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Abstract 

 

Over the past decades, research employing artificial grammar, sequence learning and 

statistical learning paradigms has flourished, not least because these methods appear 

to offer a window, albeit with a restricted view, on implicit learning processes 

underlying natural language learning. But these paradigms usually provide relatively 

little exposure, use meaningless stimuli, and do not even necessarily target natural 

language structures. So the question arises whether they engage the same brain 

regions as natural language. The aim of this review is to use data from brain imaging, 

brain stimulation, and the effects of brain damage to identify the main brain regions 

that show sensitivity to structural regularities in implicit learning paradigms and to 

consider their relationship to natural language processing and learning.  
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Introduction 

 

Implicit learning refers to the process of learning without intention, and even without 

awareness of what has been learned. It is regarded as a basic form of learning that 

makes a major contribution to the acquisition of many motor, perceptual, and 

cognitive skills, not least the ability to speak a first or second language. The focus 

here will be on implicit learning of structural regularities. Can structure-specific 

activity be detected in the brain during implicit learning tasks? If so, do the brain 

regions that are involved vary according to the nature of the regularities to be learned 

or the domain in which they are instantiated? Do the results of imaging studies tie in 

with what is known about implicit learning after various types of brain damage? As in 

neuroscience more generally the ultimate aim is to understand how and where specific 

computational functions are carried out in the brain. By studying the brain correlates 

of implicit learning of structural regularities of different types and in different tasks 

perhaps we can approach a true science of learning. 

Of course, studying implicit learning of real world skills is immensely 

challenging, not only because of the time scales over which it occurs, but also because 

of the difficulty of being able to isolate learning of specific structural regularities from 

other features of the input, being able to prove that structural generalisations have 

been learned (for which a perfect record of inputs and outputs is necessary), and being 

able to prove that any learning is not affected by the participants’ prior knowledge. 

Hence a number of laboratory implicit learning paradigms have been developed that 

provide convenient vehicles for studying the acquisition of pure structural regularities 

in unashamedly artificial systems. This review will focus on three such paradigms: 

Artificial Grammar learning (AGL), sequence learning, and statistical learning. 

Typically they involve short training periods of between 2 and 20 minutes (though 

some AGL studies have trained participants over days), the stimuli are devoid of any 

meaning, the underlying structural regularities are unlike any that the participants are 

likely to have encountered before, are generally unlike those found in natural domains 

like language, and the stimuli are stripped of all the other cues to structure that might 

occur in real world learning situations. Such tasks have certainly proved extremely 

useful in establishing that there is such a thing as implicit learning, in exploring its 

potential limits, individual differences and interactions with other learning processes. 

They also provide convenient vehicles for examining the brain systems involved in 
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implicit learning, either through brain imaging, brain stimulation, or the study of brain 

damaged patients. But do they have anything to do with natural language, or with 

natural language learning? This review aims to provide a synthesis of neuroscientific 

research on implicit learning in order to gauge our progress in achieving an 

understanding of where, and ideally how, implicit learning, in the sense defined 

above, happens in the brain, and how it relates to natural language processing and 

learning. 

 Coincidentally, Batterink, Paller, and Reber (2019) have recently published a 

review of a similar literature. The present work presents a more detailed evaluation of 

the evidence in order to expose inconsistencies between studies, a greater emphasis on 

triangulation, or in many cases lack of, across different methodologies, a closer 

consideration of whether studies convincingly tap into implicit learning and 

knowledge, and the implications of all of these for a functional interpretation of the 

results.  

 This article is not a metanalysis of studies in the field, nor will it advance a 

particular theoretical perspective, or systematically lay out an agenda for future 

research (though indications of outstanding questions and possible avenues for 

research emerge along the way). Rather it is an attempt to lay out the state of the art in 

the field for the non-specialist, hoping to highlight, if nothing else, the complexities 

and inconsistencies in the evidence base, how these might be related to 

methodological variations, and to emphasise the problems inherent in making 

generalisations about localisation of brain function on the basis of the evidence 

reviewed. With a view to the latter, the following section briefly lays out some of the 

ongoing debates over the function of core brain regions in relation to language 

processing and non-implicit learning of natural language-like systems. 

 

Regions of interest 

 

Previous reviews have considered the balance between learning-related brain changes 

in modality-specific and supramodal systems across different implicit and statistical 

learning paradigms (Batterink et al., 2019; Frost, Armstrong, Siegelman, & 

Christiansen, 2015; Julia & Claudia, 2018). Visual paradigms have sometimes, but 

not consistently, revealed learning-related changes in visual processing areas of the 

brain (e.g. occipital cortex, and even V1), and, as we shall see, auditory statistical 
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learning has revealed changes in brain areas associated with spoken language 

processing (e.g. left superior temporal gyrus, LSTG). In contrast, here the primary 

focus will be on supra-modal regions – areas that seem to perform some generic 

computational functions across modalities. This corresponds to the emphasis in 

discussions of this research in the literature, where the most prominent regions are the 

left inferior frontal region (LIFG), basal ganglia (shortened here to ‘BG’), and 

hippocampus (shortened here to ‘H’). 

 

Broca’s area and adjoining regions 

Syntactic processing is strongly associated with the left inferior frontal gyrus 

(LIFG) which encompasses Broca’s area (i.e., Brodman’s areas (BA) 44/45, and 

adjoining BA 47).  However, there has been much debate over the actual function of 

LIFG in sentence processing. Some argue that it is involved in building syntactic 

representations as classically conceived, i.e., as involving hierarchical structure and 

non-adjacent dependency relations (Friederici, 2002). Others argue that it constitutes 

a general “unification space” for structure building during sequential processing 

(Hagoort, 2013). Others argue that in fact LIFG involvement in sentence processing 

reflects working memory demands (Rogalsky & Hickok, 2011), or that it is primarily 

engaged in order to resolve syntactic or semantic ambiguity (Hsu, Jaeggi, & Novick, 

2017; January, Trueswell, & Thompson-Schill, 2009; Tyler, Cheung, Devereux, & 

Clarke, 2013), resolve competition between alternatives (Schnur et al., 2009), or that 

it engages whenever general control demands increase (Novick, Trueswell, & 

Thompson-Schill, 2005; van de Meerendonk, Rueschemeyer, & Kolk, 2013). The 

domain-specificity of LIFG is also disputed. From a control perspective the 

involvement of LIFG in non-linguistic conflict resolution, such as in the Stroop task, 

has been emphasised (Hsu et al., 2017; January et al., 2009; van de Meerendonk et al., 

2013). From a structure building point of view LIFG has been implicated in, amongst 

other things, music perception (Patel, 2003) and it has been suggested that LIFG is a 

“hub” that engages with other representational systems to effect either control or 

structure building in different domains (Hsu et al., 2017; Patel, 2003). Others have 

argued that there is language specialisation within the LIFG region, with syntactic 

structure building functions localisable to BA 44 and 45 (Fedorenko, Duncan, & 

Kanwisher, 2012; Hagoort, 2014), or possibly specifically BA 44, with BA 45 
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implicated in semantic combinatorics (Schnell et al., 2017). In the studies reviewed 

here, when ‘LIFG’ is referred to it can be assumed that this at least includes BA 44. 

Imaging studies have explored the brain areas that are involved in adult 

explicit learning of natural phrase structure grammars (PSGs) under experimental 

conditions (Bahlmann, Schubotz, & Friederici, 2008; Hauser, Hofmann, & Opitz, 

2012; Musso et al., 2003; Opitz & Friederici, 2003; Opitz & Friederici, 2004, 2007). 

As a shorthand these will be referred to collectively as the ‘explicit PSG’ studies. 

Only one of these studies used actual natural languages (Musso et al, 2003), whereas 

the others used phrase structure grammars (e.g. Brocanto) that generated strings of 

meaningless nonsense words like “aaf plox glif rufi aak boke gum”, the structure of 

which corresponds to the natural language sequence determiner-noun-verb-adverb-

determiner-adjective-noun. These grammars contain the equivalent of word classes – 

either 2 or 4 nonsense words were assigned to the ‘noun’ and ‘verb’ categories 

depending on the study (Opitz & Friederici, 2003; 2004). In all of these studies the 

participants were trained under explicit learning conditions – for example they cycled 

between presentation of examples and grammaticality judgment with feedback under 

instructions to work out the rules of the language. Such procedures encourage active 

hypothesis formation and testing; learning is intentional and leads to conscious 

knowledge. These studies have found that in grammaticality judgment tasks (GJTs) 

following training there is higher activation to non-grammatical (NG) than 

grammatical (G) items in LIFG and also adjoining areas of left ventral premotor 

cortex (vPMC) and the frontal operculum (FOP). Some studies have gone further and 

identified activity in the phylogenetically older vPMC or FOP regions with processing 

and learning of local, adjacent, dependencies, and activity in the more recently 

evolved LIFG with processing and learning of non-adjacent dependencies and 

hierarchical structure (Bahlmann et al., 2008; Opitz & Friederici, 2007; Wilson et al., 

2015; Wilson, Marslen-Wilson, & Petkov, 2017). These studies at least tell us that, 

following explicit training, meaningless material that is structured in a language-like 

way can engage similar brain areas as natural language in the performance of a GJT. 

The question is whether, and for what other kinds of structures, LIFG and related 

regions are also engaged in implicit learning situations, and what this might tell us 

about the function of these regions. 
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Basal Ganglia 

The Basal Ganglia (BG) are a group of sub-cortical structures that include the 

caudate and putamen. They constitute a relatively primitive part of the brain and it 

was initially thought that they were primarily involved in movement control and 

motor learning. But more recently their role in cognitive functions, and even 

language, has come to the fore. It has become apparent that the BG are connected to 

many cortical areas. There are loops connecting putamen to motor cortex, the head of 

the caudate to prefrontal cortex (including BA 47, Dominey, Inui, & Hoen, 2009), and 

the body and tail of the caudate to visual and auditory cortex (Lim et al, 2014; Seger, 

2008). With regard to function, Ullman (2001) has stressed the role of the BG in a 

‘procedural’ (as opposed to ‘declarative’) system that supports automatic, and 

implicit, rule-based language processing and learning. Lieberman (2007) regards the 

BG as a general ‘sequencing engine’ that in relation to language “can form a 

potentially infinite number of different sentences by reordering, recombining, and 

modifying a finite set of words using a finite set of linguistic rules” (p. 51). This focus 

on subcortical structures in relation to language processing may seem surprising, and 

invites the idea that language was made possible by an adaptation of pre-existing 

motor systems (Lieberman, 2007). Given the importance of this claim it is not 

surprising that the precise role of the BG in language processing is debated. There is 

neuroimaging evidence that the BG is involved in purely syntactic, as opposed to 

semantic, processing (Moreno, Limousin, Dehaene, & Pallier, 2018; Moro et al., 

2001). However, other researchers appear to limit its role to ancillary functions, rather 

than core syntactic processing. It has been argued that the BG may be particularly 

active when expectations are violated, a preferred interpretation suppressed, and 

controlled processes (in frontal cortex) need to be engaged to effect a repair, as 

happens in garden-path sentences for example (Mestres-Misse, Bazin, Trampel, 

Turner, & Kotz, 2014; Mestres-Misse, Turner, & Friederici, 2012; Sambin et al., 

2012). These control functions that seem similar to those attributed to LIFG, 

reinforcing the idea that these regions work closely together. In the context of 

morphological processing and word recognition, it has been argued that the BG are 

only involved in “late stage” processing and that the essential syntactic and 

morphological computations are carried out elsewhere (Longworth, Keenan, Barker, 

Marslen-Wilson, & Tyler, 2005). It will be interesting to see the extent to which the 

BG are involved in performing implicit learning tasks given that they usually tap into 
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the very early phases of learning, prior to the acquisition of automaticity, and do not 

obviously entail reanalysis and repair processes. 

 

Hippocampus 

The BG and the larger procedural system are classically contrasted with a 

declarative system that supports explicit learning and knowledge. The hippocampus 

(H) is a central component of the declarative system and is known to be essential for 

episodic memory – the conscious recollection of experiences (Squire, 1992). Damage 

to the hippocampus is associated with amnesia – the inability to recall the recent past, 

and more relevant here, the apparent inability to form new memories. Various kinds 

of implicit learning and memory are relatively intact in amnesia leading to the 

assumption that the declarative and procedural learning systems are dissociable. For 

this reason, studying amnesic performance on IL tasks is usually used as a means of 

assessing procedural learning without contamination from explicit knowledge.  

Hippocampal functions are not typically related to structural aspects of 

language processing. However, studies of explicit learning of the artificial language 

Brocanto have found that left hippocampal activity with respect to baseline showed a 

decreasing trend from being greater than baseline at the start of training to being 

below baseline at the end (Opitz & Friederici, 2003; Opitz & Friederici, 2004). Opitz 

and Friederici (2004) nuance this by showing that the decreasing trend is associated 

with manipulations of similarity rather than rule application, and Hauser et al. (2012) 

show that in post-training GJT the (in this case right) hippocampus is related to 

similarity-, rather than rule-, based processing. The decreasing trend in hippocampal 

activity over training contrasts with the increasing trend in LIFG in the same studies 

(Opitz & Friederici, 2003; Opitz & Friederici, 2004). These studies therefore reveal 

the changing balance between similarity- and rule-based processing in the course of 

acquisition, at least as evidenced in the performance of grammaticality judgments (for 

related evidence based on individual differences and electrophysiology see Morgan-

Short, Faretta-Stuttenberg, Brill-Scheutz, Carpenter, & Wong, 2014; Tanner, Inoue, & 

Osterhout, 2014; Tanner, McLaughlin, Herschensohn, & Osterhout, 2013). This shift 

might suggest a competitive relationship between ‘declarative’ memory-based and 

‘procedural’ rule-based systems (Ullman, 2004). Indeed there is evidence in favour of 

mutual exclusivity of the electrophysiological indices of these processes (in the form 

of P600 and N400 effects) in classroom language learning (Tanner et al., 2013). On 
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the other hand, using a similar artificial language training method to Opitz and 

Friederici (2003) an fMRI study by Kepinska, de Rover, Caspers, and Schiller (2018) 

found no evidence for functional connectivity between LIFG and H, implying 

independent contributions of these systems. Bear in mind that these studies all used 

explicit training paradigms. On the standard view one would not expect to find 

hippocampal involvement in implicit learning situations unless there is contamination 

from explicit memory processes. 

 

Triangulation 

 

Functional magnetic resonance imaging (fMRI) reveals sites of increased blood flow 

in the healthy brain and is assumed to indicate processing activity. But to establish a 

causal connection between that activity and learning it is useful to know how 

alteration of the functioning of a specific region affects learning outcomes. One way 

of achieving this is through brain stimulation techniques such as transcranial magnetic 

stimulation (TMS) or transcranial direct current stimulation (tDCS). Both of these 

methods induce a small electric current in the targeted brain region – in the case of 

TMS by using a magnet and relying on electromagnetic induction, and in the case of 

tDCS by actually applying a small current via electrodes to the scalp. The other way 

of establishing causality is by examining learning in brain damaged patients. Three 

types of brain damage will be considered. Damage to LIFG results in Broca’s aphasia. 

Patients display symptoms of agrammatism, characterised as halting and 

“telegraphic” production of sentences; that is, lacking grammatical morphemes. 

Damage to the BG results in Parkinson’s disease (PD). Dysfunction in the putamen 

affects movement via the loop to motor cortex, and dysfunction in the caudate affects 

cognitive functions via loops to other cortical regions (Hochstadt, Nakano, 

Lieberman, & Friedman, 2006). The BG secrete dopamine, which is necessary for 

motor skill learning, and so PD leads to learning impairments (Kawashima, Ueki, 

Kato, Ito, & Matsukawa, 2018). Damage to the hippocampus results in amnesia – the 

inability to consciously recall memories of events. 
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Artificial grammar learning 

 

Artificial grammar learning (AGL) experiments typically follow a methodology 

developed by Reber (1967, Experiment 2) – participants perform a short-term 

memory task on training strings, usually letters, that are generated by a finite state 

grammar (FSG), e.g,. PVPXVPS, TXS. They are then told that the strings were in fact 

generated by a complex system and are asked to perform grammaticality judgments 

(GJs) on new strings using intuition and “gut feeling”. The FSGs used in AGL contain 

branching structures and recursive loops. For example, a string could start with either 

a P or a T. An initial T could be followed by one or more S’s, or none (TS, TSSS, or 

T), which would always be followed by an X (TSX, TSSSX, TX), which could either 

be followed by another X or a final S (e.g. TSXX, TXS). If followed by an X there 

could be repeating Ts, or none (TSXXTT, TSXX) always followed by a V 

(TSXXTTV, TSXXV), which could then either be followed by another V or P and S 

to end the string (TSXXTTVV, TSXXVPS). If the string had started with a P other 

branches and loops would be possible, and the paths from the different starting points 

could cross. Ungrammatical strings are formed by adding letters at inappropriate 

points, missing out letters, or making illegal transitions. Unsurprisingly participants 

are unable to report the structure of such grammars, and yet their GJs are significantly 

above chance. However, the extent of awareness of structure has been questioned 

(Shanks & St. John, 1994). Participants could be aware of some parts of the system, 

or of chunks (frequent bigrams and trigrams). Judgment-by-judgment measures of 

subjective states may provide more convincing evidence of implicit learning (Dienes 

& Scott, 2005) though this method has rarely been used in neuroscientific research. 

The finite state grammars that are used in implicit learning research do not 

generate hierarchically organised, embedded, constituents of the kind that have, by 

some researchers, been seen as the essential characteristic of natural language for 

which LIFG is specialised (e.g., Friederici, Bahlmann, Heim, Schubotz, & Anwander, 

2006).1 Neither, unlike Brocanto, to do they contain item classes. On the other hand, 

they do not only generate strings of adjacent dependencies – they can generate 

conditional dependencies as well. For example, in the grammar above, an S predicts 

 
1 Recursive loops might be regarded as a form of embedding, e.g. TSX, TSSX, TSSSX, but notice that 
only a single letter is repeated – there is no embedding of structural constituents beyond that. 



 10 

an X if it followed the initial T or an S, but a single S predicts the end of the string if 

preceded by an X (as in TSXS or TSSXS). Hence AGs generate strings that are more 

complex than simple linear chains of associations between adjacent letters. 

Nevertheless, in as much as they also contain adjacent dependencies then activation in 

the FOP or vPMC, but not LIFG, might be predicted on the basis of explicit learning 

paradigms. 

 Because GJs may be driven by item similarity as well as grammaticality 

‘balanced chunk strength’ designs are sometimes used - grammatical and 

ungrammatical test strings are matched in terms of the frequency with which their 

constituent bigrams and trigrams occurred in training strings. 

 

Imaging 

 

Typical fMRI studies of AG learning follow Reber’s general methodology. 

Note that only the grammaticality judgment task is performed inside the scanner. 

Hence brain activation has to be interpreted in the context of the judgment task being 

performed, and not as a direct measure of learning activity. An early study found that 

compared to a baseline task the GJT activated occipital gyri and LIFG (BA 45, 47) 

(Seger, Prabhakaran, Poldrack, & Gabrieli, 2000), and more recently Yang and Li 

(2012, implicit training condition) found greater activation in a GJT compared to 

baseline in 10 brain regions (many bilaterally) but including LIFG (BA 44). Other 

studies have also found that whilst the GJT activates a broad range of brain areas 

compared to a sensorimotor baseline task, the contrast between ungrammatical and 

grammatical test items (NG > G) reveals more restricted activations (recall that the 

studies of explicit learning of PSGs used the same contrast, see above). In some 

studies this activation difference is spread over the inferior frontal region in left and 

right hemispheres, BA 44, 45, 47, including the FOP (Forkstam et al, 2006; Petersson 

et al, 2012; Folia et al, 2014), but can also be more restricted to LIFG (BA 44, 45) 

(Petersson et al, 2004). Curiously, Lieberman et al (2004) report LIFG (BA 44) using 

the opposite G > NG contrast.2 Lieberman et al. (2004) and Petersson et al. (2004) 

used the most similar training procedures, although there was more extensive training 

 
2 The reported Talaraich coordinates are -44, 10, 18, which when converted to MNI are -46, 12, 17, 
which, for example, are very similar to the MNI coordinates for peak activations in BA 44 reported in 
Forkstam et al, (2006) (-45, 12, 24) and Petersson et al (2004) (-48, 16, 22). 
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in Petersson et al. (168 versus the 46 items in Lieberman et al.). Why this should have 

caused a reversal in the typical effect of grammaticality is unclear. In fact, Lieberman 

found no significant LIFG activations when contrasts controlled for chunk strength 

(e.g., G vs NG low chunk strength items), a type of analysis that is not reported in the 

other studies.  

Where there is better agreement across studies is in the lack of LIFG 

sensitivity to chunk strength (Forkstam et al, 2006; Petersson et al, 2012; Folia et al, 

2014; Lieberman et al, 2004) (note that Forkstam et al. (2006) found chunk strength 

effects in other frontal regions, just not in LIFG). This is important because it has 

been argued that effects of grammaticality in behavioural performance can be reduced 

to chunk strength if sufficiently sophisticated metrics are used (Kinder & Assmann, 

2000). If this were the case then it should not be possible to find brain regions that are 

specifically sensitive to ‘grammaticality’ but not even relatively crude measures of 

chunk strength. 

It is clear that activation in AGL is not confined to the FOP, and in one study 

using the NG > G contrast no FOP is reported at all (Petersson et al, 2004). Rather the 

general inferior frontal activations obtained in implicit AGL are similar to those 

obtained for explicit learning of grammars containing hierarchical structure and non-

adjacent dependencies in that, at least across studies, they encompass both LIFG and 

FOP (Bahlmann et al., 2008; Opitz & Friederici, 2007). Where these studies do differ, 

however is with regard to lateralization, which varies considerably across AGL 

studies, and contrasts with the more consistent left lateralization obtained in the 

explicit PSG studies and in natural language syntactic processing. There is actually 

something of a generalisation here though – amongst the implicit AGL studies, RIFG 

is found when training extended over days (Forkstam et al., 2006; Petersson et al., 

2012; Folia et al., 2014) but not when training occurred in a single session (Seger et 

al., 2000; Petersson et al., 2004; Lieberman et al., 2004; Yang & Li, 2012). Within the 

implicit AGL literature RIFG activity has been associated with explicit string 

recognition (Seger et al., 2000) and manipulations of chunk strength (Forkstam et al., 

2006; Udden et al., 2008), and for explicit PSG with item similarity (Hauser et al., 

2012). A recent metanalysis (Hartwigsen, Neef, Camilleri, Margulies, & Eickhoff, 

2018) found RIFG involvement in a range of functions, ranging from action execution 

and inhibition (BA 44), spatial attention and explicit memory encoding, and cognitive 

control and emotional processing (BA 45) (but no language functions). It is possible 



 12 

that extensive training leads to sufficiently strong chunk encoding that rejection of 

NG items requires greater executive control, drawing on RIFG.3  

 The above considerations might lead one to suspect GJT performance in the 

AGL studies was not entirely driven by implicit knowledge. In fact, none of the above 

studies used verbal report or subjective measures of awareness to establish the status 

of the knowledge acquired. In some studies GJT accuracy was unusually high 

(ranging from 73% to 87%) which is perhaps not surprising after multiple days of 

training (Forkstam et al., 2006; Petersson et al., 2012) or large numbers of training 

items on one day (Petersson et al., 2004). This might lead one to doubt that 

performance was based purely on implicit knowledge. Petersson et al’s (2012) 

participants reported that they were only using “vague criteria” when making their 

judgments (behavioural data reported in Folia et al., 2008, p. 143) but their accuracy 

in a string generation test, though low, was strongly correlated with their 

grammaticality judgement accuracy, indicating a contribution of conscious 

knowledge. In Seger et al. (2000) performance was more in line with typical 

behavioural studies (58%) but this study did not use imaging contrasts that focus on 

grammaticality. In Yang & Li (2012) the fact that there was greater LIFG activity in a 

traditional implicit training condition than in an ‘explicit’ condition, and at a 

numerically lower level of accuracy (56% and 59% respectively), goes some way to 

showing that LIFG involvement is not necessarily associated with high accuracy, or a 

high likelihood of conscious knowledge. 

Perhaps the best evidence in favour of the use of implicit knowledge comes 

from Folia & Petersson (2014) where the participants were asked to judge whether 

they liked or disliked the test strings, rather than judge their grammaticality. 

Grammatical strings were liked more than ungrammatical ones. It can be argued that 

performance was not contaminated by conscious knowledge of the grammar since 

grammaticality was strictly irrelevant to the task at hand. Indeed, unlike for the GJT 

task performed upon the same participants (imaging data reported in Petersson et al., 

2012), there was no correlation between performance on the liking task and string 

generation accuracy (behavioural data for both tasks reported in Folia et al., 2008). 

 
3 These sets of studies also divide according to the mode of item presentation – only in Forkstam et al, 
Petersson et al., and Folia et al, 2014, were the training and testing strings presented one letter at a 
time. Why this should have induced RIFG activity is not clear, but this does illustrate how procedural 
variations between studies raises problems for functional interpretation. 
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Yet similar brain activations were obtained as for GJT – namely bilateral frontal 

activation of BA 44, 45, and 47 including the FOP. Overall what could be concluded 

about awareness is that evidence for participation of LIFG persists despite variation 

across studies in the likelihood of explicit knowledge contributions. 

All of the above studies have looked at activation of cortical areas in relation 

to learning. Another approach is to look for the correlation between natural variation 

in brain structure and AGL performance, focusing on ‘white’ matter - the web of 

long-distance connections that allows communication between cortical (‘grey’ matter) 

regions. Modern MRI techniques (diffusion tensor tractography) can measure the 

‘integrity’ of these white matter tracts (e.g. degree of myelination, density, and axon 

diameter). Behavioural sensitivity to grammaticality in GJT after relatively little 

training on an AGL (25 or 35 mins) has been shown to correlate with white matter 

integrity and functional connectivity in fibres emanating from left, but not right, IFG 

(Flöel, de Vries, Scholz, Breitenstein, and Johansen-Berg (2009), Antonenko, 

Meinzer, Lindenberg, Witte, and Flöel (2012). The left lateralisation after relatively 

little training may be significant in light of the above discussion. Of course, here we 

are looking at the efficiency of connections from LIFG which is to acknowledge that 

performance is determined by how well it communicates with other regions. And in 

this case, as in the imaging studies above, the effect could in principle reflect either or 

both learning and judgment processes. 

Artificial grammar learning experiments have also revealed basal ganglia 

involvement in grammaticality judgments. A greater brain response in the caudate has 

been obtained for grammatical than ungrammatical strings (Forkstam et al., 2006; 

Petersson et al., 2012; Lieberman, Chang, Chiao, Bookheimer, and Knowlton (2004), 

or in the GJT compared to a baseline task (Folia et al., 2014; Petersson et al., 2012). 

Yang & Li (2012) found a greater caudate response in their implicit than explicit 

condition. Interestingly, all except Lieberman et al. (2004) used sequential string 

presentation in both training and grammaticality judgement, and the one study from 

the Petersson group that failed to find basal ganglia activity also used whole string 

presentation (Petersson et al., 2004). Thus, there is good evidence for basal ganglia 

involvement during grammaticality judgment on artificial grammar strings, although 

it may be particularly evident when sequential presentation is used, which would 

clearly have implications for inferences about function. In this regard, note also that 
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BG involvement is evidenced by a G > NG contrast, opposite to the NG > G contrast 

that reveals LIFG involvement. 

With regard to hippocampal activity the evidence is less consistent. Lieberman 

et al. (2004) report greater hippocampal activation for high than low chunk strength 

test items, but Forkstam et al. (2006) found just the opposite - greater hippocampal 

activation for low than high chunk strength items. Again, it is not clear why opposite 

effects are obtained across studies making it hard to interpret what kind of process 

chunk strength is actually affecting. Petersson et al. (2012) and Folia et al. (2014) do 

not report any analyses of chunk strength effects in the hippocampus, but they do 

report lower hippocampal activity during the GJT and liking judgment tasks as 

compared to a baseline task (contrasting with greater BG activity). This ‘deactivation’ 

does not appear to be a learning-related effect, however, because Folia & Petersson 

(2014) report the pattern as being “very similar” on Day 1 (p. 5) even though there 

were no learning effects at this point (there was no GJT on day one in Petersson et al., 

2012). On this evidence it could only be argued that it is the task requirements of GJT 

and liking judgment that cause the H to deactivate and BG to activate, perhaps 

reflecting a deliberate strategy of suppressing explicit memories of training items. 

However, connectivity analyses in Lieberman et al. (2004) revealed a negative 

correlation (for certain contrasts) between H and BG activity. These effects have been 

interpreted in terms of inherent competition between explicit item recall and rule-

based processing (Batterink et al., 2019). For example, a grammatical item may 

invoke a stronger BG response which suppresses any tendency to explicitly recall 

chunk-based information using the H. This would neatly explain why chunk strength 

effects in behavioural data show a tendency to be weaker for grammatical than non-

grammatical items (Knowlton & Squire, 1996). However, whilst this effect has been 

replicated in other studies using the same materials (Hendricks, Conway, & Kellogg, 

2013; Kinder & Assmann, 2000; Lieberman et al., 2004), other studies using different 

materials have tended to find either no interaction between grammaticality and chunk 

strength (Forkstam et al., 2006; Petersson et al., 2012) or a greater chunk strength 

effect for  grammatical items (Folia et al., 2008; Kürten, De Vries, Kowal, 

Zwitserlood, & Flöel, 2012). The inconsistency of the behavioural pattern reduces the 

force of the competition argument. Hence, whilst there is evidence for a dissociation 

between H and BG activity, whether this reflects underling competition between 

systems or complementary response strategies in judgment tasks remains unclear. 
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It should be apparent from the above that there are inconsistencies between 

imaging studies, not only in relation to whether or not effects are always observed, 

but also in relation to the contrasts that reveal them. Given the technical challenges 

involved in revealing brain activity that is specifically related to such an abstract 

notion as ‘grammatical structure’ this is perhaps not surprising, but it does rather 

hinder progress towards a precise functional interpretation of what these effects mean. 

The question now is, how do these imaging results tie in with evidence from 

brain stimulation and brain damage? Since these studies target single brain regions the 

discussion here will be organised in terms of region of interest. 

 

LIFG: Brain stimulation and agrammatism 

 

Brain stimulation studies provide evidence for a causal role of LIFG at least in the 

GJT processes following AGL, but the precise pattern of results is inconsistent 

between studies. Both Uddén et al. (2008) and de Vries et al. (2010) found that 

stimulation applied to LIFG improved correct rejection of ungrammatical items but 

had no effect on grammatical items. The correspondence between these studies is 

remarkable given the procedural differences between them - Uddén et al. applied 

TMS during a GJT after 5 days of training, de Vries et al applied tDCS only during a 

20-minute acquisition phase (although the effects presumably persisted into the GJT). 

The boost to performance for NG items appears to be consistent with imaging, where 

in most studies LIFG activity is higher for NG than G items, suggesting that LIFG is 

particularly involved when a NG item has to be rejected. However, Udden, Ingvar, 

Hagoort, and Petersson (2017) found that TMS prior to GJT significantly reduced 

endorsement of grammatical items and there was no effect for ungrammatical items, 

precisely the opposite pattern to the earlier studies. They used a more complex 

‘crossed nested dependency grammar’ containing hierarchical structure and non-

adjacent dependencies, and unlike the earlier studies, verbal reports suggested that the 

majority of the participants had no conscious knowledge. It is not clear, however, why 

these differences would have caused the reversal in the pattern of results with respect 

to grammaticality. Once again this makes precise functional interpretation difficult. 

With regard to the effect of damage to LIFG, studies have shown impaired 

AGL performance in agrammatics (Christiansen, Kelly, Shillcock, and Greenfield 

(2010), Cope et al. (2017)). Here too, though a breakdown according to 
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grammaticality introduces confusion – the superior performance of the controls was 

entirely due to better endorsement of grammatical items, and neither the patients nor 

the controls could reliably reject ungrammatical items (this pattern is for the complex 

dependencies in Cope et al). The failure to reliably reject ungrammatical items in both 

experiments suggests that abstract grammatical rules were not being learned by even 

the control groups making it unclear what the agrammatics were failing to learn. 

Moreover, the effect on grammatical items is inconsistent with two of the three brain 

stimulation studies (Uddén et al., 2008; de Vries et al., 2010). 

An interesting feature of the Cope et al. (2017) study is that their FSG 

contained a simple adjacency – ‘pob’ was always followed by ‘jat’, with the pairing 

occurring, if at all, at the beginning and/or end of the string. Perhaps surprisingly, the 

agrammatics were impaired (though above chance) in GJT on even this simple, and 

one might imagine, quite salient dependency. This would not be expected if LIFG 

were specialised for learning complex hierarchical structures (as reflected in the other 

complex dependencies in this study), though it could always be argued that the 

learning deficit reflects damage extending into the FOP. 

An alternative view of the role of LIFG in AGL comes from Schuchard and 

Thompson (2017). They used a phrase structure grammar to generate strings of 

auditory syllables and found a similar, but relatively low, level of learning in 

agrammatics and controls after the first training session, but significantly superior 

learning in the controls after a second training session. Schuchard et al argue that this 

difference reflects superior explicit learning strategies in the controls rather than a 

difference in implicit learning, an explanation that seems plausible given the possible 

sensitizing effect of performing grammaticality judgement tests before the second 

training session (this may also contribute to the control group advantage in Cope et 

al., 2017 since here too a repeated exposure-test cycle was employed). And once 

again one can raise doubts about what exactly is being learned. It is possible that the 

equivalent performance after the first training session reflects acquisition of adjacent 

dependencies, and the boosted performance for the controls reflects more abstract 

phrase structure-like rules acquired through explicit learning. Hence, it is hard to draw 

firm conclusions from studies of agrammatic learning given ambiguity in the nature 

of what was learned and potentially greater explicit learning in controls.  
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Basal ganglia: Parkinson’s disease 

 

As we saw above the fMRI studies of AGL provided evidence of BG (caudate) 

involvement, at least in the grammaticality judgment phase. So it comes as some 

surprise that a number of studies have shown that AGL is not impaired in Parkinson’s 

patients (Peigneux, Meulemans, Van der Linden, Salmon, & Petit, 1999; Reber & 

Squire, 1999; Smith, Siegert, & McDowall, 2001; Witt, Nuhsman, & Deuschl, 2002b) 

 Reber and Squire (1999); Witt et al. (2002b); Smith et al. (2001). Batterink et al. 

(2019) suggest that PD patients may be matching control levels of learning by relying 

on their intact hippocampal system. However, Peigneux et al. (1999) report equivalent 

grammaticality effects for control and PD patients when grammatical and 

ungrammatical items were matched on 12 different chunk strength measures, and for 

a grammar that previous research suggested resulted in no conscious knowledge. On 

the assumption that the H influences AGL via (possibly explicit) chunk familiarity it 

seems doubtful that AG learning in these PD patients could be attributed to this 

system.  

Interestingly, and counterintuitively, PD patients do show an impairment in 

AGL when training consists in performing GJT with feedback (Smith & McDowall, 

2006a). This is consistent with imaging and patient research showing BG involvement 

in ‘classification learning’ where trial by trial feedback is provided (Poldrack et al., 

2001; Seger & Cincotta, 2005; Witt, Nuhsman, & Deuschl, 2002a). Seger and 

Cincotta (2005) nuance this view by showing that it is the caudate head that is 

specifically involved in the processing of feedback information (via the loop 

connecting to frontal executive brain areas), and Seger (2008) claims that PD 

“particularly affects the head of the caudate” (p. 272). It therefore becomes possible 

that implicit AGL is intact because of relatively preserved function in the caudate 

body and tail. There are a number of problems with this view. First, even caudate 

head has been reported in imaging of the healthy brain in AGL (Forkstam, 2006; 

Lieberman et al, 2004, as classified by Seger & Cincotta, 2005). This is interesting in 

the context of proposed loops from caudate head to BA 47 (Dominey et al., 2009) and 

predicts AGL impairments in PD if caudate head is malfunctioning. Having said this, 

the consensus on progression of PD seems to be rather that dysfunction starts in the 

posterior putamen, and spreads to anterior putamen and caudate nucleus (e.g., Nurmi 

et al., 2001), with a constant rate of decline across all parts of the putamen and 
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caudate once initiated (Bruck et al., 2006). In fact, Pasquini et al. (2019) characterise 

the established view of PD progression in terms of “a posterior-to-anterior gradient in 

early PD … with relative preservation in the head of caudate” (p. 1103, and opposite 

to the claim made by Seger, 2008). Although they go on to show that caudate 

dysfunction is detectable in about 50% of patients very early in the disease and before 

any symptoms are apparent, at least for those patients whose caudate remains initially 

unaffected, AGL should be unimpaired. However, given that Witt et al. (2002b) even 

found unimpaired AGL in patients with advanced stage PD when they were off 

medication4, it seems unlikely that preserved caudate function underlies preserved 

AGL in all cases.  

An alternative explanation for the discrepancy between the fMRI and patient 

data is that all but one of the imaging studies reviewed above presented the AG 

strings letter by letter. In contrast the patient studies used whole string presentation. 

Perhaps it is only when the stimuli actually form a sequence in time that the basal 

ganglia are engaged (consistent with the much more robust evidence for basal ganglia 

involvement in perceptual and motor sequence learning, below). Yet, as ever, there is 

an exception – Lieberman et al. (2004) report BG activity using whole string 

presentation. If nothing else, this observation illustrates how procedural variations 

across studies can lead to confounds that hinder functional interpretation. 

 

Hippocampus: Amnesia 

 

What imaging evidence there is for MTL activity in AGL might be interpreted in 

terms of explicit memory for chunk/item-based information, either as a basis for GJTs 

(based on chunk strength effects in Lieberman et al., 2004; Forkstam et al) or as a 

knowledge source that needs to be suppressed in order to focus on grammaticality 

(based on deactivation with respect to baseline in Petersson et al., 2012 and Folia et 

al., 2014). One would therefore expect amnesics to perform above chance on AGL 

tasks, especially when grammaticality effects are measured, although possibly worse 

than controls depending on the extent to which controls can benefit from additional 

explicit item-based knowledge. Some studies have shown numerically almost 

 
4 The patients were diagnosed as 4.4 on the Hoehn and Yahr score (where 5 is the most severe and 0 
unimpaired). Interestingly AGL performance was similar to controls across a wide range of disease 
severities in this study. 
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equivalent GJT performance in amnesics and controls: Knowlton and Squire (1994); 

Knowlton and Squire (1996), Experiment 1; Meulemans and Van der Linden (2003). 

Others have shown slightly, but not significantly, lower accuracy in amnesics: 

Knowlton, Ramus, and Squire (1992); Knowlton & Squire (1996) Experiment 3; 

Reber, Martinez, and Weintraub (2003). The studies that have used balanced chunk 

strength designs have found equivalent main effects of grammaticality in amnesics 

and controls (Knowlton & Squire, 1996, Experiment 1; Meulemans & Van der 

Linden, 2003).5 But Knowlton & Squire (1996, Experiment 1) also found that chunk 

strength effects were equivalent in amnesics and controls, which is surprising given 

that imaging of the healthy brain has associated the H with similarity-based 

processing. Knowlton & Squire (1996) speculate that their amnesic chunk effects 

reflect implicit priming in other brain areas, whereas Lieberman et al. (2004) argue 

that their MTL activations reflect explicit memory processes. In support of this, 

deficits in chunk learning measures in amnesics have been associated with measures 

of conscious knowledge (Knowlton & Squire, 1996, Experiment 2; Meulemans & 

Van der Linden, 2003). Even so, given that Knowlton & Squire’s controls could 

benefit from both priming and explicit memory one would have expected them to 

produce stronger chunk effects than amnesics. The similarity between amnesic and 

control performance in AGL even on chunk strength measures therefore remains 

remarkable. 

Having said this, Channon et al. (2002) found an amnesic deficit in AGL using 

a more extreme contrast between high and low chunk strength test items than in 

previous imaging or patient studies, though the amnesics still performed above 

chance. It is possible then that weaker chunk manipulations are sufficient to produce 

imaging effects but they are not strong enough to produce an amnesic deficit. But 

there is a further twist – confidence measures suggested that decisions in both controls 

and amnesics were a reflection of implicit knowledge. This defies the common 

assumption that H contributions to AGL are necessarily a reflection of explicit 

memory. 

 
5 However, one should be cautious about interpreting these results as evidence of the expression of 
implicit knowledge in amnesics. When whole string recognition tasks have been administered 
(requiring discrimination between trained strings and new grammatical strings) amnesics perform 
significantly above chance (Knowlton & Squire, 1992; Reber et al., 2003). Though performance is still 
significantly worse than controls, the dissociation between GJTs and recognition is not actually as 
strong as would be required to argue that the two tasks tap different systems, or that GJs in amnesics 
are driven purely by unconscious knowledge. 
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Artificial grammar learning summary 

 

Imaging studies certainly show that LIFG, and in some cases the FOP, are involved in 

GJT following AGL, similar to the results obtained with more natural, hierarchical, 

grammars. Of specific LIFG regions, BA 44 is common across studies, which is 

significant given claims about the potential specialisation of this region for natural 

language syntax. Note, however, that the activations are less left lateralized than for 

natural language processing, both with respect to LIFG and the FOP. Consistent with 

this, Udden & Madden (2018) report a metanalysis of 7 AGL studies, four of which 

have been classed as ‘explicit’ here, in which both left and right FOP emerged as the 

most consistently activated region using a NG > G contrast. Hence whilst it is 

certainly the case that the response to artificial language stimuli in general (including 

FSGs and hierarchical grammars) overlaps with that to natural language syntax there 

are also contributions of additional processes. 

Interpretation of brain stimulation and agrammatic studies is more 

problematic, partly due to variation in the patterning of effects on grammatical and 

ungrammatical test items, but they do at least support the idea that LIFG is somehow 

involved in AGL. With regard to BG and H there is poor alignment between imaging 

and patient studies. Imaging provides some evidence for BG involvement in AGL, but 

performance is surprisingly unimpaired in PD patients. The few imaging studies that 

have reported H involvement have found that it is related to chunk strength rather 

than grammaticality (though inconsistently in terms of contrasts), yet amnesics show 

hardly any impairment in standard AGL even on chunk-based measures. These 

inconsistencies challenge a simple identification of distinct and necessary functions to 

individual brain areas.  

Surprisingly few studies have ruled out the contribution of explicit knowledge, 

although the results from Floel & Petersson’s (2014) liking judgment task and Udden 

et al’s (2017) TMS study suggest LIFG effects even when this is likely to have been 

minimised. Channon et al’s (2002) amnesic study is surprising in that it shows an 

amnesic impairment in the expression of chunk knowledge even when responses 

appear to be driven by implicit knowledge, challenging the idea that hippocampal 

contributions are necessarily explicit, a theme that we will also see repeated below. 



 21 

One must always bear in mind that all of these studies tell us about the brain 

areas involved in making judgements (nearly always of grammaticality) using 

whatever knowledge is acquired after exposure to an AGL. They do not reveal 

activity during learning. The research on sequence and statistical learning provides 

indications of how that may be achieved. 

 

 

Sequence learning 

 

If artificial grammar learning seems rather removed from natural language, many 

studies of sequence learning, on the face of it, would appear to be even more so. In 

the classic serial reaction time task (SRTT) the participants see a stimulus (say a 

cross) moving between, say, four horizontally arranged positions on the screen and 

they track its movement by pressing corresponding response keys. Unbeknownst to 

the participants the screen positions follow a repeating sequence, often a 12-item 

‘second order conditional’ (SOC) sequence such as 3–2–4–1–3–4–2–3–1–2–1–4, 

where each number represents a screen position (Vandenberghe, Schmidt, Fery, & 

Cleeremans, 2006). In such sequences the position of a stimulus can only be predicted 

by taking into account at least the previous two positions (e.g., 2-1 predicts 4). This is 

why SOCs are often referred to as tests of ‘higher order’ sequence learning, rather 

than of simple adjacent dependencies. Learning is evaluated by comparison with a 

pseudo-random baseline (a random sequence with no immediate repetitions) that is 

either presented after a training period or interspersed with stretches of the structured 

sequence during training. Sequence-specific learning, as opposed to general task 

practice effects, should be evident as faster responses times to the structured, as 

compared to the random, sequence, and in fMRI studies the same contrast should 

reveal brain activity related to acquisition of the underlying sequence as opposed to 

general task effects. When structured and baseline sequences are interleaved we 

should be able to see learning as it happens, rather than as measured afterwards in a 

judgment test.  
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Imaging 

 

Imaging studies that use a whole brain analysis method have found increased 

activation to the fixed compared to the random sequence across surprisingly many 

brain areas. For example,  Naismith et al. (2010, non-depressed controls) found 

increased activation to the fixed sequence in 19 different brain areas, including a 

number of frontal areas (superior and middle frontal gyrus) and subcortical structures 

(hippocampus, caudate, putamen, thalamus) (see also Daselaar, Rombouts, Veltman, 

Raaijmakers, and Jonker (2003). However, in these studies no attempt was made to 

determine whether sequence knowledge was conscious or not. In Willingham, Salidis, 

and Gabrieli (2002) the participants showed the same level of recognition for the 

fixed sequence as the random sequence suggesting a lack of conscious knowledge. 

Taking 11 regions of interest (ROIs) from previous studies they found greater 

activation to the fixed sequence in left prefrontal cortex (BA 46, BA10), left inferior 

parietal cortex, and right BG (putamen). Schendan, Searl, Melrose, and Stern (2003) 

also used a ROI approach and found increased activation for the fixed sequence in BG 

(bilateral putamen, but more prominently bilateral caudate), and prefrontal cortex, but 

also, most notably, the hippocampus, where activation was equivalent regardless of 

whether or not the participants were provided with explicit information about the 

sequence.6 In Albouy et al. (2008) a generation task was used to establish a lack of 

conscious sequence knowledge (though note that this was following a block of the 

random sequence and so is not entirely convincing). Imaging during training showed 

increased activation to the fixed sequence in BG (caudate nucleus) and H, with the 

latter effect decreasing over training. A connectivity analysis also revealed a negative 

correlation between H and BG (but in the left ventral putamen). Thus, there is 

consistent evidence for BG activity, but also for H activity, which, surprisingly, is 

evident even when an attempt is made to isolate implicit knowledge. 

The SRTT is underlyingly rather complex because it combines a regular 

perceptual sequence (the movement of the stimulus around the screen positions) with 

a motor sequence (a sequence of manual, or verbal, responses). This raises the 

question of what learning-related brain activity reflects – is it the motor sequence, or 

 
6 The H was not included as an ROI in Willingham et al., 2002, and it may not have shown up in 
Daselaar et al. (2003) due to a high threshold. 
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the perceptual sequence, or an integrated representation of them both? Studies that 

have attempted to separate these components and which have also applied stringent 

awareness tests to isolate implicit learning effects have found BG activity associated 

with both perceptual and motor components (Gheysen, Van Opstal, Roggeman, Van 

Waelvelde, & Fias, 2010, 2011; Rose, Haider, Salari, & Büchel, 2011). They have 

also revealed effects in the H, though the results are inconsistent – Rose et al. (2011) 

found that it was confined to perceptual learning, whereas Gheysen et al. (2010, 2011) 

found that it was confined to motor learning. The reasons for this discrepancy are 

unclear. 

Studies that have targeted only perceptual sequence learning have yielded 

clearer results. Ling et al. (2015) examined learning of a sequence of Chinese tones 

(in Chinese native speakers) and found learning-related activity in bilateral 

hippocampus, right caudate nucleus and left superior parietal lobule. Jablonowski, 

Taesler, Fu, and Rose (2018) examined perceptual sequence learning of tones and 

found very precise learning related changes in bilateral hippocampus. Both studies 

used stringent tests to exclude any participants with sequence awareness. On this 

basis, hippocampal involvement in implicit perceptual learning looks more secure. 

However, all of these studies used relatively short ‘deterministic’ sequences of 

between 4 and 6 items, and the only study not to find hippocampal involvement in 

perceptual sequence learning (Gheysen et al., 2011) used a slightly more complex 

sequence with one non-deterministic transition (2–4–3–1–4). Could sequence 

simplicity explain hippocampal involvement? Probably not. Rosenthal, Andrews, 

Antoniades, Kennard, and Soto (2016) used a traditional 12-item SOC in an ingenious 

perceptual sequence learning task in which a circle moved between 4 horizontal 

screen positions but prism glasses reduced participants’ conscious perception to two 

positions by fusing the left and right visual fields. This reduced the 4-position 

sequence to a 2-position sequence and hence obscured the SOC structure. In fMRI 

data acquired during training there was a time by condition (fixed versus random 

sequence) interaction in the BG (right putamen and pallidum), inferior temporal 

gyrus, hippocampus, and occipital (visual) areas, including V1. And in a recognition 

test, higher levels of activity for novel versus trained sequences (which actually 

looked the same to the participants) were obtained in, amongst other areas, V1 and 

left hippocampus. So, we see the surprising involvement of the hippocampus even 

when a traditional 12-item SOC sequence is used, and with what is claimed to be a 
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complete absence of awareness. But we also see learning-related changes in a low 

level visual area V1, which suggests that sequence learning-related changes can also 

occur within perceptual systems (see Batterink et al., 2019, for an emphasis on this 

point). 

 

Basal ganglia: Parkinson’s disease 

 

Given the repeated observation of basal ganglia involvement in a range of sequence 

learning tasks in healthy participants one would expect that Parkinson’s Disease (PD) 

patients, who suffer basal ganglia dysfunction, would show a learning impairment. By 

and large this does indeed appear to be the case (see Clark, Lum, & Ullman, 2014 for 

a meta-analysis). Of course, given that PD patients have obvious movement 

difficulties and tremors one might not be surprised by an impairment in a task that 

involves rapid button-pressing. Some studies have shown reduced learning in PD 

when a verbal response is required (see Clark et al., 2014), whilst others have shown 

intact learning (Smith et al., 2001), or even the emergence of learning in a second 

training session after a one week interval (Smits-Bandstra & Gracco, 2015). The 

reason for such discrepancies is not clear. Level of medication is one possibility 

(Ruitenberg, Duthoo, Santens, Notebaert, & Abrahamse, 2015) or else use of explicit 

learning strategies in PD patients. But the reduced learning in PD using a verbal 

response in at least some studies suggests that the involvement of the basal ganglia in 

the SRTT lies at a deeper level than mere execution of manual responses. 

However, there are studies that show intact PD sequence learning under 

specific procedural variants. Werheid, Ziessler, Nattkemper, and von Cramon (2003) 

found that PD patients showed the same level of sequence learning as controls when 

the stimuli (letters) were presented at a central location (different letters were 

assigned to different response keys) whereas a comparable group of PD patients 

showed about half the learning effect as controls in a standard SRTT using the same 

sequence. The PD patients actually performed worse than the controls on tests of 

awareness. Smith and McDowall (2006a) report a somewhat similar result – PD 

patients showed unimpaired learning of either a perceptual or positional sequence, but 

only the controls were able to learn the combined sequence. Both groups were at 

chance on tests of recall and recognition of the independent perceptual and position 

sequences, and there was no correlation between their scores and the respective 
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learning effects. The conclusion is that the PD patients were able to implicitly learn 

picture and spatial sequences, but they were specifically impaired at combining them 

into an integrated stream (for a similar effect see Shin & Ivry, 2003). Smith & 

McDowall (2006a) suggest that the PD deficit lies in information integration rather 

than sequence learning as such. Yet imaging (above) shows BG involvement in 

simple perceptual sequence learning situations that do not impose integration 

demands of this kind. Hence there appears to be an inconsistency between the patient 

studies and imaging research – which cannot be put down to disease severity (due to 

deficits still being obtained under specific conditions) or to compensation from 

explicit learning (ruled out by tests of awareness). Once again simpler versions of the 

task are sufficient to show imaging effects, but not sufficient to show a patient deficit. 

 

Hippocampus: Amnesia 

 

As we saw above, some fMRI studies of the standard SRT task do not report 

hippocampal activation, whereas two studies do (Naismith et al., 2010; Schendan et 

al., 2003). Can studies of SRT learning in amnesics shed any more light on the issue? 

Early studies using SOC sequences found no significant difference in reaction time 

slow-downs to sequence violations in amnesics and controls (Curran, 1997; Reber & 

Squire, 1994; Reber & Squire, 1998; Van Tilborg, Kessels, Kruijt, Wester, & 

Hulstijn, 2011), although in a fine-grained analysis of transition times Curran (1997) 

did reveal significant group differences at specific sequence positions. Interestingly, 

even this detailed analysis did not reveal any amnesic deficit for a ‘first order’ 

conditional sequence in which each element uniquely predicted the successor. This 

suggests that sequence complexity might be an important variable.7 Other studies 

suggest that an amnesic deficit can be revealed when variability is introduced into the 

sequence. Vandenberghe et al. (2006) compared learning of a standard ‘deterministic’ 

SOC with a ‘non-deterministic’ version in which there was a 20% probability that a 

transition would be drawn from another sequence. Amnesics and controls showed 

equivalent performance on the deterministic version, but only the controls showed 

any learning of the non-deterministic version. Measures of conscious knowledge 

 
7 Similarly, in an animal model of the SRT task, (Ergorul & Eichenbaum, 2006) found that complexity 
in terms of sequence length and conditional structure (first or second order) affected learning rate more 
for rats with hippocampal lesions than controls. 
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(using the process dissociation procedure) suggested that learning had been implicit in 

both groups. Shanks, Channon, Wilkinson, and Curran (2006) also found no 

sequence-specific learning in amnesic patients using a method for generating non-

deterministic SOCs similar to Vandenbergh et al. (2006). In fact, it is worth noting 

that the studies that show no amnesic impairment for SOCs exposed the participants 

to purely structured material throughout training (Reber & Squire, 1994, 1998; Van 

Tilborg et al., 2011), whereas Curran (1997) interleaved sections of structured and 

random material, as do imaging studies. Hence it is possible that dependence on the 

hippocampus is affected by the extent to which the structural regularity has to be 

extracted from noisy input. 

 

LIFG: Agrammatism and TMS 

 

Given the lack of imaging evidence for LIFG involvement in sequence learning it is 

not surprising that the few studies that have examined agrammatics have found no 

impairment (Goschke, Friederici, Kotz, & van Kampen, 2001; Schuchard & 

Thompson, 2014). Interestingly, Schuchard and Thomspon (2014) found that 

agrammatics were worse than controls when trained under explicit conditions, 

consistent with their argument that Broca’s area involvement in AGL might reflect 

explicit learning or expression of explicit knowledge (Schuchard & Thompson, 2017). 

However, a TMS study on healthy participants fails to conform. Clerget, 

Poncin, Fadiga, and Olivier (2012) showed that TMS applied to LIFG (BA 44) 

obliterated learning in a standard SRTT [check]. The fact that a control group showed 

learning effects without conscious knowledge (as assessed by a sequence generation 

test) suggests that the results were not because TMS was interfering with explicit 

learning. One reason for these divergent results might lie in the use of an unusually 

long 20-item repeating sequence which was created in such a way as to encourage 

chunking (though note that detailed RT analyses revealed that although a chunking 

pattern could indeed be discerned it was equivalent in both groups). Alamia et al. 

(2016) provide corroborating evidence that Broca’s area is involved in chunking 

operations, this time in a perceptual/conceptual sequence where response times at the 

transitions between the highest level chunks were specifically slowed by application 

of TMS to BA44. Although their task required explicit learning of the sequence 

through trial and error, and hence unlike Clerget et al. (2012) did not tap implicit 
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learning, this research does point to LIFG involvement when hierarchically organised 

sequences are employed. 

 

 

Sequence learning summary 

 

Imaging studies reveal learning-related increases in activity in BG and hippocampus 

for sequence learning, though when motor and perceptual sequence learning are 

separated inconsistencies between what are on the face of it similar studies emerge. 

There is good evidence that these effects occur without sequence awareness, ruling 

out explicit learning as an explanation of hippocampal activity. Sequence learning 

shows impairments in PD, but there is evidence that it is not impaired when the 

demands of information integration are reduced, a finding that contradicts imaging 

evidence for BG involvement in perceptual sequence learning. Amnesics show 

remarkable preservation of sequence learning in light of the imaging evidence, but do 

appear to show impairments when variability is introduced. There is no imaging 

evidence for LIFG involvement (and not even of the FOP), and agrammatic sequence 

learning is intact for standard SOC sequences, but there is evidence for LIFG 

involvement when longer sequences that invite chunking are used. Once again, we see 

poor alignment between imaging and patient studies, but a recurring theme is that 

specific areas become more necessary when complexity is introduced. 

 

 

Statistical learning 

 

The statistical learning paradigm offers a convenient vehicle for studying learning-

related changes in brain activity. We shall be concerned here only with statistical 

learning studies that examine the segmentation of units from continuous streams, 

which is where most of the imaging work has been carried out. Participants are 

exposed to a stream of meaningless syllables (e.g. pa-bi-ku-go-la-tu-da-ro-pi-pa-bi-ku 

..), or in visual versions passively observe a stream of nonsense shapes. This stream is 

in fact composed of a small set of recurring but randomly ordered syllable or shape 

triplets (pa-bi-ku, go-la-tu, da-ro-pi). The only cue to the boundaries between the 

triplets is the transition probabilities between the syllables or shapes. Statistical 
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learning is a form of sequence learning akin to the kinds of perceptual sequence 

learning described above. The difference lies primarily in the nature of what is 

learned. Statistical learning of this type simply depends on learning adjacent 

dependencies between syllables, but these are obscured by the random concatenation 

of triplets. ‘Word’-like or ‘event’-like structures are emergent from the stream. 

These studies look at extremely rapid learning, occurring after 2 or 3 minutes of 

exposure, and sometimes with behavioural evidence of learning after less than a 

minute. 

 

Imaging 

 

In the tradition of statistical learning research there are no tests of conscious 

knowledge – it is assumed that the statistical computations underlying learning are 

themselves unconscious even if the products of learning are not. Indeed, imaging 

studies have generally given participants instructions to work out the words in the 

language in preparation for a test (Cunillera et al., 2009; Karuza et al., 2013; López-

Barroso et al., 2013; Plante et al., 2015) and some have used repeating cycles of 

exposure and test to provide a behavioural index of the learning trajectory (Karuza et 

al., 2013; Plante et al., 2015). Such procedures are likely to encourage explicit 

learning strategies, and hence it cannot be assumed that the only learning-related 

processes going on are related to the passive computation of transition probabilities. 

Only a study by McNealy, Mazziotta, and Dapretto (2006) seems to approximate an 

implicit learning procedure – participants were scanned whilst being exposed to a 

combination of structured or random syllable streams with no instruction other than to 

just listen. 

Whilst just listening to auditory syllable streams activates what McNealy et al. 

(2006) describe as “a large-scale bilateral neural network” (p. 7633) specific measures 

of learning-related effects reveal more localised activation – but much depends on the 

measure of learning-related activity that is adopted. Taking the difference between 

structured and random syllable streams (structured > random) has revealed effects in 

superior temporal gyrus (STG), largely left lateralized, but the time course varies 

across studies – increasing over 2 mins of exposure (McNealy et al., 2006), but 

decreasing from being significant over the first 2 min exposure to being non-

significant in the second 2 minutes (Cunillera et al., 2009). Combining these very 
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similar studies we might conclude that learning effects increase over the first two 

minutes and then disappear, suggesting that LSTG activity reflects computation of 

TPs, which might tail off once representations are established. The problem with this 

idea is that behavioural accuracy, whilst being at chance in McNealy et al. after 2 

mins, was far from perfect in Cunillera et al. after 4 mins (68%). Also, Plante et al. 

(2015) found evidence for an increasing effect in LSTG over more than 8 mins of 

exposure with respect to a low transition probability baseline. However, this study is 

not directly comparable to the previous two in that they used a more naturalistic 

method (real two-syllable Norwegian words in sentence contexts), 3 cycles of 

exposure and test (which may have stimulated explicit learning), and an Independent 

Components Analysis method. Hence the time course of LSTG activity, though 

potentially informative, remains unclear. Plante et al also report a response in the 

LIFG in the first two blocks, but because this disappears in the third, despite the 

behavioural effect being greatest at that point, they conclude that it is unlikely to 

reflect computation of transition probabilities. The effect in the BG (right caudate) 

only appeared in Block 1 and hence its role in learning is not clear. 

 Studies have also examined correlations between the structured > random 

difference and behavioural performance, which one might think would give the most 

illuminating picture of learning-related activity. But no clear localisation emerges 

across studies. McNealy et al. (2006) report a correlation with LSTG (which at least is 

consistent with their structured > random comparison), Cunillera et al. (2009) report a 

correlation with premotor cortex (BA 6, for activity in the first 2 minutes, which they 

attribute to rehearsal in working memory). Plante et al. (2015) report correlations with 

a variety of temporal, frontal and parietal regions, but not specifically LSTG, LIFG, 

or BG. Karuza et al. (2013) developed a fine-grained measure relating change in 

accuracy over a particular block to brain activity in that block. On a whole brain 

analysis they only found correlations with LIFG, and also with BG on a regions of 

interest analysis with reduced threshold.  

 It is difficult to draw conclusions from the above. Changes over time with 

respect to control streams point to effects in LSTG, but the time course is inconsistent 

across studies. Brain-behaviour correlations are only consistent the overall structured 

> random contrast in the case of McNealy et al. (2006) (the most implicit) whereas 

other studies find evidence of BG, LIFG, and even premotor involvement, though the 
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use of repeated exposure-test cycles may have encouraged explicit learning (involving 

working memory) in these cases.  

There is some evidence of LIFG involvement in other tasks relating to 

processing of already-segmented units. McNealy et al. (2006) found this for a word > 

part-word contrast whilst the participants passively listened to isolated words or part-

words between the exposure and behavioural test phases. Abla and Okanoya (2008) 

found effects on LIFG and LSTG when listening to streams of pre-learned tone 

triplets. And in a study of statistical learning from continuous syllable streams in 

which words were separated by 25 millisecond pauses to provide a prosodic cue to 

word boundaries, López-Barroso et al. (2013) found correlations between word 

learning and functional connectivity in the left arcuate fasciculus – the tract between 

LIFG (and premotor cortex) and STG. Hence there is evidence for LIFG involvement 

of processing of learned, or already segmented, units, but evidence for involvement in 

statistics-driven learning processes comes largely from Karuza et al. (2013) who used 

the least implicit of the procedures, but possibly the most sensitive measure of 

learning-related effects. 

Experiments have developed visual analogues of the standard auditory 

statistical learning paradigm involving triplets of “glyph” nonsense shapes 

concatenated into continuous streams. Turk-Browne, Scholl, Chun, and Johnson 

(2009) found greater activation to structured than random streams in the right caudate 

after just 32 seconds of exposure to each stream. And by around 48 seconds greater 

activation was obtained in the right hippocampus and right STG. These rapid learning 

effects were obtained despite the fact that after just over 3 minutes of exposure triplet 

familiarity was not significantly above chance (56%). In a post-experiment debriefing 

only 2 out of the 16 participants reported any awareness of pairings (but not actual 

triplets) and there was no relationship between subjective confidence and accuracy. 

Neither was there any correlation between familiarity and H or BG activation (this 

being confined to left frontal cortex). Therefore, it seems unlikely that the 

hippocampal activity after 48 seconds was a reflection of explicit processes.8 

 
8 Batterink et al. (2019) note that when only participants who were at or below chance on the 
familiarity test were excluded BG, but not H, activation was obtained, which they argue suggests that 
the H effects are a reflection of explicit memory. However, this seems rather a severe criterion given 
that it excludes people who were above chance purely by chance and people for whom familiarity 
judgements may have been driven by implicit knowledge. In any case, it could be argued that in 
relation to explicit memory processes, verbal report is the most relevant measure. 
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Subsequent research by the Turk-Browne group, and most notably by Schapiro, has 

revealed that items that tend to occur together evoke more similar neural responses, as 

measured at the level of individual voxels, in the hippocampus (Schapiro, Kustner, & 

Turk-Browne, 2012), again under conditions under which no participants reported 

awareness of the associations, although in this case they were able to discriminate 

between strongly and weakly associated pairs at an above chance level. Hence, in 

these studies, at least if verbal report is taken as the primary indicator of awareness, 

there appears to be H involvement in implicit visual statistical learning. 

Subsequent studies examined systems in which patterns of pairwise 

association would lead to the emergence of ‘community structure’ (similar to how 

grammatical and semantic classes might emerge from distributional analysis of word 

co-occurrences). Items from the same community were found to evoke more similar 

voxel patterns in LIFG, insula, left ATL, and left STG (Schapiro, Rogers, Cordova, 

Turk-Browne, & Botvinick, 2013), and in subsequent analyses also in the 

hippocampus when selected as an ROI, and in the connectivity between the 

hippocampus and LIFG (Schapiro, Turk-Browne, Norman, & Botvinick, 2016) 

suggesting that these two areas were working in concert to represent the community 

structure of the input. Although it is not clear to what extent these effects are 

associated with conscious knowledge these studies are significant in showing how it 

is possible to actually detect where structural relationships are encoded in the brain, 

which it turns out is in more than one place. 

 

 

Hippocampus: Amnesia 

 

Given the above claims about the role of the hippocampus one would expect 

statistical learning in amnesics to be seriously impaired. One study has found that a 

single patient performed at chance and significantly below the mean of a group of 28 

controls on a set of statistical learning tasks involving syllables, shapes, scenes, and 

tones (Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014). A larger scale 

replication involving 4 patients and 14 controls per task found that the patients were 

significantly above chance (58%) but significantly worse than the controls (at 72%) 

(Covington, Brown-Schmidt, and Duff (2018). However, as noted by Batterink et al. 

(2019), given the evident variability in control group performance on statistical 
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learning tasks, and the relatively small numbers of participants involved, caution 

should be exercised in concluding that the patient deficit is due specifically to their 

amnesia. Additionally, it may be that control performance is boosted by 

hippocampus-dependent conscious knowledge (some control participants scored over 

90% in both studies). It would be interesting to see whether amnesics and controls 

differ when measures of implicit knowledge are used. Nevertheless, there is some 

evidence for preserved statistical learning in amnesia, contrasting with the emphasis 

on the hippocampus in at least the visual statistical learning imaging studies. 

 

LIFG and LSTG: Broca’s and Wernicke’s aphasia 

 

Peñaloza et al. (2015) examined auditory statistical learning in heterogeneous groups 

of stroke patients. The patients performed significantly worse than matched controls 

on a forced choice discrimination test following 5.2 minutes of exposure, although 

their performance was significantly above chance. However, only 4 patients out of 14 

performed significantly above chance at an individual level, all of them mild fluent 

(Wernicke type) aphasics with either parietal or temporal lesions (n = 2 each). 

Strikingly patients with anterior lesions (Broca’s type aphasics) did not achieve above 

chance performance. There was also a general correlation between verbal working 

memory performance and statistical learning (r = 0.655). Hence these data point to an 

association between frontal (possibly LIFG) damage and a lack of statistical learning, 

but one that is impossible to distinguish from a verbal working memory impairment. 

 

Statistical learning summary 

 

The weight of evidence from auditory statistical learning of syllable sequences 

appears on the face of it to point to a role of the LSTG. This is to be expected given 

the known role of this region in auditory processing and word learning (Hickok & 

Poeppel, 2007). However, there are inconsistencies - the time course of the effect is 

uncertain, it is strange how the LSTG only shows up in brain-behaviour correlations 

in one study (McNealy et al., 2006), and in the one study of aphasics it was the 

Wernicke’s patients who appeared to be least impaired. Brain-behaviour correlations 

are inconsistent across studies, but there is some evidence for BG and LIFG 

involvement using possibly the most sensitive method (Karuza et al., 2013). When 
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evaluating the relative contribution of the LSTG and LIFG much depends on which 

measure of learning-related brain changes one emphasises. Variation in procedures 

across studies also raises problems of interpretation. To what extent do the results 

reflect intentional learning processes encouraged by instructions to learn words, and 

repeating cycles of exposure and test? This is particularly problematic for 

interpretation of LIFG activity given that this region is implicated more generally in 

phonological processing (Flinker et al., 2015; Sahin, Pinker, Cash, Schomer, & 

Halgren, 2009) and phonological short-term memory (Papagno et al., 2017). Note also 

the correlation between auditory statistical learning and verbal working memory in 

Peñaloza et al.’s (2015) study of aphasics. There is better evidence for LIFG 

involvement in processing of already learned units, or learning when additional 

prosodic cues are provided. With regard to hippocampal involvement, there is some 

evidence for impaired auditory and visual statistical learning in amnesia, and yet only 

imaging studies of visual statistical learning have reported hippocampal activation, at 

least so far. These effects appeared to occur in the absence of awareness of the 

relevant structure. 

 

 

Discussion 

 

Given the inconsistencies between different methodologies (imaging and patient 

studies in particular), and inconsistencies amongst studies within the same 

methodology (particularly amongst imaging studies) then it is clearly difficult to draw 

generalisations across this literature. In relation to imaging, there is ample evidence of 

learning-related brain responses to structural regularities that participants have 

acquired without intention and without awareness. Some of the best evidence for this 

comes from perceptual sequence learning. Including studies that are less scrupulous 

about establishing lack of awareness, then it appears that there is good imaging 

evidence for LIFG/FOP in relation to AGL, almost no evidence for it in sequence 

learning, and some evidence for it in statistical learning. BG involvement is most 

widely attested in sequence learning, less so in statistical learning and AGL. There is 

some evidence for H involvement in all tasks, even in situations where concerted 

efforts have been made to rule out the contribution of conscious knowledge.  
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However, in only two cases is there good alignment between imaging and 

patient/stimulation studies – imaging, brain stimulation, and patient (agrammatic) 

studies all suggest LIFG involvement in AGL, and imaging and patient (PD) studies 

both suggest BG involvement in the standard SRT task. Whatever functions are 

carried out by LIFG and BG seem to be essential to normal levels of performance in 

these tasks. But lack of alignment is more common. PD patients are unimpaired on 

AGL and perceptual sequence learning despite there being good imaging evidence for 

BG involvement in these tasks. Amnesics are unimpaired in AGL and SRT tasks 

despite there being at least some imaging evidence for hippocampal involvement. 

However, amnesic deficits become apparent when the difficulty of the learning 

problem is increased above that used in imaging studies – as for a stronger chunk 

strength manipulation in AGL, and when probabilistic sequences are used in the 

standard SRT. There is no PD impairment when perceptual and motor components of 

the SRT are separated, only when they are combined in the standard SRT. Hence, for 

simpler versions of the task, patient studies may suggest that certain brain areas are 

not necessary, even though those areas appear to be active in imaging of the healthy 

brain. This may suggest that in the simpler case other brain regions can perform the 

required functions, implying duplication of function across different areas (see 

below). 

It is also evident that comparisons between imaging and patient studies are 

sometimes confounded by procedural differences that affect the nature of the learning 

problem. Imaging studies of AGL have generally used sequential presentation, 

whereas patient studies have used whole string presentation, which may explain why 

BG involvement is only evident in imaging. The hippocampal involvement that is 

evident in imaging of the SRT task may be due to the demands placed by mixing of 

sequenced and random material during training, introducing variability which is not a 

feature of patient versions. At best such observations may provide clues to underlying 

functions, and at least they serve to emphasise that comparisons between patient and 

imaging studies require that exactly the same procedures are employed wherever 

possible. 

Given this complex picture, what can be said about the functions of these 

different brain areas in implicit learning, and how these functions relate to natural 

language processing and learning? 
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LIFG/FOP: On the view that LIFG (or some part of it) is specialised for processing 

hierarchical structure and non-adjacent dependencies, the relatively strong evidence 

for LIFG involvement in implicit AGL is surprising. Fitch and Friederici (2012) point 

to the relatively low level of performance attained in such experiments and suggest 

that broad frontal (including LIFG) activations might reflect increased cognitive 

control demands of the kind characteristic of second language processing, and that “A 

clear separation in the brain activation for adjacent versus long-distance hierarchical 

dependencies may thus only be observable in a fully established, mature system” (p. 

1949). The fact that all evidence for LIFG involvement in AGL comes from GJTs 

makes control a pertinent issue. It could be argued that identifying a string as 

ungrammatical imposes particularly high control demands, especially if chunk 

familiarity has to be suppressed – hence the increased LIFG, and possibly RIFG, 

activity for ungrammatical items obtained in AGL imaging studies, and the 

improvement in rejection rates of ungrammatical items under brain stimulation. 

Appealing to control would merely reflect one of the functions of LIFG in language 

processing more generally (see Introduction). Udden et al. (2018) also appeal to a 

control function as the explanation for the relatively consistent FOP activation on NG 

> G contrasts found across implicit and explicit AGL studies. It is also relevant to 

note that in the assessment of second language grammatical knowledge, there is 

evidence that the rejection of ungrammatical items draws on explicit knowledge (Ellis 

& Roever, 2018; Vafaee, Suzuki, & Kachisnke, 2017) the expression of which would 

be expected to impose control demands. In this view LIFG/FOP would not be 

expected to be involved in sequence and statistical learning simply because the focus 

is on brain activity during learning rather than post-exposure judgment tasks. Any 

LIFG involvement in auditory statistical learning would need to be seen as a 

reflection of different processes. This is self-evident anyway since in this case 

activation is greater to structured than random material, opposite to the NG > G 

contrast used in AGL. One possibility is that phonological short-term memory 

processes are engaged more by structured material, especially considering the 

incentive to work out the words intentionally. 

On the other hand, there is some evidence that LIFG is interested in structure 

and not just control. LIFG activation has been obtained even for liking judgments 

(Folia & Petersson, 2014) where competition between grammaticality and chunk 

familiarity is less likely to be an issue. The studies of AGL learning in agrammatics 
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showed impaired acceptance of grammatical items (though the fact that not even the 

controls could reliably reject ungrammatical items raises questions over whether this 

reflects abstract grammatical knowledge). Looking beyond humans, in a study of 

primate AGL Wilson et al (2015) found (bilateral) activation in a region homologous 

to human FOP using a NG > G contrast for images obtained during passive listening. 

TMS to LIFG has been shown to impair perceptual-motor sequence learning when 

chunking effects are examined (Clerget et al., 2012; Alamia et al, 2016), and in a 

statistical learning paradigm representational similarity analyses suggest that both 

simple and complex associative structure is encoded in LIFG (Schapiro et al., 2012, 

2013). 

An alternative view of LIFG function is that it is a “generic on-line structured 

sequence processor that unifies information from various sources in an incremental 

and recursive manner’’ (Petersson et al., 2012, p. 85). This view predicts LIFG 

involvement in AGL using FSGs, with greater activation for NG items possibly being 

a reflection of increased processing demands caused by a breakdown of the parsing 

process (Forkstam et al., 2006). But an emphasis on generic sequential structure 

building raises the question of why there is so little evidence for LIFG involvement in 

sequence and statistical learning. It may be speculated that complexity of the learning 

problem is a factor. The systems used in sequence learning, statistical learning, and 

AGL could be seen as lying on a continuum of increasing abstraction. Sequence 

learning requires no abstraction since it involves a single repeated chain of 

associations whose strength is built up through repetition. In contrast in AGL a 

complex grammar involving branching and recursion has to be induced from diverse 

examples. Statistical learning is at an intermediate level of complexity since the 

relevant units (usually triplets) are simple, but they need to be abstracted from a 

continuously varying input stream (the order of the triplets being pseudo-random). 

Community structure is an example of a more complex abstraction problem in 

statistical learning as would be chunking in sequence learning, and these have both 

yielded evidence for LIFG involvement (Schapiro et al., 2013; Clereget et al., 2012). 

However, natural languages involve levels of abstraction and complexity that 

go beyond even the relatively ‘complex’ FSGs (i.e., hierarchically organised 

constituents, long distance dependencies, and word classes). The problem is that the 

imaging experiments that have used grammars with these properties have employed 

explicit training regimes, and so we cannot be sure that the broad similarity with 
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LIFG activations in FSGs reflect the same kinds of processes. Clearly, what is needed 

is neuroscientific work looking at implicit learning of these more complex and 

abstract systems. But the prospects for obtaining implicit learning of such grammars 

are uncertain. Opitz and Hofmann (2015) trained participants on Brocanto under 

implicit conditions, and though GJTs were above chance even for phrase structure 

violations, further analyses suggested that decisions were based on similarity, not rule 

knowledge. Systems with word classes and central embedding (A1 A2 A3 B3 B2 B1, 

where letters stand for item classes and numbers dependency relations) have also been 

shown to not be amenable to implicit learning when performance depends on 

recovering the underling non-adjacent dependencies (Perruchet & Rey, 2005). On the 

other hand, de Vries, Petersson, Geukes, Zwitserlood, and Christiansen (2012) found 

that a crossed nested dependency grammar (A1 A2 A3 B1 B2 B3) was amenable to 

implicit learning, as was a hierarchical grammar with less than 3 embeddings (A1 A2 

B2 B1, a limitation that they argue is reflected in natural language processing). In this 

context it is highly significant that, using tDCS, Udden et al (2017) found evidence 

for LIFG involvement for crossed nested dependencies. This suggests that imaging 

studies of various kinds of hierarchical grammars under implicit conditions would be 

worthwhile. Without such studies it is unclear whether the LIFG activity that is 

evident under (assumed) implicit learning conditions is indicative of processes that 

are powerful enough to deal with the complexity and abstractness of natural language. 

One may wonder whether to achieve this in what is effectively a second language 

learning situation (since all of the experiments reviewed here were performed on 

adults) additional explicit processes might indeed be required. But in that case, the 

activations revealed could not be said to be indicative of first language processing and 

learning. 

LIFG involvement in implicit learning can therefore be variously attributed to 

structure building, control, or working memory, all of which are functions that have 

been ascribed to this region in relation to natural language processing (though as 

noted above, the activations to AGL are less left lateralized). This ambiguity appears 

to stem from the use of judgement tasks, and insufficient control over whether the 

learning process, and the resulting knowledge, is implicit. More research is needed 

that obviates the need for judgment tasks and utilizes truly incidental learning 

paradigms whilst at the same time systematically manipulating the complexity of the 

structures to be learned. 
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Basal ganglia: The general learning literature emphasises the role of the BG, and in 

particular the caudate, in feedback-based learning, or reinforcement learning, e.g. in 

maze navigation, motor sequence learning, and categorisation. Learning is driven by 

computation of the difference between the expectation of reward for some action and 

the actual reward received (“reward prediction error”). This error is signalled by 

dopamine, which strengthens coding of stimulus-response associations when 

appropriate (see Lim, Fiez, & Holt, 2014 for an overview). In the context of category 

learning, where stimuli that vary on a range of dimensions have to be associated with 

responses, posterior striatum (caudate body and tail) appears to be involved, acting 

through cortico-striatal loops with, say, visual, or auditory cortex depending on the 

nature of the stimuli (see Patterson & Knowlton, 2018 for a meta-analysis). To 

explain the involvement of BG in the SRTT it must be assumed that implicit 

predictions are rewarded by the appearance of the next stimulus at the expected 

position. To account for BG involvement in purely perceptual sequence learning and 

statistical learning it would have to be assumed that the computation of reward 

prediction error extends to situations in which no overt responses are made or 

rewarded and stimuli follow in very rapid succession (although the idea that 

prediction error drives learning is familiar from connectionist models of sequence 

learning, (although the idea that prediction error drives learning is familiar from 

connectionist models of sequence learning, Elman, 1990). Applying this logic to AGL 

is more problematic unless sequential letter presentation is used, as happens to be the 

case in most imaging studies (unlike in PD studies where no learning deficit is 

observed). Of course, just because BG is responsive to prediction error does not mean 

that it is responsible for learning the basis for those predictions, which could occur in 

cortical areas to which BG is connected through cortico-striatal loops. However, some 

evidence that BG is indeed learning structure comes from a perceptual category 

learning experiment in which generalisation ability was related to BG activity, 

revealing its potential for information compression (Lim et al., 2019). 

 Note that the computation of prediction error in learning is likely to be distinct 

from its role in language processing. In situations of conflicting interpretation or 

ungrammaticality the BG increases in activation (Mestres-Misse et al., 2014; Mestres-

Misse et al., 2012) whereas in the learning experiments reviewed here the BG are 
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more active in response to structured than unstructured (or ungrammatical) material.9 

This would be more consistent with the use of low prediction errors to effect larger 

learning-related neural changes as opposed to the use of high prediction error to 

trigger controlled repair processes, as has been suggested for language processing, 

and would appear to put the BG at the heart of the implicit learning process rather 

than performing an ancillary function. However, any such view runs up against the 

observations of unimpaired implicit learning in PD patients. In the case of AGL, as 

suggested above, this might be because non-sequential stimulus presentation makes 

learning less BG-dependent, which is to imply that the predictive function of the BG 

is only triggered by sequential material. In the case of sequence learning it may be 

because residual function within the BG, or compensation from other systems, is 

sufficient to deal with situations that place low demands on information integration. 

But these remain important unresolved exceptions in establishing the role of the BG 

in implicit learning. 

 

Hippocampus: Traditionally the hippocampus has been regarded as playing a role in 

explicit memory, and so evidence for its involvement in AGL and SRT is often 

attributed to explicit, rather than implicit, processes (e.g., see arguments in Batterink 

et al., 2019). However, we have seen that there are numerous examples of 

hippocampal contributions to implicit learning – most notable in sequence learning, 

but also in statistical learning, and in amnesic AGL. At the same time, there seems to 

be nothing in the implicit learning studies to contradict the idea, emerging from the 

explicit language learning studies reviewed in the Introduction, that the H is 

particularly involved in similarity-based processing, possibly during relatively early 

stages of learning. 

When hippocampal involvement in implicit learning is revealed researchers 

invariably appeal to the notion of “relational encoding” (Eichenbaum, 2000). 

According to this theory, cortical areas form representations of individual items, but 

the hippocampus is involved in forming temporal and spatial associations between 

them. The crucial role of the hippocampus in conscious recollection of events derives 

 
9 BG activity in natural language processing also shows a tendency towards left lateralisation (Mestres-
Misse et al., 2012; Moro et al., 2001), although bilateral activation was found in (Moreno et al., 2018) 
using sign language and second language). But in implicit learning there is a tendency towards right or 
bilateral activation (the notable exceptions are left lateralisation in Yang & Li, 2012, implicit > explicit, 
and Ling et al.’s (2015) auditory perceptual sequence learning. 
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merely from the fact that episodic recall requires associations between the to-be-

recalled item and its context of occurrence – information about time and place – 

which act as retrieval cues and render the experience distinctive. But, over recent 

years, the emerging evidence for hippocampal involvement in implicit memory and 

learning suggests that the relational encoding function of the H is engaged even in the 

absence of conscious recall (see (Hannula & Greene, 2012) for a review). Moreover, 

the hippocampus has been implicated in the encoding of sequential information, as 

distinct from temporal information (DeVito & Eichenbaum, 2011). It is also well 

established that the hippocampus plays a vital role in the abstraction of regularities 

across experiences; that is, in forming generalisations (O’Reilly & Norman, 2002). 

Although this is usually thought to occur through interactions between the 

hippocampus and cortex during sleep, it has been suggested that the hippocampus 

might have an internal architecture that makes it possible to rapidly perform certain 

kinds of abstraction over the very short time scales that are typical of implicit learning 

experiments (Schapiro et al., 2016).  

 

From the above it is striking that, at least in broad terms, very similar computational 

functions have been ascribed to LIFG, BG and H: learning of sequential information, 

and even extraction of generalisations has been mooted for each area. Recall also that 

structural sequence learning effects have even been found in STG for auditory, and 

even visual, statistical learning (McNealy et al., 2006; Plante et al., 2015; Turk-

Browne et al., 2009; Schapiro et al., 2013), and in primary visual cortex and occipital 

cortex for visual statistical learning (Rosenthal et al., 2016; Turk-Browne et al, 2009). 

Hence it is possible that sequence information is registered, computed, or stored in a 

number of distinct, but interconnected, brain regions (Batterink et a, 2019). This 

broad similarity in function may explain why patients with damage to one specific 

area do not always display the expected learning deficit. Perhaps other regions can 

compensate for reduced function in one region by increasing their contribution. Or 

there may be sufficient redundancy and duplication of function that the learning 

system is resistant to local damage. 

At the same time, patient studies do show that impairments can be revealed 

under particular circumstances, say for BG when the demands of information 

integration are high or feedback is provided (Smith & McDowall, 2006a, 2006b), and 

for H when the system can only be learned through chunking (Channon & Shanks, 
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2002), or when there is variability in the input (Vandenbergh et al., 2006). Thus, 

whilst there may be basic functions that are duplicated, there may also be regional 

specialisations that can only be revealed under specific circumstances. But these 

specialisations are likely to be relatively subtle. 

 

Towards functional differentiation 

 

A promising way forward is to link learning-related changes in distinct brain regions 

to mathematical models of what is learned. For example, Bornstein and Daw (2012) 

employed a perceptual sequence learning task with an underlying probabilistic 

structure and found that the basal ganglia response to each stimulus was correlated 

with its ‘forward entropy’ (the probability distribution of the possible next stimuli), 

whereas they suggested that hippocampal activity was related to “preparatory 

‘prefetching’ of the anticipated next elements in the sequence” (specific predictions of 

sequence continuations). Using a similar sequence learning paradigm Konovalov and 

Krajbich (2018) found that the caudate response was related to prediction error; that 

is, violations of expectancy (which they align with Bornstein & Daw’s forward 

entropy), whereas they suggest that the hippocampal response was related to pattern 

encoding (but not retrieval, which seems to contradict Bornstein & Daw). Wang, 

Shen, Tino, Welchman, and Kourtzi (2017) used a probabilistic system and the 

participants’ task was to make explicit predictions about sequence continuations with 

no feedback. They found that dorsal caudate and putamen responses reflected a 

strategy of basing predictions on sequence knowledge, whereas hippocampal 

activations reflected a strategy of basing predictions on simple item frequency. These 

studies converge on the general idea that the BG are involved in processes related to 

prediction, but they all have a slightly different view of the role of the hippocampus. 

It is also not clear to what extent the imputed functions are connected to conscious 

processing, and so there is a clear need to adopt this approach in combination with 

rigorous awareness tests. 

There may be other clues that help distinguish functions. For example, BG and 

H are classically thought to be associated with slow and fast learning rates 

respectively. However, this contrast is based more on the distinction between the 

development of automaticity (or “habit learning” in the learning literature) and ‘one 

shot’ learning in the formation of episodic memories, leading to the classic distinction 



 42 

between procedural and declarative learning. Given the short time scales of most 

implicit learning experiments it should be clear that any BG involvement is not a 

reflection of habit formation in this sense. Acquisition of automaticity in situations of 

‘overtraining’ is generally associated with putamen, whereas, as we have seen here, 

implicit learning over shorter time scales is associated with the caudate (Patterson & 

Knowlton, 2018). Automaticity is also reflected in decreased activation to structured 

material (e.g., Poldrack et al., 2005) rather than the increases shown in the present 

studies. Nevertheless, differences in time course may be evident over shorter time 

scales. In SRT learning Gheysen et al. (2010) found learning-related activity in the 

hippocampus after 3 minutes of exposure, whereas caudate activity was not evident 

until after 51 minutes. Schendan et al. (2003) found that caudate activity increased 

over runs but hippocampal activity decreased (being maximal in the first run, i.e. in 

the first 90 seconds). Albouy et al. (2008) found a reduction in H activation but no 

reported increase in learning-related caudate activation over a 7 minute training 

period. As noted by Albouy et al., a decreasing H response is incompatible with the 

idea that it is associated with explicit knowledge (which would be predicted to 

strengthen over training on this time scale), but is compatible with the idea that it 

reflects rapid learning of novel (and often, second-order) associations, there being 

more to learn early in training, and less to learn as more of the structure is discovered. 

On the other hand, if BG activation reflects prediction errors then any effect would be 

expected to increase the better the underlying structure is learned. Appealing as this 

picture is, as ever, there is contradictory evidence. In a study that expressly set out to 

distinguish learning rates in implicit perceptual learning, (Bornstein & Daw, 2012) 

identify the BG with a fast learning rate and the hippocampus with a slow rate, 

precisely contrary to SRT learning. Ling et al. (2015) did not find any difference in 

time course of BG and H activity (both emerging after about 8 minutes), and Turk-

Browne et al. (2002) found a slightly delayed hippocampal response (after 48 secs 

compared to 32 secs for caudate). And of course, extreme caution is necessary when 

relating these patterns to the reduction in hippocampal activity found in language 

learning experiments over much larger time scales (e.g., Opitz & Friederici, 2003, 

2004). Nor is this to say that hippocampal activation cannot also reflect explicit 

memory processes in some cases, or that deactivations could be indicative of a 

strategy of suppressing explicit item-based memories when making GJTs. But given 
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the evidence that the H can also be involved in implicit learning it is necessary that 

such claims are backed up by actual awareness measures. 

 

Conclusion: From modules to networks 

 

In all of the above the function of each region has been treated in isolation. Though 

the contribution of other regions is clearly recognised, the general approach has been 

to try and differentiate the specific function of one region from that of the others. 

Perhaps, though, it is more appropriate to take a holistic approach in which discrete 

areas are seen as parts of interconnected networks. Afterall, we have already seen that 

the interconnectedness of brain regions is related to learning – as reflected in the 

integrity of fibre tracts emanating from LIFG (in AGL), LIFG to STG connectivity 

through the arcuate fasciculus (in auditory statistical learning), and between the 

hippocampus and LIFG (in visual statistical learning), and possibly negative 

correlations between the H and BG in AGL and SRT. Unsurprisingly, communication 

between regions is integral to learning. There is also emerging evidence of 

connectivity, and a certain sharing of function between BG and another subcortical 

structure, the cerebellum, two structures that were previously thought to be 

independent (Bostan & Strick, 2018). No region can be considered in isolation, 

damage in one region can have knock-on effects on function in another, or one region 

may compensate for malfunction in another. One consequence of this is that the load 

on different systems will change in response to task demands, as the system 

dynamically reconfigures (Ferbinteanu, 2019) (see (Poldrack et al., 2001; Wang et al., 

2017) for examples of how the balance between BG and H can shift according to task 

or strategy). In the extreme, computational functions emerge from activity in multiple 

regions, making it difficult to identify specific functions with specific regions. For 

example, the ‘evolutionary accretion’ model (Murray, Wise, & Graham, 2016) relates 

the evolution of the brain to a progression towards ever more complex forms of 

memory and learning – from simple conditioning in the oldest brain structures (BG), 

to navigation (hippocampus), through to semantic and episodic memory (neocortex). 

As the system evolves, each new region builds on and extends the computational 

power of the more primitive systems to solve new problems. But what this means is 

that the accomplishment of a function cannot be attributed to a specific region, but 

depends on cooperation between regions. The whole system has evolved over time to 
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achieve more and more complex forms of learning. Natural language is at the 

pinnacle of this evolutionary development, but the capacities that make it possible 

cannot be separated from more ‘primitive’ computations in the neural bedrock. 

Implicit learning experiments may seem to represent test tube learning problems that 

on the face of it have little to do with natural language. But they provide an 

environment in which we can investigate how the basic ingredients for achieving 

language learning in the brain combine and interact. 
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