
●

●
●

●
●
●

●
●

●
●●

●
●

●
●

●
●●

●
●

●
●

● ●
●

● ●
●

●
● ●●

●
●

●●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●● ●
● ●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●●

●
●●

●
●

●
●●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●● ●

● ●●
●

●
●

●
●

●●
●

● ●
●

●
●

●
●

●●
●

●
●

● ●●
●

●
●

●●●
●

●
● ●

●
● ●

●
●

●
●

●
●

●●
● ●

●
●

●
●

●
● ● ●

●
●

●
●

●● ●
●

●
●

●
●

●
●

●
●
●

●●
●

●
●

●
●

●
● ●●● ●●

●●
●

●
●

●
●

● ●
●● ●●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
● ●● ●

●
●

●●
●

●
●

●
●

●
●

●●
●

●
●

●● ●
●

●
● ●

●
●

●●
●

●
●

●
●

●
●

●●
●

● ●
● ●

●
●

●
● ●

●
●

●
●

●
●

●
●● ●

●
●

● ●
●

●
● ●●

●●
●

●
●

●●
●

●
●

●
●

●●
●●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

● ●● ●
●

●
●●

●
●

●●
● ●

●
● ●

●
●

● ●
●

● ●
●

●
●

●
●

● ●
●

●
●

●
● ●

●●●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
● ●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●●
●

● ●
●

●
●

●
●

●
●

●
●●

●●
●

●
●

●
●

●
●●

●
●●

●
●

●
●

● ●
●●

●
● ●

●
● ●

●
●

●●
●

●
●●

●
●

●
●

●
● ●

●
●●

●
●

●
● ●

●●
●

●
●

●●
●

●
●

●
●

●
●●

●
●

●
●

●
● ●

● ●●
●

●
●

●
● ●

●
●●

●
●

●
●

●
●

●
●

●
●●

●●
●

●●
●
●●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●●●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

● ●
●

●●
●

●
●

● ●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

● ●
●●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●

●
●

●
●

●
●

●
●

●
●

● ●
● ●

●●
●

●
●●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
● ●

●
●

●
●●

●
●

●●
●

●
●

●
●

● ● ● ●●
● ●

●
●

●
●

●
●●

● ●
●●

● ●
●

● ● ●
●

●
●

●
●

● ● ●●
●

●
●

●
●

●●
● ●
●

●
●

●
●

●● ●
●

●
●

●●
●

●
●

●
●

●
●

● ●
●●

●
●●

● ●
● ●

●
●

●
●

●
●

●●
●

●
●

●
●

●
● ●●

●
●●

●
●

●
● ●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

● ●
●

●
●

●●
●

●
●

●
●

●
●

● ●●
● ●

●
●

●
●●

●
●● ●

●
●

●
●

●
●

●
●

●
●

●● ●
●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
● ●

● ●
●

●
●

●
●

● ●● ●
●

●
●

● ●
●

●
●●

● ●
●

●
●

●
●

● ●
●

●
●● ●
●

●
●

●
●

●
●●

●● ●
● ●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

● ●
●

●
●

●
●●

●●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

● ●
●

● ●
●

●
●●

●
●

●
●

●
●

●●
●

●
●

●
●

●
● ●

●
●

●
●

●●
●●

●
●
●

●
●

●● ●●
●

● ●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

● ●
●

●●
●

●●
●

●
●

● ●●
●

●
●

●
●

●
● ●

●
●

●
● ●

●
●

●
●

●
●●● ●

●
●

●
●

●●
●

●
●

●
● ●

● ●
●

●● ●
●

●
● ●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●● ●
●●

●
● ●
●

●
●

● ●●
●●●

●
●

●
●

●
● ●

●●
●

●
●

●
●

●
●

●●
●

●
● ●

●● ●●
●

●
●

eX
pr

es
s

K
al

lis
to

R
S

E
M

S
ai

lfi
sh

S
al

m
on

A
lig

n
S

al
m

on
Q

ua
si

S
al

m
on

S
M

E
M

0.
4

0.
6

0.
8

Precision

P
re

ci
si

on

●
●

●● ●
●

●
●

●
●

●
●

● ●
●

●
● ●● ●

● ●
●

● ●
● ● ●

● ●
●●

●
●●

●
●

●
●

●
●

●
●

● ●
●

●●
●

●
●

●
●

● ●
●●

●
●

●
●

●
●

● ●● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

● ●
● ●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●●

●●
●

●
●

●
●

●
●

●●
●●

●
●

●●
● ●

●
●

●
●

●●
●

●
●

●●
●

●
● ●

● ●
●

●
● ●●
●
●

●
● ●

●● ●●
●

●
●

●
●

●
●

●
●●

●
●

● ●
●

● ●
●

●
●

●
●

●
● ●

●
●

●
● ●
●

●
●●

●
●

●
● ●

●
●

● ●●
●

●
●

●
●

●
●●

●
● ●●

●
●

● ●●
●
● ●
● ●

●
●

●
●

●
●

● ●●
●

●
●

● ●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●●

● ●
●●

●
●

●
● ● ●

●
●

●
●●

●
●

●
●

●●

●
●

● ●
●

●
●●

●
●

●
●

●
●

●●●

●

●
●

●
● ●

●

●

●
●●

●
●

●
●●
●

●
●

●●
●

●
●

●
● ●

●
●●

● ●
●

●
●

●●
●

●●
●

●

●
●

●●
● ●

● ●
● ●

●●
● ●

●
●

●
●

●
●

●

●
●

●
●

●
●
●

●
●

●
● ●

● ●
●

●●●
● ●●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●

● ●
●● ●

●
●

●
●

●
●

●
●

●
● ●

●
● ●

●●
●●●● ●

●
●

●
● ●

●●
●

●
●

● ●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
● ●●

●
●

●
● ●●

●
●

● ●
●●

●
● ●

●
●

●
●

●● ●●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●●
●

●
●

●●
●

●
● ●

●
●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●

●

●
●

●
●

●
● ●

●
●

●

●
●

●●
●

●●
●

●● ●
● ●● ●

●
●

●

●●
●

●
●

● ●

● ●
●

●
● ●

●
●

●

● ●
●

● ●
●

●
●

●
● ●

●
● ●

●

●
●

●

●
●

●
●

●
● ●

● ●●
●

●
●

●
● ●

●
●

●

●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●●
● ●

●
● ●

●●
●

●●
● ● ●● ●

●
● ●●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●●
●

●
●●

●
● ●

●
●

● ●
●

●
●●

●
● ●

●
●●

●
●

●
●

●●
●

● ●
●

● ●●
●

●
●

●
●

● ●
●●

●
● ●

●●
●

●
●●

●
● ●

●
● ●

●
●

● ●
●

●
●

●
●

●
●●

●
● ● ●

●
● ●

●
●

●
●

●●
●

●
●

●
●

● ●
●●●

●
●●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
● ●

●
● ●●● ●

●

●
●

●
●

●
●

●

●
●●

●
●

●●
●

●
●

● ●
●

●
●

●
●

●
●

●

●

●
●

●
●●

●
●●

● ●
●

●
●

●
●

●

●
●

●●
●

●
●●

●
● ●

●
●

●
●●

●
●

●
●●

●
●

●

●

●
●

●
●

●● ● ● ●●
●

● ●●
●

●
●

●
●

●
● ●

●
●● ●●

●
●

●
● ●●

●●
●

●
●

●

●
●

●
●

●
●

●
●

● ●
●●

●
●

●
●

●
● ●

●●
●

●●● ●
●

●
●

●
●

●●
● ●

●●
●●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●●

●
●

●
●●

●● ●
●

●
●

●
●●

●
●

● ● ●
● ●

●●
●

●
●

●●
●

● ●
●

●●
● ●

●
●

●
● ●

●
●

● ●●
●

●
●
●

●
●

● ●
●

●
●●●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

●
● ●

●
●

●
● ●

●●
●

●
●●

●

●

●

●
●

●●

●

●
●

●

● ●

●
●

● ●
●●

●
● ● ● ●

● ●
●

●

●

●●
●●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●●
●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●
●

●●

●

●
●●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

● ●
●●

●● ●
●

●
●●

●
●

● ●●
●

●
●

●● ●
●

●
●

●
●

●
●
●

●●
●

●
● ● ●

●
● ●●

●●
●

●
●

●
●●

● ●
●

●
● ● ●

●
●

● ●
●

●
●

●
●

● ●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
●● ●

●
●

●
●●

●
●

●
●

● ●●● ●
●

●
●

●
●

●
● ●●

● ●●
●

●●
●

●
●● ●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
● ●

●●
●●●

●
● ●

●●
●

●●
●●

●●
●

●
●

● ●
●

●●
●

●
●

● ● ●
●

●
●

●
●

● ●
●

● ●
●

●
●

●

●
●

●
●

●
● ●

●
●

● ●
●

●●●
●

●
●

●● ●
●

●
● ●

● ●
●

●
●

●
●

●
●

●

● ● ●●
●

●

●
●

●
●●

●●
●
●

●
●●

●

●
●

● ●
●

●
●

●

●
●●

●
●

●
●

●
●●

● ●
● ●

●
●

●
●● ●

●
●●

●
● ●

●
●

●
●

●
●

●
●●

●●
●

●
●

●
●

●
●

●
●

●
●●

● ●
●●

● ●
●

●
●

●
●

●
●

●
●

●
●

● ●●
●

●
●

●
●

●
●

● ●
●● ●

●
●

●●
●

●
●

●
●

●
●

●●
●

●
● ●

●
● ●

●
● ●● ●

●
●

● ●●
●

●
●

● ●
● ●

●

●
●

●●
●

●
● ●●

●
●

●
●

●
●

●
●

● ●
●●

●
●

●
●

●
●

●
●

● ●
●

● ●
● ●

●
●

●
●

● ● ●
●

●
●

●
●● ● ●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●●
● ●● ●

●
●

●
●

●
● ●

● ●

● ●
●

●

●

● ●
● ●

●●
●

● ●
●

●
●

●
●

●
●●

●
●

●
●

●
● ●

●
● ● ●

●
● ●
●

●
●

●
●

●
●

●
●

●
● ● ●

●
●

●
●●

● ●
●

●
●

●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●●
●●●

●
●● ●

●
●

●
●

●
●● ●

●
●

●● ●● ●
●

●
●

●
●

●
●

●
●●

●
●

●
●● ●

●
●

●
●

● ●
●

●
●

●●
● ●

●
●

●
● ● ●

●
●
●●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●
●

● ●
●

●
●

●
●● ●

●
●●

● ●

●
●

●
● ●

● ●
●

●
●

●
● ●

●
●

●●
●

●
●●

●
●

●
●●

●
● ●

● ●
●

● ●
● ●●

●●
●

●
●

●
●

● ●
●●

●
● ●

●
● ●

●●
●●

●
● ●●

● ●
●

●
●

●
●

● ●
●

eX
pr

es
s

K
al

lis
to

R
S

E
M

S
ai

lfi
sh

S
al

m
on

A
lig

n
S

al
m

on
Q

ua
si

S
al

m
on

S
M

E
M

0.
94

0.
96

0.
98

1.
00

Recall

R
ec

al
l

●
●

●
●

●

●

●
●●

●

●●
● ●

● ● ●

●●

●

●

● ●

●

●

●

●

●

●
●●

●
●

●
●

●

●
●

●
●

●●

●●
●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
● ● ●

●
●

●

●
●
●

●
●

●
●

●●●
● ●●

●●
●

●
●

●
●● ●

● ●
●

●
●

●
●

●●
●

●
●

●
●●

●
●

●
●● ● ●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
● ●●

●
●

●
●

● ●
●

●
●●

●● ●
●

●
● ●

● ●
●

●
●

●
●

●
●

●

●
●●

●
●

●
●

●
●

● ●●●
●●

● ●
●

●
●

●
●

●
●●

●
●

●

● ●
●

●
●

● ●
●●

●

●
●

●

●

●
●

●●
●

●

● ●
●

●
●

● ●
●

● ● ●

●
●

●
●

●
●

●
●

●
●

●

●●
●

●
● ●

●
●

●
●

● ●

●
●

●
●

●●
●

●●
●

●● ●
●

●
●

●

●
●

● ●●
●

●
●

●
●

●
●

●

●

●
●

●

●

● ●
●

●
●

●

●

● ●

●

● ●

●

●

●

●

● ●
●

●
●

●
●

●
●

●●
●
●

●

●

●

●● ●

●
●

● ●
●

●
●● ● ●●

●
●

●
●

●

●● ●
●

● ●

●

●
●

●

●●

●
●

●

●
●

● ●●

●

●
●● ●

●
●
● ●

●
●

●
●

●
●●

●
●

●
●

●
●

●●
●

●
●

●
●

● ●
●

●
●

●
● ● ● ●

●
●●

●
●

●
●

●
●

● ●●●
●

●
●

●
●

●
●

●
●●

● ●
●

●
●

●
●
●

●
●

●●
●

●
●

●
●

●
●

●
● ●●

●
●

●
●

● ●
●

●
●

●● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
● ●

●
●

●
●

●●
●

●
●

●
●●

●
●

●
●

● ●
● ● ●

●
●● ●

●
●●● ●

● ●
●

●
●

●
●

●
●

●
● ●

●
●

●●
●

●●
●

●
●●

●
●

●● ●
●

●

●

●
●

●●
●

●●
●

●
●

●

●
● ●● ●

● ●●

●

●

●
●

● ●

●

●●

●
●

●
●

●
● ●

●

●●
●●

●
●

●

●●

●●

●●
●

●

●
●

●

● ●

● ●
● ●

●
●

●
●

●
●

●
●

●

●
●

●

●
●● ●

●

●
● ● ●●

●●
●●

●●
●

●
●

●
●●

●
●

●
●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

● ●
●●

●
●

●
●

●
●

●
●

●
●

●●●
●

●
●

●
●●

●
●

●
●

●
●●●

●
●

● ●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
● ●

● ●
●●

●
●

●

●
● ●

●
●

●
●

●
● ●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

● ●
●

● ●
● ●

●
●

●
●●

●
● ● ●

●
●

●
●

● ●
●●

●
● ●
●

●

●
●

● ● ●

●

●

●
● ●

●

● ●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
● ●

●
●

● ●●
●●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●
●
●

●

●●● ●

●
●

●
● ●●

●
●

●
●

●

●
●
●

●
●

●
● ●

●
●

● ●
●

●
●

●
●●

●
●

●
●●

●
●

●●
●●
●

●
●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

● ●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●● ●
●

●
●

●
●

●● ●
●

●● ● ●
●

● ●
●

●
●●

● ●●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

● ● ●
●

●●
●●

●
●

●
●

●
●● ●

●
● ●

●
●

● ●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●●

●

●
●

●
●

●

●

●
●

●
●

●

●
● ●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●●

●
●

●
●

●●
●●

●
●

●●
●

●
●

●●●
●

●
●

●
●

●
●

●

●

●
● ●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

● ●
●

●
●

●●
●●

●
● ●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
● ●●

● ●●
●●
●

●
●

● ●
● ●

●
●

●
●

●
●

●
●

●●
● ●● ●

●
●

●
●

● ●
● ●

●
●●

●
●

●
●

●●
●

●
●●

● ●
●

●
●

●
●●

●
●

●
●●● ●

●
●

●●●
●

●

●
●

●
●

●●
●

●● ●
●●

●
●

●
●

●
●

●● ●

● ●
●

●
● ●

●
● ● ●

●
●

●
● ●

●
●

●
●●

● ●

●

●
●

●
●● ●

●
●

● ●
●

●
●

● ●
●

●
●

●●

●
●

● ●
●

●
● ●

●● ●
●

●
●

●

● ●
● ●

●

●●

●●
● ●

●
● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●
● ●

●● ●

●
●●

●
●

●

●
●

●

●

●
●

●
●

●
●

● ●
●● ●
●

●
●

●

●
●

● ●
●

● ●

●
●

●

●●

●●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

● ●
●

●●
●

● ●●
●

●
●

● ● ●
● ●

●
● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●● ●
●

●
●

●● ●
●

●
●

● ●
●

●● ●
●

● ●
●

●
●

●●
●

●
●

● ●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

● ● ● ●
●

●
●

●● ●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●●

●
●●

●
●

● ●
●●

● ●
●

●
●

●
●

● ●
●

●●
●

●
●

●
●

●
●

● ●●
●

●
●

●
●

●

●
●

● ●
●

●

●●●● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●●

●

●

●●●

●

●

●

●
● ●●●

●
●

● ●
●

●

● ●●

●
●

●
●

●

●
● ●

●
●

●

●

●
●

●

●
●

●● ●●
●

● ●
●

●

●
●

●
●●

●
●
●

●
●

●
● ●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●●

●
●

●
●

● ●
●●
●

●
●

●
●

●
●

●
● ●

●
●

●●●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
●

●
●
●

●
●

●●● ●
●

●
●

●
●●

●
●

● ●
●

●
●

●
●

●
●●

●
●

●
●●

●
●

●
●

●
● ●

●
●

●
●

●●
●

●
●

●
●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●● ●●

●
●

●
●

●
●

●
●●

● ●
●

●
●

●
●

●
●

●
●

●
●

● ●
●●

●●
●

●
●

●
●

●
●

● ●
●

●
● ●

●

eX
pr

es
s

K
al

lis
to

R
S

E
M

S
ai

lfi
sh

S
al

m
on

A
lig

n
S

al
m

on
Q

ua
si

S
al

m
on

S
M

E
M

0.
6

0.
7

0.
8

0.
9

Spearman's Rho

S
pe

ar
m

an
's

 R
ho

B

●
●●

●●

●

● ●

●●

●

●

●
●

●● ●
●

● ●
●

●
●●

●

●

●
●

●
●

●
●

●

●

●
●●

●
●

●

●
●

●

● ●●

●

●

●

●

●

●

● ●
●● ●

●

●

●

●
●

●
●

● ●●
●

●

●

●

●
●
●

●
●

●

●

●
●● ●

●

●
● ●

●

●
● ●

●●
●

●
●

●
●

●
●● ●

●
●

●●
●

●
●

●
●

●
●●

●●
●

●
●● ●● ●

●
●

●

●

●
●

● ●
●

●
●●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
● ● ●●

●
●

●
●

●
●

●
●●

● ●
●

●
● ●

●
●

●
●

●
●

●
● ●●

●●
●

●
●

● ● ●
●

●●
●

●
●

● ●
●

●
●

●
● ●
●

●
●

●
●

●●
●

●
●

●
●

●
●●

●
●●

●
● ●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●●
●

●

●●
●

● ●
● ●●
●

●●
● ●

●●
●●

●●
●

●
●●

●●
●●

●
●●

●
●

●
●

●●
●●

●
●

●
●●
●

●
●

●
● ●

● ●●●
●

●
●

●
●

●
● ●

● ●
● ●

●
●

●
●

● ●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●●
●

●

●
●

●
●
●

●
●

●
●

●
● ●

●
●

●
●

●
●●

●
●

●
●

●
●●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●●
●

●●
●●

●
● ●

●
●

●
● ●

● ●
●

●
●

● ●
●

● ● ●
●

●
●

●
● ●●

● ●● ●●
●

●● ●
●

●
● ●

●
●

●
●

●●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●

● ●
●

●
● ●

●
●

●
● ●

●
● ●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●● ●

●
●

●●
●●

●●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●● ●

●
● ●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●●
●

●
●

●
●

●
● ● ● ●

●

●● ●
●

●
●

●●
●

● ●
●

● ●
●

●
●

●
●

●
●

●
●

● ●

●

●
●

●
●●● ●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

● ●●
●●

● ●
●

●
●

●
●●

●
●● ●

● ●●
●● ●● ●

●
●

● ●
●

●
●

●
●

●
●

● ●
●

●
●

●●
●

●
● ●● ●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●● ●
●

●
●

●
●

●
●

● ●●
●

●
●

●
●

●
●

●●
●

● ● ●
●

●
●

●●
●

●
●

●
●

●
●

●
●
●

●
●

● ● ●
●

●
●

●
●

●
●

●
●

●
●●

●
●●

●●
●

●
●

●
●

● ●
●

●
●

● ●
●

●
●●

●●
●

●
●

●
● ●

●
●

● ●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

● ●
●

● ●
●

●
●

●
●

●
● ● ● ●

●
●

●
●

●
●

●
● ●

●
●

●
● ●

●
●

●
●

●
●

●
●

●●● ●
● ●

●

●●
●

●
●● ●

●
●

●
● ●● ●

●
● ●

●●
●

●
●

●
●

●●

●
● ●

●
●

●
●

●●
● ●

●
●●

● ●
●

●
●●

●
● ●

●
●

●
●

● ●
●

●
●

●
●● ● ●●

●
●

●
●●

●
●

●
●

●
●

●
● ●

●
●●
●

●●
●

●●
●

●●
●

●●
● ●●

●
●●

●
●

●
●●

●
●

●
●

●
●

●●
●

●● ●
●●

● ●● ● ● ●
●

●
●

● ●
● ●●

●
●

● ●
● ●

●
●

●
●

●
●

●
● ●

●
●

●
●

●●
● ●●

●●
●

●
●

● ●
●

●
● ●

●●●
●

●●
●

●●
●

● ●
●

● ●
●

●
●

●
●

● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

● ●● ●
●

●
●●

●●
●

●●●
●●

●
●

●●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●● ●

●
●●

●
●●● ●●

●
●

● ●
●

●
●

●
●

●●
●

●●
● ● ●●●

●
●

●
●

●
●

●
●

●
●

●
●

●● ●
● ●

●
● ●

●
●

●
●

●
●

● ●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●
● ●

●
●●

●
● ●

●
●

●
●●

●
●

●
●● ●

●
●

●
●

● ●
●

● ●
● ●

●●
●

●●
●

●
●

●
●●
●●
●

● ●
●

●●●
●

●
● ●

●
●

●
●

●
●

●
● ●●
●●●

●
●

●
●

●
●

●
●

●● ●
●

●
●

●
●

●
●

●
● ●

●
●

●●
●

● ● ●
●

●
●● ●●
● ●

●●
●

● ●
●

● ●
● ●

●
●

●●
●

●
●●

●
●● ●

●
●● ●

●●
●

●
●

●
● ●

●
●

●
●●●

● ●
●

●
●

●
● ●

●
●

● ● ●
●

●
●●

●
●

●
●

●●
●

●
●

● ●
● ●

● ●
●

●
●

●
● ●

●
●

●
●

●

●

●
●

●
●

●
● ●●

●
●● ●●

●
●

●
●

●
●

●
● ●

●
●

●

●

●
●

●
●

●
● ●
●●●

●
●

●
●
●

●
● ●

●
●

●●
●

●●● ●●
●●

●
● ●

●
● ●

●
●

●
●

●
●

●
●● ●

●
●

●
● ●

●
●

●
●

●
●

●
●●

● ●
●●

●
●

● ●
●

●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
●

●
●●
●

●
●

●
● ●●

●
●

●
●● ●●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
● ●
●

● ●
●

●
●

●
●
●●

●

●
●

●
●●

●
●

●●
●

●
●

● ●
●

●
●●

●
●

●
●

●
● ●●

●
●

●
●●
●

●
●

●
●● ●●
●

●
●●

● ●
●

●●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●●
●

●●
●

●
●●

●
●

●
●

●
●

●●
●

● ● ●●
●

●
●

● ●
● ●

● ●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●

●

●●
●

●
●

●
●

● ●
●●

●● ●
●

●
●

●
●

●
●

●●
● ●

●

●
●

●●●
● ●

●
●

●
●

●
●

●
●

●
● ●●

●
●

● ● ●
●

●
●

●
●

● ●● ●
●

●
● ●●

●
●

●
●

●
●

●
●

● ●●
●

●●
●

●
● ● ●

●
●

●
●

●
●●

●
●●

●
●

●●●
●

●
●

●
●●

●
●

●
●

●
●

●●
●

●
●

● ●
●

●
●

●
●

●
●

●
● ●●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●●
● ●

● ●

●
●

●
●●

● ●
●●

●
●●
●

●

eX
pr

es
s

K
al

lis
to

R
S

E
M

S
ai

lfi
sh

S
al

m
on

A
lig

n
S

al
m

on
Q

ua
si

S
al

m
on

S
M

E
M

25507510
0

12
5

NRMSE

N
R

M
S

E
C

F
ig

u
re

2.
11

:
C

om
p
ar

is
on

of
th

e
p

er
fo

rm
an

ce
of

is
of

or
m

q
u
an

ti
fi
ca

ti
on

to
ol

s
on

K
ol

o
d
zi

ej
cz

y
k

et
al

.
E

S
ce

ll
b
u
lk

an
d

si
n
gl

e
ce

ll
R

N
A

-s
eq

d
at

a.
E

ac
h

p
oi

n
t

re
p
re

se
n
ts

on
e

ce
ll

fr
om

th
e

sc
R

N
A

-s
eq

d
at

as
et

or
on

e
b
u
lk

R
N

A
-s

eq
ex

p
er

im
en

t.
Y

el
lo

w
p

oi
n
ts

re
p
re

se
n
t

b
u
lk

R
N

A
-s

eq
ex

p
er

im
en

ts
,

b
lu

e
p

oi
n
ts

re
p
re

se
n
t

on
e

ce
ll

fr
om

th
e

sc
R

N
A

-s
eq

ex
p

er
im

en
t.

A
F

1
sc

or
e,

p
re

ci
si

on
an

d
re

ca
ll

of
is

of
or

m
d
et

ec
ti

on
.

T
h
e

F
1

sc
or

e
is

th
e

h
ar

m
on

ic
m

ea
n

of
th

e
p
re

ci
si

on
an

d
re

ca
ll
.

T
h
e

p
re

ci
si

on
is

th
e

p
ro

p
or

ti
on

of
th

e
is

of
or

m
s

p
re

d
ic

te
d

to
b

e
ex

p
re

ss
ed

b
y

an
is

of
or

m
q
u
an

ti
fi
ca

ti
on

to
ol

w
h
ic

h
ar

e
ex

p
re

ss
ed

.
T

h
e

re
ca

ll
is

th
e

p
ro

p
or

ti
on

of
ex

p
re

ss
ed

is
of

or
m

s
w

h
ic

h
ar

e
p
re

d
ic

te
d

to
b

e
ex

p
re

ss
ed

b
y

th
e

is
of

or
m

q
u
an

ti
fi
ca

ti
on

to
ol

.
B

S
p

ea
rm

an
’s

rh
o.

C
N

or
m

al
is

ed
R

o
ot

M
ea

n
S
q
u
ar

e
E

rr
or

(N
R

M
S
E

).

65



To gain further insights regarding the performance of the tools, I made use of the

bulk RNA-seq data generated for the BLUEPRINT B lymphocytes and Kolodziejczyk

et al. standard 2i media + LIF mESCs. I used RSEM to simulate the bulk RNA-seq

data and collected the same performance statistics for my bulk RNA-seq bench-

mark as in my scRNA-seq benchmark. As the data used in my bulk and scRNA-seq

benchmark came from the same source, the same method was used to generate the

simulated bulk and scRNA-seq data, and the same performance statistics were col-

lected in both benchmarks, I was able to carry out a meaningful comparison of

isoform quantification tool performance on bulk and scRNA-seq data.

I find that all isoform quantification tools performed well on the simulated bulk

data, but since most methods also performed well on single-cell data, the improve-

ment was generally small (See Figure 2.10 and 2.11). In particular, there is very

little difference in the recall for bulk and scRNA-seq, for which performance seems

to be close to optimal. eXpress performs far better on bulk RNA-seq compared

with scRNA-seq. Since eXpress appears to be overly liberal in calling isoforms as

expressed, one explanation for the better performance of eXpress on bulk RNA-seq is

that more isoforms have non-zero expression in bulk (see Appendix 1, Figure 7.11).

Consequently, there are fewer unexpressed isoforms for eXpress to incorrectly call as

expressed.

2.2.5 Removing drop-outs can improve the performance of

isoform quantification tools.

While it is of interest to determine which isoform quantification tools perform best

overall when run on scRNA-seq data, it is important to recognize that such an

analysis may hide a lot of detail. For example, scRNA-seq data commonly contains

a high number of dropouts (Ziegenhain et al., 2017), and one question of interest

is whether the performance of isoform quantification tools differs between isoforms

with a high number of dropouts and isoforms with few or no dropouts.
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Figure 2.12: Effect of dropouts on isoform quantification. A Impact of removing
isoforms with more than a threshold number of dropouts on Spearman’s rho and
the NRMSE for the BLUEPRINT B lymphocytes (left) and the Kolodziejczyk et al.
ES cells (right). The x-axis gives the threshold percentage of zeros above which an
isoform is removed from the analysis. For example, a threshold percentage of 80%
would result in isoforms with zero expression in 80% or more of cells being removed
from the analysis. Each colored line is a linear fit for visual guidance and it represents
a different isoform quantification tool. B Relationship between how highly expressed
an isoform is and the percentage of cells in which it has zero expression. The rela-
tionship is considered in RSEM simulated BLUEPRINT B lymphocytes (top left),
the real BLUEPRINT B lymphocytes (bottom left), the simulated Kolodziejczyk et
al. ES cells (top right), and the real Kolodziejczyk et al. ES cells (bottom right).
Each point represents an isoform and the points are colored according to density.



To address the impact of dropouts on performance, Spearman’s rho and the

NRMSE were calculated when isoforms with zero expression in more than a specific

fraction of cells were removed from the analysis. Applying increasingly stringent

thresholds to remove isoforms with a high number of dropouts led to an increase in

the value of Spearman’s rho in both the Kolodziejczyk et al. and BLUEPRINT simu-

lations (Figure 2.12A). For isoforms which had dropouts in less than 20% of cells, the

value of Spearman’s rho became very high for Sailfish, Salmon, Kallisto, and RSEM

(in the range of 0.992–0.996 for the BLUEPRINT simulations, and 0.977–0.989 for

the Kolodziejczyk et al. simulations). This indicates that for isoforms with very few

dropouts, isoform quantification tools are extremely good at ordering their relative

expression correctly. Removing isoforms with a high number of dropouts had a more

variable effect on the NRMSE. Due to the inverse relationship between magnitude

of expression and number of dropouts (Kharchenko et al., 2014) in both the real and

simulated data (Figure 2.12B), one explanation for the increase in Spearman’s rho is

that lowly expressed isoforms are more likely to have a high number of dropouts and

are also more likely to be mis-ordered with respect to the ground truth. However,

because they are lowly expressed, removing them has a relatively small effect on the

NRMSE.

2.2.6 The performance of Salmon alters depending on read

depth.

So far in my benchmark, I have established that in general, isoform quantification

tools perform well when run on full length scRNA-seq data with a moderately high

read depth per cell and poorly when run on Drop-seq data with relatively low read

depth per cell. To further investigate the impact of number of cells sequenced and

number of reads sequenced per cell on the performance of isoform quantification

tools, I return to the BLUEPRINT B lymphocyte dataset with a modified version of

my simulation based approach. In my modified approach, I use RSEM to simulate

data in which I systematically vary the number of cells simulated and the number

of reads simulated per cell. The number of cells simulated was varied between 10
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and 500 cells. As there are only 96 BLUEPRINT B lymphocytes, to generate my

simulated cells I randomly selected cells from the BLUEPRINT B lymphocytes, then

generated a simulated cell using RSEM run with a randomly selected seed. I varied

the number of reads simulated from 0.25 million to 8 million reads per cell. For each

datapoint, corresponding to a certain number of cells and a certain number of reads

per cell, I performed 10 rounds of simulations. I then ran Salmon SMEM on each

simulated cell and compared Salmon’s expression estimates to the ground truth to

generate performance statistics.

The reasons that Salmon and only Salmon was run on the simulated data are

as follows. The total number of simulations performed in this experiment was vast

(approximately 40,000), and consequently the computing resources required were also

large, both in terms of time and memory (this experiment took over a month to run

on the Sanger Institute’s HPC). I have already established that the performances

of Salmon, Sailfish, Kallisto and RSEM are very similar in multiple benchmarks,

consequently the main goal of the experiment described here was to establish whether

number of cells or number of reads per cell impact on isoform quantification tool

performance in general, rather than which tool performed best at a given number

of cells or read depth. This being so, in the interests of reducing computational

time, I decided to benchmark a single tool rather than the full five. Salmon is one of

the fastest and best performing tools investigated in this benchmark, consequently I

chose to investigate Salmon’s performance.

I first investigated how the number of cells simulated and the number of reads

simulated per cell impacted on the number of expressed isoforms in my simulations

and the number of isoforms detected by Salmon. The total number of expressed

and detected isoforms increases as read number and cell number increases (Figure

2.13). However, the total number of detected isoforms vastly exceeds the number of

expressed isoforms – over 6000 isoforms were detected when 500 cells were simulated

with 8 million reads per cell, but less than 4000 isoforms were expressed in the ground

truth. This means over one third of the total number of detected isoforms were false

positives, a finding with important implications for studies attempting to determine

the number of expressed genes and isoforms in a population of cells.
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I next considered the impact of the number of cells and the number of reads

per cell on performance. The number of cells simulated had little impact on perfor-

mance, however the number of reads simulated per cell had an impact on Spearman’s

Rho, the NRMSE and the precision and recall of isoform detection (Figure 2.14). As

read number increased, the recall of isoform detection increased and the NRMSE

decreased. It is perhaps unsurprising that the ability of Salmon to detect and accu-

rately quantify expressed isoforms increases as the number of reads increases. More

surprisingly, the precision of isoform detection and Spearman’s Rho peak at around

2 million reads then decrease as the number of reads further increase. To investigate

this result further, I decided to focus on the precision of isoform detection. The

precision is defined as:

Precision =
NumberOfTruePositives

NumberOfTruePositives+NumberOfFalsePositives

Where I define a true positive as an isoform which is called as expressed by the

isoform quantification tool which is expressed in the ground truth, and a false pos-

itive as an isoform which is called as expressed by the isoform quantification tool

which is not expressed in the ground truth. As the precision depends on the num-

ber of true positives and false positives, I investigated the relationship between the

number of true and false positives and the read number. I found that the number

of true positives plateaus over the range of read numbers considered in my experi-

ment whereas the number of false positives does not (Figure 2.15). Thus, the peak

in the precision is a consequence of the number of false positives increasing more

rapidly than the number of true positives at high read numbers. The slower rate of

increase in the number of true positives with increasing read numbers is most likely

a consequence of the plateau in the number of expressed isoforms at high read num-

bers in the simulated data (Figure 2.16). Note that RSEM generates ground truth

expression measures by counting where each of the reads it simulates originated in

the transcriptome, thus unlike in real scRNA-seq data, there are no expressed iso-

forms from which no reads are captured. Nonetheless, it is true that a sequenced

cell must express a fixed number of isoforms and that the number of true positives
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will be limited at high read numbers by the number of isoforms it expresses. My

findings suggest there is an optimum number of reads to sequence per cell if the aim

of the experiment is isoform detection, and that the optimum number may be partly

determined by the number of isoforms expressed by the cell.
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2.3 Discussion

To date, scRNA-seq studies have mainly focussed on gene level quantification (Ste-

gle et al., 2015). This has partly been due to uncertainty over how best to perform

isoform quantification in scRNA-seq. In addition, there has been uncertainty over

whether the results obtained would be meaningful due to the low read coverage com-

pared with bulk RNA-seq. My analyses have demonstrated that Kallisto, Salmon,

Sailfish and RSEM can accurately detect and quantify isoforms in scRNA-seq to

nearly the same accuracy as bulk RNA-seq data, provided the datasets have a rea-

sonably high number of reads per cell. For simulated data based on Drop-seq, the

performance of isoform quantification tools was too poor to make the results of

performing isoform quantification worthwhile. Due to the low precision of isoform

detection, this problem cannot be overcome by incorporating information from a

large number of cells. It is possible that increasing the number of reads sequenced

per cell for Drop-seq protocols would improve the performance of isoform quantifi-

cation tools, although the short reads and 3’ coverage bias are likely to ensure that

accurate quantification remains challenging.

A potential limitation of my benchmark is that we might expect that the degree

of cellular heterogeneity might differ between quiescent B lymphocytes, mESCs and

retinal bipolar cells, potentially confounding the comparison of the three sequencing

technologies. As the benchmark is based on a comparison within each simulated cell

between its ground truth expression and quantification tool expression estimates,

I would expect structural differences in the real datasets to be a relatively minor

confounder. The confounder could be removed by repeating the benchmark with a

cell population that was sequenced using several different sequencing technologies.

A systematic investigation found that the number of cells sequenced has no per-

ceptible impact on the performance of isoform quantification. I find that the precision

of isoform detection peaked in my simulations at around 1-2 million reads per cell.

I hypothesise that this could occur because that the number of expressed isoforms

in my simulated data does not increase substantially beyond 2 million reads per

cell, and the majority of expressed isoforms are already called as expressed at 2 mil-
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lion reads. Consequently, beyond 2 million reads per cell, it is not possible for the

number of true positives to increase much further, whereas the number of false pos-

itives continues to increase. The position of the peak at 1-2 million reads per cell is

possibly an RSEM simulation artefact, as it likely occurs due to RSEM not substan-

tially increasing the number of isoforms expressed per gene per cell beyond 2 million

reads per cell. However, it is a fact cells express a finite number of isoforms, thus I

would predict that the precision of isoform detection will also peak at a particular

read depth in real scRNA-seq data. The position of the peak would depend on the

number of isoforms expressed by each cell, so consequently might vary between cell

types and species. This observation is highly relevant when analysing very deeply

sequenced scRNA-seq data, as it predicts that an increasing proportion of detected

isoforms and genes will be false positives at very high read depths.

In addition to benchmarking isoform quantification for scRNA-seq, I perform an

equivalent benchmark for bulk RNA-seq. I find that the performance of most isoform

quantification tools is slightly worse for scRNA-seq compared with bulk, but that the

difference is small. The cost in performance using scRNA-seq compared with bulk

RNA-seq for isoform quantification is therefore low. However, it should be noted that

this benchmark has evaluated the ability of isoform quantification tools to correctly

assign the reads present in an scRNA-seq experiment to the isoforms they originated

from. As a major technical issue with scRNA-seq is failure to capture reads from

a high proportion of expressed transcripts (Vallejos et al., 2017), it is likely that

in practice, many expressed isoforms will be missed by isoform quantification tools

when run on scRNA-seq data due to a lack of evidence in the captured reads that

the isoform was expressed. However, the extremely high recall of all the isoform

quantification tools considered in this benchmark means that the overwhelming ma-

jority of isoforms from which reads are captured will be called as expressed. More

problematic is the relatively low precision of isoform detection, as a consequence of

which around one in six isoforms called as expressed in deeply sequenced scRNA-seq

datasets will be false positives, even for the best performing tools.

Whilst my analysis has demonstrated that existing tools can accurately detect

and quantify isoforms for scRNA-seq, no tool performed perfectly. The tools bench-
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marked here were designed for use with bulk RNA-seq, and it is plausible that future

tools designed to perform isoform quantification specifically for scRNA-seq could per-

form better. I found that the tools benchmarked in this study tended to have a higher

recall than precision of isoform detection. Therefore, it is likely the performance

of isoform quantification tools designed for scRNA-seq data could be improved by

making the tools more conservative in calling isoforms as expressed relative to tools

designed for use on bulk data. In addition, I found that Spearman’s rho increased

when lowly expressed isoforms with a high number of dropouts were removed from

the analysis. Thus, it is likely that attempts to incorporate the effects of single cell

specific technical noise such as dropouts would improve the performance of isoform

quantification tools on scRNA-seq. An open question for isoform quantification in

scRNA-seq is whether incorporating information from Unique Molecular Identifiers

(UMIs) into isoform expression estimates could improve accuracy of quantification.

Whilst UMI information could reduce the effects of PCR amplification noise (Islam

et al., 2014), UMI based protocols tend to exhibit significant coverage bias, poten-

tially making isoform quantification challenging (Grün and van Oudenaarden, 2015).

If UMI based protocols could be combined with long read sequencing technologies,

this problem could potentially be overcome.

2.4 Conclusions

For high-quality simulated scRNA-seq datasets with a high number of reads/cell,

RSEM, Kallisto, Salmon, and Sailfish can accurately detect and quantify isoform

expression. Isoforms with a high number of dropouts appear to be relatively chal-

lenging to quantify, possibly because such isoforms are often lowly expressed. In my

benchmark of bulk RNA-seq, I discover the performance of most isoform quantifica-

tion tools is slightly worse for scRNA-seq compared with bulk, but that the difference

is small.

Taken together, my findings show that isoform quantification is possible with

scRNA-seq for SMARTer and SMART-seq2 data. As single cells do not generally

express all of the isoforms seen at the population level, scRNA-seq may eventu-
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ally provide advantages over bulk RNA-seq for isoform quantification by essentially

deconvoluting the problem of isoform quantification. Future isoform quantification

tools designed explicitly for scRNA-seq could improve on the performance of existing

tools by being more conservative in calling isoforms as expressed, and by explicitly

modeling the technical noise inherent to scRNA-seq.
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3

Attempts to Determine How Many

Isoforms Are Produced per Gene

per Cell Give Uninterpretable

Results.

Science, my boy, is made up of mistakes, but they are mistakes which it is

useful to make, because they lead little by little to the truth.

– Jules Verne, Journey to the Centre of the Earth(Verne, 1864)

3.1 Introduction

In the previous chapter, I demonstrated that Kallisto, Salmon, Sailfish and RSEM

perform almost as well when run on scRNA-seq as when run on bulk RNA-seq.

This is an exciting result, because it suggests that existing isoform quantification

software performs sufficiently well on scRNA-seq to theoretically enable alternative

splicing to be studied using scRNA-seq data. In this chapter, I therefore design a

series of experiments to answer a basic biological question related to splicing using

scRNA-seq.
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‘How many isoforms does a gene produce per cell’ is a fundamental question in

molecular biology, yet for most genes we do not have an answer to this question. In

addition to being of interest to basic biologists, establishing how isoform expression is

regulated at a cellular level could potentially be of therapeutic relevance to the many

patients suffering from diseases in which splicing has been implicated. If insight into

splicing regulation at a cellular level could be gained from scRNA-seq data, a far

higher number of genes could be studied at much lower cost than would be possible

using lower throughput approaches such as smFISH. In an attempt to shed some light

on how isoform expression is regulated in cells, I designed a series of experiments

investigating isoform number in individual cells using scRNA-seq. Unfortunately, my

main conclusion from these experiments was that without a better understanding of

the technical noise associated with scRNA-seq, it is often not possible to distinguish

between genuine splicing behaviour and technical noise in individual cells.

Some of the work presented in this chapter has been published, consequently

some passages have been quoted verbatim from the following sources: (Westoby

et al., 2018a,b, 2019). Additionally, some figures have been reproduced from the

aforementioned sources.

3.2 Results

3.2.1 For genes which express two isoforms in bulk RNA-

seq, usually only one isoform is detected per cell in

scRNA-seq.

To determine whether individual cells express all or only some of the isoforms seen

in a population of cells, I consider genes which have two isoforms, both of which are

expressed in the BLUEPRINT B lymphocyte or in the Kolodziejczyk et al. ES cell

bulk RNA-seq data. I then determine how many isoforms are expressed from these

genes in the corresponding scRNA-seq data. Kallisto was used to perform isoform

quantification for the bulk and single-cell data as it performed well in both my bulk
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RNA-seq and scRNA-seq benchmarks.

For genes which express two isoforms in bulk RNA-seq data, I first consider if

zero, one, or two isoforms are detected in single cells. For most genes which express

two isoforms in the bulk RNA-seq, neither isoform is detected in most cells in the

scRNA-seq (Figure 3.1A & 3.2A). A biological interpretation could be that the gene

expression detected in bulk RNA-seq reflects heterogeneous gene expression at a

cellular level. However, an arguably more realistic technical interpretation is that

technical dropouts are prevalent in scRNA-seq (Kharchenko et al., 2014; Marinov

et al., 2014; Svensson et al., 2017; Islam et al., 2014) and consequently I fail to detect

expressed genes in many cells. Of course, the two explanations are not necessarily

exclusive. It is possible that there is both heterogeneous gene expression, and that I

fail to detect gene expression in many cells due to dropouts.

In cells where gene expression is detected, it is more common to detect one rather

than two isoforms. To investigate this further, I consider the percentage of cells in

which both of the isoforms expressed in the bulk RNA-seq data are detected. I

find that for the majority of genes, both isoforms are detected in no or very few

cells; however, for a minority of genes in both the BLUEPRINT B lymphocytes and

Kolodziejczyk et al. ES cells, both isoforms are detected in a high percentage of cells

(Figure 3.1B & 3.2B). There are more genes for which both isoforms are detected

in the Kolodziejczyk et al. ES cells compared to the BLUEPRINT B lymphocytes.

This may partly reflect the higher number of cells and the higher number of reads

per cell in the Kolodziejczyk et al. ES cells, possibly enabling better detection

of lowly and/or infrequently expressed isoforms. In addition, the globally elevated

transcription rates in ES cells relative to other cell types might lead us to expect

that expression of multiple isoforms from a single gene would be more common in

ES cells (Efroni et al., 2008), especially compared to quiescent and transcriptionally

inactive B lymphocytes.
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Figure 3.1: Investigation into how many isoforms are expressed per cell in the scRNA-
seq data for genes which express exactly two isoforms in bulk data. The BLUEPRINT
B lymphocyte (left) and the Kolodziejczyk et al. ES cell (right) bulk RNA-seq
data are shown. The B lymphocyte graphs shown here are from the first biological
replicate of the BLUEPRINT male B lymphocyte bulk RNA-seq; equivalent graphs
for the second and third BLUEPRINT male B lymphocyte biological replicates can
be found in Figure 3.2. A Number of genes which express two isoforms in the
bulk RNA-seq data expressing zero, one or two isoforms in each cell in the scRNA-
seq data. B Histogram of the percentage of cells which express both the isoforms
detected in the bulk RNA-seq data. C Relationship between the percentage of cells
which express both the isoforms detected in the bulk RNA-seq. The y axis represents
the log transformed parent gene expression, found by summing the expression of the
two isoforms. Spearman’s rho is 0.623 for the BLUEPRINT B lymphocytes and
0.795 for the Kolodziejczyk et al. ES cells. Points are coloured by density. Note that
the B lymphocyte replicates appear extremely similar because the replicates refer
to bulk RNA-seq replicate samples. The same scRNA-seq B lymphocyte dataset is
used each time.



Figure 3.2: Investigation into how many isoforms are expressed per cell in the scRNA-
seq data for genes which express exactly two isoforms using the second (left) and
third (right) biological replicates for the BLUEPRINT B lymphocyte bulk RNA-
seq data. A: Number of genes which express two isoforms in the bulk RNA-seq
data which express zero, one or two isoforms in each cell in the scRNA-seq data.
B: Histogram of the percentage of cells which express both the isoforms detected
in the bulk RNA-seq data. C: Relationship between the percentage of cells which
express both the isoforms detected in the bulk RNA-seq. The y axis represents the
log transformed parent gene expression, found by summing the expression of the two
isoforms. Spearman’s rho is 0.625 for replicate 2 and 0.626 for replicate 3. Points
coloured by density. Note that the B lymphocyte replicates appear extremely similar
because the replicates refer to bulk RNA-seq replicate samples. The same scRNA-seq
B lymphocyte dataset is used each time.



Finally, I ask whether more highly expressed genes are more likely to express

multiple isoforms. I find a positive correlation between gene expression and the

percentage of cells in which both isoforms are detected (Figure 3.1C & 3.2C). The

observation that in scRNA-seq, it is more common to detect multiple isoforms in

individual cells for highly expressed genes relative to lowly expressed genes is not

new (Zhao et al., 2016; Marinov et al., 2014). Marinov et al. proposed that this

reflects a biological phenomenon and that more highly expressed genes on average

undergo more alternative splicing and produce more isoforms in individuals cells

compared to lowly expressed genes (Marinov et al., 2014). However, there is also a

potential technical explanation. The probability of a transcript becoming a dropout

is inversely proportional to how highly expressed that transcript is (Kharchenko

et al., 2014). Consequently, if isoform expression was identical in all cells, we would

expect to be able to detect highly expressed isoforms in a higher proportion of cells

and lowly expressed isoforms in a lower proportion of cells. It is likely that many

isoforms from highly expressed genes are themselves highly expressed. Therefore, one

explanation for the correlation between magnitude of gene expression and percentage

of cells in which both isoforms are detected is that the probability of detecting both

isoforms increases as gene expression increases. In other words, it is possible that

lowly expressed genes produce both isoforms in individual cells, but the probability

of dropout is so high that we fail to detect them.

3.2.2 A novel simulation approach suggests that Tbx3, Klf4

and Pou5f1 are differentially spliced in mESCs cul-

tured in different conditions.

The results shown in Figure 3.1 & 3.2 indicate that for genes where two isoforms are

detected in bulk RNA-seq, it is rare to detect both isoforms in scRNA-seq, but more

common for highly expressed genes. Without knowing how to appropriately correct

for dropouts, it is challenging if not impossible to distinguish whether this reflects

biological reality or technical noise.

I rationalised that a different approach, in which dropouts were explicitly ac-
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counted for, was required to analyse alternative splicing using scRNA-seq. I there-

fore designed a novel simulation based approach. In my approach, a gene of interest

is selected and the total number of detected isoforms over an entire real scRNA-seq

dataset, N , is established. I then simulate N scenarios. In the first scenario, I simu-

late a situation in which 1 isoform is expressed from the gene of interest in all cells.

In the second scenario, I simulate a situation in which 2 isoforms are expressed in

all cells, and so on up to the Nth scenario, where N isoforms are expressed in all

cells. Importantly, in each scenario, I simulate dropout events using a Michaelis-

Menten model developed by Andrews and Hemberg (Andrews and Hemberg, 2018a),

and simulate quantification errors using error rates estimated from my benchmark in

chapter 2. I record the number of detected isoforms in each cell after dropouts and

quantification errors are simulated, then find the mean number of isoforms detected

across all cells. I then repeat this process thousands of times to generate distribu-

tions of the mean number of isoforms detected per cell when n in range 1:N isoforms

are expressed per cell. This process is illustrated in Figures 3.3 and 3.4.

The distributions of the mean number of isoforms detected per cell generated

by my simulations can be considered to be null distributions - they are the distri-

butions of the mean number of isoforms detected per cell if exactly n isoforms are

expressed in every cell, assuming that I am modelling dropouts, isoform choice and

quantification errors appropriately. Onto these distributions, I draw a vertical black

line representing the mean number of isoforms detected per cell in the real data. If

the black line falls to the right of the distribution for n isoforms, or into the 2.5%

largest values of the distribution, my simulation model predicts that cells produce

significantly more than n isoforms per cell in reality. If the black line is to the left

of the n isoform distribution, or in the 2.5% lowest values of the distribution, my

model predicts that cells produce significantly less than n isoforms per cell. If the

black line falls into the middle 95% of values of the n isoform distribution, my model

predicts that cells produce n isoforms per cell.

To test the predictive ability of my model, I returned to the Kolodziejczyk et

al. ES cell dataset. The mESCs in this dataset were cultured under three different

cuture conditions (Kolodziejczyk et al., 2015). One culture condition consisted of
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Figure 3.3: Schematic of my simulation approach. The final output is a graph show-
ing N distributions, each corresponding to the mean number of isoforms detected
when n isoforms are expressed per gene per cell. The black line shown on the graph
is the mean number of isoforms detected per gene per cell in the real data - in this
case, the mean number of isoforms detected in the real data is consistent with two
isoforms being expressed in every cell.
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Figure 3.4: An example of the output at each stage of my simulation approach.
For example, simulated Cell 1 expresses the short isoform from our gene of interest.
However, the short isoform is not detected due to a dropout event. A quantification
error then occurs, leading to the long isoform being detected, despite the long isoform
never having been expressed in Cell 1.

serum + LIF, which I will refer to as the ‘serum’ culture condition, one culture con-

dition was 2i + LIF, which I will refer to as ‘standard 2i’, and one culture condition

was a2i + LIF, which I will refer to as ‘a2i’. It is known that the morphology and

transcriptional properties of mESCs can substantially differ depending on the condi-

tions that they are cultured in (Morgani et al., 2017; Marks et al., 2012). In addition,

it has been observed that the expression of some pluripotency factors is more het-

erogeneous in mESCs cultured in serum/LIF than in mESCs cultured in 2i (Toyooka

et al., 2008; Chambers et al., 2007). It would be interesting to establish whether

key players in the pluripotency network are differentially spliced when mESCs are

cultured in different conditions. If differential splicing is occurring, it could partly

explain the morphological and transcriptional differences that have been observed

between culture conditions.

To investigate whether key players in the pluripotency network are differentially

spliced between mESC culture conditions, I applied my model to 15 genes implicated

in playing a role in maintaining pluripotency (see Methods chapter for a complete

list). These 15 genes were chosen as a starting point to this study due to their well
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established role in the pluripotency network. Of these 15 genes, my model suggested

that 7 genes (Klf4, Pou5f1, Tbx3, Jarid2, Myc, Stat3 and Tcf3) produced differing

numbers of isoforms depending on culture condition (Figures 3.5-3.11). Of these

7 genes, 4 genes (Jarid2, Myc, Stat3, Tcf3) had a very large number of detected

isoforms (Figures 3.8-3.11). I would expect isoform quantification to be more error

prone when genes produce a very large number of similar isoforms, and therefore have

less confidence in my model’s predictions for these genes. Consequently, I decided to

focus on the 3 remaining genes (Tbx3, Klf4 and Pou5f1) for which six or less isoforms

were detected as candidates for differential splicing between culture conditions.

89



A: a2i

B: Serum

C: Standard 2i

Figure 3.5: Simulation results for Klf4 gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line
on each plot represents the mean number of isoforms detected per cell in the real
data.
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A: a2i

B: Serum

C: Standard 2i

Figure 3.6: Simulation results for Pou5f1 gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line on
each plot represents the mean number of isoforms detected per cell in the real data.
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A: a2i

B: Serum

C: Standard 2i

Figure 3.7: Simulation results for Tbx3 gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line on
each plot represents the mean number of isoforms detected per cell in the real data.
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Figure 3.8: Simulation results for Jarid2 gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line on
each plot represents the mean number of isoforms detected per cell in the real data.
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A: a2i

B: Serum

C: Standard 2i

Figure 3.9: Simulation results for Myc gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line
on each plot represents the mean number of isoforms detected per cell in the real
data.
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Figure 3.10: Simulation results for Stat3 gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line on
each plot represents the mean number of isoforms detected per cell in the real data.
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Figure 3.11: Simulation results for Tcf3 gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line on
each plot represents the mean number of isoforms detected per cell in the real data.
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3.2.3 My novel simulation approach makes unlikely predic-

tions.

An ideal means of validating my model’s predictions would be to carry out smFISH

to resolve the number of isoforms produced in individual cells. However, resolv-

ing between isoforms using smFISH is not trivial, and the experiments would take

some time to carry out. Before arranging such experiments, I decided to carry out

additional bioinformatics experiments to search for further evidence of differential

splicing between culture conditions.

If differential splicing is occurring between culture conditions, I would expect the

proportion of counts allocated to each isoform to differ between conditions. To test

whether this is the case for our three candidate genes, I have plotted the number

of counts allocated to each isoform from Tbx3 (Figure 3.12 & 3.13), Klf4 (Figure

3.14 & 3.15) and Pou5f1 (Figure 3.16 & 3.17). Although the number of counts

allocated to each isoform does appear to systematically differ between culture con-

dition, reflecting differential gene expression and/or library size differences, I can

see no evidence that the number of isoforms produced differs between culture con-

ditions. For example, in Figure 3.12, more counts are systematically mapped to

Tbx3 in the a2i and standard 2i culture conditions compared to serum. However,

there is good evidence of expression of three isoforms (ENSMUST00000202034.1,

ENSMUST00000121021.7 and ENSMUST0000018748.8) in all three culture condi-

tions and little detection of ENSMUST00000079719.10, ENSMUST00000145647.1

and ENSMUST00000154680.1. This appears to contradict my model’s prediction

that 3-4 Tbx3 isoforms are expressed in a2i, 1-2 isoforms are expressed in serum and

4-5 isoforms are present in standard 2i. It is of course possible that more isoforms

are produced across a group of cells than in individual cells, but my model’s pre-

dictions that more isoforms are produced in individual cells than can be detected

across a group of cells are less plausible. In Figure 3.13, I investigated how many

Tbx3 isoforms could be detected in the matched bulk RNA-seq data, and find good

evidence that three isoforms are produced in all three culture conditions, further call-

ing into question my model’s prediction that more than three isoforms are produced
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in some cells. Similarly, in Figures 3.14 - 3.17 there is good evidence of expression

of one isoform in all three culture conditions for Klf4 and Pou5f1 in both the bulk

and scRNA-seq data, despite my model predicting substantially more isoforms being

produced in individual cells. Based on these results, I am forced to conclude that as

my model currently stands, it cannot make reliable predictions about the number of

isoforms produced in individual cells.

Figure 3.12: Boxplots of scRNA-seq counts mapping to each Tbx3 isoform in the

three culture conditions. Points and boxplots are coloured by culture condition.

98



Figure 3.13: Plots of matched bulk RNA-seq counts mapping to each Tbx3 isoform

in the three culture conditions. Points are coloured by culture condition.
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Figure 3.14: Boxplots of scRNA-seq counts mapping to each Klf4 isoform in the

three culture conditions. Points and boxplots are coloured by culture condition.
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Figure 3.15: Plots of matched bulk RNA-seq counts mapping to each Klf4 isoform

in the three culture conditions. Points are coloured by culture condition.
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Figure 3.16: Boxplots of scRNA-seq counts mapping to each Pou5f1 isoform in the

three culture conditions. Points and boxplots are coloured by culture condition.
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Figure 3.17: Plots of matched bulk RNA-seq counts mapping to each Pou5f1 isoform

in the three culture conditions. Points are coloured by culture condition.
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3.3 Discussion

I began this chapter by investigating how many isoforms are detected in scRNA-seq

for genes where two isoforms are detected in matched bulk RNA-seq in a dataset of

mESCs and quiescent B lymphocytes. I found that it is rare to detect both isoforms

and common to fail to detect gene expression at all in many cells. However, both

isoforms were detected for some genes, and it was more common to detect both

isoforms in individual cells if the parent gene was highly expressed. Without a clear

idea of how best to correct for dropouts, it is impossible to state to what extent these

observations reflect biological facts, and to what extent they are consistent with every

cell producing both isoforms but few isoforms being detected due to dropouts.

I attempted to correct for this by developing a simulation based model for pre-

dicting how many isoforms are produced from a gene of interest in individual cells.

I explicitly simulated dropouts using a popular model for dropout probability (An-

drews and Hemberg, 2018a). However, my model made some questionable predic-

tions, most notably that more isoforms were produced per cell than could be detected

across all cells. This is not entirely impossible if the rate of dropouts is so high that

we almost entirely fail to detect some expressed isoforms across a population of cells.

However, that we detect fewer isoforms than my model predicts are produced in the

matched bulk RNA-seq data makes the dropout hypothesis unlikely. I believe the

most likely explanation is that my model is not making accurate predictions, sug-

gesting that the model needs to be refined. Identifying how best to refine my model

is not trivial. Possible issues with my model include the following:

1. My model might be sensitive to library size.

2. I might not be modelling dropouts sufficiently accurately.

3. In reality, different cells might produce different numbers of isoforms. This

behaviour is not captured in my simulations.

4. I might not be modelling quantification errors sufficiently accurately.
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5. I might not be modelling the process of isoform choice within individual cells

accurately.

Some of these issues are more straightforward to address than others. Incremen-

tally tweaking my model, and probably making it increasingly complex, is likely to

eventually generate a model that generates plausible seeming predictions. However,

whether the model that is eventually generated has any actual predictive power or

biological relevance is uncertain. More generally, I am concerned that tweaking my

model until it produces results that I like is not a very scientific way to develop a

predictive model for the number of isoforms produced per gene per cell. A small

number of studies have used smFISH to investigate the number of isoforms produced

per gene per cell (Velten et al., 2015; Ciolli Mattioli et al., 2019; Waks et al., 2011),

but this is not a large or comprehensive enough ground truth dataset to facilitate a

machine learning approach to solve this problem. If more smFISH data resolving the

number of isoforms produced per gene per cell were generated, a machine learning

approach might become more feasible.

Unfortunately, I lack the skills and time necessary to create a large smFISH

dataset, so a different approach is required. The major issue underlying my list of

possible modelling issues is that as a field, we do not have a sophisticated under-

standing of the technical noise that is present in scRNA-seq data. We are aware that

technical noise, in the form of dropouts, quantification errors, batch effects, PCR

amplification bias and other sources, exists. However, the extent to which these

different sources of technical noise confound alternative splicing analyses and how

best to correct for these confounders is not known. In the next chapter, I attempt

to start solving this problem. I take another simulation based approach in which

I vary the amount of technical noise in scRNA-seq data and investigate what the

biggest confounders are when studying alternative splicing. After identifying the

major confounders, I propose solutions that could allow the field to overcome these

confounders and enable accurate alternative splicing analyses using scRNA-seq.
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3.4 Conclusions

Intriguing patterns of isoform expression exist in scRNA-seq data, but establishing

to what extent these patterns are biologically real requires a more sophisticated

understanding of the technical noise that exists in scRNA-seq. I will investigate the

extent to which technical noise confounds splicing analyses in scRNA-seq in the next

chapter.
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4

Obstacles to Detecting Isoforms

Using Full-Length scRNA-seq

Data.

Negative results are just what I want. They’re just as valuable to me as

positive results. I can never find the thing that does the job best until I find

the ones that don’t.

– Attributed to Thomas Edison

Introduction

Thus far in my thesis, I have established that although software to accurately quan-

tify isoforms using scRNA-seq data exists, it remains challenging to analyse splicing

using scRNA-seq data due to uncertainty over how to correct for the large amounts of

technical noise present. To begin to understand how to correct for confounding fac-

tors in scRNA-seq to enable splicing analyses, we first need to establish what factors

are actually confounding our analyses. For example, I hypothesised in the previ-

ous chapter that technical dropouts could be confounding my splicing experiments.

Whilst it seems reasonable to suppose that scRNA-seq’s low capture efficiency might
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prevent us from accurately detecting the number of isoforms expressed in individual

cells, to the best of my knowledge this hypothesis has never been systematically

tested. Consequently, the extent to which dropouts confound splicing analyses using

scRNA-seq data is not known. The same is true for other sources of technical noise

associated with scRNA-seq.

In this chapter, I take a novel approach to investigate what confounders are

present when studying splicing using scRNA-seq. I take real scRNA-seq datasets and

select genes for which four isofoms are detected. I then use these genes to simulate

the following four scenarios: 1) all cells express one isoform per gene per cell, 2) all

cells express two isoforms per gene per cell, 3) all cells express three isoforms per gene

per cell, and 4) all cells express four isoforms per gene per cell. Importantly, in each

scenario I explicitly simulate dropout events and quantification errors. I then use

the simulated output of each scenario to ask two questions. Firstly, to what extent

is it possible to distinguish between these global differences in alternative splicing

using scRNA-seq? And secondly, what should be done to enable more accurate

splicing analysis with scRNA-seq? I find that dropouts are a major confounder when

attempting to study alternative splicing using scRNA-seq, whereas quantification

errors are a much lesser confounder. I find that different models of isoform choice

meaningfully impact on my simulation results, indicating that isoform choice may

need to be considered in future splicing analyses.

The work presented in this chapter has been released on bioRxiv, consequently

some passages have been quoted verbatim from the following source: (Westoby et al.,

2019). Additionally, some figures have been reproduced from the aforementioned

source. At the time of writing, this work is in revision for Genome Biology.

4.1 Results

A detailed description of my simulation approach can be found in the Methods

chapter, a brief description is given here for convenience. My approach for the first

scenario, in which I simulate one isoform being expressed per gene per cell, is to first

identify genes for which the expression of exactly four isoforms is detected in a real
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scRNA-seq dataset. The reasoning for selecting genes which express four isoforms is

that four isoforms is a sufficiently large number of isoforms to be sufficient to study

a range of splicing behaviours. At the same time, four isoforms is sufficiently few iso-

forms that there are not substantial concerns about an increase in the quantification

error rate due to the presence of many isoforms sharing a high degree of sequence

identity.

In the second step, I randomly select one isoform based on a plausible model

of isoform choice for the first of the genes in the first cell in the simulated dataset.

For my default model of isoform choice, I choose the isoform based on a model of

alternative splicing described by Hu et al. (Hu et al., 2017). Third, I simulate

dropouts based on a Michaelis-Menten model described by Andrews and Hemberg

(Andrews and Hemberg, 2018a). Fourth, I simulate quantification errors based on

isoform detection error estimates based on work by Westoby et al. (Westoby et al.,

2018b). I repeat these four steps for every four isoform gene and cell in our simulated

dataset, then calculate the mean number of isoforms detected for that gene per cell.

The entire process described above is one complete simulation. I run 100 simulations

for each of our four scenarios, where each scenario corresponds to one, two, three or

four isoforms being expressed per gene per cell. I then plot the distributions of the

mean number of isoforms detected per gene per cell for each scenario. A schematic

of my simulation approach is displayed in Figure 4.1. Negative control models, in

which my simulations are repeated but with no dropouts and/or quantification errors

are simulated, can be found in Figures 4.2 - 4.4.

In Figures 4.5 & 4.6, I apply my simulation approach to a dataset of H1 and H9

human embryonic stem cells (hESCs) (Bacher et al., 2017). In this dataset, each

cell’s cDNA was split into two groups and sequenced at two different sequencing

depths, enabling me to directly compare our simulation results at different sequencing

depths without biological confounders. One group was sequenced at approximately

1 million reads per cell and the other group at approximately 4 million reads per cell

on average. My simulation results for the two H1 groups are compared side by side in

Figure 4.5A. My simulation results for the two H9 groups are shown in Figure 4.6A.

scRNA-seq experiments have been found to saturate in terms of the number of genes
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detected per cell at approximately 1 million reads per cell (Svensson et al., 2017;

Ziegenhain et al., 2017). However, I observe differences in the number of isoforms

detected per gene per cell at 1 and 4 million reads per cell, indicating that the

saturation depth may differ for gene and isoform level analyses. Next, I calculate

the fraction of overlap between the isoforms expressed in the ground truth and the

isoforms detected as expressed in our simulations. In Figures 4.5B & 4.6B, I show

the distributions of the mean fraction of overlap for each gene. I will refer to the each

gene’s mean fraction of overlap between isoforms expressed in the ground truth and

isoforms detected as expressed as the ‘overlap fraction’ hereafter in the text. The

mean overlap fraction is consistently higher at 4 million reads per cell compared to

at 1 million reads per cell, indicating that our ability to accurately detect isoforms

is improved at higher sequencing depths.

Figures 4.5 & 4.6 illustrate some of the difficulties associated with splicing analysis

in scRNA-seq. At both sequencing depths, the distributions of the observed mean

number of isoforms per gene per cell are shifted to the left of their true value. In

addition, the highest mean overlap fraction observed is less than 0.8, indicating that

even in a best case scenario, we fail to detect over 20% of the isoforms expressed in the

ground truth. These effects are less extreme, but still present, for the group sequenced

at approximately 4 million reads per cell compared to the group sequenced at 1

million reads per cell. This is consistent with the hypothesis that sequencing at higher

depth reduces the extent to which isoform number is underestimated. However, even

at approximately 4 million reads per cell our simulations suggest that scRNA-seq

substantially underestimates the mean number of isoforms per gene per cell for almost

all genes. A naive analysis of these two datasets would most likely underestimate the

number of isoforms expressed per gene per cell. This casts doubt on the biological

relevance of previous observations suggesting only one isoform was typically produced

per gene per cell, although admittedly the sequencing depth per cell was generally

much greater than 4 million reads per cell in those studies (for example, Shalek et

al. sequenced approximately 27 million reads per cell (Shalek et al., 2013)).
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Figure 4.1: Schematic of our simulation approach.
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Figure 4.2: Negative control model for H1 hESCs. In the simulation results displayed,
no dropouts or quantification errors were simulated. The simulation procedure was
otherwise unchanged.
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Figure 4.3: Negative control model for H1 hESCs. In the simulation results displayed,
no dropouts were simulated. The simulation procedure was otherwise unchanged.
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Figure 4.4: Negative control model for H1 hESCs. In the simulation results displayed,
no quantification errors were simulated. The simulation procedure was otherwise
unchanged.
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Figure 4.5: The effect of sequencing depth on isoform detection. A Distributions of
the mean number of isoforms detected per gene per cell for H1 hESCs whose cDNA
was split and sequenced at approximately 1 million reads per cell or 4 million reads
per cell on average. B Distributions of the overlap fraction. Black vertical lines
represent the mean value of the distributions.
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Figure 4.6: The effect of sequencing depth on isoform detection. A Distributions of
the mean number of isoforms detected per gene per cell for H9 hESCs whose cDNA
was split and sequenced at approximately 1 million reads per cell or 4 million reads
per cell on average. B Distributions of the overlap fraction. Black vertical lines
represent the mean value of the distributions.
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One hypothesis for why our ability to detect isoforms increases with increased

sequencing depth is that the rate of dropouts is reduced. In Figures 4.7A & 4.8A, I

investigate this hypothesis by plotting the distribution of the probabilities of dropout

for each isoform (p(dropout)), as estimated using the Michaelis-Menten equation

(Andrews and Hemberg, 2018a) (see Methods chapter). I find that the distribution

is skewed towards high probabilities of dropout for the group sequenced at around

1 million reads per cell. In contrast, the distribution for the group sequenced at

around 4 million reads per cell is more skewed towards low probabilities of dropouts.

This demonstrates that my estimated dropout probabilities are different at the two

sequencing depths, as expected.

Overall, the data in Figures 4.5 & 4.7A and in Figures 4.5 & 4.8A support the

hypothesis that when the rate of technical dropouts decreases, the accuracy of isoform

number estimation increases. However, as the dataset was only sequenced at two

depths, I only have two data points available to investigate my hypothesis. To extend

my investigation, I assume that the distributions of dropout probabilities observed in

Figures 4.7A & 4.8A can be modelled as Beta distributions. The Beta distribution is

parameterised by two values, α and β, and I find that it approximates the probability

distributions well (see bottom panels of Figures 4.7A & 4.8A). Therefore, I select five

values of α and β that generate differently shaped dropout distributions, as shown

in Figures 4.7B & 4.8B. I then perform five further simulation experiments. In

each simulation experiment, I sample our dropout probabilities from one of our Beta

distributions. The results of these experiments are shown in Figures 4.7C & D and

in Figures 4.8C & D.
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Figure 4.7: The impact of dropouts on isoform detection. A shows the distribution
of the probabilities of dropouts (p(Dropout)) in each group of H1 hESCs and an
approximation of these distributions using a Beta distribution. At 1 million reads
per cell, α = 1.31 and β = 0.74 in the approximated Beta distribution. At 4 million
reads per cell, α = 0.72 and β = 1.03 in the approximated Beta distribution. B
shows five Beta Distributions from which dropout probabilities were sampled from
in the simulations used to generate C and D. In C, the distribution of the mean
number of isoforms detected per gene per cell is shown for simulations in which one
isoform was produced per gene per cell. Each plot corresponds to a simulation in
which dropout probabilities were sampled from one of the distributions shown in B.
D shows the overlap fraction for each simulation. Plots shown in C & D are for H1
hESCs sequenced at 4 million reads per cell. Black vertical lines represent the mean
value of the distributions.



Figure 4.8: The impact of dropouts on isoform detection. A shows the distribution
of the probabilities of dropouts (p(Dropout)) in each group of H9 hESCs and an
approximation of these distributions using a Beta distribution. At 1 million reads
per cell, α = 1.31 and β = 0.74 in the approximated Beta distribution. At 4 million
reads per cell, α = 0.72 and β = 1.03 in the approximated Beta distribution. B
shows five Beta Distributions from which dropout probabilities were sampled from
in the simulations used to generate C and D. In C, the distribution of the mean
number of isoforms detected per gene per cell is shown for simulations in which one
isoform was produced per gene per cell. Each plot corresponds to a simulation in
which dropout probabilities were sampled from one of the distributions shown in B.
D shows the overlap fraction with the ground truth for each simulation. Plots shown
in C & D are for H9 hESCs sequenced at 4 million reads per cell.



In Figures 4.7C & 4.8C, I show the mean detected number of isoforms per gene

per cell for the scenario where each gene produces one isoform per gene per cell. As

I move from the top to the bottom of Figures 4.7C & 4.8C, the value of α decreases,

corresponding to scenarios where the probability of dropout is more frequently close

to zero. As α decreases, the distributions of mean detected isoforms per gene per

cell shift further to the right and closer to the true number of isoforms produced per

cell. In Figures 4.7D & 4.8D, I find that the mean overlap fraction increases as α

decreases, corresponding to the mean probability of dropout decreasing. I conclude

from Figures 4.7 C & D and from Figures 4.8 C & D that reducing the dropout rate

would likely improve the accuracy of splicing analyses performed using scRNA-seq.

4.1.1 Quantification errors are a relatively minor obstacle to

studying alternative splicing

A benchmark of isoform quantification softwares in full length coverage mouse scRNA-

seq datasets found that the error rate of many software tools was low and comparable

to bulk RNA-seq (Westoby et al., 2018b). This is encouraging, however it should be

noted that the error rate is likely to be substantially higher for non-model organisms

with less well annotated genomes than the mouse genome. As isoform quantification

is a key step of many scRNA-seq alternative splicing analysis pipelines, it would

be beneficial to understand how quantification errors impact our ability to study

alternative splicing, both when the error rate is high and when the error rate is low.

As my interest in this study is the detected number of isoforms per gene per cell,

I am only interested in quantification errors which lead to changes in the number of

isoforms detected. We simulate two types of quantification errors, false positives and

false negatives. In this context, a false positive occurs when an isoform is called as

expressed by the quantification software when there are no reads from that isoform.

Note that this means that if an isoform is expressed in a cell but no reads are captured

from it (i.e. a dropout), but the quantification software calls it as expressed, we

would define this as a false postive event. A false negative occurs when an isoform is

not called as expressed by the isoform quantification software when reads from that
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isoform are present. Based on my previous benchmark (Westoby et al., 2018b), I

estimate that the probability of false positive events (pFP ) is around 1% and that

the probability of false negative (pFN) events is around 4% (see Methods chapter).

In my simulations in Figure 4.9, I vary both of these probabilities in the range of

0% to 50% . Figure 4.9A shows how the mean number of isoforms detected per gene

per cell distributions changes as the probability of false positives and false negatives

alters when every gene expresses one isoform per cell. Importantly, even when the

probability of false positives and false negatives is zero, there are many genes for

which the mean number of detected isoforms per gene per cell is not equal to one,

the true number of expressed isoforms. This indicates that even if a perfect, 100%

accurate isoform quantification tool existed, there would still be substantial barriers

to studying alternative splicing using scRNA-seq. We suspect that the reason a 100%

accurate isoform quantification tool would underestimate the number of isoforms per

gene per cell is that isoform quantification tools usually only quantify the reads that

are present. Due to the high number of dropouts in scRNA-seq, many expressed

isoforms do not generate reads and thus would be called as unexpressed by a 100%

accurate isoform quantification tool, leading to an underestimate of the number of

isoforms present.

Unsurprisingly, increasing the probability of false positives causes an increase in

the mean number of detected isoforms, whilst increasing the probability of false neg-

atives causes the mean number of detected isoforms to decrease, as shown in Figure

4.9B. Somewhat counterintuitively, increasing the probability of false positives from

0.0 to 0.1 could be considered to ‘improve’ the accuracy of isoform detection by

shifting the distribution of the mean number of isoforms detected to slightly higher

values and away from zero. This is probably because slightly increasing the proba-

bility of false positives allows some dropout events to be detected. In Figure 4.10, I

investigate how the overlap fraction is affected by changes in the probability of false

positives and negatives. I find that the overlap fraction increases as the probabil-

ity of false positives increases, supporting the hypothesis that some dropout events

are ‘rescued’ by false positive events. However, I note that in addition to ‘rescuing’

some dropouts, many unexpressed isoforms are also called as expressed, as indicated
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by mean numbers of detected isoforms per gene per cell that are greater than one.

When the probability of false positives and false negatives are equally increased (the

diagonal of Figure 4.9A), the mean number of detected isoforms increases, suggesting

that the increased rate of false positives dominates over the increased rate of false

negatives. This is likely to be because more isoforms are unexpressed than are ex-

pressed, and thus there are more opportunities for false positive events than for false

negative events. Overall, I find that high probabilities of false positives and false

negatives decrease my ability to accurately detect expressed isoforms in scRNA-seq.

In Figure 4.9A, I showed that even when isoform quantification is 100% accurate,

we underestimate the number of expressed isoforms for many genes. One hypothesis

for why we are less able to detect isoforms in scRNA-seq data compared to in bulk

RNA-seq data is that the sequencing depth is typically lower. A lower sequencing

depth could mean that for many expressed isoforms, there are too few or no reads

that would allow the expressed isoform to be uniquely identified.

To investigate whether sequencing depth could explain the difference in our abil-

ity to detect isoforms in bulk and scRNA-seq, I first identified a matched bulk

and scRNA-seq dataset. The dataset I selected was a mouse Embryonic Stem Cell

(mESC) dataset in which mESCs were cultured in 2i + LIF media (Kolodziejczyk

et al., 2015). In the mESC dataset, each cell was sequenced to approximately 7 mil-

lion reads on average, whilst the matched bulk data was sequenced to approximately

44 million reads.

To determine whether sequencing depth was responsible for the difference in

our ability to detect isoforms in bulk and scRNA-seq, I randomly downsampled the

bulk mESC RNA-seq dataset to 7 million reads 50 times. Using the orginal, un-

downsampled bulk RNA-seq dataset as the ground truth, in Figure 4.11 I plotted

the mean overlap fractions for each gene in the downsampled bulk RNA-seq dataset

and the matched scRNA-seq dataset. I found that the mean overlap fraction was sig-

nificantly higher (p < 2.2x10−16, Welch two sample t-test) for the downsampled bulk

RNA-seq than for the matched scRNA-seq. This indicates that a lower sequencing

depth does reduce our ability to detect isoforms, but that this does not fully ex-

plain the reduction in ability to detect isoforms between bulk and scRNA-seq. One
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explanation for the reduction in ability to detect isoforms in scRNA-seq, over and

above the reduction expected due to reduced sequencing depth, is that there could

be heterogeneous isoform expression between individual cells. If this were the case,

using the isoforms detected in bulk RNA-seq as the ground truth would not be ap-

propriate. There are also potential technical explanations for the reduced ability to

detect isoforms using scRNA-seq. For example, the enzymatic reactions associated

with library preparation may have reduced efficiency when there is a lower amount

of starting material, as is the case for scRNA-seq. Determining to what extent het-

erogeneous isoform expression and technical factors are responsible for our reduced

ability to detect isoforms in scRNA-seq will require further study of cellular isoform

heterogeneity and the technical noise associated with scRNA-seq.
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Figure 4.9: The impact of quantification errors on isoform detection. A Distribu-
tions of the mean number of isoforms detected per gene per cell when one isoform
is expressed per gene per cell. The probability of false positives (pFP ) increases
from left to right and the probability of false negatives (pFN) increases from top to
bottom. The dataset shown is H1 hESCs whose cDNA was split and sequenced at
approximately 4 million reads per cell on average. B Summary plots of the average
of the mean number of isoforms detected per gene per cell when pFP , pFN , or pFP
and pFN are increased.
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Figure 4.10: The impact of quantification errors on isoform detection. Distributions
of the overlap fraction with the ground truth when one isoform is expressed per gene
per cell. The probability of false positives (pFP ) increases from left to right and
the probability of false negatives (pFN) increases from top to bottom. The dataset
shown is H1 hESCs whose cDNA was split and sequenced at approximately 4 million
reads per cell on average.
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Figure 4.11: Boxplots of the mean overlap for each gene in the downsampled bulk
and matched scRNA-seq datasets. The mean overlaps for each gene are overlaid on
the boxplots as black points. Plots shown for Kolodziejczyk et al. mESCs cultured
in standard 2i media + LIF (Kolodziejczyk et al., 2015).
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4.1.2 Different models of isoform choice meaningfully change

our simulation results

It is possible that different mechanisms of isoform choice at the cellular level could al-

ter our ability to correctly detect which isoforms are present in scRNA-seq. Because

there is uncertainty over the mechanism of isoform choice within single cells, I imple-

ment four different models of isoform choice in our simulations. I then ask whether

different models of isoform choice alter the mean number of detected isoforms per

gene per cell in our simulations.

I give a detailed description of how each of these models was implemented in

the Methods chapter, here I provide a brief description of each model and the ratio-

nale behind it. I first model the alternative splicing process as a type III Weibull

distribution, using a model described by Hu et al. (Hu et al., 2017). Based on ob-

servations about the molecular process of alternative splicing, Hu et al. suggested

that the process could be well modelled by an extreme value distribution, and they

found that a Weibull distribution best fits the expression levels of isoforms in bulk

RNA-seq. In my second implemented model, I attempt to infer the probability of

each isoform being ‘chosen’ to be expressed in a cell. I calculate the probability

of an isoform being chosen based on the observed probability of the isoform being

detected. My third model is identical to the second except that I allow the proba-

bility of an isoform being ‘chosen’ to vary between cells. I achieve this by sampling

the probability of an isoform being chosen from a Beta distribution, using a similar

approach as Velten et al. (Velten et al., 2015). In my final model, I choose a random

number between 0 and 1 for each isoform. The random number is assigned to be

that isoform’s probability of being chosen, weighted against the probabilities of the

gene’s other isoforms being chosen. For brevity, I will refer to these four models as

the Weibull model, the inferred probabilities model, the cell variability model and

the random model below.

Figures 4.12 & 4.13 show the distributions of the mean number of detected iso-

forms when one, two, three or four isoforms are expressed per gene per cell for each

model. Importantly, the distributions visibly differ between models. To quanti-
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tatively confirm this, I perform a K-sample Anderson-Darling test on each row of

graphs in Figures 4.12 & 4.13. I find that the distributions for 1, 2 and 3 isoforms

significantly differ between the isoform choice models (p<0.001, see Appendix 3 Ta-

bles for details). In contrast, the distributions for 4 isoforms have a p-Value of 1.0

(1 million reads) and 0.999999 (4 million reads), consistent with these distributions

originating from the same population. This is as expected, as in the 4 isoform simu-

lations all of the isoforms are picked, and thus we would not expect isoform choice to

matter. My qualitative and quantitative analyses indicate that different mechanisms

of isoform choice alter my ability to detect splice isoforms in scRNA-seq. Therefore,

a better understanding of the mechanism of isoform choice across the transcriptome

could be key to enabling splicing analysis using scRNA-seq data. Without knowing

how best to model isoform choice, my results suggest the presence of a substantial

confounder.

My simulation results when using the inferred probability model compared with

the cell variability model are almost identical. Given that the only difference between

these models is whether or not isoform preference is allowed to vary between cells,

this indicates that cellular heterogeneity in isoform preference does not change our

ability to detect isoforms under the inferred probability model. I perform a K-

sample Anderson-Darling test between the inferred probabilities and cell variability

models for each row of Figures 4.12 & 4.13, and I find that these distributions do

not significantly differ (see Appendix 3 Tables). I also observe that the results of

the random model of isoform choice look more like the inferred probability and

cell variability models than the Weibull model. This could be because the Weibull

model determines the probability of an isoform being chosen based on the rank of

that isoform, whereas all of the other models do not use a rank based approach.

These observations and the difficulty I have interpreting them illustrate the need for

a better understanding of how best to model isoform choice.

I hypothesise that the reason that different models of isoform choice differ in

ability to detect isoforms could be because some models of isoform choice prefentially

pick isoforms with a low probability of dropout, whereas other models do not exhibit

this preference. To investigate whether different models of isoform choice differ in
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their preference for picking isoforms with a low probability of dropout, in Figures

4.14-4.17, I plot the distributions of the probabilities of dropout for the isoforms

chosen when one, two, three or four isoforms are picked using each of our four models.

I would expect models with a preference for picking isoforms with a low probability

of dropout to have distributions of dropout probabilities more skewed towards zero

when small numbers of isoforms are chosen. When larger numbers of isoforms are

chosen, I would expect to observe less skewed distributions, because the model is

effectively forced to choose isoforms with higher probabilities of dropout due to a lack

of alternatives. In contrast, if a model had no preference for picking isoforms with

a low probability of dropouts, I would expect the distributions of the probabilities

of dropout to be identical regardless of whether one, two, three or four isoforms are

chosen.

In Figures 4.14-4.17, I find that only the Random model does not exhibit any

preference for choosing isoforms with a low probability of dropout. Of the Weibull,

inferred probability and cell variability models, the Weibull model has the dropout

probability distribution most skewed towards zero when one isoform is picked, in-

dicating that the Weibull model has the strongest preference for picking isoforms

with a low probability of dropout. The Weibull model also detects the highest mean

number of isoforms per gene per cell when one isoform is expressed in the ground

truth, consistent with the hypothesis that the difference in the performance of the

isoform choice models may be related to their preference for picking isoforms with a

low probability of dropout.

If isoform detection ability of the isoform choice models is mainly determined by

their preference for picking isoforms with a low probability of dropout, I would expect

that if the probability of dropout was globally changed, it would alter the isoform

choice models’ abilities to detect isoforms. I investigate this in Supplementary Figure

4.18 by sampling dropout probabilities from the Beta distributions shown in Figure

4.7B. I find that more isoforms are detected by all isoform choice models when

dropouts are sampled from distributions that are more skewed towards zero. This

supports the hypothesis that choosing isoforms with a low probability of dropout

improves the ability of isoform choice models to accurately detect isoforms.
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Figure 4.12: Different models of isoform choice alter our ability to detect isoforms.
A Distributions of the mean number of isoforms detected per gene per cell for H1
hESCs sequenced at approximately 1 million reads per cell using the Weibull model
of isoform choice (Bacher et al., 2017; Hu et al., 2017). B shows the same distribu-
tions when the random model is used. C shows the distributions when the inferred
probabilities model is used. D shows the distributions when the cell variability model
is used. See the main text for a detailed description of each model. Equivalent plots
for the H9 datasets can be found in Appendix 3, Figures 9.3 & 9.5
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Figure 4.13: Different models of isoform choice alter our ability to detect isoforms.
A Distributions of the mean number of isoforms detected per gene per cell for H1
hESCs sequenced at approximately 4 million reads per cell using the Weibull model
of isoform choice. B shows the same distributions when the random model is used.
C shows the distributions when the inferred probabilities model is used. D shows the
distributions when the cell variability model is used. See the main text for a detailed
description of each model. Equivalent plots for the H9 datasets can be found in
Appendix 3, Figures 9.3 & 9.5
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Figure 4.14: Distributions of the probabilities of dropouts for the isoforms selected
by the Weibull model when one, two, three and four isoforms were picked by the
model.
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Figure 4.15: Distributions of the probabilities of dropouts for the isoforms selected
by the Random model when one, two, three and four isoforms were picked by the
model.
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Figure 4.16: Distributions of the probabilities of dropouts for the isoforms selected by
the inferred probabilities model when one, two, three and four isoforms were picked
by the model.
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Figure 4.17: Distributions of the probabilities of dropouts for the isoforms selected
by the cell variable model when one, two, three and four isoforms were picked by the
model.

135



Figure 4.18: Distributions of the mean number of isoforms detected per gene per cell
under different isoform choice models when dropout probabilities are sampled from
the Beta distributions in Figure 4.7B.
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4.1.3 Some models of isoform choice are more plausible than

others

In the previous section, I observed that our simulation results for the inferred proba-

bility and cell variability models were extremely similar. To investigate how general

my observation that allowing isoform preference to vary between cells does not alter

our simulation results is, I developed three additional models of isoform choice. In

the first model, the probability of selecting each isoform was sampled from a trun-

cated Normal distribution with a mean of 0.25 and a standard deviation of 0.06 in

each cell. In the second model, I sample the probability of selecting each isoform

from a Bernoulli distribution, in which the value 1 is chosen 25% of the time and the

value 0 is chosen 75% of the time in each cell. In the final model, the probability

of selecting each isoform is always 0.25 (the ‘p=0.25’ model). The three models are

illustrated in Figure 4.19A and additional details are given in the Methods chapter.

Under the Normal and the Bernoulli models, the probability of picking each isoform

varies between cells, whereas the probability of picking each isoform is constant be-

tween cells under the p=0.25 model. Importantly, although the distributions I am

sampling isoforms from have very different shapes, the mean probability of picking

each isoform is 0.25 for all three distributions.

In the second to fifth rows in Figure 4.19, I show the distribution of the mean

number of isoforms detected per gene per cell when we simulate one isoform being

expressed per gene per cell. There is no visible difference between my simulation

results in each row regardless of which model of isoform choice is used. This is sup-

ported by a non-significant result in a K-sample Anderson-Darling test (p = 0.998).

These findings are consistent with the hypothesis that my simulation results are un-

changed whether or not the model of isoform choice used allows cell variability in

isoform choice. I suggest that this is because we are reporting the mean number

of isoforms detected per gene per cell in our simulations. Across many cells and

rounds of simulation, the mean probability of selecting isoforms seems to determine

the shape of our simulation result distributions, whereas the higher moments of the

isoform choice probability distribution are apparently unimportant. Thus, includ-
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ing cell variability in our isoform choice model appears not to matter. For future

scRNA-seq studies in which the mean number of isoforms detected per gene per cell

is an important metric, I conjecture that there is no need to model cellular variabil-

ity in isoform choice, regardless of whether or not such variability exists in reality.

Of course, if future studies are interested in precisely what isoforms are present in

individual cells rather than a population mean, understanding whether or not cell

variability in isoform choice exists is likely to be important.

I have established that our ability to detect isoforms using scRNA-seq is severely

affected by the high rate of dropouts in scRNA-seq. Therefore, attempts to infer a

biologically meaningful model of isoform choice from scRNA-seq data are likely to

fail. However, I can make some general observations to help rule out certain models

of isoform choice. In Figure 4.20A, I have ranked isoforms by their mean expression

relative to other isoforms from the same gene (so for example, an isoform with rank

1 has the highest mean expression, an isoform with rank 2 has the second highest

mean expression, and so on). Unsurprisingly, we find that the most highly ranked

isoforms are substantially more highly expressed than lowly ranked isoforms. This is

consistent with the finding that many genes appear to have a ‘major’, more highly

expressed isoform, and one or more ‘minor’, less highly expressed isoform (Wang

et al., 2008; Gonzàlez-Porta et al., 2013). I suggest that this behaviour needs to

be represented in some way in future models of isoform choice, and models that do

not represent it (for example, our Random, Normal, Bernoulli and p=0.25 models)

are probably overly simplistic. In Figure 4.20B I rank isoforms by their probability

of dropout, where the isoform with the lowest probability of dropout compared to

other isoforms from the same gene has rank 1. I observe a very similar pattern

in which highly ranked isoforms have a substantially lower probability of dropout

relative to lowly ranked isoforms, further supporting the finding that ‘major’ and

‘minor’ isoforms exist for many genes. I find a similar pattern of results for the H9

hESCs and the H1 hESCs sequenced at 4 million reads, shown in Figures 4.21 - 4.23.
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Figure 4.19: Some models of isoform choice are more plausible than others. We model
the probability of picking any given isoform as a Normal distribution, a Bernoulli
distribution and a constant probability, all with the same mean (0.25) (top row of
graphs). In the following rows, I show the distributions of the mean number of
isoforms per gene per cell detected when each model of isoform choice is used. The
second row is H1 hESCs sequenced at 1 million reads, the third row is H1 hESCs
sequenced at 4 million reads, the fourth row is H9 hESCs sequenced at 1 million
reads and the fifth row is H9 hESCs sequenced at 4 million reads.
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Figure 4.20: A Histograms of mean isoform expression, ordered by isoform rank. B
Histograms of dropout probability, ordered by isoform rank. All plots shown are for
H1 hESCs sequenced at 1 million reads per cell.

Figure 4.21: A Histograms of mean isoform expression, ordered by isoform rank. B
Histograms of dropout probability, ordered by isoform rank. All plots shown are for
H1 hESCs sequenced at 4 million reads per cell.
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Figure 4.22: A Histograms of mean isoform expression, ordered by isoform rank. B
Histograms of dropout probability, ordered by isoform rank. All plots shown are for
H9 hESCs sequenced at 1 million reads per cell.

Figure 4.23: A Histograms of mean isoform expression, ordered by isoform rank. B
Histograms of dropout probability, ordered by isoform rank. All plots shown are for
H9 hESCs sequenced at 4 million reads per cell.
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4.1.4 A mixture modelling approach suggests genes for which

four isoforms are detected typically express around

three isoforms per cell

I ask whether my simulation based approach could shed any light on the biological

question of how many isoforms are expressed per gene per cell. To do this, I simulate

one, two, three and four isoforms being expressed per gene per cell and compare

the mean isoforms detected distributions to the distribution of isoforms detected per

gene per cell for genes for which four isoforms were detected in the real dataset (see

Figure 4.24A & B). I then approximate each distribution as a log normal distribution

and take a mixture modelling approach to estimate the mixing fraction for each of

our simulated distributions in the real distribution.

Figure 4.24C shows the mixing fractions found over 100 iterations of expectation

maximisation for H1 hESCs sequenced at approximately 1 million reads per cell. In

Figure 4.24C, the mixing fraction for the distribution corresponding to four isoforms

being expressed per gene per cell is over 90%. This suggests that genes detected to

express four isoforms in this dataset typically express four isoforms per gene per cell.

However, in Figure 4.24D, after 100 iterations of expectation maximisation for H1

hESCs sequenced at 4 million reads per cell, the distribution with the largest mixing

fraction is that corresponding to three isoforms per gene per cell. This suggests

that genes detected to express four isoforms in this dataset most often express three

isoforms per gene per cell. As the cDNA sequenced at 1 and 4 million reads per cell

came from the same population of cells, it is unlikely that both of these statements

are true. I propose several possible explanations for why we might observe this result.

First, I might be over-estimating the dropout rate at 1 million reads per cell. As

there is less information with which to infer the dropout rate at 1 million reads per

cell compared to at 4 million reads per cell, it is plausible that our estimates of the

dropout rate are less accurate at 1 million reads per cell. Whether or not there is a

systematic bias towards over-estimating the dropout rate at low sequencing depths

is unknown, and goes beyond the scope of this thesis.

Second, I have established that the model of isoform choice influences the outcome
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of our simulations but we do not know which model of isoform choice is correct.

Therefore I am (almost certainly) attempting to fit distributions that do not represent

reality. Figure 4.24 shows my mixture modelling approach using the Weibull model

of isoform choice. I note however that fitting our alternative models of isoform choice

achieves a similar result, in that the largest mixing fraction goes to four isoforms at

1 million reads per cell and to three isoforms or fewer at 4 million reads per cell (see

Appendix 3 Figures 9.8-9.14).

Third, the genes detected to express four isoforms differ between the sequencing

depths of 1 and 4 million reads. More genes are detected to express four isoforms at

4 million reads (1443 versus 1543 for the H1 cells, 1453 versus 1524 for the H9 cells).

Whilst this is not a dramatic difference, it does mean that the mixing fractions

between these two depths could genuinely differ, although this is unlikely to fully

explain the observed difference.

Fourth, I assume all genes for which four isoforms are detected in the real data

actually express four isoforms. Due to dropouts and quantification errors, this may

not be accurate, and some genes for which four isoforms are detected may express a

different number of isoforms in reality.

Fifth, my parameter estimation for quantification errors and isoform choice mod-

elling is not one hundred percent accurate. I cannot rule out that this could be

confounding the results of our mixture modelling approach.

My mixture modelling experiments broadly support the hypothesis that it might

be common for a cell to produce more than one isoform per gene. However, there

are clearly a lot of potential confounders in our approach, many of which relate to

uncertainty about dropouts, quantification errors and isoform choice. I note that

without having either a ground truth knowledge of how many isoforms are produced

from given genes in given cells, or good estimates of dropout probabilities, quantifi-

cation errors and isoform choice mechanism, it is hard to imagine how an accurate

and reliable estimate of the number of isoforms produced per gene per cell could be

obtained.
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Figure 4.24: Mixture models. A and B Distributions of detected isoforms per gene
per cell (blue) and log normal fitted distributions (orange) for H1 cells sequenced at
1 million reads per cell (A) or 4 million reads per cell (B) under the Weibull model.
C and D Mixing fractions vs iterations of expectation maximisation for 1 million
reads per cell (C) and 4 million reads per cell (D). Each coloured line represents the
distributions for one, two, three or four isoforms being simulated as expressed per
gene per cell. Equivalent plots for other isoform choice models and H9 cells can be
found in Appendix 3, Figures 9.8-9.14.



4.2 Discussion

In this study, I use a novel simulation based approach to ask whether it is possible

to study alternative splicing at the level of individual cells using scRNA-seq. In my

simulations, I simulate four scenarios in which every gene produces one, two, three or

four isoforms per gene per cell. That it is difficult to clearly distinguish between these

four situations emphasises the challenges associated with distinguishing the much

subtler and more complex patterns of alternative splicing that likely exist in reality.

Whilst scRNA-seq is capable of detecting some splicing events, the confounding

effect of dropouts means we are likely to underestimate the number of splicing events

occurring in individual cells.

I next ask what limitations must be overcome to make alternative splicing anal-

ysis possible using scRNA-seq. I find that reducing the probability of dropouts

improves our ability to accurately detect isoform number. Therefore, reducing the

frequency of dropouts could be one method to improve the accuracy of splicing anal-

yses in scRNA-seq. To some extent, this could be achieved by sequencing cells more

deeply, although I note that at 4 million reads per cell we still substantially underes-

timate isoform number in the H1 hESCs. Unfortunately, extremely deeply sequenced

datasets (eg. >10 million reads per cell) are likely to suffer more with PCR arte-

facts and potentially a higher false positive rate of isoform detection (Islam et al.,

2014; Kanagawa, 2003). Fundamentally, the low capture efficiency of scRNA-seq is

likely to be a consequence of a small amount of starting material. This can probably

be rescued to some extent by more PCR cycles and sequencing at higher depths,

however I would not expect this to fully solve the problem.

A more radical way to overcome confounders due to dropouts would be if scRNA-

seq technologies changed in some fundamental way that increased capture efficiency.

Whether this is feasible is unclear. Alternatively, I note that if we could estimate

the probability of dropout for each isoform more accurately, in theory it should

be possible to correct for confounding effects due to dropouts in splicing analyses.

Therefore, to enable splicing analysis using scRNA-seq, either the capture efficiency

of the technology needs to improve, or more work characterising the probability of
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dropouts at an isoform level is required.

In this chapter, I exclusively considered the impact of technical dropouts on

isoform detection. However, it is known that many genes are heterogeneously ex-

pressed, whether due to ‘bursty’ transcription or cell type specific expression (Urban

and Johnston, 2018). Ideally, the impact of biological dropouts on isoform detection

would be evaluated alongside the impact of technical dropouts. Unfortunately, to

the best of my knowledge, there is currently no reliable methodology to distinguish

between biological and technical dropouts. The goal of imputation approaches is

to identify and correct for technical dropouts, but a recent benchmark found that

imputation approaches often introduce a high rate of false positive results (Andrews

and Hemberg, 2018b). This indicates that the problem of distinguishing between

biological and technical dropouts is not yet solved. As it is not currently possible

to resolve between biological and technical dropouts, it is also challenging to accu-

rately model biological dropouts, as little is known about their prevalence and how

the frequency of biological dropouts might vary with genomic features. I hope that

future work in this space will enable more accurate identification of biological and

technical dropouts, thus enabling studies such as mine to be extended to account for

biological as well as technical dropouts.

Long read technologies could in theory enable 100% accurate isoform quantifica-

tion, if issues due to a high base calling error rate could be overcome (Fu et al., 2019).

However I find that even when no isoform detection errors occur, our ability to ac-

curately detect isoforms is very limited. Therefore, long read technologies or isoform

quantification software improvements alone are not sufficient to enable accurate splic-

ing analysis in scRNA-seq. In addition, I note that at present, the read throughput

of long read platforms is too low to enable meaningful isoform detection and quan-

tification across a large number of cells (Arzalluz-Luque and Conesa, 2018). A more

immediate way in which long read technologies could improve isoform quantification

accuracy is by using long read technologies to improve transcriptome annotations.

In many non-model organisms, a high proportion of isoforms are missing from ref-

erence transcriptomes, making the problem of isoform detection and quantification

substantially harder. Long read approaches combined with tissue specific transcrip-
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tome curation could dramatically improve isoform quantification accuracy in poorly

annotated organisms. More accurate isoform detection and quantification would in

turn improve our ability to gain biological insight from sequencing data collected

from these organisms.

A limitation of the methodology in this chapter is that my approach for simulating

quantification errors is very simplistic. In particular, I assume that the probability

of a false positive or a false negative event is constant, and does not depend on

the GC content, length, magnitude of expression or any other relevant features of

the isoform being simulated. In reality, the probability of isoform detection errors

probably does depend on factors such as GC content and how highly expressed the

isoform is. However, relatively little research has been done into the relationship

between features of isoforms, such as GC content and magnitude of expression, and

the probability of isoform detection errors. Further research into how genomic and

other features of isoforms affect the likelihood of isoform detection and quantification

errors would enable more accurate error models to be built in future. This would

be valuable both in studies such as this one and more generally, as it would enable

more sophisticated error correction models to be developed.

Little is known about the biological process of isoform choice in individual cells

for most genes. Thus, accurately modelling this process is challenging. I find that

different models of isoform choice alter our simulation results. This indicates that

without better understanding of the process of isoform choice, alternative splicing

analyses are potentially confounded by this unknown factor. Research into the pro-

cess of isoform choice within individual cells across the transcriptome would enable

more accurate models of isoform choice to be built, reducing or removing this con-

founder from future alternative splicing analyses. An important finding from my

study is that the ability of isoform choice models to accurately detect isoforms is

correlated with the preference of isoform choice models for choosing isoforms with a

low probability of dropout. It would therefore be highly relevant to establish whether

cells have a preference for expressing isoforms with a low probability of dropout. Iso-

forms with a low probability of dropout are in practice usually isoforms which are

highly expressed. Therefore, if cells have a preference for expressing highly expressed
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isoforms with a low probability of dropout, I would expect it to be relatively easy to

accurately detect how many isoforms are expressed in individual cells. In contrast, if

it is common for cells to express lowly expressed isoforms with a high probability of

dropout, I would expect it to be much harder to accurately detect the number of ex-

pressed isoforms using scRNA-seq. Establishing which scenario is more biologically

relevant would therefore be highly valuable to the single cell community.

It is important to note that the probabilistic models of isoform choice used in our

study are unlikely to be realistic models of isoform choice for two reasons. Firstly, we

know little about the underlying biological process of isoform choice for most genes.

Therefore at best the models we have devised in this study are educated guesses as

to what the true underlying process might be. Secondly, it is likely that the isoforms

chosen by our isoform choice models will have an impact on the probability of a quan-

tification error occurring. Different isoforms have different read generation biases,

and will generate reads with different mapping properties. In our simulations, we

have not modelled the impact of, for example, different splice junction abundances

on our ability to detect isoforms, although factors such as this are likely to have an

impact on our ability to detect isoforms. I would welcome future studies addressing

the more nuanced issues associated with the interplay between isoform choice and

quantification errors, although I believe that a better understanding of how to ac-

curately model isoform choice and quantification errors would be a prerequisite to

such studies. If isoform expression is found to be heterogeneous between cells, inter-

play between isoform choice and isoform quantification errors could partly explain

why we were less able to detect isoforms present in mESC scRNA-seq data than in

downsampled bulk RNA-seq.

I am able to detect evidence in support of ‘major’ and ‘minor’ isoforms, and pro-

pose that future models of isoform choice should attempt to capture this behaviour.

However, I note that whilst my observations help discard models of isoform choice, I

believe that scRNA-seq is currently too confounded by dropouts to accurately infer

a model of isoform choice at the single cell level. I suggest that smFISH would be a

more appropriate technology to investigate how isoform choice is regulated in indi-

vidual cells. Indeed, smFISH has previously been used to study alternative splicing
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and isoform choice in individuals cells for a small number of genes (Velten et al.,

2015; Ciolli Mattioli et al., 2019; Waks et al., 2011)

The results of our mixture modelling experiments are consistent with multiple

isoforms being produced per gene per cell, however I note that our mixture modelling

experiments are heavily confounded by a lack of understanding about dropouts,

isoform choice and perhaps quantification errors to a lesser extent. Therefore, I

argue that at this time, scRNA-seq will not be able to provide the answer to basic

biological questions about how many isoforms are produced per gene per cell.

In addition to detecting isoforms, isoform quantification tools attempt to deter-

mine how highly expressed isoforms are. Isoform quantification is a substantially

harder problem than isoform detection. Due to uncertainties over how highly ex-

pressed isoforms are in individual cells, how best to model PCR amplification bias

and differences in library sizes between individual cells and how best to incorporate

relative expression into a model of isoform quantification errors, I suspect isoform

quantification is also likely to be substantially harder to model than isoform de-

tection. For these reasons, I have focused on isoform detection in this study, but

suggest that future work investigating our ability to detect the relative expression

of isoforms would be highly valuable to the field. I note that although we have not

directly evaluated our ability to resolve the relative expression magnitude of isoforms

in this study, that we often struggle to accurately detect isoforms implies that we

would often struggle to determine how highly expressed they are.

Based on my findings, at this time I do not recommend attempting alternative

splicing analysis using scRNA-seq. As my analysis suggests that one of the greatest

confounders in studying splicing is dropouts, it may be relatively safe to study al-

ternative splicing using only highly expressed isoforms with very few dropouts. For

many genes in many datasets, this severely limits the scope in which splicing can

be studied. However, I make actionable suggestions for how splicing analysis could

be enabled in the future. An improved understanding of the prevalence of techni-

cal dropouts at the isoform level could enable us to reduce confounding effects due

to dropouts. Improvements to the capture efficiency of scRNA-seq would similarly

reduce confounding effects due to dropouts. Increased study of isoform choice at
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the single cell level using technologies such as smFISH would enable better models

of isoform choice to be generated, eliminating confounders. Although I find quan-

tification errors to be a relatively small confounder, further reducing quantification

errors using long read technologies and more accurate quantification tools would be

welcome. Although I have concluded that accurate alternative splicing analysis with

scRNA-seq is not possible today, I am optimistic that it could become possible in

the near future.

Conclusions

At present, alternative splicing analyses using scRNA-seq are substantially con-

founded. Better characterisation of dropouts or improvements in capture efficiency

would reduce confounding effects due to dropouts. Further research into the process

of isoform choice at a single cell level would reduce confounding effects caused by a

lack of knowledge about isoform choice. Quantification errors are a relatively minor

confounder, although improvements in this area are still welcome. At present, to the

best of my knowledge, a large scale unconfounded analysis of the number of isoforms

produced per gene per cell has not been performed. Therefore, we still do not know

how many isoforms are typically produced per gene per cell.
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5

Methods

The proper method for inquiring after the properties of things is to deduce

them from experiments.

– Isaac Newton, quoted by (Strong, 1951)

5.1 Simulation based benchmarking of isoform quan-

tification using scRNA-seq

The methods in section 5.1 are for the experiments carried out in chapter 2, and the

experiments presented in Figures 3.1 & Figures 3.2.

5.1.1 Software tools

A variety of software tools were used in chapter 2. An overview of each tool and its

assumptions are provided below. Table 5.1 is a summary table of the isoform quan-

tification tools evaluated in this benchmark provided at the end of this subsection.

STAR

STAR was the aligner used in the RSEM simulations, and by RSEM and eXpress

in the benchmark of isoform quantification (Dobin et al., 2013; Li and Dewey, 2011;
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Roberts and Pachter, 2013). STAR was chosen as the aligner of choice in part

because the algorithm underlying STAR is designed to facilitate the alignment of

reads originating from alternatively spliced isoforms (Dobin et al., 2013). STAR’s

alignment algorithm works by first finding the longest genomic region that maps to

the start of the read. If the read contains a single exon, the entire read is aligned

in this step. However, many reads contain multiple exons which are separated by

intronic sequences in the genome. If the read being aligned contains multiple exons,

after finding the longest genomic region that maps to the start of the read, the

algorithm proceeds to try and find the longest genomic region that maps to the

unmapped portion of the read. This process is repeated until the entire read is

aligned, potentially with some mismatches. STAR then stitches together the aligned

regions of the read, initially searching for a complete alignment within a user-defined

genomic window but also allowing for chimeric alignments. A user-defined score

for matches, mismatches, indels and splice junction gaps, is used to identify the

alignment with the lowest score. This alignment is the one reported by STAR. For

multimapping reads, STAR reports all alignments within a certain score threshold of

the optimal alignment. The main assumptions made by STAR are that the genomic

window and penalty scores defined by the user are appropriate. In this benchmark, I

used the default windows and scores provided by STAR, as I believe this is the most

common user behaviour.

RSEM

RSEM is an isoform quantification tool and a read simulator, which was used both

to simulate reads and to perform isoform quantification in my benchmark (Li and

Dewey, 2011). To perform isoform quantification, RSEM first generates a set of

reference transcript sequences. Importantly, RSEM aligns reads to these reference

transcript sequences rather than the entire genome. Next, RSEM uses an aligner

to align reads to these reference sequences. In my benchmark, STAR was used as

the aligner (Dobin et al., 2013). Following alignment, RSEM uses an Expectation-

Maximisation (EM) algorithm to estimate isoform abundance. RSEM’s directed
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graphical model is shown in Figure 5.1.

Figure 5.1: RSEM’s directed graphical model. Observed variables, which can be

directly observed from the reads data, are shown in grey. Latent variables, which

must be inferred by the EM algorithm, are shown in white. This figure is adapted

from Figure 4 in (Li and Dewey, 2011).

The goal of Expectation-Maximisation algorithms is to find the maximum like-

lihood parameters for equations which can not be directly solved. In the directed

graphical model above, we know the value of the observed values in white boxes,

but not of the unobserved or latent values in grey boxes. We infer the values of

these latent variables using RSEM’s EM algorithm. For the first twenty iterations

of RSEM’s EM algorithm, and for every hundredth iteration after, the values of the

orientation, read start position distribution, fragment length and parent transcript

are updated. In all other iterations, RSEM only updates the prior probabilities of

a fragment being derived from each transcript. The algorithm continues until the

prior probabilities of a fragment being derived from each transcript converge (ie. the
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prior probabilities no longer change meaningfully between one EM iteration and the

next).

Once RSEM has completed quantification, in addition to outputting expression

estimates, it saves the values it inferred for the latent variables in its graphical model.

This enables RSEM to act as a reads simulator, using the latent variable parameters

it inferred from real data. When RSEM uses its graphical model to probabilistically

simulate reads, it counts where each read originated in the transcriptome. Thus

RSEM can be used to generate reads data with ground truth expression data.

The core assumption of RSEM is that its directed graphical model combined with

the EM algorithm is capable of generating accurate estimates of isoform expression,

meaning that underlying asumptions about the fragment length distribution and re-

lationships between the variables illustrated in Figure 5.1 must be at least somewhat

realistic. When RSEM simulates reads, a key assumption in the ground truth ex-

pression is that every expressed transcript generates one and only one read. This

is unlikely to be true, especially for scRNA-seq. Therefore, benchmarks of isoform

quantification tools using RSEM as a read simulator assess the ability of quantifica-

tion tools to correctly determine where reads originated from in the transcriptome,

as oppose to their ability to determine what transcripts were originally present in

the cell(s).

eXpress

eXpress is an isoform quantification tool whose performance was evaluated in my

benchmark (Roberts and Pachter, 2013). eXpress takes a bam file of aligned reads

as input. In my benchmark, STAR produced the input bam file (Dobin et al., 2013).

eXpress uses an online algorithm, meaning that eXpress’s algorithm does not

require the entire input all at once at the start, but can process the input piece by

piece in the order it arrives. The authors suggest this could enable eXpress to be

coupled directly to a sequencer that produced reads one at a time. Whether this was

ever realised is unclear.

Like RSEM, eXpress uses a directed graphical model combined with an EM al-
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gorithm to generate its expression estimates (Li and Dewey, 2011). eXpress’s EM

algorithm is illustrated in Figure 5.2.

Figure 5.2: eXpress’s directed graphical model. Observed variables, which can be

directly observed from the reads data, are shown in grey. Latent variables, which

must be inferred by the EM algorithm, are shown in white. This figure is adapted

from Supplementary Figure 11 in (Roberts and Pachter, 2013).

Like RSEM, eXpress’s core assumption is that its directed graphical model com-

bined with its EM algorithm can generate accurate expression estimates. This means

that assumptions about variables in the model (eg. the shape of the fragment length

distribution) as well as assumptions about the relationships between variables in the

model must be accurate to some degree.
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Sailfish

Sailfish is an isoform quantification tool whose performance was evaluated in my

benchmark (Patro et al., 2014). Sailfish differs from the other isoform quantification

tools discussed thus far in that Sailfish is an ’alignment free’ tool. Instead of mapping

reads, Sailfish breaks both the transcriptome and the input sequencing reads into

shorter strings of a user-defined length. These shorter strings are referred to as

k-mers, and as a default are of length 31.

The first step of performing isoform quantification with Sailfish is to build an

index from a set of reference transcripts. Sailfish builds its index by splitting the

reference transcripts into k-mers and creating a minimal perfect hash function. In

simple terms, the minimal perfect hash function can be used to very quickly match

a k-mer generated from reads to a location in the reference transcripts.

In the second step of quantification, Sailfish splits the input reads into k-mers

and uses the minimal perfect hash function to count how many times each k-mer

in its index occurs in the input reads. Sailfish then uses a conceptually similar EM

algorithm to RSEM (Li and Dewey, 2011) to estimate transcript abundances based

on k-mer counts.

Sailfish assumes that its k-mer hashing procedure provides a good approximation

of where reads originated from in the transcriptome. The extent to which this is

likely to be true depends on the k-mer length and the sequencing error rate. In

addition, Sailfish assumes that its EM algorithm can generate accurate expression

estimates. Sailfish also assumes that the reference transcripts passed to it represent

all of the transcripts present in the transcriptome. This is potentially a problematic

assumption when working with non-model organisms with poorly annotated tran-

scriptomes.

Salmon

Salmon is an isoform quantification tool whose performance was evaluated in my

benchmark (Patro et al., 2017). Salmon has three modes - an alignment mode, a

quasi mode and an SMEM mode. In the alignment mode, Salmon takes a bam
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file containing aligned reads as input. The quasi and SMEM modes use a similar

indexing and k-mer hashing procedure to Sailfish in place of alignment. The quasi

mode is a newer mode which constructs the index and performs hashing faster than

the older SMEM mode.

In addition to providing a range of alignment and alignment free modes, Salmon

differs from Sailfish in that it has a more complex and sophisticated abundance esti-

mation procedure. Salmon’s abundance models account for and attempt to correct

for factors such as GC-bias and positional biases in a sample-specific manner. Salmon

estimates abundance in a multi-step process, beginning with a lightweight mapping

step and ending with an EM algorithm to infer abundance.

Salmon assumes that its three read mapping methods provide a good approxima-

tion of where reads originated in the transcriptome. In addition, it assumes that its

abundance estimation procedure can generate accurate expression estimates, mean-

ing that it assumes that its GC bias and positional bias models accurately model

these biases. When run in quasi or SMEM model, Salmon assumes that the reference

transcripts passed to it represent all of the transcripts present in the transcriptome.

Kallisto

Kallisto is an isoform quantification tool whose performance was evaluated in my

benchmark (Bray et al., 2016). Kallisto uses a process described as pseudoalignment

to map reads. In practice, pseudoalignment is similar to the k-mer hashing process

used by Salmon and Sailfish. Like Salmon and Sailfish, Kallisto requires an index to

be constructed from reference transcripts. Unlike Salmon and Sailfish, Kallisto begins

indexing by constructing a data structure known as a coloured de Bruijn graph. Each

node in the graph corresponds to a k-mer, and each colour corresponds to a different

transcript. Nodes (k-mers) are assigned colours based on which transcripts the k-mer

maps to. Contigs are linear stretches of the de Bruijn graph with the same colours

and therefore the same transcripts. Once the de Bruijn graph is constructed, Kallisto

generates a hash table which maps each k-mer to a contig.

During pseudoalignment, Kallisto looks up k-mers from reads in its hash table
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and uses the intersect of the contigs stored in the hash table to determine which

transcripts could have generated a read. Based on these pseudoalignments, Kallisto

then uses an EM algorithm to infer transcript abundances.

Kallisto assumes that its pseudoalignment procedure provides a good approxima-

tion of where reads originated in the transcriptome. Kallisto also assumes that its

EM algorithm can generate accurate abundance estimates. Like Salmon and Sail-

fish, Kallisto assumes that the reference transcripts passed to it represent all of the

transcripts present in the transcriptome.

Splatter

Splatter is a scRNA-seq counts simulator that was used with Polyester to simulate

reads data (Zappia et al., 2017b; Frazee et al., 2015). Splatter originally implemented

six counts simulation models, although Splatter is actively maintained and more

simulation models have subsequently been added. Each simulation model has two

steps. In the first step, simulation parameters are estimated from real counts data.

In the second step, Splatter uses these parameters to generate a simulated counts

dataset. Simulation models included in the Splatter package vary in complexity,

from a very simple negative binomial model named Simple, to the more complex

Splat model that accounts for mean gene expression, cell library size, the mean-

variance relationship of gene expression observed in scRNA-seq and dropouts. The

assumptions made by Splatter vary depending on which simulation model is used,

the core assumption always being that the simulation model can generate biologically

realistic counts data.

Polyester

Polyester is a reads simulator that was used with Splatter to simulate reads data

(Frazee et al., 2015; Zappia et al., 2017b). Polyester can be run using a number of

different models to simulate reads. In addition, the user can specify exactly how

many reads Polyester should simulate for each transcript. In my benchmark, the

output of Splatter was used to dictate exactly how many reads Polyester should
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simulate for each transcript. In addition, I specified that fragment length should

be drawn from a normal distribution, sequencing errors should be added based on

an error model that Polyester derived from a real dataset (McElroy et al., 2012)

and that either no coverage bias should be simulated, or that coverage bias should

be simulated based upon a cDNA fragmentation protocol. The assumptions made

running Splatter with these parameters were than fragment length can be modelled

as a normal distribution, the error model used was a realistic representation of error

frequencies in scRNA-seq data, and that coverage bias in a SMARTer library prepa-

ration protocol could be captured with coverage bias model based upon a generic

cDNA fragmentation protocol.
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Table 5.1: A summary table of the isoform quantification tools used in my bench-

mark.
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5.1.2 Availability of data and materials

The Kolodziejczyk et al. ES cell data was accessed from the ArrayExpress database

(http://www.ebi.ac.uk/arrayexpress) using the accession number E-MTAB-2600,

as described in the Kolodziejczyk et al. paper (Kolodziejczyk et al., 2015). The

BLUEPRINT data was accessed under GEO accession number GSE94676 (Adams

et al., 2012). The Shekhar et al. Drop-seq data was accessed under GEO accession

number GSE81905, as described in the Shekhar et al. paper (Shekhar et al., 2016).

The pipeline used to perform the BLUEPRINT benchmark, including code to

reproduce figures, can be found at https://github.com/AFS-lab/BLUEPRINT. The

pipeline used to perform the Kolodziejczyk et al. benchmark, including code to repro-

duce figures, can be found at https://github.com/AFS-lab/ES_cell_pipeline.

The pipeline to perform the Drop-seq simulation based benchmark can be found

at https://github.com/jenni-westoby/Drop-seq_pipeline. The pipeline used

to perform the systematic investigation into cell number and read depth can be found

at https://github.com/jenni-westoby/coverage_cell_number_study. The op-

tions and parameters passed to tools used to perform simulations and isoform quan-

tification can be found at the above links. A bug was encountered whilst using RSEM

to simulate Drop-seq data. The bug was fixed and a pull request was made on the

RSEM github page (https://github.com/deweylab/RSEM/pull/79).

5.1.3 Genomes

The Ensembl release 89 genome and transcriptome with 92 spike-in sequences de-

veloped by the External RNA Control Consortium (ERCC) appended were used

wherever genome files in FASTQ format and/or transcriptomes in GTF format were

required as input for tools in this study (Aken et al., 2017; Jiang et al., 2011).

The exception to this was when isoform quantification was carried out using the

BLUEPRINT and Kolodziejczyk et al. bulk RNA-seq datasets. No ERCC spike-ins

were added to these datasets, so the Ensembl release 89 genome and transcriptome

without spike-ins appended were used to perform this analysis. To perform sim-

ulation and isoform quantification, RSEM produces a reference which includes a
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reference transcriptome in FASTQ format. This reference transcriptome produced

by RSEM was used for isoform quantification tools which required a reference tran-

scriptome in FASTQ format as input (See Github repository for code).

5.1.4 Data Processing Prior to Analysis

Sequencing adaptors were trimmed from the Kolodziejczyk et al. and BLUEPRINT

data using Cutadapt (Martin, 2011). Reads from each cell in these datasets were

aligned to the Ensembl genome release 89 using STAR (Aken et al., 2017; Dobin

et al., 2013). RSeQC was used to collect alignment quality statistics for each cell

(Wang et al., 2012). These statistics and the number of reads sequenced in each cell

were used to remove low quality cells from each dataset (see Appendix 1, figures 7.1,

7.5 & 7.8). In addition, scater was used to plot the percentage of reads mapping

to mitochondrial RNA and remove cells with greater than 10% of reads mapping to

mitochondrial RNA (McCarthy et al., 2017) (See Appendix 1, figures 7.1, 7.2, 7.3, 7.4,

7.5, 7.6, 7.8, 7.9). Traditionally, Drop-seq data is not demultiplexed during gene level

quantification (Macosko et al., 2015). However, with the exception of Kallisto, the

tools used in this study cannot take multiplexed UMI data as input. When Kallisto

does take multiplexed UMI data as input, it gives expression estimates for equivalence

classes rather than for specific isoforms as output. Given that an anticipated issue

with using Drop-seq for isoform quantification was that a UMI based method with

3’ coverage bias may not contain enough information to resolve between different

isoforms from the same gene, it was decided that the performance of Kallisto when

run in this mode would not be evaluated. Instead, the Shekhar et al. dataset

was demultiplexed and RSEM was used to simulate a subset of the demultiplexed

cells. The performance of eXpress, Kallisto, Sailfish, Salmon and RSEM was then

evaluated in the simulated cells. The cell barcodes used to demultiplex the Drop-seq

data were selected by following the instructions on the Drop-seq website to generate

a gene expression matrix. The barcodes were extracted from the gene expression

matrix and used to demultiplex the data. Further details can be found at https:

//github.com/jenni-westoby/Drop-seq_pipeline.
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5.1.5 Simulations

Two simulation methods were used in this study. The first method used to simulate

single-cell RNA-seq data was RSEM. RSEM is an isoform quantification tool which

makes use of a generative model and an expectation maximization algorithm to

perform isoform quantification (Li and Dewey, 2011). When performing isoform

quantification, RSEM infers values for the latent variables in its generative model in

addition to estimating isoform expression. To perform simulations, RSEM takes the

inferred values of the latent variable and the expression estimates and uses them in

its generative model to probabilistically simulate reads. As RSEM simulates reads,

it counts where in the transcriptome each of the reads came from. RSEM thus

simulates reads data for which it is known how highly expressed each isoform in the

transcriptome is.

For each cell in the Kolodziejczyk et al. and the BLUEPRINT datasets that

passed quality control and for each of the selected cells in the Drop-seq dataset,

one RSEM simulation was performed. Isoform quantification was performed on each

cell and the isoform expression estimates and inferred estimates for RSEM’s latent

variables were used to perform the simulation. Consequently, each RSEM simulated

cell used in this study was simulated using variables inferred from a real cell.

The second simulation method was based on two tools, Splatter and Polyester.

Splatter is a simulation tool which takes an expression matrix of counts from a single-

cell RNA-seq experiment as input and gives a simulated expression matrix of counts

as output (Zappia et al., 2017a). The Splatter package in fact contains six simulation

methods. To select which performed best, data was simulated using the Lun, Lun2

and Simple simulation methods. The Splat simulation method was discounted as it

was unable to simulate large enough expression matrices to account for the larger

number of isoforms compared with genes, and the scDD method was discounted as

it simulates differential expression, and no differential expression was expected. The

BASiCS method had not been implemented at the time when the simulations were

performed. Based on Splatter-generated graphs, the lun2sim method, inspired by

a simulation method developed by Lun & Marioni (Lun and Marioni, 2017) was
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selected as it bore the closest resemblance to the real data (see Figure 2.6).

The lun2sim method was used to simulate a matrix of counts based on an expres-

sion matrix of counts from the BLUEPRINT B lymphocytes generated by Kallisto

(Bray et al., 2016). The simulated expression matrix of counts was then given as

input to Polyester, which simulated reads based on the lun2sim counts matrix. Sim-

ulations were performed both using Polyester’s uniform coverage model and using

Polyester’s 3’ coverage bias model. The Splatter counts matrix was converted to a

matrix of TPM values, which were used as the ‘ground truth’ for how highly ex-

pressed each isoform was in the Polyester simulated reads data.

5.1.6 Post Simulation Data Processing

Reads from each cell in the datasets simulated by RSEM based on the Kolodziejczyk

et al. and BLUEPRINT datasets were aligned to the Ensembl genome release 89

using STAR. RSeQC was used to collect alignment quality statistics for each cell.

The alignment quality statistics and the number of reads for each simulated cell

were used to remove low quality cells from each dataset (see Appendix 1, Figures

7.2, 7.3, 7.4, 7.6 & 7.9). Scater was used to plot the percentage of reads mapping

to mitochondrial RNA and remove cells with greater than 10% of reads mapping to

mitochondrial RNA.

5.1.7 Bulk RNA-seq analysis

Prior to isoform quantification, RSeQC was used to remove rRNA mapping reads

from the BLUEPRINT B lymphocyte bulk RNA-seq data. The code used to generate

the isoform expression matrices used in the bulk RNA-seq benchmark can be found

at https://github.com/jenni-westoby/Benchmark_Bulk_Analysis.

5.1.8 Statistics

Precision and recall were used to evaluate the performance of isoform detection,

whilst Spearman’s Rho and the normalised root mean square error (NRMSE) were
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used to evaluate the ability of tools to assign the correct magnitude of expression to

each isoform. The choice of which statistics to use to evaluate performance will always

be to some extent arbitrary. The precision was selected to evaluate isoform detection

because the proportion of isoforms called as expressed that are truly expressed is an

informative metric when determining how much confidence we can have that isoforms

called as expressed are truly expressed. The recall was selected to evaluate isoform

detection because the proportion of expressed isoforms called as expressed tells us

how many expressed isoforms are missed by the quantification tool. Spearman’s Rho

was used to evaluate the ability of tools to correctly order isoform expression from

the most lowly expressed to the most highly expressed, something we would hope

quantification tools would be able to do well. The NRMSE was used as a measure

of the error in expression estimates, which we would hope would be generally low.

The formula used to calculate the NRMSE is:

NRMSE = 100

√
1
N

∑N
i=1(Si −Oi)2

sd(O)

Where N is the number of isoforms that could have been simulated, S is the

isoform expression estimates for the isoform quantification tool of interest, O is the

ground truth expression estimates and sd(O) is the sample standard deviation of the

ground truth expression estimates.

Prior to calculating the NRMSE, the ground truth and the isoform expression

estimates were transformed using the formula:

Stransformed = log2(Soriginal + 1)

Where Soriginal was the original value of the ground truth or the expression esti-

mate. This transformation reduces the impact of a small number of highly expressed

isoforms on the value of the NRMSE.
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5.2 Novel simulation approaches

In chapters 3 and 4, I developed two novel simulation based approaches. I present

my methodology for these approaches here.

5.2.1 Availability of data and materials

The Kolodziejczyk et al. mESCs were accessed as described in the previous section

(Kolodziejczyk et al., 2015). The hESC datasets were accessed under GEO accession

number GSE85917 (Bacher et al., 2017).

My quantification pipelines, which download scRNA-seq data, perform transcript

level quantification and generate an isoform-cell matrix, can be found at: https://

github.com/jenni-westoby/Isoform_Cell_Matrix_Generation. My simulation

pipeline can be found at: https://github.com/jenni-westoby/Obstacles.

5.2.2 Data processing prior to analysis

My two simulation approaches require an isoform-cell counts matrix as input. To

generate isoform-cell counts matrices, I used Kallisto to quantify reads from each

cell(Bray et al., 2016). For the hESC dataset, I used the Gencode human v20 tran-

scriptome as a reference transcriptome (Frankish et al., 2019). For the mESC dataset,

I used the Gencode mouse vM20 transcriptome as a reference transcriptome (Frank-

ish et al., 2019).

5.2.3 Simulation Approach

My two simulation approaches are summarised as algorithms below.
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Step 1a: Establish how many isoforms are detected for gene of interest in
total across all cells in our scRNA-seq data.

for simulation in 1:100 do
for i in 1:NumCells do

for j in 1:NumExpressedIsoforms do

end
Step 2: Choose j isoforms to be expressed in the ith cell based on
isoform choice model

Step 3: Introduce dropouts based on Andrews and Hemberg’s
Michaelis-Menten model

Step 4: Introduce isoform quantification errors
end
Step 5: Find mean number of isoforms per gene per cell.

end
Step 6: Plot distributions of mean number of isoforms per gene per cell (eg.
as in Figure 3.3)

Algorithm 1: Simulation approach presented in chapter 3

Step 1b: Select genes for which four isoforms are detected in scRNA-seq data
for simulation in 1:100 do

for gene in DetectedGenes do
for j in 1:4 do

for i in 1:NumCells do
Step 2: Choose j isoforms to be expressed in the ith cell based
on isoform choice model

Step 3: Introduce dropouts based on Andrews and Hemberg’s
Michaelis-Menten model

Step 4: Introduce isoform quantification errors
end
Step 5: Find mean number of isoforms per gene per cell.

end

end

end
Step 6: Plot distributions of mean number of isoforms per gene per cell (eg.
as in Figure 4.7)

Algorithm 2: Simulation approach presented in chapter 4
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Many steps are shared between the two algorithms as the two approaches are

highly similar. I expand upon each step below.

Step 1a: Establish how many isoforms are detected in total across all cells

in our scRNA-seq data.

For my simulation approach in chapter 3, I define an isoform as detected if it has

more than five counts in at least two cells.

Step 1b: Select genes for which four isoforms are detected in scRNA-seq

data

My simulation approach in chapter 4 takes an isoform-cell counts table as input. I

define an isoform as detected if it has more than five counts in at least two cells. I

select genes for which exactly four isoforms pass this threshold.

Step 2: Choose i isoforms to be expressed in the jth cell based on isoform

choice model

In this step, I probabilistically choose i isoforms to be expressed in each cell, where i

is one, two, three or four. The default model used in chapters 3 & 4 was the Weibull

model, which was used to produce all figures unless otherwise stated. In chapter 4,

additional isoform choice models were also used in some figures, which are described

below.

The Weibull model

In (Hu et al., 2017), Hu et al. found that the median frequency, mf(k,M), of the

kth dominant isoform of a gene with M detected isoforms can be described as:

mf(k,M) =
1

k ×HM

exp
[
−
(

1 +
k

M

)2]

where HM is the Mth generalised harmonic number:
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HM =
M∑

m=1

1

m
exp

[
−
(

1 +
m

M

)2]

In my implementation of this model of isoform choice, I first rank the isoforms in

order of magnitude expression for each gene, with the most highly expressed isoform

having rank 1, the second most highly expressed isoform having rank 2 and so on.

I calculate magnitude of expression by summing the total number of counts across

all cells for that isoform. I then use the median frequency formula above to find the

predicted median frequency for each isoform. I define the probability of picking an

isoform with rank k for a gene with M detected isoforms as:

p(isoformk) =
mf(k,M)∑M

m=1mf(m,M)

With M = 4, the probabilities become [0.55, 0.28, 0.12, 0.05].

The inferred probabilities model

In this model, I attempt to infer the probability of an isoform being chosen from its

probability of being detected. The formula below relates the probability of choosing

an isoform, P (Choice), to its probability of being detected, P (Detected):

P (Detection) = P (Choice)× P (Detection|Choice) +

P (¬Choice)× P (Detection|¬Choice) (5.1)

Where P (¬Choice) is the probability of not choosing an isoform. In practice:

P (Detection) = P (Choice)× P (¬Dropout)× (1− pFN) +

P (¬Choice)× pFP (5.2)

Where P (¬Dropout) is the probability that there is not a dropout, pFN is the

probability that there is a false negative event due to a quantification error and pFP
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is the probability that there is a false positive event due to a quantification error.

This rearranges to:

P (Choice) =
|P (Detection)− pFP |

|P (¬Dropout)(1− pFN)− pFP |

In practice, I sometimes find P (Choice) is greater than 1, probably because our

estimation of P (6 Dropout), pFN and/or pFP is inaccurate for that isoform. When

this occurs, I set P (Choice) equal to one. I take absolute values of the numerator

and denominator to avoid negative or complex numbers, which probably also occur

due to inaccurate estimation of P (6 Dropout), pFN and/or pFP .

In my simulations, I calculate P (Choice) for each isoform from a given gene. The

probability of picking a particular isoform to be expressed in our simulation is that

isoform’s P (Choice) divided by the sum of P (Choice)s for that gene’s isoforms.

The cell variability model

The cell variability model is identical to the inferred probabilities model except that

the probability of picking a given isoform, i is allowed to vary between cells. This is

acheived by sampling the probability of picking isoform i in a given cell c, pic, from

a Beta distribution, taking a similar approach to that described in (Velten et al.,

2015) :

pic ∼ Beta(α, β)

where

α = (
1− µ
σ2
− 1

µ
)× µ2

β = α× (
1

µ
− 1),

where µ is the mean probability of choosing i across all cells, i.e. µ = P (Choice).

Based on attempts to characterise the mean-variance relationship for the probability

of choosing a particular gene by Velten et al. (Velten et al., 2015), I estimate that
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the sample standard deviation, σ, is approximately 0.002. I find pic for each isoform

for a given gene. In my simulations, the probability of picking isoform i in cell c is

that isoform’s pic divided by the sum of pics for that gene’s isoforms.

The random model

For this model, each isoform is associated a weight randomly sampled between zero

and one. The probability of picking a particular isoform to be expressed in our

simulation is that isoform’s weight divided by the sum of all the weights for that

gene’s isoforms.

The Normal model

The weights for each isoform were sampled from a truncated Normal distribution

with a mean of 0.25 and a standard deviation of 0.06. This sampling was performed

for each isoform in each cell. Within each cell, the probability of picking a particular

isoform to be expressed in our simulation is that isoform’s weight divided by the sum

of all the weights for that gene’s isoforms.

The Bernoulli model

The weights for each isoform were sampled from a Bernoulli distribution with a mean

of 0.25. This sampling was performed for each isoform in each cell. Within each cell,

the probability of picking a particular isoform to be expressed in my simulation is

that isoform’s weight divided by the sum of all the weights for that gene’s isoforms.

If all four isoforms for a given gene had a zero weight, we set the probability of

picking each isoform to 0.25.

The p=0.25 model

The probability of choosing each isoform was always 0.25.
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Step 3: Introduce dropouts based on Andrews et al.’s Michaelis-Menten

model.

I calculate the probability of dropouts for each isoform using a Michaelis-Menten

model proposed by Andrews and Hemberg (Andrews and Hemberg, 2018a). I calcu-

late the probability of dropouts for each isoform as:

P (Dropout) = 1− S

KM + S

Where S is the mean expression of that isoform across cells and KM is the Michaelis-

Menten constant. To find S and KM I normalise the isoform expression values

by converting Counts to Counts Per Million (CPM), as suggested in the M3Drop

vignette (Andrews and Hemberg, 2018a). I estimate the value of KM for each dataset

by applying maximum-likelihood estimation using the equation above and the rate

of dropouts and the mean expression of isoforms across the entire transcriptome.

Step 4: Introduce quantification errors.

Based on my benchmarking study in chapter 2 (Westoby et al., 2018b), I estimate

that the probability of a false positive given an isoform has no reads mapping to it,

pFP , is about 0.01 and the probability of a false negative given an isoform has reads

mapping to it, pFN , is about 0.04 for Kallisto when run on full length coverage

scRNA-seq data. Unless otherwise stated in the text, these were the error rates

applied in my simulations. In other words, on average 1% of isoforms with no reads

mapping were assigned an expressed status, and 4% of isoforms with reads mapping

were assigned an unexpressed status.

Step 5: Find mean number of isoforms per gene per cell.

After iterating over every cell in our simulation, I sum the the number of isoforms

detected in each cell and divide by the number of cells to find the mean number of

detected isoforms per gene per cell.
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Klf4
Pou5f1
Tbx3
Jarid2
Myc
Stat3
Tcf3
Esrrb
Nanog
Nr0b1
Sall4
Sox2
Zfp42
Zfp281

Zfx

Table 5.2: Pluripotency factor genes.

Step 6: Plot distributions of mean number of isoforms per gene per cell

To make my simulation results figures shown in chapter 3, I plot the distributions of

the mean number of detected isoforms for each number of expressed isoforms, from

1 to the total number of isoforms detected. A vertical black line representing the

mean number of isoforms detected per cell is drawn on the same plot (for example,

see Figure 3.3).

The distributions plotted in chapter 4 differ. In chapter 3, the distributions

generated are for a single gene of interest. In chapter 4, the distributions produced

are for every gene in which 4 isoforms were detected in the real scRNA-seq data (eg.

see Figure 4.7).

5.2.4 Genes investigated in chapter 3

I ran my model on 15 pluripotency factor genes. The 15 genes are shown in Table

5.2.
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5.2.5 Mixture Modelling

In my mixture modelling experiments in chapter 4, I begin by fitting log normal

distributions to each of our simulation distributions and to the distribution of mean

isoforms detected for genes with four detected isoforms in the real data. I then use

expectation maximisation to estimate the mixing fraction of each of the simulated

distributions in the real distribution. In my expectation step, I calculate the prob-

ability that each data point belongs to a given distribution, which I refer to as the

responsibility. The responsibility for the ith mean number of isoforms per gene per

cell and the cth simulation distribution is:

ric =
kc × LN(xi|µc, σc)∑j=4
j=1 kj × LN(xi|µj, σj)

where k is the mixing fraction, xi is the ith mean number of isoforms per gene

per cell and LN(xi|µc, σc) is the probability density function for the log normal with

mean µc and variance σ2
c . The maximisation function for the mixing fraction is:

kc =

∑
i ric

n

Where n is the number of datapoints in ric. Note that I only perform expectation

maximisation for the mixing fractions of the distributions and not for the means or

standard deviations.

Overlap Fraction

The overlap fraction is the proportion of isoforms detected in our simulations that

were expressed in the ground truth. The formula for the overlap fraction is:

OverlapFraction =
|GroundTruth ∩Detected|

|GroundTruth|

Where GroundTruth is the set of isoforms that are expressed in the ground truth,

and Detected is the set of isoforms that are detected in our simulations. The overlap
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fractions reported in all Figures & Supplementary Figures are the mean overlap

fractions for each gene, averaged across all of the simulated cells in that simulation

round.

Downsampling

Random downsampling of reads in chapter 4 was performed using seqtk (Li, 2013).
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6

Discussion

I once wrote a lecture for Manchester University called ‘Moments of Discov-

ery’ in which I said that there are two moments that are important. There’s

the moment when you know you can find out the answer and that’s the pe-

riod you are sleepless before you know what it is. When you’ve got it and

know what it is, then you can rest easy.

– Dorothy Hodgkin (Hodgkins)

The main goal of my thesis was to assess the extent to which it is feasible to

study alternative splicing using scRNA-seq. I have established that from a software

perspective, existing isoform quantification tools perform well when run on scRNA-

seq data. However, I have also established that this alone is not sufficient to enable

splicing to be accurately studied at a cellular resolution. Without a better under-

standing of dropouts and isoform choice, our ability to accurately detect isoforms

in individual cells is poor. In the final chapter of my thesis, I will discuss the main

findings from my PhD and consider how the field could move forward.

176



6.1 My benchmarking study demonstrated that

isoform quantification tools designed for bulk

RNA-seq perform well when run on scRNA-

seq

Most scRNA-seq studies quantify reads at the level of genes rather than isoforms (Ste-

gle et al., 2015), partly due to uncertainty over whether appropriate tools to quantify

reads at the isoform level exist for scRNA-seq. My benchmark demonstrated that

Kallisto, Salmon, Sailfish and RSEM perform almost as well when run on scRNA-seq

as when run on bulk RNA-seq. Thus, it seems unlikely that a lack of appropriate

isoform quantification software could prevent us from studying alternative splicing

using scRNA-seq.

Important insight came when data was simulated based on Drop-seq rather than

SMARTer or SMART-seq2 data. The performance of almost all isoform quantifica-

tion tools was so poor when run on simulated Drop-seq data that accurate quantifi-

cation or detection of isoforms was impossible. This indicates that choice of library

preparation protocol matters if the goal of an scRNA-seq experiment is to study

alternative splicing. I considered three library preparation protocols in my bench-

mark. Further work evaluating the suitability of other popular library preparation

protocols for studying splicing is likely to be valuable to the single cell community.

An unexpected finding from my benchmark was that the precision of isoform

detection peaks at around 1-2 million reads per cell. I hypothesise that this occurs

because RSEM does not substantially increase the number of isoforms it expresses

per cell beyond 1-2 million reads per cell. As the number of reads simulated in-

creases beyond 2 million reads per cell, the opportunity to increase the number of

true positives (expressed isoforms which are called as expressed) is therefore limited.

However, if there is a fixed probability that a randomly selected read will be mis-

assigned to the wrong isoform, as the number of reads increases we would expect the

number of false positives to continue to rise. As the formula for the precision is:
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Precision =
No.TruePositives

No.TruePositives+No.FalsePositives

we would therefore expect the precision to decrease at read depths greater than

1-2 million reads per cell.

As previously stated, I believe that the position of the peak in precision at 1-2

million reads per cell is likely a simulation artefact of RSEM. However, it is a fact

that cells express a finite number of isoforms. Therefore if my hypothesis is correct,

I would predict that there is also a peak in the precision of isoform detection in

real scRNA-seq data. Indeed, if I am correct, I predict that this phenomenon is not

limited to scRNA-seq or to isoform level quantification, but that this phenomenon

would also occur for other sequencing technologies (eg. bulk RNA-seq) and for gene

level quantification. I predict that the location of the precision peak would be deter-

mined by the number of isoforms (or genes, in the case of gene level quantification)

expressed per cell. It has been established that for gene level quantification, the num-

ber of genes detected plateaus at 1 million reads per cell (Wu et al., 2014; Ziegenhain

et al., 2017). Therefore my prediction is that the peak in the precision of gene de-

tection occurs at around 1 million reads per cell. Establishing the read depth at

which isoform detection plateaus could give insight into the read depth at which the

precision of isoform detection is likely to peak.

I make a lot of predictions in the previous paragraph, so an obvious question is

how these predictions could be tested. One way to test my predictions would be

by performing a scRNA-seq experiment in which spike-in mixtures, composed of a

mixture of a known number transcript species spiked at known concentrations, are

sequenced in place of cells. By sequencing the spike-in mixture at varying depths, it

could be established whether the number of transcript species predicts the position

of the peak in isoform detection precision. Datasets such as these could be used to

build a model to predict the precision of isoform detection at various read depths.

This could give insight into what statistical frameworks could be used to best correct

for an increasing proportion of false positives as read depth increases.
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My observation that the precision of isoform detection peaks raises a lot of un-

resolved issues. The experiments that gave this insight were only performed using

Salmon. It is possible that other isoform quantification tools may correct for the

increased proportion of false positives at higher read depths more effectively. Estab-

lishing whether the precision peaking phenomenon is common to all isoform quantifi-

cation tools, or if it is a quirk of Salmon, would be of relevance to the bioinformatics

community. If it is a common phenomenon, new statistical frameworks should be

generated to correct for it, potentially based on results from spike-in sequencing data

as described above. Correcting for the peak in precision is especially relevant when

analysing data which has been sequenced to very high depths. An important im-

plication of the precision peaking phenomenon is that many of the ‘rare’ or ‘lowly

expressed’ genes only detected when sequencing at very high depths and/or with

vast numbers of cells are likely to be false positives.

Although I believe that my benchmarking study has generated many useful in-

sights, no simulation based approach is without limitations. I have carefully eval-

uated the similarities and differences between the simulated and real data, but the

possibility remains that the simulated data in some way fails to capture some mean-

ingful aspect of the real data. However, given that the results of my benchmark

remain consistent across two unrelated simulation methods, I am optimistic that the

results of my benchmark are sufficiently reliable to be applied to real data.

An important aspect of my simulation based approach is that the ‘ground truth’

is based on where reads originated from in the transcriptome. In other words, my

benchmark evaluated the ability of isoform quantification tools to correctly determine

where reads originated from in the transcriptome. This is an important ability for an

isoform quantification tool to have, however it should be recognised that scRNA-seq

has a high frequency of technical dropouts and PCR amplification bias. Because my

benchmark only considers the ability of quantification software to quantify the reads

that are present, I entirely ignore the issues arising from all the reads from expressed

isoforms that are absent due to dropouts and the issues arising from amplification

bias. The only way to benchmark the ability of isoform quantification tools to cor-

rectly infer the original expression of isoforms in cells would be if an scRNA-seq
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experiment were carried out where the exact expression of isoforms was known at

the moment that the RNA was extracted from the cells. At present, no technology

exists that could generate this type of data. Consequently, I made identifying iso-

form quantification tools that can accurately quantify the reads that are present the

goal of my benchmarking study, and consider how best to correct for technical noise

such as dropouts to be a separate issue.

6.2 Initial attempts to determine how many iso-

forms are produced per gene per cell gave un-

interpretable results

How many isoforms does a gene produce in a cell? This deceptively simple question

holds a fundamental place in molecular biology. I began my attempts to investigate

how many isoforms a gene produces in a cell by considering genes for which two

isoforms are detected in bulk RNA-seq, and asking how many isoforms are detected

per cell using scRNA-seq. I found that I frequently failed to detected gene expression

at all, and when I did detect gene expression, it was more common to only detect

the expression of only one isoform. This is consistent with two hypotheses. The first

hypothesis is that gene expression genuinely is heterogeneous between cells, and that

it is rare for cells to simultaneously express two isoforms from the same parent gene.

The second hypothesis is that we commonly fail to detect gene and isoform expression

due to technical dropouts. Without a better understanding of how best to model

dropouts, it is challenging to determine to what extent each of these hypotheses are

true. Similarly, my later observation that two isoforms are more frequently detected

for more highly expressed genes is consistent with the hypothesis that more highly

expressed genes undergo more splicing, and is also consistent with the hypothesis

that dropouts are more prevalent for less expressed transcripts. Again, it is not

currently possible to determine which of these hypotheses is most accurate without a

more sophisticated understanding of dropouts. Therefore, I conclude that at present,

the results of the experiment are uninterpretable.
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As dropouts made the results of my previous experiment uninterpretable, the

approach taken in my next experiment explicitly accounted for dropouts using a

Michaelis-Menten model developed by Andrews and Hemberg (Andrews and Hem-

berg, 2018a). However, the model I developed to predict how many isoforms are

produced per gene per cell failed at the first hurdle by predicting that more isoforms

were produced per cell than could be detected across all cells. This prediction is

possible if the rate of dropouts is extremely high, but given that my model’s pre-

dictions are not supported by matched bulk RNA-seq data either, this explanation

seems unlikely. One solution would be to test the predictions using smFISH. Whilst

this would establish whether the model makes accurate predictions or not, it would

be expensive, technically challenging and time consuming to carry out smFISH ex-

periments for a large enough number of genes to confidently evaluate the model’s

accuracy. Ultimately I think smFISH experiments resolving the number of isoforms

produced from a gene in individual cells would be hugely valuable from both a molec-

ular biology and single cell perspective, however they go beyond the scope of this

thesis. A more realistic solution could be to modify my model so that it makes more

‘realistic’ predictions. Modifying my model is clearly feasible, however whether it

would be useful is another question. Altering a model with the goal of making its

predictions more ‘realistic’ without knowing how many isoforms are produced per

gene per cell in reality is likely to create a model that reflects my own biases more

than anything else.

The main outcome from these two experiments was the realisation that a lack

of understanding about technical noise in scRNA-seq can make a biological inter-

pretation of scRNA-seq data challenging, if not impossible. If more was understood

about dropouts, and how to correct for dropouts in individual cells, the two ex-

periments discussed above would become far easier to interpret. To address this

lack of understanding about the extent to which technical noise confounds scRNA-

seq experiments, I embarked on a final simulation based study. In my final study,

I investigated the extent to which certain variables confound our ability to detect

isoforms in individual cells.
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6.3 Dropouts are a major obstacle to studying al-

ternative splicing using scRNA-seq

In the final Results chapter of my thesis, I developed a novel simulation based ap-

proach and considered to what extent certain variables confound our ability to study

alternative splicing in individual cells. I considered one biological and two techni-

cal variables. The technical variables considered were dropouts, which I found to

be a major confounder, and isoform quantification errors. Isoform quantification

errors could theoretically be entirely or almost entirely removed as a source of tech-

nical noise in scRNA-seq experiments, especially if long read technologies improve.

Therefore, establishing whether quantification errors are a major confounder is of

interest to the field because there are clear actions that could be taken to reduce or

remove confounding. In practice however, I found that isoform quantification errors

were a relatively minor confounder. Indeed, even when all quantification errors were

removed from my simulations, substantial confounding remained. This illustrates

that improvements in the accuracy of isoform quantification would not be sufficient

to enable accurate splicing analyses using scRNA-seq.

In addition to dropouts and quantification errors, I asked whether different models

of isoform choice, in which each cell ‘chooses’ which isoforms should be expressed,

have an impact on my simulation results. I found that different models of isoforms

choice significantly altered my simulation results, indicating that there could be value

in including it in future models for studying alternative splicing using scRNA-seq.

Insight into the cellular process of isoform choice could be gained from smFISH

experiments, which would enable more accurate models of isoform choice to be built.

My results suggest that we are less able to detect isoforms in individual cells when

cells use models of isoform choice in which isoforms with a high probability of dropout

are frequently chosen. Determining whether lowly expressed isoforms with high

dropout probabilities are frequently expressed by cells will therefore be important

and give an indication of the extent to which we are currently able to detect isoforms

in individual cells using scRNA-seq.

I considered three potentially confounding variables in my simulations, however
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I recognise that other sources of biological and technical noise exist in scRNA-seq

that could potentially confound splicing experiments. Because I focus on detecting

rather than quantifying isoforms, I do not consider PCR amplification bias, which

in theory should not directly impact on isoform detection. With good experimental

design batch effects can often be avoided in scRNA-seq experiments, so I do not

consider batch effects in my simulations either. Biological dropouts, for example

due to transcriptional bursting or cell type specific expression of isoforms, are a

potential confounder when studying splicing using scRNA-seq. Distinguishing be-

tween biological and technical dropouts is challenging and little work has been done

to resolve between biological and technical dropouts in individual cells in scRNA-

seq data. Andrews and Hemberg’s Michaelis-Menten model was originally designed

to identify genes with more dropouts than expected based on the gene’s mean ex-

pression, the rationale being that the excess dropouts must be biological dropouts

(Andrews and Hemberg, 2018a). However, to build an evidence based model of bi-

ological dropouts for use in my simulations or related approaches, this work would

need to be substantially extended. Additionally, models have previously been built

which attempt to capture transcriptional bursting behaviour from scRNA-seq data

(Kim and Marioni, 2013; Kim et al., 2015; Larsson et al., 2019; Ochiai et al., 2019).

However these models do not account for cell type specific expression of isoforms,

thus are not comprehensive models of all biological dropouts. Additionally, many

of these models were not validated using any orthogonal method (eg. smFISH) to

test their predictions, meaning their biological relevance is unclear. Therefore, in my

simulations I do not consider biological dropouts due to a lack of appropriate models

of biological dropouts. I am hopeful that further work might be done in this space,

as I think it would be of great value to the community.

In the final Results chapter of my thesis, I established that alternative splicing

analyses using scRNA-seq are currently confounded by dropouts and a lack of under-

standing about the cellular process of isoform choice. As a field, we do not currently

know how best to correct for these confounders. Consequently, I conclude that at

present I cannot recommend attempting alternative splicing using scRNA-seq data.

So how should we move forwards?
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6.4 Future Directions

A recurring theme throughout my thesis has been that dropouts can be a substantial

confounder when attempting to detect isoforms in individual cells, but it is unknown

how best to correct for this confounder. There are three very different approaches

to attempt to solve this problem. The first is to build models of technical and

biological dropouts that would enable dropouts to be resolved in individual cells in a

high confidence manner. This is essentially isoform-level imputation. Multiple tools

have been developed that attempt to impute scRNA-seq data quantified at the gene

level (Wagner et al., 2017; Li and Li, 2018; Huang et al., 2018; Gong et al., 2018; van

Dijk et al., 2018; Eraslan et al., 2019), however their poor performance in a recent

benchmark illustrates that this is a highly challenging problem that we are some way

from solving (Andrews and Hemberg, 2018b). In general, bioinformatics dropout

based methods such as imputation and Andrews and Hemberg’s Michaelis-Menten

model have focused on correcting for dropouts for applications such as clustering

and feature selection. Different approaches might be required when attempting to

resolve dropouts in individual cells - for example, factors such as the cell’s library

size and physical size might need to be accounted for. Attempting to develop such

approaches could enable more accurate splicing analyses to be performed in future.

However, this is an extremely challenging problem to solve, as illustrated by the poor

performance of existing imputation tools (Andrews and Hemberg, 2018a).

The second approach that could be taken to attempt to solve confounding effects

caused by dropouts would be to increase the capture efficiency of scRNA-seq. It is hy-

pothesised that dropouts occur due inefficiencies in the enzymatic process of reverse

transcription (Kharchenko et al., 2014). If this hypothesis is correct, improvements

to the efficiencies of the enzymatic reactions that occur during library preparation

could reduce the frequency of dropouts in scRNA-seq. Whilst this thesis was be-

ing written, a new library preparation protocol called SMART-seq3 was released

(Hagemann-Jensen et al., 2019). One of the stated improvements in SMART-seq3

relative to SMART-seq2 was that the efficiency of several enzymatic reactions in

library preparation had been improved, which could theoretically improve the cap-
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ture efficiency of SMART-seq3. Indeed, in their preprint, Hagemann-Jensen et al.

showed that SMART-seq3 detected more genes per cell on average than SMART-

seq2, which would be consistent with an increased capture efficiency. Hagemann-

Jensen et al. also claimed that SMART-seq3 on average detected an estimated

69% of the molecules detected from four moderately expressed genes using smFISH.

However, only four genes were reported and it is unclear how these estimates were

generated, so these claims should perhaps be taken with a pinch of salt. An in-

dependent benchmark of library preparation protocols, including SMART-seq3, is

required to determine whether the capture efficiency of SMART-seq3 is genuinely el-

evated relative to other library preparation methods. If SMART-seq3 truly does have

a higher capture efficiency, it could play an important role in enabling the detection

of isoforms in individual cells.

The final approach to solving confounding factors caused by dropouts in scRNA-

seq data is to use a different technology to detect isoforms in individual cells. sm-

FISH is the most obvious candidate. Whilst smFISH has traditionally been a low

throughput technology which struggles to resolve between isoforms, recent and future

improvements in throughput (Eng et al., 2019; Moffitt et al., 2016) and techniques to

resolve between similar molecules (Levesque et al., 2013) could make a high through-

put study of how many isoforms are expressed per gene per cell increasingly feasible.

An smFISH dataset resolving the number of isoforms detected per gene per cell for

a hundred or so genes would be hugely valuable to the scRNA-seq community. This

dataset could be used as a ground truth dataset to benchmark scRNA-seq methods

for inferring isoform number. Additionally, such an smFISH dataset could be used

to train and test machine learning approaches, which are currently impossible due

to a lack of training data.

An important point to recognise is that my simulation based approach only fo-

cussed on isoform detection. Establishing the relative magnitude of expression of

isoforms is likely to be of interest to many researchers, however simply detecting

isoforms accurately is currently problematic. Therefore, accurately inferring the rel-

ative magnitude of expression of isoforms in individual cells is not yet feasible in my

view. Furthermore, the two library preparation protocols which performed well in my
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benchmarking study (SMARTer and SMART-seq2) do not add UMIs to transcripts

and so suffer from PCR amplification bias. This is likely to substantially confound

attempts to infer magnitude of expression. SMART-seq3 does add UMIs to some

reads, however Hagemann-Jensen et al. demonstrate that the UMI containing reads

have substantial bias towards the 5’ end of the transcript (Hagemann-Jensen et al.,

2019). This 5’ bias is likely to make the detection and quantification of isoforms that

differ at their 3’ end challenging.

scRNA-seq is a very dynamic field, and many researchers are actively working on

new technological developments. In the next section, I consider whether up and com-

ing developments in scRNA-seq technologies could improve the feasibility of studying

splicing in the future.

6.5 scRNA-seq technologies on the horizon

As the timeline in Figure 1.5 illustrates, many scRNA-seq technologies have been

developed in the past decade. However, further developments are on the horizon.

In this section, I will discuss several exciting technological developments that are on

the verge of becoming practical and consider whether in the future, they could play

a role in enabling splicing to be studied using scRNA-seq.

6.5.1 SMART-seq3

A preprint for a new scRNA-seq library preparation protocol called SMART-seq3

was recently released (Hagemann-Jensen et al., 2019). SMART-seq3 has been widely

described as the first technology to combine full length reads and reads containing

UMIs. However, it is important to recognise that full length reads containing UMIs

are not generated by this protocol. Rather, this protocol generates a set of UMI

containing reads which are heavily biased towards the 5’ end of the transcript, and

a set of full length reads that do not contain UMIs and have relatively a uniform

coverage.

SMART-seq3 is certainly a very novel approach, however it is not immediately
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obvious what its applications will be. In their preprint, Hagemann-Jensen et al.

propose that the UMI containing reads could be used to infer isoform structure and

allelic information. However, as the UMI containing reads are 5’ biased, it is unclear

how effective this approach would be, especially compared to potential developments

in long read technologies. Given the mix of UMI and non-UMI containing reads gen-

erated by this protocol, research into the best bioinformatics methods for analysing

this data may be required to determine how best to use data generated by the new

protocol. In addition, independent benchmarks comparing SMART-seq3 to other li-

brary preparation protocols would be valuable. In their preprint, Hagemann-Jensen

et al. attempt to improve the efficiency of enzymatic reactions in their library prepa-

ration protocol. If the enzyme reaction efficiency has been improved, the capture

efficiency of SMART-seq3 could be higher than that of other library preparation

protocols. The capture efficiency of SMART-seq3 should be independently investi-

gated and compared to other scRNA-seq technologies to establish whether it truly is

elevated. If SMART-seq3 does have a higher capture efficiency than other scRNA-seq

technologies, this could have important implications for the feasibility of studying

splicing using scRNA-seq. I have established in this thesis that dropouts are a major

confounder when trying to study splicing with scRNA-seq. A reduction in the rate of

technical dropouts could meaningfully increase the feasibility of accurately detecting

the number of isoforms in individual cells.

6.5.2 Long read scRNA-seq

At the time of writing, most sequencing experiments use Illumina sequencing. How-

ever, other sequencing platforms are available. A distinct advantage of some se-

quencing platforms is that they enable longer reads to be sequenced than is cur-

rently possible using Illumina. If we are interested in studying alternative splicing

this is exciting news. Longer reads would cover more of the length of each transcript,

theoretically enabling more accurate transcript identification. If the entire length of

the transcript could be covered by a single read, in theory that transcript could be

identified with perfect accuracy.
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In practice, existing long read sequencing platforms such as PacBio and Oxford

Nanopore have a much higher base calling error rate than Illumina (Koren et al.,

2012; Rang et al., 2018; Fu et al., 2019). Thus, it is unclear whether the accu-

racy of transcript identification would overall be higher or lower using this platform

compared with using Illumina. Independent comparative benchmarks are needed

to address this. In addition, improvements in base calling accuracy are likely to

improve the accuracy of transcript identification. However, I note that in my simu-

lations in chapter 4, when the isoform quantification error rate was reduced to zero,

our ability to detect isoforms in individual cells remained poor. This is most likely

due to confounding caused by dropouts. Long read technologies would represent an

important advance in scRNA-seq and could dramatically improve transcript identi-

fication. But unless long read technologies are accompanied with improvements in

the capture efficiency of scRNA-seq or better methodologies to correct for dropouts,

long read technologies will not solve all of the issues currently faced when trying to

study splicing with scRNA-seq.

To date, a small number of long read scRNA-seq publications exist (Singh et al.,

2019; Gupta et al., 2018; Karlsson and Linnarsson, 2017; Lebrigand et al., 2019).

However, long read technologies are still young. Consequently, challenges relating

to cost, technical difficulties, a lack of well established protocols and uncertainty

over data quality mean that few labs have attempted long read scRNA-seq to date.

In addition, at present the read throughput of long read platforms is too low to

enable meaningful isoform detection and quantification across a large number of

cells (Arzalluz-Luque and Conesa, 2018). Notwithstanding, long read scRNA-seq is

of interest to the single cell community and can be expected to develop and grow in

years to come.

6.5.3 Spatial transcriptomics

Spatial transcriptomics is a field in which information about where cells are located

in tissues is linked with information about what genes or isoforms they transcribe.

Given that one of the most common applications of scRNA-seq is cell identification,
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there is interest in the single cell community in incorporating spatial information

with scRNA-seq analyses, as spatial information could be used to validate predicted

cell identities and to provide new insight into how tissues are organised at the cellular

level. From a splicing perspective, spatial transcriptomics could enable researchers

to correlate differential splicing with a cell’s physical location. This would represent

a genuine advance on what is currently possible using scRNA-seq.

Broadly speaking, spatial transcriptomics falls into two main categories - FISH

based spatial transcriptomics and scRNA-seq based spatial transcriptomics. From

a validation perspective, it is valuable that both FISH and scRNA-seq based ap-

proaches exist. FISH based approaches could provide an orthogonal means of validat-

ing splicing and other biological predictions from scRNA-seq based approaches. Tra-

ditionally FISH based spatial transcriptomics approaches were relatively low through-

put in terms of the number of genes that could be assayed. However throughput has

been improving. A recently developed FISH based spatial transcriptomic technology,

seqFISH+, was used to profile 10,000 genes in nearly 3,000 cells (Eng et al., 2019).

In recent years, a series of scRNA-seq based spatial transcriptomic methods have

been developed. The details of the protocols vary, however the general principle is

that a thin tissue section is prepared, then is laid over a slide coated with beads

or probes which capture RNA (Rodriques et al., 2019; Vickovic et al., 2019; St̊ahl

et al., 2016). These procedures are not truly single cell as the beads or probes often

capture RNA from more than one cell. Nonetheless, they represent a genuine break-

through in our ability to link spatial and transcriptomic information. Improvements

to this technology, such as only capturing transcriptomic information from one cell,

reduced cost and simpler protocols, could lead to spatial transcriptomics becoming

increasingly widespread in the future.
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6.6 Alternative splicing and scRNA-seq: conclu-

sions from my feasibility assessment

I began my feasibility assessment by asking whether existing isoform quantification

tools give accurate results when run on scRNA-seq data. I found that in general,

existing isoform quantification tools perform well when run on scRNA-seq data,

provided that the data has full length reads and the sequencing depth is moderately

high for each cell. However, when I attempted to address biological questions using

tools that performed well in my benchmark, I found that a lack of knowledge about

what confounders were present in the scRNA-seq data made my results impossible

to interpret.

I therefore continued my feasibility assessment by investigating the extent to

which various technical and biological factors confounded splicing analyses using

scRNA-seq. I found that dropouts are a major technical confounder when attempting

to detect isoforms in individual cells. Isoform quantification errors were a much lesser

confounder. Importantly, even when isoform quantification is error free, substantial

confounding remains. This indicates that perfect isoform quantification alone is

insufficient to enable accurate splicing analyses. My results indicate that isoform

choice can impact on our ability to detect isoforms in individual cells, so should be

accounted for in future splicing analyses.

At present, it is unclear whether the capture efficiency of scRNA-seq could be

increased and accurate methodologies to correct for technical dropouts do not exist.

In addition, little is known about the cellular mechanisms of isoform choice for most

genes. As I have shown that dropouts and a lack of knowledge about isoform choice

confound our ability to analyse splicing using scRNA-seq, I conclude that at present,

it is often not feasible to accurately analyse alternative splicing using scRNA-seq.

However, I am optimistic that with a combination of bioinformatics methods devel-

opment, wet lab experiments and improvements to scRNA-seq technologies, it may

become feasible to study alternative splicing using scRNA-seq in the future.
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6.7 A methods-driven approach to biology

As a bioinformatician, I have often been encouraged not to lose sight of the biology.

However, as I have become more experienced over the course of my PhD, I have

come to question how much biology it is currently possible to see through the lens

of genomics. Bioinformatics is not, and should not be regarded as, a magic wand

that removes all of the flaws and noise in genomics data. Bioinformatics software

can be blindly applied to genomics data and it will often produce an answer. We

have many roles as scientists, and one of those roles should be to question whether

it was appropriate to apply that bioinformatics methodology to that dataset. If it

was not, the answer that was generated should be questioned.

The methods-driven approach I took in chapter 4 of my thesis was in some re-

spects entirely detached from the underlying biological process of isoform choice in

individual cells. The four situations that I simulated, in which each cell expressed

exactly one, two, three or four isoforms, most likely bear no resemblance to the cellu-

lar regulation of isoform expression in reality. Nonetheless, I regard chapter 4 as the

most important chapter of my thesis. Chapter 4 delivered insight into what biologi-

cal questions currently can and can not be answered using scRNA-seq. It is my view

that genomics data should only be used to answer biological questions if there is a

reasonable expectation that the answer will be accurate. As I have demonstrated in

this thesis, determining whether an accurate answer is obtainable can require con-

siderable research. I am hopeful that similar approaches to the approach taken in

chapter 4 will be used more frequently in future.

Academia can be slow to change and I am a very minor player. However, if I could

persuade a few scientists to question and systematically evaluate the bioinformatics

methodologies and approaches used in their research, I would feel that the last three

years were exceptionally well spent.
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N. Hacohen, M. Haniffa, M. Hemberg, S. Kim, P. Klenerman, A. Kriegstein,

E. Lein, S. Linnarsson, E. Lundberg, J. Lundeberg, P. Majumder, J. C. Marioni,

M. Merad, M. Mhlanga, M. Nawijn, M. Netea, G. Nolan, D. Pe’er, A. Phillipakis,

C. P. Ponting, S. Quake, W. Reik, O. Rozenblatt-Rosen, J. Sanes, R. Satija, T. N.

216

http://dx.doi.org/10.1016/s0960-9822(07)00345-4
http://dx.doi.org/10.1016/s0960-9822(07)00345-4
http://dx.doi.org/10.1038/nbt.2282
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1462-9
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1462-9
http://dx.doi.org/10.1126/science.aag1906
http://dx.doi.org/10.1126/science.aag1906
http://dx.doi.org/10.1101/gr.10.4.483
http://dx.doi.org/10.1101/gr.10.4.483


Schumacher, A. Shalek, E. Shapiro, P. Sharma, J. W. Shin, O. Stegle, M. Stratton,

M. J. T. Stubbington, F. J. Theis, M. Uhlen, A. van Oudenaarden, A. Wagner,

F. Watt, J. Weissman, B. Wold, R. Xavier, N. Yosef, and H. C. A. M. Partici-

pants. The human cell atlas. eLife, 6, dec 2017. doi: 10.7554/{eLife}.27041. URL

http://dx.doi.org/10.7554/{eLife}.27041.

A. Roberts and L. Pachter. Streaming fragment assignment for real-time analysis

of sequencing experiments. Nature Methods, 10(1):71–73, jan 2013. doi: 10.1038/

nmeth.2251. URL http://dx.doi.org/10.1038/nmeth.2251.

S. G. Rodriques, R. R. Stickels, A. Goeva, C. A. Martin, E. Murray, C. R.

Vanderburg, J. Welch, L. M. Chen, F. Chen, and E. Z. Macosko. Slide-seq:

A scalable technology for measuring genome-wide expression at high spatial

resolution. Science, 363(6434):1463–1467, mar 2019. ISSN 0036-8075. doi:

10.1126/science.aaw1219. URL http://www.sciencemag.org/lookup/doi/10.

1126/science.aaw1219.

B. Ruskin, A. R. Krainer, T. Maniatis, and M. R. Green. Excision of an intact

intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell, 38(1):

317–331, aug 1984. doi: 10.1016/0092-8674(84)90553-1. URL http://dx.doi.

org/10.1016/0092-8674(84)90553-1.

W. Saelens, R. Cannoodt, H. Todorov, and Y. Saeys. A comparison of single-cell

trajectory inference methods. Nature Biotechnology, 37(5):547–554, apr 2019.

ISSN 1087-0156. doi: 10.1038/s41587-019-0071-9. URL http://www.nature.

com/articles/s41587-019-0071-9.

L. Samaranch, O. Lorenzo-Betancor, J. M. Arbelo, I. Ferrer, E. Lorenzo, J. Irigoyen,

M. A. Pastor, C. Marrero, C. Isla, J. Herrera-Henriquez, and P. Pastor. PINK1-

linked parkinsonism is associated with lewy body pathology. Brain: A Journal of

Neurology, 133(Pt 4):1128–1142, apr 2010. ISSN 1460-2156. doi: 10.1093/brain/

awq051. URL http://dx.doi.org/10.1093/brain/awq051.

217

http://dx.doi.org/10.7554/{eLife}.27041
http://dx.doi.org/10.1038/nmeth.2251
http://www.sciencemag.org/lookup/doi/10.1126/science.aaw1219
http://www.sciencemag.org/lookup/doi/10.1126/science.aaw1219
http://dx.doi.org/10.1016/0092-8674(84)90553-1
http://dx.doi.org/10.1016/0092-8674(84)90553-1
http://www.nature.com/articles/s41587-019-0071-9
http://www.nature.com/articles/s41587-019-0071-9
http://dx.doi.org/10.1093/brain/awq051


A. K. Shalek, R. Satija, X. Adiconis, R. S. Gertner, J. T. Gaublomme, R. Ray-

chowdhury, S. Schwartz, N. Yosef, C. Malboeuf, D. Lu, J. J. Trombetta, D. Gen-

nert, A. Gnirke, A. Goren, N. Hacohen, J. Z. Levin, H. Park, and A. Regev.

Single-cell transcriptomics reveals bimodality in expression and splicing in im-

mune cells. Nature, 498(7453):236–240, jun 2013. doi: 10.1038/nature12172. URL

http://dx.doi.org/10.1038/nature12172.

K. Shekhar, S. W. Lapan, I. E. Whitney, N. M. Tran, E. Z. Macosko, M. Kowalczyk,

X. Adiconis, J. Z. Levin, J. Nemesh, M. Goldman, S. A. McCarroll, C. L. Cepko,

A. Regev, and J. R. Sanes. Comprehensive classification of retinal bipolar neurons

by single-cell transcriptomics. Cell, 166(5):1308–1323.e30, aug 2016. doi: 10.1016/

j.cell.2016.07.054. URL http://dx.doi.org/10.1016/j.cell.2016.07.054.

Y. Shi. Mechanistic insights into precursor messenger RNA splicing by the spliceo-

some. Nature Reviews. Molecular Cell Biology, 18(11):655–670, nov 2017. doi:

10.1038/nrm.2017.86. URL http://dx.doi.org/10.1038/nrm.2017.86.

E. A. Sickmier, K. E. Frato, H. Shen, S. R. Paranawithana, M. R. Green, and C. L.

Kielkopf. Structural basis for polypyrimidine tract recognition by the essential

pre-mRNA splicing factor U2AF65. Molecular Cell, 23(1):49–59, jul 2006. doi: 10.

1016/j.molcel.2006.05.025. URL http://dx.doi.org/10.1016/j.molcel.2006.

05.025.

M. Singh, G. Al-Eryani, S. Carswell, J. M. Ferguson, J. Blackburn, K. Bar-

ton, D. Roden, F. Luciani, T. Giang Phan, S. Junankar, K. Jackson, C. C.

Goodnow, M. A. Smith, and A. Swarbrick. High-throughput targeted long-

read single cell sequencing reveals the clonal and transcriptional landscape of

lymphocytes. Nature Communications, 10(1):3120, jul 2019. ISSN 2041-1723.

doi: 10.1038/s41467-019-11049-4. URL http://www.nature.com/articles/

s41467-019-11049-4.

T. Smith, A. Heger, and I. Sudbery. UMI-tools: modeling sequencing errors in unique

molecular identifiers to improve quantification accuracy. Genome Research, 27(3):

218

http://dx.doi.org/10.1038/nature12172
http://dx.doi.org/10.1016/j.cell.2016.07.054
http://dx.doi.org/10.1038/nrm.2017.86
http://dx.doi.org/10.1016/j.molcel.2006.05.025
http://dx.doi.org/10.1016/j.molcel.2006.05.025
http://www.nature.com/articles/s41467-019-11049-4
http://www.nature.com/articles/s41467-019-11049-4


491–499, jan 2017. doi: 10.1101/gr.209601.116. URL http://dx.doi.org/10.

1101/gr.209601.116.

C. Soneson and M. D. Robinson. Towards unified quality verification of synthetic

count data with countsimQC. Bioinformatics, 34(4):691–692, feb 2018a. ISSN

1367-4803. doi: 10.1093/bioinformatics/btx631. URL http://academic.

oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btx631/

4345646/Towards-unified-quality-verification-of-synthetic.

C. Soneson and M. D. Robinson. Bias, robustness and scalability in single-cell differ-

ential expression analysis. Nature Methods, 15(4):255–261, feb 2018b. ISSN 1548-

7091. doi: 10.1038/nmeth.4612. URL http://www.nature.com/doifinder/10.

1038/nmeth.4612.

Y. Song, O. B. Botvinnik, M. T. Lovci, B. Kakaradov, P. Liu, J. L. Xu, and

G. W. Yeo. Single-cell alternative splicing analysis with expedition reveals splic-

ing dynamics during neuron differentiation. Molecular Cell, 67(1):148–161.e5, jul

2017. doi: 10.1016/j.molcel.2017.06.003. URL http://dx.doi.org/10.1016/j.

molcel.2017.06.003.

E. J. Sontheimer and J. A. Steitz. The u5 and u6 small nuclear RNAs as active

site components of the spliceosome. Science, 262(5142):1989–1996, dec 1993. doi:

10.1126/science.8266094. URL http://dx.doi.org/10.1126/science.8266094.

O. Stegle, S. A. Teichmann, and J. C. Marioni. Computational and analytical chal-

lenges in single-cell transcriptomics. Nature Reviews. Genetics, 16(3):133–145, mar

2015. doi: 10.1038/nrg3833. URL http://dx.doi.org/10.1038/nrg3833.

T. Sterne-Weiler, J. Howard, M. Mort, D. N. Cooper, and J. R. Sanford. Loss

of exon identity is a common mechanism of human inherited disease. Genome

Research, 21(10):1563–1571, oct 2011. doi: 10.1101/gr.118638.110. URL http:

//dx.doi.org/10.1101/gr.118638.110.

219

http://dx.doi.org/10.1101/gr.209601.116
http://dx.doi.org/10.1101/gr.209601.116
http://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btx631/4345646/Towards-unified-quality-verification-of-synthetic
http://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btx631/4345646/Towards-unified-quality-verification-of-synthetic
http://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btx631/4345646/Towards-unified-quality-verification-of-synthetic
http://www.nature.com/doifinder/10.1038/nmeth.4612
http://www.nature.com/doifinder/10.1038/nmeth.4612
http://dx.doi.org/10.1016/j.molcel.2017.06.003
http://dx.doi.org/10.1016/j.molcel.2017.06.003
http://dx.doi.org/10.1126/science.8266094
http://dx.doi.org/10.1038/nrg3833
http://dx.doi.org/10.1101/gr.118638.110
http://dx.doi.org/10.1101/gr.118638.110


M. Stoeckius, S. Zheng, B. Houck-Loomis, S. Hao, B. Z. Yeung, W. M. Mauck,

P. Smibert, and R. Satija. Cell hashing with barcoded antibodies enables multi-

plexing and doublet detection for single cell genomics. Genome Biology, 19(1):224,

dec 2018. doi: 10.1186/s13059-018-1603-1. URL http://dx.doi.org/10.1186/

s13059-018-1603-1.

E. W. Strong. Newton’s ”mathematical way”. Journal of the history of ideas, 12(1):

90, jan 1951. ISSN 00225037. doi: 10.2307/2707539. URL https://www.jstor.

org/stable/2707539?origin=crossref.

P. L. St̊ahl, F. Salmén, S. Vickovic, A. Lundmark, J. F. Navarro, J. Magnusson,

S. Giacomello, M. Asp, J. O. Westholm, M. Huss, A. Mollbrink, S. Linnarsson,

S. Codeluppi, r. Borg, F. Pontén, P. I. Costea, P. Sahlén, J. Mulder, O. Bergmann,

J. Lundeberg, and J. Frisén. Visualization and analysis of gene expression in tissue

sections by spatial transcriptomics. Science, 353(6294):78–82, jul 2016. ISSN

0036-8075. doi: 10.1126/science.aaf2403. URL http://www.sciencemag.org/

cgi/doi/10.1126/science.aaf2403.

C.-H. Su, D. D, and W.-Y. Tarn. Alternative splicing in neurogenesis and brain

development. Frontiers in molecular biosciences, 5:12, feb 2018. doi: 10.3389/

fmolb.2018.00012. URL http://dx.doi.org/10.3389/fmolb.2018.00012.

V. Svensson, K. N. Natarajan, L.-H. Ly, R. J. Miragaia, C. Labalette, I. C. Macaulay,

A. Cvejic, and S. A. Teichmann. Power analysis of single-cell RNA-sequencing

experiments. Nature Methods, 14(4):381–387, apr 2017. doi: 10.1038/nmeth.4220.

URL http://dx.doi.org/10.1038/nmeth.4220.

V. Svensson, R. Vento-Tormo, and S. A. Teichmann. Exponential scaling of single-

cell RNA-seq in the past decade. Nature Protocols, 13(4):599–604, mar 2018.

ISSN 1754-2189. doi: 10.1038/nprot.2017.149. URL http://www.nature.com/

doifinder/10.1038/nprot.2017.149.

V. Svensson, E. da Veiga Beltrame, and L. Pachter. Quantifying the tradeoff between

220

http://dx.doi.org/10.1186/s13059-018-1603-1
http://dx.doi.org/10.1186/s13059-018-1603-1
https://www.jstor.org/stable/2707539?origin=crossref
https://www.jstor.org/stable/2707539?origin=crossref
http://www.sciencemag.org/cgi/doi/10.1126/science.aaf2403
http://www.sciencemag.org/cgi/doi/10.1126/science.aaf2403
http://dx.doi.org/10.3389/fmolb.2018.00012
http://dx.doi.org/10.1038/nmeth.4220
http://www.nature.com/doifinder/10.1038/nprot.2017.149
http://www.nature.com/doifinder/10.1038/nprot.2017.149


sequencing depth and cell number in single-cell RNA-seq. BioRxiv, sep 2019. doi:

10.1101/762773. URL http://biorxiv.org/lookup/doi/10.1101/762773.

G. Tanackovic, A. Ransijn, C. Ayuso, S. Harper, E. L. Berson, and C. Rivolta.

A missense mutation in PRPF6 causes impairment of pre-mRNA splicing and

autosomal-dominant retinitis pigmentosa. American Journal of Human Genetics,

88(5):643–649, may 2011. doi: 10.1016/j.ajhg.2011.04.008. URL http://dx.doi.

org/10.1016/j.ajhg.2011.04.008.

F. Tang, C. Barbacioru, Y. Wang, E. Nordman, C. Lee, N. Xu, X. Wang,

J. Bodeau, B. B. Tuch, A. Siddiqui, K. Lao, and M. A. Surani. mRNA-seq whole-

transcriptome analysis of a single cell. Nature Methods, 6(5):377–382, may 2009.

ISSN 1548-7105. doi: 10.1038/nmeth.1315. URL http://dx.doi.org/10.1038/

nmeth.1315.

F. Tang, C. Barbacioru, S. Bao, C. Lee, E. Nordman, X. Wang, K. Lao, and M. A.

Surani. Tracing the derivation of embryonic stem cells from the inner cell mass

by single-cell RNA-seq analysis. Cell Stem Cell, 6(5):468–478, may 2010. doi: 10.

1016/j.stem.2010.03.015. URL http://dx.doi.org/10.1016/j.stem.2010.03.

015.
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Appendix 1

This appendix contains quality control and other descriptive plots from chapter 2.
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Figure 7.1: Plots of quality control statistics for the BLUEPRINT B lymphocytes.

In all of these plots, one point represents one cell. Based on these plots, cells with

more than 10% of reads mapping to mitochondrial RNA, more than 4 million reads,

more than 8.2 million alignments, more than 8 million uniquely mapping reads or

more than 350,000 non-uniquely mapping reads were removed. Dashed red lines

indicate the thresholds selected to remove cells. A Percentage of reads mapping

to mitochondrial RNA. Graph produced using the scater package(McCarthy et al.,

2017). B Number of reads per cell. C Number of alignments per cell. D Number

of uniquely mapping reads per cell. E Number of non-uniquely mapping reads per

cell. F Number of unmapped reads.
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Figure 7.2: Plots of quality control statistics for the RSEM(Li and Dewey, 2011)
simulated data based on the BLUEPRINT B lymphocytes. In all of these plots, one
point represents one cell. Based on these plots, cells with more than 10% of reads
mapping to mitochondrial RNA were removed. A Percentage of reads mapping to
mitochondrial RNA. Graph produced using the scater package. B Number of reads
per cell. C Number of alignments per cell. D Number of uniquely mapping reads
per cell. E Number of non-uniquely mapping reads per cell. F Number of unmapped
reads.
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Figure 7.3: Plots of quality control statistics for the Splatter(Zappia et al., 2017b)
and Polyester(Frazee et al., 2015) 3’ bias simulated data based on the BLUEPRINT B
lymphocytes. In all of these plots, one point represents one cell. Based on these plots,
cells with more than 250,000 non-uniquely mapping reads were removed. Dashed red
lines indicate the thresholds selected to remove cells. A Percentage of reads mapping
to mitochondrial RNA. Graph produced using the scater package. B Number of reads
per cell. C Number of alignments per cell. D Number of uniquely mapping reads
per cell. E Number of non-uniquely mapping reads per cell. F Number of unmapped
reads.
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Figure 7.4: Plots of quality control statistics for the Splatter and Polyester simulated
data based on the BLUEPRINT B lymphocytes, simulated with no coverage bias.
In all of these plots, one point represents one cell. Based on these plots, no poor
quality cells were removed. Based on these plots, cells with more than 250,000 non
uniquely mapping reads were removed. Dashed red lines indicate the thresholds
selected to remove cells. A Percentage of reads mapping to mitochondrial RNA.
Graph produced using the scater package. B Number of reads per cell. C Number
of alignments per cell. D Number of uniquely mapping reads per cell. E Number of
non-uniquely mapping reads per cell. F Number of unmapped reads.
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Figure 7.5: Plots of quality control statistics for mESCs grown in standard 2i media
+ LIF, published by Kolodziejczyk et al.(Kolodziejczyk et al., 2015) In all of these
plots, one point represents one cell. Based on these plots, cells with more than
10% of reads mapping to mitochondrial RNA, more than 12 million or less than 3.5
million reads, more than 32 million or less than 4 million alignments, or more than
2.5 million non-uniquely mapping reads were removed. Dashed red lines indicate the
thresholds selected to remove cells. A Percentage of reads mapping to mitochondrial
RNA. Graph produced using the scater package. B Number of reads per cell. C
Number of alignments per cell. D Number of uniquely mapping reads per cell. E
Number of non-uniquely mapping reads per cell. F: Number of unmapped reads.
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Figure 7.6: Plots of quality control statistics for simulated mESCs. In all of these
plots, one point represents one cell. Based on these plots, cells with more than 10%
of reads mapping to mitochondrial RNA or less than 5 million uniquely mapping
reads were removed. Dashed red lines indicate the thresholds selected to remove
cells. A Percentage of reads mapping to mitochondrial RNA. Graph produced using
the scater package. B Number of reads per cell. C Number of alignments per cell.
D Number of uniquely mapping reads per cell. E Number of non-uniquely mapping
reads per cell. F Number of unmapped reads.
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Figure 7.7: Histogram of ground truth expression values for simulated mESCs.
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Figure 7.8: Plots of quality control statistics for 1000 randomly selected Drop-seq
cells. In all of these plots, one point represents one cell. Based on these plots, cells
with more than 10% of reads mapping to mitochondrial RNA, more than 20,000
reads, more than 25,000 alignments, more than 15,000 uniquely mapping reads or
more than 3,000 non-uniquely mapping reads were removed. Dashed red lines in-
dicate the thresholds selected to remove cells. A Percentage of reads mapping to
mitochondrial RNA. Graph produced using the scater package. B Number of reads
per cell. C Number of alignments per cell. D Number of uniquely mapping reads
per cell. E Number of non-uniquely mapping reads per cell. F Number of unmapped
reads.
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Figure 7.9: Plots of quality control statistics for the simulated Drop-seq cells. In all
of these plots, one point represents one cell. Based on these plots, cells with more
than 10% of reads mapping to mitochondrial RNA, less than 1,000 alignments, less
than 1,000 uniquely mapping reads or more than 500 non-uniquely mapping reads
were removed. Dashed red lines indicate the thresholds selected to remove cells. The
number of alignments differs substantially in the simulated data compared to the real
data. One explanation for this could be inaccurate quantification of the number of
alignments. A Percentage of reads mapping to mitochondrial RNA. Graph produced
using the scater package. B Number of reads per cell. C Number of alignments per
cell. D Number of uniquely mapping reads per cell. E Number of non-uniquely
mapping reads per cell. F Number of unmapped reads.
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Figure 7.10: Histogram of ground truth expression values for simulated Drop-seq
cells.
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Figure 7.11: Comparison of the percentage of isoforms which are unexpressed (ie.
have zero expression) in Kolodziejczyk et al. ES cell bulk and scRNA-seq data. For
the single cell data, each point represents a simulated single cell. For the bulk data,
each point represents a single simulated bulk RNA-seq sample.

240



8

Appendix 2

This appendix contains simulation results from chapter 3 for pluripotency factors not

predicted to express differing numbers of isoforms under different culture conditions.
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A: a2i

B: Serum

C: Standard 2i

Figure 8.1: Simulation results for Esrrb gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line on
each plot represents the mean number of isoforms detected per cell in the real data.
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A: a2i

B: Serum

C: Standard 2i

Figure 8.2: Simulation results for Nanog gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line on
each plot represents the mean number of isoforms detected per cell in the real data.
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A: a2i

B: Serum

C: Standard 2i

Figure 8.3: Simulation results for Nr0b1 gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line on
each plot represents the mean number of isoforms detected per cell in the real data.
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A: a2i

B: Serum

C: Standard 2i

Figure 8.4: Simulation results for Sall4 gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line
on each plot represents the mean number of isoforms detected per cell in the real
data.
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A: a2i

B: Serum

C: Standard 2i

Figure 8.5: Simulation results for Sox2 gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line
on each plot represents the mean number of isoforms detected per cell in the real
data.
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A: a2i

B: Serum

C: Standard 2i

Figure 8.6: Simulation results for Zfp42 gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line on
each plot represents the mean number of isoforms detected per cell in the real data.
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A: a2i

B: Serum

C: Standard 2i

Figure 8.7: Simulation results for Zfp281 gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line on
each plot represents the mean number of isoforms detected per cell in the real data.
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A: a2i

B: Serum

C: Standard 2i

Figure 8.8: Simulation results for Zfx gene in mESCs cultured in A a2i culture
conditions, B serum and C standard 2i culture conditions. The vertical black line
on each plot represents the mean number of isoforms detected per cell in the real
data.
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9

Appendix 3

Tables of statistical results and additional results figures from chapter 4 are presented

in this chapter.
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Figure 9.1: Distributions of the overlap fraction with the ground truth when the A
Weibull model (Bacher et al., 2017; Hu et al., 2017), B random model, C inferred
probabilities model and D cell variability model of isoform choice is used. All distri-
butions are for H1 cells sequenced at approximately 4 million reads per cell. See the
main text for a detailed description of each model.
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Figure 9.2: Different models of isoform choice alter our ability to detect isoforms.
A Distributions of overlap fraction with the ground truth for H1 hESCs sequenced
at approximately 1 million reads per cell using the Weibull model of isoform choice
(Bacher et al., 2017; Hu et al., 2017). B shows the same distributions when the
random model is used. C shows the distributions when the inferred probabilities
model is used. D shows the distributions when the cell variability model is used. See
the main text for a detailed description of each model.
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Figure 9.3: Different models of isoform choice alter our ability to detect isoforms.
A Distributions of the mean number of isoforms detected per gene per cell for H9
hESCs sequenced at approximately 4 million reads per cell using the Weibull model
of isoform choice (Bacher et al., 2017; Hu et al., 2017). B shows the same distribu-
tions when the random model is used. C shows the distributions when the inferred
probabilities model is used. D shows the distributions when the cell variability model
is used. See the main text for a detailed description of each model.
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Figure 9.4: Different models of isoform choice alter our ability to detect isoforms.
a Distributions of overlap fraction with the ground truth for H9 hESCs sequenced
at approximately 4 million reads per cell using the Weibull model of isoform choice
(Bacher et al., 2017; Hu et al., 2017). b shows the same distributions when the
random model is used. c shows the distributions when the inferred probabilities
model is used. d shows the distributions when the cell variability model is used. See
the main text for a detailed description of each model.
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Figure 9.5: Different models of isoform choice alter our ability to detect isoforms.
A Distributions of the mean number of isoforms detected per gene per cell for H9
hESCs sequenced at approximately 1 million reads per cell using the Weibull model
of isoform choice (Bacher et al., 2017; Hu et al., 2017). B shows the same distribu-
tions when the random model is used. C shows the distributions when the inferred
probabilities model is used. D shows the distributions when the cell variability model
is used. See the main text for a detailed description of each model.
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Figure 9.6: Different models of isoform choice alter our ability to detect isoforms.
a Distributions of overlap fraction with the ground truth for H9 hESCs sequenced
at approximately 1 million reads per cell using the Weibull model of isoform choice
(Bacher et al., 2017; Hu et al., 2017). b shows the same distributions when the
random model is used. c shows the distributions when the inferred probabilities
model is used. d shows the distributions when the cell variability model is used. See
the main text for a detailed description of each model.
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Figure 9.7: Some models of isoform choice are more plausible than others. I model
the probability of picking any given isoform as a Normal distribution, a Bernoulli
distribution and a constant probability, all with the same mean (0.25) (top row of
graphs). In the following rows, I show the distributions of the overlap fraction when
each model of isoform choice is used. The second row is H1 hESCs sequenced at 1
million reads per cell, the third row is H1 hESCs sequenced at 4 million reads, the
fourth row is H9 hESCs sequenced at 1 million reads, the fifth row is H9 hESCs
sequenced at 4 million reads.
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Figure 9.8: Mixture models. A and B Distributions of detected isoforms per gene
per cell (blue) and log normal fitted distributions (orange) for H1 cells sequenced
at 1 million reads per cell (A) or 4 million reads per cell (B) under the random
model (Bacher et al., 2017). C and D Mixing fractions vs iterations of expectation
maximisation for 1 million reads per cell (C) and 4 million reads per cell (D). Each
coloured line represents the distributions for one, two, three or four isoforms being
simulated as expressed per gene per cell.



Figure 9.9: Mixture models. A and B Distributions of detected isoforms per gene
per cell (blue) and log normal fitted distributions (orange) for H1 cells sequenced
at 1 million reads per cell (A) or 4 million reads per cell (B) under the inferred
model (Bacher et al., 2017). C and D Mixing fractions vs iterations of expectation
maximisation for 1 million reads per cell (C) and 4 million reads per cell (D). Each
coloured line represents the distributions for one, two, three or four isoforms being
simulated as expressed per gene per cell.



Figure 9.10: Mixture models. A and B Distributions of detected isoforms per gene
per cell (blue) and log normal fitted distributions (orange) for H1 cells sequenced at 1
million reads per cell (A) or 4 million reads per cell (B) under the cell variable model
(Bacher et al., 2017; Velten et al., 2015). C and D Mixing fractions vs iterations
of expectation maximisation for 1 million reads per cell (C) and 4 million reads per
cell (D). Each coloured line represents the distributions for one, two, three or four
isoforms being simulated as expressed per gene per cell.



Figure 9.11: Mixture models. A and B Distributions of detected isoforms per gene
per cell (blue) and log normal fitted distributions (orange) for H9 cells sequenced at
1 million reads per cell (A) or 4 million reads per cell (B) under the Weibull model
(Bacher et al., 2017; Hu et al., 2017). C and D Mixing fractions vs iterations of
expectation maximisation for 1 million reads per cell (C) and 4 million reads per
cell (D). Each coloured line represents the distributions for one, two, three or four
isoforms being simulated as expressed per gene per cell.



Figure 9.12: Mixture models. A and B Distributions of detected isoforms per gene
per cell (blue) and log normal fitted distributions (orange) for H9 cells sequenced
at 1 million reads per cell (A) or 4 million reads per cell (B) under the random
model (Bacher et al., 2017). C and D Mixing fractions vs iterations of expectation
maximisation for 1 million reads per cell (C) and 4 million reads per cell (D). Each
coloured line represents the distributions for one, two, three or four isoforms being
simulated as expressed per gene per cell.



Figure 9.13: Mixture models. A and B Distributions of detected isoforms per gene
per cell (blue) and log normal fitted distributions (orange) for H9 cells sequenced
at 1 million reads per cell (A) or 4 million reads per cell (B) under the inferred
model (Bacher et al., 2017). C and D Mixing fractions vs iterations of expectation
maximisation for 1 million reads per cell (C) and 4 million reads per cell (D). Each
coloured line represents the distributions for one, two, three or four isoforms being
simulated as expressed per gene per cell.



Figure 9.14: Mixture models. A and B Distributions of detected isoforms per gene
per cell (blue) and log normal fitted distributions (orange) for H9 cells sequenced at 1
million reads per cell (A) or 4 million reads per cell (B) under the cell variable model
(Bacher et al., 2017; Velten et al., 2015). C and D Mixing fractions vs iterations
of expectation maximisation for 1 million reads per cell (C) and 4 million reads per
cell (D). Each coloured line represents the distributions for one, two, three or four
isoforms being simulated as expressed per gene per cell.



9.1 Supplementary Tables

No. Isoforms Simulated p-Value
1 0.0
2 0.0
3 0.0
4 0.999999

Table 9.1: Results of K-sample Anderson–Darling test, which tests whether multiple
collections come from the same population. The test was applied to each row of
graphs in Figure 4.13, in other words testing whether the distributions generated by
different isoform choice models are significantly different.

No. Isoforms Simulated p-Value
1 0.835737
2 0.997938
3 0.998721
4 0.99074

Table 9.2: Results of K-sample Anderson–Darling test, which tests whether multiple
collections come from the same population. The test was applied to the simulation
results generated using the Inferred Probabilities vs the Cell Variable models of
isoform choice in Figure 4.13 to test whether the distributions generated by different
isoform choice models significantly differ.
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No. Isoforms Simulated p-Value
1 0.0
2 0.0
3 0.0
4 1.0

Table 9.3: Results of K-sample Anderson–Darling test, which tests whether multiple
collections come from the same population. The test was applied to each row of
graphs in Figure 4.12, in other words testing whether the distributions generated by
different isoform choice models are significantly different.

No. Isoforms Simulated p-Value
1 0.639939
2 0.959654
3 0.995236
4 0.999814

Table 9.4: Results of K-sample Anderson–Darling test, which tests whether multiple
collections come from the same population. The test was applied to the simulation
results generated using the Inferred Probabilities vs the Cell Variable models of
isoform choice in Figure 4.12 to test whether the distributions generated by different
isoform choice models significantly differ.

No. Isoforms Simulated p-Value
1 0.0
2 0.0
3 0.0
4 0.999999

Table 9.5: Results of K-sample Anderson–Darling test, which tests whether multiple
collections come from the same population. The test was applied to each row of
graphs in Supplementary Figure 9.3, in other words testing whether the distributions
generated by different isoform choice models are significantly different.
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No. Isoforms Simulated p-Value
1 0.98348
2 0.95075
3 0.999405
4 0.995485

Table 9.6: Results of K-sample Anderson–Darling test, which tests whether multiple
collections come from the same population. The test was applied to the simulation
results generated using the Inferred Probabilities vs the Cell Variable models of
isoform choice in Figure 9.3 to test whether the distributions generated by different
isoform choice models significantly differ.

No. Isoforms Simulated p-Value
1 0.0
2 0.0
3 0.0
4 1.0

Table 9.7: Results of K-sample Anderson–Darling test, which tests whether multiple
collections come from the same population. The test was applied to each row of
graphs in Supplementary Figure 9.5, in other words testing whether the distributions
generated by different isoform choice models are significantly different.

No. Isoforms Simulated p-Value
1 0.932755
2 0.969666
3 0.999973
4 0.999753

Table 9.8: Results of K-sample Anderson–Darling test, which tests whether multiple
collections come from the same population. The test was applied to the simulation
results generated using the Inferred Probabilities vs the Cell Variable models of iso-
form choice in Supplementary Figure 9.5 to test whether the distributions generated
by different isoform choice models significantly differ.
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Data source p-Value
H1 1 million reads 0.99808
H1 4 million reads 0.981612
H9 1 million reads 0.989299
H9 4 million reads 0.997866

Table 9.9: Results of K-sample Anderson–Darling test, which tests whether multiple
collections come from the same population. The test was applied to the simula-
tion results generated using the Normal, Bernoulli and p=0.25 models of isoform
choice to test whether the distributions generated by different isoform choice models
significantly differ.
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