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Supporting Information

Preparation of Initial Structures

The initial coordinates for the Hoogsteen conformation corresponding to the (ATTAATS,)
duplex were taken from a previously published high resolution crystal structure (PDB ID:
4U9M). The initial structure of the Watson-Crick duplex was constructed using the nucleic
acid builder (NAB) module available within the AMBER code.! The duplexes were modeled
using a properly symmetrized version? of the AMBER99bsc0 force field,® employing the
latest YOL4 corrections.? Symmetrization is essential to ensure that accessible permutational
isomers have the same energy. For exploration of the energy landscape using the discrete
path sampling method, the solvent effects were considered implicitly using a generalized Born
model.?% An effective salt concentration of 0.1 M was maintained using the Debye-Hiickel
approximation.”

Molecular Dynamics Simulations

The initial structures corresponding to the Watson-Crick and Hoogsteen duplexes were
solvated in a truncated octahedral box of TIP3P water molecules, with a solvent buffer
of at least 10 A on each side. The net charge in the simulation box was neutralized by
adding an appropriate number of Na™ counterions. The ion parameters appropriate for
the TIP3P water model, as proposed by Joung and Cheatham,® were used. The particle
mesh Ewald summation technique? was used to compute the electrostatic energy, using the
standard settings in the AMBER code. A 10A cutoff for the non-bonded interactions was
employed. A integration time-step of 2fs was used in conjunction with SHAKE constraints”
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for all the bonds involving hydrogen atoms. The MD simulations were carried out using the
GPU-enabled version of the AMBER12 code.!!

The solvated systems were first minimized using sequential applications of the steepest-
descent and conjugate gradient algorithms to remove steric clashes. After minimization,
the temperature of the system was gradually increased from 0 to 300 K with 25 ps of NVT
dynamics. During this time, positional restraints of 50 kcal mol™" were applied on the DNA
molecule. The restraints were systematically relaxed through five subsequent cycles of NVT
simulations, each of length 25 ps. During this equilibration phase, temperature control was
maintained via a Langevin thermostat,'? employing a collision frequency of 0.2ps~!. After
heating, and progressive relaxation, the density of the system was equilibrated using 2ns
of NPT simulation, at a constant pressure of 1 bar, and temperature of 300 K. Following
equilibration, production runs of duration 200 ns were carried out in the NPT ensemble.

The various structural parameters of the DNA molecule were analyzed using the cpptraj
module available within the AmberTools13 distribution. !

Discrete Path Sampling

The energy landscape for the DNA duplex was explored using the discrete path sampling (DPS)
technique.® DPS exploits geometry optimization to provide a coarse-grained description of
the underlying landscape in terms of stationary points (minima and transition states). The
connectivity between stationary points on the potential energy surface (PES) is described
in terms of discrete paths. A discrete path between two endpoints of interest consist of a
sequence of minima connected by intervening transition states. The endpoints are denoted as
reactant, and product, respectively. A geometric criterion is employed to identify minima and
transition states. For each stationary point, the normal-mode frequencies are obtained from
the eigenvalues of the mass-weighted Hessian matrix. A stationary point for which all the
nonzero normal mode frequencies are positive is a local minimum. In contrast, a transition
state has a single imaginary frequency.!*!® Displacements parallel and antiparallel to the
corresponding eigenvector are used to initiate the steepest-descent paths that lead to the
adjoining minima.

The OPTIM code'® interfaced with the AMBER9 package! was used for all the geometry
optimizations, transition state searches, and normal-mode analysis. A modified version of the
LBFGS algorithm, described by Liu and Nocedal, was employed for the local minimizations.'”
To identify candidate transition state structures between pairs of local minima, we used the
doubly-nudged elastic band (DNEB) method.*®2° The transition state candidates were further
refined using the hybrid eigenvector-following technique.?* Geometry optimizations were
deemed to have converged when the root-mean-square-gradient fell below 1076 kcal mol ! A1
After each cycle of connection-making attempts, a large number of intervening minima and
transition states may be located, especially if the endpoints are far apart in configuration
space. As a result, the number of possible connections between local minima that might
be tried to generate a fully connected discrete path grows with each cycle. To avoid a
combinatorial problem, we employed the missing connection algorithm?? to construct a
priority list of connection attempts based on an appropriate edge-weight metric.

After an initial discrete path was found between between the endpoints of interest,
the stationary point databases were further expanded using various refinement schemes.
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The refinement of the databases were carried out using the PATHSAMPLE code,?® which
distributes parallel OPTIM jobs across compute nodes to connect different pairs of minima.
The SHORTCUT BARRIER scheme?! is efficient in locating pathways characterized by
lower energy barriers. In this procedure, connection attempts are prioritized between pairs
of minima on either side of, and an equal number of steps away from, the largest potential
energy barriers. Another scheme, SHORTCUT, is used to locate shorter pathways.?* In
this procedure, pairs of local minima that are closest together in configuration space, but
are separated by a minimum number of steps on the discrete path, have a higher priority
in the connection-making attempts. During the database refinement, we exploited some
recently introduced interpolation techniques based on natural internal coordinates,? and
quasi-continuous schemes,?® which exploit the connectivity of the covalently bonded network.
In our experience, these methods are effective in circumventing common problems associated
with linear interpolations, such as unphysical chain crossings, and steric clashes in the
intervening images.

Extensive sampling of specific discrete paths may often introduce artificial frustration
(kinetic traps) into the databases. This frustration is caused by undersampling of certain
regions of the landscape, and needs to removed to make the network a faithful representation
of the global kinetics. To remove the artificial traps we used the UNTRAP scheme,?* available
within the PATHSAMPLE code. In this procedure, candidate minima for connection attempts
are chosen based on the ratio of the potential energy barrier to the potential energy difference
from the product region.

The stationary point databases (kinetic transition network) were refined using sequential
applications of the SHORTCUT BARRIER, SHORTCUT, and UNTRAP schemes until
the phenomenological rate constants corresponding to the WC+— HG switch converged to
within an order of magnitude, with respect to the addition of new stationary points.

Calculation of Free Energies

The database of stationary points obtained from DPS simulations was used to estimate the
free energies using the superposition approach.?” Here, the total energy density of states,
Q(FE), and the canonical partition function, Z(7T) are written as a sum of contributions from
the catchment basin of each local minimum. 2529

Q(E) = ZQi(E), (1)

and

Z(T) = Z Zi(T). (2)

Q;(F) and Z;(T) are respectively the density of states (DOS) and the partition function (PF)
for the basin of attraction of minimum ¢ The basin of attraction is defined as the region in
configuration space from which a steepest-descent minimization leads to minimum ¢, so each
point in the configuration space can only belong to the basin of a single minimum, unless it
lies on a boundary.?
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The equilibrium occupation probability of minimum 7 is

pT) = 0. )

Since the sums in equations (1) and (2) are over all the geometrically distinct minima on
the landscape, the DOS and the PF must also contain a multiplying prefactor to take into
account identical contributions from permutation-inversion isomers of each minimum. For
a system containing N, atoms type A, N atoms of type B, N atoms of type C, etc., the
prefactor is given by n; = 2N4!Ng!N¢!l.../0,, where o, is the order of the point group for the
minimum 7. 1'%

The density of states of local minima can be estimated analytically using certain ap-
proximations. The simplest approach is to assume that the potential well around each
local minimum is harmonic in nature, and the Taylor series expansion of the energy in the
neighborhood of the minimum can be truncated to second order.'® A vibrational analysis
(which involves diagonalization of the mass weighted Hessian matrix) at the configuration
corresponding to the local minimum yields the normal mode angular frequencies w;, where
1 < j < k. Here Kk = 3N — 6, the number of vibrational degrees of freedom of the system.

The microcanonical density of states for a system with x degrees of freedom can then be
expressed as: 3’

() = () = 3 et 0
- — ' (k) [Tozy hva(i)
where v, (i) = w,(7)/27 is the vibrational frequency of mode « for minimum ¢, V; is the
potential energy of minimum 4, I'(k) = (k — 1)!, n; is the multiplicative prefactor, and h is
Planck’s constant.
The canonical partition function can be obtained from the total energy density of states
by a Laplace transform. !

nie’ﬁvi

ZT:/QEe—ﬂEdE: - 5
()= [ o) > )
where 8 = 1/kgT and 7; = [[[o_, hvy (i)]l/ ", the geometric mean of the vibrational frequencies
of minimum 4. The free energy of each minimum is expressed in terms of its associated

partition function as:!®

F(T) = —kgTIn Z,(T). (6)

A similar expression is also used for the free energy of a transition state j:

FI(T) = —kgTIn Z(T) (7)
A ]T (T') is defined in the same way as the corresponding partition functions for the minima,
but the normal mode corresponding to the negative Hessian eigenvalue is omitted from the
expressions.

The heat capacity C, can be expressed in terms of the partition function, Z(7T), using
standard thermodynamic relations:3"
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where U = —01In Z(T')/0p is the internal energy. Using equation (5), C, corresponding to
the superposition partition function is'®

21 (T)2 ZQ(T)

C, = kkp — 9
B T T2 (T2 kT2 (T) 9)

where

() = om0 (5) < (10)

Calculation of Rate Constants

The unimolecular rate constant k| (T') for minimum i crossing the transition state T at
.31-33

temperature 7', can be estimated using harmonic transition state theory (TST):
kT ZW(T) _
ENT) = 2 LemAaY 11

where ZT(T) is the partition function for the transition state; Z;(T) is the partition function
of the minimum; AV is the potential energy difference between the transition state and the
minimum ¢. The total rate constant k;;(T") for an elementary transition from minimum ¢
to 7 is obtained by summing the /{;j (T") values for all transition states that connect the two
minima. As TST does not account for recrossing events at the dividing surface, the computed
rate constants are upper bound estimates.

Analyzing Global Dynamics from Kinetic Transition Networks

Once the unimolecular rate constants for elementary min-TS-min transitions are known,
the phenomenological rate constants k4p and kg4 between the reactant (A) and product
(B) states can be computed. The two states can be connected via multiple discrete paths,
and as discussed, the objective in DPS is to systematically refine the stationary point
databases, and locate those pathways that are kinetically relevant and contribute to the rate
constant significantly. The phenomenological rate constant is expressed as a weighted sum of
contributions from all the discrete paths.

Rate constants between the two sets of minima (A and B) will only be meaningful if the
minima within each set are in local equilibrium. The condition for local equilibrium in terms
of occupation probabilities is follows:

ot o t .
Pa(t) = ]% and Po(t) = p%q, (12)
pA(t) Pa pB(t) Pp

where a and b denote minima within the states A and B, respectively. The above equations
imply that the occupation probability of a minimum within a particular set at time ¢ does
not change relative to the occupation probability of the whole set.
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If the dynamics are Markovian,* the time evolution of the occupation probability for a

particular minimum a can be written in the form a linear master equation: 33
dp,(t
dt( ) = Z [kavo(t) — Kpapa(t)] (13)

b#a
where k,;, is the unimolecular rate constant for transitions to minimum a, starting from
minimum b, and p,(t) is occupation probability of minimum b at time ¢. The sum is over all
the geometrically distinct minima, but excluding the permutation-inversion isomers. !
If there is a direct connection between the A and B states (i.e. without any other
intervening minima), the master equation can be written as:

dp:lxt(t) _ _dpjt(t) — happn(®) — Epapa(t). "

where the phenomenological rate constants k4p and kg4 are expressed as weighted sums of
the unimolecular rate constants for all the min-TS-min transitions that lie on the boundary
of A and B.133°

However, for complex conformational changes, it is unlikely that there will be a direct
connection between the A and B states. Instead, A and B are connected via a set of
intervening minima 41, is, 3, ....i,, which can be considered as members of the set I. Within
the steady-state approximation, it is assumed that the rate of change of the occupation
probabilities of the minima in the set I are low:!33°

J#i J#i
Substituting the expressions for the occupational probabilities of the minima in the set I
in the master equation, the rate constant expressions, within the steady-state approximation,

can be written as:!33°
o Z kazl kuzzkng kinbpzq (16)
6q a<b Z]l kljlll Z]Q k:.]2712 Z]g kjglg Z kjnzn
Kby Kiyin Kigig - -KiaD5!
_ eqz bi1 Fivia Nigiz---Nipalg (17)

Py [ Zgl Jii1 Z]Q k]212 Z]g k.7313 Z k]nln

The individual sums in the denominators of equations (16) and (17) include the unimolec-
ular rate constants corresponding to all direct transitions from minimum j; to geometrically
distinct minima. 7.

If all the possible transitions out of a certain minimum « are considered as independent
Poisson processes,®® then the mean waiting time in that minimum can be expressed as: %3

1
25 Koo

The transition probability from a minimum « to another directly connected minimum ~ can

Ta =

(18)
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then be written as:133°

P, = &

25 Ksa
Using the expressions in equations (18) and (19), the steady-state rate constants can be
rewritten as:

= kyaTa- (19)

AB - eq Z ‘Pall‘F)117«2R27«3 Rnbpzq7_1:17 (20)
a<b

eq Z Pb’L1 1122 1213 PlnapeqT (21)
A b<—a

The discrete path between A and B that makes the largest contribution to the steady-state
rate constant k% is termed the ‘fastest path’, and can be extracted from the network using
Dijkstra’s shortest path algorithm?? or recursive enumeration analysis.3”3® For this analysis,
an appropriate edge-weight is also required, and it is taken to be the product of the transition
probabilities in equations (20) and (21).'3'5 These products therefore represent the statistical
weight associated with each discrete path.

The steady-state approximation for the intervening set I can be relaxed, and the non-
steady-state rate constants can be expressed in a similar form as equations (20) and (21):

KNS = ZPMIRWRM Piepyty (22)
a+b

ks = eq ZPIJH ivia Pinig - Pralg 5 (23)
Pa ba

where t, (t) is the mean waiting time for a transition out of minimum a (b) to any minimum
in the B or A regions.

Several approaches have been suggested to compute the overall rate constants. For
example, the mean waiting times ¢, and ¢, can be estimated by averaging over multiple
kinetic Monte Carlo (KMC) runs.? The rate constants in this case can be expressed in
terms of the average over the mean first passage times (MFPT) calculated for multiple KMC
trajectories starting at either minimum a or b, and ending at a minimum in the B or A

region, respectively (Tp, and Tgp):%
1 it
kap = — TL (24)
Pbp hep TAb
1 s
kpa = > (25)
A b<—a Ba

However, the KMC method is computationally intensive and scales poorly with the size of
the network, as well as temperature. On the other hand, techniques based on the solution
of the master equation*' by diagonalization of the transition matrix encounter numerical
instabilities for large stationary point databases, or if slow relaxation time scales are present
within the kinetic transition network. In contrast, the new graph transformation (NGT)
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method® provides a robust formalism for estimating phenomenological rate constants. NGT
scales better with temperature and is robust in terms of numerical precision.*? The NGT
procedure removes all minima in the intervening region [ progressively, and the transition
probabilities as well as the waiting times are renormalized to conserve the mean first passage
time (MFPT). The rate constants are then written as:

1 P Abpiq

kAB - —eq - (26)
B b o
1 Py pd

kpa = — L,pa (27)

T
A beq a

In the above equations, P}, (Pgy,) and 7, (7.) represent the renormalized transition probability
and waiting times, respectively. It can be shown that the MFPT for the transition from
minimum @ to a minimum in the B region is in fact 7,/ Pp,,* which can be identified as T},
in equation (25). Therefore, the NGT and KMC formulations are formally equivalent.

In this work, the rate constants describing the global dynamics associated with the
HG+—WC transformation were computed using the NGT procedure, in conjunction with a
self-consistent regrouping scheme,. %3 For regrouped stationary point databases, the equilibrium
occupation probability, and the free energy of the group J is written as:*?

= pjU(T), (28)

jeJ
Fy=—kTh)_ ZT). (29)
jed
where minimum j is a member of group J. The free energy of the group of transition states
linking J and K is:%3

Fl,=-kT)  ZI(T) = —k(T)n Z ,(T), (30)

k<j

To analyze global dynamics corresponding to regrouped databases, the rate constants
corresponding to transitions between different free energy groups are required, which can then
be used in the appropriate expressions for k%%, V%9 and k. The inter-group rate constant
from J to K is written as:*3

eq f
P 5(T) Zk (7)
ks =) ik (T il
;pf(T) i Z Zs(T) b Zy(T) (31)
_ WT Zj,(T) _ ’%Te—[F}(AT)—FJ(T)]/%T
h Z;,(T) h |
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Figure S1. The evolution of the root-mean-square deviation (RMSD) with respect to the
initial conformation for the WC (red), and the HG (blue) duplex. The average RMSD along
the trajectory is higher for the WC duplex, indicating that it is more flexible.
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Figure S2. The evolution of the x torsions for the adenine bases along the parmbscl
trajectories corresponding to the HG (blue lines), WC (red lines) duplexes.
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Figure S3. The evolution of the root-mean-square-deviation (RMSD) with respect to the
initial conformation for the WC (red), and the HG(blue) duplex, with the parmbscl force
field. Significant strand slippage is observed for the HG duplex. Two representative snapshots
are shown.
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Figure S4. Constituent members of the HG ensemble (a) full HG duplex. (b) A6 frayed
out of the helix. (c) Al frayed out of the helix. (d) Al stacked on top of T1. (e) A6 stacked
on top of T6. (f) T6 frayed out of the helix.
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Figure S5. Duplexes of the type 5BHG4+1WC with appreciable occupation probabilities at
300 K.
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Figure S6. Duplexes of the type 4AHG+2WC with appreciable occupation probabilities at
300 K.
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Figure S7. Duplexes of the type BHG4+3WC with appreciable occupation probabilities at
300 K.
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Figure S8. Duplexes of the type 2HG+4WC with appreciable occupation probabilities at
300 K.
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Figure S9. Duplexes of the type 1IHG+5WC with appreciable occupation probabilities at
300 K.
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Figure S10. Constituent members of the lowest energy WC ensemble (a) WC duplex with
HG pairing at both terminals. (b) WC duplex with HG pairing at both terminals, and Al
frayed out of the helix. (¢) WC duplex with HG pairing at both terminals, and A1 stacked on
top of T1. (d) WC duplex with HG pairing at both terminals, and A6 frayed out of the helix.
(e) WC duplex with HG pairing at both terminals, and A6 stacked on top of T6. (f) WC
duplex with HG pairing between A6 and T6. (g) WC duplex with HG pairing between Al
and T1. (h) WC duplex with HG pairing at both terminals, and T1 frayed out of the helix.
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Figure S11. Potential energy disconnectivity graph. The color coding is the same as in
Figure 3. Snapshots corresponding to the all HG, all WC, and WC duplex with HG terminals
are shown.
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Figure S12. The normalized heat capacity profile excluding the vibrational degrees of
freedom, illustrating the effect of landscape entropy. The WC duplex (red) has a higher
landscape entropy due to more numerous high-lying potential energy minima, compared to
the HG duplex (blue).
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Figure S13. Distribution of the relative potential energies with respect to the global
minimum computed using the yOL4, and the parmbscl force fields. The blue bars correspond
to the ensemble comprising HG duplexes, the red bars correspond to the lowest energy WC
duplexes having terminal HG base pairs, and the dark red bars correspond to the full WC
conformations.
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Figure S14. Several distinct potential energy minima located with the yOL4 parametrization
(represented as cyan tubes) collapse to a single minimum on the parmbscl surface. Left:
Minima from the HG ensemble, which collapse to the potential energy global minimum on
the parmbscl surface. Right: WC duplex minima, which collapse to a single minimum on
the parmbscl surface.
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Figure S15. Distribution of the A values for minima comprising the free energy groups.
The color coding is the same as Figure S13.
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Reorganization of minima within the different funnels takes place after reoptimization with
the parmbscl force field. This effect can be quantified by calculating the relative potential
energies of minima, with respect to a fixed reference structure. For convenience, the free
energy global minimum identified with the yOL4 parametrization is selected as the reference
structure. As shown in Figure S16, the relative ordering of the different funnels is largely
preserved. The dashed line provides a guide to the eye, and points which lie on this line
correspond to minima whose relative positions (in terms of potential energy) with respect to
the other minima in the database do not change upon reoptimization. Points that lie below
the dashed line correspond to minima, which shift to higher ranks (in terms of potential
energy) upon reoptimization. Points that lie above the dashed line correspond to minima,
which are destabilized. In the graph, there are several points that have the same A [Epormbscl.
but different AEPermbsc0xOLL  Thege points correspond to structures, which collapse to the
same minimum on the parmbscl surface.
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Figure S16. The blue circles correspond to minima from the HG duplex ensemble. The red
circles correspond to minima constituting the lowest energy WC duplex ensemble. The green
circles correspond to minima from the full WC duplex ensemble. The dashed line denotes a
linear fit, and provides a guide to the eye. The larger number of high-lying potential energy
minima in the WC ensemble, compared to the HG ensemble, illustrates the effect of landscape
entropy (discussed in the main text, and Figure S12).
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